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CHAPTER 1  

INTRODUCTION 

 

Background and rationale 

Thailand has approximately 11.6 million people aged 60 years or older, which 

accounted for 17.6% of the total population, almost a 50% increase from the 

previous decade (12.2%),2 and double from two decades prior (9.6%) (Figure 1).3  

 

Following this trend, Thailand is projected to enter a complete-aged society (a 

population which has the proportion of those ages 60 years or older exceeds 20%) 

by 2021 and a super-aged society (a population which has the proportion of those 

ages 60 years or older exceeds 28%) by 2031.3 As the aging population increase, the 

number of age-related conditions such as dementia is expected to increase. This is of 

great concern as dementia is among the leading causes of death globally (Table 1),4 
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Figure 1. Percentage of total people aged 60 years or older each year. 
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a major cause of disability and dependency among the aging population, and would 

impact not only people with dementia but also their families. The ongoing 

coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory 

syndrome coronavirus (SARS-CoV-2), has posed a unique impact on people with 

dementia as well. People with dementia are at high risk of SARS-CoV-2 acquisition 

because of the difficulty following the safeguarding procedure due to severe 

cognitive impairment. Living in care homes also facilitates viral transmission. Once 

infected, elderlies with dementia are more likely to experience severe symptoms 

than those without dementia. On the contrary, people living with dementia are at 

high risk of worsening behavioral and psychological symptoms of dementia (BPSD) 

due to social isolation during the pandemic.5 Given that the COVID-19 pandemic is 

not expected to go away anytime soon, this poses new challenges for dementia care 

and urges for novel impactful management of these patients. 

Identifying people at the stage of mild cognitive impairment (MCI), considered 

the pre-phase of dementia, is vital for early management or intervention. MCI refers 

to cognitive decline greater than expected for an individual's age and education level 

but does not interfere notably with daily life activities.6 The prevalence of MCI 

increased substantially with age from an estimation of 6.7% among individuals aged 

60-64 years to 25.2% among those older than 80 years. Up to 15% of individuals with 

MCI would develop dementia in 2 years. In addition, individuals with MCI were three 

times more likely to develop dementia than their age-matched counterparts.7 

Unfortunately, there are currently no pharmacological or dietary agents that show 

symptomatic cognitive benefit in MCI. The only recommendation for people 

diagnosed with MCI is regular exercise.7 One of the reasons that may have led to 

previous negative results in clinical trials is the "heterogeneity" or multiple subtypes 

of MCI.   
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Table 1. Ten leading causes of mortality globally in 20194 
 

 

 

 

 

 

 

 

 

 

 

 

 

People living with HIV (PLWH) process unique pathophysiology of cognitive 

impairment compared to HIV-negative counterparts. HIV enters the central nervous 

system (CNS) comportment prominently and quickly, as early as 8 days after 

infection.8 Once inside the brain, HIV infects the residence cells of the CNS such as 

astrocyte, oligodendrocyte, and microglia, but not the neurons.9 10 Although neurons 

are not infected, they are still affected due to nearby inflammation. The exclusive 

infection of glial cells rather than neurons might be why subcortical domains are 

1 Ischemic heart disease 

2 Stroke 

3 Chronic obstructive pulmonary 

disease 

4 Lower respiratory infections 

5 Neonatal conditions 

6 Trachea, bronchus, lung cancers 

7 Alzheimer’s disease and other 

dementias 

8 Diarrheal diseases 

9 Diabetes mellitus 

10 Kidney diseases 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

6 

predominantly impaired among PLWH,11 which is different from the HIV-negative 

counterparts. 

In summary, the number of PLWH with cognitive impairment is expected to 

increase as the number of aging population and life expectancy of PLWH increase. 

However, there is currently no effective intervention that can improve cognition or 

prevent or slow down the disease progression to dementia. The hidden 

"heterogeneity" or multiple subtypes of MCI may contribute to the negative results of 

previous clinical trials. Finally, PLWH have unique pathophysiology and anatomical 

localization that cause differed cognitive impairment compared to HIV-negative 

counterparts. The study to determine these hidden clusters of cognitive performance 

among PLWH will be the essential first step towards finding meaningful interventions 

management for PLWH with cognitive impairment. 

 

Research questions 

Primary research question: Can unsupervised ML reveal the heterogeneity (i.e. 

clusters) of aging Thai PLWH with borderline cognitive impairment? 

Secondary research question: Are there any differences in demographic features 

between clusters of aging Thai PLWH with borderline cognitive impairment? 

 

Objectives 

Primary objective: To determine clusters of aging Thai PLWH with borderline cognitive 

impairment using unsupervised ML 

Secondary objectives: To determine the differences in demographic features 

between clusters of aging Thai PLWH with borderline cognitive impairment 
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Research hypotheses 

Hypothesis of primary objective: Unsupervised ML will be able to identify clusters of 

aging Thai PLWH with borderline cognitive impairment  

Hypothesis of secondary objective: There will be some differences in demographic 

features, most likely education levels, between clusters of aging Thai PLWH with 

borderline cognitive impairment 

 

Assumption 

All data in this study are secondary data from Thai PLWH aged ≥50 years who 

were enrolled in the HIV-NAT 207 study and completed the MoCA. 

 

Operational definition 

 PLWH are defined as those who had confirmed HIV infection by a licensed 

rapid HIV test or HIV enzyme or chemiluminescence immunoassay (E/CIA) test kit at 

any time prior to study entry and confirmed by a licensed Western blot or a second 

antibody test by a method other than the initial rapid HIV and/or E/CIA, or by HIV-1 

antigen or plasma HIV-1 RNA viral load OR Documentation of HIV diagnosis in the 

medical record by a healthcare provider. 

 Cognition refers to all processes by which sensory input is transformed, 

reduced, elaborated, stored, recovered, and used. 

Cognitive impairment refers to a decline in cognition greater expected from 

the person’s age and education. 
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Machine learning (ML) refers to a subset of artificial intelligence that teaches 

computers to learn from experience, a natural process of humans and animals. ML 

used in this study was unsupervised learning. 

 

Expected benefit and application 

Because all participants were enrolled in the prospective HIV-NAT 006 study, 

if the model can determine different clusters of cognitive performance among PLWH, 

those results can be integrated with the baseline characteristics from when the 

participants were initially enrolled in the HIV-NAT 006 study to determine associated 

factors with the development of the specific cluster; furthermore, they can be 

integrated with the current ongoing data to determine if any specific clusters are 

associated with future HIV and comorbidities outcome. These steps will be important 

evidence to support the integration of the cognitive assessment, which has been 

controversial in terms of the appropriate tools, using the MoCA to routine HIV care. 

 

Obstacles and solution 

 No major obstacles were met. The data was extracted from the HIV-NAT 

database with ease, and the ML model was assisted by the expertise. 

 

Conceptual framework 
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CHAPTER 2  

REVIEW OF LITERATURE 

 

Cognition and cognitive impairment 

Cognition refers to all processes by which sensory input is transformed, 

reduced, elaborated, stored, recovered, and used.12 Cognitive change as a normal 

process of aging has been well documented. As a person ages, the brain’s cognitive 

abilities began to deteriorate; some are more resilient (e.g. vocabulary, reading, and 

verbal reasoning), some are more vulnerable (e.g. memory, attention, and processing 

speed).13 However, in normal aging individuals, this often called age-related cognitive 

decline is subtle and does not significantly affect their abilities to perform daily tasks.   

On the other hand, MCI and dementia indicate a decline in cognition greater 

than what would be expected from the person’s age and education. MCI means that 

cognitive declines do not affect the person’s ability to carry out everyday tasks (e.g., 

shopping, cooking, driving), while dementia indicates those cognitive difficulties are 

impacting the person’s ability to complete everyday tasks. It is important to 

emphasize that both MCI and dementia are syndrome and do not imply the cause or 

the diagnosis. Alzheimer’s disease is among the most common cause of MCI and 

dementia; other common causes include vascular MCI or dementia, frontotemporal 

lobe disease, and dementia with Lewy bodies (DLB). MCI can be thought of as a 

transitional state between normal aging and dementia.14 

Based on the Key Symposium criteria since 2004, MCI can be categorized into 

four subtypes, based on two questions: is the memory domain involved, and is there 

more than one domain involved?  The first question would categorize MCI into either 

amnestic or nonamnestic MCI, and the second question would categorize MCI into 
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either single or multiple domains. Thus, individuals with MCI can be classified as one 

of the four clinical subtypes: amnestic MCI-single domain, amnestic MCI-multiple 

domains, nonamnestic MCI-single domain, and nonamnestic MCI multiple domains 

(Figure 2). Each type appeared to be associated with different etiologies and 

outcomes.1 For instance, individuals with amnestic MCI were more likely to develop 

AD, while nonamnestic MCI were more likely to develop DLB.15 The combination of 

clinical subtype and the presumed etiology could then be used to predict the type 

of dementia the individuals would most likely develop.1 16  Because each subtype of 

MCI potentially processes diverse underlying pathology, without addressing this 

heterogeneity could potentially explain the reason why previous reports fail to 

demonstrate any impactful management or intervention for people with MCI. 

Although the clinical outcomes between those with and without multiple domain 

involvements are different, there has been limited information on what domains are 

involved in MCI-multiple domains.17 In addition, it’s more than likely that different 

phenotypes exist between those who score within the same range despite most 

cognitive assessments having binary outcomes.   

MCI

aMCI
aMCI-single domain

aMCI-multiple domains

naMCI
naMCI-single domain

naMCI-multiple domains

Figure 2. Based on the Key Symposium criteria,1 mild cognitive impairment (MCI) can 

be categorized into 4 subtypes based on 2 aspects: memory domain involvement 

and number of domains involved. 

Abbreviations: a, amnestic; MCI, mild cognitive impairment; na, nonamnestic 
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Montreal Cognitive Assessment 

 Multiple neuropsychological assessments are necessary to determine 

subtypes of cognitive impairment. Unfortunately, the complete evaluation takes a 

long time, in some cases up to several hours, and requires specialized healthcare 

personnel to conduct. Therefore, it is not feasible to perform such technical and 

time-consuming assessments in many settings, particularly resource-limited settings. 

In 2005, Nasreddine et al published a one-page 30-point cognitive screening tool that 

can be administered in 10 minutes to detect MCI called the Montreal Cognitive 

Assessment (MoCA).18 The MoCA assesses multiple cognitive domains, including (1) 

visuospatial/executive function (clock-drawing task, three-dimensional cube copy, 

and Trail Making B task), (2) Naming (three-item confrontation naming task with low-

familiarity animals), (3) attention (digits forward and backward, target detection using 

tapping, and serial subtraction task), (4) language (repetition of two syntactically 

complex sentences and phonemic fluency task), (5) abstraction (two-item verbal 

abstraction task), (6) delayed recall (short-term memory recall task), and (7) 

orientation (time and place). From the original study, the sensitivity and specificity of 

the MoCA in identifying MCI were 90% and 87%, respectively.18 However, studies 

from different investigators have shown that the optimal cutoffs for the MoCA varied 

by race and ethnicities.19 This also holds true to the Thai version of the MoCA (Figure 

3).20 The Thai-validated version of MoCA showed sensitivity and specificity of 80% in 

MCI detection using a cutoff score of <25 by adding 1 point for subjects with ≤6 years 

of education. Therefore, the MoCA has many advantages, including time-saving, being 

widely available and accessible in many settings, and, most importantly, multiple 

domains assessment.  
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Figure 3. Thai-validated version of the Montreal Cognitive Assessment   
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Abbreviations: ANI, asymptomatic neurocognitive impairment; ART, antiretroviral 

therapy; HAD, HIV-associated dementia; HAND, HIV-associated neurocognitive 

disorders; MND, mild neurocognitive disorder; PLWH, people living with HIV; SD, 

standard deviation 

Cognitive impairment and people living with HIV 

One of the early AIDS-defining illnesses to be recognized is HIV-associated 

dementia (HAD). The incidence rate was 7% per year among individuals with 

advanced HIV.21 After the invention of antiretroviral therapy (ART) and the application 

of combined ART, HAD is now rarely seen. In people living with HIV (PLWH) who have 

access to ART. Regardless, milder forms of cognitive impairment are being recognized 

among those who are virologically suppressed. In 2007, the terminology for these 

spectrums of cognitive impairment among PLWH was proposed as HIV-associated 

neurocognitive disorders (HAND), sometimes called the Frascati criteria.22 HAND can 

be further categorized into 3 types based on their severity of objective 

neuropsychological findings and functional status: asymptomatic neurocognitive 

impairment (ANI), mild neurocognitive disorder (MND), and HAD (Table 2). In brief, 

ANI refers to PLWH with cognitive impairment but does not interfere with daily  

 

Table 2. Classification of HAND 

HAND type Prevalence in combined 

ART-treated PLWH 

Diagnostic criteria 

ANI 30% • Impairment in ≥2 neurocognitive domains (≥1SD)  

• Does not interfere with daily functioning 

MND 20-30% • Impairment in ≥2 neurocognitive domains (≥1SD)  

• Mild to moderate interference in daily functioning 

HAD 2-8% • Impairment in ≥2 neurocognitive domains (≥2SD)  

• Marked interference in daily functioning 
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function, MND refers to PLWH with cognitive impairment and mild-to-moderate 

interference of daily function and HAD refers to PLWH with marked cognitive 

impairment and marked interference of daily function. Interestingly, there were no 

differences in the prevalence of HAND between the pre-combined ART and 

combined ART era – range: 15-55% of PLWH.11 However, the prevalence of milder 

forms of HAND has increased (Figure 4). By linking to the traditional definition of MCI 

and dementia, ANI would be categorized as MCI (cognitive impairment without 

notable interference with daily life) and HAD would be categorized as dementia 

(cognitive impairment with notable interference with daily life). As for MND, this 

would depend on the degree of interference with daily life.  

 HIV can enter the central nervous system (CNS) comportment very 

prominently and at the early stage of infection. A study among Thai PLWH during 

acute HIV infection demonstrated that 83.3% have detectable CSF HIV RNA and can 

be detected early as 8 days after HIV acquisition.8 HIV travels to the CNS by two main 

pathways: the Trojan-horse mechanism and directly through the breakdown of 

blood-brain barriers.9 Once inside the brain, HIV will infect the residence cells of the 

CNS such as astrocyte, oligodendrocyte, and microglia, but not the neurons.9 10 

Although neurons are not infected, they are still affected due to nearby 

inflammation. The exclusive infection of glial cells rather than neurons might be the 

reason why subcortical domains are predominantly impaired among patients with 

HAND.11 Therefore, screening batteries for HAND should focus on such domains – e.g. 

attention, fine movement, and executive function – and it is important to be aware 

of this unique anatomical localization compared to the general population. 
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Machine learning 

Driven by the invention of the internet and an increase in computational 

power, Big Data was made possible and has become one of the most important 

assets of the 21st century.23 Big Data is categorized by the 4 V’s – volume (constant 

growing volume of data generated from different sources and which traditional 

databases cannot handle), variety (various platform of data collections), velocity 

(acquisition speed of the data and additionally the speed at which the data should 

be processed and analyzed), and value (the extraction of knowledge or patterns out 

of the raw data). However, it is very challenging, if not possible, to process this large 

Combined ART eraPre-combined ART era

HAD 

HAD 

MND 

MND 

ANI 
ANI 

No impairment No impairment 

Figure 4. Prevalence of HAND between pre-combined ART and combined ART era. Since 
the introduction of combined ART in 1996, the proportion of HAND has remained 
unchanged, but the proportion of people with severe symptoms has declined.  
Adapted from Saylor, D, et al. Nat Rev Neurol 2016;12(4):234-48.14   
Abbreviations: ANI, asymptomatic neurocognitive impairment; ART, antiretroviral therapy; 
HAD, HIV-associated dementia; HAND, HIV-associated neurocognitive disorders; MND, mild 
neurocognitive disorder 
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amount of data using the traditional approach. Therefore, machine learning (ML), a 

form of artificial intelligence (AI) most commonly used in healthcare settings, is 

introduced to tackle this data as it enables a robust interrogation of datasets to 

identify previously undiscovered patterns and relationships between different 

features in the data.24  

ML teaches computers to learn from experience, a natural process of humans 

and animals. ML algorithms use computational methods to “learn” information 

directly from data without relying on a predetermined equation as a model. ML uses 

two types of techniques: supervised learning and unsupervised learning (Figure 5). 

The concept of supervised learning is to build a model that makes predictions based 

on evidence in the presence of uncertainty. A supervised learning algorithm takes a 

known set of input data and known responses to the data (output) and trains a 

model to generate reasonable predictions for the answer to new data. In contrast, 

the concept of unsupervised learning is to finds hidden patterns or intrinsic structures 

in data.25 In recent years, this data-driven approach has been increasingly integrated 

into the medical field. The application of ML algorithms to classify skin cancer and 

Machine learning

Unsupervised learning
Group and interpret data based 

only on input data

Supervised learning
Develop predictive model based 
on both input and output data

Figure 5. Machine learning uses two types of techniques: supervised learning, which trains a 
model on known input and output data so that it can predict future outputs, and unsupervised 
learning, which finds hidden patterns or intrinsic structures in input data. 
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predict the progression from pre-diabetes to type 2 are among the early success 

examples.26 27 Unsupervised ML has been integrated into a handful of MCI studies, 

primarily to develop or evaluate the performance of diagnostic tools.28-30 One study 

found that K-means clustering was able to reveal key patterns from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database using five sets of features – (1) 

Cognitive assessments and Ape genotype, (2) CSF, (3) MRI, (4) CSF and MRI, and (5) all 

of the above features – to aid early AD detection at the MCI stage.31 However, 

applying this particular model is challenging, especially in resource-limited settings 

where access to advanced laboratory and imaging is limited. Among the most recent 

data presented at the 2021 American Academy of Neurology Annual Meeting, 

unsupervised ML demonstrated six clusters of aging Thai population with borderline 

MCI assessed by the MoCA (Figure 6).32  

 

  

Figure 6. Unsupervised machine learning demonstrated six independent clusters among aging (≥60 
years old) Thai population with borderline mild cognitive impairment.32 
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CHAPTER 3  

STUDY DESIGN AND METHODOLOGY 

 

Design 

A retrospective descriptive study of aging Thai PLWH 

 

Methodology 

Population 

The study used the secondary data from participants who were enrolled in 

the HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT) 207 (“Aging 

study”). The HIV-NAT 207 study was a cross-sectional study to determine the 

prevalence and compare multiple health issues such as osteoporosis, vitamin D 

deficiency, cardiovascular risks, depression, and neurocognitive impairment between 

aging PLWH and age sex-matched HIV-uninfected controls. The study enrolled two 

groups of participants between 2015 and 2017 for a total of 509 participants: PLHW 

from the ongoing prospective HIV-NAT 006 study (n=358) and the newly enrolled 

HIV-uninfected controls (n=151).33-36 The HIV-NAT 207 study measured several aged-

related factors of interest such as blood pressure, waist circumference, height, 

weight, bioelectrical impedance analysis (BIA), questionnaires (assessing fracture risks, 

physical activities, cardiovascular risks, depression and anxiety, quality of life, 

activities of daily living, and nutrition), bone mineral density of hip and spine, 

metabolic and hormonal laboratories, transient elastography, coronary artery calcium 

(CAC) score, and transthoracic echocardiogram. Importantly, all aging PLWH who were 

enrolled in the HIV-NAT 207 study were the participants who had already been 

enrolled in the prospective and ongoing HIV-NAT 006 study. The HIV-NAT 006 study is 
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an ongoing, prospective, clinic-based cohort that enrolled adults living with HIV (aged 

≥18 years) since 1996 (NCT00411983) and have enrolled over 2000 participants as of 

2021.37-41 Therefore, all participants in our study had baseline data prior to and the 

current data after the MoCA in the HIV-NAT 207 study, conducted between 2015 and 

2017. Among many laboratory parameters and other investigations performed in the 

HIV-NAT 207 study was the Thai-validated version of MoCA, which was used to assess 

cognitive performance.  

Target Population 

 Aging PLWH who were enrolled in the HIV-NAT 207 study 

Control Population 

 Because the study was a descriptive study of aging Thai PLWH, there was no 

control population.  

Approach to participants 

 Because the study used secondary data from the already completed the HIV-

NAT 207 study, there was no approach to participants. 

Inclusion criteria 

• Aging PLWH, defined by PLWH who aged ≥50 years old, who were enrolled 

in the HIV-NAT 207 study 

• Completed the MoCA  

Exclusion criteria 

 • Participants who were previously diagnosed with dementia 

Sample size calculation 

 Unsupervised ML uses data-driven analysis to determine hidden patterns in 

the dataset without the absolute ground truth. Therefore, the sample size cannot be 
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calculated since we plan to integrate this method to determine the solution to our 

primary objective. All eligible aging PLWH who were enrolled in the HIV-NAT 207 

study were included in our study. Clustering validation was conducted after the 

cluster analysis to determine the performance of the model.  

Informed consent process 

 All participants in the HIV-NAT 207 study provided their consent prior to 

entering the study. Because the study used secondary data from the already 

completed the HIV-NAT 207 study, the informed consent for this study was waived. 

 

Data Collection 

 Secondary data from the HIV-NAT 207 study was extracted and used for the 

analysis. The data necessary for the primary objective of the study was the 

participants’ scores from the MoCA. This included the total score of each of the 

seven cognitive domains in the MoCA: visuospatial/executive function, naming, 

attention, language, abstraction, delayed recall, and orientation.  

Demographic data comprised age, gender, education levels, marital status, 

body mass index (BMI), smoking, alcohol consumption, hypertension, diabetes 

mellitus, dyslipidemia, and depression. BMI was calculated as weight in kilograms 

divided by the square of the height in meters and categorized based on the WHO 

classifications for Asian populations.42 Hypertension was defined as systolic blood 

pressure of ≥140 mmHg or diastolic blood pressure of ≥90 mmHg on two or more 

clinic visits or reported onset of hypertension and initiation of antihypertensive 

therapy by a physician. Diabetes mellitus was defined as fasting plasma glucose of 

≥126mg/dl on two consecutive study visits or reported onset of diabetes and 

initiation of antidiabetic therapy by a physician. Depression was evaluated by a 15-
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item depression screening test developed and validated by the Department of 

Mental Health, Ministry of Public Health of Thailand, with a score of >6/15 indicating 

clinical depression. HIV-related factors included the CDC classification system, nadir 

CD4 cell counts, duration of HIV diagnosis and ART initiation, history of efavirenz use, 

current CD4 cell counts, and plasma HIV RNA levels.  

 

Data Analysis and Statistics 

Demographic data 

Demographic data was summarized as number and percentage for categorical 

variables and as median and interquartile for continuous variables. To determine the 

differences in demographic features between clusters of aging Thai PLWH with 

borderline cognitive impairment, Pearson’s chi-square, Fisher’s exact test, and 

Kruskal–Wallis test were used as appropriated. 

Unsupervised machine learning algorithm 

According to our primary objective of identifying hidden patterns or intrinsic 

structures in the data, or “cluster”, unsupervised ML is the type of ML used in this 

study. K-means clustering was used as the unsupervised ML algorithm of choice to 

perform hard clustering, where each data point belongs to only one cluster. K-means 

clustering partitions the given data into user-specified k number of mutually 

exclusive clusters, with each cluster having a cluster center called centroid. The 

distance from that point to the cluster’s center determines how well a point fits into 

each cluster.25 43 Given k, the k-means algorithm works as follows: 

Step 1: Choose k data points to be the initial centroids (cluster centers). 

Step 2: Assign each data point to the closest centroids. 
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Step 3: Recompute the centroids using the current cluster memberships. 

Step 4: Repeat step 2 and 3 until convergence criteria is met. 

The input variables for cluster analysis were the total score of each of the 

seven cognitive domains in the MoCA:  

• Visuospatial/executive function (maximum score: 5) 
• Naming (3) 
• Attention (6) 
• Language (3) 
• Abstraction (2) 
• Delayed recall (5) 
• Orientation (6) 

Clustering validation 

Unlike supervised ML, there is no ground truth to unsupervised ML, and thus 

identify the most appropriate number of clusters remains one of the most perplexing 

issues. There are several methods to determine the appropriate number of clusters 

can be determined, although there is currently no universal standard 

recommendation. Several methods were used to determine the optimal number of 

clusters in our study to be most vigilant on this important issue. These included (1) 

elbow method, (2) Silhouette coefficient, (3) Calinski-Harabasz Index, (4) Davies-

Bouldin Index, and split data method.44-47  

The elbow method is among the most popular methods for determining the 

optimal number of clusters. The method is based on calculating the Within-Cluster-

Sum of Squared Errors (WSS) for the different number of clusters (k) and selecting the 

“elbow point”, which is the point where the variation changes began to diminish. 

The elbow point is the number of clusters we can use for our clustering algorithm.44 
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The Silhouette Coefficient calculates the smallest average distance of point i 

to all points in other clusters (distance of points of different clusters) and the 

average distance of point i from all points in the same cluster (closeness of points in 

the same cluster). Therefore, the model provides the information on whether the 

individual points are correctly assigned to their clusters – i.e. the point would be 

better off assigning to the other clusters if the Silhouette Coefficient is closer to -1, 

and the point belongs to the ‘correct cluster if the Silhouette Coefficient is closer to 

1.45 

The Calinski-Harabasz index, also known as the Variance Ratio Criterion, is the 

ratio of between-clusters dispersion and inter-cluster dispersion for all clusters; the 

higher the score, the better the performances.46 

This Davies-Bouldin index signifies the average ‘similarity’ between clusters, 

where the similarity is a measure that compares the distance between clusters with 

the size of the clusters themselves. A lower Davies-Bouldin index relates to a model 

with better separation between the clusters.47 

Lastly, the application of split data for training and validating used in 

supervised learning was applied to the cluster’s outcome.48 After the optimal 

number of clusters was determined using the abovementioned methods, the dataset 

was split into 1:1 ratio and clustered independently using the chosen number of 

clusters. The consistency between datasets would suggest the validity of the model. 

Follow-up data 

 Although not among the primary proposes of this cross-sectional description 

study which determined to demonstrate the capability of unsupervised ML in 

exploring clusters of aging PLWH with borderline cognitive impairment, longitudinal 

information on plasma HIV RNA was available by matching the data from the HIV-NAT 
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207 to the longitudinal HIV-NAT 006 database. The incidence of detectable plasma 

HIV RNA (≥40 copies/mL) was calculated for each cluster and demonstrated using the 

Kaplan-Meier estimate. Participants without detectable plasma HIV RNA were 

censored on the last day they had plasma HIV RNA levels. Person-years were 

calculated from enrollment of the HIV-NAT 207 to the first visit of detectable plasma 

HIV RNA for participants who had detectable plasma HIV RNA and the last visit with 

plasma HIV RNA result for participants who did not have detectable plasma HIV RNA. 

All statistical analysis were performed using Stata/SE 17 (StataCorp LP, 

College Station, TX, USA) except for the unsupervised ML algorithm, which was 

performed using R (RStudio, Boston, MA, USA). 
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CHAPTER 4  

RESULTS 

 

Characteristics of all enrolled participants 

Among 340 PLWH aged ≥50 years who completed the MoCA in the HIV-NAT 

207 study, 177 (52.1%) scored between 23 and 27 (median [IQR] 25 [24 – 26]) and 

were included in the analysis. Median (IQR) age was 54 (51-58) years, 118 (66.7%) 

were male, and 149 (84.2%) had >6 years of education. For comorbidities, 67 (37.9%) 

have ever smoked, 32 (18.1%) have ever consumed alcohol, 65 (36.7%) had 

hypertension, 28 (15.8%) had diabetes mellitus, 65 (37.8%) had LDL-cholesterol of 

>130 mg/dL, 90 (50.9%) had hypertriglyceridemia, and 38 (21.5%) had depression 

(Table 3).  

The median duration of HIV diagnosis and ART initiation were 18.2 (15.2 – 

20.9) and 16.3 (13.6 – 19.1) years, respectively. 110 (62.2%) had history of EFV use. 

Median current CD4 counts were 620 (489 – 795) cells/µL and 170 (96.1%) had 

plasma HIV RNA <40 copies/mL. 
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Table 3. Characteristics of 177 participants 

Characteristics N % 
Gender   
    Female 59 33.3 
    Male 118 66.7 
Age, y 54 (51 – 58)  
Education   
    Primary school or less 28 15.8 
    Secondary school 83 46.9 
    Bachelor’s degree or more 66 37.3 
Marital status   
    Married 71 40.6 
    Single/separated/widowed 104 59.4 
Body mass index (kg/m2)   
    Underweight (<18.5) 18 10.2 
    Ideal (18.5 – 22.9) 68 38.6 
    Overweight (23 – 27.5) 76 43.2 
    Obese (>27.5) 14 8.0 
Smoking status   
    Current 27 15.3 
    Former 40 22.6 
    Never 110 62.1 
Alcohol consumption status   
    Current 14 7.9 
    Former 18 10.2 
    Never 145 81.9 
Hypertension 65 36.7 
Diabetes mellitus 28 15.8 
LDL-cholesterol >130 mg/dL 65 37.8 
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Triglyceride >150 mg/dL 90 50.9 
Depression 38 21.5 
HIV-related factors   
    CDC classification   
        A 75 42.4 
        B 72 40.7 
        C 30 16.9 
    Nadir CD4 counts, cells/µl 191 (74 – 266)  
    Duration of HIV diagnosis, y 18.2 (15.2 – 20.9)  
    Duration of ART initiation, y 16.3 (13.6 – 19.1)  
    History of EFV use 110 62.2 
    Current CD4 counts, cells/µl 620 (489 – 795)  
    Plasma HIV RNA <40 copies/mL 170 96.1 
MoCA score 25 (24 –26)  

 
Abbreviations: ART, antiretroviral therapy; EFV, efavirenz; MoCA, Montreal Cognitive 
Assessment 
 Continuous variables are reported as median (interquartile range) 
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Clustering outcomes 

Unsupervised ML demonstrated 5 clusters with good consistency of 

borderline cognitive impairment among aging Thai PLWH (Figure 7, cluster validation 

results were demonstrated in Figure 8 and 9): 22.0% cluster 1 (marked memory with 

mild language impairment), 25.4% cluster 2 (mild visuospatial/executive function-

language-memory impairment), 19.2% cluster 3 (moderate abstraction with mild 

visuospatial/executive function-language-memory impairment), 18.6% cluster 4 

(marked language with mild memory impairment), 14.7% cluster 5 (marked language-

abstraction impairment).  

 

Differences in characteristics between clusters 

Characteristics of participants in each cluster was demonstrated in Table 4. 

There were significant differences in the proportion of participants with education of 

primary school or less between clusters (p=0.012): cluster 2 (24.4%) and 4 (27.3%) 

had the highest proportion, and cluster 1 (2.6%) had the lowest proportion. No 

significant differences in other participant’s characteristics, including HIV-related 

factors, between clusters were shown. There were significant differences in the 

median MoCA score between clusters (p<0.001): 26 for cluster 2; 25 for cluster 1; and 

24 for cluster 3 – 5.
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Clusters and virological outcomes 

Among 177 participants, 167 (94.4%) had plasma HIV RNA follow-up data. A 

total of 16 (9.6%) aging PLWH with borderline cognitive impairment had incident 

plasma HIV RNA detection (≥40 copies/mL), accounting for an overall incidence of 

22.2 per 1000 person-years (95%CI 13.6-36.2) over 720.7 person-years of follow-up. 

The incidence of plasma HIV RNA detection was 31.6, 16.3, 28.8, 32.2, and 0 per 1000 

person-years for cluster 1-5, respectively (Figure 10).  

 

 

 

  

Figure 10. Kaplan-Meier estimates of having plasma HIV RNA detection (≥40 copies/mL) 
categorized by clusters. Over a total of 720.7 person-years of follow-up, the incidence of plasma 
HIV RNA detection was 31.6, 16.3, 28.8, 32.2, and 0 per 1000 person-years for cluster 1-5, 
respectively. 
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CHAPTER 5  

DISCUSSION 

 

Unsupervised ML demonstrated five clusters with good consistency 

surrounding visuospatial/executive, abstraction, language, and memory function 

among aging Thai PLWH with borderline cognitive impairment; all had some degree 

of language impairment.  

In contrast to the previous studies that applied ML to cognitive impairment,28-

31 49 we did not use a new diagnostic tool, advanced laboratory, or advanced imaging; 

and opted to use the MoCA exclusively as our cluster variables. This is beneficial to 

apply the method in many healthcare services, particularly in resource-limited 

settings where advanced investigations may not be feasible. In addition, cognitive 

assessment tools that are not commonly used would be difficult to perform and 

integrate into many healthcare settings. By introducing a novel approach to 

interpreting the data from the already well-recognized assessment tool, our study 

provided an effective and uncomplicated way for healthcare workers to implement 

this approach in healthcare settings 

All five clusters had some degree of language impairment. It is important to 

note that this might not automatically point to abnormalities of the cerebral cortex, 

the traditional anatomical localization of the physiology of language.50 51 Language 

assessment in the MoCA consisted of sentence repetition and verbal fluency. In 

addition to understanding and speaking the language, the ability to repeat sentences 

requires core components of working memory, such as holding information for a brief 

period and computing syntactic structures to rehearse information successfully.52 The 

ability to initiate the word in verbal fluency also requires components of executive 

function.53 Therefore, the ability to perform both tasks of the MoCA’s language 

assessment may correlate with individual differences in working memory and 
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executive function capacity, localized at the subcortical regions where they are 

predominantly affected in PLWH.54  

All impairments surrounded four out of seven cognitive domains tested in the 

MoCA – visuospatial/executive, abstraction, language, and memory function. Since all 

enrolled participants scored near the cut-off point of the MoCA, we hypothesized 

that this represents the cognitive domains that are impaired at the early stage of 

cognitive impairment. It is most likely that these cognitive domains require a 

relatively higher brain function network than the remaining three cognitive domains 

that were not affected. Alternatively, secondly, these findings may represent a bias of 

measurement. Although visuospatial/executive function was scored collectively, it 

was tested thoroughly using three tests – alternating trail making, cube drawing, and 

clock drawing test. Language assessment in the MoCA requires multiple brain regions, 

as previously discussed. The score for word recall did not differentiate between 

those who can and cannot recall after the cue. Comparing to our previous work using 

the same clustering methods on the general aging population attending the King 

Chulalongkorn Memorial Hospital, Bangkok, Thailand, demonstrated six clusters of 

aging Thai population, two clusters did not have language impairment despite the 

study’s median age was higher than the current study by more than a decade 

(median age 66.9 years).32  

Although significant differences in the median total MoCA score between 

clusters were demonstrated, all participants scored within a narrow range of 23-27. 

Notably, the median MoCA scores were identical among clusters 3 – 5, confirming 

that different phenotypes exist among those with a similar score. Furthermore, the 

median score of the two clusters was within the traditional cut-off point of 25, 

suggesting that the traditional binary outcomes of cognitive assessment would have 

missed important in-depth information about the patients. 
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In relation to the four traditional subtypes of MCI, unsupervised ML 

demonstrated four amnestic MCI-multiple domains (cluster 1 – 4) and a group of 

non-amnestic MCI-multiple domains (cluster 5). There are currently no US Food and 

Drug Administration (FDA)-approved medications for the treatment of MCI. Numerous 

control trials have been conducted, but none have shown effectiveness in delaying 

the progression from MCI to dementia.1 Therefore, the current recommendations 

suggest that clinicians counsel patients and families that no pharmacologic agents are 

shown to have symptomatic cognitive benefit in MCI.7 Based on our findings that 

different phenotypes exist among those with a similar score from a cognitive 

assessment, the lack of effective pharmacological interventions may be partly due to 

the previously undiscovered heterogeneity of the population.  

Previous reports have demonstrated that cognitive impairment among PLWH 

can affect their ability to adequately adhere to ART,55 56 which may lead to 

detectable plasma HIV RNA. By linking the data from our aging PLWH with borderline 

cognitive impairment to the longitudinal HIV-NAT 006 study, we were able to obtain 

the follow-up data of 167 (94.4%) participants. Although there were differences 

between clusters, plasma HIV RNA detection incidence was low across all clusters 

(ranged 0 – 32.3 per 1000 person-years). It is crucial to note that all participants are 

at most in their early stage of cognitive impairment and, therefore, might not wholly 

reflect the previous reports on the effect of cognitive impairment on ART adherence. 

However, the interesting information from our findings was that the only cluster that 

did not show incident detectable HIV RNA was cluster 5 – the only non-amnestic 

cluster, in line with previous reports on the association between memory function 

and medication management skills.57-59 

Certain limitations need to be considered in our study. Because our study was 

conducted in a research center in a large city, there may be selection bias, as can be 

seen in the disproportion of individuals with an education of >6 years. Secondly, we 

cannot conclude the extent of the clinical significance of these clusters because of 
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the cross-sectional study design fashion. However, we were able to show some light 

on the potential differences in virological outcomes between clusters by linking to 

the existing longitudinal data. Thirdly, the sample size was small, which can affect 

the consistency of the clusters, as can be best viewed by the split data method, and 

the ability to perform multivariable analysis to explore associated factors. It is also 

important to note that our participants were mostly virologically well-controlled 

aging PLWH who mostly came for a routine follow-up rather than presenting with 

neurological issues. Finally, because the data collection of the MoCA score was in 

the form of total score per each of the 7 cognitive domains assessed, this limited the 

potential to regroup the score of each test within those cognitive domains to further 

explore tests that may have overlapping cognitive domains assessment values. 

Regardless, we were able to accomplish our objective of determining clusters of 

aging Thai PLWH with borderline cognitive impairment.  

Our study demonstrated that heterogeneity exists within those who score 

similarly in the cognitive assessment. The findings can be used to tailor the selection 

of cognitive domain assessment in the usually busy clinic settings. However, among 

the most critical question moving forward is whether these clusters have any clinical 

significance. Therefore, a longitudinal study is warranted to identify the effect on HIV 

care (ART adherence and viral rebound incidence), cognitive progression, quality of 

life, and mortality. Studies using unsupervised ML in different population is also 

beneficial for exploring the difference in the clusters. Finally, inputting additional 

data on clinical history/physical examination and other investigations such as brain 

imaging and biomarkers may improve the cluster outcomes for settings with available 

resources.  

In conclusions, unsupervised ML demonstrated five clusters among aging Thai 

PLWH with borderline cognitive impairment; all had some degree of language 

impairment and multiple domains involvement. A longitudinal study is warranted to 

identify differences in clinical significance and prognosis between each cluster.  
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