เครื่องหมายพันธุกรรมระดับโมเลกุลเพื่อระบุชนิด เพศ และประชากรของกุ้งกุลาดำ
Penaeus monodon

จฬาลงกรณ์มหาวิทยาลัย
วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาเทคโนโลยีชีวภาพ

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2548
ISBN 974-14-2336-5
ลิขสิทธิ์ของจุพาลงกรณ์มหาวิทยาลัย

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy Program in Biotechnology
Faculty of Science

Chulalongkorn University
Academic Year 2005

ISBN 974-14-2336-5

Thesis Title Molecular genetic markers for identification of species, sex, and population of giant tiger shrimp Penaeus monodon

By
Field of study Miss Bavornlak Khamnamtong

Biotechnology
Thesis Advisor
Professor Piamsak Menasveta, Ph.D.
Thesis Co-advisor
Sirawut Klinbunga, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctor's Degree

THESIS COMMITTEE

(Sanit Piyapattanakorn, PhD.)

(Professor Piamsak Menasveta, Ph.D.)

Thesis Co-advisor

(Associate Professor Warawut Chulalaksananukul, Ph.D.)
Uthairat VarNa ko-... Member
(Professor Uthairat Na-Nakorn, Ph.D.)

บวรลักษณ์ คำน้ำทอง : เครื่องหมายพันธุกรรมระดับโมเลกุลเพื่อระบุชนิด เพศ และประชากรของกุ้ง กุลาคำ Penaeus monodon (MOLECULAR GENETIC MARKERS FOR IDENTIFICATION OF SPECIES, SEX, AND POPULATION OF GIANT TIGER SHRIMP Penaeus monodon) อ. ที่ ปรึกษา : ศ.ดร. เปี่ยมศักดิ์ เมนะเศวต, อ. ที่ปรึกษาร่วม : ดร. ศิราวุธ กลิ่นบุหงา 226 หน้า. ISBN 974-14-2336-5.
ทำการพัฒนาเครื่องหมายพันธุกรรมระดับโมเลกุลเพื่อระบุชนิดของกุ้ง 5 ชนิดประกอบด้วย Penaeus monodon, P. semisulcatus, Litopenaeus vannamei, Fenneropenaeus merguiensis และ Marsupenaeus japonicus ด้วยการวิเคราะห์ PCR -RFLP และ SSCP ของขีน $16 \mathrm{~S} \mathrm{rDNA}_{\text {so }}$ พบว่า P. monodon, L. vannamei และ F. merguiensis สามารถจำแนกออกจากกันได้อย่างชัตเจน โดยการตัตยีน $16 \mathrm{~S}_{\mathrm{rDNA}}^{s s o}$ ด้วยเอนไซม์ตัดจำเพาะ $A l u \mathrm{I}$, $M b o \mathrm{I}, S s p \mathrm{I}$ และ $V_{s p} \mathrm{I}$ ขณะที่ P. semisulcatus และ M. japonicus ไม่สามารถจำแนกออกจากกันได้ เนื่องจากมีจี
 ออกจากกันได้ อย่างไรก็ตาม เมื่อขยายตัวอย่างเพิ่มขื้นพบปัญหาในการทำพีซีอาร์ในกุ้ง L. vannamei และ F. merguiensis จึงทำการโคลนยีน $16 \mathrm{~S}_{\mathrm{rDNA}}^{500}$ จากตัวแทนกุ้งทั้ง 5 ชนิดที่แสดง common mitotype ในกุ้งแต่ละ ขนิด หาลำดับนิวคลีโอไทต์และออกเบบไพรเมอร์ที่สามารถให้ผลิตภัณท์พีซีอาร์ขนาด 312 bp ได้ไนกุ้งทั้ง 5 ชนิด เมื่อวิเคราะห์ด้วย PCR-RFLP ในตววอย่างจำนวน 185 ตัว พบว่าให้ผลเข่นเดียวกับผลที่ได้จาก $16 \mathrm{~S}_{\mathrm{rDNA}}^{560}$ และพบรูปแบบของ SSCP ที่สามารถจำแนกกุ้งทั้ง 5 ชนิดออกจากกันได้อย่างถูกต้อง

จากการศึกษาพันธุศาสตร์ประชากรของกุ้งกุลาดำ P. monodon ในประเทศไทยจาก 5 แหล่ง (ตราด ชุมพร สตูล ตรังและพังง่า) ด้วยการวิเคราะห์ $\mathrm{PCR}-\mathrm{RFLP}$ และ SSCP ของยีน $16 \mathrm{~S}^{\text {rDNA }}{ }_{312}$ พบว่ามีระด้บความ หลากหลายทางพันธุกรรมต่ำและไม่พบโครงสร้างประชากรทางพันฐูกรรมของกุ้งกุลาดำที่ทำการศึกษา (P > $0.05)$ และเมื่อวิเคราะห์ด้วย AFLP จำนวน 320 คู่ใพรเมอร์ พบชิ้น AFLP ที่ polymorphic จึงทำการโคลนและหา ลำดับนิวคลีโอไทด์ชิ้น AFLP จำนวน 22 ชิ้น ทิาการออกแบบไพรเมอร์ 14 คู่และเลือก 4 คู่ไพรเมอร์ (P6M2-370, P6M6-470, E4M6-295 และ E7M10-450) ที่ให้ผล polymorphic มาศึกษาพันझุศาสตร์ประชากรของกุ้งกุลาดำ พบ ระดับความหลากหลายทางพันธุกรรมต่ำและไม่พบโครงสร้างประชากรทางพันธุกรรม $(\mathrm{P}>0.05)$ เช่นเดียวกับผล จาก $16 \mathrm{~S}_{\mathrm{rDNA}}^{312}$ นยกจากนี้ ทำการหาลำดับนิวคลีไอไทค์ของยืน CO_{664} จากกุ้งจำนวน 100 ตัวอย่าง ผลจาก neighbor-joining tree สามารถจัตกถุ่มทางพันโุกรรมของกุ้งฉุลาตำในประเทศไทยได้ 3 กลุ่ม โดยพบความ แตกต่างทางพันธุกรรมระหว่างกลุ่มในระดับสูงแต่ภายในกลุ่มเดียวกันมีระดับต่ำ และพบการกระจายตัวของแฮพ โพไทด์แต่ละกลุ่มในแต่ละประชากรมีความแตกต่างกันอย่างมีนัยส์ำคัญทางสถิติ ($\mathrm{P}<0.05$)

ทำการค้นหาเครื่องหมายโมเลกุลที่จำเพาะกับเพศและเครื่องหมายที่มีระดับการแสดงออกจำเพาะและ แสตง ออกแตกต่างกับในรังไข่และคัณฑะกุ้งกุตาคำโดย RAPD (100 ไพรเมอร์) และ RAP-PCR (150 คู่ไพรเมอร์) ทำการโคลนเครื้องหมาย RAPDและเคื่่องหมาย RAP-PCR จำนวน 8,21 (ร้งไข่) และ 14 (อ้ณฑะ) เครื่องหมาย ตามลำดับ หาลำดับนิวคลีโอไทต์และออกแบบไพรเมอร์จำนวน 4 คู่อากชิ้น RAPD พบ่ว่าให้ผลไม่จำเพาะกับเพศ และ 25 คู่จาก $\mathrm{RAP-PCR}$ เมื่อทดศอบการแสดงออกของยืนดังกล่าวกับทุ้งอายุประมาณ 3 ใดื่อนและกุ้งโตเต็มวัย เพศเมีย ($N=5, N=7-10$) และเพศผู้ $(N=4, N=5-7)$ พบเครื่องหมายที่แสดงออกจำเพาะกับกุ้งเพศเมียจำนวน 5 เครื่องหมาย (FI-4, FI-44, FII-4, FII-39 และ FIII-58) และเครื่องหมายที่แสดงออกจำเพาะกับกุ้งเพศผู้จิำนวน 2 เครื่องหมาย (M457-A01 และ MII-51) นอกจากนี้ MII-5 ซึ่งพัฒนามาจากเครื่องหมาย RAP-PCR ที่แสดงออกใน อัณฑะกลับให้ผลระดับการแสดงออกสูงในรังไข่มากกว่าในอัณฑะของกุ้งอายุ 3 เดือน และแสดงออกจำเพาะใน รังไข่ของกุ้งเพศเมียในระยะโตเต็มวัย

สาขาวิชา เทคโนโลยีชีวภาพ ลายมือชื่ออาจารย์ที่ปรึกษา.

ปีการศึกษา. \qquad 2548 ลลาขมือชื่ออาจารย์ที่ปรืกษาร่วม \qquad

\#\# 4573861623 : MAJOR BIOTECHNOLOGY

KEYWORD : PENAEID SHRIMP / Penaeus monodon / GIANT TIGER SHRIMP / PCR-RFLP / SSCP / RAPPCR / SPECIES-DIAGNOSTIC MARKERS / SEX-SPECIFIC EXPRESSION MARKERS

BAVORNLAK KHAMNAMTONG: MOLECULAR GENETIC MARKERS FOR IDENTIFICATION OF SPECIES, SEX, AND POPULATION OF GIANT TIGER SHRIMP Penaeus monodon. THESIS ADVISOR: PROF. PIAMSAK MENASVETA, Ph.D., THESIS CO-ADVISOR: SIRAWUT KLINBUNGA, Ph.D. 226 pp. ISBN 974-14-2336-5.

DNA-based molecular markers for differentiation of five penaeid shrimps were developed based on PCR-RFLP and SSCP of 16 S rDNA sco. . Differentiation of Penaeus monodon, Litopenaeus vannamei and Fenneropenaeus merguiensis could be unambiguously carried out by PCR-RFLP of 16 S rDNA S_{560} whereas P. semisulcatus and M. japonicus shared a BABB mitotype. These shrimps were successfully discriminated by SSCP analysis of $16 \mathrm{~S}^{\mathrm{rDNA}}{ }_{560}$. Nevertheless, the amplification success for L. vannamei and F. merguiensis was not consistent when tested against larger sample sizes. As a result, 16 S rDNA ${ }_{560}$ of an individual representing the most common mitotype of each species was eloned and sequenced. The amplification success was consistent across all species $(N=185)$ using newly designed primers. PCR-RFLP of $16 \mathrm{~S} r \mathrm{DNA}_{312}$ was as effective as that of 16 S ${ }^{r D N A}{ }_{560}$. Differentiation of all shrimp species were successfully carried out by SSCP analysis.

Population genetic studies of P. monodon in Thailand were examined by PCR-RFLP and SSCP analysis of 16 S rDNA ${ }_{312}$. Low genetic diversity and a lack of intraspecific population subdivisions of P. monodon were illustrated ($\mathrm{P}>0.05$). Additionally, 320 AFLP primer combinations were screened against bulked genomic DNA of P. monodon. Twenty two polymorphic AFLP fragments were cloned and sequenced. Fourteen pairs of sequence-specific primers were designed. Four markers (P6M2-370, P6M6-470, E4M6-295 and E7M10-450) were used for population genetic studies of $P_{\text {_ }}$ monodon. Like results from 16 S rDNA ${ }_{312}$, low genetic diversity and a lack of population differentiation was found $(\mathrm{P}>0.05)$. Moreover, a COI_{614} gene segment of 100 individuals of P. monodon were unidirectional sequenced. A neighbor-joining tree indicated three phylogenetic lineages of P. monodon. Large nucleotide divergence was observed between inter-lineage haplotypes but limited divergence was found between intra-lineage haplotypes. Distribution frequencies of haplotype clusters indicating the existence of population subdivisions of P. monodon based on COI polymorphism ($\mathrm{P}<0.05$).

Sex determination and differentiation markers of P. monodon were analyzed by RAPD (100 primers) and RAP-PCR (150 primer combinations). Eight candidate genomic sex-specific RAPD bands and twenty-one and fourteen RAP-PCR fragments specifically/differentially expressed in ovaries and testes of P. monodon were successfully cloned and sequenced. Four RAPD-derived markers did not reveal sex-specificity when tested against . genomic DNA of P. monodon. Therefore, genomic sex determination markers were not successfully developed in P. monodon. Expression patterns of 25 RAP-PCR derived markers were tested against the first strand cDNA of ovaries and testes of 3 -month-old and broodstock-sized P. monodon ($N=5$ and $N=7-10$ for females and $N=4$ and $N=5-7$ for males, respectively). Five (FI-4, FI-44, FIII-4, FIII-39 and FIII-58) and two (M457-A01 and MII51) derived RAP-PCR markers revealed female- and male-specific expression patterns in P. monodon. Surprisingly, MII-5 originally found in testes showed a higher expression level in ovaries than did testes of juvenile shrimps but a temporal female-specific pattern in P. monodon adults.

ACKNOWLEDGMENTS

This thesis would not have been completed without a good gesture from many persons. I am indebted to my advisor, Professor Dr. Piamsak Menasveta for his suggestion throughout my study and I would also like to express my deepest sense of gratitude to my co-advisor, Dr. Sirawut Klinbunga for his great helps, guidance, valuable suggestion, data analysis and support throughout my thesis.

My gratitude is also extended to Dr. Sanit Piyapattanakorn, Assistant Professor Dr. Supat Chareonpornwattana, Associate Professor Warawut Chulalaksananukul and Professor Dr. Uthairat Na-Nakorn for serving as thesis committee, for their recommendations and also useful suggestion.

I wish to acknowledge to Center of Excellence for Marine Biotechnology (CEMB), Chulalongkorn University, and National Center for Genetic Engineering and Biotechnology (BIOTEC) for my laboratory support.

Thanks are also express to Miss Tassanee Eamkamol, Miss Ratchanimuk Preechapol and Miss Sasitorn Petkorn for their helps and best friendships. I also thanks to all members of the CEBM and Program of Biotechnology, Chulalongkorn University for their helps in the laboratory and friendships.

Finally, I would dike to express my deepest gratitude to my parents and my brothers for their love, care, understanding and encouragement extended throughout

CONTENTS

Page
THAI ABSTRACT iv
ENGLISH ABSTRACT V
ACKNOWLEDGMENTS vi
CONTENTS vii
LIST OF TABLES xi
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS XX
CHAPTER I INTRODUCTION. 1
1.1 Taxonomy of P. monodon. 7
1.2 Molecular genetic markers used in this thesis. 9
1.3 Development of species-specific markers in aquatic species. 22
1.4 Population genetic studies of Penaeid shrimps 25
1.5 Sex-determination/differentiation markers 33
1.6 Objectives of the thesis 38
CHAPTER II MATERIALS AND METHODS 39
2.1 General Materials and Methods 39
2.2 Identification of species origins of 5 penaeid shrimps (P. monodon, P. semisulcatus, F. merguiensis, L. vannamei and M. japonicus) by PCR-RFLP and SSCP analyses of 16S rDNA 39
2.2.1 Sampling. 39
2.2.2 Genomic DNA extraction. 42
2.2.3 Measuring concentrations of extracted DNA using
9/ spectrophotometry and minigel electrophoresis. 42
2.2.4 PCR using universal primers of COI-COII and 16 S rDNAand restriction analysis43
2.2.5 Agarose gel electrophoresis 44
2.2.6 Restriction endonuclease digestion 44
2.2.7 Recover of the amplified 16 S rDNA ${ }_{560}$ product from agarose Gels 45
Page
2.2.8 SSCP analysis of $16 \mathrm{SDNA}_{560}$ 45
2.2.8.1 Preparation of glass plate 45
2.2.8.2 Silver staining. 46
2.2.9 Cloning and sequencing of $16 \mathrm{~S} \mathrm{rDNA}_{560}$ of penaeid shrimps.. 47
2.2.9.1 Amplification of $16 \mathrm{~S}_{\text {rDNA }}^{560}$ from 5 penaeid shrimps. 47
2.2.9.2 Ligation of $16 \mathrm{~S}_{\mathrm{rDNA}}^{560}$ fragment to the $\mathrm{pGEM}^{\circledR}-\mathrm{T}$ Easy vector 47
2.2.9.3 Transformation of ligated products into E. coli(Cohen et al., 1972).47
2.2.9.3.1 Preparation of competent cells. 47
2.2.9.3.2 Transformation. 48
2.2.9.4 Colony PCR. 48
2.2.9.5 Isolation of recombinant plasmid DNA 49
2.2.9.6 Detection of recombinant clones. 49
2.2.9.7 DNA sequencing and data analysis 49
2.2.10 Primer design, PCR-RFLP and SSCP of 16 S rDNA 312 49
2.3 Population genetic studies of P. monodon in Thailand by AFLP- derived SCAR markers and COI polymorphism. 50
2.3.1 AFLP analysis 50
2.3.1.1 Restriction enzyme digestion and adapter
ligation 50
2.3.1.2 Preamplification. 51
2.3.1.3 Selective amplification 51
2.3.2 Denaturing Polyacrylamide Gel Electrophoresis 52
2.3.3 Cloning and sequencing of polymorphic RAPD and AFLP markers 55
2.3.4 Primer design and PCR amplification 55
2.3.5 Genetic diversity of P. monodon in Thailand examined by RAPD- and AFLP-derived markers 56
Page
2.3.6 Genetic diversity of P. monodon in Thailand examined by SSCP analysis of 16 S rDNA ${ }_{312}$ 56
2.3.7 Genetic diversity of P. monodon in Thailand analyzed by sequencing of COI-COII 58
2.3.7.1 Amplification, purification and cloning of COI-COII gene (1500 bp). 58
2.3.7.2 DNA sequencing 59
2.3.7.3 Primer design and PCR amplification 59
2.3.7.4 Recover of the amplified COI (640 bp) product from agarose gels 60
2.3.7.5 DNA sequencing and data analysis 60
2.3.8 Data analysis 60
2.4 Isolation and characterization of genomic sex determination markers using RAPD-PCR and sex-specific/differential expression markers of P. monodon using RAP-PCR analyses 61
2.4.1 RAPD analysis 61
2.4.2 RAP-PCR 66
2.4.2.1 Experimental shrimps 66
2.4.2.2 Total RNA extraction 66
2.4.2.3 Measuring concentrations of extracted total RNA by spectrophotometry 66
2.4.2.4 Bulked Segregant Analysis (BSA) 67
2.4.2.5 Screening of primers 67
2.4.3 Cloning and sequencing of candidate sex-specific RAPD fragments and sex-specific/differential expression ${ }_{\circ}$ RAP-PCR 68
2.4.4 Primer design and PCR 68
2.4.4.1 RAPD-derived markers 68
2.4.4.2 RAP-PCR-derived markers 69
Page
CHAPTER III RESULTS 73
3.1 Development of molecular markers for identification of species origin of five penaeid species (Penaeus monodon, P. semisulcatus, Feneropenaeus merguiensis, Litopenaeus vannamei and Marsupenaeus japonicus) by PCR-RFLP and SSCP analyses 73
3.1.1 DNA extraction. 73
3.1.2 PCR-RFLP and SSCP analysis 74
3.1.3 Application of developed species-diagnostic markers for species identification of suspected shrimps and frozen shrimp meat. 91
3.2 Genetic diversity and genotyping of P. monodon in Thai waters 96
3.2.1 Determination of 16 S rDNA 312 polymorphism by PCR-RFLP and PCR-SSCP 96
3.2.2 Development of SCAR markers from polymorphic AFLP fragments and application for population genetic studies 101
3.2.3 Determination of COI_{614}, polymorphism in P. monodon by DNA sequencing 115
3.3 Isolation and characterization of sex-related markers in P.monodon 132
3.3.1 Identification of genomic sex markers in P. monodon by
RAPD and SCAR markers 132
3.3.2 Isolation and characterization of sex-specific/differential expression markers of P. monodon using RAP-PCR analysis 147
CHAPTER IV DISCUSSIONS. 159
CHAPTER VCONCLUSIONS 174
REFERENGES 176
APPENDICES 187
APPENDIX A 188
APPENDIX B 202
APPENDIX C 204
APPENDIX D 207
APPENDIX E 224
Biography 226

LIST OF TABLES

Page
Table 1.1 Export fresh, chilled or frozen shrimps of Thailand between 2001-2005 4
Table 2.1 Sample collection sites and sample sizes of penaeid shrimps used in this study 41
Table 2.2 AFLP primers and their sequences used for isolation of polymorphic AFLP markers in P. monodon. 53
Table 2.3 Primers and primer sequences and melting temperature of primers designed from AFLP markers of P. monodon 57
Table 2.4 Sample collection sites and sample sizes of P. monodon in Thai waters used for population genetic studies using AFLP- derived markers and 16 S rDNA 312 58
Table 2.5 Primers and primer sequences and melting temperature of primers designed from COI-COII gene. 60
Table 2.6 RAPD primers (10 bp in length) and their sequences used to isolate genomic sex determination markers using RAPD and sex-specific/differential expression markers of P. monodon using RAP-PCR analyses 62
Table 2.7 Primers and primer sequences and melting temperature of primers designed from candidate sex-specific RAPD fragments and sex-specific/differential expression RAP-PCR fragments 70
Table 3.1 Restriction fragment patterns resulted from digestion of COI- COII_{1550} and $16 \mathrm{~S} \mathrm{TDNA}_{560}$ gene segments of 5 penaeid shrimps 6 with various restriction enzymes. 78
Table 3.2 Mitotypes of 5 penaeid shrimps analysed by PCR-RFLP of COI-COII 1_{550} and $16 \mathrm{~S}^{2} \mathrm{rDNA}_{560}$ gene segments 80
Table 3.3 Restriction fragment patterns resulted from digestion of 16S rDNA $_{312}$ gene segments of 5 penaeid shrimps with Alu I, Ssp I and $V s p$ I 88
Table 3.4 Mitotypes from restriction analysis of $16 \mathrm{~S} \mathrm{rDNA}_{312}$ gene of 5 penaeid shrimps 88
Page
Table 3.5 SSCP patterns of 5 penaeid shrimps of $16 \mathrm{~S} \mathrm{rDNA}_{312}$ gene segments 90Table 3.6 Distribution of 16 S rDNA 312 mitotypes across six geographicsamples of P. monodon in Thai waters96
Table 3.7 Genetic heterogeneity analysis between pairs of geographicsamples of P. monodon based on restriction analysis of 16 SrDNA_{312} with 3 restriction endonucleases97
Table 3.8 SSCP patterns resulted from analysis of $16 \mathrm{~S} \mathrm{rDNA}_{312}$ of P. monodon originating from different geographic samples in Thai waters 98Table 3.9 Pairwise genetic distance between geographic samples of P.monodon based on PCR-SSCP of 16 S rDNA 312100
Table 3.10 Pairwise geographic heterogeneity analysis between P. monodon samples based on PCR-SSCP of 16 S rDNA 312 100
Table 3.11 Amplification results of SCAR markers derived from polymorphic AFLP fragments 106Table 3.12 A summary of gene diversity index (Nei, 1973) of all AFLP-derived loci in each geographic sample and overall samples.110
Table 3.13 Pairwise genetic distance between geographic samples of P.monodon based on PCR-SSCP of four AFLP-derived markers.. 114
Table 3.14 Pairwise geographic heterogeneity analysis between P.monodon from different geographic samples based on PCR-SSGP of four AFLP-derived markers. 114Table 3.15 Newly designed primers from amplification of COI and COIIgene segments, the expected product and amplification results.. 118Table 3.16 Distribution of members of different phylogenetic lineages ofthe NJ tree constructed from nucleotide sequence divergenceof the COI_{614} gene segment131
Table 3.17 Pairwise geographic heterogeneity analysis between P. monodon from different geographic samples based onnucleotide sequence divergence of the COI_{614} gene segment.... 132
Page
Table 3.18 Amplification results of RAPD primers for identification of genomic sex-specific markers in P. monodon 134
Table 3.19 Candidate sex-specific RAPD markers 140
Table 3.20 Candidate sex-specific/differential expression RAP-PCR fragments in ovaries and testes of P. monodon 149
Table 3.21 Blast results of sex-specific/differential expression RAP-PCR fragments in ovaries and testes of P. monodon. 151
Table 3.22 Gene homologues in ovaries and testes of P. monodon identified through RAP-PCR analysis 153Table 3.23 Amplification of newly designed primers derived fromcandidate sex-specific/differential expression fragments of P.monodon154

LIST OF FIGURES

Page
Figure 1.1 Number of farms and area under marine shrimp culture in Thailand during 1985-2004. 3
Figure 1.2 Quantity and value of export fresh, chilled or frozen shrimps of Thailand (2001 - March 2005) 3
Figure 1.3 Illustration showing external anatomy of P. monodon 8
Figure 1.4 Illustration showing petasma and thelycum used for identification of male and female P. monodon 8
Figure 1.5 General illustration of the polymerase chain reaction for amplifying DNA 10
Figure 1.6 A schematic diagram illustrating principles of PCR-RFLP analysis 12
Figure 1.7 Schematic presentation of the effect of different kinds of sequence change on RFLPs. 13
Figure 1.8 Schematic presentation of the RAPD procedure. Genomic DNA (indicated by long strings of lines) is used for PCR using an arbitrary short primers of identical sequences 15
Figure 1.9 Molecular basis of RAPD polymorphism. (A) Base substitutions in the primer binding sites, especially at the 3^{\prime} end of the primer binding sites may lead to decrease (as shown) or increase of the number of RAPD bands. (B) Insertion or deletion between two primers may lead to increase or decrease of fragment sizes. 16
Figure 1.10 A schematic diagram illustrating principles of AFLP analysis. 18
Figure 1.11 Automated DNA sequencing. $\|. \Omega.\| . \ldots \ldots \ldots \ldots \ldots$. 19
Figure 1.12 A schematic diagram of SSCP analysis 21
Figure 1.13 A schematic diagram illustrating overall concepts of the RT-PCR procedure 23
Figure 1.14 Geographic distribution of mtDNA phylogenetic clusters A and B among fourteen geographic samples of P. monodon analyzed by 10 polymorphic restriction enzyme. 31
Figure 2.1 Map of Thailand indicating sample collection sites of P. monodon used in this study. 40

Page

Figure 3.1 A 0.8\% ethidium bromide stained agarose gel showing the quality of genomic DNA individually extracted from the pleopod of 5 penaeid shrimps

73
Figure 3.2 A 1.0\% agarose gel electrophoresis showing amplification products of genomic DNA of 5 penaeid shrimps from COI-COII and 16 S rDNA 560
Figure 3.3 An example of restriction patterns of COI-COII digested with various restriction enzymes76

Figure 3.4 An example of restriction patterns of $16 \mathrm{~S}_{\mathrm{rDNA}}^{560}$ digested with Alu I, Mbo I and Vsp I.

Figure 3.5 SSCP patterns of a 560 bp fragment of $16 \mathrm{~S} \mathrm{rDNA}_{560}$ of P. semisulcatus and M. japonicus that shared a BABB mitotype....... 82
Figure 3.6 Nucleotide sequences of 16 r rDNA $_{560}$ of 5 penaeid shrimps......... 82
Figure 3.7 Alignment of $16 \mathrm{~S}_{\mathrm{rDNA}}^{560}$ sequences of 5 penaeid shrimps............. 84
Figure 3.8 A 1.2\% agarose gel electrophoresis showing amplification products (312 bp in length) of genomic DNA of 5 penaeid shrimps using newly designed primers; $16 \mathrm{Pmo}_{312}-\mathrm{F} / \mathrm{R}$86

Figure 3.10 A 15\% non-denaturing polyacrylamide gel (37.5:1 crosslink) showing SSCP patterns of a 312 bp fragment of $16 \mathrm{~S} \mathrm{rDNA}_{312}$ of 5 penaeid shrimps....................................89

Figure 3.11 A 1.5\% agarose gel electrophoresis showing restriction patterns of จ $9 / 916 \mathrm{SrDNA}_{312}$ digested with Alu I and $S s p \mathrm{I}$ of suspected cultured shrimps92

Figure 3.12 A 15\% non-denaturing polyacrylamide gel (37.5:1 crosslink) showing SSCP patterns of $16 \mathrm{~S}_{\text {rDNA }}^{312}$ of suspected cultured shrimp93

Figure 3.13 A 1.5\% agarose gel electrophoresis showing restriction patterns of 16 S rDNA 312 digested with Alu I and Ssp I of introduced frozen shrimps meat.
Page
Figure 3.14 A 15\% non-denaturing polyacrylamide gel (37.5:1 crosslink) showing SSCP patterns of suspected frozen shrimp meat (claimed as P. orientalis and Metapenaeus affinis)95
Figure 3.15 A 15\% non-denaturing polyacrylamide gel (37.5:1 crosslink) showing SSCP patterns of $16 \mathrm{~S}_{\text {rDNA }}^{312}$ of P. monodon originating from different geographic samples in Thai waters97
Figure 3.16 A 4.5\% denaturing polyacrylamide gel (19:1 crosslink) showingAFLP products generated from primers P2M5 (lanes 1-5), P2M6(lanes 6-10), P2M7 (lanes 11-15) and P2M8 (lanes 16-20)...... 101
Figure 3.17 Nucleotide sequences of polymorphic AFLP fragment (E4M6- 295) and position of newly designed primers. 102
Figure 3.18 Nucleotide sequences of polymorphic AFLP fragment (E7M10- 450) and position of newly designed primers 102
Figure 3.19 Nucleotide sequences of polymorphic AFLP fragment (P6M2-370) and position of newly designed primers. 103
Figure 3.20 Nucleotide sequences of polymorphic AFLP fragment (P6M6-470) and position of newly designed primers. 103
Figure 3.21 Agarose gel elctrophoresis illustrating the amplification product of E4M6-295 (161 bp) of P. monodon 104
Figure 3.22 Agarose gel elctrophoresis illustrating the amplification product of E7M10-450 (306 bp) of P. monodon. 104
Figure 3.23 Agarose gel elctrophoresis illustrating the amplification product ofP6M2-370 (192 bp) of P. monodon.105
Figure 3.24 Agarosegel elctrophoresis illustrating the amplification product of P6M6-470 (300 bp) of P. monodon. 105
Figure 3.25 A 15\% non-denaturing polyacrylamide gel (75:1 crosslink)showing polymorphic SSCP patterns generated from primersP6M6-470107
Figure 3.26 A 15\% non-denaturing polyacrylamide gel (37.5:1 crosslink)showing polymorphic SSCP patterns generated from primersE4M6-295108

Page

Figure 3.27 A 15\% non-denaturing polyacrylamide gel (75:1 crosslink) showing polymorphic SSCP patterns generated from primers E7M10-450.

Figure 3.28 A 15\% non-denaturing polyacrylamide gel (37.5:1 crosslink) showing polymorphic SSCP patterns generated from primers P6M2-370.

Figure 3.29 Multiple alignments of the amplified COI-COII (only sequences of COI are shown)

Figure 3.30 Nucleotide sequence alignments of the amplified COI-COII (only sequences of COII are shown)
Figure 3.31 A 1.2\% agarose gel elctrophoresis showing the amplification product of COI (416 bp) of P. monodon.
Figure 3.32 A 1.2\% agarose gel elctrophoresis showing the amplification product of COI (614 bp) of P. monodon.
Figure 3.33 Multiple alignments of 43 shrimp individuals representing each haplotype of the COI_{614} gene segment.
Figure 3.34 Pairwise nucleotide sequence divergence between different haplotypes of COI_{614} of P. monodon.
Figure 3.35 A neighbor-joining tree illustrating genetic relationships of P. monodon in Thai water based on nucleotide sequence divergence of the COI_{614} gene segment.
Figure 3.36 A 1.6\% agarose gel showing RAPD patterns from amplification of bülked male ($N=10$, lanes $1 \& 8 ; \widehat{N}=5$, lanes $3 \& 10$ and $N=3$, lanes 5 \& 12) and female ($N=10$, lanes $2 \& 9 ; N=5$, lanes $4 \& 11$ and $N=3$, lanes $6 \& 13$) using primers OPA05 and OPA17........ 138
Figure 3.37 A 1.6\% agarose gel showing RAPD patterns from amplification of bulked male ($N=10$, lanes $1 \& 8 ; N=5$, lanes $3 \& 10$ and $N=3$, lanes $5 \& 12$) and female ($N=10$, lanes $2 \& 9 ; N=5$, lanes $4 \& 11$ and $N=3$, lanes $6 \& 13$) using primers UBC428 and UBC456.

Page

Figure 3.38 A 1.6\% agarose gel showing RAPD patterns from amplification of bulked male ($N=10$, lanes $1 \& 8 ; N=5$, lanes $3 \& 10$ and $N=3$, lanes 5 \& 12) and female ($N=10$, lanes $2 \& 9 ; N=5$, lanes $4 \& 11$ and $N=3$, lanes $6 \& 13$) using primers OPB19 and OPB20

Figure 3.39 A 1.6\% agarose gel showing RAPD patterns from amplification of bulked male ($N=10$, lanes $1 \& 8 ; N=5$, lanes $3 \& 10$ and $N=3$, lanes $5 \& 12$) and female ($N=10$, lanes $2 \& 9 ; N=5$, lanes $4 \& 11$ and $N=3$, lanes $6 \& 13$) using primers OPA01 and OPB06

Figure 3.40 A 1.6\% agarose gel showing RAPD patterns from amplification of bulked male ($N=10$, lanes $1 \& 8 ; N=5$, lanes $3 \& 10$ and $N=3$, lanes $5 \& 12$) and female ($N=10$, lanes $2 \& 9 ; N=5$, lanes $4 \& 11$ and $N=3$, lanes $6 \& 13$) using primers OPA15 and OPM09.

Figure 3.41 Nucleotide sequences of candidate sex-specific RAPD fragments; pPMF650 (A), pPMF530 (B), pPMF500 (C), pPMM1100 (D), pPMM350 (E), pPMM800 (F), pPMM600 (G), pPMM650 (H).....

Figure 3.42 Agarose gel electrophoresis illustrating the product resulted from amplification of genomic DNA of 5 individuals of males (lanes 1 5) and females (lanes 7 - 11) P. monodon with primers PMF530F/R.

Figure 3.43 Agarose gel electrophoresis illustrating the product resulted from amplification of genomic DNA of 5 individuals of males (lanes 1 5) and females (länes 6 - 10) P. monodon with primer PMM350F/R.

Figure 3.44 A 45\% non-denaturing polyacrylamide gel (37.5:1 crosslink) showing SSCP patterns of the product resulted from amplification of genomic DNA of males (lanes $2-5$) and females (lanes $6-9$) of P. monodon using PMF530-F/R
Figure 3.45 A 15\% non-denaturing polyacrylamide gel (37.5:1 crosslink) showing SSCP patterns of the product resulted from amplification of genomic DNA of males (lanes $2-6$) and females (lanes $7-11$) P. monodon using PMM350-F/R

Page

Figure 3.46 A 1.0\% agarose gel electrophoresis showing the quality of total RNA extract from ovaries (lanes $1-3$) and testes (lanes $4-5$) of P.monodon (A) and the corresponding first strand cDNA (B)
Figure 3.47 A 1.6\% agarose gel illustrating RAP-PCR fragments of ovaries (lanes $1,3,5,7,9$ and 11) and testes (lanes 2, 4, 6, 8, 10 and 12) generated from UBC299 (1st primer) and UBC459 (lanes 1 and 2), OPB04 (lanes 3 and 4), OPB07 (lanes 5 and 6), OPB11 (lanes 7 and 8), OPB14 (lanes 9 and 10) and OPB15 (lanes 11 and 12)...

Figure 3.48 A 1.6\% agarose gel illustrating RAP-PCR fragments of ovaries (lanes 1, 3, 5, 7, 9 and 11) and testes (lanes 2, 4, 6, 8, 10 and 12) generated from UBC428 (1st primer) and OPB10 (lanes 1 and 2), OPB15 (lanes 3 and 4), UBC101 (lanes 5 and 6), UBC119 (lanes 7 and 8), UBC138 (lanes 9 and 10) and UBC191 (lanes 11 and 12)...

Figure 3.49 RT-PCR of sex-specific expression markers derived from FI-4 (A), FI-44 (B) and FIII-58 (C) against the first strand cDNA of testes (lanes $1-2$), ovaries (lanes $3-4$), hemocytes (lanes $5-6$) and genomic DNA of male (lane 7) and female (lane 8) of 3-month old shrimps
Figure 3.50 RT-PCR of female-specific expression markers derived from FI-4 (A), FI-44 (B), FIII-4 (C), FIII-39 (D), FIII-58 (E) and MII-5 (F) against the first strand cDNA of ovaries (lanes 2-8) and testes (lanes 9-15) of P. monodon broodstock.
Figure 3.51 RT-PCR of male-specific expression markers derived from MII-51 (A) and M457-A01 (B) against the first strand cDNA of ovaries Q 9 (lanes 20 11) and testes (lanes 12-16) of P. monodon broodstock..

Figure 3.52 A 15\% non-denaturing polyacrylamide gel (37.5:1 crosslink) showing SSCP patterns of a SNP by EST (SBE) marker derived from FV-42 (A), FIII-4 (B) and FV-27 (C) amplified against genomic DNA of P. monodon

LIST OF ABBREVIATIONS

CHAPTER I

INTRODUCTION

Members of the genus Penaeus are a large and diverse group of marine shrimps (or prawns) that have primarily distributed in tropical and subtropical regions. It is the most economically important group among shrimps and prawns, and perhaps among all crustaceans worldwide (Chan, 1998; Baldwin et al., 1998). The main species under cultivation are black tiger shrimp Penaeus monodon, Litopenaeus vannamei, P. stylirosis, Feneropenaeus chiensis, F. indicus, F. merguiensis, Marsupenaeus japonicus and Metapenaeus ensis (Fast and Lester, 1992; Pérez et al., 2004).

The black tiger shrimp (P. monodon) is one the most economically culture species in Thailand. Thailand has been regarded as the leading shrimp producer (previously P. monodon and presently L. vannamei as the main cultured species) for more than a decade with the production of approximately 200,000 metric tons providing an income of over US\$ 2 billion annually (Rosenberry, 2001). Farming of P. monodon has achieved a considerable economic and social importance in the region, constituting a significant source of income and employment.

In Thailand, P. monodon have been intensively cultured for more than two decades. Approximately 60% of the total harvest shrimp comes from cultivation. Number of farms and area under marine shrimp culture during 1985-2004 was increased as show in Figure 1.1. Shrimp farms and hatcheries are scattered along the coastal areas of Thailand. Southern provinces (Nakorn Sri Thammarat and Surat Thani) account for the majority while those in the East (Chanthaburi) and Central regions (Samut Sakhon and Samut Songkhran) comprise the minority in terms of number. The intensive farming system (85\%) has been used for P. monodon farming activity resulting in the consistent increase in the outcome production (Department of fisheries, 1999).

The success of tiger shrimp industry in Thailand has resulted in the steadily increased income for the nation. This has also elevated the quality of life for Thai farmers. The reasons for this are supported by several factors including the
appropriate farming areas without the serious disturbing from typhoons or cyclone, small variable of seawater during seasons, and ideal soils for pond construction.

The United States of America is traditionally the largest importer of Thai shrimp products (Table 1.1). Its imports accounted for 48.56% of all Thai shrimp exports in 2004, worthing $14,998.81$ million baht. Japan is the second largest importing country with imports account for 18.37%, worthing $8,165.94$ million baht. The remaining important markets are Canada, Australia, Europe, Asian countries and others brining of income about 32,529.62 million baht to the country (Figure 1.2).

Farming of P. monodon has consistently encountered production losses from infectious diseases, particularly from white spot syndrome virus (WSSV), yellow head virus (YHV) and Vibrio sp.. Genetic improvement and other biotechnology applications are crucial to the future development of this industry (Benzie, 1998; Brody, 1998). Besides problems from diseases, the lack of high quality wild and/or domesticated broodstock of P. monodon has possibly caused an occurrence of a large portion of stunted shrimps at the harvest time (3-5 g body weight at 4 month cultivation period). As a result, the Pacific white shrimp (L. vannamei) has been introduced to Thailand as an alternative cultured species and initially contributed approximately 20000 MT of the production in 2002 and dramatically increased to 170000 and 220000 MT in 2003 and 2004, respectively (Limsuwan, 2004).

Owing to morphological similarity at the larval stages, larvae of F. merguiensis are intentionally traded as those of L. vannamei. In addition, the external morphology of P. monodon and P. semisulcatus is resembled at all stages of development but the growth rate of P. semisulcatus is approximately 3 times lower than that of P. monodon. Once the shrimp is processed (e.g. leaving only the shrimp meat), species identification becomes problematic. Accordingly, species-diagnostic markers play important roles to prevent supplying incorrect shrimp larvae for the industry and for quality control of shrimps exported from Thailand.

Figure 1.1 Number of farms and area under marine shrimp culture in Thailand during 1985-2004

Figure 1.2 Quantity and value of export fresh, chilled or frozen shrimps of Thailand (2001 - March 2005)

Table1.1 Export fresh, chilled or frozen shrimps of Thail and between 2001-2005

No.	Country	2001		2002		2003		2004		2005*	
		Q	V	Q	V	Q	V	Q	V	Q	V
1.	U.S.A	67,167.00	27,245.43	42,296.00	15,547.13	62,920.00	18,705.80	59,480.94	14,998.81	13,453.93	3,102.15
2.	Asia	57,366.00	20,314.58	47,672.00	14,712.92	41,459.00	13,066.30	44,435.39	12,882.40	9,394.79	2,415.80
	China	6,329.00	1,400.97	2,631.00	516.95	2,781.00	690.10	2,837.24	638.63	1,266.03	201.27
	Hong Kong	5,691.00	1,440.62	3,008.00	679.41	2,082.00	508.60	2,503.39	673.73	770.58	159.45
	J apan	24,878.00	11,671.07	26,445.00	9,619.55	22,380.00	8,524.10	22,494.71	8,165.94	4,127.61	1,387.16
	S. Korea	4,176.00	1,282.12	3,924.00	1,111.03	6,431.00	1,670.20	1,173.75	252.57	383.42	104.30
	Malaysia	250.00	34.21	185.00	13.34	250.00	24.50	8,318.12	1,931.06	1,804.40	365.83
	Singapore	9,367.00	2,655.21	6,675.00	1,535.67	4,936.00	967.10	3,777.20	632.45	596.78	89.95
	Taiwan	6,675.00	1,830.38	4,804.00	1,236.97	2,599.00	681.70	3,210.40	565.40	268.55	73.22
	Vietnam	-	-	-			-	120.58	22.62	177.42	34.62
3.	Canada	5,802.00	2,265.20	4,901.00	1,819.27	6,696.00	2.071 .10	7,975.19	1,998.43	2,379.02	588.92
4.	Australia	3,643.00	1,407.73	1,407.73	3,209.00	4,033.00	1,067.50	4,517.55	1,073.92	1,052.75	212.19
5.	EU	7,059.00	2,422.45	1,814.00	536.12	692.00	235.50	2,431.51	716.09	446.34	116.86
	Belgium	302.00	118.58	313.00	96.90	140.00	41.70	369.32	86.47	130.02	26.54
	Denmark	107.00	47.66	17.00	6.38			1.75	1.43	0.35	0.28
	France	1,556.00	496.51	364.00	106.10	87.00	43.90	139.70	61.39	24.98	8.49
	French	-	-	\cdots	-	-		319.17	84.77	78.71	20.02
	Polynesia (TAHITI)			1			U15				
	Germany	1,242.00	474.34	292.00	106.78	182.00	60.70	343.46	131.34	77.49	26.23
	Italy	876.00	161.52	170.00	25.20	74.00	21.60	603.09	118.42	78.10	17.68
	Netherlands	1,333.00	509.60	509.60	106.00	48.00	15.70	123.02	36.06	14.27	4.74
	Spain	55.00	16.67	16.67	65.00	29.00	10.10	1.39	0.94	0.01	0.01
	Utd Kingdom	1,588.00	597.57	597.57	487.00	132.00	41.80	530.61	195.27	42.41	12.87

Table1.1 (Continued)

The production cycle of P. monodon has yet to be completed. Farming of P. monodon presently relies almost entirely on wild-caught broodstock for the seed supply because breeding of P. monodon in captivity is extremely difficult. This open reproductive cycle and reliance on wild stocks of P. monodon results in heavy exploitation of female broodstock from wild populations. Genetic-based stock enhancement programs of natural P. monodon stocks are also important for sustainable aquaculture activity of this species. Polymorphic DNA markers are required for examining genetic diversity and population subdivisions of P. monodon in Thai waters and for identifying genotypes of shrimps in genetic-based selective breeding programs of P. monodon.

Domestication of P. monodon has been carried out for several generations (Withyachumnarnkul et al., 1998). Nevertheless, the use of spermatozoa from captive males yielded low survival rates of offspring. Using wild males instead of domesticated males with either wild or domesticated females has resolved this problem successfully (Withyachumnarnkul, personal communication). As a result, genes expressed in different stages of testicular development of wild and domesticated P. monodon should be studied.

In P. monodon, females exhibit approximately 10-20\% greater growth rate than do males at all stages of development (Browdy, 1998). The diploid chromosome numbers of penaeid shrimps have been reported in P. esculentus, P. monodon, Farfantepenaeus aztecus, Fenneropenaeus chinensis, Fenneropenaeus merguiensis, Fenneropenaeus penicillatus and Marsupenaeus japonicus ($2 N=88$), P. semisulcatus and Litopenaeus 0 setiferus $(2 N=90)$, and Farfantepenaeus californiensis and Litopenaeus occidentalis $(2 N=92)$ (Benzie, 1998). Nevertheless, a lack of obvious heteromorphic sex chromosomes in this species has been causing limited knowledge on sex chromosomal system (XY or ZW etc.) and their segregation patterns. In addition, sex determination cascades and sex-diagnostic markers have not been reported in penaeid shrimps. This has prevented the possibility to increase aquacultural production through a monosex culture approach.

Reduced spawning potential and low degree of maturation of P. monodon in captivity crucially prohibits several possible applications including development of
the effective breeding programs in this species. Genetic improvement of P. monodon cannot be achieved without knowledge on the control of reproduction. Mechanisms controlling ovarian maturation and sex differentiation processes at the molecular level are important and can be significantly applied to the industry of P. monodon. Isolation and characterization of genes specifically/differentially expressed in ovaries or testes of P. monodon is the initial step for understanding differentiation of sexes in this economically important species (Leelatanawit et al., 2004).

1.1 Taxonomy of P. monodon

The taxonomic definition of the giant tiger shrimp, P. monodon is as follows (Bailey-Brook and Moss, 1992):

Phylum Arthropoda

Subphylum Crustacea

Scientific name: Penaeus monodon (Fabricius), 1798 (Figure 1.3)

Common name: giant tiger prawn or black tiger shrimp

Figure 1.3 External anatomy of P. monodon

Figure 1.4 External characters; petasma and thelycum can be used to identify male and female P. monodon since the juvenile stages.

1.2 Molecular genetic markers used in this thesis

Molecular genetic markers are useful for genetic and systematic studies of natural and culture species. Genetic markers used for population genetic and systematic studies should exhibit suitable polymorphic levels for desired application and be selectively neutral. Genetic markers that can characterize relative levels of population variation in both wild and cultured stocks are needed to aid the development of the aquaculture industry and to assist in the conservation of wild stock.

Several molecular genetic techniques can be used at the genomic DNA and the cDNA levels. The former level/generally includes polymerase chain reactionrestriction fragment length polymorphism (PCR-RFLP), randomly amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), single strand conformational polymorphism (SSCP) and DNA sequencing. The latter level includes reverse transcription (RT)-PCR, differential display (DD-PCR), RNA arbitrary primed PCR (RAP-PCR), Expressed Sequence Tags (ESTs), cDNA subtraction and rapid amplification of cDNA ends-polymerase chain reaction (RACEPCR) analysis.

The introduction of the polymerase chain reaction (PCR) by Mullis et al. (1987) has opened a new approach for molecular genetic studies. PCR is a method for an in vitro amplification of specific DNA sequences by the simultaneous primer extension of complementary strands of DNA. Million copies of the target DNA sequence can be synthesized from a low amount of starting DNA template within a few hours.

The PCR reaction components are consisting of DNA template, a pair of primers for the target sequence, dNTPs (dATP, dCTP, dGTP and dTTP), buffer and heat-stable DNA polymerase (usually Taq polymerase). The amplification reaction usually consists of three steps; denaturation of double stranded DNA at high temperature, annealing to allow primers to form hybrid molecules at the optimal temperature, and extension of the annealed primers by heat-stable DNA polymerase.

The cycle is repeated for $30-40$ times (Figure 1.5). The amplification product is electrophoretically analyzed.

Figure 1.5 General illustration of the polymerase chain reaction (PCR) for amplifying DNA (http://campus.queens.edu/facult/jannr/Genetics/images/dnatech/pcr.gif).

1.2.1 PCR-restriction fragment length polymorphism (PCR-RFLP)

Restriction fragment length polymorphism (RFLP) analysis is indirectly used to determine genetic variation at the DNA level by comparison of shared restriction fragments or sites. Basically, variation in restriction enzyme cleavage sites generates size differences of the resulting fragments.

PCR-RFLP analysis is one of the initial techniques widely used to indirectly detect genetic variation at the DNA level (Figures 1.6 and 1.7). It examines size variation of specific DNA fragments due to base substitutions (transitions or transversions), indels or rearrangements at the recognition sites of a particular restriction endonuclease. Different restriction patterns are created and can be used for evaluation of genetic

For PCR-RFLP, the DNA fragment is amplified by PCR followed by digestion with restriction endonuclease (restriction site or fragment length polymorphism). The restricted fragments are fractionated in the agarose gel (or polyacrylamide gel), stained with ethidium bromide (or silver) and visualized by a UV transilluminator.

This technique has successfully been used for determination of genetic diversity and population differentiation of several marine species in Thai waters including; P. monodon (Klinbunga et al., 2001), cupped oyster of the genera Crassostrea and Saccostrea (Klinbunga et al., 2003) and abalone, Haliotis asinina, H. ovina and H. varia (Klinbunga et al., 2003).

1.2.2 Randomly amplified polymorphic DNA (RAPD)-PCR analysis

RAPD was first independently developed by Welsh and McClelland, 1990 and William et al., 1990. It is a PCR-based method but using a single short oligonucleotide primer (typically 10 bp long) of arbitrary sequence and $\mathrm{G}+\mathrm{C}$ content grater than 50% instead a pair of specific primers in the reaction under low stringency conditions (annealing temperature often $36-40^{\circ} \mathrm{C}$) (Figure 1.8). The amplified fragments are those regions of the genome that are flanked by "inward-oriented"

Figure 1.6 Diagram illustrating a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) approach.

Source: Seminar of the conference on the use of molecular markers in crop improvement (1992)
(A)

Duplication (direct, tandem)

Inversion

(B)
(C)

Calibration

Figure 1.7 The effect of different kinds of sequence change on RFLPs. (A) DNA fragments (a-h) are generated by RE digestion and (B) electrophoretically separated by size. (C) Fragment sizes are determined using a calibration curve based on a sample with fragments of known size run on each gel (lane $S=$ size standard). Vertical arrows indicate cleavage sites and asterisks indicate the boundaries of rearrangements.

Source: Dowling, Moritz, Palmer and Rieseberg (1996).
sequences complementary to the primer and a number of PCR products are generated from random locations within the genome.

Genetic variation and divergence within or between the interested samples of RAPD-PCR are assessed by the presence or absence of the particular amplification products, which can be separated on agarose gels stained with ethidium bromide. Polymorphic alleles may result from mutations at the primer binding sites which prevent its amplification or from indels that change the size of DNA segment (William et al., 1990; Lui and Cordes, 2004).

RAPD markers are mostly inherited in a dominant fashion. As a result, information on the parental origin of alleles may be inaccessible. Owing to short length of primer and low stringency of PCR conditions, RAPD may produce some artifact of amplification products therefore careful control of DNA quality and amplification conditions is necessary to ensure reproducible banding patterns (Carlson et al. 1991, Scott et al., 1993).

Several advantages of RAPD-PCR are reported. First, RAPD analysis is a simple, rapid and inexpensive method for detecting DNA polymorphism at different taxonomic levels. Second, RAPD does not require prior knowledge of the genome under investigation. Third, RAPD is a PCR-based method and, therefore, requires only small quantity of DNA template per reaction. Forth, RAPD-PCR does not require the use of radiolabelled probes for hybridization. Finally, unlimited numbers of RAPD primers can be screened for suitable molecular markers of various applications within a short period of time.e|GUJ?

The disadvantage of RAPD-PCR is that more than 90% of polymorphisms segregate as dominant alleles. Moreover, reproducibility of amplification results is quite low. Accordingly, RAPD markers found from the experiments are usually converted to sequence-characterized amplified region (SCAR) markers through cloning and sequencing of the original marker. A pair of primer is designed and used for specific amplification of the target fragment.

Figure 1.8 Schematic presentation of the RAPD procedure. Genomic DNA (indicated by long strings of lines) is used as template for PCR using an arbitrary short primers of identical sequences (indicated by the arrows annealing to their complementary sites in the genome either perfectly or non-perfectly) under low annealing temperatures. When the two primers bind to sites close enough (often less than 2000 base pairs) on opposite strands of DNA, a PCR product results.

1.2.3 Amplified fragment length polymorphism (AFLP) analysis

Amplified fragment length polymorphism (AFLP) is a technique developed for genetic DNA fingerprinting (Vos et al., 1995). It combines restriction endonuclease digestion and PCR amplification of restriction fragments, and thus possesses the advantages of both RFLP and RAPD. AFLP has higher potentiality than RFLP and higher resolution and sensitivity than RAPD. Initially, genomic DNA is digested with a rare-cut restriction enzyme (usually EcoR I) and a frequent-cut restriction enzyme (usually Mse I) and ligated with double-stranded DNA adaptors to generate template DNA for amplification and used for the priming sites of PCR amplification.
A. Base substitutions at the primer binding sites

B. Insertion/deletion between two RAPD primers

Figure 1.9 Molecular basis of RAPD polymorphism. (A) Base substitutions in the primer binding sites, especially at the 3^{\prime} end of the primer binding sites may lead to decrease (as shown) or increase of the number of RAPD bands. (B) Insertion or deletion between two primers may lead to increase or decrease of fragment sizes.

PCR amplification was carried out twice; preselective and selective amplification. The former was carried out by adding a single known base to the 3 ' end of the primer complementary to either adaptor. The product from the primary amplification is diluted and further amplified by primers having 3 added nucleotides of the 3 ' end. The numbers of amplified fragments are significantly reduced and can be simply analyzed by polyacrylamide gel electrophoresis (Figure 1.10).

The main advantages of AFLP are its reproducibility due to specificity of the PCR primer and high stringency of the amplification reaction. Like RAPD-PCR, AFLP analysis does not require the prior knowledge about genome sequences of species under investigation. The high numbers of potential polymorphic fragments
detected in a single AFLP reaction make this technique ideal for various applications, for example, studying genetic diversity, genotyping, population differentiation, quantitative trait loci (QTL) mapping and construction the genetic linkage maps of species that their genome are not well studied.

Similar to other dominant markers, heterozygosity can not be deduced from AFLP data. This reduces its potential for examination population genetic parameters of artificially propagated stocks in the hatcheries. Conversion of specific AFLP markers into single locus PCR markers (SCAR markers) is necessary when specificity and/or frequencies of a particular marker need to be investigated.

1.2.4 DNA sequencing

Polymorphism at the DNA level can be directly studied by determination of nucleotide sequences of a defined region. DNA sequencing is the most optimal method for several genetic applications particularly phylogenetic studies of organisms. This technique provides high resolution and facilitating interpretation. However, sequencing of a large number of individuals using conventional method is extremely tedious and prohibitively possible. The sequencing method has been facilitated by the direct and indirect use of DNA fragments generated through PCR. This eliminates the need to establish a genome library and searching of a particular gene in the library.

At present, automated DNA sequencing has been introduced and commonly used (Figure 1.11). DNA sequences can be detected using a fluorescence-based system following labeling with a fluorescence dye. PCR allow the possibility to isolate homologous DNA sequences from any organism of interest with unprecedented speed. This greatly allows wider application of DNA sequencing analysis for population genetic and systematic studies.

1.2.5 Single-stranded conformation polymorphism (SSCP) analysis

Single-stranded conformation polymorphism (SSCP) analysis was originally described by Orita et al. (1989). SSCP is one of the effective techniques widely used for the detection of mutations and variation of the DNA (deletions, insertions and single nucleotide polymorphism, SNP). The amplified PCR product (usually less than

Figure 1.10 A schematic diagram illustrating principles of AFLP analysis (http://www.msu.edu/course/mmg/835/DNAmarkers/aflp.jpg).

300 bp in length) is denatured and loaded into low crosslink non-denaturing polyacrylamide gel (with or without glycerol supplementation). The principle of this technique relies on different mobility due to differential folding of the single stranded DNA (Figure 1.12).

Single-stranded molecules take on secondary and tertiary structures (conformations) due to base pairing between nucleotides within each strand. These conformations depend on the length of the strand, and the location and number of regions of base pairing. They also depend on the primary sequence of the molecule,
such that a nucleotide change at a particular position can alter its conformation. Accordingly, molecules differing in their conformations (e.g. due to a single nucleotide change) can be separated.

The major advantage of SSCP is that many individual PCR products may be genotyped simultaneously. Heteroduplexes can occasionally resolve from homoduplexes and give additional information on the presence of variants. Therefore, SSCP is regarded as one of the potential techniques that can be used to detect low polymorphism in various species prior to confirmation of the results by nucleotide sequencing (Hayashi, 1996). The other advantage of SSCP is that small PCR amplicons (100-400 bp) are required. This small sizes of PCR products are relative easy to amplify.

1.2.6 Reverse transcription-polymerase chain reaction (RT-PCR)

RT-PCR is a comparable method of conventional PCR but the first strand cDNA template rather than genomic DNA was used as the template in the amplification reaction (Figure 1.13). It is a direct method for examination of gene expression of known sequence transcripts in the target species. Alternatively, RT-PCR can also be used to identify homologues of interesting genes by using degenerate primers and/or conserved gene-specific primers from the original species and the first strand cDNA of the interesting species as the template. The amplified product is further characterized by cloning and sequencing.

1.2.7 RNA arbitrary prime-PCR (RAP-PCR)

RAP-PCR is a comparable method of conventional RAPD but the first strand cDNA rather than genomic DNA is used as the template in the amplification reaction (Welsh et al., 1992). The technique required reverse transcription of the target total RNA (or mRNA) to the first strand cDNA by oligo $\mathrm{d}(\mathrm{T})$ or short random nucleotides. The synthesized cDNA is included as the template in the PCR reaction using either the single primer or a combination of random primers. The amplification products are size-fragtionated through agarose or denaturing polyacrylamide gels and detected by either radiolabeled or non-radiolabeled (EtBr or silver staining) detection methods.

จุฬาลงกรณ์มหาวิทยาลัย
Figure 1.12 A schematic diagram of SSCP analysis (http://www.amonline.net.au/evolutionary_biology/images/sscp.gif).

RAP-PCR bands that are present in one sample and absent in another or bands that exhibit large differences in the intensity across the experimental treatments should represent potentially differentially expressed mRNA transcripts and required further characterization. The fragments can be cloned and sequenced. The expression levels of interesting bands are then examined using specific primers.

1.3 Development of species-specific markers in aquatic species

Klossa-Kilia et al. (2002) used PCR-RFLP of mitochondrial 16s rRNA gene segment to authenticate Messolongi (Greece) fish roe. The PCR products from five species (fresh fish and fish roe) was digested with BstN I, Taq I and Hinf I and electrophoretically analyzed. Species specific restriction patterns clearly discriminated the fish roe of Messolongi, manufactured from the ovaries of M. cephalus, from that originating from the other four Mugilidae species coexisting in the same area. No intra-specific variation was detected in any species suggesting that the developed marker is reliable.

Identification of species origin of different processed products of billfish meats was reported. Hsieh et al. (2005) distinguished five billfish species Xiphias gladius, Makaira nigricans, M. indica, Istiophorus platypterus and Tetrapturus audax in raw, frozen and heat-treated meats by digestion of cytochrome b (cyt b, 348 bp) with BsaJI, Cac8I and HpaII. Species origins of 10 commercial samples including raw fish fillets, frozen fish meats and fried fish meats were identified. The results also indicated that two commercial samples of declared billfish products were actually not made from the billfish. 49 g / G d M D

Species identification of red snapper in commercial salted products was analyzed by Zhang et al. (2006). PCR-RFLP of 12 S rRNA (450 bp) could discriminate morphologically similar fishes; Lutjanus sanguineus, L. erythopterus from L. argentimaculatus, L. malabarius, Lethrinus leutjanus and Pinjalo pinjalo by Hae III, Sca I and SnaB I. L. sanguineus and L. erythopterus were further discriminated by Mae II.

จุหาลงกรณ์มหาวิทยาลัย

Figure 1.13 Overall concepts of the RT-PCR procedure. During first-strand cDNA synthesis an oligo $\mathrm{d}(\mathrm{T})$ primer anneals and extends from sites present within the mRNA. Second strand cDNA synthesis primed by the $18-25$ base specific primer proceeds during a single round of DNA synthesis catalyzed by Taq polymerase. These DNA fragments serve as the template for PCR amplification.

Weder et al. (2001) used SSCP patterns of a 148 bp cyt b gene segment to identify species origins from raw materials of several fish and animal species. SSCP patterns of 2-4 bands were obtained from blue ling, carp, haddock, mackerel, mackerel shark, saithe, catfish, Alaska pollack and skipjack. The patterns were fish species-specific and the method could be used to identify Alaska pollack in surimibased products. Inter-laboratory results suggested reproducibility of SSCP analysis for species identification purposes.

Comi et al. (2005) developed a molecular approach to differentiate eight species currently used in the production of cod-fish; Gadus morhua, G. macrocephalus, G. ogac, Molva molva, Melanogrammus aeglefinus, Brosmi brosme, Pollachius virens and Theragra calchograma. The amplfied cyt b ($N=12$) was amplified and further analyzed by RFLP, SSCP and DGGE. A combination of Nla III and Rsa I allowed the differentiation of six out of eight species in this study. Species belonging to the genera Gadus and T. calchograma gave identical restriction profiles and SSCP patterns. However, DGGE was able to produce different patterns across considered species.

Short segments (123 bp) of cyt b four species of tuna fish (Thunnus albacares, T. obesus, T. alalunga and E. pelamis) were analyzed by PCR-SSCP to get speciesspecific patterns of single-stranded DNA. All four species were clearly differentiated. Nevertheless, small differences of SSCP profiles of T. albacares and T. obesus were observed reflecting the small difference between sequences of cyt b of these two species (Colombo et al., 2005).

Thaewnon-ngiw et al. (2004) investigated species-diagnostic markers in the introduced apple snail (Pomacea canaliculata) and in the four native apple snails Pila ampullaceal, P. angelica, P. pesmei, and P. polita in Thailand by PCR-RFLP of COI (710 bp). The results showed that digestion of COI with Dde I could differentiated P. canaliculata from native Pila species, accurately. Twenty-one composite haplotypes showing non-overlapping distributions among species indicating that simple and reliable species identification method were successfully developed.

Klinbunga et al. (2003) successful developed species-diagnostic markers of the tropical abalone (Haliotis asinina, H. ovina and H. varia) in Thai waters based on PCR-RFLP of 16S rDNA (Alu I, Bam HI, Eco RI and Hae III). Non-overlapping mitotypes were found in H. asinina (AAAA and AAAE, $N=115$), H. ovina (ABBB, AAAB and AABB, $N=71$) and H. varia (BABG, BABC, BABD, BABF and AABG, $N=23$), respectively.

In addition, species-diagnostic markers of 5 oyster species of genera Crassostrea and Saccostrea; Crassostrea belcheri (Sowerby, 1871), C. iredalei (Faustino, 1932), Saccostrea cucullata (Born, 1778), S. forskali (Chemnitz, 1785) and Striostrea (Parastriostrea) mytiloides (Lamarck, 1819), were investigated by PCRRFLP of 16S (Acs I, Alu I, Dde I, Dra I, Rsa I and Taq I) and 18S (Hinf I) rDNAs and COI (Acs I, Dde I and Mbo I). A total of 54 composite haplotypes were observed. No overlapping haplotypes were found between different oyster species. Speciesdiagnostic composite haplotypes were specifically found in each commercially cultured oyster species (C. belcheri, C. iredalei and S. cucullata) (Klinbunga et al., 2005).

To date, there have been no publications concerning species-diagnostic markers of indigenously important shrimp species (P. monodon, P. semisulcatus and F. merguiensis) and the introduced species (L. vannamei) in Thailand. Due to morphological similarity between F. merguiensis and L. vannamei at the larval stages and between P. monodon and P. semisulcatus at all stages of development, reliable molecular markers for identification of species origin of shrimp species need to be developed.

1.4 Population genetic studies of Penaeid shrimps

Molecular phylogeny of penaeid shrimps has been reported based on nucleotide sequences of COI (Baldwin et al., 1998), 16S rDNA and COI (Lavery et al., 2004) and AFLP (Wang et al., 2004). Phylogenetic trees revealed close genetic relationships between P. monodon and P. semisulcatus (subgenera Penaeus) but distant relationships were observed among economically important shrimps from
different genera (P. monodon, F. merguiensis, L. vannamei and Marsupenaeus japonicus).

Baldwin et al. (1998) studied molecular phylogeny and biogeography of 13 species of Penaeid shrimps representing all six subgenera using COI (558 bp). No insertions or deletions across taxa were observed and the results showed that this gene section contained 204 variation sites. Genetic diversity within species was low ($d=0$ $-3 \%)$ while that between species showed high level ($d=8-24 \%$). Phylogenetic analysis represented an unambiguous grouping of western Atlantic species with the eastern Pacific species to form a monophyletic group relative to Indo-Pacific forms. Relationships between P. canaliculatus and P. japonicus and between P. indicus and P. merguiensis were closely related whereas P. monodon and P. semisulcatus could not resolve their relationships based on the parsimonious approach.

Larvery et al. (2004) reconstructed the phylogeny of Penaeus (26 of the extant 28 species including all the Indo-West Pacific, eastern Atlantic and western Atlantic species) using 16 S rRNA (474 bp) and COI (414 bp). Results provided the evidence for division of the genus into two true natural groups; Melicertus plus Marsupenaeus and another group comprising of Penaeus, Fenneropenaeus, Farfantepenaeus and Litopenaeus. Previous molecular study concluded that subgenera Farfantepenaeus and Litopenaeus were paraphyletic (Baldwin et al., 1998 and Gusmão et al., 2000) but the results from this study suggested that both of them were monophyletic groups Moreover, this study supported an Indo-West Pacific origin of the genus, with a single relatively recent colonization of the Western Hemisphere, and subsequent subdivision into two clades prior to the emergence of the Panamanian isthmus.

Species identification and phyllogenetic analysis of six penaeus shrimps; P. monodon, P. chinensis, P. merguiensis, P. latisulcatus, P. canaliculatus and P. japonicus, were explored by Wang et al. (2004) using AFLP technology. A total of 443 bands (size range 80-550 bp) were generated from 26 individuals from six species using three sets of selective primers. Eight bands (1.8\%) were found in all species, with three of them (0.7%) scored in all individuals (i.e. monomorphic) and the other five polymorphic. Within a single species, 24.6% (P. canaliculatus) to $60.8 \% ~(P$. japonicus) of the fragments were polymorphic. Species-specific AFLP markers were identified and would be converting to sequence characterized amplified region
(SCAR) markers that usefulness in genetic identification of larvae and post-larvae. Average genetic distances among individuals of the same species varied from 0.0023 in P. chinensis to 0.0068 in P. japonicus, while the average distances between species varied from 0.0207 to 0.0324 . The phylogenetic tree indicated that individuals from each species cluster together and six investigated species were segregated into two major clades. While P. monodon, P. chinensis and P. merguiensis were classified in the first clade with the latter two species more closely related, P. latisulcatus, P. canaliculatus and P. japonicus were classified in the other clade with the former two species more closely related. Results were consistent with the previous study by Larvery et al. (2004) based on mitochondrial DNA analysis (16S rRNA and COI) on 26 of the extant 28 Penaeus species.

Population genetic structure of the kuruma prawn (P. japonicus) in East Asia was elucidated by sequence analyses on the complete mtDNA control region (992 bp). Five populations $(N=95)$ originating from the Japan Sea (JS), the north and south of the East China Sea (NECS and SECS), the Taiwan Strait (TS), and the north of the South China Sea (NSCS) were collected. Two hundred and ninety two variable sites without any insertions and deletions were observed. Nucleotide diversity in the total populations was $2.51 \pm 0.07 \%$, and the variations within populations ranged from $2.61 \pm 0.93 \%$ (SECS) to $2.29 \pm 0.16 \%$ (JS). The $\mathrm{F}_{\text {ST }}$ values across all populations showed a significant amount of genetic variation between five populations ($\mathrm{F}_{\mathrm{ST}}=0.0434, \mathrm{p}<0.01$) as the same as those between the JS and the remaining populations, between the NECS and NSCS populations, and between the SECS and NSCS populations. The UPGMA tree and analysis of molecular variance (AMOVA) indicated that three distinct genetic populations were existed in East Asia; one was in the JS; another was in the NECS; and the third was distributed in SECS, TS and NSCS (Tzeng et al., 2004). $9 / 9$? 9 ?

Hualkasin et al. (2003) studied molecular phylogenies of white shrimp species in Thailand using variation observed a 558 bp COI gene segment. Three morphologically similar species; P. merguiensis, P. silasi and P. indicus, were clearly differentiated which very close relationship was observed between P. merguiensis and P. silasi ($d=8.61 \%$). A neighbor-joining tree separated specimens into four clades; A, B, C and D. P. silasi and P. indicus were monophyletic wherein P. merguiensis
was paraphyletic. The clade A consisted of P. merguiensis from the Gulf of Thailand and Taiwan (Pacific Ocean) whereas the clade B consisted of the Andaman Sea sample. The average sequence divergence between these groups was 5%. Results point toward the possibility of P. merguiensis being a complex of two cryptic species or a single species with strong phylogeographic subdivision.

Wanna et al. (2005) examined sequence variation of the ITS1 region (range 499-772 bp in length) in four species of penaeid shrimps in Thailand; P. merguiensis, P. silasi, P. monodon and P. semisulcatus, and in two populations of P. merguiensis; the Gulf of Thailand and the Andaman Sea. They found that ITS1 variation was informative in estimating phylogenies. Four species of Penaeid shrimps could be differentiated and P. merguiensis species were divided into two clusters; A (Gulf of Thailand) and B (Andaman Sea) with a 2.03% divergence. The divergence within cluster A and B was 0.87% and 0.6%, respectively. Pairwise nucleotide sequence divergence in the ITS1 region ranged from 7.53% between P. merguiensis and P. silasi to 30.16% between P. silasi and P. semisulcatus. The divergences between Litopenaeus and P. merguiensis, P. silasi and P. indicus) range from 7.53% to 17.35% indicating that these shrimps were closely related species which P. merguiensis and P. silasi were more closely related to each other than they were to P. indicus. Moreover, P. monodon displayed the lowest degree of divergence from P. semisulcatus with a value 17.29%.

Xu et al. (2001) studied genetic diversity of wild and cultured black tiger shrimp (P. monodon) in the Philippines using six microsatellites. All six microsatellites were polymorphic (100%) and a total of 184 different alleles were found over all loci with allele size ranging from 159-400 bp. The observed heterozygosity $\left(\mathrm{H}_{0}\right)$ was high $\left(0.47\right.$ to 1.00) $\sim F_{S T} /$ showed significant genetic differentiation among overall populations at all six loci. The Negros Occidental-W population was significantly different from the other three populations (Quezon, Capiz and Palawan) based on the pairwise $F_{\text {ST }}$ values, allelic and genotypic frequencies. No pairwise differentiation among Quezon, Capiz and Palawan was observed. The average number of alleles per locus in wild populations was significantly higher than that observed in the cultured populations ($\mathrm{P}<0.05$) while the average frequency of the most common allele in both wild and culture populations
was not different. Unfortunately, two cultured populations showed less genetic diversity and were significantly different from the four wild populations genetically.

Tong et al. (2002) developed polymorphic expressed sequence tags (EST) markers in P. monodon for genome mapping and other genetic studies of these species. Forty seven pairs of primers were designed based on ESTs from a P. monodon cephalothorax cDNA library. Thirty four of the primer pairs; representing 12 distinct genes and 22 unknown gene products, were successfully amplified from genomic DNA of P. monodon. PCR products from 6 primer pairs were larger than the expected sizes due to the presence of introns. Ten polymorphic ESTs markers were observed based on SSCP analysis. Mendelian inheritance of the EST-derived markers was examined in two international reference mapping families of P. monodon. Statistic tests on genotype distribution in the progeny confirmed Mendelian inheritance ($\chi^{2}<1.2, \mathrm{P}>0.05$). Some of the markers were successfully mapped in a genetic linkage map. In addition, some ESTs were successfully amplified in P. chinensis, P. japonicus and P. vannamei indicated that EST markers could be applied in genetic analysis of closely related species and facilitated further efforts towards construction of a syntenic gene map in Penaeus.

MtDNA-RFLP analysis was used to determine intraspecific genetic diversity of P. monodon. A total of 212 wild P. monodon individuals collected from ten sites (Lamu in Kenya, Medan, North and South Java in Indonesia, Satun, Surat and Trat in Thailand, Dungun and Kedah, Malaysia and Lingayen in the Philippines) were analysed with eleven restriction endonucleases (Ava II, BamH I, Cla I, Dra I, EcoR V, Hind III, Pvu III, Sac I, Sca I and Xba I). Sixty-three mtDNA composite haplotypes were identified and 28 of these were found in Thai samples. These could be placed into one or other of two clonal lineages, A and B. The most easterly sites (Lingayen, Philippines) were fixed for cluster A haplotype and the most westerly site (Lamu, Kenya) was fixed for a B haplotype. At the other sites, both clusters were present with the A haplotypes generally more common in the South China and Java Sea than from samples in the Andaman Sea (Figure 1.14). Haplotype diversity of P. monodon $m t D N A$ was 0.7689 ± 0.00186. The average nucleotide diversity within and between populations was $1.7276 \pm 0.0007 \%$ and $2.7230 \pm 0.0003 \%$ respectively. Significant population differentiation was observed with a major discontinuity between the

Andaman Sea, Java and South China Sea and West African samples of P. monodon (Klinbunga 1996; Klinbunga et al., 1999)

Benzie et al. (2002) surveyed mtDNA variation in 5 geographic samples of Southeast African, 5 of Australian and 3 of Southeast Asian P. monodon using RFLP. The results indicated that the Indo-West Pacific region is the site of accumulation of genetic diversity rather than the site of origin of genetic diversity. The dominant haplotype was different in the Australian and Southeast Asian samples. Genetic diversity was greatest in Indonesia, less in the Philippines and Australia and markedly less in the Southeast African and West Australia. The high diversity in the Southeast Asian samples resulted from the occurrence of a set of haplotypes found only in the Southeast Asian samples derived from the Southeast African haplotypes. These genetic variants were evolved in the Indian Ocean and subsequently migrated into the Indo-West Pacific region. Low genetic variation in geographically marginal samples in Southeast African and West Australia is possibly resulted from the consequence of bottleneck effects but mismatch haplotype distributions suggest that large population sizes have been maintained in Indonesian samples for long periods.

Genetic diversity of P. monodon in Thailand based on PCR-RFLP of 16 S rDNA and COI-II was analyzed using specimens from Satun ($N=30$), Trang ($N=$ 30), and Phangnga ($N=31$) in the Andaman Sea; and Chumphon $(N=39)$ and Trad ($N=24$) in the Gulf of Thailand (Klinbunga et al., 2001). Digestion of P. monodon 16 S rDNA (560 bp in length) with MboI and COI-COII (1700 bp) with AluI, MboI, TaqI, HinfI and DdeI produced 48 restriction fragments with an average of 8.0 fragments per enzyme. Linkage disequilibrium analysis indicated that haplotypes from the 16S rDNA and an intergenic COI-COII were associated nonrandomly ($P<$. 00 พ้าลงกรรณ็มหาวิทยาลย

In total, 37 composite haplotypes were identified among the 5 samples of Thai P. monodon. Of these, 22 composite haplotypes were carried by single individuals. Only 2 composite haplotypes (I, ABBBBA; and VII, BAAAAB) were commonly found, in 16.23% and 28.57% of overall specimens, respectively. These haplotypes were not population-specific but found in all geographic samples. The UPGMA cluster analysis based on sequence divergence estimated among composite haplotypes

Figure 1.14 Geographic distribution of mtDNA phylogenetic clusters A and B among fourteen geographic samples of P. monodon analyzed by 11 polymorphic restriction enzymes.

LY = Lingayen, Philippines; DN = Dungun, KD = Kedah, Malaysia; SR = Surat, ST = Satun, TR = Trat, Thailand; ME = Medan, NJ = North Java, SJ = South Java, Indonesia; LM = Lamu, Kenya. Noted that Kenya is located in Africa.
indicated 2 major phylogenetic clusters of mtDNA haplotypes (clusters I and II) joined in the dendrogram with a genetic distance of 3.028\%.

The distributions of these 2 clusters overlapped in all geographic samples with different proportions. The highest frequency of cluster I (identical to cluster B in the previous study using specimens covering the south-East region) was observed in Satun (0.600) followed by Chumphon (0.564), Trang (0.500), Phangnga (0.433), and Trad (0.375). The distribution of cluster II genotypes in a particular sample was reversed. Considering digestion patterns obtained from restriction enzymes in their study, patterns from digestion of an intergenic COI-COII with AluI and TaqI could represent the frequency of each phylogenetic cluster accurately. This simplification opens the possibility of genetic-based stock enhancement (restocking) programs of P. monodon in Thailand without significant disturbance of its local gene pools.

RAPD analysis was used to examine genetic variation in P. monodon in Thai waters (Chumphon and Trad from the Gulf of Thailand and Satun, Trang and Phangnga from the Andaman Sea; Klinbunga et al., 2001). Results also indicated the existence of differentiation between P. monodon from the Andaman Sea and Gulf of Thailand ($P<0.0001$). Surprisingly, paired comparisons of distances between Chumphon and each of the Andaman Sea samples ($d_{\text {RAPD }}=-0.002$ to 0.003) indicated closer genetic relationships than between Chumphon and Trad ($d_{\text {RAPD }}=0.034$). Genetic distances between samples within the Andaman Sea samples were -0.001 to 0.005 . Overall comparisons of RAPD genotype frequencies revealed significant geographic heterogeneity among Thai P. monodon ($P<.0001$), and between coastal regions (P < .0001) , Not all RAPD primers used in Klinbunga et al. (2001) indicated geographic heterogeneity for all possible comparisons between Chumphon and each of the Andaman Sea samples $(P>0.05)$, but all primers revealed highly significant heterogeneity between Chumphon and Trad ($P<.0001$). This indicated that the Chumphon P. monodon showed genetically closer relationship to each of the Andaman populations than Trad located in the same coastal area.

Microsatellites in Thai P. monodon were also characterized (Tassanakajon et al., 1998a). Using these markers, high levels of genetic diversity were observed in five different geographic samples of P. monodon in Thailand (as also studied by
mtDNA polymorphism and RAPD analysis). The average observed heterozygosity in P. monodon was 0.78 . A number of microsatellite alleles found in the Andaman sample were not available in Trat, but some of those existed in Chumphon. The failure to detect significant allele distribution frequencies between Chumphon and each of the west coast samples might have resulted from mixing of the gene pools of different P. monodon stocks as a consequence of extensive transplantation of P. monodon in Thailand.

Although genetic diversity of P. monodon in Thai waters has been studied by several approached, data from single copy nuclear (scn) DNA and those from a DNA sequencing approach have not been reported. SSCP analysis of AFLP-derived markers and DNA sequencing of COI was then carried out in this thesis. The information obtained is important for genotyping of artificially propagated P. monodon and genetic-based stock enhancement programs of natural P. monodon stocks in Thailand.

1.5 Sex-determination/differentiation markers

Sex determination is problematic in researches of many species. This problem is usually arisen when dealing with embryonic or juvenile forms of interesting species. One effective solution is to exploit DNA markers to diagnose sex of each individual. Such markers are present in the genome whenever sex determination is genetically controlled. In many organisms sexual differentiation is governed by chromosomal sex determination, where the sex determination genes are carried on a specialized pair of sex chromosomes. The two main forms are male heterogamy, where the male has XY chromosomes and the female is XX, and female heterogamy, where the female is WZ and the male is ZZ . The Y or W chromosomes are, thus, unique to one sex, so their presence or absence in a sample of genomic DNA is indicative of sex.

In mammals, sex determining region-Y chromosome (SRY) has been discovered for more than a decade. The gene is structurally conserved and Y-linked across the class. Therefore, identification of sexes in mammals at the DNA level is well established (O'Neill and O'Neill, 1999). Nevertheless, the homologue of mammalian SRY has not been identified in non-mammalian species. Although sex-
specific markers have also been described in several non-mammalian species, they are not usually conserved. As a result, sex specific-marker isolated from one species may not exist outside the genus (Griffiths and Tiwari, 1993).

Sex determination may not be controlled by sex chromosomes but is controlled autosomally. Some species of fish do not have sex chromosome as a result sex in these species is determined by male or female genes located on the autosomal chromosomes.

An understanding of sexual biology of any sexual-reproducing species is important for designing breeding programmes in that species. However, studies of sex determining mechanisms in insects and crustaceans are not well advanced. Previous researches has shown that most of the isopod species display chromosomal sex determination in both XX/XY and ZW/ZZ systems but heteromorphism of the sex chromosomes were observed in very few cases (Barzotti et al., 2000).

Karyological studies in the giant freshwater prawn (Macrobrachium rosenbergii) were conducted. The chromosome number of the antennal gland in males reveal a diploid number of $2 \mathrm{n}=118$. This was further confirmed by the haploid chromosome number $(\mathrm{n}=59)$ from testes. While most of investigated females exhibit identical number of chromosome, a certain number of cells having 117 and 111 chromosomes were also observed. Therefore, it was not possible to conclude the chromosome number of female M. rosenbergii unambiguously. Moreover, sex chromosomes in M. rosenbergii could not be cytological identified (Justo et al., 1991).

สถาบันวิทยบริการ

Maleacha et al. (1992) examined sex-ratio and sex determination in progeny of crosses between masculinised genotypic females and normal females of the giant freshwater prawn (M. rosenbergii). Cumulative sex-ratios in the progeny support a hypothesis that sex of prawns is differentiated with female heterogamous (ZW) and male homogamous (ZZ). Nevertheless, variation of sex-ratios among different crosses implied that sex determination in M. rosenbergii is more complex than the simple ZW/ZZ system.

In P. monodon, females exhibit greater growth rate than do males at all stages of development. Nevertheless, a lack of obvious heteromorphic sex chromosomes in this species causing limited knowledge on sex chromosome (XY, ZW or the other system) and their segregation patterns. This prohibits the possibility to elevate culture efficiency of P. monodon through monosex farming.

Sex determination in the crustacean has been reviewed by Legrand et al. (1987) who note that the genetic basis for sex determination had been studied in only a few species and none of which were decapods. Korpelainen (1990) has reviewed the strong influence of environmental factors (including temperature, food supply and social environment) on sex determination in some crustacean groups. Neither sex chromosome in penaeids, nor any environmental sex determination has been observed.

Preechaphol (2004) analyzed pooled DNA of small orange claw (SOC, $N=$ 10) and blue-claw ($\mathrm{BC}, N=5$) males and females $(N=10)$ of the giant freshwater prawn (Macrobrachium rosenbergii) using 64 AFLP primer combinations and found 90 and 42 AFLP markers in male and female M. rosenbergii, respectively. Additional sample sets of SOC $(N=5)$, orange claw (OC, $N=15)$ and BC $(N=10)$ males and females ($N=20$) of M. rosenbergii were reanalyzed by 46 informative primers previously screened. In total, 5 candidate male-specific and 4 candidate femalespecific AFLP fragments were cloned and characterized. Nevertheless, the developed SCAR markers did not reveal sex-specificity in M. rosenbergii.

In P. japonicus, sex of progeny from the mapping family $(N=54)$ was tightly mapped into the linkage group 28 of the female map (LOD $=5.0$). However, specificity of the AFLP fragments has not been tested for the direct application as genomic sex-specific SCAR markers in this species. Although sex chromosomes or environmental sex determination have not been reported in Penaeus shrimps, the ability to identify only sex-linked markers on the female but not the male map suggested the possibility of female heterogamy in this species (Li et al., 2003).

Gonad development characteristics and sex ratio of the triploid shrimp (Fenneropenaeus chinensis) were recently reported. The development of gonad in
triploid F. chinensis is impaired especially in females. Interestingly, triploidy affected the sex ratio in F. chinensis (approximately $4: 1$ towards females) implying that sex chromosomal systems of Penaeus shrimps may be more complicated than simple X/Y or Z/W systems (Li et al., 2003).

Poonlaphdecha (2004) carried out genomic DNA subtraction between male and female P. monodon using the PERT and RDA approaches. A total of 13 (9 and 4 clones from male and female subtraction) and 8 (4 clones from each subtraction) were obtained. SCAR markers developed from a subtractive male (PERT) and 2 subtractive female (RDA) clones did not reveal the sex-specific amplification product in P. monodon.

Thumrungtanakit (2004) studied genomic sex-specific markers of male and female P. monodon. Five female- and one male-specific AFLP fragments identified from screening of 256 primer combinations against 6 (PmMB1-2, PmMJ1, PmFB1-2 and PmFJ1) or 10 (PmMB1-2, PmMJ1-3, PmFB1-2 and PmFJ1-3) bulked genomic DNA of P. monodon were cloned and sequenced. Comparing of DNA sequences derived from candidate female-specific AFLP fragments with data in the GenBank indicated that they were newly unidentified sequences ($\mathrm{P}>10^{-4}$). Four of six SCAR markers (FE10/9P1, FE10/10P1, FE10/10P2 and FE14/16P1) yielded the expected PCR product in both male and female P. monodon suggesting the loss of the original sex-specificity of AFLP fragments. Results from SSCP indicated that all SCAR markers except FE10/9P1 were polymorphic but not sex-linked.

Theoretically, the lack of genomic sex determination markers in P. monodon may have resulted from weak correlation between the genotypic sex and phenotypic sex due to autosomal modifier genes or genetic diversity between investigated individuals used for screening of markers is greater than the optimal level (Griffiths and Orr, 1999). Alternatively, the lack of sex chromosomes in P. monodon and other penaeid shrimps implied that sex chromosomes may not be present or they are not well differentiated in the genome of penaeid shrimps. Therefore, development of genomic sex determination markers in P. monodon may not be possible.

Sex differentiation mechanisms (to males and females) and genes involving oocyte maturation in penaeid shrimps were still not known. Isolation and
characterization of genes specifically/differentially expressed in ovaries or testes of P. monodon is therefore important and can be used to understanding differentiation of sexes and oocyte maturation process in P. monodon.

An isopod crustacean, Asellus aquaticus, consists of 8 homomorphic chromosomes in both sexes but a heteromorphic sex chromosome is present in onequarter of the males in natural populations. The sex chromosomes in this species cannot be differentiated by conventional staining techniques (G- or R-banding). Genomic in situ hybridization cannot reveal any sex chromosome differentiation between homomorphic males and females whereas males exhibiting heteromorphic chromosomes showed differentially labeled regions with male-derived DNA probe (Barzotti et al., 2000).

Gender-specific gene expression has been recently reported in a mosquitoborne filarial nematode (Brugia malayi) isolated by differential display (DD) PCR and in silico subtraction of EST cluster database and further confirmed by RT-PCR. Six of twelve (27\%) and seven of fifteen (47\%) initially identified EST revealed gender-specific expression in B. malayi (Michalski and Weil, 1999).

In the silkworm (Bombyx mori), sex-specific mRNA isoforms were found in the double sex ($d s x$) gene, where the male-specific cDNA lacked the sequence between 713 and 961 nucleotides of the female specific cDNA (Ohbayashi et al., 2001).

Boag et al. (2000) successfully isolated and characterized sex-specific gene expression from the nodule worm; Oesophagostomum dentatum using RAP-PCR. A total of 31 bands showing differential expression between sexes were cloned and sequenced. Northern blot analysis indicated that ten ESTs were exclusively expressed in males (adults and fourth-stage larvae) while two ESTs were expressed solely in females. Three ESTs were expressed in both sexes, but at higher levels in females, and five ESTs could not be detected by Northern blotting analysis suggesting that they were rare transcripts. Sequence analysis revealed that two male-specific and two female-specific ESTs were significantly matched with a protein containing EGF-like cysteine motif and a serine/threonine phosphatase and to vitellogenin-5 and endonuclease III deduced from C. elegans sequences. Another two male-specific

ESTs significantly matched with non-nematode sequences. The remaining ESTs had no similarity to sequences in the GenBank.

1.6 Objectives of the thesis

The objectives of this thesis are development of molecular markers for identifying species origin of five penaeid species (Penaeus monodon, P. semisulcatus, Feneropenaeus merguiensis, Litopenaeus vannamei and Marsupenaeus japonicus) using PCR-RFLP and SSCP analyses, identification of additional polymorphic markers for population genetic studies of P. monodon in Thai waters using AFLPderived markers and DNA sequencing of COI and isolation and characterization of sex-specific/differential expression markers in P. monodon using RAP-PCR.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER II

MATERIALS AND METHODS

2.1 General Materials and Methods

The experimental procedures of this thesis were divided to 3 major parts including

- Identification of species origin of 5 penaeid shrimps (P. monodon, P. semisulcatus, F. merguiensis, L. vannamei and M. japonicus) by PCR-RFLP and SSCP analysis of 16S rDNA.
- Population genetic studies of P. monodon in Thailand by AFLP-derived SCAR markers and COI polymorphism
- Isolation and characterization of genomic sex determination markers using RAPD-PCR and sex-specific/differential expression markers of P. monodon using RAP-PCR analyses.
2.2 Identification of species origins of 5 penaeid shrimps (P. monodon, P. semisulcatus, F. merguiensis, L. vannamei and M. japonicus) by PCR-RFLP and SSCP analyses of 16S rDNA

2.2.1 Sampling

Broodstock-sized penaeid shrimps including the giant tiger shrimp; P. monodon ($N=86$), the green tiger shrimp; P. semisulcatus $(N \neq 15)$, the banana shrimp; F. merguiensis $(N=38)$, the introduced white shrimp; L. vannamei $(N=30)$ and the kuruma shrimp; M. japonicus ($N=16$) were collected (Figure 2.1 and Table 2.1). Specimens were transported back to the laboratory at the Center of Excellence for Marine Biotechnology, Faculty of Science, Chulalongkorn University and kept at $-30^{\circ} \mathrm{C}$ until required.

Figure 2.1 Map of Thailand indicating sample collection sites of P. monodon used in this study. Detailed information and abbreviations of sample sites are shown by Table 2.1.

Table 2.1 Sample collection sites and sample sizes of penaeid shrimps used in this study

Species	Sample location	Sample size $^{\mathrm{a}}$
P. monodon	Chumphon (GOT)	$15(4)$
	Trat (GOT)	$15(4)$
	Satun (west of PT)	$15(4)$
	Trang (west of PT)	$15(4)$
	Phangnga (west of PT)	$15(4)$
	Ranong (west of PT)	$11(9)$
P. semisulcatus	Chumphon (GOT)	$11(11)$
	Phuket (west of PT)	$4(4)$
F. merguiensis	Samyan Market	$7(7)$
	Chonburi (GOT)	$17(7)$
L. vannamei	Indonesia (west of PT)	$14(0)$
	Mexico*	$6(2)$
	Ratchaburi (central Thailand)*	$12(2)$
	Rangsit (central Thailand)*	$12(10)$
M. japonicus	Japan*	$16(7)$

${ }^{\text {a }}$ Sample sizes used for SSCP analysis of 16 S rDNA (16 S rDNA ${ }_{312}$). The numbers in parentheses were individuals analyzed by universal primers of 16 S rDNA (16S rDNA_{560}).

*cultivated stocks
$\mathrm{GOT}_{=}=$Gulf of Thailand, $\mathrm{PT}=$ peninsular Thailand $9 / \mathrm{c}$? Cl

2.2.2 Genomic DNA extraction

Genomic DNA was extracted from a piece of a pleopod of each shrimp using a phenol-chloroform-proteinase K method (Klinbunga et al., 1996). The tissue was placed in a prechilled microcentrifuge tube containing $500 \mu \mathrm{l}$ of extraction buffer (100 mM Tris-HCl, pH 9.0, $250 \mathrm{mM} \mathrm{NaCl}, 100 \mathrm{mM}$ EDTA, pH 8.0) and briefly homogenized with a micro pestle. SDS (10\%) and RNase A ($10 \mathrm{mg} / \mathrm{ml}$) solution were added to a final concentration of 1.0% (w / v) and $100 \mu \mathrm{~g} / \mathrm{ml}$, respectively. The resulting mixture was then incubated at $37^{\circ} \mathrm{C}$ for 1 hour following by an addition of a proteinase K solution ($10 \mathrm{mg} / \mathrm{ml}$) to a final concentration of $200 \mu \mathrm{~g} / \mathrm{ml}$. The mixture was further incubated at $55^{\circ} \mathrm{C}$ for $3-4$ hours.

An equal volume of buffer-equilibrated phenol was added and gently mixed for 15 minutes. The solution was centrifuged at $12,000 \mathrm{rpm}$ for 10 minutes at room temperature and the upper aqueous phase was transferred to a new sterile microcentrifuge tube. This extraction process was then repeated once with phenol:chloroform:isoamylalcohol (25:24:1) and twice with chloroform:isoamylalcohol (24:1). The resulting upper phase was transferred to a new sterile microcentrifuge tube. One-tenth volume of 3 M sodium acetate (pH 5.2) was added. DNA was precipitated by an addition of two volume of ice-cold absolute ethanol and incubated at $-80^{\circ} \mathrm{C}$ for 30 minutes. The precipitated DNA was recovered by centrifugation at $12,000 \mathrm{rpm}$ for 15 minutes at room temperature and washed twice with 1 ml of 70% ethanol (15 and 5 minutes washed, respectively). After centrifugation, the supernatant was removed and the DNA pellet was air-dried and resuspended in $100 \mu \mathrm{l}$ of TE buffer (10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.0$ and 0.1 mM EDTA). The DNA solution was incubated at $37^{\circ} \mathrm{C}$ for $1-2$ hours for complete solubilization and kept at $4^{\circ} \mathrm{C}$ until further needed.
2.2.3 Measuring concentrations of extracted DNA using spectrophotometry and minigel electrophoresis

The concentration of extracted DNA was spectrophotometrically estimated by measuring the optical density at 260 nanometer $\left(\mathrm{OD}_{260}\right)$. $\mathrm{An} \mathrm{OD}_{260}$ of 1.0 corresponds to a concentration of $50 \mu \mathrm{~g} / \mathrm{ml}$ double stranded DNA. Therefore, the concentration of DNA samples is estimated in $\mu \mathrm{g} / \mathrm{ml}$ by multiplying an OD_{260} value with a dilution
factor and 50. The purity of DNA samples can be evaluated by a ratio of $\mathrm{OD}_{260} / \mathrm{OD}_{280}$. The ratio that much lower than 1.8 indicates contamination of residual proteins or organic solvents in the DNA solution whereas that much greater than 1.8 implies contamination of RNA (Kirby, 1992).

Agarose gel electrophoresis can also be used for rough estimation of DNA on the basis of the direct relationship between the amount of DNA and the level of fluorescence after ethidium bromide staining. DNA was run in a 0.8% agarose gel prepared in 1xTBE buffer (89 mM Tris-HCl, 8.9 mM boric acid and 2.5 mM EDTA, $\mathrm{pH} 8.0)$ at 100 V . The gel was stained with ethidium bromide. DNA concentration was estimated by comparing the fluorescent intensity of a given band with that of undigested λ DNA.

2.2.4 PCR using universal primers of COI-COII and 16 S rDNA and

restriction analysis

The COI-COII gene segment (approximately 1550 bp) of each P. monodon (N $=29)$ and P. semisulcatus $(N=15)$ was amplified using COI-COII-F (5’-TTG ATT TTT TGG TCA TCC AGA AGT-3') and COI-COII-R (5’-CCA CAA ATT TCT GAA CAT TGA CC-3'; Roehrdanz, 1993). In addition, the 16 S rDNA (560 bp , hereafter called 16S rDNA ${ }_{560}$) fragment of P. monodon ($N=29$), P. semisulcatus ($N=$ 15), F. merguiensis $(N=14)$, L. vannamei $(N=14)$ and M. japonicus $(N=7)$ was amplified using $16 \mathrm{~S}_{\mathrm{F} 1}$ (5’-CGC CTG TTT AAC AAA AAC AT-3') and $16 \mathrm{~S}_{\mathrm{R} 1}$ (5’CCG GTC TGA ACT CAG ATC ATG T-3’; Palumbi et al., 1991).

PCR were performed in $50 \mu \mathrm{l}$ reaction volume containing 25 ng template DNA, 1X PCR buffer (10 mM Tris-HCl; pH 8.8, $50 \mathrm{mM} \mathrm{KCl}, 0.1 \%$ Triton X-100), $200 \mu \mathrm{M}$ of each dATP, dCTP, dTTP and dGTP, 2.5 mM (COI-COH) or 2.0 mM (16S rDNA $\left._{560}\right) \mathrm{MgCl}_{2}, 0.2 \mu \mathrm{M}$ (COI-COII) or $0.5 \mu \mathrm{M}\left(16 \mathrm{~S} \mathrm{rDNA}_{560}\right)$ of each primer and 1 unit of DyNazyme ${ }^{\mathrm{TM}}$ II DNA polymerase (Finnzymes, Finland). The reaction mixture was performed in a PCR ThermoHybaid PxE thermal cycler. The amplification cycles were composed of predenaturation at $94^{\circ} \mathrm{C}$ for 3 minutes, followed by 5 cycles of a low stringent condition of $94^{\circ} \mathrm{C}$ for 1 minute, $42^{\circ} \mathrm{C}$ for 1 minute and $72^{\circ} \mathrm{C}$ for 1 minute and 35 cycles of a higher stringent condition at $94^{\circ} \mathrm{C}$ for 1 minute, $53^{\circ} \mathrm{C}(16 \mathrm{~S}$ rDNA_{560}) and $55^{\circ} \mathrm{C}$ (COI-COII) for 1 minute. The final extension was carried out at
$72^{\circ} \mathrm{C}$ for 7 minutes. Five microliters of the amplification reaction were electrophoresed through 1% agarose gel to determine whether the PCR reaction was successful. Specimens showing expected product sizes were subjected to restriction analysis.

2.2.5 Agarose gel electrophoresis

Agarose gel electrophoresis separates DNA fragments on the basis of their molecular sizes. PCR products were analyzed by 1% standard agarose gels. An appropriate amount of agarose was weighed out and mixed with 1X TBE buffer (Maniatis et al., 1982). The solution was heated in a microwave oven until complete solubilization and allowed to cool below $60^{\circ} \mathrm{C}$ before poured into the gel mould. The comb was then inserted. The gel was left to solidify at room temperature for 30-45 minutes. When needed, the comb was carefully removed. The gel was submerged in a chamber containing an enough amount of 1 xTBE buffer covering the gel for approximately 0.5 cm .

PCR-amplified products or restriction enzyme digested products were mixed with the loading dye solution (0.25% bromophenol blue and 25% Ficoll 400 in $\mathrm{H}_{2} \mathrm{O}$). The mixture was carefully loaded into the well. DNA marker (λ-Hind III and/or 100 bp ladder) were included as DNA standards. Electrophoresis was operated at 90 volts until bromophenol blue moved to approximately 2 cm from the bottom of the gel. The electrophoresed gel was stained with a $0.5 \mu \mathrm{~g} / \mathrm{ml}$ ethidium bromide solution for 15 minutes and destained twice to remove unbound ethidium bromide in distilled water for 15 minutes each. DNA fragments were visualized under a UV transilluminator.

2.2.6 Restriction endonuclease digestion

The COI-COII and $16 \mathrm{~S}_{\mathrm{rDNA}}^{560}$ amplification products were singly digested with Dra I (TTT/AAA), $S s p$ I (AAT/ATT) and $V s p$ I (AT/TAAT) and Alu I (AG/CT), Mbo I (/GATC), Ssp I and Vsp I, respectively. The digestion was performed in a $15 \mu \mathrm{l}$ reaction volume composing of $6 \mu \mathrm{l}$ of the PCR product, 1X of restriction enzyme buffer, $0.1 \mu \mathrm{~g} / \mathrm{ml}$ BSA, 4 mM spermidine trihydrochloride, 1 unit of a restriction endonuclease and appropriate amount of sterile deionized water. The mixture was incubated at $37^{\circ} \mathrm{C}$ for 3 hours. At the end of incubate period, $2 \mu \mathrm{l}$ of a loading dye was added and mixed. The restricted products were electrophoresed through 1.0\% (COI-

COII) and 1.5% ($16 \mathrm{~S}_{\mathrm{rDNA}}^{560}$) agarose gels as described previously. Results of restriction enzyme digestion were recorded by photographed through a red filter using the Formapan film.

2.2.7 Recover of the amplified 16 S rDNA $\mathbf{5 6 0}$ product from agarose gels

The $16 \mathrm{~S}^{\mathrm{rDNA}}{ }_{560}$ gene region was subjected to ligated to $\mathrm{pGEM}^{\circledR}-\mathrm{T}$ easy vector (Hoelzel and Green, 1992) and SSCP analysis. Therefore, the 16 S rDNA_{560} fragment was purified by fractionated through 1.5% agarose gels. The 560 bp fragment was excised from the electrophoresed gel and placed into a pre-weight 1.5 ml microcentrifuge tube. DNA was then eluted from agarose gels using QIAquick Gel Extraction Kit (QIAGEN). Three volumes of DNA purification binding buffer (QG buffer) was added to the microcentrifuge tube containing a gel slice. The mixture was incubated at $50^{\circ} \mathrm{C}$ for 10 minutes with occasional agitating for complete dissolving of the agarose gel slice every 2-3 minutes. The solution was applied to the QIAquick spin column placed into a collection tube and centrifuged at 13,000 rpm for 1 minute at room temperature. The supernatant was discarded. $500 \mu \mathrm{l}$ of DNA binding buffer (QG buffer) was added and centrifuged for 1 minute. The supernatant was discarded. The column was washed once with $750 \mu \mathrm{l}$ of wash buffer (PE buffer), centrifuged for 1 minute and recentrifuged once. QIAquick column was placed into a clean 1.5 ml microcentrifuge tube. $50 \mu \mathrm{l}$ of the elution buffer (EB buffer) was added, let the column stand for 1 minute and then centrifuged for 1 minute. The gel-eluted DNA was kept at $4^{\circ} \mathrm{C}$ until further needed.

2.2.8 SSCP analysis of $\mathbf{1 6 S}$ rDNA $\mathbf{5 6 0}$
 2.2.8.1 Preparation of glass plate

The glass plate was thoroughly wiped with 2 ml of 95% commercial grade ethanol in one direction with a tissue paper. This process was then repeated twice. Afterwards, the long glass plate was coated with 1 ml of freshly prepared binding solution ($4 \mu \mathrm{l}$ of Bind silane; Pharmacia, USA, $995 \mu \mathrm{l}$ of 95% ethanol and $5 \mu \mathrm{l}$ of glacial acetic acid) and left for 10 minutes. Excess binding solution was removed with 95% ethanol 1 time. The shot glass plate was treated as described above with the exception that the binding solution was replaced by the Repel silane (2%
dimethyldichlorosilane in octamethylcyclotetra-sitoxone). The cleaned glass plates were assembled with a pair of 0.4 mm spacers and a pair of the gel clamps.

The 12.5-15\% low crosslink (37.5:1 acrylamide:bis-acrylamide, containing 1 X TBE buffer equivalent to 2.66% crosslink) non-denaturing polyacrylamide gels were prepare by dilution of a 40% stock solution to the required concentration. The acrylamide gel solution ($30-40 \mathrm{ml}$) was mixed with $240 \mu \mathrm{l}$ of 10% APS and $24 \mu \mathrm{l}$ of TEMED after degassed for 15 minutes using vacuum. The analytical comb was inserted into the prepared gel and polymerization was allowed for at lease 4 hours or overnight.

For SSCP analysis, $8 \mu \mathrm{l}$ of the gel-eluted DNA of gene fragment was mixed with 4 volumes of the loading dye (98% formamide, 0.025% bromophenol blue, 0.025% xylene cyanol and 10 mM NaOH), denatured at $95^{\circ} \mathrm{C}$ for 5 minutes and immediately cooled on ice for 3 minutes. Electrophoresis was carried out at 200 V for $12-16$ hours at $4^{\circ} \mathrm{C}$. As a control, the non-denatured gel-eluted DNA of gene fragment was also included in the gel. SSCP bands are visualized by silver staining.

2.2.8.2 Silver staining

The glass plates were carefully separated. The glass plate with the gel was placed in a plastic tray containing 1.5 liters of the fix/stop solution and agitated for 25-30 minutes. Then the gel was washed 3 times by shaking in deionized water for 3 minutes each. After washing, the gel was transferred to 0.1% silver nitrate solution (1.5 g of silver nitrate and 2.25 ml of 37% formaldehyde in 1.5 liters of deionized water) and stained with agitation for 30 minutes. The gel was soaked in 1.5 liters of deionized water with shaking and immediately placed in the tray containing 1.5 liter of the chilled developing solution $\sigma 0 \mathrm{~g}$ of sodium carbonate in 3 liters of deionized water and 2.25 mP of 37% formaldehyde and $300 \mu \mathrm{l}$ of a $10 \mathrm{mg} / \mathrm{ml}$ sodium thiosulfate solution were added before used). This step is crucial and the time taken to soak the gel in the water and transfer it to the chilled developing solution should not be longer than 10 seconds. The gel was well agitated until the first bands were visible (usually 1.5-2 minutes). The gel was then transferred to the other tray containing 1.5 liter of the chilled developing solution and shaken until every bands were observed (usually 2-3 minutes). Then, one liter of the fix/stop solution was directly added to the
developing solution and shaking was continued for 2 minutes. The stained gel was soaked in deionized water for 3 minutes and left drying at room temperature.

2.2.9 Cloning and sequencing of 16 S rDNA ${ }_{560}$ of penaeid shrimps

2.2.9.1 Amplification of 16 S rDNA 560 from 5 penaeid shrimps

The $16 \mathrm{~S}_{\mathrm{rDNA}}^{560}$ segment was amplified from an individual representing the most common mitotype of P. monodon, P. semisulcatus, F. merguiensis, L. vannamei and M. japoniccus using conditions described in section 2.2.4. After electrophoresis, a 560 bp band was excised and isolated DNA from agarose gel using QIAquick Gel Extraction Kit (QIAGEN) as described in section 2.2.7.

2.2.9.2 Ligation of $16 \mathrm{~S}^{\text {rDNA }}{ }_{560}$ fragment to the $\mathrm{pGEM}^{\circledR}-$ T Easy vector

Taq I polymerase have a terminal transferase activity which results in the nontemplate addition of nucleotides to the 3 ' end of PCR products for which deoxyadenosine is almost preferentially added. This allows cloning of PCR-amplified fragments to the modified vector containing a single 3 '-overhang thymidine residue (a T-A cloning approach).

A 560 bp 16 S rDNA fragment was ligated to $\mathrm{pGEM}^{\circledR}-\mathrm{T}$ easy vector (Promega, USA) in a $10 \mu \mathrm{l}$ ligation reaction constituting of $5 \mu \mathrm{l}$ of 2 X rapid ligation buffer (60 mM Tris-HCl, pH 7.8, $20 \mathrm{mM} \mathrm{MgCl} 2,20 \mathrm{mM}$ DTT, 2 mM ATP, 10% polyethylene glycol; MW 8000), 3 weiss units of T4 DNA ligase, 25 ng of pGEM $^{\circledR}-\mathrm{T}$ easy vector and 25 ng of the DNA insert. The reaction mixture was incubated overnight at $4^{\circ} \mathrm{C}$ before transformed into E. coli strain JM 109 (Cohen et al., 1972).
2.2.9.3 Transformation of ligated products into E. coli (Cohen et al., 1972)
2.2.9.3.1 Preparation of competent cells

A single colony of E.coli JM109 was inoculated into 3 ml of LB medium (1\% Bacto-tryptone, 0.5% Bacto-yeast extract and $0.5 \% \mathrm{NaCl}, \mathrm{pH} 7.0$) and incubated with vigorous shaking at $37^{\circ} \mathrm{C}$ overnight. The starting culture (1 ml) was inoculated into 100 ml of LB broth and continued culture at $37^{\circ} \mathrm{C}$ with vigorous shaking to the OD_{600} of 0.4 to 0.6 . The cells were chilled briefly on ice for 15 to 30 minutes and transferred
into a microcentrifuge tube and harvested by centrifugation in a prechilled rotor at $2,700 \mathrm{xg}$ for 10 minutes at $4^{\circ} \mathrm{C}$. The supernatant was discarded and the pellets were resuspended in 30 ml of sterile, ice-cold $\mathrm{MgCl}_{2}-\mathrm{CaCl}_{2}$ solution ($80 \mathrm{mM} \mathrm{MgCl} \mathrm{m}_{2}$ and 20 mM CaCl 2). The pellets were chilled on ice for 45 minutes and then centrifuged at $2,700 \mathrm{~g}$ for 10 minutes at $4^{\circ} \mathrm{C}$. After centrifugation, the pellets were resuspended in 4 ml of sterile, ice-cold $100 \mathrm{mM} \mathrm{CaCl}_{2}$ (containing 15% glycerol) and divided to $100 \mu \mathrm{l}$ aliquots. These concentrated cells could be used immediately or stored at $-70^{\circ} \mathrm{C}$ for subsequently used.

2.2.9.3.2 Transformation

The competent cells (JM109) were thawed on ice for 5 minutes. Approximately, $1-2 \mu \mathrm{l}$ of the ligation product was added. The mixture was gently mixed by pipetting and left on ice for 30 minutes. At the end of period, the mixture was precisely inculated at $42^{\circ} \mathrm{C}$ for 45 seconds and immediately placed on ice for 5 minutes. The mixture was transferred into a microcentrifuge tube containing 1 ml of SOC medium and incubated with shaking at $37^{\circ} \mathrm{C}$ for 1 to 2 hours. Afterwards, cell suspension were spread on the LB agar plate containing $50 \mu \mathrm{~g} / \mathrm{ml}$ of ampicillin, 25 $\mu \mathrm{g} / \mathrm{ml}$ of IPTG and $20 \mu \mathrm{~g} / \mathrm{ml}$ of X-Gal and further incubated at $37^{\circ} \mathrm{C}$ overnight (Sambrook et al., 1989). The recombinant clones are selected using a lac Z system following a standard protocol (Maniatis et al., 1982) which recombinant clones containing inserted DNA are usually white while those without inserted DNA are blue.

2.2.9.4 Colony PCR

Colony PCR was performed in a 25 pl reaction volume containing 1xPCR buffer (10 mM Tris- $\mathrm{HCl} ; \mathrm{pH} 8.8,50 \mathrm{mM} \mathrm{KCl}, 0.1 \%$ Triton $\mathrm{X}-100$), $100 \mu \mathrm{M}$ of each dATP, dCTP, dTTP and dGTP, $2 \mathrm{mM} \mathrm{MgCl} 2,0.1 \mu \mathrm{M}$ each of pUC1 (5'-CCG GCT CGT ATG TTG TGT GGA-3’) and pUC2 (5’-GTG GTG CAA GGC GAT TAA GTT GG-3') and 1 unit of DyNazyme ${ }^{\text {TM }}$ II DNA polymerase (Finnzymes). A white colony was gently picked by a pipette tip and mixed well with the mixture. PCR was performed including predenaturation at $94^{\circ} \mathrm{C}$ for 3 minutes followed by 35 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 1 minute, annealing at $55^{\circ} \mathrm{C}$ for 1 minute and extension at $72^{\circ} \mathrm{C}$ for 1.5 minutes. Final extension was performed at $72^{\circ} \mathrm{C}$ for 7 minutes. The
colony PCR products were electrophoresed through 1.2% agarose gel as described previously.

2.2.9.5 Isolation of recombinant plasmid DNA

The recombinant plasmid DNA was isolated using QIAprep ${ }^{\circledR}$ Miniprep Kit (QIAGEN, Germany). A single white colony was inoculated into 3 ml of LB medium supplementing with $50 \mu \mathrm{~g} / \mathrm{ml}$ of ampicillin and incubated with vigorous shaking at $37^{\circ} \mathrm{C}$ overnight. The culture was transferred into a new 1.5 ml microcentrifuge tube and centrifuged for 1 minute at $10,000 \mathrm{rpm}$. The supernatant was carefully poured off. Recombinant plasmid was extracted according the conditions recommended by the manufacturer. Recombinant plasmid DNA was stored at $-20^{\circ} \mathrm{C}$ until used.

2.2.9.6 Detection of recombinant clones

The recombinant plasmid DNA was examined by digested with EcoR I. The reaction was carried out in a $15 \mu \mathrm{l}$ reaction volume containing 1X restriction enzyme buffer, $0.1 \mu \mathrm{~g} / \mathrm{ml}$ BSA, 4 mM spermidine trihydrochloride, 2 units of Eco RI, $2 \mu \mathrm{l}$ of recombinant plasmid and appropriate amount of sterile deionized water. The mixture was incubated at $37^{\circ} \mathrm{C}$ for 3 hours. The resulting product was electrophoretically analyzed by 1.2% agarose gels. The size of insert was compared with that of λ-Hind III and 100 bp DNA ladder.

2.2.9.7 DNA sequencing and data analysis

Five recombinant clones (Pmo4, Psemi1, Lvan28, Fmer44 and Mjapo12) were unidirectionar sequenced using the M13 forward primer (5'TTT TCC CAG TCA CGA C-3') on an automated MEGABACE1000 sequencer (Amersham Biosciences). The obtained sequences were blasted against previously deposited sequences in the GenBank (NCBI) using BlastN and BlastX (available at http://www.ncbi.nlm.nih.gov). Significant probabilities were considered when the probability (E) value was less than 10^{-4}.

2.2.10 Primer design, PCR-RFLP and SSCP of 16S rDNA 312

Nucleotide sequences of 16 S rDNA $_{560}$ were aligned using Clustal W (Thompson et al., 1994). A pair of primers primed at the conserved regions of 16 S
rDNA $_{560}$ was designed using the Primer Premier 5.0 program (Primer Premier, PREMIER Biosoft international) to generate a 312 bp fragment in representative individuals and tested against 185 shrimp individuals (Table 2.1). PCR was performed in $50 \mu \mathrm{l}$ reaction volume containing 25 ng template DNA, 1 X PCR buffer (10 mM Tris-HCl; pH 8.8, $50 \mathrm{mM} \mathrm{KCl}, 0.1 \%$ Triton X-100), $100 \mu \mathrm{M}$ of each dATP, dCTP, dTTP and dGTP, $2 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 0.2 \mu \mathrm{M}$ each of 16Pmo ${ }_{312 \mathrm{~F}}$ (5'-GAA GGC TTG TAT GAA TGG TTG-3') and $16 \mathrm{Pmo}_{312 \mathrm{R}}$ (5 '-AAA GAA GAT TAC GCT GTT ATC CCT A-3') and 1 unit of DyNazyme ${ }^{\mathrm{TM}}$ II DNA polymerase (Finnzymes) (Klinbunga et al., 2003).

The reaction was carried out by predenaturation at $94^{\circ} \mathrm{C}$ for 3 minutes followed by 2 cycles of $94^{\circ} \mathrm{C}$ for 45 seconds, $65^{\circ} \mathrm{C}$ for 1 minute and $72^{\circ} \mathrm{C}$ for 1 minute. Eight cycles of a touchdown phase with lowering of the annealing temperature for $2^{\circ} \mathrm{C}$ in every 2 cycles was performed. Additional 28 cycles of $94^{\circ} \mathrm{C}$ for 45 seconds, $56^{\circ} \mathrm{C}$ for 1 minute and $72^{\circ} \mathrm{C}$ for 1 minute and the final extension at $72^{\circ} \mathrm{C}$ for 7 minutes were carried out. Five microliters of the amplification products were electrophoretically analyzed through 1.2% agarose gel.

Eight microliters of the product was subjected to PCR-RFLP (Alu I, Ssp I and $V s p$ I) and electrophoretically analyzed. Additionally, $5 \mu \mathrm{l}$ of gel-eluted DNA of 16 S rDNA $_{312}$ of each shrimp was analyzed by SSCP analysis as described in section 2.2.8 using 15.0\% non-denaturing polyacrylamide gels (37.5:1) and electrophoresed at 200 V for 16 hours at $4^{\circ} \mathrm{C}$.

2.3 Population genetic studies of P. monodon in Thailand by AFLPderived SCAR markers and COI polymorphism

2.3.1.1 Restriction enzyme digestion and adapter ligation

Genomic DNA was individually extracted from wild P. monodon originating from Chumphon $(N=10)$, Trat ($N=5$), Satun ($N=10$), Trang ($N=10$) and Pangnga ($N=10$). Genomic DNA of different individual of each group was equally pooled 250 ng per group and used for screening of candidate polymorphic AFLP markers. AFLP
analysis (320 primer combinations) was carried out as essentially described by Vos et al. (1995).

Each pooled genomic DNA was simultaneously digested with 4 units of EcoR I (or Pst I) in a $40 \mu \mathrm{l}$ reaction mixture containing 10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5,10 \mathrm{mM}$ Mg-acetate, 50 mM K -acetate at $37^{\circ} \mathrm{C}$ for 2 hours. The reaction was heat-terminated at $65^{\circ} \mathrm{C}$ for 15 minutes before 2.5 units of Mse I was added and incubated at $65^{\circ} \mathrm{C}$ for 2 hours. The reaction was stored at $4^{\circ} \mathrm{C}$ until used.

The EcoR I (or Pst I) and Mse I adapters (Table 2.2) were ligated to restricted genomic DNA by adding $10 \mu \mathrm{l}$ of the adapter-ligation solution (EcoR I or Pst I and Mse I adapters, 1 mM ATP, 10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5,10 \mathrm{mM}$ Mg-acetate, 50 mM Kacetate and 1 unit of T4 DNA ligase. The ligation reaction was incubated at $12^{\circ} \mathrm{C}$ for 16 hours.

2.3.1.2 Preamplification

The pre-amplification reaction was carried out in $25 \mu \mathrm{l}$ reaction volume containing 1X PCR buffer (10 mM Tris-HCl; pH $8.8,50 \mathrm{mM} \mathrm{KCl}, 0.1 \%$ Triton X100), $200 \mu \mathrm{M}$ of each dATP, dCTP, dTTP and dGTP, $1.5 \mathrm{mM} \mathrm{MgCl}_{2}, 37.5 \mathrm{ng}$ of each adapter-specific primers with a single selective base on each primer; EcoR I primer
 GTA AC-3'), 1.5 unit of DyNazyme ${ }^{\text {TM }}$ II DNA polymerase (Finnzymes, Finland) and $1 \mu \mathrm{l}$ of the ligation product.

PCR was performed in a Perkin Elmer 9700 thermocycler consisting of 20 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 30 seconds, annealing at $56^{\circ} \mathrm{C}$ for 1 minute and extension at $72^{\circ} \mathrm{C}$ for 1 minute. The final extension was carried out at $72^{\circ} \mathrm{C}$ for 5 minutes. Three microliters of the amplification products were electrophoretically analyzed through 1.2% agarose gel. The pre-amplification product was 5 fold diluted and subjected to selective amplification.

2.3.1.3 Selective amplification

Selective amplification was carried out in a $20 \mu \mathrm{l}$ reaction volume containing 1X PCR buffer (10 mM Tris-HCl; pH 8.8, $50 \mathrm{mM} \mathrm{KCl}, 0.1 \%$ Triton X-100), $200 \mu \mathrm{M}$ of each dATP, dCTP, dTTP and dGTP, $1.5 \mathrm{mM} \mathrm{MgCl} 2,30 \mathrm{ng}$ of a combination pair
of E_{+3} and M_{+3} primers (additional 2 selective bases at the 3 ' terminus of each primer, Table 2.2), 1.5 unit of DyNazyme ${ }^{\text {TM }}$ II DNA polymerase (Finnzymes, Finland) and 5 $\mu \mathrm{l}$ of diluted pre-amplification product. The amplification reaction was carried out by denaturation at $94^{\circ} \mathrm{C}$ for 30 seconds, annealing at $65^{\circ} \mathrm{C}$ for 45 seconds and extension at $72^{\circ} \mathrm{C}$ for 1.5 minute for 2 cycles followed by 12 cycles of a touchdown phase with lowering of the annealing temperature for $0.7^{\circ} \mathrm{C}$ in every cycle. Additional 25 cycles of $94^{\circ} \mathrm{C}$ for 30 seconds, $53^{\circ} \mathrm{C}$ for 45 seconds and $72^{\circ} \mathrm{C}$ for 1.5 minute was performed. The final extension was carried out at $72^{\circ} \mathrm{C}$ for 5 minutes. AFLP fragments were analyzed on 4.5% denaturing polyacrylamide gels and visualized by silver staining.

2.3.2 Denaturing Polyacrylamide Gel Electrophoresis

The short and long glass plate was cleaned and prepared as described in section 2.2.8.1. The bottom and both sides of assembled glass plates were sealed with the plastic tape and spring clips.

A low percentage (4.5\%) of denaturing polyacrylamide gel was prepared by combining 40 ml of the degassed acrylamide solution with $240 \mu \mathrm{l}$ of freshly prepared 10% ammonium persulphate and $24 \mu \mathrm{l}$ of TEMED. The assembled plate sandwich was held at a 45 degree angle on the bottom corner and the acrylamide solution was then gently applied into one side of the assembled plates using a 100 ml plastic bottle. The filled plate sandwich was left in the horizontal position. The flat edge of the shark-tooth comb was then inserted. The gel was left at room temperature for 1 hour. After that, the polymerized gel was covered by water-soaked tissue paper and left at room temperature for at least 4 hours for complete polymerization.

When required, the spring clips and the sealing tapes were carefully removed. The top of the gel was rinsed with $1 \stackrel{\rightharpoonup}{X}^{\text {O }}$ TBE buffer. The shark-tooth comb was rinsed. The gel sandwich was placed in the vertical sequencing apparatus with the short glass plate inward. The gel sandwich was securely clamped with the integral gel clamps along the side of the sequencing apparatus. The upper and lower buffer chambers were filled with approximately 300 ml of 1 X TBE. The shark-tooth comb was inserted into the gel until the teeth just touched the surface of the gel.

Table 2.2 Sequences of AFLP adapters and primers used for identification of polymorphic AFLP markers in P. monodon

Table 2.2 (continued)

Six microliters of the acrylamide gel loading dye (98\% formamide, $200 \mu \mathrm{l}$ EDTA, 0.25% bromophenol blue and 0.25% xylene cyanol) were loaded into each well. The gel was prerun at $30-40 \mathrm{~W}$ for 20 minutes.

Six microliters of the amplification products were mixed with $3 \mu \mathrm{l}$ of the loading buffer and heated at $95^{\circ} \mathrm{C}$ for 5 minutes before snap cooling on ice for 3 minutes. The sample was carefully loaded into the well. Electrophoresis was carried out at $30-40 \mathrm{~W}$ for approximately 2.5 hours (xylene cyanol moved out from the gel for approximately 30 minutes). The gel was visualized by silver staining as described in section 2.2.8.2.

2.3.3 Cloning and sequencing of polymorphic AFLP markers

The polymorphic AFLP bands that were not uniquely or commonly found in investigated P. monodon were excised from the gel. DNA was eluted out from the polyacrylamide gels using a sterile razor blade. The polyacrylamide gel sliced was washed twice for 2 hours each at room temperature with $500 \mu \mathrm{l}$ of sterile deionized water. After that, twenty microliters of ultrapure water was added and incubated at $50^{\circ} \mathrm{C}$ for 30 minutes and at $37^{\circ} \mathrm{C}$ overnight. These eluted AFLP products were kept at $4^{\circ} \mathrm{C}$ until used.

The eluted AFLP products were reamplified using the original conditions of each technique. The resulting product was electrophoretically analyzed through 1.5% agarose gel at 7.5 volts/cm for approximately 1 hour. The reamplified DNA fragment was excised from the agarose gel, gel-eluted, cloned into pGEM $^{\circledR}$-T Easy vector and sequenced. Nucleotide sequences of AFLP fragments were compared with those previously deposited in the GenBank using BlastN and BlastX (Altschul et.al., 1990 available at http://www.ncbi/nlm/nih.gov). Significant probabilities of matched nucleotides/proteins were considered when the E-value was $<10^{-4}$.

2.3.4 Primer design and PCR amplification

Fourteen primer pairs were designed from AFLP-derived markers using Primer Premier 5.0 and tested against genomic DNA of each shrimp (Table 2.3). PCR was performed in $50 \mu \mathrm{l}$ reaction volume containing 25 ng of genomic DNA, 1X PCR buffer (10 mM Tris-HCl; $\mathrm{pH} 8.8,50 \mathrm{mM} \mathrm{KCl}, 0.1 \%$ Triton X-100), $200 \mu \mathrm{M}$ of each
dATP, dCTP, dTTP and dGTP, $2.0 \mathrm{mM} \mathrm{MgCl}_{2}, 0.2 \mu \mathrm{M}$ of each primer and 1 unit of DyNazyme ${ }^{\text {TM }}$ II DNA polymerase (Finnzymes, Finland).

The amplification reaction was carried out by predenaturation at $94^{\circ} \mathrm{C}$ for 3 min followed by 35 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 1 min , annealing at the appropriate temperature for 1 min , and extension at $72^{\circ} \mathrm{C}$ for 1 min . The final extension was performed at $72^{\circ} \mathrm{C}$ for 7 min .

Five microliters of the product were analyzed for the amplification success through 1.2% agarose gel eleectrophoresis. Polymorphism (SNP or indels) of the amplification product of different shrimp individuals were analyzed by singlestranded conformation polymorphism (SSCP) analysis.

Five microliters of the PCR product of each shrimp were mixed with 4 volumes of the loading dye (95% formamide, 0.25% bromophenol blue, 0.25% xylene cyanol and 10 mM NaOH), denatured at $95^{\circ} \mathrm{C}$ for 5 minutes, immediately cooled on ice for 3 minutes and electrophoretically analyzed through 12.5\% - 17.5\% low crosslink non-denaturing polyacrylamide gels (37.5:1 or 75:1 of acrylamide:bisacrylamide) at $12.5 \mathrm{~V} / \mathrm{cm}$ for 16 hours at $4^{\circ} \mathrm{C}$. SSCP bands were visualized by silver staining.

2.3.5 Genetic diversity of P. monodon in Thailand examined by AFLP-

 derived markersFour primer pairs (P6M2-370, P6M6-470, E4M6-295, E7M10-450) generating clear and easy scoring polymorphic SSCP patterns were selected and tested against genomic DNA of P. monodon (see Table 2.4 for sample sizes) originating from Satun, Trang and Phangnga located in the Andaman Sea and Chumphon and Tart located in the Gulf of Thailand. PCR amplification were performed and electrophoretically analyzed by SSCP analysis as described above.

2.3.6 Genetic diversity of P. monodon in Thailand examined by SSCP analysis of 16S rDNA $\mathbf{3 1 2}^{2}$

The 16S rDNA segment of P. monodon was amplified using primers $16 \mathrm{Pmo}_{312 \mathrm{~F}}$ and $16 \mathrm{Pmo}_{312 \mathrm{R}}$, and conditions described in section 2.2.10 against 185
shrimp individuals (Table 2.4). The gel-eluted 16S rDNA ${ }_{312}$ was analyzed by SSCP as described in section 2.2.8 using 15.0\% non-denaturing polyacrylamide gel (37.5:1) and electrophoretically analyzed at 200 V for 16 hours at $4^{\circ} \mathrm{C}$. SSCP patterns were visualized by silver staining.

Table 2.3 Sequences and the melting temperature of primers derived from AFLP markers of P. monodon

Primer	Sequence ($5^{\prime} \rightarrow 3^{\prime}$)	Tm (${ }^{\circ} \mathrm{C}$)
1. E4M6-295	F: TTC TTA CGG CAC TTG GAA AAT G	62
	R: TCC CCT CCT ATG CTA ACG CTA C	68
2. E8M7-323	F: AGA CTT TTT ATA CAT TCC TTC CC	62
	R: AGG TCC GCC CAC AAT CAT AC	62
3. E6M9-318	F: ACC GTA TTT CCA TCT ATC TC	56
	R: TTG TCT CGT TTT ATT TCT TG	52
4. E7M10-450	F: TGG TTG CGT TCA TCT TAT CTC	60
	R: TGT TAC AAT GCT GTC GTG GA	58
5. P2M5-295	F: TAA GCC ITT TTA CCA ATA GAC C	60
	R: TCA GAA GAA TAG CAA GAG AAC G	62
6. P2M6-270	F: ACT GGT CAC CTT AGG ATG CT	60
	R: CCT GGT TCT TTG CTG GAT	54
7. P2M7-285	F: GCA GAA CCG ATA CCC AAG GC	64
	R: GGT CCG TGG CTG AAA TGT AAA TA	72
8. P2M7-310	F: CAA GCC TCC AGA ACT CCT CA R: CTT TCA TCC CTC AAC ATC ACT	58 60
9. P6M2-370	F: GGG TGA AAGTAA GTC AAATGT C R: TCA GGC AGA GTG GAG GGA A	62 60
10. P6M6-470	F: TTC GCT AAC TTT CTC CCC TAA	60
	R: CTC AGA CTC CCG CCT AAT CC	64
11. P2M6-385	F: CAG AAT CTT ACT CTC AGC CAC ATA CAC	78
	R: GCT TTC AGC AAC CCT TCC AGT A	66
12. P2M6-465	F: TTA CGA GCA GGG ATT CAG GTT C	66
	R: CAT TGG CAT CTG GCT TGG AG	62

Table 2.3 (continued)

Primer	Sequence (5' $\left.\boldsymbol{\rightarrow} \mathbf{3}^{\prime}\right)$	Tm $\left({ }^{\mathbf{0} \mathbf{C})}\right.$
13. P2M6-850	F: ACC GCT ATG GAG TTA TGT TCT GC	68
	R: TCC TAT CTA TCT CAC CTG CTT ACC CT	76
14. P2M8-300	F: ACA CTT CCA AGC ATT TAC CTC GC	68
	R: TAC CAA CGC CCC ATC TAT TCT G	66

Table 2.4 Sample sizes of P. monodon in Thai waters used for population genetic studies using AFLP-derived markers and 16 S rDNA 312

Sample	P6M2-370	P6M6-470	E4M6-15	E7M10-450	16S rDNA $\mathbf{3 1 2}^{\prime}$
Trat	18	16	16	12	37
Chumphon	32	30	26	25	32
Satun	26	28	21	21	39
Trang	26	30	20	22	33
Phangnga	32	32	29	25	33
Ranong	-	-	-	-	11
Total (N)	134	136	112	105	185

2.3.7 Genetic diversity of P. monodon in Thailand analyzed by sequencing of COI-COII
2.3.7.1 Amplification, purification and cloning of COI-COII gene (1550 bp)

The COI-COII (1550 bp) gene segment was amplified from an individual of P. monodon origination from Trat, Chumphon, Satun and Trang using primers; COI-COII-F and COI-COII-R using conditions described in section 2.2.4. After electrophoresis, a 1550 bp band was excised and eluted from the agarose gel using a QIAquick Gel Extraction Kit (QIAGEN) as described in section 2.2.7. The COI-COII
fragment was ligated to $\mathrm{pGEM}^{\circledR}-\mathrm{T}$ easy vector (Hoelzel and Green, 1992) and cloned into E. coli JM109 as described in section 2.2.9.

2.3.7.2 DNA sequencing

Four recombinant clones (Td13, C20, S3 and T13) were sequenced by an automated DNA sequencer using M13-F and M13-R as the sequencing primers (Macrogen Inc., Korea). The obtained sequences were blasted against previously deposited sequences in the GenBank using Blast N and Blast X programs (available at http://www.ncbi.nlm.nih.gov). Significant probabilities were considered when the probability (E) value was less than 10^{-4}.

2.3.7.3 Primer design and PCR amplification

Nucleotide sequences of COI-COII (1550 bp) from different individuals were aligned using Clustal W (Thompson et al., 1994). Two pair of primers; T13COI-F2/ R2 and Td13COII-F3/R3 primed at the conserved regions of COI and COII genes was designed using Primer Premier 5.0 (Primer Premier, PREMIER Biosoft international) and tested for the amplification successes with genomic DNA of P. mondon (Table 2.5).

In addition, newly designed primers were also used to amplify genomic DNA of P. monodon in combination of with the universal primer COI-COII-F/R (COI-COII-F+T13COI-R2, COI-COII-F+Td13COII-R3, T13COI-F2+COI-COII-R, Td13COII-F3+COI-COII-R). The COI-COII-F+T13COI-R2 yielded a discrete 614 bp PCR product without non-specifie products. This primer pair was used to amplify the COI_{614} gene segment from genomic DNA of P. monodon from Trat $(N=20)$, Chumphon ($N=20$), Satun ($N=19$), Trang ($N=21$) and Phangnga $(\bar{N}=20)$.

PCR was performed in $50 \mu \mathrm{l}$ reaction volume containing 25 ng of genomic DNA, 1xPCR buffer (10 mM Tris-HCl; pH 8.8, $50 \mathrm{mM} \mathrm{KCl}, 0.1 \%$ Triton X-100), $200 \mu \mathrm{M}$ of each dATP, dCTP, dTTP and dGTP, $2 \mathrm{mM} \mathrm{MgCl}_{2}, 0.2 \mu \mathrm{M}$ each of primers (Table 2.5) and 1 unit of Taq DNA polymerase (Fermentas). The reaction was carried out by predenaturation at $94^{\circ} \mathrm{C}$ for 3 minutes followed by 5 cycles of $94^{\circ} \mathrm{C}$ for 45 seconds, $42^{\circ} \mathrm{C}$ for 60 seconds and $72^{\circ} \mathrm{C}$ for 90 seconds and additional 35 cycles of $94^{\circ} \mathrm{C}$ for 45 seconds, $55^{\circ} \mathrm{C}$ for 60 seconds and $72^{\circ} \mathrm{C}$ for 90 seconds. The final
extension was carried out at $72^{\circ} \mathrm{C}$ for 7 minutes. Five microliters of the amplification products were electrophoretically analyzed through 1.2% agarose gel to examine whether the amplification of COI_{614} was successful.

Table 2.5 Newly designed primers from COI-COII gene, their sequences and Tm

Primer		Sequence $\left(5^{\prime} \rightarrow \mathbf{3}^{\prime}\right)$	Tm $\left({ }^{\circ} \mathbf{C}\right)$
T13COI	F2:	TCG TGC TTA CTT TAC ATC TGC TA	64
	R2:	ATC GCC GAG GTA TTC CAT TA	58
Td13COII	F3:	CGT ATT AGA GGG TGG GCG TC	64
	R3:	CGA AAA TGT GGT TCC CGT CC	62

2.3.7.4 Recover of the amplified COI (614 bp) product from agarose gels

The amplified 614 bp COI fragment was size-fractionated through 1.5\% agarose gel. After electrophoresis, a 614 bp fragment of each individual was excised from the gel and placed into a pre-weight 1.5 ml microcentrifuge tube. DNA was then eluted from the agarose gel using a HiYield Gel/PCR Mini Kit using the protocol recommended by the manufacture (Real Biotech Corporation, Taiwan).

2.3.7.5 DNA sequencing and data analysis

The gel-eluted COI (614 bp) of 100 individuals of P. monodon was unidirectionally sequenced using the M13 forward primer on an automated DNA sequencer (Macrogen Inc., Korea). The obtained sequences were blasted against previously deposited sequences in the GenBank using Blast N and Blast X programs (available at http://www.ncbi.nlm.nih.gov).

2.3.8 Data analysis

For population genetic analysis, SSCP fragments of AFLP and 16 S rDNA 312 bands were treated as dominant markers. Each band was treated as a locus and scored
for presence (1) or absence (0), and transformed into $0 / 1$ binary character matrix without consideration of band intensity differences between homo- and heterozygotes.

Gene diversity and percentage of monomorphic and polymorphic loci was estimated in each geographic sample. Pairwise genetic identity and genetic distance were determined (Nei, 1972). A neighbor-joining tree (Saitou and Nei, 1987) was constructed using genetic distance between pairs of geographic samples.

Genetic heterogeneity of overall sample and between pairs of samples was examined using the exact test. $F_{\text {ST }}$-based statistics (θ) of overall samples across all investigated primers were calculated. The chi-square value was calculated and tested using $\chi^{2}=2 N \theta(\mathrm{k}-1)$ and $\mathrm{df}=(\mathrm{k}-1)(\mathrm{s}-1)$ where $N=$ the number of investigated individuals, $\mathrm{k}=$ the number of alleles per locus and $\mathrm{s}=$ the number of geographic samples. Population genetic parameters described above were computationally analyzed by Tool for Population Genetic Analysis (TFPGA, Miller, 1997) and POPGENE.

For nucleotide sequence analysis, COI_{614} sequences of 100 shrimps were multiple aligned. Different individuals exhibited identical nucleotide sequences were grouped to generate sequence haplotypes. Nucleotide sequence divergence between pairs of haplotypes were calculated based on the two parameter method (Kimura, 1980) and subjected to phylogenetic reconstruction using a neighbor-joining method (Saitou and Nei, 1987). Frequencies of different haplotype clusters in between pairs of geographic samples were statically tested using a Monte Carlo simulation using a Restriction Enzyme Analysis Package (REAP; McElroy et al., 1991).
2.4 Isolation and characterization of genomic sex determination markers using RAPD-PCR and sex-specific/differential expression markers of P. monodon using RAP-PCR analyses.

2.4.1 RAPD analysis

One hundred RAPD primers were screened against 6 bulked genomic DNA of representative individuals (pooled genomic DNA of 3 , 5 or 10 individuals of male and female P. monodon) (Table 2.6). PCR was carried out according to conditions

Table 2.6 Arbitrary primers (10 bp in length) and their sequences used in this study

Table 2.6 (continued)

Primer	Sequence ($5^{\prime} \rightarrow 3^{\prime}$)
UBC 210	GCACCGAGAG
UBC 217	ACAGGTAGAC
UBC 220	GTCGATGTCG
UBC 222	AAGCCTCCCC
UBC 228	GCTGGGCCGA
UBC 235	CTGAGGCAAA
UBC 237	CGACCAGAGC
UBC 259	GGTACGTACT
UBC 263	TTAGAGACGG
UBC 267	CCATCTTGTG
UBC 26	AGGCCGCTTA
UBC 270	TGCGCGCGGG
UBC 27	GCCATCAAGA
UBC 273	AATGTCGCCA
UBC 299	TGTCAGCGGT
UBC 428	GGCTGCGGTA
UBC 456	GCGGAGGTCC
UBC 457	CGACGCCCTG
UBC 459	GCGTCGAGGG
M13 CPERI	GAGGGTGGNGGNTCT GACNGGNACNGG
$\text { Q9/q7 } \begin{gathered} \text { HRU18 } \\ \text { HRU33 } \end{gathered}$	ACCCGGCGCTTATTAGAG GTCCCCAAGGTCAGGGAGGCG
9 YN73	CCCGTGGGGCCGCCG
YNZ22	CTCTGGGTGTCGTGC
OPA 01	CAGGCCCTTC
OPA 02	TGCCGAGCTG
OPA 03	AGTCAGCCAC
OPA 05	AGGGGTCTTG

Table 2.6 (continued)

Table 2.6 (continued)

Primer	Sequence (5' $\mathbf{\prime}^{\prime} \mathbf{3}^{\prime}$)
OPB16	TTTGCCCGGA
OPB 17	AGGGAACGAG
OPB 18	CCACAGCAGT
OPB 19	ACCCCCGAAG
OPB 20	GGACCCTTAC
OPZ 09	CACCCCAGTC
OPM 09	GTCTTGCGGA
$(\mathrm{CA})_{8}$	CACACACACACACACA
$(\mathrm{CAC})_{5}$	CTCTCTCTCTCTCTCT
$(\mathrm{CT})_{8}$	GTGGTGGTGGTGGTG
$(\mathrm{GTG})_{5}$	GACAGACAGACAGACA
$(\mathrm{GACA})_{4}$	GATAGATAGATAGATA
$(\mathrm{GATA})_{8}$	

described by Klinbunga et al. (2004). PCR was performed in a $25 \mu \mathrm{l}$ reaction mixture containing 1X buffer (10 mM Tris-HCl, pH 8.8, $50 \mathrm{mM} \mathrm{KCl}, 0.1 \%$ Triton X-100), 4 $\mathrm{mM} \mathrm{MgCl} 2,100 \mu \overline{\mathrm{M}}$ of each dATP, dCTP, dTTP and $\overline{\mathrm{dGTP}}, 0.4 \mu \mathrm{M}$ of an arbritary primer, 25 ng of genomic DNA and 1 unit of DyNazyme ${ }^{\text {TM }}$ II DNA polymerase (Finnzymes, Finland), 619 ล2

PCR was performed in a PCR ThermoHybaid PxE thermal cycler. The amplification cycles were composed of predenaturation at $94^{\circ} \mathrm{C}$ for 3 minutes followed by 45 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 20 seconds, annealing at $36^{\circ} \mathrm{C}$ for 1 minute and extension at $72^{\circ} \mathrm{C}$ for 1.5 minutes. The final extension was performed at $72^{\circ} \mathrm{C}$ for 7 minutes. Five microliters of the amplification reaction were electrophoresed through 1.6% agarose gel and visualized by a UV transilluminator after ethidium bromide staining.

2.4.2 RAP-PCR

2.4.2.1 Experimental shrimps

Broodstock-sized female and male P. monodon were live-caught from Angsila, Chonburi and transported back to the laboratory at the Center of Excellence for Marine Biotechnology (CEMB), National Center for Genetic Engineering and Biotechnology (BIOTEC) located at Chulalongkorn University. The gender and weight of each P. monodon individual were recorded.

2.4.2.2 Total RNA extraction

Total RNA was extracted from ovaries and testes of each shrimp using TRI Reagent ${ }^{\circledR}$. A piece of tissue were dissected out, weighed and immediately placed in liquid N_{2} and ground to the fine powder. The tissue powder was transferred to a microcentrifuge tube containing $500 \mu \mathrm{l}$ of TRI Reagent (50-100 mg of starting tissue $/ 1 \mathrm{ml}$) and homogenized. Additional $500 \mu \mathrm{l}$ of TRI Reagent were added, homogenized and left for 5 minutes and 0.2 ml of chloroform was added. The homogenate was vortexed for $30-60$ seconds and left at room temperature for 2-15 minutes and centrifuged at $12,000 \mathrm{~g}$ for 15 minutes at $4^{\circ} \mathrm{C}$. The mixture was separated into the lower red, phenol-chloroform phase, the interphase, and the colorless upper aqueous phase. The aqueous phase (inclusively containing RNA) was transferred to a new 1.5 ml microcentrifuge tube. RNA was precipitated by an addition of 0.5 ml of isopropanol and mixed thoroughly. The mixture was left at room temperature for 1015 minutes and centrifuged at $12,000 \mathrm{~g}$ for 10 minutes at $4-25^{\circ} \mathrm{C}$. The supernatant was removed. The RNA pellet was washed with 1 ml of 75% ethanol and centrifuged at $7,500 \mathrm{~g}$ for 5 minutes at $4^{\circ} \mathrm{C}$. The ethanol was removed and the RNA pellet was airdried for 5-10 minutes. RNA was dissolved in DEPC-treated water for immediate use. Alternatively, the RNA pellet was kept under absolute ethanol at $-80^{\circ} \mathrm{C}$ for long storage.

2.4.2.3 Measuring concentrations of extracted total RNA by spectrophotometry

The concentration of total RNA was spectrophotometrically estimated by measuring the optical density at 260 nanometer $\left(\mathrm{OD}_{260}\right)$. An OD_{260} of 1.0 corresponds
to a concentration of $40 \mu \mathrm{~g} / \mathrm{ml}$ single stranded RNA. The purity of RNA samples can be evaluated by a ratio of $\mathrm{OD}_{260} / \mathrm{OD}_{280}$. The ratio of purified RNA was approximately 2.0 (Sambrook, et al., 1989).

2.4.2.4 Bulked Segregant Analysis (BSA)

Two bulked total RNA of male $(N=3)$ and female $(N=3)$. monodon broodstock were generated by pooling an equal amount of total RNA ($0.5 \mu \mathrm{~g}$) from each shrimp. One and a half micrograms of bulked total RNA of each sex was reversed-transcribed using an Improm-II ${ }^{\mathrm{TM}}$ Reverse Transcription System Kit (Promega). One of the five selected arbitrary primers (UBC 119, 299, 428, 456, 457) was used as the synthesizing primers. Bulked total RNA was combined with synthesizing primer ($2.5 \mu \mathrm{M}$ final concentration in a final volume of $20 \mu \mathrm{l}$ of reverse transcription reaction) and appropriates DEPC-treated water in a final volume of $5 \mu \mathrm{l}$. The reaction was incubated at $70^{\circ} \mathrm{C}$ for 5 minutes and immediately placed on ice for 5 minutes. After that, 5 X reaction buffer, MgCl_{2}, dNTP mix and RNasin were added to the final concentrations of $1 \mathrm{X}, 3.125 \mathrm{mM}, 0.5 \mathrm{mM}$ and 20 units, respectively. Finally, $1 \mu \mathrm{l}$ of an Impromp- $\mathrm{II}^{\mathrm{TM}}$ reverse transcriptase was added and gently mixed by pipetting. The reaction mixture was incubated at $25^{\circ} \mathrm{C}$ for 10 minutes and at $42^{\circ} \mathrm{C}$ for 60 minutes. The reaction mixture was then incubated at $70^{\circ} \mathrm{C}$ for 15 minutes to terminate reverse transcriptase activity. Concentration and rough quality of the first stranded cDNA was spectrophotometrically examined $\left(\mathrm{OD}_{260}\right.$ and $\left.\mathrm{OD}_{260} / \mathrm{OD}_{280}\right)$ and electrophoretically analyzed (1.0\% agarose gel).

2.4.2.5 Screening of primers

First strand cDNA representing male and female P. monodon was used as template for PGR. RAP-PCR was carried out (Welsh et al., 1992) in a $25 \mu \mathrm{l}$ reaction mixture containing 1 X PCR buffer (10 mM Tris- HCl ; $\mathrm{pH} 8.8,50 \mathrm{mM} \mathrm{KCl}, 0.1 \%$ Triton X-100), $4 \mathrm{mM} \mathrm{MgCl} 2,100 \mu \mathrm{M}$ of each dATP, dCTP, dTTP and dGTP, $0.5 \mu \mathrm{M}$ of an arbitrary primer (using the synthesizing primer or a new arbitrary primer for a total of 30 primers, Table 2.2), $1 \mu \mathrm{~g}$ of the first strand cDNA and 1 unit of DyNazyme ${ }^{\text {TM }}$ II DNA polymerase (Finnzymes, Finland). PCR was carried out by predenaturing at $94^{\circ} \mathrm{C}$ for 3 minutes followed by 40 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 20 seconds, annealing at $36^{\circ} \mathrm{C}$ for 60 seconds and extension at $72^{\circ} \mathrm{C}$ for 90
seconds. The final extension was carried out at the same temperature for 7 minutes. Five microliters of each amplification products were electrophoretically analyzed through 2.0\% agarose gels and visualized under a UV transilluminator after ethidium bromide staining.
2.4.3 Cloning and sequencing of candidate sex-specific RAPD fragments and sex-specific/differential expression RAP-PCR fragments

RAPD fragments found only in the amplification products of male or female P. monodon and RAP-PCR fragments exhibiting sex-specific or differential expression between ovaries and testes of P. monodon were eluted out from agarose gel using QIAquick Gel Extraction Kit (QIAGEN), reamplified and ligated to $\mathrm{pGEM}^{\circledR}-\mathrm{T}$ easy vector. The ligation product was transformed to E. coli strain JM109 and recombinant clone was identified by colony PCR. Plasmid DNA was extracted by QIAprep ${ }^{\circledR}$ Spin Miniprep Kit (QIAGEN) and unidirectional sequenced using an automated DNA sequencer (ABI310) at the Bioservice unit (BSU), National Center for Genetic Engineering and Biotechnology (BIOTEC). In total. 8 RAPD fragments and 35 sex-specific/differential expression RAP-PCR fragments from ovaries or testes of P. monodon were characterized. DNA sequence of each clone was blasted against data in the GenBank using BlastN and BlastX. Significant similarity was considered when the probability (E) value $<10^{-4}$.

2.4.4 Primer design and PCR

2.4.4.1 RAPD-derived markers

Four primer pairs were designed from sequences of cloned RAPD fragments (Table 2.7) and tested against genomic DNA of each shrimp. PCR was performed in 50μ Preaction volume containing 25 ng template DNA, 1 X PCR buffer (10 mM TrisHCl; pH 8.8, $50 \mathrm{mM} \mathrm{KCl}, 0.1 \%$ Triton X-100), $200 \mu \mathrm{M}$ of each dATP, dCTP, dTTP and dGTP, $2.0 \mathrm{mM} \mathrm{MgCl}_{2}, 0.2 \mu \mathrm{M}$ of each primer and 1 unit of DyNazyme ${ }^{\mathrm{TM}} \mathrm{II}$ DNA polymerase (Finnzymes, Finland). The amplification reaction was carried out by predenaturation at $94^{\circ} \mathrm{C}$ for 3 min followed by 35 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 1 min , annealing at the appropriate temperature for 1 min , and extension at $72^{\circ} \mathrm{C}$ for 1 min. The final extension was performed at $72^{\circ} \mathrm{C}$ for 7 min . Five microliters of the product were analyzed for the amplification success through 1.2% agarose gel
eleectrophoresis. Additionally, the amplification products of RAPD-derived SCAR markers were further analyzed by single-stranded conformation polymorphism (SSCP).

Five microliters of the PCR product of each shrimp were mixed with 4 volumes of the loading dye (95% formamide, 0.25% bromophenol blue, 0.25% xylene cyanol and 10 mM NaOH), denatured at $95^{\circ} \mathrm{C}$ for 5 minutes, immediately cooled on ice for 3 minutes and electrophoretically analyzed through 12.5\% - 17.5\% low crosslink non-denaturing polyacrylamide gels (37.5:1 or 75:1 of acrylamide:bisacrylamide) at $12.5 \mathrm{~V} / \mathrm{cm}$ for 16 hours at $4^{\circ} \mathrm{C}$. SSCP bands were visualized by silver staining.

2.4.4.2 RAP-PCR-derived markers

Twenty-five primer pairs were designed (Table 2.7). Expression patterns of interesting transcripts were investigated using the first strand cDNA of ovaries and testes of both juvenile and broodstock-sized P. monodon by RT-PCR following conditions described by Leelatanawit et al. (2004).

PCR was performed in a $25 \mu \mathrm{l}$ reaction volume containing 300 ng of the first strand cDNA or 25 ng genomic DNA, 1X PCR buffer (10 mM Tris-HCl; pH 8.8, 50 $\mathrm{mM} \mathrm{KCl}, 0.1 \%$ Triton X-100), $200 \mu \mathrm{M}$ of each dATP, dCTP, dTTP and dGTP, 2.0 $\mathrm{mM} \mathrm{MgCl} 2,0.2 \mu \mathrm{M}$ of each primer and 1 unit of DyNazyme ${ }^{\mathrm{TM}}$ II DNA polymerase (Finnzymes, Finland). The reaction mixture was performed in a PCR ThermoHybaid PxE thermal cycler. The amplification cycles were composed of predenaturation at $94^{\circ} \mathrm{C}$ for 3 minutes followed by 30 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 45 seconds, annealing at $53^{\circ} \mathrm{C}$ for 1 minute and extension at $72^{\circ} \mathrm{C}$ for 1 minute. Final extension was performed at $72^{\circ} \mathrm{C}$ for 7 minutes. Five microliters of the amplification reaction were electrophoresed through 1.5\% agarose gel.
β-actin and elongation facter 1 alpha (EF- 1α) were included as the positive control in RT-PCR. They are housekeeping genes exhibiting relatively constant expression levels across various experimental conditions. A 315 bp (β-actin) and 500 bp (EF- 1α) segment were successfully amplified by using heterospecific primers Actin-F: 5’-GGT ATC CTC ACC CTC AAG TA-3' and Actin-R: 5’-AAG AGC

GAA ACC TTC ATA GA-3' and EF-1 α F: 5^{\prime}-ATG GTT GTC AAC TTT GCC CC-3’ and EF-1 α R: $5^{\prime}-$ TTG ACC TCC TTG ATC ACA CC-3'.

Table 2.7 Sequences of primers derived from candidate sex-specific RAPD fragments and sex-specific/differential expression RAP-PCR fragments of P. monodon

Primer	Sequence ($5^{\prime} \rightarrow 3^{\prime}$)	Tm (${ }^{\circ} \mathrm{C}$)
RAPD		
1. 119-sx	F: TGA TAG TCT CGC AGT CCA AAG G	66
	R: CAC CAA TCG TAA CAA GGA AAG TAA C	70
2. OPA01-sx	F: AGC AGT TTC AAA GCA TAA CCC AG	66
	R: TAT ATT GAC TGT AGG CAT CTA T	58
3. 135-sx	F: TTA CTG GTG ATA ATG ATG CCT T	60
	R: AAC GCT AAC AAT GAG AGT GGT C	64
4. OPB20-sx	F: CTT GTT GAA CTC AAT GTC TTT AT	58
	R: TCC ATC GCT CCA TCC TCC TT	62
RAP-PCR		
1. FI-4	F: CAA TAC GGG AAA GAA GAA GCA	60
	R: AGA CAA CCC ATA CTG GAG GAG	64
2. FI-44	F: CCA TTG CCA AGA ATA AGT G	62
	R: GTA ACG CCA AAT CTC AAC CA	58
3. FIII-4	F: GCA ATC TCG CAC AGC CAA TAC T	66
	R: CGG AAA GAC AGG GCA GCA AC	64
4. FIII-39	F: ATC TCG CCA GGA GGA AATAA R: CCT TGT TCA GTT CTT GCC AC	58 60
5. FHI-58	F: CCAA ACC AAG AAA TAA CAG GCA CA R: TCC GAG GGC ACC ACC AAG	72 52
6. MII-5	F: TGT AGA CAA GCG ACT GGA AG	60
	R: GCT TCT GGC TAC CAA TCT TC	60
7. MII-51	F: CCT GAT GAA ATC GGG TCA AAA C	64
	R: ATA CTC TCC TCT GCC GCT CG	64
8. M457-A01	F: CTT CTT ATG TCT GTC CTT TGA TGA	66
	R: TTC TTA GGG AAA CTG CTT GC	58

Table 2.7 (continued)

Table 2.7 (continued)

Primer	Sequence (5' $\mathbf{~}^{\left.\mathbf{3} \mathbf{3}^{\prime}\right)}$	$\mathbf{T m}\left({ }^{\mathbf{0} \mathbf{C})}\right.$
23. FV-42	F: AAG TGA CCT TGA TAT GAG T	56
	R: ATC CCT TCG TTG TAA GTA GA	56
24. MI-36	F: ATG TAT GTT TGT GTA TGT AGG TGT G	68
	R: AGA CGG CAA GGA AAG ATG AG	60
$25.428-O P B 17$	F: CTC TGA CTG GTG GAG GGA AT	62
	R: CTG GCT CGT GGG AGT GTA AT	62

CHAPTER III

RESULTS

3.1 Development of molecular markers for identification of species origin

 of five penaeid species (Penaeus monodon, P. semisulcatus, Feneropenaeus merguiensis, Litopenaeus vannamei and Marsupenaeus japonicus) by PCR-RFLP and SSCP analyses
3.1.1 DNA Extraction

Genomic DNA of each shrimp was extracted from a piece of pleopod using a phenol-chloroform-proteinase K method (Klinbunga et al., 1996). The quality and quantity of extracted DNA was electrophoretically determined using a 0.8% agarose gel (w / v) and spectrophotometrically estimated, respectively. High molecular weight DNA at 23.1 kb was obtained (Figure 3.1). The ratio of $\mathrm{OD}_{260} / \mathrm{OD}_{280}$ of extracted DNA ranged from $1.8-2.0$ indicating that DNA samples were relatively pure. DNA samples showing the ratio much lower then 1.8 was possibly contaminated with residual protein or phenol. In contrast, those with the ratio greater than 2.0 may be contaminated with RNA. Extracted DNA was stored at $4^{\circ} \mathrm{C}$ until needed.

Figure 3.1 A 0.8% ethidium bromide stained agarose gel showing the quality of genomic DNA individually extracted from the pleopod of P. monodon (lanes 5-6), P. semisulcatus (lanes 7-8), F. merguiensis (lanes 9-10), L. vannamei (lane 11) and M. japonicus (lane 12). Lane $\mathrm{M}=\lambda \mathrm{DNA}$ digested with Hind III. Lanes $1-3=50,100$ and 200 ng of undigested λ DNA, respectively.

3.1.2 PCR-RFLP and SSCP analysis

The amplification product of COI-COII and 16 S rDNA $_{560}$ generated from universal primers was approximately 1550 and 560 bp in length (hereafter called COICOII_{1550} and $16 \mathrm{~S}^{\mathrm{rDNA}}{ }_{560}$). This former fragment was successfully amplified in P. monodon and P. semiosulcatus but not in other species whereas the latter was obtained from all five shrimp species. Polymorphism of the COI-COII ${ }_{1550}$ gene segment of P. monodon $(N=29)$ and P. semisulcatus $(N=15)$ was then further examined. In addition, the $16 \mathrm{~S} \mathrm{rDNA}_{560}$ fragment of P. monodon $(N=29), P$. semisulcatus $(N=15), F$. merguiensis $(N=14)$, L. vannamei $(N=14)$ and M. japonicus $(N=7)$ was also analyzed by PCR-RFLP (Figure 3.2).

Figure 3.2 A 1.0\% ethidium bromide stained agarose gel illustrating the amplification products of COI-COII (approximately $1550 \mathrm{bp}, \mathrm{A}$) and 16 S rDNA (approximately $560 \mathrm{bp}, \mathrm{B}$) against genomic DNA of P. monodon (lanes 1 and 2), P. semisulcatus (lane 3 and 4), F. merguiensis (lane 5), L. vannamei (lane 6) and M. japonicus.(lane 7). Lanes $\mathrm{M}=100 \mathrm{bp}$ DNA marker.

The amplified COI-COII ${ }_{1550}$ and 16 rDNA $_{560}$ products were singly digested with 15 restriction endonucleases including Alu I, BamH I, Bgl II, Dra I, Dde I, EcoR I, Hae III, Hind III, Hinf I, Kpn I, Mbo I, Nde I, Sal I, Ssp I and Vsp I. The restricted products were electrophoresed through 1.0% (COI-COII ${ }_{1550}$) and 1.5% (16S rDNA) agarose gels as shown in Figures 3.3-3.4, respectively. Three (Dra I, Ssp I and Vsp I) and four (Alu I, Mbo I, Ssp I and Vsp I) restriction endonucleases yield polymorphic patterns in COI-COII ${ }_{1550}$ and 16 S rDNA $_{560}$ of investigated shrimps, respectively (Table 3.1).

PCR-RFLP analysis of COI-COII ${ }_{1550}$ generated 2, 5 and 4 restriction patterns from Dra I, Ssp I and Vsp I. Shared restriction patterns were not observed. Accordingly, species origin of P. monodon and P. semisulcatus can be simply examined.

Combined restriction patterns generated four mitotypes (ABA, AAA, AEA and AAD) in P. monodon and four mitotypes (BCB, BDB, BDC and BCC) in P. semisulcatus (Table 3.2). These mitotypes was not overlapped between P. monodon and P. semisulcatus. As a result, these two morphologically similar shrimps could simply be differentiated by restriction patterns and mitotypes generated from PCRRFLP of COI-COII ${ }_{1550}$.

Four, four, three and four restriction patterns were generated from digestion of $16 \mathrm{~S} \mathrm{rDNA}_{560}$ of 5 penaeid shrimps with Alu I, Mbo I, Ssp I, Vsp I. Species origins of investigated shrimps cannot be authenticated using restriction patterns of each restriction enzyme,

A total of 11 mitotypes were found from combining restriction patterns of the $16 \mathrm{SrDNA}_{560}$ of each shrimp individual digested with Alu I, Mbo I, Ssp I, Vsp I. Five mitotypes were found in P. monodon (AAAA, ACBA, ADCB, DDBD and DDCD), three mitotypes were found in L. vannamei (CBBC, CBBB and AABC) and only one mitotype found in P. semisulactus (BABB), M. japonicus (BABB) and F. merguiensis (BAAB). Therefore, morphologically similar shrimps for example, between P. monodon and P. semisulcatus and between P. vannamei and P. merguiensis, could
unambiguously differentiate. Nevertheless, shared mitotype (BABB) was found in P. semisulactus and M. japonicus.

Figure 3.3 Restriction analysis of $\mathrm{COI}-\mathrm{COII}_{1550}$ of P. monodon and P. semisulcatus various restriction enzymes.
Panel A: Lanes 2-4 and 8-10=COI of P. monodon, lanes 5-7 and 11-13=COI of P. semisulcatus digested with Bam HI and Dra I, respectively.

Panel B: Lanes 2-4 and 9-11= COI of P. monodon, lanes 5-7 and 12-14= COI of P. semisulcatus digested with Kpn HI and Vsp I, respectively.

Panel C: Lanes 2-4 = COI of P. monodon and lanes 5-7=COI of P. semisulcatus digested with Ssp I.
Lanes M and 1 are 100 bp DNA marker and undigested PCR product, respectively.

完

Figure 3.4 Restriction analysis of $16 \mathrm{~S} \mathrm{rDNA}_{560} ; P$. monodon (lanes 2, panel A and 23, panel C), P. semisulcatus (lanes $3-5$, panel A, $2-3$, panel B and $4-5$, panel C), F. merguiensis (lanes 6-7, panel A, 6-9 and panel B), L. vannamei (lanes $8-9$, panel A and $10-11$, panel B) and M. japonicus (lanes $10-11$, panel A and 12, panel B) with Alu I (panel A), Mbo I (panel B) and Vsp I (panel C). Lanes M and 1 are a 100 bp DNA marker and undigested PCR product, respectively.

Table 3.1 Restriction fragment patterns resulted from digestion of mitochondrial gene segments (COI-COII 1550 and $16 \mathrm{~S}^{\mathrm{rDNA}} \mathrm{F}_{560}$) of P. monodon (PM), P. semisulcatus (PS), F. merguiensis (FM), L. vannamei (LV) and M. japonicus (MJ) with various restriction enzymes

Gene/Enzyme	Pattern observed (bp)		PS	FM	LV	MJ
COI-COII ${ }_{1550}$						
Dra I	A: 1550			ND	ND	ND
	B: 1000,500		+	ND	ND	ND
Ssp I	A: 1550			ND	ND	ND
	B: 1250, 280	+		ND	ND	ND
	C: 800, 600			ND	ND	ND
	D: 800, 500, 100			ND	ND	ND
	E: 960, 580			ND	ND	ND
Vsp I	A: 700, 380, 300			ND	ND	ND
	B: $700,550,350$			ND	ND	ND
	C: 1550		+	ND	ND	ND
	D: 1100,380	+		ND	ND	ND
16 S rDNA 560						
Alu I	A: 560	+		-	+	-
	B: $320,160,80$	-		+	-	+
	C: 320, 240	-		-	+	-
	$\frac{\mathrm{D}: 260,100,70,9}{70}$			ξ	${ }^{-}$	-
	$\begin{aligned} & \text { A:380, } 170 \\ & \text { B: } 380,160 \end{aligned}$				$\stackrel{+}{+}$	+
	C: 280, 170, 110	+	-	-	-	-
	D: 320, 270	+	-	-	-	-
Ssp I	A: 340, 220	+	-	+	-	-
	B: 560	+	+	-	+	+
	C: 470, 70	+	-	-	-	-

Table 3.1 (continued)

Gene/Enzyme	Pattern observed (bp)	PM	PS	FM	LV	MJ
	A: 290,270	+	-	-	-	-
$16 S_{\text {rDNA }}^{560}$						
$V s p$ I	B: 560	+	+	+	+	+
	C: 370,190	-	-	-	+	-
	D: 460,100	+	-	-	-	-

+ = found in a particular species, - = not found, ND = not determined

SSCP which is an effective non-sequencing-based method for detection of sequence variation of in DNA fragments due to single strand conformation were then applied. Results illustrated that shrimps exhibiting a BBAB mitotype was able to be consistently differentiated by this approach (Figure 3.5).

Amplification of the $16 \mathrm{~S}_{\mathrm{rDNA}}^{560}$ was carried out using larger sample sizes of each species. However, amplification of $16 \mathrm{~S}^{\mathrm{rDNA}} \mathrm{F}_{60}$ in L. vannamei and F. merguiensis using the original universal primers was not consistently successful. As a result, more specific and reliable primers need to be developed. The $16 \mathrm{~S} \mathrm{rDNA}_{560}$ of a representative individual exhibiting the most common mitotype of each species; AAAA in P. monodon, BABB in P. semisulcatus, CBBC in L. vannamei, BAAB in F. merguiensis and BABB in M. japonicus, was amplified. The amplification product was gel-eluted, cloned and sequenced for both directions (Figure 3.6). The nucleotide sequences of 5 penaeid shrimps were blasted against data in the GenBank and results from Blast N indicating that they are 16 s rDNA gene segment. G

The actual length of this fragment was 561 bp in P. semisulcatus and 562 bp in other species. After multiple alignment, the conserved and polymorphic regions were observed (Figure 3.7).

Table 3.2 Mitotypes of 5 penaeid shrimps; P. monodon (PM), P. semisulcatus (PS), F. merguiensis (FM), L. vannamei (LV) and M. japonicus (MJ), analysed by PCRRFLP of COI-COII 1550 and 16 rDNA $_{560}$ gene segments

ND = not determined

Sequence divergence (Kimura, 1980) between pairs of 16 S rDNA ${ }_{560}$ was 5.76\% (between P. semisulcatus and F. merguiensis) - 10.23\% (between M. japonicus and L. vannamei). The divergence between taxonomically problematic species was 6.15\% between P. monodon and P. semisulcatus and 9.80% between L. vannamei and F. merguiensis, respectively.

Due to high intraspecific genetic diversity previously reported in P. monodon (Klinbunga et al., 1999 and 2001b) and F. merguiensis (Hualkasin et al., 2003; Wanna et al., 2004), species-specific PCR (presence/ absence of the amplification band) for each species was not directly developed because serious false negative may be occurred when specimens from new geographic samples are analyzed. Alternatively, a pair of primers primed $\left(16 \mathrm{Pmo}_{312}-\mathrm{F} / \mathrm{R}\right)$ at the conserved region of 16 S rDNA providing a 312 bp fragments (hereafter called 16Pmo 3_{312}) was designed.

Restriction analysis of 16 S rDNA 312 with Alu I, Ssp I and Vsp I generated 3, 2 and 3 digestion patterns from Alu I, Ssp I and Vsp I, respectively. The Alu I-16S rDNA_{312} patterns of P. monodon and L. vannamei were A and C whereas the B pattern was found in P. semisulcatus, F. merguiensis and M. japonicus. Moreover, the pattern C was restrictively observed in 16 S rDNA 312 of L. vannamei digested with Vsp I. As a result, species-origin of P. monodon and L. vannamei can be identified by restriction patterns of Alu I and Vsp I (Table 3.3).

When the restriction pattern of each shrimp generated from Alu I, Ssp I and Vsp I was combined, 3, 1, 2, 1, 1 mitotypes were found in P. monodon (AAA, ABA, ABB), P. semisulcatus (BBB), L. vannamei ($\mathrm{CBC}, \mathrm{BBC}$), F. merguiensis (BAB) and M. japonicus (BBB), respectively (Figure 3.9 and Table 3.4).

Non-overlapping mitotypes were observed in P. monodon, L. vannamei and F. merguiensis (Table 3.4). As a result, morphologically similar shrimps; between P. monodon and P. semisulcatus and between L. vannamei and F. merguiensis were successfully differentiated. However, shared mitotype (BBB) was observed in P. semisulcatus and M. japonicus. SSCP analysis was then applied for further diagnosis.

Figure 3.5 SSCP patterns of a 560 bp fragment of $16 \mathrm{~S}_{\text {rDNA }}^{560}$ of P. semisulcatus (lanes 7-14) and M. japonicus (lanes 4-6) that shared a BABB mitotype electrophoresed through a 12.5% non-denaturing polyacrylamide gel (37.5:1 crosslink). Lane M, 1 and 2 are 100 bp DNA marker and the non-denatured PCR products, respectively. The PCR product of P. monodon (lane 3) was included. DS and SS are double-stranded and single-stranded PCR product, respectively.
A.

CGCCTGTTTAACAAAAACATGTCTATATGATIGTTATATAAAGTCTAGCCTGCCCACTGAATTATTTTTAAAGGGC CGCGGTATACTGACCGTGCGAAGGTAGCATAATCATTAGTCTTHTAATTGAAGGCJTGTATGAATGGTTGGACAAA AAGTAATCTGTCTCAGTTATAATAGTTGAACTTAACTTTTAAGTGAAAAGGCTTAAATACTTTAAGGGGACGATAA GACCCTATAAAACTTAACAATAATTTGATTAAATTATAAATTGTTAGTATAACTTGATTJTAATTAATGTTTGTTG CGTTGGGGCGACGGGAATATAATTAGTAACTGTTCTTAAATATTTTATTAACAAGTATAATTGAAGAATAATTGAT CCTTTATTAAAGATTAAAAGATTAAGTTACTTTAGGGATAACAGCGTAATCTTCTTTGAGAGTCCTCATCGACAAG AAGGTTTGCGACCTCGATGTTGAATTAAGGTATCCTTATAATGCAGCAGTTATAAAGGAAGGTCTGTTCGACCTTT AAATCCTTACATGATCTGAGTTCAGACCGG
B.

CGCCTGTTTAACAAAAACATGTCTATATGATTGTTATATAAAGTCTAGCCTGCCCACTGATTGAAATTTAAAGGGC CGCGGTATACTGACCGTGCGAAGGTAGCATAATCATTAGTCTTTTAATTGAAGGCTTGTATGAATGGTTGGACAAA AAGTAAGCTGTCTCAGTTATAATAATTGAATTTAACTTTTAAGTGAAAAGGCTTAAATGGATTAAGGGGACGATAA

GACCCTATAAAGCTTGACAATAAGTTAATTATATTATAAATTGTTAGTATAACTTGATTTTAATTGACGTTTGTTA CGTTGGGGCGACGAGAATATAATGAGTAACTGTTCTTAAATGTTTATTGACAAATATAATTGGTATTTGATTGATC CTTTATTAAAGATTAAAAGATTAAGTTACTTTAGGGATAACAGCGTAATCTTCTTTGAGAGTTCATATCGACAAGA AGGTTTGCGACCTCGATGTTGAATTAAGGTATCCTTATGATGCAGCAGTTATAAAGGAAGGTCTGTTCGACCTTTA AATCCTTACATGATCTGAGTTCAGACCGG
C.

CGCCTGTTTAACAAAAACATGTCTATATGATTGGTATGTAAAGTCTGGCCTGCCCACTGATTTATTTTAAAGGGCC GCGGTATACTGACCGTGCGAAGGTAGCATAATCATTAGTCTCTTAATTGGAGGCTTGTATGAATGGTTGGACAAAA AGCAAACTGTCTCAATTATATTTATTGAATTTAACTTTTAAGTGAAAAGGCTTAAATAAATTAAGGGGACGATAAG ACCCTATAAAGCTTTACAATAAGTTACCTATATTATAAATTGTTAGTATAACTTGAGTTTAGGTAACGTTTGTTGC GTTGGGGCGACGAGAATATAATAAGTAACTGTTCTTAAGTTATTTAATGACAGAAATTTCTGGAAAATTAATGATC CTCTACTAGAGATCATAAGATTAAGTTACTTTAGGGATAACAGCGTAATCTTCTTTGAGAGTCCACATCGACAGGA AGGGTTGCGACCTCGATGTTGAATTAAGGGTTCCTTATAATGCAGCAGTTATAAAGGAGGGTCTGTTCGACCTTTA AATCCTTACATGATCTGAGTTCAGACCGGA

D.

CGCCTGTTTAACAAAAACATGTCTATATGATTGTTATATAAAGTCTAGCCTGCCCACTGATTTAGTTTAAAGGGCC GCGGTATATTGACCGTGCGAAGGTAGCATAATCATTAGTCTTTTAATTGAAGGCTTGTATGAATGGTTGGACAAAA AGTAAGCTGTCTCAATTATAATGATTGAACTTAACTTTTAAGTGAAAAGGCTTAAATAAATTAAGGGGACGATAAG ACCCTATAAAGCTTGACAATAATTTAATTATACTATCAATTGTTAGTATAACTTGGTTTTAATTAAGATTTGTTGC GTTGGGGCGACGAGAATATAATAGGTAACTGTTCTTAAATATTTAATAACAAATATAATTGAAAATTAGTGTGATC CTCTATTAGCGATTAAAAGATTAAGTTACTTTAGGGATAACAGCGTAATCTTCTTTGAGAGTCCCTATCGACAAGA AGGTTTGCGACCTCGATGTTGAATTAAGGTATCCTTATGATGCAGCAGTTATANAGGAAGGTCTGTTCGACCTTTA AATCCTTACATGATCTGAGTTCAGACCGGA

E.

CGCCTGTTTAACAAAAACATGTCTATATGATTGTTATATAAAGTCTAGCCTGCCCACTGATTTGTTTTAAAGGGCC GCGGTATATTGACCGTGCGAAGGTAGCATAATCATTAGTCTTTTAATTGGAGGCTTGTATGAATGGTTGGACAAAA AGTAAGCTGTCTCGATTATAATAATTGAACTTAACTTTTAAGTGAAAAGGCTTAAATGTTTCAGGGGGACGATAAG ACCCTATAAAGCTTGACAATAACTTCGTTATATTATAAATTGTTAGTATAACTTGATTTTAACGGGGGTTTGTTTC GTTGGGGCGACGGGAATATAATAAATAACTGTTCTTTTAAATATAATTACAAAAATGTTTGGTAAATAATTGATCC TCTATTAGAGATTAAAAGATTAAGTTACTTTAGGGGATAACAGCGTAATCTTCTTTGAGAGTCCACATCGACAAGA AGGTTTGCGACCTCGATGTTGAATTAAGGTATCCTTATAATGCAGCAGTTATAAAGGAGGGTCTGTTCGACCTTTA AATCCTTACATGATCTGAGTTCAGACCGGA

Figure 3.6 Nucleotide sequences of $16 \mathrm{~S}^{\mathrm{rDNA}}{ }_{560}$ of P. monodon (A), P. semisulcatus (B), L. vannamei (C), F. merguiensis (D) and M. japonicus (F). Sequences and positions of the forward primer and those complementary to the reverse primer are underlined and boldfaced.
P. semisulcatus
P. monodon
F. merguiensis
M. japonicus
L. vannamei
P. semisulcatus
P. monodon
F. merguiensis
M. japonicus
L. vannamei
P. semisulcatus
P. monodon
F. merguiensis
M. japonicus
L. vannamei
P. semisulcatus
P. monodon
F. merguiensis
M. japonicus
L. vannamei
P. semisulcatus
P. monodon
F. merguiensis
M. japonicus
L. vannamei
P. semisulcatus
P. monodon
F. merguiensis
M. japonicus
L. vannamei

CGCCTGTTTAACAAAAACATGTCTATATGATTGTTATATAAAGTCTAGCCTGCCCACTGA CGCCTGTTTAACAAAAACATGTCTATATGATTGTTATATAAAGTCTAGCCTGCCCACTGA CGCCTGTTTAACAAAAACATGTCTATATGATTGTTATATAAAGTCTAGCCTGCCCACTGA CGCCTGTTTAACAAAAACATGTCTATATGATTGTTATATAAAGTCTAGCCTGCCCACTGA CGCCTGTTTAACAAAAACATGTCTATATGATTGGTATGTAAAGTCTGGCCTGCCCACTGA

TTGAAATTTAAAGGGCCGCGGTATACTGACCGTGCGAAGGTAGCATAATCATTAGTCTTT ATTATTTTTAAAGGGCCGCGGTATACTGACCGTGCGAAGGTAGCATAATCATTAGTCTTT TTTAG-TTTAAAGGGCCGCGGTATATTGACCGTGCGAAGGTAGCATAATCATTAGTCTTT TTTGT-TTTAAAGGGCCGCGGTATATTGACCGTGCGAAGGTAGCATAATCATTAGTCTTT TTTAT-TTTAAAGGGCCGCGGTATACTGACCGTGCGAAGGTAGCATAATCATTAGTCTCT

```
16Pmo 312-F
```

TAATTGAAGGCTTGTATGAATGGTTGGACAAAAAGTAAGCTGTCTCAGTTATAATAATTG TAATTGAAGGCTTGTATGAATGGTTGGACAAAAAGTAATCTGTCTCAGTTATAATAGTTG TAATTGAAGGCTTGTATGAATGGTTGGACAAAAAGTAAGCTGTCTCAATTATAATGATTG TAATTGGAGGCTTGTATGAATGGTTGGACAAAAAGTAAGCTGTCTCGATTATAATAATTG TAATTGGAGGCTTGTATGAATGGTTGGACAAAAAGCAAACTGTCTCAATTATATTTATTG

AATTTAACTTTTAAGTGAAAAGGCTTAAATGGATTAAGGGGACGATAAGACCCTATAAAG AACTTAACTTTTAAGTGAAAAGGCTTAAATACTTTAAGGGGACGATAAGACCCTATAAAA AACTTAACTTTTAAGTGAAAAGGCTTAAATAAATTAAGGGGACGATAAGACCCTATAAAG AACTTAACTTTTAAGTGAAAAGGCTTAAATGTTTCAGGGGGACGATAAGACCCTATAAAG AATTTAACTTTTAAGTGAAAAGGCTTAAATAAATTAAGGGGACGATAAGACCCTATAAAG ** **************************** * * ************************** CTTGACAATAAGTTAATTATATTATAAATTGTTAGTATAACTTGATTTTAATTGACGTTT CTTAACAATAATTTGATTAAATTATAAATTGTTAGTATAACTTGATTTTAATTAATGTTT CTTGACAATAATTTAATTATACTATCAATTGTTAGTATAACTTGGTTTTAATTAAGATTT CTTGACAATAACTTCGTTATATTATAAATTGTTAGTATAACTTGATTTTAACGGGGGTTT CTTTACAATAAGTTACCTATATTATAAATTGTTAGTATAACTTGAGTTTAGGTAACGTTT GTTACGTTGGGGCGACGAGAATATAATGAGTAACTGTTCTTAAATGTTT-ATTGACAAAT GTTGCGTTGGGGCGACGGGAATATAATTAGTAACTGTTCTTAAATATTTTATTAACAAGT GTTGCGTTGGGGCGACGAGAATATAATAGGTAACTGTTCTTAAATATTT-AATAACAAAT GTTTCGTTGGGGCGACGGGAATATAATAAATAACTGTTCTTTTAAATAT-AATTACAAAA GTTGCGTTGGGGCGACGAGAATATAATAAGTAACTGTTCTTAAGTTATTTAATGACAGAA
P. semisulcatus
P. monodon
F. merguiensis
M. japonicus
L. vannamei

ATAATTGGTATTTGAT-TGATCCTTTATTAAAGATTAAAAGATTAAGTTACTTTAGGG-A ATAATTGAAGAATAAT-TGATCCTTTATTAAAGATTAAAAGATTAAGTTACTTTAGGG- \underline{A} ATAATTGAAAATTAGTGTGATCCTCTATTAGCGATTAAAAGATTAAGTTACTTTAGGG-A ATGTTTGGTAAATAAT-TGATCCTCTATTAGAGATTAAAAGATTAAGTTACTTTAGGGGA ATTTCTGGAAAATTAA-TGATCCTCTACTAGAGATCATAAGATTAAGTTACTTTAGGG-A

16Pmo ${ }_{312}$ - R
TAACAGCGTAATCTTCTTTGAGAGTTCATATCGACAAGAAGGTTTGCGACCTCGATGTTG TAACAGCGTAATCTTCTTTGAGAGTCCTCATCGACAAGAAGGTTTGCGACCTCGATGTTG TAACAGCGTAATCTTCTTTGAGAGTCCCTATCGACAAGAAGGTTTGCGACCTCGATGTTG TAACAGCGTAATCTTCTTTGAGAGTCCACATCGACAAGAAGGTTTGCGACCTCGATGTTG TAACAGCGTAATCTTCTTTGAGAGTCCACATCGACAGGAAGGGTTGCGACCTCGATGTTG

AATTAAGGTATCCTTATGATGCAGCAGTTATAAAGGAAGGTCTGTTCGACCTTTAAATCC AATTAAGGTATCCTTATAATGCAGCAGTTATAAAGGAAGGTCTGTTCGACCTTTAAATCC AATTAAGGTATCCTTATGATGCAGCAGTTATANAGGAAGGTCTGTTCGACCTTTAAATCC AATTAAGGTATCCTTATAATGCAGCAGTTATAAAGGAGGGTCTGTTCGACCTTTAAATCC AATTAAGGGTTCCTTATAATGCAGCAGTTATAAAGGAGGGTCTGTTCGACCTTTAAATCC

TTACATGATCTGAGTTCAGACCGG -
TTACATGATCTGAGTTCAGACCGG-
TTACATGATCTGAGTTCAGACCGGA
TTACATGATCTGAGTTCAGACCGGA

Figure 3.7 Multiple alignments of $16 \mathrm{~S}_{\mathrm{rDNA}}^{560}$ sequences of P. monodon, P. semisulcatus, F. merguiensis, L. vannamei and M. japonicus. Asterisks indicated identical bases among different sequences. A new pair of forward and reverse primers generating the expected 312 bp product was designed. Sequences and positions of the forward primer and those complementary to the reverse primer are underlined and boldfaced.

Figure 3.8 A 1.2% ethidium bromide stained agarose gel illustrating the amplification products of 16 rDNA gene segment (312 bp in length) using genomic DNA of P. monodon (lanes $1-4$), P. semisulcatus (lanes $5-6$), F. merguiensis (lanes $7-8$), L. vannamei (lanes $9-10$) and M. japonicus.(lanes 11 - 12) using newly designed primers; $16 \mathrm{SPmo}_{312}-\mathrm{F} / \mathrm{R}$. The PCR products were electrophoretically analyzed through a 1.2% agarose gel. Lane $\mathrm{M}=100 \mathrm{bp}$ DNA markers.

Figure 3.9 Restriction analysis of $16 \mathrm{~S}^{\mathrm{rDNA}} 312$ of P. monodon (lanes $2-4$), P. semisulcatus (lanes $5-7$), F. merguiensis (lanes $8-9$), L. vannamei (lanes $10-11$) and M. japonicus (lanes $12-13$) with Alu I (panel A), Ssp I (panel B) and Vsp I (panel C). Lanes M and 1 are 100 bp DNA marker and the undigested PCR product, respectively.

Table 3.3 Restriction fragment patterns resulted from digestion of 16 S rDNA 312 gene segments of P. monodon (PM), P. semisulcatus (PS), F. merguiensis (FM), L. vannamei (LV) and M. japonicus (MJ) with Alu I, Ssp I and Vsp I

Table 3.4 Mitotype frequencies from restriction analysis of the $16 \mathrm{~S} \mathrm{rDNA}_{312}$ gene segments of 5 penaeid shrimps

Species-specific SSCP patterns were verified against the same sample set of each shrimp species $(N=185)$ analyzed by PCR-RFLP of $16 S$ rDNA $_{312}$. Nonoverlapping SSCP patterns were found indicating successful development of speciesdiagnostic markers across all taxa (Figure 3.10 and Table 3.5). Therefore, reliable methods for identifying species origins of morphological similar shrimps were successfully developed based on PCR-RFLP and SSCP analysis of 16 S rDNA ${ }_{312}$.

จฬาลงกรณ์มหาวิทยาลัย

Figure 3.10 SSCP patterns of a 312 bp fragment generated from $16 \mathrm{~S} \mathrm{rDNA}_{312}-\mathrm{F} / \mathrm{R}$ using genomic DNA of P. monodon (lanes 2-6 and 9), P. semisulcatus (lanes $7-8$), L. vannamei (lanes $10-12$), F. merguiensis (lanes $13-15$) and M. japonicus (lanes $16-18$) and electrophoresed through a 15% non-denaturing polyacrylamide gel (37.5:1 crosslink). Lanes M and 1 are 100 bp DNA marker and the non-denatured PCR products, respectively. DS and SS are double and single strand PCR products.

Table 3.5 SSCP patterns of the $16 \mathrm{~S} \mathrm{rDNA}_{312}$ gene segment of P. monodon, P. semisulcatus, F. merguiensis, L. vannamei and M. japonicus)

Mitotype/SSCP patterns	Frequency				
	PM	PS	FM	LV	MJ
AAA					
9/15	0.383	-	-	-	-
10/15	0.086		-	-	-
4/14	0.037		-	-	-
9/14	0.012			-	-
10/14	0.012			-	-
10/17	0.012			-	-
ABA					
11/16	0.395			-	-
10/16	0.025			-	-
13/17	0.025			-	-
10/15	0.012			-	-
ABB					
13/17	0.037	-	-	-	-
11/16	0.025	\%	-	-	-
BBB					
3/18		1.000		-	-
7/17	-			-	1.000
CBC ©					
$\begin{aligned} & 2 / 12 \\ & 1 / 12 \end{aligned}$	19		f^{-} $\stackrel{\sim}{-}^{-}$	$\begin{aligned} & 0.933 \\ & 0.033 \end{aligned}$	-
BBC 2/12					
BAB					
5/8	-	-	0.445	-	-
4/6	-	-	0.421	-	-
5/9	-	-	0.053	-	-
5/11	-	-	0.053	-	-
6/8	-	-	0.026	-	-

3.1.3 Application of developed species-diagnostic markers for species identification of suspected shrimps and frozen shrimp meat

Authentication of the correct seed species for the industry is essential for successful aquaculture of economically important species because wrong seed species may be intentionally supplied.

Two groups of cultured juvenile shrimps were sent to the Center of Excellence of Marine Biotechnology for identification of species. Farmer was told when purchased the larvae that the Group 1 sample was F. merguiensis from Indonesia and the Group 2 sample was hybrid offspring between P. monodon (sire) and M. japonicus (dam).

The amplification product of $16 \mathrm{~S} \mathrm{rDNA}_{312}$ of Group 2 larvae was digested with Alu I and Ssp I and compared to restriction patterns of P. monodon, F. merguiensis and M. japonicus. Restriction patterns of specimens from both groups were identical to that of F. merguiensis indicated that larvae of both groups were F. merguiensis (BAB mitotype, Figure 3.11). SSCP analysis of the amplified 16S rDNA_{312} further confirmed results from PCR-RFLP analysis (Figure 3.12).

In the other case, the frozen shrimp meat was introduced to Thailand from Vietnam and claimed as the product of the white shrimp (P. orientalis) and the pink shrimp (Metapenaeus affinis) from fisheries.

Results from PCR-RFLP analysis of $16 \mathrm{~S} \mathrm{TDNA}_{312}$ revealed that the suspected P. orientalis exhibited a BAB mitotype restrictively found in F. merguiensis whereas the suspected M. affinis showed a DBB mitotype which were not found in Penaeus shrimps previously examined (Figure 3.13).

Figure 3.11 Restriction patterns of $16 \mathrm{~S} \mathrm{rDNA}_{312}$ digested with Alu I (panel A) and Ssp I (panel B) of suspected cultured shrimps. Lanes M and 1-2 are 100 bp DNA marker and undigested PCR product group 1, group 2, respectively. Lanes 3-4 = P. monodon; lane $5=F$. merguiensis; lanes $6=M$. japonicus, lanes $7-11=F$. merguiensis offspring group 1 and lanes 12-16 = offspring group 2 claimed as hybrids between P. monodon (sire) and M. japonicus (dam).

SSCP analysis further confirmed that suspected P. orientalis was actually F. merguiensis (Figure 3.14). In addition, suspected M. affinis exhibited clearly different SSCP patterns with that of P. semisulcatus, L. vannamei, F. merguiensis and M. japonicus. Its polymorphic SSCP patterns were similar, but not identical, to that of P. monodon exhibiting an AAA mitotype. Based on large interspecific sequence divergence of $16 \mathrm{~S}^{\mathrm{rDNA}}{ }_{560}$ found in the present study (5.76-10.23\%), it could be concluded that suspected M. affinis should be a member of Penaeus rather than Metapenaeus.

Figure 3.12 SSCP patterns of $16 \mathrm{~S} \mathrm{TDNA}_{312}$ of suspected cultured shrimp. Lanes M and 1 are 100 bp DNA marker and non-denatured PCR product, respectively. Lanes 2 - $5=16 \mathrm{~S}_{\mathrm{rDNA}}^{312}$ of P. monodon, M. japonicus, L. vannamei and F. merguiensis. Lanes 6-10 $=16 \mathrm{~S} \mathrm{rDNA}_{312}$ of F. merguiensis offspring group 1 and lanes $11-15=$ $16 \mathrm{~S} \mathrm{rDNA}_{312}$ of offspring group 2 which was claimed as hybrids between P. monodon (sire) and M. japonicus (dam).

Figure 3.13 Restriction patterns of 16 S rDNA 312 digested with Alu I (panel A), Ssp I (panel B) and Vsp I (panel C) of introduced frozen shrimps meat. Lanes M and 1 are 100 bp DNA marker and undigested PCR product, respectively. Lanes 2 - 6 = suspected white shrimps (P. orientaris) and lanes 7-11 = suspected pink shrimps (Metapenaeus affinis)

จฬาลงกรณ์มหาวิทยาลัย

Figure 3.14 SSCP patterns of suspected frozen shrimp meat (claimed as P. orientalis, lanes 7-11 and Metapenaeus affinis, lanes 12-16. SSCP patterns of P. monodon (lane 2), P. semisulcatus (lane 3), L. vannamei (lane 4), F. merguiensis (lane 5) and M. japonicus (lane 6) were also included. Lanes M and 1 are a 100 bp DNA ladder and non-denatured 16 S rDNA ${ }_{312}$, respectively.

3.2 Genetic diversity and genotyping of P. monodon in Thai waters

3.2.1 Determination of 16 S rDNA $_{312}$ polymorphism by PCR-RFLP and PCR-SSCP

Apart from the required information on genetic diversity and population subdivisions of P. monodon in Thai waters, the other major goal of genetic diversity studies in this thesis is identification of suitable molecular genetic markers that can be applied for rapid genotying of P. monodon. The developed markers will be used in combination with microsatellites for determination of genetic diversity levels of domesticated P. monodon. The rapid and simple genotying of P. monodon allow practical applications of polymorphic markers for management of both natural and domesticated broodstock of P. monodon.

The amplified $16 \mathrm{~S}^{\mathrm{rDNA}}{ }_{312}$ of 86 individuals was initially analyzed by PCRRFLP with 3 restriction endonucleases (Alu I, Ssp I and Vsp I). Only 3 mitotypes (AAA, ABA and ABB, Table 3.6) were observed. These PCR-RFLP mitotypes were distributed at approximately equal frequencies across different geographic samples. Geographic heterogeneity analysis using the exact test indicated that frequencies of PCR-RFLP mitotypes between pairs of geographic samples were not significantly different ($\mathrm{P}>0.05$, Table 3.7).

Table 3.6 Distribution of $16 \mathrm{SrDNA}_{312}$ mitotypes across six geographic samples of P. monodon in Thai waters

Table 3.7 Genetic heterogeneity analysis between pairs of geographic samples of P. monodon based on restriction analysis of $16 \mathrm{~S} \mathrm{rDNA}_{312}$ with 3 restriction endonucleases analyzed by a Monte Carlo simulation

	Trat	Chumphon	Satun	Trang	Phangnga	Ranong
Trat	-					
Chumphon	0.4495^{ns}	-				
Satun	0.8428^{ns}	0.7001^{ns}	-			
Trang	0.8519^{ns}	1.0000^{ns}	$0.8428^{\text {ns }}$	-		
Phangnga	0.7229^{ns}	$1.0000^{\text {ns }}$	$0.4478^{\text {ns }}$	1.0000^{ns}	-	
Ranong	0.5434^{ns}	0.1135^{ns}	0.1758^{ns}	0.4542^{ns}	0.1950^{ns}	-

จุฬาลงกรณ์มหาวิทยาลัย

Figure 3.15 SSCP patterns of $16 \mathrm{~S} \mathrm{rDNA}_{312}$ of P. monodon originating from Trang (lanes 2 and 13-15), Satun (lanes 3 and 10-12), Trat (lanes 4-6), Chumphon (lanes 79) and Phangnga (lanes 16-18). Lanes M and 1 are a 100 bp DNA marker and nondenatured $16 \mathrm{~S} \mathrm{rDNA}_{312}$, respectively. DS and SS are double-stranded and singlestranded PCR product, respectively.

Table 3.8 SSCP patterns resulted from analysis of 16 S rDNA ${ }_{312}$ of P. monodon originating from different geographic samples in Thai waters

PCR-RFLP of 16 S rDNA 312 generated only 3 mitotypes implying low polymorphism in this gene region. One of the possible approach to resolve such a problem is the use of a more sensitive technique for detection of genetic diversity studies or alternatively the use of other DNA segments exhibiting higher levels of polymorphism.

PCR-SSCP (15\% polyacrylamide gel with crosslink 37.5:1 and electrophoresed at 200 V for 20 hrs .) was then applied to analyze polymorphism of the same fragment of 185 individuals.

A total of 17 SSCP patterns were found (Figure 3.15 and Table 3.8). The average number of individuals per SSCP pattern was 10.88. Nine, ten, seven, eight, seven and eight fragments (treated as loci due to the dominant segregation patterns of this data set) were found in Trat, Chumphon, Satun, Trang, Phanganga and Ranong. The gene diversity was comparatively low in all geographic samples (0.0946 0.0996).

Genetic distance between pairs of geographic sample was limited (Table 3.9). The lowest genetic distance was found between P. monodon from Trang and Phangnga (0.0001) whereas the greatest distance was observed between Ranong and Trang samples (0.0100).

Genetic heterogeneity analysis based on the exact test did not reveal significant differentiation between pairs of investigated samples (Table 3.10). This indicated the lack of intraspecific genetic differentiation of P. monodon analyzed by polymorphism of $16 \mathrm{~S} \mathrm{rDNA}_{312}$. Results also indicated that levels of $16 \mathrm{~S} \mathrm{rDNA}_{312}$ polymorphism were not high enough to detect genetic differentiation in this species.
จุฬาลงกรณ์มหาวิทยาลัย

Table 3.9 Pairwise genetic distance between geographic samples of P. monodon based on PCR-SSCP of 16 S rDNA 312

	Trat	Chumphon	Satun	Trang	Phangnga	Ranong
Trat	-					
Chumphon	0.0005	-				
Satun	0.0003	0.0006	-			
Trang	0.0007	0.0014	0.0008	-		
Phangnga	0.0006	0.0014	0.0007	0.0001	-	
Ranong	0.0062	0.0048	0.0059	0.0100	0.0099	-

Table 3.10 Pairwise geographic heterogeneity analysis between P. monodon samples based on PCR-SSCP of 16 S rDNA 312

	Trat	Chumphon	Satun	Trang	Phangnga	Ranong
Trat	-	UKEke	30			
Chumphon	$\mathrm{P}=1.0000^{\text {ns }}$	-				
Satun	$\mathrm{P}=1.0000^{\mathrm{ns}}$	$\mathrm{P}=0.9992^{\text {ns }}$	-			
Trang	$\mathrm{P}=1.0000^{\text {ns }}$	$\mathrm{P}=1.0000^{\text {ns }}$	$\mathrm{P}=0.9996{ }^{\text {ns }}$			
Phangnga	$\mathrm{P}=1.0000{ }^{\text {ns }}$	$\mathrm{P}=1.0000^{\text {ns }}$	$\mathrm{P}=1.0000^{\text {ns }}$	$\mathrm{P}=1.0000^{\text {ns }}$	-	
Ranong	$\mathrm{P}=0.9862^{\text {ns }}$	$\mathrm{P}=0.9986^{\mathrm{ns}}$	$\mathrm{P}=0.9914^{\mathrm{ns}}$	$\mathrm{P}=0.8140^{\mathrm{ns}}$	$\mathrm{P}=0.8473{ }^{\text {ns }}$	-

3.2.2 Development of SCAR markers from polymorphic AFLP fragments and application for population genetic studies

A total of 320 (256 of EcoR $\mathrm{I}_{\text {ANN }} /$ Mse $\mathrm{I}_{\text {CNN }}$ and 64 of Pst $\mathrm{I}_{+\mathrm{GNN}} /$ Mse $\mathrm{I}_{+\mathrm{CNN}}$) primer combinations were screened against pooled genomic DNA of P. monodon originating from Satun, Trang, Phangnga, Chumphon and Trat (Figure 3.16). Fourteen fragments found in only one geographic sample but not others were cloned and sequenced (Appendix C). A pair of primers was designed and applied for detection of population specificity.

Figure 3.16 AFLP patterns generated from primers P2M5 (lanes 1-5), P2M6 (lanes 6-10), P2M7 (lanes 11-15) and P2M8 (lanes 16-20) using pooled genomic DNA of P. monodon from Trat (lanes 1, 6, 11 and 16), Chumphon (lanes 2, 7, 12 and 17), Satun (lanes 3, 8, 13 and 18), Trang (lanes 4, 9, 14 and 19) and Phangnga (lanes 5, 10, 15 and 20).

Almost all of the primers generated the expected amplification product (Table 3.11). Nevertheless, results indicated that SCAR markers developed from candidate AFLP fragments were not population-specific (Table 3.11 and Figure 3.17 - 3.20).

Four SCAR markers origination from E4M6-295, E7M10-450, P6M2-370, and P6M6-470 were selected for further analysis of genetic diversity of P. monodon and tested across 112, 105, 134 and 136 individuals, respectively. Eighty-one individuals were successfully genotyped by all primers.

GATGAGTCCTGAGTAACTCTAGTGAATCATTTCCTGAAACTTCCCCTCCTATGCTAA CGCTACTTACACCACTTTGTCGCACCAACTGTTGTAATTTTGCTATTCTAAGATGTT GCAATCGTCCAAGTTCTTCCGTCATGCGTTTCTTTTCTCTCATAAGCTCATGGATTT CTTGGTCAACATTTTCCAAGTGCCGTAAGAATTCTGTTTCTTGCTCACTGAACACCA TCATTTGTTGTAGTGCTACTCCTGCATTGTGGCTGAACTCAAATTCACTGAGTGAAT TGGTACGCAGTCA

Figure 3.17 Nucleotide sequences of E4M6-295. Sequences and positions of the forward primer and those complementary to the reverse primer are underlined and boldfaced.

GATGAGTCCTGAGTAACGTGTGAATGGGTATGCAAGAAATTCATTCATAATGGACAA GGTTCTCGAAGAAACGCGCGGCTGTTACAATGCTGTCGTGGAAAGGTACTTTTCAAA СТTTACTCTACACTCACCATTCATGGAGATGCTATTGCTTACAGCGTCAGGTAAGTG TACGCTAAATGTAATGAGGCAAAGAGTAATTCTTTGTTTTGCTATCGCGCACACACA CACTTACAAAAAAAGTGATGTATTATTATGATGCATCCTTTGCATCTTAGACTTCCA TACCTTTTTCAAAAATTCCTTTCCAAACATTTCTTTAAATTTCCATTTTCAGGCGAT ATCGCCTTCGGAGCTGAATTCTGAGATAAGATGAACGCAACCATGGTTGACTTCAAA AAGTTTCCTGATTTCCCCTGGATATTCTACGGCGTTGCTGAATTGGTACGCAGTC

Figure 3.18 Nucleotide sequences of E7M10-450. Sequences and positions of the forward primer and those complementary to the reverse primer are underlined and boldfaced.

GACTGCGTACATGCAGACTCCCCAGCTCGAGCGGACGATTCGGAACGGTTTCGAAGC GGTGAAAGTAAGTCAAATGTCTTTATTTCCATATCGAGACCATTTCTGTTTTCCATT CTTTGATATTTTCTTTTAAGTCGTTAGTGTAGCGTATGCGTTCTCTGATATATAAAT ATTTGTATTCTTAAATGTATTTGCGAATATACTACGGTTAAACACCGGTCTATCTTC TTTCCCTCCACTCTGCCTGAAATGTTATTCACTTAGGAATATTTTTTAAATAATTTC ATTACAGCGTTAACGCTTTCTTGATACATATAAAATTCATACAAAAATAAGATGCTA atatagtgitactcaggactcatca

Figure 3.19 Nucleotide sequences of P6M2-370. Sequences and positions of the forward primer and those complementary to the reverse primer are underlined and boldfaced.

GATGAGTCCTGAGTAACTCTACCAGTCATAAATAGTGATTCTCCATCTGCCTCGAGA ATGTTGAAGTGAAAATGCTTTTACATTCTGTACAACTCAGGATTTCATGGTCAAGTT ACATTCTGGCTGCCACGAGGCACGAAGTAGCAAAATGCTCAGACTCCCGCCTAATCC ATGAATGTATTACTGTCTTCCACATCCGCAAAGAATTGGTCAACAGAGACGCTAGAG CCCGAGAACTTTGACGCTACATTGTACATCGTGGGAACCATGCAGGCACCCATGCTT GATGCAGCCGTAACAAGGGTGAGGGCAGAGGAGGGGAGTGGAGTAGGAGAGAGAATG GTTTCGGTTTGTGTGGCGAGAAAAAGATGGAGACTGATTCAGAAATAGATTGTGAAG AAGATGAGTGAGAAATAAGAGAAGTCAGTCCTTAGGGGAGAAAGTTAGCGAAGTCTG CATGTACGCAGTCA

Figure 3.20 Nucleotide sequences P6M6-470. Sequences and positions of the forward primer and those complementary to the reverse primer are underlined and boldfaced.

Figure 3.21 Agarose gel elctrophoresis illustrating the amplification product of E4M6-295 (161 bp) of P. monodon from Trat (lanes 1-3), Chumphon (lanes 4-6), Satun (lanes $7-9$), Trang (lanes 10-12) and Phangnga (lanes 13-15). Lanes M and 16 are 100 bp DNA marker and negative control (no DNA template).

จุฬาลงกรณ์มหาวิทยาลัย

Figure 3.22 Agarose gel elctrophoresis illustrating the amplification product of E7M10-450 (306 bp) of P. monodon from Trat (lanes 1-3), Chumphon (lanes 4-5), Satun (lanes 6-8), Trang (lanes 9-11) and Phangnga (lanes 12-14). Lanes M and 15 are 100 bp DNA marker and negative control (no DNA template).

Figure 3.23 Agarose gel elctrophoresis illustrating the amplification product of P6M2-370 (192 bp) of P. monodon from Trat (lanes 1-2), Chumphon (lanes 3-4), Satun (lanes 5-6), Trang (lanes 7-8) and Phangnga (lanes 9-10). Lanes M and 11 are 100 bp DNA marker and negative control (no DNA template).

Figure 3.24 Agarose gel elctrophoresis illustrating the amplification product of P6M6-470 (300 bp) of P. monodon from Trat (lane 1), Chumphon (lane 2), Satun (lanes 3-4), Trang (lanes 5-6) and Phangnga (lanes 7-8). Lanes M and 9 are 100 bp DNA marker and negative control (no DNA template).

Table 3.11 Amplification results of SCAR markers derived from polymorphic AFLP fragments

Primer	Expected size (bp)	Amplification results	SSCP
1. E4M6-295	161	+	Polymorphism
2. E8M7	258	+	Polymorphism
3. E6M9-318	148	-	ND
4. E7M10-450	306		Polymorphism
5. P2M5-295	160		Polymorphism
6. P2M6-270	156	-	ND
7. P2M7-280	217		ND
8. P2M7-310	9		Polymorphism
9. P6M2-370	192		Polymorphism
10. P6M6-470	300		Polymorphism
11. P2M6-850	319		ND
12. P2M6-465	238		Polymorphism
13. P2M8-300	204	+	Polymorphism
14. P2M6-385	250		Polymorphism
- = no amplification product, $\mathrm{ND}=$ not determined.			

Genetic diversity of each P. monodon sample was relatively low. The average gene diversity of each geographic samples was 0.1452 (Trat) - 0.1742 (Trang). The number of polymorphic loci was $31,40,38,43$ and 47 accounting to the percentage of polymorphic loci of $53.54 \%, 68.97 \%, 65.52 \%, 74.14 \%$ and 81.03% for P. monodon from Trat, Chumphon, Satun, Trang and Phangnga, respectively (Table 3.12).

Genetic distance between pairs of geographic samples analyzed by SSCP of SCAR markers was low. The lowest genetic distance was observed between Chumphon and Trang (0.0064). The greatest genetic distance was found between Trat and Phangnga (Tables 3.13).

Genetic heterogeneity analysis indicated a lack of intraspecific population subdivisions in these P. monodon when analyzed by low polymorphic AFLP derived markers (Table 3.14).

Figure 3.25 Polymorphic SSCP patterns generated from primers P6M6-470 analyzed against genomic DNA of P. monodon from Satun (lanes 2-4), Phangnga (lanes 5-7), Trang (lanes 8-10), Chumphon (lanes 11-13) and Trat (lanes 14-16). Lanes M are 100 bp ladder.

Figure 3.26 Polymorphic SSCP patterns generated from primers E4M6-295 analyzed against genomic DNA of P. monodon from Trat (lanes 2-4), Chumphon (lanes 5-7), Satun (lanes 8-10), Trang (lanes 11-13) and Phangnga (lanes 14-16). Lanes M are 100 bp ladder.

Figure 3.27 Polymorphic SSCP patterns generated from primers E7M10-450 analyzed against genomic DNA of P. monodon from Trat (lanes 2-4), Chumphon (lanes 5-8), Satun (lanes 9-12), Trang (lanes 13-15) and Phangnga (lanes 16-18). Lanes M are 100 bp ladder.

Figure 3.28 Polymorphic SSCP patterns generated from primers P6M2-370 analyzed against genomic DNA of P. monodon from Trat (lanes 4-6), Chumphon (lanes 2, 7-9), Satun (lanes 10-12), Trang (lanes 13-15) and Phangnga (lanes 3, 16-18). Lanes M are 100 bp ladder.

Table 3.12 A summary of gene di versity index (Nei, 1973) of all AFLP-derived loci in each geographic sample and overall samples

Table 3.12 (continued)

Table 3.12 (continued)

Table 3.12 (continued)

Locus	Trat $(N=9)$	Chumphon $(N=20)$	Satun $(N=13)$	Trang $(N=14)$	Phangnga $(N=25)$	Overall samples $(N=81)$
SSCP52	0.2997	0.4142	0.2157	0.2617	0.3767	0.3397
SSCP53	0.4984	0.3832	0.4357	0.4809	0.4022	0.4419
SSCP54	0.0000	0.0494	0.0000	0.1374	0.0783	0.0613
SSCP55	0.3796	0.4142	0.3907	0.3690	0.3767	0.3878
SSCP56	0.0000	0.0494	0.0000	0.0000	0.0000	0.0124
SSCP57	0.0000	0.0000	0.0000	0.0000	0.0396	0.0124
SSCP58	0.0000	0.0000	0.0000	0.0701	0.0000	0.0125
Averagegene cliversity	0.1452	0.1677	0.1616	0.1742	0.1723	0.1729
No. of polymorphic lod	31	40	38	43	47	100
Percentage of polymorphic loa	53.45	68.97		74.14	81.03	100

Table 3.13 Pairwise genetic distance between geographic samples of P. monodon based on PCR-SSCP of four AFLP-derived markers

	Trat	Chumphon	Satun	Trang	Phangnga
Trat	-				
Chumphon	0.0118	-			
Satun	0.0156	0.0110	-		
Trang	0.0148	0.0064	0.0080	-	
Phangnga	0.0160	0.0066	0.0088	0.0067	

Table 3.14 Pairwise geographic heterogeneity analysis between P. monodon from different geographic samples based on PCR-SSCP of four AFLP-derived markers

	Trat	Chumphon	Satun	Trang	Phangnga
Trat	-				
Chumphon	$\mathrm{P}=1.0000^{\mathrm{ns}}$				
Satun	$\mathrm{P}=1.0000^{\mathrm{ns}}$	$\mathrm{P}=0.9962^{\mathrm{ns}}$			
Trang	$\mathrm{P}=1.0000^{\mathrm{ns}}$	$\mathrm{P}=1.0000^{\mathrm{ns}}$	$\mathrm{P}=1.0000^{\mathrm{ns}}$	-	
Phangnga	$\mathrm{P}=1.0000^{\mathrm{ns}}$	$\mathrm{P}=0.9979^{\mathrm{ns}}$	$\mathrm{P}=0.9981^{\mathrm{ns}}$	$\mathrm{P}=1.0000^{\mathrm{ns}}$	-

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

3.2.3 Determination of COI_{614}, polymorphism in P. monodon by DNA sequencing

The COI-COII segment (1550 bp) of representative P. monodon originating from Chumphon, Satun, Trang and Trad was amplified using universal primers COI-COII-F/R. The amplification product was direct sequenced one only one direction. Nucleotide sequences obtained was blasted against data in the GenBank to verify whether they were part of COI or COII gene segment.

Sequences of individuals from Chumphon, Satun, Trang were significantly matched the COI gene segment whereas those of the Trad sample were regarded as the COII fragment. Multiple sequence alignment of the COI gene segment of those individuals resulted in 790 characters and high intraspecific sequence divergence was observed (Figure 3.29). Conversely, the COII segment of the Trad individual showed low polymorphism when aligned with the sequence of P. monodon COII retrieved from the GenBank (Figure 3.30).

Two primers pairs $\left(\mathrm{T}_{13} \mathrm{COI}_{\mathrm{F} 2}\right.$, and $\mathrm{T} 13 \mathrm{COI}_{\mathrm{R} 2}$ for COI and $\mathrm{T} 13 \mathrm{COI}_{\mathrm{F} 3}$ and $\mathrm{T}_{13 \mathrm{COI}_{\mathrm{R}} \text { for COII, Table 3.15) were designed from nucleotide sequence of a }}$ specimen from Trang. These primers were used in combination of Universal COI-COII-F and Universal COI-COII-R. The discrete 614 bp (from Universal COI-COII-
 amplified (Figure 3.31 and 3.32). The former product was chosen for direct sequencing analysis due to its longer fragment length which provides more

The COI_{614} gene segment amplified from 100 individuals; $\operatorname{Trat}(N=20)$, Chumphon $(N=20)$, Satun $(N=19)$, Trang $(N=21)$ and Phangnga $(N=20)$ were analyzed. After multiple alignment, high genetic polymorphism was observed and 43 haplotypes were identified (Figure 3.33). Therefore, nucleotide sequences of an individual representing each haplotype were reanalyzed and multiple aligned (Figure 3.34). Polymorphic sites of COI_{614} of P. monodon can be used as DNA barcodes (string of sequences) for effective genotyping of this economically important species (Appendix D).

C20-M13F-trim.txt S3-M13F-trim.txt T13-M13F-trim.txt

1:TTGATTTTTTGGTCATCCAGAAGTATATATTTTAATT-TTACCTGGCTTTTGGTACAATT 59 1:TTGATTTTTTGGTCATCCAGAAGTATATATTTTAATTCTT-CCT-GCCTTTGGGATAATC 58 1:TTGATTTTTTGGTCATCCAGAAGTATATATTTTAATTCTT-CCT-GCATTTGGAATAATT 58

C20-M13F-trim.txt 60:TCCCATATTATTAGTCAAGAATCTGGTAAAAAAGAAGCATTCGGAACAC-TCGGGATAAT 118 S3-M13F-trim.txt 59:TCACATATTATTAGTCAAGAGTCTGGTAAAAAAGAAGCTTTTGGAACA-TTAGGAATAAT 117 T13-M13F-trim.txt 59:TCACACATTATTAGTCAAGAATCTGGTAAAAAAGAAGCGTTCGGAACACTT-GGAATAAT 117

C20-M13F-trim.txt 119:CTATGCTATACTTGCTATTGGTGTCCTAGGATTCGTAGTATGAGCACACCATATATTTAC 178 S3-M13F-trim.txt 118:CTATGCTATACTAGCCATTGGTGTTCTAGGATTTGTAGTATGAGCTCATCATATATTTAC 177 T13-M13F-trim.txt 118:TTATGCTATACTAGCTATTGGTGTTCTAGGATTTGTGGTATGAGCTCATCATATATTTAC 177

C20-M13F-trim.txt 179:AGTAGGTATGGATGTTGATACTCATGCTTATTTTACATCTGCAACAATGATTATTGCCGT 238 S3-M13F-trim.txt 178:TGTAGGTATAGACGTTGATACTCGTGCTTACTTTACATCTGCTACGATAATTATTGCTGT 237 T13-M13F-trim.txt 178:TGTAGGGATAGATGTTGATACTCGTGCTTACTTTACATCTGCTACAATAATTATTGCTGT 237

C20-M13F-trim.txt 239:TCCTACAGGTATTAAAATTTTCAGTTGACTAGGTA-C-TCTTCATGGTACTCAACTT-AA 295 S3-M13F-trim.txt 238:CCCGACGGGTATTAAGATCTTCAGCTGACTAGG-AGCAT-TACACGGTACTC-AATTGAA 294 T13-M13F-trim.txt 238:ACCAACAGGTATTAAAATCTTCAGTTGATTAGG-AACAT-TACATGGTACTC-AGTTGAA 294

C20-M13F-trim.txt 296:CTATAGTCCTTCTCTAATTTGAGCGCTAGGATTTGTATT-TCTATTTACTGTGGGTGGTT 354 S3-M13F-trim.txt 295:TTATAGTCCTGCTTTAATTTGGGCATTAGGGTTTGTATTTT-TATTTACAGTTGGGGGTC 353 T13-M13F-trim.txt 295:TTATAGTCCTTCTTTAATTTGAGCCTTAGGGTTCGTATTCT-TATTTACAGTAGGAGGTT 353

C20-M13F-trim.txt 355:TAACCGGTGTTGTACTAGCTAATTCTTCAATTGACATTATTTTACATGATACATACTACG 414 S3-M13F-trim.txt 354:TAACAGGAGTTGTCCTTGCTAATTCATCTATTGATATTATCTTGCACGATACTTATTATG 413 T13-M13F-trim.txt 354:TAACAGGAGTTGTACTTGCTAACTCATCTATTGACATCATCTTGCACGATACTTATTATG 413

C20-M13F-trim.txt 415:TAGTAGCACATTTCCACTATGTTCTTTCAATAGGAGCTGTATTTGGTATTTTTGCAGGTA 474 S3-M13F-trim.txt 414:TAGTAGCCCACTTCCACTATGTTCTTTCAATAGGAGCCGTATTTGGTATTTTTGCAGGTA 473 T13-M13F-trim.txt 414:TAGTAGCCCATTTTCACTACGTCCTTTCAATAGGAGCAGTATTTGGTATTTTTGCAGGTA 473

C20-M13F-trim.txt 475:TTGCCCACTGATTCCCT-TTATTTACGGGGCTT-ACCTTA-TT-TTAAACCCTAAATGAT 530 S3-M13F-trim.txt 474:TTGCCCACTGATTTCCTCTT-TTTAC-CGGTTTAACCCT-GTTCTT-AACCCAAAATGAT 529 T13-M13F-trim.txt 474:TTGCTCACTGATTTCCTCTT-TTTAC-TGGTTTAACCTTAATTC-T-AACCCAAAATGAT 529

C20-M13F-trim.txt 531:TAAAAATTCACTTTCTTGTTATATTCATTGGAGTAAATATTACATTCTTCCCCCAACATT 590 S3-M13F-trim.txt 530:TAAAAATCCACTTTCTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCTCAACATT 589 T13-M13F-trim.txt 530:TAAAAATCCACTTTTTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCACAACATT 589

C20-M13F-trim.txt 591:TCTTAGGTCTTAATGGAATACCTCGACGATACTCAGACTACCCAGATGCTTATTCAGCAT 650 S3-M13F-trim.txt 590:TTTTAGGGCTTAATGGTATGCCTCGACGCTATTCAGATTATCCAGACGCCTACACAGCAT 649 T13-M13F-trim.txt 590:TCTTAGGACTTAATGGAATACCTCGGCGATATTCAGATTATCCAGACGCTTATACAGCAT 649

C20-M13F-trim.txt 651:GAAATGTTGTATCTTCCATTGGATCAACGGTATCCCTGATTGCCGTATTANGCTTTGTTA 710 S3-M13F-trim.txt 650:GAAATGTTATATCATCTATTGGATCTACAGTATCATTAATTGCAGTACTAGGTTTTGTTA 709 T13-M13F-trim.txt 650:GAAATGTTGTATCATCTATTGGATCTACAGTATCATTAATTGCTGTTTTAGGTTTTGTTA 709

C20-M13F-trim.txt 711:TAATCGTCTGAGAAGCATTAACTGCT-GCTCGGCCTGTAGTT-T-TT-TCACTATTCTTA 766 S3-M13F-trim.txt 710:TAATTGTATGAGAAGCCTTAACTG-TAGCTCGACC---AGTTATATTTTCTTTATTTTTA 765 T13-M13F-trim.txt 710:TAATTGTGTGAGAAGCCTTAACTG-TTGCACGACC--AGTTATATTCTCTTTATTTTTA 765 C20-M13F-trim.txt 767:CAAAC-TTCAATCGAATGACAGC-

Figure 3.29 Multiple alignments of the amplified COI-COII (only sequences of COI are shown). High sequence divergence between individuals was observed in this gene region.

```
C0X2 gene(Pmonodon) 1:ACATCGAGCCGGTCAATATAAAAGAAATAAAAATGGATGAAGCTAACTTACTGTTGTATT 60
Td13(rev.) 1:ACATCGAGCTGGTCAATATAAAAGAAATAAAAATGGATGAAGCTAACTTACTGTCGTATT 60
C0X2 gene(Pmonodon) 61:AGAGGGTGGGCGTCTAGTATCAATATATCTTTAAGGAAATTAATGATTAAAGATTTTACC 120
Td13(rev.) 61:AGAGGGTGGGCGTCTAGTATCAATATATCTTTAAGGAAATTAATGATTAAAGATTTTACC 120
C0X2 gene(Pmonodon) 121:GTCTATCTACGTATCCTAAATTCGAGGATGGTCCTTCTTATAGAAGAAGAAAATCTTTTG 180
Td13(rev.) 121:GTCTATCTACGTATCCTAAATTCGAGGATGGTCCTTCTTATAGAAGAAGAAAATCTTTTG 180
C0X2 gene(Pmonodon) 181:AATACGGTTGTACTCCAGTGAATCCAAATGTTCTATCTCGAAGAGGAGAATATCTTGTTA 240
Td13(rev.) 181:AATACGGTTGTACTCCAGTGAATCCAAATGTTCTATCTCGAAGAGGAGAATATCTTGTTA 240
COX2 gene(Pmonodon) 241:ATTAAAAAAAGGTACTAGTGCGATATCATCATAATTAAAATTAATGTTGTAATCAACCTA 300
Td13(rev.) 241:ATTAAAAAAAGGTACTAGTGCGATATCATCATAATTAAAATTAATGTTGTAATCAACCTA 300
C0X2 gene(Pmonodon) 301:TATATTATAGTTGAAATAAAAAATTATTAAAATGTTTAGCGAAGAATAACCTTCCTGTTT 360
Td13(rev.) 301:TATATTATAGTTGAAATAAAAAATTATTAAAATGTTTAGCGAAGAATAACCTTCCTGTTT 360
C0X2 gene(Pmonodon) 361:GATAACTTTAACATACCTGTCATGAAGGGCGAGATTAAAATTAAAAATAACGTGAAGGAA 420
Td13(rev.) 361:GATAACTTTAACATACCTGTCATGAAGGGCGAGATTAAAATTAAAAATAACGTGAAGGAA 420
COX2 gene(Pmonodon) 421:GAAATGCTAATGATATAGATAATCTACTTCAATTATTAGGTTCACAATGGAACTTTTGAT 480
Td13(rev.) 421:GAAATGCTAATGATATAGATAATCTACTTCAATTATTAGGTTCACAATGGAACTTTTGAT 480
C0X2 gene(Pmonodon) 481:AACCTGTGGTTACTATGACTTCAATGCTCATTAAAAGAGTCTGAAAAATGTTTAACTTAA 540
Td13(rev.) 481:AACCTGTGGTTACCATGACTTCAATGCTCATAAAATGAGTCTGAAAAATGTTTAACTTAA 540
C0X2 gene(Pmonodon) 541:ACTGAGAATATATTAAGGTAGTTTACTTAATAGTCTTCTGCCTAAAGCTGAAAATCTACA 600
Td13(rev.) 541:ACTGAGAATATATTAAGGTAGTTTACTTAATAGTCTTCTGTCTAAAGCTGAAAATCTGCA 600
COX2 gene(Pmonodon) 601:CCTATTAGCTTGACAAGATGGATACTTATGAGTTTAAGCTCATAATTAATCTCGACGACT 660
Td13(rev.) 601:CCTATTAGCTTGACAAGATGGATACTTATGAGTTTAAGCTCATAATTAATCTCGACGACT 660
COX2 gene(Pmonodon) 661:ACAATAAGTAAGTACTTGTCATGGACGGGAACCACATTTTCGTCTACGTTAAGGTCCCGC 720
Td13(rev.) 661:ACAATAAGTAAGTACTTGTCATGGACGGGAACCACATTTTCGTCTACGTTAAGGT-CCGC 719
C0X2 gene(Pmonodon) 721:TGAATTAGTTCATTCAAAAAATTATTTAGCTGGTCCTAATAAAATACCAGTTACAAGTCT 780
Td13(rev.) 721:TGAA-TAGTTCATTCAAAAAATTATTTAGCTGGTCCTAATAAAATACCAGTTACAAGTCT 778
C0X2 gene(Pmonodon) 781:TTAAACACC 840
Td13(rev.) 781:TTAAACACC 838
```

 สถาบันวิทยบริการ
 Figure 3.30 Nucleotide sequence ${ }^{\sigma}$ alignments of the amplified COI-COII (only sequences of COH are shown). Low sequence divergence between a specimen from Trat and that in the GenBank was observed in this gene region.

Table 3.15 Newly designed primers from amplification of COI and COII gene segments, the expected product and amplification results

Primer	Expected product	Amplification result
Universal COI-COII-F/R	1550 bp	1550 bp
Universal COI-COII-F+ $\mathrm{T13COI}_{\mathrm{R} 2}$	$614 \text { bp }$	An intense band at 614 bp
Universal COI-COII-F+ Td13COII ${ }_{\text {R }}$	1423 bp	No amplification product
$\mathrm{T13COI}_{\mathrm{F} 2}+$ Universal COI-COII-R	1310 bp	Faint band at approximately 1200 bp
Td13COII ${ }_{\text {F3 }}$ + Universal COI-COII-R	728 bp	No amplification product
$\mathrm{T13COI}_{\mathrm{F} 2}+{\mathrm{T} 13 \mathrm{COI}_{\mathrm{R} 2}}$	416 bp	An intense band at 416 bp
$\mathrm{Td} 13 \mathrm{COII}_{\mathrm{F} 3}+\mathrm{Td} 13 \mathrm{COII}_{\mathrm{R} 3}$	643 bp	No amplification product

Figure 3.31 Agarose gel elctrophoresis illustrating the amplification product of COI (416 bp) of P. monodon from Trat (lane 1), Chumphon (lanes 2 and 3), Satun (lane 4), Trang (lane 5) and Phangnga (lane 6). Lane M is 100 bp DNA marker.

Figure 3.32 Agarose gel elctrophoresis illustrating the amplification product of COI (614 bp) of P. monodon from Trat (lanes 2-4), Chumphon (lanes 5-6), Satun (lanes 7-8), Trang (lanes 9-10) and Phangnga (lanes 11-12). Lanes M and 1 are 100 bp DNA marker and negative control (no DNA template).

GCTTGGATATTTCACACATTATTAGTCAAGAATCTGGTAAAAAAGAAGCGTTCGGAA GCTTGGAAATTTC-CACATTATTAGTCAAGAATCTGGTAAAAAAGAAGCGTTCGGAA GATTGGATATTTCACACATIATTAGTCAAGAATCTGGTAAAAAAGAAGCGTTCGGAA GCTTGGATATTTCACACATTATTAGTCAAGAATCTGGTAAAAAAGAAGCGTTCGGAA GCTTGGATATTTC-CACATTATTAGTCAAGAATCTGGTAAAAAAGAAGCGTTCGGAA GCTTGGATATTTC-CATATTATTAGTCAAGAATCTGGTAAAAAAGAAGCGTTCGGAA TTTGGATAATTTCACACATTATTAGTCAAGAATCTGGTAAAAAAGAAGCGTTCGGAA TTTGGATAATTTCACACATTATTAGTCA-GAATCTGGTAAAAAAGAAGCGTTCGGAA TTTGGATAATTTCACACATTATTAGTCAAGAATCTGGTAAAAAAGAAGCGTTCGGAA TTTGGATAATTTCACACATTATTAGTCAAGAATCTGGTAAAAAAGAAGCGTTCGGAA TTTGGAAAATTTCACACATTATTAGTCA-GAATCTGGTAAAAAAGAAGCGTTCGGAA CTTTGGATATTTCACACATTATTAGTCAAGAATCTGGTAAAAAAGAAGCGTTCGGAA GCTTGGATATTTCACACATTATTAGTCAAGAATCTGGTAAAAAAGAAGCGTTCGGAA GATTGGATATITCACACATJATTAGTCAAGAATCTGGTAAAAAAGAAGCGTTCGGAA CTTGGGATATCTCACATATTATTAGTCAAGAGTCTGGTAAAAAAGAAGCTTTTGGAA CTTGGGATATCTC-- CATATATAGTCA-GAGTCTGGTAAAAAAGAAGCTTTTGGAA CTTGGGATATCTC-CATATTATTAGTCA-GAGTCTGGTAAAAAAGAAGCTTTTGGAA TTCGGAAT--CTC-CATATTATTAGTCA-GAATCTGGTAAAAAAGAAGCTTTTGGAA TTGGATAT- - CTCACATATTATTAGTCAAGAATCTGGTAAAAAAGAAGCTTTTGGAA CTCGGGATATCTCACATATTATTAGTCAAGAATCTGGTAAAAAAGAAGCTTTTGGAA TTTGGGATATCTCACATATTATTAGTCAAGAATCTGGTAAAAAAGAAGCTTTTGGAA TTTGGGATATCTC-CATATTATTAGTCAAGAGTCTGGTAAAAAAGAAGCTTTTGGAA TTTGGGATATCTC-CATATTATTAGTCA-GAGTCTGGTAAAAAAGAAGCTTTTGGAA tTTGGGATATCTCACATATTATTAGTCAAGAGTCTGGTAAAAAAGAAGCTTTTGGAA CTTGGGATATCTCACATATTATTAGTCAAGAGTCTGGTAAAAAAGAAGCTTTTGGAA TTTGGGATATCTCACATATTATTAGTCAAGAGTCTGGTAAAAAAGAAGCTTTTGGAA tTTGGGATATCTCACATATTATTAGTCAAGAGTCTGGTAAAAAAGAAGCTTTTGGAA TTTGGGATATCTC-CATATTATTAGTCAAGAATCTGGTAAAAAAGAAGCTTTTGGAA TTTGGGATATCTCACATATTATTAGTCAAGAATCTGGTAAAAAAGAAGCTTTTGGAA TTTGGGATATCTCACATATTATTAGTCAAGAATCTGGTAAAAAAGAAGCTTTTGGAA tTTGGGATATCTCACATATTATTAGTCAAGAATCTGGTAAAAAAGAAGCTTTCGGAA TTTGGGATATCTC-CATATTATTAGTCAAGAGTCTGGTAAAAAAGAAGCTTTTGGAA
c13 GCTTGGATATCTCACATATTATTAGTCAAGAATCTGGTAAAAAAGAAGCTTTTGGAA C26 GCTTGGATATCTCACATATTATTAGTCAAGAATCTGGTAAAAAAGAAGCTTTTGGAA CTTTGGATATCTCACATATTATTAGTCAAGAATCTGGTAAAAAAGAAGCTTTTGGAA TTGGATAT---TTCCATATTATTAGTCAAGAATCTGGTAAAAAAGAAGCATTCGGAA TTGGATAT-- -TTCCATATTATAGTC--AGAATCTGGTAAAAAAGAAGCATTCGGAA TTGGATAT---TTCCATATTATTAGTCAAGAATCTGGTAAAAAAGAAGCATTCGGAA TTGGATAT---TTCCATATTATTAGTCAAGAATCTGGTAAAAAAGAAGCATTCGGAA TTGGATAT--- TTCCCTATTATTAGTCAAGAATCTGGTAAAAAAGAAGCATTCGGAA TTTGGTATATTTCCCATATTATTAGTCAAGAATCTGGTAAAAAAGAAGCATTCGGAA

CACTTGGAATAATTTATGCTATATTAGCTATTGGTGT-TCTAGGATTTGTGGTATGAGCT CATTAGGAATAATCTATGCTATACTAGCCATTGGTGT-TCTAGGATTTGTAGTATGAGCT CATTAGGTATAATTTATGCTATACTGGCTATTGGTGT-TCTAGGATTTGTAGTATGAGCT CATTAGGTATAATTTATGCTATACTGGCTATTGGTGT-TCTAGGATTTGTAGTATGAGCT
CATTAGGTATAATTTATGCTATACTGGCTATTGGTGT-TCTAGGATTTGTAGTATGAGCT CACTCGGGATAATCTATGCTATACTTGCTATTGGTGT-CCTAGGATTCGTAGTATGAGCA CACTCGGGATAATCTATGCTATACTTGCTATTGGTGT-CCTAGGATTCGTAGTATGAGCA CACTCGGGATAATCTATGCTATACTTGCTATTGGTGT-CCTAGGATTCGTAGTATGAGCA CACTCGGGATAATCTATGCTATACTTGCTATTGGTGT-CCTAGGATTCGTAGTATGAGCA CACTCGGGATAATCTATGCTATACTTGCTATTGGTGT-CCTAGGATTCGTACTATGAGCA CACTCGGGATAATCTATGCTATACTTGCTATTGGTGT-CCTAGGATTCGTAGTATGAGCA CACTCGGGATAATCTATGCTATACTTGCTATTGGTGT-CCTAGGATTCGTAGTATGAGCA CACTTGGAATAATTTATGCTATATAAGCTATTGGAGCATCCAGGACGCGGGGTGTGAACA AATAATTATTGCTGTACCAACAGGTATTAAAATCTTCAGTTGATTAGGAACATTACATGG
CATCATATATTTAC - TGTAGGGATAGATGTTGATACTCGTGCTTACTTTACATCTGCTAC CATCATATATTTAC-TGTAGGGATAGATGTTGATACTCGTGCTTACTTTACATCTGCTAC CATCATATATTTAC - TGTAGGGATAGATGTTGATACTCGTGCTTACTTTACATCTGCTAC CATCATATATTTAC - TGTAGGTATAGACGTTGATACTCGTGCTTACTTTACATCTGCTAC CATCATATATTTAC-TGTAGGTATAGACGTTGATACTCGTGCTTACTTTACATCTGCTAC CATCATATATTTAC-TGTAGGTATAGACGTTGATACTCGTGCTTACTTTACATCTGCTAC CATCATATATTTAC - TGTAGGTATAGACGTTGATACTCGTGCTTACTTTACATCTGCTAC CATCATATATTTAC - TGTAGGTATAGACGTTGATACTCGTGCTTACTTTACATCTGCTAC CATCATATATTTAC - TGTAGGTATAGACGTTGATACTCGTGCTTACTTTACATCTGCTAC CATCATATATTTAC-TGTAGGTATAGACGTTGATACTCGTGCTTACTTTACATCTGCTAC CATCATATATTTAC - TGTAGGTATAGACGTTGACACTCGTGCTTACTTTACATCTGCTAC CATCATATATTTAC-TGTAGGTATAGACGTTGATACTCGTGCTTACTTTACATCTGCTAC CATCATATATTTAC-TGTAGGTATAGACGTTGATACTCGTGCTTACTTTACATCTGCTAC CATCATATATTTAC - TGTAGGTATAGACGTTGATACTCGTGCTTACTTTACATCTGCTAC CATCATATATTTAC - TGTAGGTATAGACGTCGATACTCGTGCTTACTTTACATCTGCTAC CATCATATATTTAC - TGTAGGTATAGACGTCGATACTCGTGCTTACTTTACATCTGCTAC CATCATATATTTAC - TGTAGGTATAGACGTCGATACTCGTGCTTACTTTACATCTGCTAC CACCATATATTTAC - AGTAGGTATGGATGTTGATACTCGTGCTTATTTTACATCTGCAAC CACCATATATTTAC - AGTAGGTATGGATGTTGATACTCGTGCTTATTTTACATCTGCAAC CACCATATATTTAC-AGTAGGTATGGATGTTGATACTCGTGCTTATTTTACATCTGCAAC CACCATATATTTAC - AGTAGGTATGGATGTTGATACTCGTGCTTATTTTACATCTGCAAC CACCATATATTTAC-AGTAGGTATGGATGTTGATACTCGTGCTTATTTTACATCTGCAAC CACCATATATTTAC - AGTAGGTATGGATGTTGATACTCGTGCTTATTTTACATCTGCAAC CACCATATATTTAC - AGTAGGTATGGATGTTGATACTCGTGCTTATTTTACATCTGCAAC CTTATTATTTCTCTGTGTGGTAAGAATTGGGTATACTCTCATCT - CTCTTTATCTGTTCG AATAATTATTGCTGTACCAACAGGTATTAAAATCTTCAGTTGATTAGGAACATTACATGG AATAATTATTGCTGTACCAACAGGTATTAAAATCTTCAGTTGATTAGGAACATTACACGG AATAATTATTGCTGTACCGACAGGTATTAAAATCTTCAGTTGATTAGGAACATTACATGG AATAATTATTGCTGTACCAACAGGTATTAAAATCTTCAGTTGATTAGGAACATTACATGG AATAATTATTGCTGTACCAACAGGTATTAAAATCTTCAGTTGATTAGGAACATTACATGG AATAATTATTGCTGTACCAACAGGTATTAAAATCTTCAGTTGATTAGGAACATTACATGG AATAATTATTGCTGTACCAACAGGTATTAAAATCTTCAGTTGATTAGGAACATTACATGG AATAATTATTGCTGTACCAACAGGTATTAAAATCTTCAGTTGATTAGGAACATTACATGG AATAATTATTGCTGTACCAACAGGTATTAAAATCTTCAGTTGATTAGGAACATTACATGG AATAATTATTGCTGTACCAACAGGTATTAAAATCTTCAGTTGATTAGGAACATTACATGG AATAATTATTGCTGTACCAACAGGTATTAAAATCTTCAGTTGATTAGGAACATTACATGG AATAATTATTGCTGTACCAACAGGTATTAAAATCTTCAGTTGATTAGGAACATTACATGG GATAATTATTGCTGTCCCGACGGGTATTAAGATCTTCAGCTGACTAGGAACATTACACGG GATAATTATTGCTGTCCCGACGGGTATTAAGATCTTCAGCTGACTAGGAACATTACACGG GATAATTATTGCTGTCCCGACGGGTATTAAGATCTTCAGCTGACTAGGAACATTACACGG

P39 GATAATTATTGCTGTCCCGACGGGTATTAAGATCTTCAGCTGACTAGGAACATTACACGG GATAATTATTGCTGTCCCGACGGGTATTAAGATCTTCAGCTGACTAGGAACATTACACGG GATAATTATTGCTGTCCCGACGGGTATTAAGATCTTCAGCTGACTAGGAACATTACACGG GATAATTATTGCTGTCCCGACGGGTATTAAGATCTTCAGCTGACTAGGAACATTACACGG GATAATTATTGCTGTCCCGACGGGTATTAAGATCTTCAGCTGACTAGGAACATTACACGG GATAATTATTGCTGTCCCGACGGGTATTAAGATCTTCAGCTGACTAGGAACATTACA-GG GATAATTATTGCTGTCCCGACGGGTATTAAGATCTTCAGCTGACTAGGAACATTACACGG GATAATTATTGCTGTCCCGACGGGTATTAAGATCTTCAGCTGACTAGGAACATTACACGG GATAATTATTGCTGTCCCGACGGGTATTAAGATCTTCAGCTGACTAGGAACATTACACGG GATAATTATTGCTGTCCCGACGGGTATTAAGATCTTCAGCTGACTAGGAACATTACACGG GATAATTATTGCTGTCCCGACGGGTATTAAGATCTTCAGCTGACTAGGAACATTACACGG GATAATTATTGCTGTCCCGACGGGTATTAAGATCTTCAGCTGACTAGGAACATTACACGG
c13 AATAATTATTGCTGTCCCAACGGGTATTAAAATCTTCAGCTGACTAGGAACATTACACGG
C26 AATAATTATTGCTGTCCCAACGGGTATTAAAATCTTCAGCTGACTAGGAACATTACACGG
P8 AATAATTATTGCTGTCCCAACGGGTATTAAAATCTTCAGCTGACTAGGAACATTACACGG
S43 AATGATTATTGCCGTTCCTACAGGTATTAAAATTTTCAGTTGACTAGGTACTCTTCATGG
S30 AATGATTATTGCCGTTCCTACAGGTATTAAAATTTTCAGTTGACTAGGTACTCTTCATGG
S38 AATGATTATTGCCGTTCCTACAGGTATTAAAATTTTCAGTTGACTAGGTACTCTTCATGG
S48 AATGATTATTGCCGTTCCTACAGGTATTAAAATTTTCAGTTGACTAGGTACTCTTCATGG
td20 AATGATTATTGCCGTTCCTACAGGTATTAAAATTTTCAGTTGACTAGGTACTCTTCATGG
TD24
C20 AATGATTATTGCCGTTCCTACAGGTATTAAAATTTTCAGTTGACTAGGTACTCTTCATGG AATGATTATTGCCGTTCCTACAGGTATTAAAATTTTCAGTTGACTAGGTACTCTTCATGG CATAATGAATGTTGGACCAACAGGTAGGAATAGATACTGTTGCTTTCGAACATTCCATCC

P28 TAC-TCAGTTGAATTATAGTCCTTCTTTAATTTGAGCCTTAGGGTTTGTATTCTTATTTA S25 TAC-TCAGTTGAATTATAGTCCTTCTTTAATTTGAGCCTTAGGGTTTGTATTCTTATTTA TAC-TCAATTGAATTATAGTCCTTCTTTAATTTGGGCATTAGGGTTTGTATTTTTATTTA TAC-TCAATTGAATTATAGTCCTTCTTTAATTTGGGCATTAGGGTTTGTATTTTTATTTA TAC-TCAATTGAATTATAGTCCTTCTTTAATTTGGGCATTAGGGTTTGTATTTTTATTTA TAC-TCAATTGAATTATAGTCCTTCTTTAATTTGGGCATTAGGGTTTGTATTTTTATTTA TAC-TCAATTGAATTATAGTCCTTCTTTAATTTGGGCATTAGGGTTTGTATTTTTATTTA TAC-TCAATTGAATTATAGTCCTTCTTTAATTTGGGCATTAGGGTTTGTATTTTTATTTA Q TAC-TCAATTGAATTATAGTCCTTCTTTAATTTGGGCATTAGGGTTTGTATTTTTATTTA TAC-TCAATTGAATTATAGTCCTTCTTTAATTTGGGCATTAGGGTTTGTATTTTTATTTA TAC-TCAATTGAATTATAGTCCTTCTTTAATTTGGGCATTAGGGTTTGTATTTTTATTTA TAC-TCAATTGAATTATAGTCCTTCTTTAATTTGGGCATTAGGGTTTGTATTTTTATTTA TAC-TCAATTGAATTATAGTCCTTCTTTAATTTGGGCATTAGGGTTTGTATTTTTATTTA TAC-TCAATTGAATTATAGTCCTTCTTTAATTTGGGCATTAGGGTTTGTATTTTTATTTA TAC-TCAATTGAATTATAGTCCTTCTTTAATTTGGGCATTAGGGTTTGTATTTTTATTTA TAC-TCAATTGAATTATAGTCCTTCTTTAATTTGGGCATTACGGTTTGTATTTTTATTTA TAC-TCAATTGAATTATAGTCCTTCTTTAATTTGGGCATTAGGGTTTGTATTTTTATTTA TAC-TCAATTGAATTATAGTCCTTCTTTAATTTGGGCATTAGGGTTTGTATTTTTATTTA TAC-TCAATTGAATTATAGTCCTTCTTTAATTTGGGCATTAGGGTTTGTATTTTTATTTA TAC-TCAATTGAATTATAGTCCTTCTTTAATTTGGGCATTAGGGTTTGTATTTCTATTTA TAC-TCAATTGAATTATAGTCCTTCTTTAATTTGGGCATTAGGGTTTGTATTTTTATTTA TAC-TCAATTGAATTATAGTCCTTCTTTAATTTGGGCATTAGGGTTTGTATTTTTATTTA TAC-TCAATTGAATTATAGTCCTTCTTTAATTTGGGCATTAGGGTTTGTATTTTTATTTA

CAGTAGGAGGTTTAACAGGAGTTGTACTTGCTAACTCATCTATTGACATCATCTTGCACG
TAC-TCAACTTAACTATAGTCCTTCTCTAATTTGAGCGCTAGGATTTGTATTTCTATTTA TAC-TCAACTTAACTATAGTCCTTCTCTAATTTGAGCGCTAGGATTTGTATTTCTATTTA TAC-TCAACTTAACTATAGTCCTTCTCTAATTTGAGCGCTAGGATTTGTATTTCTATTTA TAC-TCAACTTAACTATAGTCCTTCTCTAATTTGAGCGCTAGGATTTGTATTTCTATTTA TAC-TCAACTTAACTATAGTCCTTCTCTAATTTGAGCGCTAGGATTTGTATTTCTATTTA TAC-TCAACTTAACTATAGTCCTTCTCTAATTTGAGCGCTAGGATTTGTATTTCTATTTA TAC-TCAACTTAACTATAGTCCTTCTCTAATTTGAGCGCTAGGATTTGTATTTCTATTTA CTTGTCTATTGAATTAAATTACCTACTCACCATGGGTGGAACGGATTGTATTCTTCTCCA CAGTAGGAGGTTTAACAGGAGTTGTACTTGCTAACTCATCTATTGACATCATCTTGCACG CAGTAGGAGGTTTAACAGGAGTTGTACTTGCTAACTCATCTATTGACATCATCTTGCACG CAGTAGGAGGTTTAACAGGAGTTGTACTTGCTAACTCATCTATTGACATCATCTTGCACG CAGTAGGAGGTTTAACAGGAGTTGTACTTGCTAACTCATCTATTGACATCATCTTGCACG CAGTAGGAGGTTTAACAGGAGTTGTACTTGCTAACTCATCTATTGACATCATCTTGCACG CAGTAGGAGGTTTAACAGGAGTTGTACTTGCTAACTCATCTATTGACATCATCTTGCACG CAGTAGGAGGTTTAACAGGAGTTGTACTTGCTAACTCATCTATTGACATCATCTTGCACG CAGTAGGAGGTTTAACAGGAGTTGTACTTGCTAACTCATCTATTGACATCATCTTACACG CAGTAGGAGGTTTAACAGGAGTTGTACTTGCTAACTCATCTATTGACATCATCTTGCACG CAGTAGGAGGTTTAACAGGAGTTGTACTTGCTAACTCATCTATTGACATCATCTTGCACG CAGTAGGAGGTTTAACAGGAGTTGTACTTGCTAACTCATCTATTGACATCATCTTACACG CAGTAGGAGGTTTAACAGGAGTTGTACTTGCTAACTCATCTATTGACATCATCTTACACG CAGTAGGAGGTTTAACAGGAGTTGTACTTGCTAACTCATCTATTGACATCATCTTACACG CAGTTGGGGGTCTAACAGGAGTTGTCCTTGCTAATTCATCTATTGATATTATCTTGCACG CAGTTGGGGGTCTAACAGGAGTTGTCCTTGATCATTCATCTATTGATACTATCGTGCGAG CAGTTGGGGGTCTAACAGGAGTTGTCCTTGCCAATTCATCTAITGATATTATTTTACATG CAGTTGGGGGTCTAACAGGAGTTGTCCTTGCCAATTCATCTATTGATATTATCTTACATG CAGTTGGGGGTCTAACAGGAGTTGTCCTTGCCAATTCATCTATTGATATTATCTTACATG CTGTGGGTGGTTTAACCGGTGTFGTACTAGCTAATTCTTCAATTGACATTATTTTACATG CTGTGGGTGGTTTAACCGGTGTTGTACTAGCTAATTCTTCAATTGACATTATTTTACATG CTGTGGGTGGTTTAACCGGTGTTGTACTAGCTAATTCTTCAATTGACATTATTTTACATG CTGTGGGTGGTTTAACCGGTGTTGTACTAGCTAATTCTTCAATTGACATTATTTTACATG CTGTGGGTGGTTTAACCGGTGTTGTACTAGCTAATTCTTCAATTGACATTATTTTACATG CTGTGGGTGGTTTAACCGGTGTTGTACTAGCTAATTCTTCAATTGACATTATTTTACATG CTGTGGGTGGTTTAACCGGTGTTGTACTAGCTAATTCTTCAATTGACATTATTTTACATG CTGCAGGATGTTCAATAGGAGATGCACTTGGCTACTCATCTCCTGCCGTCTTCTTGCTCG

P28 ATACTTATTATGTAGTAGCCCATTTTCACTACGT-CCTTTCAATAGGAGCAGTATTTGGT

ATACTTATTATGTAGTAGCCCATTTTCACTACGT-CCTTTCAATAGGAGCAGTATTTGGT ATACTTATTATGTAGTAGCCCATTTTCACTACGT-CCTTTCAATAGGAGCAGTATTTGGT ATACTTATTATGTAGTAGCCCATTTTCACTACGT-CCTTTCAATAGGAGCAGTATTTGGT ATACTTATTATGTAGTAGCCCATTTTCACTACGT-CCTTTCAATAGGAGCAGTATTTGGT
p21
t16 s10 p17
C10
S33
c9
C41
T30
C21
P7
C18
p24
P39
S18
c4
C51
S1
P2
c6
T43

ATTTTTGCAGGTATTGCTCACTGATTTCCTCTTTTTACTGGTTTAACCTT-AAACCCAAA ATTTTTGCAGGTATTGCTCACTGATTTCCTCTTTTTACTGGTTTAACCTT-AAACCCAAA
ATACTTATTATGTAGTAGCCCATTTTCACTACGT-CCTTTCAATAGGAGCAGTATTTGGT ATACTTATTATGTAGTAGCCCATTTTCACTACGT-CCTTTCAATAGGAGCAGTATTTGGT ATACTTATTATGTAGTAGCCCATTTTCACTATGT-CCTTTCAATAGGAGCAGTATTTGGT ATACTTATTATGTAGTAGCCCATTTTCACTACGT-CCTTTCAATAGGAGCAGTATTTGGT ATACTTATTATGTAGTAGCCCATTTTCACTACGT-CCTTTCAATAGGAGCAGTATTTGGT ATACTTATTATGTAGTAGCCCATTTTCACTATGT-CCTTTCAATAGGAGCAGTATTTGGT ATACTTATTATGTAGTAGCCCATTTTCACTATGT-CCTTTCAATAGGAGCAGTATTTGGT ATACTTATTATGTAGTAGCCCATTTTCACTATGT-CCTTTCAATAGGAGCAGTATTTGGT ATACTTATTATGTAGTAGCCCACTTCCACTATGT-TCTTTCAATAGGAGCCGTATTTGGT ATACGTATTATGTAGGAGCCCACTTCCACTATGT-TCTTTCAATAGGAGCCGAATTTGCT ATACTTATTATGTAGTAGCCCATTTTCACTATGT-TCTTTCAATAGGAGCCGTATTTGGT ATACTTATTATGTAGTAGCCCATTTTCACTATGT-TCTTTCAATAGGAGCCGTATTTGGT ATACTTATTATGTAGTAGCCCATTTTCACTATGT-TCTTTCAATAGGAGCCGTATTTGGT ATACATACTACGTAGTAGCACATTTCCACTATGT-TCTTTCAATAGGAGCTGTATTTGGT ATACATACTACGTAGTAGCACATTTCCACTATGT-TCTTTCAATAGGAGCTGTATTTGGT ATACATACTACGTAGTAGCACATTTCCACTATGT-TCTTTCAATAGGAGCTGTATTTGGT ATACATACTACGTAGTAGCACATTTCCACTATGT-TCTTTCAATAGGAGCTGTATTTGGT ATACATACTACGTAGTAGCACATTTCCACTATGT-TCTTTCAATAGGAGCTGTATTTGGT ATACATACTACGTAGTAGCACATTTCCACTATGT-TCTTTCAATAGGAGCTGTATTTGGT ATACATACTACGTAGTAGCACATTTCCACTATGT-TCTTTCAATAGGAGCTGTATTTGGT 17 AGAGAGACTAAGGAGCACTCTATTTGCACTACGTCTCTTTCCATAGGAACAATACTTGTC
 ATTTTTGCAGGTATTGCTCACTGATTTCCTCTTTTTACTGGTTTAACCTT-AAACCCAAA ATTTTTGCAGGTATTGCTCACTGATTTCCTCTTITTACTGGTITAACCTT-AAACCCAAA ATTTTTGCAGGTATTGCTCACTGATTTCCTCTTTTTACTGGTTTAACCTT-AAACCCAAA ATTTTTGCAGGTATTGCTCACTGATTTCCTCTTTTTACTGGTTTAACCTT-AAACCCAAA ATTTTTGCAGGTATTGCTCACTGATTTCCTCTTTITACTGGTTTAACCTT-AAACCCAAA ATTTTTGCAGGTATTGCTCACTGATTTCCTCTTTTTACTGGTTTAACCTT-AAACCCAAA ATTTTTGCAGGTATTGCTCACTGATTTCCTCTTTTTACTGGTTTAACCTT-AAACCCAAA ATTTTTGCAGGTATTGCTCACTGATTTCCTCTTTTTACTGGTTTAACCTT-AAACCCAAA ATTTTTGCAGGTATTGCTCACTGATTTCCTCTTTTTACTGGTTTAACCTT-AAACCCAAA ATTTTTGCAGGTATTGCTCACTGATTTCCTCTTTTTACTGGTTTAACCTT-AAACCCAAA ATTTTTGCAGGTATTGCTCACTGATTTCCTCTTTTTACTGGTTTAACCTT-AAACCCAAA ATTTTTGCAGGTATTGCTCACTGATTTCCTCTTTTTACTGGTTTAACCTT-AAACCCAAA ATTTTTGCAGGTATTGCCCACTGATTTCCTCTTTTTACCGGTTTAACCCT-GAACCCAAA ATTTTTGCAGGTATTGCCCACTGATTTCCTCTTTTTACCGGTTTAACCCT-GAACCCAAA ATTTTTGCAGGTATTGCCCACTGATTTCCTCTTTTTACCGGTTTAACCCT-GAACCCAAA ATTTTTGCAGGTATTGCCCACTGATTTCCTCTTTTTACCGGTTTAACCCT-GAACCCAAA ATTTTTGCAGGTATTGCCCACTGATTTCCTCTTTTTACCGGTTTAACCCT-GAACCCAAA ATTTTTGCAGGTATTGCCCACTGATTTCCTCTTTTTACCGGTTTAACCCT-GAACCCAAA ATTTTTGCAGGTATTGCCCACTGATTTCCTCTTTTTACCGGTTTAACCCT-GAACCCAAA ATTTTTGCAGGTATTGCCCACTGATTTCCTCTTTTTACCGGTTTAACCCT-GAACCCAAA

C51
S1
P2
c6
T43
t11
C1
Td17
t18
p10
c13
C26
P8
S43
S30
S38
S48
td20
TD24
C20
t17

ATTTTTGCAGGTATTGCCCACTGATTTCCTCTTTTTACCGGTTTAACCCT-GAACCCAAA ATTTTTGCAGGTATTGCCCACTGATTTCCTCTTTTTACCGGTTTAACCCT-GAACCCAAA ATTTTTGCAGGTATTGCCCACTGATTTCCTCTTTTTACCGGTTTAACCCT-GAACCCAAA ATTTTTGCAGGTATTGCCCACTGATTTCCTCTTTTTACCGGTTTAACCCT-GAACCCAAA ATTTTTGCAGGTATTGCCCACTGATTTCCTCTTTTTACCGGTTTAACCCT-GAACCCAAA ATTTTTGCAGGTATTGCCCACTGATTTCCTCTTTTTACCGGTTTAACCCT-GAACCCAAA ATTTTTGCAGGTATTGCCCACTGATTTCCTCTTTTTACCGGTTTAACCCT-GAACCCAAA ATTTTTGCAGGTATTGCCCACTGATTTCCTCTTTTTACCGGTTTAACCCT-GAACCCAAA ATTTTTGCAGGTATTGCCCACTGATTTCCTCTTTTTACCGGTTTAACCCT-GAACCCAAA ATTTTTGCCCGTATCGCCCACTGATATCCTCTTTTTACTGCTTTAACCCCAGAACCCAAA ATTTTTGCAGGTATTGCTCACTGATTTCCTCTTTTTACCGGTTTAACCCT-GAACCCAAA ATTTTTGCAGGTATTGCTCACTGATTTCCTCTTTTTACCGGTTTAACCCT-GAACCCAAA ATTTTTGCAGGTATTGCTCACTGATTTCCTCTTTTTACCGGTTTAACCCT-GAACCCAAA ATTTTTGCAGGTATTGCCCACTGATTCCCTTTATTTACGGGGCTTACCTT-AAACCCTAA ATTTTTGCAGGTATTGCCCACTGATTCCCTTTATTTACGGGGCTTACCTT-AAACCCTAA ATTTTTGCAGGTATTGCCCACTGATTCCCTTTATTTACGGGGCTTACCTT-AAACCCTAA ATTTTTGCAGGTATTGCCCACTGATTCCCTTTATTTACGGGGCTTACCTT-AAACCCTAA ATTTTTGCAGGTATTGCCCACTGATTCCCTTTATTTACGGGGCTTACCTT-AAACCCTAA ATTTTTGCAGGTATTGCCCACTGATTCCCTTTATTTACGGGGCTTACCTT-AAACCCTAA ATTTTTGCAGGTATTGCCCACTGATTCCCTTTATTTACGGGGCTTACCTT-AAACCCTAA AATTTTGCTTGTCTTGCTCGCTGTCTACCTCTTATTGTTGGGTAAACCCT-ACACCCACA * ****** ** * ** * *** *** * ** * *** **** *

ATGATTAAAAATCCACTTTTTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCACA ATGATTAAAAATCCACTTTTTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCACA ATGATTAAAAATCCACTTTTTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCACA ATGATTAAAAATCCACTTTTTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCACA ATGATTAAAAATCCACTTTTTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCACA ATGATTAAAAATCCACTTTTTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCACA ATGATTAAAAATCCACTTTTTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCACA ATGATTAAAAATCCACTTTTTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCACA ATGATTAAAAATCCACTITITAGTTATATTTATTGGGGTAAACATTACATTTTTCCCACA ATGATTAAAAATCCACTTTTTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCACA ATGATTAAAAATCCACTTTTTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCACA ATGATTAAAAATCCACTTTTTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCACA ATGATTAAAAATCCACTTTCTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCTCA ATGATTAAAAATCCACTTTCTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCTCA ATGATTAAAAATCCACTTTCTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCTCA

C18

p24

P39

S18 C51 TTAAAAATCCACT ATGATTAAAAATCCACTTTCTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCTCA ATGATTAAAAATCCACTTTCTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCTCA ATGATTAAAAATCCACTTTCTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCTCA ATGATTAAAAATCCACTTTCTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCTCA ATGATTAAAAATCCACTTTCTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCTCA ATGATTAAAAATCCACTTTCTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCTCA at GATTAAAAATCCACTTTCTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCTCA ATGATTAAAAATCCACTTTCTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCTCA ATGATTAAAAATCCACTTTCTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCTCA ATGATTAAAAATCCACTTTCTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCTCA ATGATTAAAAATCCACTTTCTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCTCA ATGATTAAAAATCCACTTTCTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCTCA ATGATTAAAAATCCACTTTTTAGTTATATTTATTGGGGTAAACATTACATTTTTCCCTCA ATGATTAAGAATCCACCTTCTATTTATATTTCTGGGGGTAAACATTGCCTTCCTCCCTCG ATGATTAAAAATCCACTTTCTAGTTATATTTATTGGGGTAAATATTACATTTTTCCCACA ATGATTAAAAATCCACTTTCTAGTTATATTTATTGGGGTAAATATTACATTTTTCCCACA ATGATTAAAAATCCACTTTCTAGTTATATTTATTGGGGTAAATATTACATTTTTCCCACA GTGATTAAAAATTCACTTTCTTGTTATATTCATTGGAGTAAATATTACATTCTTCCCCCA GTGATTAAAAATTCACTTTCTTGTTATATTCATTGGAGTAAATATTACATTCTTCCCCCA GTGATTAAAAATTCACTTTCTTGTTATATTCATTGGAGTAAATATTACATTCTTCCCCCA

Figure 3.33 Multiple alignments of 43 shrimp individuals representing each haplotype of the COI_{614} gene segment. Asterisks indicate identical nucleotide at a particular position.

I	P28								
II	S25	0.0018							
III	S7	0.0018	0.0035						
IV	s11	0.0018	0.0035	0.0035					
V	P29	0.0018	0.0035	0.0035	0.0035				
VI	TD18	0.0018	0.0035	0.0035	0.0035	0.0035			
VII	p21	0.0107	0.0089	0.0107	0.0125	0.0125	0.0125		
VIII	t16	0.0107	0.0089	0.0107	0.0125	0.0125	0.0125	0.0018	
IX	s10	0.0143	0.0125	0.0143	0.0161	0.0161	0.0161	0.0035	0.0035
X	p17	0.0107	0.0089	0.0107	0.0125	0.0125	0.0125	0.0035	0.0035
		0.0071							
XI	C10	0.0089	0.0071	0.0089	0.0107	0.0107	0.0107	0.0053	0.0053
		0.0089	0.0018						
XII	S33	0.0071	0.0089	0.0071	0.0089	0.0089	0.0089	0.0142	0.0142
		0.0106	0.0142	0.0125					
XIII	c9	0.0035	0.0053	0.0053	0.0053	0.0053	0.0053	0.0143	0.0143
		0.0107	0.0143	0.0125	0.0035				
XIV	C41	0.0053	0.0071	0.0035	0.0071	0.0071	0.0071	0.0143	0.0143
		0.0107	0.0143	0.0125	0.0035	0.0018			
XV	T30	0.0895	0.0917	0.0896	0.0875	0.0877	0.0877	0.0932	0.0934
		0.0932	0.0933	0.0914	0.0853	0. 0895	0.0896		
XVI	C21	0.0944	0.0964	0.0945	0.0924	0.0924	0.0964	0.0982	0.0982
		0.0982	0.0982	0.0962	0.0902	0.0944	0.0945	0.0071	
XVII	P7	0.0898	0.0919	0.0899	0.0879	0.0879	0.0879	0.0935	0.0935
		0.0935	0.0937	0.0916	0.0856	0.0898	0.0899	0.0000	0.0071
XVIII	C18	0.0921	0.0942	0.0922	0.0901	0.0901	0.0901	0.0919	0.0919
		0.0919	0.0879	0.0858	0.0919	0.0921	0.0922	0.0089	0.0162
		0.0089							
XIX	p24	0.0939	0.0962	0.0940	0.0919	0.0921	0.0921	0.0957	0.0959
		0.0957	0.0916	0.0897	0.0937	0.0939	0.0940	0.0107	0.0181
		0.0107	0.0053						
xx	P39	0.0895	0.0917	0.0896	0.0875	0.0877	0.0877	0.0952	0.0953
		0.0952	0.0911	0.0892	0.0873	0.0895	0.0896	0.0053	0.0125
		0.0053	0.0035	0.0071					
XXI	S18	0.0875	0.0897	0.0876	0.0856	0.0857	0.0857	0.0913	0.0914
		0.0913	0.0872	0.0853	0.0873	0.0875	0.0876	0.0053	0.0125
		0.0053	0.0035	0.0053	0.0035				
XXII	c4	0.0896	0.0917	0.0897	0.0877	0.0877	0.0877	0.0934	0.0936
		0.0934	0.0893	0.0874	0.0895	0.0896	0.0897	0.0035	0.0107
		0.0035	0.0053	0.0071	0.0053	0.0018			
XXIII	C51	0.0900	0.0920	0.0901	0.0880	0.0880	0.0880	0.0937	0.0937
		0.0937	0.0896	0.0876	0.0898	0.0900	0.0901	0.0035	0.0107
		0.0035	0.0053	0.0071	0.0053	0.0018	0.0000		
XXIV	S1	0.0895	0.0917	0.0896	0.0875	0.0877	0.0877	0.0932	0.0934
		0.0932	0.0891	0.0873	0.0893	0.0895	0.0896	0.0035	0.0107
		0.0035	0.0053	0.0071	0.0053	0.0018	0.0000	0.0000	
XXV	P2	10.0877	0.0899	0.0878	0,0877	0. 0859	0.0859	0.0934	0.0936
		0.0934	0.0893	0.0874	0.0856	0.0877	0.0878	0.0018	0.0089
		0.0018	0.0071	0.0089	0.0035	0.0035	0.0018	0.0018	0.0018
XXVI		0.0895	0.0917	0.0896	0.0875	0.0877	0.0877	0.0910	0.0912
		0.0910	0.0912	0.0893	0.0893	0.0895	0.0896	0.0035	0.0107
		0.0035	0.0071	0.0089	0.0071	0.0035	0.0018	0.0018	0.0018
		0.0035							
XXVII	T43	0.0895	0.0917	0.0896	0.0875	0.0877	0.0877	0.0910	0.0912
		0.0910	0.0931	0.0913	0.0893	0.0895	0.0896	0.0035	0.0107
		0.0035	0.0089	0.0107	0.0088	0.0053	0.0035	0.0035	0.0035
		0.0053	0.0018						
XXVIII	t11	0.0897	0.0918	0.0898	0.0878	0.0878	0.0878	0.0913	0.0914
		0.0913	0.0914	0.0896	0.0896	0.0897	0.0898	0.0071	0.0144
		0.0071	0.0071	0.0089	0.0071	0.0035	0.0053	0.0053	0.0053
		0.0071	0.0035	0.0053					

XXIX	C1	0.0895	0.0917	0.0896	0.0875	0.0877	0.0877	0.0910	0.0912
		0.0910	0.0912	0.0893	0.0893	0.0895	0.0896	0.0071	0.0143
		0.0071	0.0071	0.0089	0.0071	0.0035	0.0053	0.0053	0.0053
		0.0071	0.0035	0.0053	0.0035				
XXX	Td17	0.0875	0.0897	0.0876	0.0856	0.0857	0.0857	0.0891	0.0892
		0.0891	0.0892	0.0873	0.0873	0.0875	0.0876	0.0053	0.0125
		0.0053	0.0053	0.0071	0.0053	0.0018	0.0035	0.0035	0.0035
		0.0053	0.0018	0.0035	0.0018	0.0018			
XXXI	t18	0.0836	0.0858	0.0837	0.0817	0.0818	0.0818	0.0852	0.0853
		0.0852	0.0853	0.0835	0.0835	0.0836	0.0837	0.0089	0.0162
		0.0089	0.0089	0.0107	0.0088	0.0053	0.0071	0.0071	0.0071
		0.0089	0.0053	0.0070	0.0053	0.0053	0.0035		
XXXII	p10	0.1510	0.1533	0.1511	0.1489	0.1489	0.1489	0.1524	0.1527
		0.1524	0.1527	0.1507	0.1507	0.1510	0.1511	0.0631	0.0714
		0.0632	0.0672	0.0691	0.0668	0.0630	0.0611	0.0612	0.0611
		0.0631	0.0590	0.0609	0.0629	0.0628	0.0609	0.0647	
XXXIII	c13	0.0815	0.0837	0.0835	0.0796	0.0836	0.0798	0.0936	0.0937
		0.0897	0.0936	0.0917	0.0816	0.0777	0.0797	0.0397	0.0476
		0.0399	0.0419	0.0437	0.0397	0.0379	0.0398	0.0400	0.0397
		0.0398	0.0397	0.0397	0.0398	0.0397	0.0379	0.0416	0.1007
XXXIV	C26	0.0796	0.0818	0.0816	0.0777	0.0817	0.0778	0.0916	0.0918
		0.0877	0.0916	0.0897	0.0797	0.0758	0.0778	0.0379	0.0457
		0.0380	0.0400	0.0418	0.0379	0.0361	0.0380	0.0381	0.0379
		0.0380	0.0379	0.0379	0.0380	0.0379	0.0361	0.0397	0.0987
		0.0018							
XXXV	P8	0.0835	0.0857	0.0836	0.0816	0.0856	0.0818	0.0933	0.0935
		0.0894	0.0892	0.0873	0.0776	0.0797	0.0798	0.0360	0.0438
		0.0361	0.0380	0.0398	0.0341	0.0341	0.0360	0.0361	0.0359
		0.0341	0.0378	0.0396	0.0379	0.0378	0.0359	0.0396	0.0983
		0.0053	0.0035						
XXXVI	S43	0.1697	0.1700	0.1698	0.1718	0.1676	0.1655	0.1688	0.1692
		0.1645	0.1713	0.1693	0.1650	0.1653	0.1655	0.1733	0.1817
		0.1716	0.1691	0.1639	0.1729	0.1708	0.1709	0.1716	0.1729
		0.1733	0.1702	0.1681	0.1684	0.1702	0.1681	0.1681	0.2257
		0.1698	0.1720	0.1735					
XXXVII	S30	0.1795	0.1799	0.1797	0.1817	0.1775	0.1753	0.1786	0.1790
		0.1742	0.1812	0.1791	0.1748	0.1751	0.1753	0.1832	0.1918
		0.1815	0.1789	0.1736	0.1828	0.1806	0.1807	0.1815	0.1828
		0.1832	0.1800	0.1778	0.1782	0.1800	0.1778	0.1778	0.2365
		0.1797	0.1819	0.1834	0.0071				
XXXVIII	S38	0.1697	0.1700	0.1698	0.1718	0.1676	0.1655	0.1688	0.1692
		0.1645	0.1713	0.1693	0.1650	0.1653	0.1655	0.1733	0.1817
		0.1716	0.1691	0.1639	0.1729	0.1708	0.1709	0.1716	0.1729
		0.1733	0.1702	0.1681	0.1684	0.1702	0.1681	0.1681	0.2257
		0.1698	0.1720	0.1735	0.0000	0.0071			
XXXIX	S48	0.1675	0.1678	0.1677	0.1697	0.1655	0.1633	0.1667	0.1670
		0.1624	0.1692	0.1671	0.1628	0.1631	0.1633	0.1711	0.1795
		0.1694	0.1669	0.1618	0.1708	0.1686	0.1688	0.1694	0.1708
		0.1711	0.1681	0.1659	0.1663	0.1681	0.1659	0.1659	0.2234
		0.1677	0.1698	0.1713	0.0018	0.0089	0.0018	,	
XL	td20	0.1722	0.1726	0.1724	0.1744	0.1702	0.1680	0.1714	0.1717
		0.1670	0.1739	0.1719	0.1675	0.1679	0.1680	0.1758	0.1819
		0.1742	0.1716	0.1665	0.1755	0.1733	0.1735	0.1742	0.1755
		0.1758	0.1728	0.1706	0.1710	0.1728	0.1706	0.1706	0.2285
		0.1724	0.1746	0.1761	0.0053	0.0125	0.0053	0.0035	
XLI	TD24	0.1620	0.1623	0.1622	0.1641	0.1600	0.1579	0.1612	0.1615
		0.1570	0.1637	0.1617	0.1574	0.1577	0.1579	0.1677	0.1760
		0.1661	0.1664	0.1681	0.1696	0.1653	0.1654	0.1661	0.1674
		0.1677	0.1648	0.1627	0.1630	0.1648	0.1627	0.1627	0.2194
		0.1643	0.1665	0.1680	0.0053	0.0125	0.0053	0.0071	0.0107
XLII	C20	0.1599	0.1602	0.1600	0.1620	0.1579	0.1557	0.1591	0.1594
		0.1548	0.1615	0.1595	0.1553	0.1556	0.1558	0.1656	0.1738
		0.1639	0.1643	0.1659	0.1674	0.1631	0.1633	0.1639	0.1653
		0.1656	0.1627	0.1605	0.1608	0.1627	0.1605	0.1605	0.2171
		0.1622 0.0018	0.1643	0.1658	0.0071	0.0143	0.0071	0.0053	0.0089

XLIII	t 17	0.3743	0.3752	0.3748	0.3771	0.3746	0.3746	0.3899	0.3908
		0.3957	0.3831	0.3806	0.3801	0.3800	0.3805	0.4735	0.4829
		0.4720	0.4687	0.4747	0.4685	0.4654	0.4658	0.4670	0.4685
		0.4665	0.4723	0.4754	0.4627	0.4723	0.4692	0.4629	0.5251
		0.4584	0.4553	0.4506	0.5402	0.5587	0.5402	0.5368	0.5454
		0.5359	0.5326						

Figure 3.34 Pairwise nucleotide sequence divergence between different haplotypes of COI_{614} of P. monodon.

Nucleotide sequence divergence of COI_{614} of investigated P. monodon varied greatly. Basically, each shrimp could be allocated into one of three groups (lineages I, II, III in a neighbor-joining tree, Figure 3.35). Low nucleotide divergence was observed between members of the same lineages but large divergence was found between individuals from different lineages.

Surprisingly, t17 (Trang) revealed large sequence divergence with the remaining specimens ($37.43-55.87 \%$). This divergence level is enormously greater than the typical level at the intraspecific level. The nucleotide of t 17 sequence was then blasted and the E value from Blast N was 4×10^{-32} for which P. monodon is the closet species (E-values for most of other sequences was 0.0). This open three interesting issues; the untypical high genetic diversity of COI in P. monodon, the amplification of a nuclear gene possessing similar sequences with mitochondrial COI or the existence of interspecific hybridization between male P. monodon and a female of the other species. It is premature at this stage to conclude that which possibility is correct. Therefore, this suspected circumstance should be further analyzed.

The haplotype distribution frequencies of COI could not directly analyze statistically because a large number of haplotypes with low frequencies and singletons were found. Therefore, frequencies of members of phylogenetic lineages in each geographic sample (Table 3.16) were subjected to a Monte Carlo simulation.

Significant genetic heterogeneity was found across overall investigated samples $(\mathrm{P}=0.0006)$. Geographic heterogeneity analysis between pairs of samples indicated significant population differentiation between Trang and Phangnga from the Andaman Sea and Trat from the Gulf of Thailand ($\mathrm{P}=0.0034$ and 0.0017, respectively). Surprisingly, Chumphon showed significant genetic heterogeneity with Trat located in the same coastal region $(\mathrm{P}=0.0113)$. Additionally, Satun (the

Figure 3.35 A neighbor-joining tree illustrating relationships of P. monodon in Thai water based on nucleotide sequence divergence of the COI_{614} gene segment.

Andaman Sea) which did not show significant genetic differentiation with Trat (located in the Gulf of Thailand, $\mathrm{P}=0.6538$) exhibited significant differentiation with other geographic samples from the Andaman Sea (Trang and Phangnga, $\mathrm{P}=0.0125$ and 0.0122 , respectively).

Unlike results from PCR-RFLP and SSCP analysis of 16 S rDNA 312 and SSCP analysis of AFLP-derived markers, nucleotide sequences of the COI fragment showed high genetic diversity intraspecifically and revealed that the gene pool of P. monodon in Thai waters is not panmictic but reproductively isolated into several populations. Significant genetic heterogeneity was observed both between samples from different coastal region (Trang and Phangnga with Trat) and within coastal regions (between Trat and Chumphon and between Trang/Phangnga and Satun).

Table 3.16 Distribution of members of different phylogenetic lineages of the NJ tree constructed from nucleotide sequence divergence of the COI_{614} gene segment

Geographic sample	Phylogenetic lineage		
	I	II	III
Trat	7	4	9
Trang			-
Phangnga	10	10	-

Table 3.17 Pairwise geographic heterogeneity analysis between P. monodon from different geographic samples based on nucleotide sequence divergence of the COI_{614} gene segment analyzed by a Monte Carlo simulation

	Trat	Chumphon	Satun	Trang	Phangnga
Trat	-				
Chumphon	$\mathrm{P}=0.0113$	-			
Satun	$\mathrm{P}=0.6538^{\mathrm{ns}}$	$\mathrm{P}=0.0219$	-		
Trang	$\mathrm{P}=0.0034$	$\mathrm{P}=0.0260$	$\mathrm{P}=0.0125$	-	
Phangnga	$\mathrm{P}=0.0017$	$\mathrm{P}=0.0506^{\mathrm{ns}}$	$\mathrm{P}=0.0122$	$\mathrm{P}=1.0000^{\mathrm{ns}}$	-

3.3 Isolation and characterization of sex-related markers in P. monodon

3.3.1 Identification of genomic sex markers in P. monodon by RAPD and

SCAR markers

Bulked segregrant analysis (BSA) and RAPD approaches are potential for isolation of phenotype-specific markers in various organisms when used in combination. To isolate sex-specific RAPD markers in P. monodon, 100 RAPD primers were screened. Eighteen RAPD primer provided candidate sex-specific RAPD markers. As a results, they were subjected for further analysis against three bulks of DNA ($N=3,5$ and 10 individuals) for each sex. Nevertheless, only eight primers (Table 3.18 and 3.19 and Figures 3.36 - 3.40) generated ten promising sexswefarkp fugur รณมมาวทยาลย

Seven RAPD fragments are existent in one sex but absent in the other whereas three fragments were found in both sexes of P. monodon but were found as the very faint and intense bands between different sexes. As a result, they may be different sequences having similar sizes when analyzed by agarose gel electrophoresis.

Basically, three different types of products are expected; 1) identical RAPD fragments found in both male and female P. monodon, 2) amplified fragments from polymorphic loci among different individuals having the same sex and 3) RAPDamplified fragments derived from the heterogametic sex.

Using multiple bulks for each sex, the first and second types of RAPD band should have been eliminated. Nevertheless, the third types of markers should be examined against separate individuals of male and female P. monodon to eliminate products of a rare polymorphism.

A total of 10 candidate sex-specific RAPD fragments were found. The target band were excised from the gels and eluted. The reamplified product was gel-eluted and cloned. Eight of these were successfully cloned and sequenced (Table 3.19). Two RAPD fragments (650 bp and 440 bp) from OPM09 illustrating the possible malespecific nature did not give reproducible amplification results when amplification was repeated. Seven recombinant clones (pPMF650, pPMF530, pPMF500, pPMM350, pPMM800, pPMM600 and pPMM650) were unidirectional sequenced whereas pPMM1100 were sequenced for both directions (Figure 3.41).

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Table 3.18 Amplification results of RAPD primers for identification of genomic sexspecific markers in P. monodon

Primers	Stringency	Sex-specific marker (bp)	
		Male	Female
1.UBC 101	+ +	-	-
2.UBC 115	+ +	-	-
3.UBC 119	+ +	800*	-
4.UBC 120	++	-	-
5.UBC 122	+ +		-
6.UBC 128	+ +		-
7.UBC 135		350*	-
8.UBC 138			-
9.UBC 146			-
10.UBC 153			-
11.UBC 158			-
12.UBC 159			-
13.UBC 160			-
14.UBC 165	+ +		-
15.UBC 168	$+$		-
16.UBC 169	+ +		-
17.UBC 174	+ +		-
18.UBC 175	+ +		-
19.UBC 191	c + +		-
$\text { 20.UBC } 193$	19.0	\%	-
21.UBC 195	- σ	- -	-
$\text { 22.UBC } 196$	7%	$0-7$	-
23.UBC 197	-	-	-
24.UBC 200	+ +	-	-
25.UBC 210	+ +	-	-

Table 3.18 (continued)

Primers	Stringency	Sex-specific marker (bp)	
		Male	Female
26.UBC 217	+	-	-
27.UBC 220	+	-	-
28.UBC 222	+ +	-	-
29.UBC 228	+	-	-
30.UBC 235	++	-	-
31.UBC 237	++	-	-
32.UBC 259	$+$		-
33.UBC 263			-
34.UBC 267			-
35.UBC 268			-
36.UBC 270			-
37.UBC 271			-
38.UBC273			-
39.UBC299		-	-
40.UBC428		-	650*
41.UBC456	+t		-
42.UBC457	++		-
43.UBC459	++		-
44.M13			-
45.PERI	0		-
46.HRU18			-
47.HRU33			-
$\begin{aligned} & \text { 48.YN73 } \\ & \text { 49.YNZ22 } \end{aligned}$			P_{-}^{-}
50. (CA) ${ }_{8}$	-	-	-
51. (CAC) ${ }_{5}$	-	-	-
52. (CT) ${ }_{8}$	-	-	-

Table 3.18 (continued)

Primers	Stringency	Sex-specific marker (bp)	
		Male	Female
53. (GTG) ${ }_{5}$	-	-	-
54. (GACA) ${ }_{4}$	-	-	-
55. (GATA) 8_{8}	-	-	-
56.OPA01	+++	-	530*
57.OPA02	++	-	-
58.OPA03	+	-	-
59.UBC140			-
60.OPA05			-
61.OPA06			-
$62.0 P A 07$			-
63.OPA08			-
64.OPA09			-
65.OPA10			-
66.OPA11			-
67.OPA12		-	-
68.OPA13	+	-	-
69.OPA14	+++	600	-
70.OPA15	+++		500
71.OPA16			-
72.OPA17	2^{++}	-	-
73.OPA18			-
74.OPA19	$+$		-
$\begin{aligned} & \text { 75.OPA20 } \\ & \text { 76.UBC141 } \end{aligned}$			$)_{-}^{-}$
77.OPB02	+	-	-
78.OPB03	+ +	-	-
$79.0 P B 04$	++	-	-
80.OPB05	++	-	-

Table 3.18 (continued)

Figure 3.36 RAPD patterns from amplification of bulked male ($N=10$, lanes $1 \& 8$; $N=5$, lanes $3 \& 10$ and $N=3$, lanes $5 \& 12$) and female ($N=10$, lanes $2 \& 9 ; N=5$, lanes $4 \& 11$ and $N=3$, lanes $6 \& 13$) using primers OPA05 and OPA17. A 100 bp ladder (lane M) was used as a DNA marker.

Figure 3.37 RAPD patterns from amplification of bulked male ($N=10$, lanes $1 \& 8$; $N=5$, lanes $3 \& 10$ and $N=3$, lanes $5 \& 12$) and female ($N=10$, lanes $2 \& 9 ; N=5$, lanes $4 \& 11$ and $N=3$, lanes $6 \& 13$) using primers UBC428 and UBC456. A 100 bp ladder (lane M) was used as a DNA marker.

Figure 3.38 RAPD patterns from amplification of bulked male ($N=10$, lanes $1 \& 8$; $N=5$, lanes $3 \& 10$ and $N=3$, lanes $5 \& 12$) and female ($N=10$, lanes $2 \& 9 ; N=5$, lanes $4 \& 11$ and $N=3$, lanes $6 \& 13$) using primers OPB19 and OPB20. A 100 bp ladder (lane M) was used as a DNA marker.

Figure 3.39 RAPD patterns from amplification of bulked male ($N=10$, lanes $1 \& 8$; $N=5$, lanes $3 \& 10$ and $N=3$, lanes $5 \& 12$) and female ($N=10$, lanes $2 \& 9, N=5$ lanes $4 \& 11$ and $N=3$, lanes $6 \& 13$) using primers OPA01 and OPB06. A 100 bp ladder (lane M) was used as a DNA marker.

Figure 3.40 RAPD patterns from amplification of bulked male ($N=10$, lanes $1 \& 8$, $N=5$, lanes $3 \& 10$ and $N=3$, lanes $5 \& 12$) and female ($N=10$, lanes $2 \& 9, N=5$, lanes $4 \& 11$ and $N=3$, lanes $6 \& 13$) using primers OPA15 and OPM09. A 100 bp ladder (lane M) was used as a DNA marker.

Table 3.19 Candidate sex-specific RAPD markers found in this study

Primer Number of RAPD (size in bp)		
	Male	Female
UBC119	1 (800)*	-
UBC135	1 (350)*	-
$\begin{aligned} & \text { UBC428 } \\ & \text { OPA01 } \end{aligned}$		$\begin{aligned} & 1(650)^{*} \\ & 1(530)^{*} \end{aligned}$
$\begin{array}{r} \text { OPA14 } \\ \text { OPA15 } \end{array}$	$\begin{aligned} & 1\left(600^{\mathrm{a}}\right) \\ & 1(650)^{*} \end{aligned}$	$1\left(500^{a}\right)$
9 OPB20	1 (1100)*	-
OPM09	2 (650*, 4	-

*indicate fragments found in one sex but were absent from the other sex of P. monodon. ${ }^{\text {a }}$ indicate fragments that are existent in both males and females but the intensity of the bands was different between sexes. Fragments which were successfully cloned are illustrated in boldface.

These clones did not exhibit significant similarity with nucleotide (BlastN) or translated protein (Blast X) sequences previously deposited in the GenBank (E values $>10^{-4}$) and were then regarded as unknown DNA segments.

Four pairs of primers were designed (PMF530-F/R, PMM350-F/R, PMM1100-F/R, PMM800-F/R) from the obtained sequence and converted to sequence-characterized amplified region (SCAR) markers. These sequence-specific primers were tested against genomic DNA of five representative male and female P. monodon. Two primers pairs (PMF530-F/R, PMM350-F/R) yielded positive amplification products in both sexes. Neither sex-specific amplification patterns nor length polymorphism between the PCR product of male and female P. monodon were observed (Figure 3.42, 3.43).

The PCR product from each shrimp was then further characterized to verify whether sex-specific single nucleotide polymorphism (SNP) was existent in the amplification product using SSCP analysis. Results showed polymorphism between single stranded DNA of these shrimps but was not relevant to sex specificity in this species (Figure 3.44 and 3.45).

สถาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

A. pPMF650

GATTTGTCAGCGGTTGGCAAAACGTGTCATTAATATACAACACATAGCGGTATCTCTTTCTT ACTGCATAAACACCGATACATAATTTTCGAACAAAAAATTTGCCGTCGGATATATCCATTCT TTTACATGAATTTCTCAACAATAACATCTTGAGGCGGTATTCGACTTTGATCCTTATCTGCT CTTGGCTTAAGGCACAGATACCATCGCTAATTACATTCATAGTTCACCGTTTAGTCTTCGAG CCTTACCAGCCAAAAATACCCATTAATTATTCCTGGCAAAGGAACTGGATTGTGTGCTTGGT GCCTCCTAGTCTGACCCTAATGTACCTTCAGTGCAAGAATGATATTAGAATAATAACTCTGA GGNACAGGTTGGTTGAAATAATGACCCTTATGGCGACGAAAGATAGATGCGGAGTTGCTTTA AGAGGCTCGAACAGGAAGCAAATCTTCACGGTGAGAAAACGTTTTTCCGCCAAGATTTAATC TCTCTTGTTTTGTCGTCTTAATCACCCGCCTCCAGCTGNACTCATCTGTGCTAATGCAGATG AAAATGTCTAGTAAATAAATTAATGATGAATATTAGTTGAAAAATAATGGAACATGCTAGTC AATGAGTAAACCCCTGGACAAATCACTANT

B. pPMF530

ACTAGTGATTCAGGCCCTTCGAAGTTTTACCAAAGCAAGTTTCACACACACAAAAAAGTCTG TTTCTGTTCTAGAGCAGTTTCAAAGCATAACCCAGTTTTTTCCCCACGTTGAACCAAAGAGG CATGTGCTGGGGATTAGAAGCACTGTGAAGCTCTGTTTACTTTGCTCTGTGCAAATTTAGCA GCAGCATACACAATTTTCTAGTAAATGAGACTAAAACAAGGCCTTAACTCCATTTTGAGGGT ATATGAATACTGCACCCATGGCCATACTAACTAGCAAACCACTTTTNGGGATTGGTTTAGAA TGGCAAAAATAGATGCCTACAGTCAATATATTAATTTTGCAGTTGCATGAGCAAAAATTA
C. PPMF500

ACTAGTGATTTTCCGAACCCCTAGGTTTAAAACGTATCTCTCTCTCTCTTTCTTCTCTCTCT ТТСТТСТСТСТСТТТСТСТСТСТСТСТССТСССАССССТСТСТСТСТСТАТСТСТАТСТСТА TCTCTATCTCTATCTCTCTATCTCTATCTCTATCTCTCTCTCTGTTTCTTCCCTGTTCATAC CTGTGTGTATCATTTTGTATATATTGTATATATAAAATAGAGACAGAAACAGATAAATCTAA GCTGATAGATAGCTAAAGCATGGG

D. pPMM1100

GGACCCTTACTAAGATTGACAATGTTCGCATTACGTAAATATAAGACAAAAATATATGCATA TGACACTATCCATTTCTCACTCCATATGCATATATATAAAAAAAAAAAAAAATACTTGCAAA GACCATAATCAATATCTTTACAAATGTTTACAAATGCATAATATAACAAAGATGCAACTCTA ATAAGAATATCTCAACAGAAATTTCTTAACTTCGCGGGAACGATTGATAAACTTGCGAACTC СТСТСТTСТTTTAACATATTATACTAGTCGTTCTTACATCCCAAAGGCATCTTCATAATAAA

AATACAATTCAGTGAAAAGGATCATGAAACTCTTGTTGTACCCAACATGCCTTTAATATGAC TTTCAAGCTTACACAAACACGCGTCCTAACAGGTGATAACACAAATAAGATAAAAATAACAG GCATATATTTTTTGTGTAAATGTAAATGCGATAACTACCATTACGCACCTTTGAAAATTGCA GGCTTATACAACAGGTGCAACCCTAATAAGAATAACAACAGAAATTTCTTAACTTCGCGGGA CGATTGATAAGCTATCTTACATCCCAAAGGCATCTTTCTAATAAAAATACAATTCACTCAAA AGGATCATGAAACTCTTGTTGNACTCAATGTCTTTATTATGACTTTCACAAACACACATCCT AACAGGCGATAATACAAATAAAATAAAAATAACAGGCTTAAATTTTCTGTGTAAATGTAAAT GCGATAACCACTATCTCATACGTTTGAAAATTTCAGGCTTATACAACAGTTTAATTACCTAG CAGGTTGAAAAGTCGCCGGTTTTATTCTATTTAGAGAGTATTAATAGGGTTTTCAACGCACC TGCGCTGAAAAGGAGGATGGAGCGATGGAAAGTATGAGATGTTACTGGACTCCTGAAAGAGG CAAAAAACCTACAGGAAAGACACAGAAAAACAATTGCAACAAGAGAAGAGATGGACAAATCA AGGAAATTTGCCAGTCTAATGAAACAAGGCAAAGTGACAAAGGCAGTAAGGGTCCA

E. PPMM350

GATTAAGCTGCGAGGCGTACGAGTCAGTTTCTGAGATCGGGTTTTGTGATATCTAGAAAAAA AACCGGTATAATCCAGTATATTTTATCTAGATTAACGGATTTATTACTGGTGATAATGATGC CTTATTGCTATAATTATTGAGATTTTGTTATTGCTAAAATTTTCACTCCTGTTCTATACGGT CGTTATCAGCATTTCATTTATTATCAATGATATTATCAAAATTCTCTATGACCACTCTCATT GTTAGCGTTTGTATTTCTAGTGGCAATAGGTATGGTGAGCGATAGCGGTATTAACTGTGCAT TTTACTCAACGAGTTAATGGTATCTCGCAGCTTAATCACTAGT

F. pPMM800

ATTGGGCGATAGTTATTTATATCCTCGATGTCAGTGAGGGATTTTCCAAAAGTTAGGGAATG TGTTGGTAACAATAGAAGTGTTTACAACAATCATAATGTAAAATGTAATAACTGGCAACGAG TCTCTTATGAATCGAAATGGAACCCCATTAAAACCATAGGAATTAGAAAATGTTAAACGTTT TACAGTTAAAATGATAGTCTCGCAGTCCAAAGGATCAAGTCTAAAGATATTTTTGGGACCTT CATTTGAAGTGTAAATTCCTTCGTCAATAGCTTCAGTAATATGAGAGTTTAGATTCACTTGT GACTTTTCATAAGCATCTTTGCCAGCATTTGCAAAAAACATATTAGATTCCTCTGCTCTCTC ACGTAAGTTATCGCTACCATTTCTTTTGTTCTGGAATTCTCTGTAGTTTTTTTTTTTTTTTT TTTTTTTTTTTTTTGCCTGTGCCAATAAATAAATTGAGTCGTTTCTTCTCTTCTTTGTAAAG GTCATATTGTACCTATTACTCTTAATCCTTTTTCTAAGCTGGTCCCCAGTCTTCACTGCAGC CAGGTTACTTTCCTTGTTACGATTGGTGCACAGTTGTCCATGCATTTCAGGAAAGCATTAGT TAACTTTTTTATTTGTACACTAACAGTTTGAAGAATTTCTGTAAAAGATTAAGAGCTTCATT

TAATAGTGATTAAATGAAGCTCCTACTTGAGTCAACTTCACATTCTTCATTAATTTAGCAAT TTCATTAATTGATGCTAATAAATTATCATTGAAATCGCCCAATAAT

G. PPMM600

TCTGTGCTGGTGGTAAACAAAATGCCTATCTGTGCTGGACTAAAGATGATATTAATGGGGAG GCTAAGAGTACCTATCAATATGTATTAGATCTGAGATCTAGATTAGAACAATTGGCTCAACT AGCAGACGTGAAAAGCAGAATGTACAAGACGTACTTCGACAGGAAAGCTAGAGCTCGAACAT TAAAAGAAGGGGATGAAGTACTTGTGCTGTTGCCAACCTCGTATAACAAACTAACTGTTCAG TGGAAGGGTCCCTATTCTGTTGTATGCAAACATGAAAATGGAGTAGACTATGAAATAAAAAT AAAAGGGAAAATGAAGCTTTATCATGTAAACATGCTGAAGAAATATGAAAGACGCGAAAATG ACATTTCTCACTCTCAGGTGTGCCAAGCTTGCGTGATAGATGCTTCTGATCCCATAGATAAG AAGCTAATGGCGTATGTGATATACCCGAATTGTATCCGCTTGGTAAATATGATTTTAATTTT AACTCTGAACTCTCAAATGAACAAACCTCAGAGTTAAACCATCTAATCGCTGATTTTCTTGA CGTATTTGTCGATAAACCAGGCGTAACCAGCACAGAA

H. pPMM650

TTCCGAACCCATAATAAAAACAAAGCGATGAACCCATATGCGCGAGCTGTTGACGTCACCTA TTTTCCGAACCCCGGAGGCCATGAAGTCCCAATCTTCCCGTGACCTCAACACTGAAGGAGGG ACGTCTGGAGAACCCGCTGGAGTGATAGCGATGTCGTAGTGTGAAGATCTCTCTGTCGTTAA TAGAATCCTACAGGGAGTAAGGTTTACGTGTTTGTGAGGTTGAATTTCGGTGCGTAGAAAAT AGATAAGCTGTTATTTCAAGAATAGCATGATTATTCAGTTGTGTTTTTTTCCTGTAGAGTTG ATGATTTCGTTTGATTCTTACCTACTCGCGGCATTATCTTCATCAAAGTGCTAATATTTTAC CGTGCGAACAGTGATTATTAAACGGCTGTGTATTGCCATCAATTATTGTTTTAATCTACTGT TAGATGTCTGGCACCGCGTAAACGGTTTTTGTTTTCAGTATTTATAGAGATCTTACACTAAA CAAAGCAAGATAAACACAAAAAAATATATATAAAAACGGTAAAATAAAAAACTGAAGATAAA GGACACTGAATTGCCTATCTTACAAATAATCAGAGCAACTGCTGGCAGTGAACTTATTACAG TTATCTGGGTTCGGAAA

Figure 3.41 Nucleotide sequences of candidate sex-specific RAPD fragments; pPMF650 (A), pPMF530 (B), pPMF500 (C), pPMM1100 (D), pPMM350 (E), pPMM800 (F), pPMM600 (G), pPMM650 (H) using M13 reverse primer as a sequencing primer with the exception that pPM1100 sequence combined from M13 forward and M13 reverse primers.

Figure 3.42 Agarose gel electrophoresis illustrating the product resulted from amplification of genomic DNA of 5 individuals of males (lanes $1-5$) and females (lanes 7 - 11) P. monodon with primers PMF530-F/R. Lanes M and 13 are a100 bp DNA markers and the negative control (no DNA template), respectively.

จุฬาลงกรณ์มหาวิทยาลัย

Figure 3.43 Agarose gel electrophoresis illustrating the product resulted from amplification of genomic DNA of 5 individuals of males (lanes $1-5$) and females (lanes 6 - 10) P. monodon with primer PMM350-F/R. Lanes M and 11 are a 100 bp DNA markers and the negative control (no DNA template), respectively.

Figure 3.44 SSCP analysis of the product resulted from amplification of genomic DNA of males (lanes $2-5$) and females (lanes $6-9$) of P. monodon using PMF530-F/R. Lanes M and 1 are a 100 bp DNA marker and non-denatured PCR product, respectively.

Figure 3.45 SSCP patterns of the product resulted from amplification of genomic DNA of males (lanes $2-6$) and females (lanes $7-11$) P. monodon using PMM350-F/R. Lanes M and 1 are a 100 bp DNA marker and non-denatured PCR product, respectively.

3.3.2 Isolation and characterization of sex-specific/differential expression markers of P. monodon using RAP-PCR analysis

3.3.2.1 Total RNA Extraction and Bulked Segregant Analysis (BSA)

Total RNA was isolated from ovaries and testes of each P. monodon broodstock. The ratio of $\mathrm{OD}_{260} / \mathrm{OD}_{280}$ was 1.7-2.0 indicating the accepted quality of total RNA. An agarose gel electrophoresis revealed predominantly discrete bands along with smear high molecular weight RNA of total RNA from ovaries and testes (Figure 3.46A). Two bulked total RNA of male $(N=3)$ and female $(N=3) P$. monodon were generated from an equal amount $(0.5 \mu \mathrm{~g})$ of each individual. The first strand cDNA was synthesized from those total RNA and electrophoretically analyzed. The synthesized first strand cDNA covered <0.5 to 7 kb in length (Figure 3.46B).

Figure 3.46 A 1.0\% agarose gel electrophoresis showing the quality of total RNA extract from ovaries (lanes $1-3$) and testes (lanes $4-5$) of P. monodon (A) and the corresponding first strand cDNA (B). Lane $\mathrm{M}=\lambda$-Hind III DNA marker.

First strand cDNA representing male and female P. monodon was used as template for identified sex-specific/differential expression markers by RAP-PCR. Several candidate markers were identified after being electrophoretically analyzed by 1.6\% agarose gel (Figures 3.47-3.48).

After preliminary screening (150 primer combinations), a large number of candidate markers were divided into 2 groups (Table 3.20). The group 1 was RAPPCR fragments specifically expressed in testes and ovaries composing of 46 and 110 candidate fragments, respectively. The group 2 was differential expression fragments between testes and ovaries composing of 45 and 44 candidate fragments, respectively.

Figure 3.47 A 1.6\% agarose gel illustrating RAP-PCR fragments of ovaries (lanes 1, $3,5,7,9$ and 11) and testes (lanes 2, 4, 6, 8,10 and 12) generated from UBC299 (1st primer) and UBC459 (lanes 1 and 2), OPB04 (lanes 3 and 4), OPB07 (lanes 5 and 6), OPB11 (lanes 7 and 8), OPB14 (lanes 9 and 10) and OPB15 (lanes 11 and 12). Lanes M are a 100 bp DNA marker. Arrowheads indicate a candidate female-specific RAPPCR fragment of P. monodon.

Figure 3.48 A 1.6\% agarose gel illustrating RAP-PCR fragments of ovaries (lanes 1, $3,5,7,9$ and 11) and testes (lanes 2, 4, 6, 8, 10 and 12) generated from UBC428 (1st primer) and OPB10 (lanes 1 and 2), OPB15 (lanes 3 and 4), UBC101 (lanes 5 and 6), UBC119 (lanes 7 and 8), UBC138 (lanes 9 and 10) and UBC191 (lanes 11 and 12). Lanes M are a 100 bp DNA marker. Arrowheads indicate a candidate female-specific RAP-PCR fragment of P. monodon.

Table 3.20 Candidate sex-specific/differential expression RAP-PCR fragments in ovaries and testes of P. monodon 9 ¢

1st Primer	RAP-PCR group I		RAP-PCR group II	
UBC 119	20	18	Male	62
UBC 299	11	19	8	Female
UBC 428	6	29	3	6
UBC 456	3	20	6	6
UBC 457	6	24	6	8
Total	$\mathbf{4 6}$	$\mathbf{1 1 0}$	$\mathbf{4 5}$	7

A total of 25 and 20 fragments from candidate female and male RAP-PCR fragment were chosen. Generally, five fragments (from each sex) having different sizes except M119-M09, M428-191, M428-B17 and M457-A01 were pooled and simultaneously cloned. Generally, 3-5 different inserts were able to recover after cloning. The PCR products exhibiting similar sizes were further characterized by digestion of plasmid DNA or colony PCR products with restriction enzymes.

A total of 21 and 14 types of sequences originating from 24 female and 15 male cloned fragments were obtained. Nucleotide sequences of these 35 transcripts were blasted against data in the GenBank (Table 3.21). The major transcripts found were unknown transcripts (51.43\%), 18S rRNA (17.14\%) and thrombospondin (TSP, 11.43%) homologues. Rare transcripts encoding NADPH ferrihemoprotein reductase, Ran-binding protein, G-protein pathway suppressor 1, nucleoporin Nup153 and hypothetical protein were also identified (Table 3.22).

A pair of primers was design from each of 16 unknown transcripts and 9 known transcripts. The expression patterns of these 25 transcripts were tested against the first strand cDNA synthesized from total RNA of ovaries $(N=5)$ and testes ($N=$ 4) of 3 -month-old P. monodon (Table 3.23, Figure 3.49). Five derived RAP-PCR markers (FI-4, FI-44, FIII-4, FIII-39 and FIII-58) revealed sex-specific expression in females of juvenile P. monodon. These markers were further tested against ovaries (N $=7)$ and testes $(N=7)$ of P. monodon broodstock and the results revealed that the expression pattern of these markers was consistent in P. monodon broodstock (Figure 3.50).
สถาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

Table 3.21 Blast results of sex-specific/differential expression RAP-PCR fragments in ovaries and testes of P. monodon

Clone*	No. of nucleotides sequenced (bp)	Closest species	$\begin{gathered} \text { E- } \\ \text { values } \end{gathered}$	Blast analysis
1. MI-1	280	Litopenaeus vannamei	10^{-121}	18S rRNA
2. MI-36	391		$>10^{-4}$	Unknown
3. MI-56	570		0.0	Shrimp WSSV
4. MII-5	894	Musca domes	2×10^{-77}	NADPH
				ferrihemoprotein reductase
5. MII-51	413		$>10^{-4}$	Unknown
6. MII-57	358	topenaeus vannamei	10^{-131}	18 S rRNA
7. MIII-6	579	Litopenaeus aztecus	10-89	18 S rRNA
8. MIII-7	412		$>10-4$	Unknown
9. MIII-8(1)	485		> 10-4	Unknown
10. MIII-8	726	Litopenaeus vanname	0.0	18 S rRNA
(2)				
11. FI-1	744	Drosophila melanogaster	3×10^{-32}	Ran-binding protein
12. FI-4	625	-	10^{-4}	Unknown
13. FI-6	660	Penaeus monodon	2×10^{-49}	Thrombospondin
14. FI-40	401	Mus musculus	4×10^{-43}	Hypothetical
		1629ε	1%	protein
15. FI-44	693	$\sigma-$	$>10^{-4}$	U Unknown
16. FII-17	681	Bos Taurus	3×10^{-40}	Thrombospondin
17. FII-18	1008	Drosophila	10^{-105}	GA16635-PA
		pseudoobscura		
18. FII-22	921	-	$>10^{-4}$	Unknown
19. FIII-4	745	-	$>10^{-4}$	Unknown
20. FIII-8	868	-	$>10^{-4}$	Unknown

Table 3.21 (continued)

Table 3.22 Gene homologues in ovaries and testes of P. monodon identified through RAP-PCR analysis

Transcript	Redundancy	Percentage of expressed transcripts
Unknown genes	18	51.43
18S rRNA	6	17.14
Thrombospondin homologues (TSP)	4	11.43
NADPH-cytochrome P450 reductase	1	2.86
Hypothetical proteins	1	2.86
White Spot Syndrome Virus	1	2.86
Ran-binding protein	1	2.86
G protein pathway suppressor 1	1	2.86
Nucleoporin Nup153 (Xenopus laevis)	1	2.86
Drosophila pseudoobscura	1	2.86
(GA16635-PA)	$\mathbf{1 5}$	
Total		$\mathbf{1 0 0}$

Surprisingly, MII-5 originally identified in testes by RAP-PCR analysis showed sex-differential expression with a higher Tevel in ovaries. Temporal female specific expression of MII- 5 was observed when tested against ovaries $(N=7)$ and testes $(N=7)$ of P. monodon broodstock (Figure3.50).

M457-A01 and MII-51 revealed male-specific expression in juvenile P. monodon ($N=5$ and 4, respectively). Results were consistent when tested with P. monodon broodstock ($N=10$ and 5 , respectively; Figure 3.51).

Table 3.23 Amplification of newly designed primers derived from candidate sexspecific/differential expression fragments of P. monodon

| Primers | Expected product
 size (bp) | Amplification result | | |
| :--- | :---: | :---: | :---: | :---: | :---: |

[^0]

Figure 3.49 RT-PCR of sex-specific expression markers derived from FI-4 (A), FI-44 (B) and FIII-58 (C) against the first strand cDNA of testes (lanes $1-2$), ovaries (lanes $3-4$), hemocytes (lanes $5-6$) and genomic DNA of male (lane 7) and female (lane 8) of 3-month old shrimps. Lanes M and 9 are a 100 bp DNA ladder and the negative control (without the first strand cDNA template).

Figure 3.50 RT-PCR of female-specific expression markers derived from FI-4 (A), FI-44 (B), FIII-4 (C), FIII-39 (D), FIII-58 (E) and MII-5 (F) against the first strand cDNA of ovaries (lanes 2-8) and testes (lanes 9-15) of P. monodon broodstock. Lanes M and 1 are a 100 bp DNA ladder and the negative control (without the first strand cDNA template). EF-1 α (G) amplified from the same template was included as the positive control.

In addition, sixteen primer pairs gave positive amplification products against genomic DNA of P. monodon. Although six primers generated the positive amplification product, nonspecific amplification products were also observed. The remaining primer pairs generated the discrete amplification product. Five of which generated the expected product sizes whereas other five primer pairs yielded larger product sizes due to the existence of intron in the amplified DNA segments.

ศถาขับวิทยบริดาร
Figure 3.51 RT-PCR of male-specific expression markers derived from MII-51 (A) and M457-A01 (B) against the first strand cDNA of ovaries (lanes 2 11) and testes (lanes 12-16) of P. monodon broodstock. Lanes M and 1 are a 100 bp ladder and the negative control (without the first strand cDNA template). EF-1 α (C) amplified from the same template was included as the positive control.

Seven pairs of primers (FIII-4, FIII-39, FIV-2, FIV-33, FV-1, FV-27 and FV42) were further tested against genomic DNA of wild P. monodon originating from geographically different locations in Thai waters ($N=16$) by SSCP analysis. Sequence polymorphism was observed in these markers (Figure 3.53).

Low polymorphism was found from SSCP patterns of FIII-4, FIII-39, FIV-2., FIV-33 and FV-1. On the other hand, those FV-27 and FV-42 showed highly polymorphic SSCP patterns. Results indicated the successful development of SNP through polymorphic RAP-PCR fragment of P. monodon owing to SNP or small indels of a particular gene region. The developed markers may be used for detection of mutation, construction of the genetic linkage map and/or population genetic studies of P. monodon.

Figure 3.52 SSCP patterns of SNP by EST (SBE) marker derived from FV-42 (A), FIII-4 (B) and FV-27 (C) amplified against genomic DNA of P. monodon originating from Trat (lanes 2-5), Chumphon (lanes 6-9), Satun (lanes 10-13), Trang (lanes 14 - 15) and Phangnga (lanes 16-17). Lane M and 1 are 100 bp ladder and a nondenatured PCR product (double strand DNA control).

CHAPTER IV

DISCUSSIONS

Development of molecular markers for identification of species origin of five penaeid species (P. monodon, P. semisulcatus, F. merguiensis, L. vannamei and M. japonicus) by PCR-RFLP and SSCP analyses

PCR-RFLP of COI-COII (1550 bp) of P. monodon ($N=29$) and P. semisulcatus $(N=15)$ digested with Dra I, Ssp I and Vsp I generated eight composite restriction patterns (mitotypes) and exhibiting non-overlapping distribution between these taxa. Both single enzyme digestion patterns and mitotypes of COI-COII 1550 could discriminate P. monodon and P. semisulcatus unambiguously. The experiments were extended to cover L. vannamei, F. merguiensis and M. japonicus but COI-COII primers did not generate the positive amplification product in those taxa. The universal primers of $16 \mathrm{~S}_{\mathrm{rDNA}}^{560}$ previously used for population genetic studies of P. monodon were then applied (Klinbunga et al., 2001b).

The $16 \mathrm{~S} \mathrm{rDNA}_{560}$ gene segment was successfully amplified across small sample sizes of each shrimp (overall specimens $=79$). Fifteen restriction patterns (4 , 4, 3 and 4 from Alu I, Mbo I, Ssp I and Vsp I, respectively) were found. Differentiation between P. monodon and P. semisulcatus and between L. vannamei and F. merguiensis by single enzyme digestion patterns was interfered by shared restriction patterns from other species.

A total of 11 mitotypes were observed. Non-overlapping mitotypes of 16 S rDNA ${ }_{560}$ were found in P. monodon, L. vannamei/and F. merguiensis. Three mitotypes were found in L. vannamei indicating that L. vannamei has possibly been introduced from more than a single stock. Nevertheless, P. semisulcatus and M. japonicus shared a BABB genotype. Phylogenetic relationships regard these shrimps to be distantly related taxa (Baldwin et al., 1998; Lavery et al., 2004). Therefore, a shared mitotype should be resulted from the use of limited number of restriction endonucleases. SSCP analysis of $16 \mathrm{~S} \mathrm{rDNA}_{560}$ indicated clear distinction between P. semisulcatus and M. japonicus.

Species identification is necessary for quality control of cultured species particularly when wrong species are intentionally supplied. Moreover, labeling and traceability of the cultured product are important matter owing to an increase in trade and the need to maintain confidence in the quality of the products.

Oysters have been classified based principally on morphology. However, they show ecomorphological variation. Therefore, two sympatric species or allopatric populations of a single species inhabit different habitats may be misidentified. Species-diagnostic markers of Crassostrea belcheri, C. iredalei, Saccostrea cucullata, S. forskali and Striostrea (Parastriostrea) mytiloides were examined using PCRRFLP of 16 S rDNA (Acs I, Alu I, Dde I, Dra I, Rsa I and Taq I), 18S rDNA (Hinf I) and COI (Acs I, Dde I and Mbo I). A total of 54 mitotypes were found. Speciesdiagnostic PCR-RFLP markers were specifically found in C. belcheri, C. iredalei and S. cucullata but not in S. forskali and Striostrea (Parastriostrea) mytiloides (Klinbunga et al., 2003a).

Likewise, species-diagnostic markers of the tropical abalone (Haliotis asinina, H. ovina and H. varia) in Thai waters were successfully developed based on PCRRFLP of 16 S rDNA (Alu I, BamH I, EcoR I and Hae III). Non-overlapping mitotypes were found in H. asinina (AAAA and AAAE, $N=115$), H. ovina (ABBB, AAAB and AABB, $N=71$) and H. varia (BABG, BABC, BABD, BABF and AABG, $N=23$), respectively. The 16 S rDNA from an individual representing each mitotype was cloned and sequenced. Species-specific PCR was further developed in H. asinina and H. varia without any false negative or false positive results. The sensitivity of detection was approximately 25 pg and 50 pg of the DNA template, respectively (Klinbunga et al., 2003b).

Species-diagnostic markers should be established from DNA segments exhibiting low genetic polymorphism within a particular species but showing high genetic divergence between different species (Thaewnon-ngiw et al., 2004).

Overlapping patterns (in this case, PCR-RFLP and SSCP) between different species should not be observed. Although the nature of $16 \mathrm{~S} \mathrm{rDNA}_{560}$ fulfilled the requirement, the amplification success in L. vannamei and F. merguiensis was quite
low when sample sizes were increased. Therefore, more reliable primers were required.

The $16 \mathrm{~S} \mathrm{rDNA}_{560}$ gene segment was then amplified from a representative individual possessing the most common mitotype of each species, cloned and sequenced. The actual length of this fragment was 561 bp in P. semisulcatus and 562 bp in other species. Sequence divergence (Kimura, 1980) between pairs of 16 S rDNA $_{560}$ was 5.76% (between P. semisulcatus and F. merguiensis) - 10.23\% (between M. japonicus and L. vannamei). The divergence between taxonomically problematic species was 6.15% between P. monodon and P. semisulcatus and 9.80% between L. vannamei and F. merguiensis, respectively.

Due to high intraspecific genetic diversity previously reported in P. monodon (Klinbunga et al., 1999 and 2001b) and F. merguiensis (Hualkasin et al., 2003; Wanna et al., 2004), species-specific PCR (presence/ absence of the amplification band) for each species was not developed because serious false negative may be occurred when specimens from new geographic samples are analyzed.

Alternatively, a pair of primers primed at the conserved region of 16 S rDNA $_{560}$ providing a 312 bp fragments was designed. Three, two and three restriction patterns were found from digestion of $16 \mathrm{~S}^{\mathrm{rDNA}} 3_{312}$ with Alu I, Ssp I and Vsp I, respectively. All restriction patterns observed for each enzyme could be related to one another by the loss or gain of a single or double restriction sites. Restriction patterns of Alu I- and Vsp I-digested $16 \mathrm{~S}_{\text {rDNA }}^{312}$ clearly differentiate both P. monodon and L. vannamei from the remaining species. Seven mitotypes were found. Like results from 16 S rDNA $_{560}, P$. monodon, L. vannamei and F. merguiensis can be unambiguously differentiated while a shared BBB mitotype was observed in P. semisulcatus and M.

Although nucleotide sequences of $16 \mathrm{~S}_{\text {rDNA }}^{560}$ indicated that Aha III, Apo I, Mae II, Mae III, Mse I and TspE I could differentiate P. semisulcatus and M. japonicus, all restriction enzymes except Mse I are not common. Moreover, the predicted restriction products of $16 \mathrm{~S} \mathrm{rDNA}_{312}$ digested with Mse I are too small (7-83 bp) for conveniently analyzed by agarose gel electrophoresis. Using SSCP analysis, non-overlapping SSCP patterns were found indicating successful development of
species-diagnostic markers across all taxa. Typically, a single mitotype from PCRRFLP (e.g. AAA, ABA and ABB in P. monodon and BAB in F. merguiensis) possessed several SSCP patterns. This indicated that SSCP analysis is more sensitive than PCR-RFLP when the same DNA fragment is analyzed. Accordingly, cost and time consuming based on restriction analysis particularly when a large number of restriction enzymes are needed, can be significantly reduced. Additional gene segments can then be included to the analysis favored species identification based on SSCP analysis.

Applications for species identification of suspected shrimps and frozen shrimp meat

Two groups of cultured juvenile shrimps were sent to a laboratory at the Center of Excellence for Marine Biotechnology, Chulalongkorn University for authentication of the species origin. Farmer was told when purchased the larvae that the Group 1 sample was F. merguiensis from Indonesia and the Group 2 sample was hybrid offspring between P. monodon (sire) and M. japonicus (dam). PCR-RFLP of $16 \mathrm{~S} \mathrm{rDNA}_{312}$ indicated that both samples were F. merguiensis (BAB mitotype). SSCP analysis of the amplified $16 \mathrm{~S} \mathrm{rDNA}_{312}$ further confirmed results from PCR-RFLP analysis.

In the other case, the frozen shrimp meat was introduced to Thailand and claimed as the product of the white shrimp (P. orientalis) and the pink shrimp (Metapenaeus affinis) from fisheries. The suspected P. orientalis exhibited a BAB mitotype restrictively found in E merguiensis whereas the suspected M. affinis showed a DBB mitotype which were not found in our database.

SSCP analysis of $16 \mathrm{~S} \cdot \mathrm{rDNA}_{312}$ indicated that/suspected P. orientalis was actually F. merguiensis. In addition, suspected M. affinis exhibited clearly different SSCP patterns with that of P. semisulcatus, L. vannamei, F. merguiensis and M. japonicus. Its polymorphic SSCP patterns were similar, but not identical, to that of P. monodon exhibiting an AAA mitotype. Based on large interspecific sequence divergence of $16 \mathrm{~S}_{\text {rDNA }}^{560}$ found in the present study (5.76-10.23\%), we concluded that suspected M. affinis should be a member of Penaeus rather than Metapenaeus.

Reliable PCR-based methods for identifying species origins of morphological similar shrimps (between P. monodon and P. semisulcatus and between L. vannamei and F. merguiensis) were successfully developed based on PCR-RFLP and SSCP analyses of the amplified rDNA gene segment. These simple methods can be used to prevent supplying incorrect shrimp larvae for the industry and for quality control of shrimp products from Thailand. Population genetic studies of local Penaeus species (e.g. P. semisulcatus and F. merguiensis) can be conveniently carried out. The techniques can be applied for rapid genotyping of captured shrimp released from the stock enhancement programs of P. monodon in Thai waters.

Population genetic studies of P. monodon in Thai waters using polymorphism of $16 \mathrm{~S}_{\text {rDNA }}^{312}$, AFLP-derived SCAR markers and COI

Population genetic studies of P. monodon have been reported based on PCRRFLP of mitochondrial DNA (Klinbunga et al., 1999 and 2001; Benzie et al., 2002), RAPD (Tassanakajon et al., 1998; Klinbunga et al., 2001), and type II microsatellites (Supungul et al., 2000; Xu et al., 2001). Recently, Klinbunga et al. (2006) reported population genetic studies of P. monodon based on EST-derived markers (nuclear DNA polymorphism). However, information based on sequencing of mitochondrial DNA gene segments on population genetics of P. monodon has not been reported.

Several studies have assessed genetic heterogeneity in P. monodon using various genetic markers over distances of hundreds or thousands of kilometers (Tassanakajon et al. 1998; Benzie et al. 2002) but genetic differentiation have generally been found to be low except where major biogeographic boundaries act to

PCR-RFLP of $16 \mathrm{~S} \mathrm{rDNA}_{312}{ }^{\sigma}$ implied low polymorphism in this gene region limiting its ability for differentiation of genetic populations of P. monodon. The use of enzymes generating a low number of restriction patterns (1, 2 and 2 digestion patterns for Alu I, Ssp I and Vsp I, respectively) may responsible for providing biased analyzing results.

SSCP analysis which is theoretically more sensitive technique than PCRRFLP was applied for determination of genetic diversity of the same gene segment (16S rDNA ${ }_{312}$) of P. monodon. Low genetic distance ($0.0001-0.0100$) between pairs
of geographic samples was found. Moreover, distribution frequencies of common SSCP genotypes were nearly identical in each sample. As a result, a lack of intraspecific population differentiation was found in P. monodon ($\mathrm{P}>0.05$).

More recently, Klinbunga et al. (2006) identified and sequenced 90 and 157 ESTs from normal and subtractive ovarian cDNA libraries of the giant tiger shrimp (Penaeus monodon). SSCP analysis of disulfide isomerase (DSI), zinc finger protein (ZFP), PMO920, and PMT1700 was carried out for population genetic studies of the same sample set of P. monodon used in this thesis. The number of co-dominant alleles per locus for overall samples was 6 for PMO920, 5 for PMT1700, and 12 for ZFP and there were 19 dominant alleles for DSI. The observed heterozygosity of each geographic sample was $0.3043-0.5128$ for PMO920, 0.3462-0.4643 for PMT1700, and $0.5000-0.8108$ for ZFP. Low genetic distance was found between pairs of geographic samples $(0.0077-0.0178)$. Geographic differentiation was not significantly different except that between Satun-Trat and Satun-Phangnga at the ZFP locus ($\mathrm{P}<0.05$), suggesting low degrees of genetic subdivision of Thai P. monodon.

Noncoding DNA segments (e.g. AFLP-derived markers) possibly exhibiting higher levels of polymorphism than that of the coding gene segments (EST derived markers) was then analyzed. Four AFLP-derived markers (E4M6-295, E7M10-450, P6M2-370, and P6M6-470) were genotyped against genomic DNA of P. monodon. Unlike EST-derived marker, all AFLP-derived SCAR markers showed more complicated patterns and therefore were treated as dominant segregation markers. The deficiency of fixed population- or region-specific genotypes and the presence of shared genotypes with relatively comparable allele frequencies across geographic samples were found. Low genetic distance was also observed (0.0064-0.1060) between paired geographic samples. Genetic heterogeneity was not observed in all possible pairwise comparisons of overall primers ($\mathrm{P} \triangleright 0.05$)

The failure to detect genetic heterogeneity in Thai P. monodon in this thesis by 16 S rDNA 312 and AFLP-derived markers may result from the use of a lower polymorphic level of coding and non-coding nuclear DNA than that of microsatellites and mtDNA gene segments against mixed populations of P. monodon. However, the conclusion on the panmictic gene pool of Thai P. monodon should be treated with
cautions because it is different from all population genetic studies previously reported for P. monodon.

Supungul et al. (2000) examined genetic diversity of P. monodon in Thailand by microsatellites (CUPmo1, CUPmo18, Di25, CSCUPmo1, and CSCUPmo2) using the same sample set as in this study. The average observed heterozygosity was relatively high in each geographic sample ($0.71-0.82$). Low genetic distance between pairs of samples was observed. The greatest genetic distance was observed between Trat and Satun ($d=0.030$), and the shortest distance was between Satun and Trang ($d=0.024$). Three microsatellite loci (Di27, CSCUPmo1, and CSCUPmo2) did not show any significant geographic differences among all pairwise comparisons. $F_{\text {ST }}$ between pairs of geographic samples was usually <0.01. Low degrees of differentiation were observed between shrimps from Satun and Trat ($F_{\text {ST }}=0.0124$, P <0.01), and Trat and Chumphon ($F_{\mathrm{ST}}=0.0118, \mathrm{P}<0.01$) but not from the remaining comparisons.

Likewise, high diversity but low genetic differentiation was also reported in wild (Palawan, Quezon, Capiz, and Negros Occidental-W) and cultured (Negros Occidental-C and Antique) P. monodon in the Philippines analyzed by six microsatellites (TUZXPm2.41, TUZXPm4.45, TUZXPm4.55, TUZXPm4.82, TUZXPm4.85, and TUZXPm4.9). The observed heterozygosity of these samples was 0.47 - 1.00. A low but significant degree of population differentiation was found between Negros Occidental-W and other samples ($F_{\text {ST }}=0.009-0.013$), but not between the remaining comparisons ($F_{\mathrm{ST}}=0.000-0.001$) (Xu et al., 2001).

In contrast, strong genetic differentiation of P. monodon from Satun (the Andaman Sea) and Surat and Trat (the Gulf of Thailand) was illustrated using restriction analysis of the entire mtDNA. Twenty-eight composite haplotypes were generated from 52 restriction profiles of P. monodon mtDNA digested with 11 restriction enzymes. The size of the entire P. monodon mitochondrial genome was estimated to be $15.913 \pm 0.177 \mathrm{~kb}$. The average haplotype diversity in P. monodon was 0.864 , whereas the mean nucleotide diversity within populations was 2.51%, 2.22%, and 1.91% for Satun, Trat, and Surat, respectively. Geographic heterogeneity analysis indicated strong population differentiation between P. monodon from the

Andaman Sea and P. monodon from the Gulf of Thailand ($\mathrm{P}<0.0001$) (Klinbunga et al., 1999).

In addition, high haplotype diversity (0.855) and nucleotide diversity (3.328\%) of Thai P. monodon were observed based on PCR-RFLP of 16 S rDNA and COI. Population differentiation and large genetic distance of P. monodon between the Andaman Sea and Gulf of Thailand was clearly illustrated ($\mathrm{P}<0.0001$) (Klinbunga et al., 2001).

In the present study, high genetic diversity of P. monodon was observed based on COI sequences. A total of 266 polymorphic sites were found after multiple alignments of these sequences. Forty-three haplotypes were found from 100 investigated individuals. The average number of individuals that share identical haplotypes was 2.33 . The percentage of nucleotide divergences between pairs of COI sequences was $0.00-23.65 \%$ whereas that of T17 and the remaining sequences was $37.43-55.87 \%$. A neighbor-joining tree revealed 3 different phylogenetic lineages. Distribution frequencies of members of theses lineages in overall samples was statistically significant ($\mathrm{P}=0.0006$). All pairwise comparisons except Satun - Trat (P $=0.6538)$, Trang - Phangnga $(P=1.0000)$ were statistically significant $(P=0.0006$ and $\mathrm{P}<0.05$).

Genetic differentiation patterns of P. monodon in this study were different from those previously reported. Result from PCR-RFLP (Klinbunga et al., 2001) revealed strong differentiation between P. monodon from the Andaman (Satun, Trang and Phangnga) and Gulf of Thailand (Trat and Chumphon) samples but not within each coastal region. Further within coastal region differentiation between Chumphon and Trat was subsequently reported based on RAPD (Klinbunga et al., 2001) and microsatellites (Supungul et al., 2000). 9 ? 9 ?

In the present study, within coastal region subdivisions were observed in both the Andanan Sea (between Satun and Trang and Phangnga) and Gulf of Thailand (between Chumphon and Trat). Surprisingly, specimens from Trat ($N=20$) did not reveal significant genetic heterogeneity with those of Satun ($N=19, \mathrm{P}>0.05$). Although numbers of specimens seem to be sufficient for DNA sequencing analysis, more specimens are perhaps required for the unambiguous conclusion.

Under a presumption of selective neutrality for genetic markers (RAPD, microsatellites and mtDNA), one of the possible explanations for anomalous patterns of genetic differentiation of Thai P. monodon is the mixing of captive and native stocks of P. monodon which may have resulted from a small scale consistent release of unclear origin of P. monodon in Thai waters.

Tassanakajon et al. (1998) found the maximum genetic distance of 0.334 for population genetic studies of P. monodon from the Gulf of Thailand (Trat and Chummphon) and the Andaman Sea (Satun-Trang and Phangnga, Thailand and Medan, Indonesia) where geographic sites separated by up to $1,000 \mathrm{~km}$. A lower level of genetic distance was observed when the Medan sample was excluded (genetic distance of $0.0029-0.0661$). Subsequently, Klinbunga et al. (2001) found similar low genetic distance values ranging from -0.002-0.037 (geographic ranges separated by up to 650 km) from the same approach using the different sample set originating from the same locations in Thai waters.

Evidence of the mixing of wild and hatchery-raised shrimp has been reported for P. monodon in Thailand (Supungul et al., 2000) and the Philippines (Xu et al., 2001) based on microsatellite analysis. Deviations from the Hardy-Weinberg expectation were observed in 19 of 25 possible tests in the former owing to an excess of homozygotes. Similarly, at least one of six investigated microsatellite loci of each wild geographic sample in the Phillipines exhibited the deficiency of heterozygotes resulting in Hardy-Weinberg disequilibrium of P. monodon.

In addition, Klinbunga et al. (2001) reported contradictory results between nuclear (RAPD) and mtDNA markers in patterns of genetic differentiation of P. monodon populations across the Thai-Malaysian peninsula as a result of localized wild stock displacement by aquaculture activity. Due to potential adaptive differences between natural P. monodon populations and hatchery-reared larvae, the pollution of locally-adapted gene pools is a matter of national concern in the potential loss of a valuable genetic resource for future farming practices of P. monodon.

Apart from data about population genetics of P. monodon, the other major goal of this study is to identify molecular genetic markers that can be applied for genotying of P. monodon. Sequencing of COI can be used in combination with
microsatellites for determination of genetic diversity levels of domesticated P. monodon. The rapid and simple genotying of P. monodon by direct sequencing of COI would allow practical applications of polymorphic markers for management of both natural and domesticated broodstock of P. monodon.

Molecular population genetic studies provide necessary information required for elevating culture and management efficiency of P. monodon. In the present study, the potential of SSCP analysis of $16 \mathrm{~S} \mathrm{rDNA}_{312}$ and AFLP-derived markers and DNA sequencing of the COI gene segment was demonstrated for evaluation of genetic diversity of Thai P. monodon. Although data from SSCP (relatively low genetic diversity and a lack of population differentiation) and DNA sequencing of COI (high genetic diversity and the existence of population subdivisions in this species) were contradictory, P. monodon should not be regarded as a panmictic species.

For the conservation point of view, each geographic sample of P. monodon in Thailand should be treated different populations and managed separately. This basic knowledge on levels of genetic diversity and population differentiation of P. monodon not only yields critical information on historical and evolutionary aspects of P. monodon but also allows the ability to construct effective breeding programs and stock enhancement projects in this species.

Isolation and characterization of genomic sex determination markers and sex-specific/differential expression markers of P. monodon using RAPD-PCR and RAP-PCR analysis

Identification of sex determination markers of P. monodon by RAPD-PCR

Sex-specific markers should be developed from fixed polymorphism in genomic DNA of male and female P. monodon to avoid destruction of specimens and for direct application of sex determination markers (e.g. determination of sex-specific survival and early growth rates) in this economically important species.

From bulked segregant analysis (BSA) and RAPD analysis, 10 candidate sexspecific RAPD fragments were found and only 8 fragments were successfully cloned and sequenced. Four pairs of primers were designed (PMF530-F/R, PMM350-F/R, PMM1100-F/R, PMM800-F/R) and tested against genomic DNA of male and female
P. monodon. Two primers pairs (PMF530-F/R, PMM350-F/R) yielded positive amplification products in both sexes whereas the other two primer pairs did not amplified product. Neither sex-specific amplification patterns nor length polymorphism between the PCR product of male and female P. monodon from PMF530-F/R and PMM350-F/R were observed. Further analysis with SSCP revealed polymorphism between single stranded DNA of these shrimps but was not relevant to sex specificity in this species. Therefore, genomic sex determination markers were not successfully developed in P. monodon.

Li et al. (2003) constructed a genetic linkage map in P. japonicus using polymorphic AFLP markers in a pseudo testcross strategy. Fifty-six progeny (top and bottom 8% of the body weight at 6 months) of the intermediate F_{2} cross family were genotypes by 54 primer combinations. A total of 502 polymorphic AFLP fragment were found and 359 and 138 of these segregated in 1:111 and 3:1 ratios. The markers with a 1:1 segregation ratio were combined with those previously examined (Moore et al., 1999) and 217 AFLP markers were ordered into 43 linkage groups of the paternal map and 125 AFLP markers were in 31 linkage groups of the maternal map. A female-linked AFLP marker was tightly linked to the linkage group 28 of the female map. This implies that the female of P. japonicus exhibits the heterogametic sex. Notably, no sex chromosome has been reported in penaeid shrimps and the authors of that publication are still not able to develop a SCAR marker derived from the sexlinked AFLP markers in P. japonicus.

Thumrungtanakit (2004) used AFLP analysis to isolate genomic sex-specific markers in P, monodon. A total of 256 primer combinations were tested against 6-10 bulked genomic DNA of P. monodon.-Five (FE10M9520, FE10M10725, FE14M16340, FE15M14400 and FE16M8350) and one (ME10M8420) candidate female and male-specific AFLP markers were identified. The former markers were cloned and further characterized. SCAR markers derived from FE10M9520, FE10M10725.1, FE10M10725.2, FE14M16340 did not retain the original sex specificity. SSCP analysis was applied to identify whether fixed SNP was existent in SCAR markers amplified from male and female P. monodon. Polymorphic but not sex-linked pattern were found from FE10M10725.1 and FE14M16340-derived SCAR markers.

Likewise, genomic DNA subtraction between male and female P. monodon was performed by the PERT and RDA approaches, SCAR markers developed from a subtractive male (PERT) and 2 subtractive female (RDA) clones did not reveal the sex-specific amplification product in P. monodon (Poonlaphdecha, 2004).

Preechaphool (2004) analyzed pooled DNA of small orange claw (SOC, $N=$ 10) and blue-claw (BC, $N=5$) males and females ($N=10$) of the giant freshwater prawn (Macrobrachium rosenbergii) using 64 AFLP primer combinations and found 90 and 42 AFLP markers in male and female M. rosenbergii, respectively. Additional sample set of SOC $(N=5)$, OC $(N=15)$ and BC $(N=10)$ males and female $(N=20)$ M. rosenbergii originating from different geographic locations with that of the first sample set were reanalyzed by 46 informative primers previously used. In a total, 5 candidate male-specific and 4 candidate female-specific AFLP markers were finally identified. These markers were cloned and characterized. A PCR-based method for sex determination of M. rosenbergii was developed but sex-specificity of AFLPderived markers was not observed.

Identification of sex determination markers based on AFLP analysis was also carried out in the tropical abalone (Haliotis asinina). Seven female- and male-specific AFLP fragments were identified from screening 224 primer combinations with 4 bulked DNA of male and female H. asinina. SCAR markers developed from candidate sex-specific AFLP fragments did not reveal their initial specificity. Further characterization of the PCR products by SSCP analysis did not provide fixed polymorphism between male and female abalone (Amparyup, 2004).

Li et al. (2002) identified genomic sex markers of the green spotted pufferfish (Tetraodon nigroviridis, $N=83$) using RAPD (600 primers and 1700 primers for the first and the second set of pooled DNA), AFLP (64 primer combinations) and RDA (1 set of adaptors). A total of 59, 126, 16 and 16 putative sex-specific markers were found after the primary screening. Nevertheless, the secondary screening (re-testing of DNA from individuals for RAPD and AFLP and using the putative RDA markers as the probes for genomic Southern analysis of male and female DNA) did not demonstrate the presence of sex-specific markers in T. nigroviridis.

Sex determination is problematic in researches of many species and can usually be resolved by the application of DNA-based technology but this is only possible if a sex-specific marker located on unique sex chromosomes is available. Theoretically, the lack of genomic sex determination markers in P. monodon may have resulted from weak correlation between the genotypic sex and phenotypic sex due to autosomal modifier genes or genetic diversity between investigated individuals used for screening of markers is greater than the optimal level (Griffiths and Orr, 1999).

Although these possibilities cannot be excluded, they are unlikely. Alternatively, the lack of sex chromosomes in P. monodon and other penaeid shrimps implied that sex chromosomes may not be present or they are not well differentiated in the genome of penaeid shrimps. Therefore, development of genomic sex determination markers in P. monodon may not be possible.

Identification of sex-specific/differential expression markers of P. monodon

 by RAP-PCR analysisThe most important step towards understanding molecular mechanisms of sex differentiation (development undifferentiated gonads to ovaries or testes) in P. monodon is the identification and characterization of sex-specific/differential expression markers. Such molecular markers could be used to determine the initial expression of those transcripts following ovarian and testicular development

Gender-specific gene expression has been recently reported in a mosquitoborne filarial nematode (B. malayi) isolated by differential display (DD) PCR and In silico subtraction of EST cluster database and further confirmed by RT-PCR. Six of 12 (27\%) and seven of 15 (47\%) initially identified by DD-PCR and In silico subtraction revealed gender-specific expression in that species (Michalski and Weil, 1999).

In the silkworm (Bombyx mori), sex-specific mRNA isoforms were found in double sex ($d s x$) gene where the male-specific cDNA lacked the sequence between 713 - 961 nucleotides of the female-specific cDNA (Ohbayashi et al., 2001).

On the basis of preliminary screening, a large number of RAP-PCR fragments specifically or differentially expressed in testes and ovaries of P. monodon were identified. A total of 25 and 20 fragments from candidate female and male RAP-PCR fragments were cloned. Finally, 21 and 14 types of sequences originating from 24 female and 15 male cloned fragments were obtained. Blast results indicated that the major transcripts found were unknown transcripts (51.43\%), 18S rRNA (17.14\%) and thrombospondin (TSP, 11.43\%) homologues. Shrimp ovarian peritrophin (SOP) and TSP are major component of cortical rods in mature ovaries of penaeid shrimps (Kayat et al., 2001; Yamano et al., 2004). As a result, these transcripts may involve with the final stages of oocyte maturation in shrimps.

Five (FI-4, FI-44, FIII-4, FIII-39 and FIII-58) and two (M457-A01 and MII51) derived RAP-PCR markers revealed sex-specific expression in females and males P. monodon of both juvenile and broodstock. Surprisingly, MII-5 exhibited temporal female specific expression when tested against ovaries and testes of P. monodon broodstock.

Leelatanawit et al. (2004) constructed subtractive cDNA libraries of ovaries and testes of P. monodon. Most of the expressed genes in the subtractive cDNA library of ovaries encoded unknown transcripts (78 clones accounting for 49.7% of total characterized cDNA), TSP (45 clones, 28.7\%), peritrophin (17 clones, 10.8\%), respectively. Homologues of elongation factor-2, oxidoreductase, transketolase, hypothetical protein FLJ23251, and sex-linked ENSANGP00000010123 and X-linked protein 1 (XNP-1) were also isolated. Gender-specific expression of candidate sexlinked gene homologues was examined by RT-PCR. While XNP-1 and peritrophin were expressed in both ovaries and testes, TSP and ENSANGP00000010123 homologues revealed sex-specific expression in female P. monodon.

Oogenesis is the preparation for embryogenesis. It is characterized by the progressive accumulation of reserve materials and diversity mRNA used later in fertilization and embryonic development. Additionally, more than 100 genes have been identified to be essential for spermatogenesis. Some of these genes are ubiquitously expressed, and some are expressed in a testis-specific fashion.

In the present study, sex-specific expression markers of P. monodon were successfully developed at the cDNA level. Five and two RAP-PCR derived markers showed sex-specific expression in ovaries and testes of both 3 -month-old and broodstock-sized P. monodon. This opens the possibility to study the initial expression and localization of sex-specific expression markers in undifferentiated gonads of P. monodon by in situ hybridization. Sex differentiation processes in P. monodon can then be initially examined intensively.

สถาบันวิทยบริการ
 จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER V

CONCLUSIONS

1. PCR-RFLP and SSCP analysis of $16 \mathrm{~S} \mathrm{rDNA}_{312}$ was succerssfully developed for authentication the species origin of five penaeid shrimps (P. monodon, P. semisulcatus, F. merguiensis, L. vannamei and M. japonicus). PCR-RFLP of 16S rDNA_{312} successfully differentiated P. monodon, F. merguiensis and L. vannamei but not P. semisulcatus and M. japonicus which shared a BABB mitotype. All shrimp species could be unambiguously discriminated by SSCP analysis of $16 \mathrm{~S} \mathrm{rDNA}_{560}$.
2. Genetic diversity and population differentiation of P. monodon originating from the Andaman Sea (Satun, Trang and Phangnga) and Gulf of Thailand (Chumphon and Trat) was examined by PCR-RFLP and SSCP analysis of 16 S rDNA ${ }_{312}$. Low genetic diversity and a lack of intraspecific population subdivisions of P. monodon were illustrated ($\mathrm{P}>0.05$).
3. A total of 320 AFLP primer combinations were screened against bulked genomic DNA of P. monodon. Twenty two polymorphic AFLP fragments were cloned and sequenced. Fourteen pairs of sequence-specific primers were designed and 4 AFLPderived SCAR markers (P6M2-370, P6M6-470, E4M6-295 and E7M10-450) were applied for population genetic studies of P. monodon. Like results from 16 S rDNA ${ }_{312}$, low genetic diversity and a lack of population differentiation was found $(P>0.05)$.
4. The COI-COII 1550 fragments of representatives of P. monodon was cloned and sequenced. A COI ${ }_{614}$ gene segment was successfully amplified using Universal COI-COII-F+ T13COI ${ }_{\text {R2 }}$ primers. Nucleotide sequences of 100 shrimp individuals were examined. A neighbor-joining tree indicated three phylogenetic lineages of P. monodon. Large nucleotide divergence was observed between inter-lineage haplotypes but limited divergence was found between intra-lineage haplotypes. Distribution frequencies of haplotype clusters in overall samples and pairs of geographic samples were statistically significant ($\mathrm{P}<0.05$) indicating the existence of population subdivisions based on mtDNA COI polymorphism.
5. Genomic sex determination markers were developed by RAPD analysis. A total of 100 primers were screened. Eight candidate sex-specific RAPD fragments were cloned and sequenced. Four primer pairs were designed and tested for sex-specificity. Results indicated that RAPD-derived SCAR markers did not showed sex-specificity in investigated P. monodon.
6. Sex-specific/differential expression markers of P. monodon were identified by RAP-PCR. Twenty-one and fourteen RAP-PCR fragments specifically/differentially expressed in ovaries and testes of P. monodon were successfully cloned and sequenced.
7. Expression patterns of 25 transcripts were tested against the first strand cDNA of ovaries and testes of 3-month-old and broodstock-sized P. Monodon. Five (FI-4, FI44, FIII-4, FIII-39 and FIII-58) and two (M457-A01 and MII-51) derived RAP-PCR markers revealed female- and male-specific expression patterns in P. monodon. In addition, MII-5 originally found in testes showed a higher expression level in ovaries than did testes of juvenile shrimps but a temporal female-specific pattern in P. monodon adults.

สถาบันวิทยบริการ

REFERENCES

Aasen, E., and Medrano, J.F. 1990. Amplification of the ZFY and ZFX genes for sex identification in humans, cattle, sheep and goats. Biotechnol. 8 : 1279-1281.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J mol Biol. 215 : 403-410.

Amparyup, P. 2004. Development of genetic markers for increasing production efficiency of the tropical abalone Haliotis asinina in Thailand. Ph.D. Thesis.Chulalongkorn university.

Baldwin, J.D., Bass, A.L., Bowen, B.W. and Clark, W.H. 1998. Molecular phylogeny and Biogeography of the marine shrimps Penaeus. Mol. Phylo. Evol. 10 : 399407.

Baily-Brook, J.H. and Moss, S.M. 1992. Penaeid taxonomy, biology and zoogeography. In A.W. Fast and L.J. Lester (eds.), Marine shrimp culture : Principles and Practices, Amsterdam : Elsrvier Science Publishers.

Barzotti, R., Pelliccia, F. and Rocchi, A. 2000. Sex chromosome differentiation revealed by genomic in-situ nybridization. Chromosome Research 8 : 459-464.

Benzie, J.A.H. 1998. Penaeid genetics and biotechnology. Aquaculture 164: 23-47.
Benzie, J.A., Ballment, E., Forbes, A.T., Demetriades, N.T., Sugama, K., Haryanti, Moria, S. 2002. Mitochondrial DNA variation in Indo-Pacific populations of the giant tiger prawn, Penaeus monodon. Mol. Ecol. 11 : 2553-2569.

Boag, P.R., Newton, S.E., Hansen, N-P., Christensen, C.M. Nansen, P. and Gasser, R.B. 2000. Isolation and characterisation of sex-specific transcripts from Oesophagostomum dentatum by RNA arbitrarily-primed PCR. Mol. Biochem. Parasitol. 108 : 217-224.

Browdy, C.L. 1998. Recent development in penaeid broodstock and seed production technologies: improving the outlook for superior stock. Aquaculture 164 : 3-21.

Carlson, J.E., Tulsieram, L.K., Glaubitz, J.C., Luk, V.W.K., Kauffeldt, C., Rutledge, R. 1991. Segregation of random amplified DNA markers in F1 progeny of conifers. Theor. Appl. Genet. 83 : 194-200.

Chan, T.Y. 1998. Shrimps and prawns. In: FAO Species Identification Guide for Fishery Purposes. The Living Marine Resources of the Western Central Pacific (eds Carpenter KE, Niem VH), pp. 851-971. FAO, Rome.

Cohen, S.N., Chang, A.C.Y., Hsu, L. 1972. Nonchromosomal Antibiotic Resistance in Bacteria: Genetic Transformation of Escherichia coli by R-Factor DNA. Proc Natl Acad Sci U S A. Aug; 69: 2110-2114.

Colombo, F., Mangiagalli, G., and Renon, P. 2005. Identification of tuna species by computer-assisted and cluster analysis of PCR-SSCP electrophoretic patterns. Food Control 16 : 51-53.

Comi, G., Iacumin, L., Rantsiou, K., Cantoni, C., and Cocolin, L. 2005. Molecular methods for the differentiation of species used in production of cod-fish can detect commercial frauds. Food control $16: 37-42$.

Department of Fisheries. 1999. Fisheries Statistics of Thailand 1996. Department of Fisheries, Ministry of Agriculture and Cooperative.

Dower, W.J., Miller, J.F., and Ragsdale, C.W. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16 : 6127-6145.

Fast, A.W. and Lester, L.J. 1992. Marine shrimp culture: principles and practices.

Goldstein, L.S.B., Hardy, W. and Lindsley, D.L. 1982. Structural genes on the Ychromosome of Drosophila melanogaster. Proc .Natl. Acad. Sci.USA. 79 : 7405-7409.

Griffiths, R. and Tiwari, B. 1993. The isolation of molecular genetic markers for the identification of sex. Proc.Natl.Acad.Sci USA. 90 : 8324-8326.

Griffiths, R., Orr, KJ., Adam, A. and Barber, I. 2000. DNA sex identification in the three-spined stickleback. J of Fish Biol. 57 : 1331-1334.

Griffiths, R., Orr, K. 1999. The use of amplified fragment length polymorphism (AFLP) in the isolation of sex-specific markers. Mol Ecol. 8 : 671-674.

Hayashi, K. 1996. PCR SSCP: single strand conformation polymorphism analysis of PCR products. In: Laboratory Protocols for Mutation Detection (Landegren, U., ed.). Oxford University Press, Walton Street, Oxford, pp. 14-22.

Hoelzel, A. R. and Green, A. 1992. Analysis of population-level variation by sequencing PCR-amplified DNA; in: Molecular Genetic Analysis of Populations, Hoelzel, A. R. (ed.), pp. 159-187. Oxford University Press, Oxford, UK.

Hsieh, H.S., Chai, T.J. and Hwang, D.F. 2005. Using the PCR-RFLP method to identify the species of different processed products of billfish meats. Food Control (In press).

Hualkasina, W., Sirimontapornb, P., Chotigeata, W., Quercic, J. and Phongdaraa, A. 2003. Molecular phylogenetic analysis of white prawns species and the existence of two clades in Penaeus merguiensis.J Exper. Marine Biol. Ecol. 296 : 1-11.

Justo, C.C., Murofushi, M., Aida, K., and Hanyu, I. 1991. Karyological studies on the freshwater prawn Macrobrachium rosenbergii. Aquaculture 97 : 327-334.

Khayat, M., Babin, P.J., Funkenstein, B., Sammer, M., Nagasawa, H., Tietz, A. and Lubzen, E. 2001. Molecular characterization and high expression during oocyte development of a shrimp ovarian cortical rod protein homologous to insect intestinal peritrophins. Biol. Reprod. 64 : 1090-1099.

Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.

Kirby, L.T. 1992. DNA Fingerprinting : An introduction New York : W.H. Freeman and Company.

Klossa-Kilia, E., Papasotiropoulos, V., Kilias, G. and Alahiotis, S. 2002. Authentication of Messolongi (Greece) fish roe using PCR-RFLP analysis of 16s rRNA mtDNA segment. Food Control 13 : 169-172.

Klinbunga, S., Sodsuk, S., Penman, D.J., and McAndrew, B.J. 1996. An improved protocol for total DNA isolation and visualisation of mtDNA RFLP (s) in tiger prawn, Penaeus monodon. Thai J. Aquat. Sci. 3 : 36-41.

Klinbunga, S., Penman, D.J., McAndrew, B.J. and Tassanakajon, A. 1999. Mitochondrial DNA diversity in three populations of the Giant Tiger Shrimp Penaeus monodon. Mar. Biotechnol. 1 : 113-121.

Klinbunga, S. Siludjai, D., Wuthijinda, W., Tassanakajon, A., Jarayabhand, A. and Menasveta, P. 2001. Genetic heterogeneity of the giant tiger shrimp (Penaeus monodon) in Thailand revealed by RAPD and mtDNA-RFLP analyses. Mar. Biotechnol. 3 : 428-438

Klinbunga, S., Ampayup, P., Tassanakajon, A., Jarayabhand, P. and Yoosukh, W. 2001. Genetic diversity and molecular markers of commercial oysters (Genera Crassostrea, Saccostrea and Striostrea) in Thailand determined by RAPD analysis. Mar. Biotechnol. 3 : 133-144.

Klinbunga, S., Khamnamtong, N., Tassanakajon, A., Puanglarp, N., Jarayabhand, P. and Yoosukh, W. 2003a. Molecular genetic identification tools for three commercially cultured oysters (Crassostrea belcheri, Cl. iredalei and Saccostrea cucullata) in Thailand. Mar. Biotechnol. $5:$ 27-36.

Klinbunga, S., Pripue, P., Khamnamtong, N., Puanglarp, N., Tassanakajon, A., Jarayabhand, P., Hirono, I., Aoki, T. and Menasveta, P. 2003b. Genetic diversity and molecular markers of the tropical abalone (Haliotis asinina) in Thailand. Mar. Biotechnol. 5 : 505-517.

Klinbunga, S., Amparyup, P., Leelatanawit, R. Aoki, T., Hirono, I, Tassanakajon, A., Jarayabhand, P. and Menasveta, P. 2004. Species identification of the tropical abalone (Haliotis asinina, Haliotis ovina and Haliotis varia) in Thailand using RAPD and SCAR markers. J. Biochem. Mol. Biol. 37 : 213-222.

Klinbunga, S., Khamnamtong, N., Puanglarp, N., Jarayabhand, P., Yoosukh, W. and Menasveta, P. 2005. Molecular taxonomy of cupped oysters (Crassostrea, Saccostrea, and Striostrea) in Thailand based on COI, 16S, and 18S rDNA polymorphism. Mar. Biotechnol. 7 : 306-317.

Klinbunga, S., Preechaphol, R., Thumrungtanakit, S., Leelatanawit, R., Aoki, T., Jarayabhand, P. and Menasveta, P. 2006. Genetic diversity of the giant tiger shrimp (Penaeus monodon) in Thailand analyzed by SSCP of EST-derived markers. Biochem. Genet. (in press).

Korpelainen, H. 1990. Sex ratios and conditions required for environmental sex determination in animals. Biol Rev Camb Philos Soc. 65 : 147-184.

Lavery, S., Chan, T. Y., Tam, Y. K. and Chu, K. H. 2004. Phylogenetic relationships and evolutionary history of the shrimp genus Penaeus s.l. derived from mitochondrial DNA. Mol. Phylogent. Evol. 31 : 39-49.

Leelatanawit, R., Klinbunga, S., Puanglarp, N., Tassanakajon, A., Jarayabhand, P., Hirono, I., Aoki, T. and Menasveta, P. 2004. Isolation and characterization of differentially expressed genes in ovaries and testes of the giant tiger shrimp (Penaeus monodon). Mar. Biotechnol. 6 : S506-S510.
Legrand, J.J., Legrand-Hamelin, E., and Juchault, P. 1987. Sex determination in Crustacea. Biol. Rev. Camb. Philos. Soc. 62 : 439-470.

Li, F., Xiang, J., Zhang, X., Zhou, L., Zhang, C., and Wu, C. 2003. Gonad development characteristics and sex ratio in triploid Chinese shrimp (Fenneropenaeus chinensis). Mar Biotechnol. 5 : 528-35.

Li, L., and Guo, X. 2004. AFLP-based genetic linkage maps of the pacific oyster Crassostrea gigas Thunberg. Mar Biotechnol (NY). 6 : 26-36.

Li, Y., Hill, J.A., Yue, G.H., Chen, F. and Orban, L. 2002. Extensive search does not identify genomic sex markers in Tetraodon nigroviridis. J Fish Biol. 60 : 13141317.

Li, Y., Byrne, K., Miggiano, E., Whan, V., Moore, S., Keys, S., Crocos, P., Preston, N. and Lehnert, S. 2003. Genetic mapping of the kuruma prawn Penaeus japonicus using AFLP markers. Aquaculture 219 : 143-156.

Limsuwan, C. 2004. Diseases of Pacific white shrimp (Litopenaeus monodon) cultured in Thailand. Proceedind of the JSPS-NRCT International Symposium Joint Seminar 2004: Management of Food Safety in Aquaculture and HACCP. 20-21 December 2004 Kasetsart University, Thailand. pp. 36-41.

Liu, Z.J. and Cordes, J.F. 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238:1-37.

Maleacha, S.R., Nevin, P., Ha, P., Barck, L.E., Lamadrid-Rose, Y., Masuno, S., and Hedgecock, D. 1992. Sex-ratios and sex-determination in progeny from crosses of surgically sex-reversed freshwater prawn, Macrobrachium rosenbergii. Aquaculture. 105 : 201-218.

Maniatis, T., Fritsch, E. F. and Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. New York, USA: Cold Spring Harbor Laboratory Press.

Maxam, A.M. and Gilbert, W. 1977. A new method for sequencing DNA. Proc. Natl. Acad Sci. $74: 560$. リด

Marchand, O., Govoroun, M., D'Cotta, H., McMeel, O., Lareyre, J., Bernot, A., Laudet, V., and Guiguen, Y. 2000. DMRT1 expression during gonadal differentiation and spermatogenesis in the rainbow trout, Oncorhynchus mykiss. Biochimica et Biophysica Acta 1493 : 180-187.

McElroy, D., Moran, P., Berminghsm, E., and Kornfield, I. 1991. REAP (Restriction Enzyme Analysis Package) version 4.0. University of Maine, Orono, ME, USA.

Michalski, M.l. and Weil, G.J. 1999. Gender-specific gene expression in Brugia malayi. Mol. Biochem. Parasitol. 104:247-257.

Miller, M.P. 1997. Tool for population genetic analyses (TFPGA) version 1.3. Northern Arizona: Department of Biological Sciences, Northern Arizona Univerity.

Moore, S.S., Whan, V., Davis, G.P., Byrne, K., Hetzel, D.J.S. and Preston, N. 1999. The development and application of genetic markers for the Kuruma prawn Penaeus japonicus. Aquaculture 173:19-32.

Mullis, K.B., and Faloona, F. 1987. Meth. Enzymol. 155 : 335.

Nei, M., and Li, W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Nat Acad Sci USA 76 : 5269-5273.

Nei, M. 1972. Genetic distance between populations. Am Nat 106:283-292.

Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York.

Ohbayashi, F., Suzuki, M.G., Mita, K., Okano, K. and Shimada, T. 2001. A homologue of the Drosophila doublesex gene is transcribed into sex-specific mRNA isoforms in the silkworm, Bombyx mori. Comp Biochem. Physiol. 128 : 145-158.

O'Neill, M.J., and O'Neill, R.J. 1999. Whatever happened to SRY? Cell Mol Life Sci. 56:883-893.

Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., and Sekiya, T. 1989. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA. 868 : 2766-2770.

Palumbi, S.R., Martin, A., Pomano, S., McMillan, W.O., Stice, L. and Grabowski, G. 1991. The Simple Fool's Guide to PCR, version2. Zoology Department, University of Hawaii, Honolulu, USA.

Pauli, D., Oliver, B., and Mahowald, A.P. 1995. Identification of regions interacting with ovoD mutations: potential new genes involved in germline sex determination or differentiation in Drosophila melanogaster. Genetics. 1392 : 713-732.

Pérez, F., Erazo, C., Zhinaula, M., Volckaert, F. and Calderon, J. (2004). A sexspecific linkage map of the white shrimp Penaeus (Litopenaeus) vannamei based on AFLP markers. Aquaculture 242 : 105-118.

Poonlaphdecha, S. 2004. Identification of sex-specific markers from black tiger shrimp Penaeus monodon using subtraction analysis. M.sc. Thesis.Chulalongkorn university.

Preechaphol, R. 2004. Sex determination markers and gene expression in androgenic gland of different male morphotypes of the giant freshwater prawn Macrobrachium rosenbergii. M.sc. Thesis.Chulalongkorn university.

Raymond, C.S., Murphy, M.W., O'Sullivan, M.G., Bardwell, V.J., and Zarkower, D. 2000. Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev 14 : 2587-2595.

Raymond, M. and Rousset, F. 1995. Genepop: population genetic software for exact test and ecumenism. J. Hered $86: 248-250$.

Roehrdanz, R. L. 1993. An improved primer for PCR amplification of mitochondrial DNA in a variety of insect species. Insect Mol. Biol. $2: 89-91$.

Rosenberry, B. 2001. World shrimp farming 2001. Sandiego : Shrimp News International.

Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Mollecular Cloning : A Laboratory manual, $2{ }^{\text {nd }}$ ed. New York: Cold Spring Habor Laboratory Press.

Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chainterminating inhibitors. Proc. Natl. Acad. Sci. USA. 74 : 5463-5467.

Sasazaki, S., Itoh, K., Arimitsu, S., Imada, T., Takasuga, A., Nagaishi, H., Takano, S., Mannen, H. and Tsuji, S. 2004. Development of breed identification markers derived from AFLP in beef cattle. Meat Sci. 67 : 275-280.

Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 : 406-425.

Scott, J.A., Williams, G., and Collins, F.H. 1993. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am. J. Trop. Med. Hyg. 49 : 520-529.

Srisuparbh, D., Klinbunga, S., Wongsiri, S. and Sittipraneed, S. 2003. Isolation and partial characterization of royal jelly cDNA and proteins of the honey bee (Apis cerana). J. Biochem. Mol. Biol. 36 : 572-579.

Supungul, P., Sootanan, P., Klinbunga, S., Kamonrat, W., Jarayabhand, P., and Tassanakajon, A. 2000. Microsatellite polymorphism and the population structure of the black tiger shrimp (Penaeus monodon) in Thailand. Mar Biotechnol.

Tassanakajon, A., Pongsomboon, S., Rimphanitchayakit, V., Jarayabhand, P. and Boonsaeng, V. 1997. Random amplified polymorphic DNA (RAPD) markers for determination of genetic variation in wild populations of the black tiger prawn (Penaeus monodon) in Thailand. Mol. Mari. Biol. Biotechnol. 6 : 110115.

Tassanakajon, A., Pongsomboon, S., Jarayabhand, P., Klinbunga, S., an Boonsaeng, V. 1998a. Genetic structure in wild populations of black tiger shrimp (Penaeus monodon) using randomly amplified polymorphic DNA analysis. J. Mar. Biotechnol. 6 : 249-254.

Thaewnon-ngiw, B., Klinbunga, S., Phanwichien, K., Sangduen, N., Lauhachinda, N. and Menasveta, P. 2004. Genetic diversity and molecular markers in introduced and Thai native apple snails (Pomacea and Pila). J Biochem. Mol. Biol. 37 : 493 - 502.

Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence weighting, position-specific gap penalties and weight metric choices. Nucleic Acids Res. 22 : 4673-4680.

Thumrungtanakit, S. 2004. Identification of molecular genetic markers involved in sex determination in giant tiger shrimp Penaeus monodon using AFLP analysis. M.sc. Thesis.Chulalongkorn university.

Tong, J., Lehnert, S.A., Byrne, K., Kwan, H.S., and Chu, K.H. 2002. Development of polymorphic EST markers in Penaeus monodon: applications in penaeid genetics. Aquaculture. 208: 69-79.

Tzeng, T.D., Yeh, S.Y. and Hui, C.F. 2004. Population genetic structure of the kuruma prawn (Penaeus japonicus) in East Asia inferred from mitochondrial DNA sequences. J Marine Sci. 61: 913-920.

Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J. and Kuiper, M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23 : 4407-4414.

Wang, Z.Y., Tsoi, K.H. and Chu, K.H. 2004. Applications of AFLP technology in genetic and phylogenetic analysis of penaeid shrimp. Biochem. System. Ecol. 32 : 399-407.

Wanna, W., Chotigeat, W. and Phongdara, A. 2005. Sequence variations of the first ribosomal internal transcribed spacer of Penaeus species in Thailand. J Exper. Marine Biol. Ecol. In press.

Weder, J.K.P., Rehbein, H. and Kaiser, K.P. 2001. On the specificity of tuna-directed primers in PCR-SSCP analysis of fish and meat. Eur. Food Res. Technol. 213 : 139-144.

Welsh, J. and McClelland, M. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18 : 7213-7218.

Welsh, J., Chada, K., Dalal, S.S., Cheng, R., Ralph, D., and McClelland, M. 1992. Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res. 20 : 49654970.

Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., and Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18 : 6531-6535.

Wilson, K. et al. 2002. Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphism. Aquaculture. 204 : 297-309.

Withyachumnarnkul, B., Boonsaeng, W., Flegel, T.W., Panyim, S. and Wongteerasupaya C. 1998. Domestication and selective breeding of Penaeus monodon in Thailand, in: Proceedings to the Special Session on Advances in Shrimp Biotechnology, Felgel, T. (ed.), pp. 73-77, The Fifth Asian Fisheries Forum: International Conference on Fisheries and Food Security Beyond the Year 2000. 11-14 November 1998. Chiangmai, Thailand.

Xu, Z., Primavera, J.H., de la Pena, L.D., Pettit, P., Belak, J., and Alcivar-Warren, A. (2001). Genetic diversity of wild and cultured Black Tiger Shrimp (Penaeus monodon) in the Philippines using microsatellites. Aquaculture 199 : 13-40.

Yamano, K., Qiu, G. and Unuma, T. 2004. Molecular Cloning and Ovarian Expression Profiles of Thrombospondin, a Major Component of Cortical Rods in Mature Oocytes of Penaeid Shrimp, Marsupenaeus japonicus. Biol. Reprod. published online ahead of print February 6, 2004.

Zhang, J., Huang, H., Cai, Z. and Huang, L. 2006. Species identification in salted products of red snappers by semi-nested PCR-RFLP based on the mitochondrial 12S rRNA gene sequence. Food Control 17 : 557-563.

APPENDIXA

PCR-RFLP patterns of 16 rDNA $_{312}$ gene segments digested with Alu I, Ssp I, Vspl of 5 penaeid shrimps; P. monodon, P. semisul catus, F. merguiensis, L. vannamei and M. japoni cus and their SSCP patterns

Species	Population	Specimens \qquad	PCR-RFLP pattern (AluI, Ssp I, VspI)	SSCP pattern
P. monodon	Trat	1. Td1	ABA	11,16
		2. Td3	AAA	9,15
		3. Td4	AAA	9,15
		4. Td5	AAA	9,15
		U, 5. Td6	ABA	11,16
		6. Td7	ABA	10,16
		7. Td8	AAA	9,15
		8. Td9	ABA	11,16
		9. Td11	ABA	11,16
	1	10. Td12	ABA	11,16
		Q) 11. Td13	-	9,10,15
	*		5	9,15
	0) 0	$\square 0$ 13. Td15 \square	- ABA	11,16
		14.Td16	AAA	4,14
	9×1.6	$d \text { 15. Td17 }$	65^{-2}	9,16
	9	16. Td18	-	10,15

Species	Population	Specimens	PCR-RFLP pattern (Alu I, Ssp I, Vsp I)	SSCP pattern
	I	17. Td19	- -	11,16
	\square	18. Td20	AAA	10,15
		19. Td21	-	10,15
		20. Td22	-	9,15
		21. Td23	- -	9,15
		22. Td24	ABB	13,17
		23. Td25	-	11,16
		24. Td26	-	9,15
		25. Td29	ABA	11,16
		26. Td30	-	9,15
		27. Td31	-	11,16
		28. Td32	ค	10,15
		29. Td33	$\underline{3}$	10,15
	-	30. Td34	\bigcirc	9,15
	(1)	31. Td35	-	11,15
		32. Td37	-	9,15
	Chumphon n	$19.33 . \mathrm{Cl}$	AAA	10,14
	616	\square 34.C2 C \square	\cdots -	11,16
		35.c3	O-	10,15
	$99 / 10 \times 9$	36. C4	9/ ${ }^{\text {a }}$ AA	9,15
	9	37. C5	- - -	10,15

Species	Population	Specimens	PCR-RFLP pattern (AluI, Ssp I, Vsp I)	SSCP pattern
	\square	101. 536	- -	11,15
	T	102. 538	-	10,16
		103. 539	-	11,16
		104. 543	-	11,13
		105. S46	-	10,16
		106. 547	- -	10,15
		107.549	-	9,15
		108. 550	-	11,15
	Trang	109. 71	-	9,15
		110. T2	-	9,15
		111. T3	-	9,15
		112. T4	-	10,15
		113. 78	$=3$ AAA	9,15
	\bigcirc	114. T9	AAA	10,15
	1	115. T10	AAA	9,15
		116. T11	AAA	9,15
	$\square \cap$	$0.19{ }^{117} \mathrm{~T}^{\mathrm{T} 12} \mathrm{O}$	AAA	10,15
	616	\square 118.T13 \square	- ${ }^{\text {- }}$	10,15
		119.T14	C-	9,15
	$99 / 009$	120.T15	9/ ABA	11,16
		121. T16		11,16

Species	Population	Specimens	PCR-RFLP pattern (Alu I, Ssp I, Vsp I)	SSCP pattern
	5	122. T17	ABB	11,16
		123. T18	AAA	9,15
		124. T19	AAA	9,15
		125. T21	-	10,15
		126. T22	ABA	11,16
		127. T23	ABA	11,16
		128. T24	ABA	11,16
		3 129.T25	ABA	11,16
		130. T26	-	9,15
		131.T27	-	11,16
		132. T28	ABA	11,16
		133. T29	-	10,15
	-	134. T30	AAA	9,15
	-	135. T32	-	11,15
	\pm	136. T41	-	9,15
		137. T43	-	9,15
	$\because \Omega$	138. T46	$\sim \quad-$	12,16
	616	139. T47	0 -	4,14
		140. T49	Q-	12,15
	$99 / 16 \times 9$	141. T52		11,15

9

Species	Population	Specimens	PCR-RFLP pattern (AluI, Ssp I, Vsp I)	SSCP pattern
	Phangnga	142. P1	T	11,15
		143. P2	AAA	10,15
		144. P3	AAA	9,15
		145. P4	ABA	11,16
		146. P5	I	9,15
		147. P6	ABA	11,16
		148. P7	AAA	9,15
		149. P8	-	4,14
		150. P10	AAA	9,15
		151. P11	ABA	11,16
		152. P12	(11,16
		153. P13	-5. ABA	10,16
	,	154. P14	\cdots AAA	9,15
		155. P15	- -	10,15
		156. P16	-	9,15
	$\checkmark \rightarrow$	157. P17	ABA	11,16
	66	158. P18	d -	9,15
		159. P19	AAA	10,15
	a9A?	$\square \int_{161 . P 23}^{160 . P 2198}$		11,16 15

Species	Population	Specimens	PCR-RFLP pattern (Alu I, Ssp I, Vsp I)	SSCP pattern
	T	162. P24	,	9,15
	\square	163. P25	ABA	11,16
		164. P26	\square	9,15
		165. P27	AAA	10,15
		166. P28	-	11,16
		167. P29	\square	10,15
		168. P30	-	9,15
		169. P34	-	9,15
		170. P35	-	10,15
		171.P36	-	11,16
		172. P37	-	11,15
		173. P38	-	11,15
		174. P39	¢ 3	9,15
	Ranong	175. R1	$\cdots \mathrm{AAA}$	9,14
	(1)	176. R2	(1) ABB	11,16
		177. R3	ABA	11,16
	$\cdots \cap$	178. R4	$\sim \sim \mathrm{ABA}$	13,17
	616	\square 179.R5C O	1 - ABA	11,16
		180. R6	ABA	11,16
	$99 / 010$	181. R7	9/ AAA	9,15
	9	182. R8	ABA	10,15

Species	Population	Specimens	PCR-RFLP pattern (Alu I, Ssp I, Vsp I)	SSCP pattern
	1	183. R9	ABA	11,16
	T	184. R10	ABB	13,17
		185. R11	AAA	9,15
P. serisul catus	Chumphon	186. Sel 1	BBB	3,18
		187. Se 2	BBB	3,18
		188. Se 3	BBB	3,18
		189.Se4	BBB	3,18
		190. Se 5	BBB	3,18
		191. Se 6	BBB	3,18
		192.Se7	BBB	3,18
		193. Se8	BBB	3,18
	(1)	194. Se9	BBB	3,18
		195. Se 10	BBB	3,18
	$\underline{\square}$	196. Sel1	BBB	3,18
	Phuket	197. SeP1	4) BBB	3,18
		198. SeP2	BBB	3,18
		199. SeP3	BBB	3,18
	6161	200. Se.P4	- 1 BBB	3,18
L. vannamei	Mexico	201. V1	CBC	2,12
	$99 / 16 \times 9$	202. V2	9 CBC	2,12
	9	203. V3	CBC	2,12

Species	Population	Specimens	PCR-RFLP pattern (Alu I, Ssp I, Vsp I)	SSCP pattern
	-	204. V4	CBC	2,12
	\pm	205. V5	CBC	2,12
		206. V6	$\square \mathrm{CBC}$	2,12
	Ratchaburi	207. VR1	CBC	2,12
		208. VR2	CBC	2,12
		209. VR3	CBC	2,12
		210. VR4	CBC	2,12
		211.VR5	CBC	2,12
		212. VR6	BBC	2,12
		213.VR7	CBC	2,12
		214.VR8	CBC	2,12
	(1)	215. VR9	$\ldots \mathrm{CBC}$	2,12
		216. VR10	$=37$ CBC	2,12
	-	217. VR11	CBC	2,12
	(1)	218. VR12	(1) CBC	2,12
	Rangsit	219. VF1	CBC	1,12
	*)	220. VF3	$\sim \sim \text { CBC }$	2,12
	616	\square 221.VF4 \square	- CBC	2,12
		222.VF5 \sim	CBC	2,12
	$99 / 109$	223. VF6	9/ ${ }^{\text {c }}$ c	2,12
	9×10	224. VF7	CBC	2,12

Species	Population	Specimens	PCR-RFLP pattern (AluI, Ssp I, Vsp I)	SSCP pattern
	-	246. BP9	BAB	5,8
	\pm	247. BP10	BAB	5,8
		248. BP11	BAB	5,8
		249. BP12	BAB	5,8
		250. BP13	BAB	5,8
		251. BP14	BAB	5,8
		252. BP15	BAB	4,6
		253. BP16	BAB	5,8
		254. BP17	BAB	5,9
	Indonesia	255. BP18	BAB	4,6
		256. BP19	BAB	4,6
		257. BP20	$\square \mathrm{BAB}$	4,6
		258. BP21	BAB	4,6
	-	259. BP22	BAB	4,6
	(1)	260. BP23	1 BAB	4,6
		261. BP24	BAB	4,6
	010	262. BP25	\sim BAB	4,6
	6161	\square 263.3P26 \square	- ${ }^{\text {BAB }}$	4,6
		264. BP27 \frown	BAB	4,6
	$99 / 090$	265. BP28	9/ BAB	4,6
	9	266. BP29	BAB	4,6

APPENDIX B

Genetic distances of 5 penaeid shrimps (P. monodon, P. semisulcatus, L. vannamei, F. merguiensis and M. japonicus) based on SSCP analysis of 165 rDNA 312

NEI 'S (1972) IDENTITIES/DISTANCES Nei 's original (1972) identity

Populations 1-6=P. monodon fromTrat, Chumphon, Satun, Trang, Phangnga and Ranong, respectively,
Populations 7-8=P. semisul catus from Chumphon and Phuket, respectively,
Populations 9-11 =L. vannamei from Mexico, Rangsit and Ratchaburi, respectively,
Populations $12-13=F$. merguiensis from Market and Chonburi, respectively,
Populations 14-15 = M. japonicus from A ustral ia and J apan, respective ly

APPE NDIX C

Nucleotide sequences of 14 cloned AFLP fragments of P. monodon and positions of the forward primer and those complementary to the reverse primer (underlined and boldfaced)

```
> E4M6-295
```

GATGAGTCCTGAGTAACTCTAGTGAATCATTTCCTGAAACTTCCCCTCCTATGCTAACGCTACTTACAC CACTTTGTCGCACCAACTGTTGTAATTTTGCTATTCTAAGATGTTGCAATCGTCCAAGTTCTTCCGTCA TGCGTTTCTTTTCTCTCATAAGCTCATGGATTTCTTGGTCAACATTTTCCAAGTGCCGTAAGAATTCTG TTTCTTGCTCACTGAACACCATCATTTGTTGTAGTGCTACTCCTGCATTGTGGCTGAACTCAAATTCAC TGAGTGAATTGGTACGCAGTCA
$>$ E7M10-450
GATGAGTCCTGAGTAACGTGTGAATGGGTATGCAAGAAATTCATTCATAATGGACAAGGTTCTCGAAGA AACGCGCGGCTGTTACAATGCTGTCGTGGAAAGGTACTTTTCAAACTTTACTCTACACTCACCATTCAT GGAGATGCTATTGCTTACAGCGTCAGGTAAGTGTACGCTAAATGTAATGAGGCAAAGAGTAATTCTTTG TTTTGCTATCGCGCACACACACACTTACAAAAAAAGTGATGTATTATTATGATGCATCCTTTGCATCTT AGACTTCCATACCTTTTTCAAAAATTCCTTTCCAAACATTTCTTTAAATTTCCATTTTCAGGCGATATC GCCTTCGGAGCTGAATTCTGAGATAAGATGAACGCAACCATGGTTGACTTCAAAAAGTTTCCTGATTTC CCCTGGATATTCTACGGCGTTGCTGAATTGGTACGCAGTC
$>$ P6M2-370

GACTGCGTACATGCAGACTCCCCAGCTCGAGCGGACGATTCGGAACGGTTTCGAAGCGGTGAAAGTAAG TCAAATGTCTTTATTTCCATATCGAGACCATTTCTGTTTTCCATTCTTTGATATTTTCTTTTAAGTCGT TAGTGTAGCGTATGCGTTCTCTGATATATAAATATTTGTATTCTTAAATGTATTTGCGAATATACTACG GTTAAACACCGGTCTATCTTCTTTCCCTCCACTCTGCCTGAAATGTTATTCACTTAGGAATATTTTTTA AATAATTTCATTACAGCGTTAACGCTTTCTTGATACATATAAAATTCATACAAAAATAAGATGCTAATA TAGTGTTACTCAGGACTCATCA
$>$ P6M6-470

GATGAGTCCTGAGTAACTCTACCAGTCATAAATAGTGATTCTCCATCTGCCTCGAGAATGTTGAAGTGA AAATGCTTTTACATTCTGTACAACTCAGGATTTCATGGTCAAGTTACATTCTGGCTGCCACGAGGCACG AAGTAGCAAAATGCTCAGACTCCCGCCTAATCCATGAATGTATTACTGTCTTCCACATCCGCAAAGAAT TGGTCAACAGAGACGCTAGAGCCCGAGAACTTTGACGCTACATTGTACATCGTGGGAACCATGCAGGCA CCCATGCTTGATGCAGCCGTAACAAGGGTGAGGGCAGAGGAGGGGAGTGGAGTAGGAGAGAGAATGGTT TCGGTTTGTGTGGCGAGAAAAAGATGGAGACTGATTCAGAAATAGATTGTGAAGAAGATGAGTGAGAAA TAAGAGAAGTCAGTCCTTAGGGGAGAAAGTTAGCGAAGTCTGCATGTACGCAGTCA

GATGAGTCCTGAGTAACTGACGAAACGCTGGAGGTCCGCCCACAATCATACAGCTCCACCCACTGTGGA CCGTGTATATAAAGAGCCATCGCCTTTGGGATGAGCACACTGTACTGCACAGCCATCAGAATGCAACGT CTTCTTGTTGTGAGCGTTTTGACCTCTTGTTGGAGGACAAATTTATGGTCATGTCTGGAAATAGAGTGT ATTGTGTCGAAACGGAAACTTGTTCAGAAAAAAGACGTTTTTATTAGCTGTCCTCCATAGGGAAGGAAT GTATAAAAAGTCTATATTTGTGATTCTGATACCTGAATTGGTACGCAGTCA
$>$ E6M9-318

GATGAGTCCTGAGTAACGACTAAGAAGACAATGTCCATACTATTTTATCTTCAAAAACAGAGCTAAAAA CATTTTATGACGACAAAGAAACAGCTTAAAGAAACAGCTTATGGTACATTACTTTTGAGAAGAATGACG GGATTTCTTTTGTCTCGTTTTATTTCTTGCTCCGCTGATGCGATTTTTTTTCTTTCAGATGTTTATAAA

GACACAAGATTCAACTCCTTTAGCCAGGTAGTTTTTTTTTTAAGAATTGAGAATTAGAAAAAAATATTG AGATAGATGGAAATACGGTGCGTGAATTGGTACGCAGTC
> P2M5-295
GACTGCGTACATGCAGAACAGTACAGCATATACATAAGCACGATTTCTGTAAGCCTTTTTACCAATAGA CCACATGGCTCTAAGTCAAGAGCTTCTTTCCTTTCCTTCTTCTCCCATAGAAGCCGTATGTGCAGTCAT TCTCACACTGGTTTTGTTGGGTAAAAGTGCTAAGTAACAGCAAATGGCACGTTCTCTTGCTATTCTTCT GACTTAGATCGTATTACTGTGTGATCACAGTATGTGGTCAACAAACATGAATCTTGTTCATTAGCTAAG TAGTTACTCAGGACTCATCA
> P2M6-270
GACTGCGTACATGCAGAACTGGTCACCTTAGGATGCTGTGGGAAGGACATCATCGGAAGATCGCCATAG GCCTGTGGACCAGGATGTTTGTCAGAGCAGGTGTTAAGCTGTCCTATGATGTAGTGGACGGGCGCTGCC TGTCGAGACGCCCGTTGATCCAGCAAAGAACCAGGAACTCGCCAGCGCAGGTACCAGTCACCAAGAAGG ACCTGGACGGGATCTGTAAGGACGTGTGGACGAGGACGCCGCCGAGTTACTCAGGACTCATCA
> P2M7-285
GACTGCGTACATGCAGAACCGATACCCAAGGCATTCGTTATTACATCAGAGTTACGCTACGAAGTTTGT ATTTTCAAACCGGTTTCGCGGTGTTATGATAACGTCAAACTTCATAATAACAGTAAACACTTCTTGGGA AAAATAGACTTCTTTTTCATACGTTTCGTAAATCTAATCCAGTCTTGACAACAATGCCCCAAACTACTT ATTTACATTTCAGCCACGGACCGAGATATGAATCGCAACCTTGAGGGATTCTAAATCTACCGTTCAGTT ACTCAGGACTCATCA
> P2M7-310
GATGAGTCCTGAGTAACTGTCTTGACTGTGTATTTCGGATCGCAGCGCAACACGGAGTTGGGGCGACGC ACGAACTTTAAAGCTCCCCCCCACCAGTCTGAAAGTGCTTTCATCCCTCAACATCACTTTCTTTCAATC GGACAGTATCTATCGTCGATACTTCTTGCAAAATTTATTTTCTCTTTCATAGCTTTAGTGAGCAGAGGC TTCACAGTTACGTGCCGAGTCGGTAAACCGAGGCCTTTCTGAAGGCGCTGCTGGATGGTCCTTATAGAC ACGTCCATGAGGAGTTCTGGAGGCTTGTICTGCATGTACGCAGTCA

```
> P2M6-850
```

GATGAGTCCTGAGTAACTCTGGGGCTGCGGTTGCCTTCCACCCTCCCCCTCTGCCACGCCGCGGTCGTG TGAATAATGTGCGAAGCAAGGAGGGGGGATGTCAACTCACGGTCGTCAGCTGTGGATCTGCGCCCTCGT GCCGATTCCCAGATCAGTTATAGGTTTGTAACGTACAGGTATACGGGCACCTGATTAGGTAGCTTGGTC AATGATATAAGCAGCTGAGGATGAAGTCAACCGCTATGGAGTTATGTTCTGCCTCCTGTATTTTTTTGG TGAATTTTGTTACATACAGATGACTCCACATATGCTCAGCCAGCAAGGAGTCTATCAGGAGACCCTACT TACCGATCCTGATTTCCCCATTTCCTTGAATTGGCGGGAAAATGTGTTTTTCCTTTTAATACAATTAAT ATCGATACGGTTATTATTGTTATTGATGTTATGATTATTAAATTGTTATTAAAATCTTGATAACATGTA AGACAATGAAATGATTACAAAAGACCCTCTCCAAAAGTTCAGGAAAAGGGTAAGCAGGTGAGATAGATA GGACTGATGACTGACTGACTTGGTGACAAAGCACTTGCACAGCCATCTATGTGCAAATGCAATAAATAA ACTTGCGTTACAGTAGGCATGGCATGTATTCCTGCCATACGGGGCGATTGGGTTAATTTCAATTTCTAA CAAGTTGGTTATAAGGCTGGATCAGGGACTCITGGITGGCGCTGTTACCGACGAGACAATAACAATGGC AACATGGAAGGTAATTATCGITGAATATCATTCGAAGAAATGTTATCCTTAATCTTATTCTTTGAAAAG TATATATCAATTGCCCTCAACTAGCTCAATCAGTCTGCATGTACGCAGTCA
> P2M6-465
GACTGCGTACATGCAGAACTACTTACGAGCAGGGATTCAGGTTCTGGATTAACATGACAGCTATCCCAT TAGAGAGCTTGTCTGTGAAGCTCATGGCCCCATAGACAAAAGCTCCTGACTCAATATTTGGGCCAATGA GGTCTGCCGTGATGGAAAGGGATGTGATCAGCATGATAGAGCCACCTGCCCCTAACATGGCTGTCAGCA CATACAGGATGTACTTGCGGTAGATCTCACCCTCTCCAAGCCAGATGCCAATGCAGGCTGCTCCACCTA TGAGGGTGCCCAGGATGAAGGACGCCTTGGGAGATGATGAAAGTACATGAACTGATTTCAGAGGGGGCA TTTATGTCACAAAGAAAATGATCACCTCCAGTATGAAAATCTTCAGGGGAAAAGAATACATTTCCAAGT CATATAAAAAGCACAAAAGCTAAAATAGAAACCATTAGAGTTACTCAGGACTCATCA
> P2M8-300
GACTGCGTACATGCAGAACACTTCCAAGCATTTACCTCGCAAATGTTTGCTGTCTCACTAACAGAGTAC ACGAATTCGACGTCACAATAAATCAAAATAATGTCGGCATTGCAGTAATCACAAAAACATGGTTCAAAG ACGGTACACTCAACTTCGGAACCATACAGGGGTACCATTCATACAACAAAAGTCGTGAGGGCAGAATAG ATGGGGCGTTGGTATTTATATCAAAAACACAATCGCCAAACAAAATGTTAATCAACACCAAGAAGTGCG CAGAAATAAGTTACTCAGGACTCATCA
> P2M6-385
GACTGCGTACATGCAGAACAGAATCTTACTCTCAGCCACATACACGGAATTCTCCTTTCAAACGACATG CGAATCAGATGCGGAATCTTCCAGGGCGACTCTTTTTTCCCTCTTTTATTTGCATGGCACTTATCCCAC TCTCCCAACTTCTTAACAACACAGGGTATAGATATAAGATCATGGACAAGAAGATCAATCATCTTTCCT ATATGGATGACTTGAAACTTTACACTCAGAATGATGGTGTACTGGAAGGGTTGCTGAAAGCCGTAAAAA ATTTTAGTGATGACATAGGTATGAAATTTGGTCTCGATAAATGTGCTAAAGGAACCTTTAAGCAAGGAA AACTAGTTGCATCTGACAATATGGAGTTACTCAGGACTCATCA

APPENDIXD

Polymorphic sites of the COI_{614} genesegment of P. monodon

	Nudeotideposition																							
	2	3	4	5	6	7	9	11	13	15	17	18	20	21	24	25	26	27	33	36	54	57	64	66
P28	C	-	T	T	-	G	-	T		T	C	A	A	C	T	A	T	T	A	A	G	C	C	T
S7	A	-	T	T	-	G	-	T	-	T	C	A	A	C	T	A	T	T	A	A	G	C	C	T
P29	C	-	T	T	-	G	-	T		T	C	-	A	C	T	A	T	T	A	A	G	C	C	T
S11	C	-	T	T	-	G	-	T	-	T	C	A	A	C	T	A	T	T	A	A	G	C	C	T
S25	C	-	T	T	-	G	-	A	-	T	C	-	A	C	T	A	T	T	A	A	G	C	C	T
Td18	C	-	T	T	-	G	-	T		T	C	-	A	T	T	A	T	T	A	A	G	C	C	T
P21	C	A	T	T	T	G	-	T	A	T	C	A	A	C	T	A	T	T	A	A	G	C	C	T
T16	C	A	T	T	T	G	-	T	A	T	C	A	A	C	T	A	T	T	-	A	G	C	C	T
P17	C	-	T	T	T	G	-	T	A	T	C	A	A	C	T	A	T	T	A	A	G	C	C	T
C10	C	-	T	T	T	G	-	A	A	T	C	A	A	C	T	A	T	T	-	A	G	C	C	T
C9	C	-	T	T	-	G	-	T	-	T	C	A	A	C	T	A	T	T	A	A	G	C	C	T
C41	C	A	T	T	-	G	-	T	-	T	c	A	A	C	T	A	T	T	A	A	G	C	C	T
S33	C	-	T	T	T	G	-	T	-	T	C	A	A	C	T	A	T	T	A	A	G	C	C	T
S10	C	A	T	T	T	G	-	T	A	T	C	A	A	C	T	A	T	T	A	A	G	C	C	T
C6	C	C	T	T	T	G	G	T	-	C	C	A	A	T	T	A	T	T	A	G	T	T	T	T
Td17	C	C	T	T	T	G	G	T	-	C	C	A	A	T	T	A	T	T	A	A	T	T	T	T
T43	C	T	T	T	T	G	G	T	-	C	C	A	A	T	T	A	T	T	A	G	T	T	T	T
S1	C	-	T	T	T	G	G	T	-	C	C	A	A	T	T	A	T	T	A	G	T	T	T	T
C4	C	-	T	T	T	G	G	T	-	C	C	-	A	T	T	A	T	T	A	G	T	T	T	T
C51	C	-	T	T	T	G	G	T	-	0	C	-	A	T	T	A	T	T	-	G	T	T	T	T
P2	C	-	C	T	T	G	G	T		C_{0}	C	A	A	I	T	A	T	T	A	G	T	T	T	T
S18	C	-	T	T	T	G	G	T	-	C	C	A	A	T	T	A	T	T	A	A	T	T	T	T
T11	C	C	T	T	T	G	G	T	-	C	C		A	T	T	A	T	T	A	A	T	T	T	T
C1	C	C	T	T	T	G	G	T	-	C	C	- A	A	T	T	A	T	T	A	A	T	T	T	T
T30	C	-	T	T	-	G	G	T	-	C	C	A	A	T	P T	A	T	T	A	G	T	T	T	T
P7	C	-	T	T	-	G	G	T 6	-	C	C	O-	A	T	T	A	6T	T	-	G	T	T	T	T
C21	C	-	T	T	-	G	G	T	-	C	C	-	A	T	-	-	A	T	-	G	T	T	T	T

C18	C	-	T	T	-	C	G	-	-	C	C		A	T	T	A	T	T	-	A	T	T	T	T
T18	C	C	T	T	T	G	G	T	-	C	C	A	A	T	T	A	T	T	A	A	T	C	T	T
P39	C	C	T	C	-	G	G	T	-	C	C	A	A	T	T	A	T	T	A	A	T	T	T	T
P24	C	-	T	T	-	G	-	T	-	C	C	A	A	T	T	A	T	T	A	A	T	T	T	T
C13	C	-	T	T	-	G	-	T	-	C	C	A	A	T	T	A	T	T	A	A	T	T	T	T
C26	C	-	T	T	-	G	-	T	-	C	C	A	A	T	T	A	T	T	A	A	T	T	T	T
P8	C	C	T	T	T	G	-	T		C	C	A	A	T	T	A	T	T	A	A	T	T	T	T
P10	C	C	T	T	T	G	G	T	-	C	C	-	A	T	T	A	T	T	A	G	T	T	T	T
S48	C	-	T	T	T	G	-	T		,	T	C	A	T	T	A	T	T	A	A	A	C	C	C
S43	C	-	T	T	T	G	-	T	-		T	C	A	T	T	A	T	T	A	A	A	C	C	C
S30	C	-	T	T	T	G	-	T	-	-	T	C	A	T	T	A	T	-	-	A	A	C	C	C
S38	C	-	T	T	T	G	-	T			T	C	A	T	T	A	T	T	A	A	A	C	C	C
Td20	C	-	T	T	T	G	-	T	-	-	T	C	C	T	T	A	T	T	A	A	A	C	C	C
Td24	C	T	T	T	T	G	T	T		T	C	C	A	T	T	A	T	T	A	A	A	C	C	C
C20	C	T	T	T	T	G	T	T	-	T	C	C	A	T	T	A	T	T	A	A	A	C	C	C
T17	C	A	T	T	T	G	-	T	A	T	C	-	A	C	T	A	T	T	A	A	G	C	C	T

	69	75	85	86	87	90	96	98	99	100	102	107	108	109	111	112	113	115	119	121	123	124	125	126
P28	A	T	T	T	A	T	T	T	-	T	T	T	T	T	T	G	G	A	G	T	A	T	C	A
S7	A	T	T	T	A	T	T	T	-	T	T	T	T	T	- ${ }^{\text {T }}$	G	G	A	G	T	A	T	C	A
P29	A	T	T	T	A	T	T	T	-	T	T	T	T	T	T	G	G	A	G	T	A	T	C	A
S11	A	T	T	T	A	T	T	T	-	T	T	T	T	T	T	G	G	A	G	T	A	T	C	A
S25	A	T	T	T	A	T	T	T	-	- T	T	T	T	T	T	G	G	A	G	T	A	T	C	A
Td18	A	T	T	T	A	T	T	T	-	T	T	T	T	T	T	G	G	A	G	T	A	T	C	A
P21	A	T	T	T	A	T	T	T	-	T	T	T	T	T	T	G	G	A	G	T	A	T	C	A
T16	A	T	T	T	A	T	T	${ }^{\text {T }}$	-	T	T	T	T	T	T	G	G	A	G	T	A	T	C	A
P17	A	T	T	T	A	T	T	T	-	T	T	T	T	T	T	G	G	A	G	T	A	T	C	A
C10	A	T	T	T	A	T	OT	T	-2	T	T	T	T	T	T	G	G	A	G	T	A	T	C	A
C9	A	T	T	T	A	T	T	T	-	T	T	T	T	T	T	G	G	A	G	T	A	T	C	A
C41	A	T	T	T	A	T	T	T	-	T	T	T	T	T	T	G	G	A	G	T	A	T	C	A

S33	A	T	T	T	A	T	T	T	-	T	T	T	T	T	T	G	G	A	G	T	A	T	C	A
S10	A	T	T	T	A	T	T	T	-	T	T	T	T	T	T	G	G	A	G	T	A	T	C	A
C6	A	C	C	T	A	C	T	T	-	T	T	T	T	T	T	A	G	A	G	T	A	T	C	A
Td17	A	C	C	T	A	C	T	T	-	T	T	T	T	T	T	A	G	A	G	T	A	T	C	A
T43	A	C	C	T	A	C	T	T	-	T	T	T	T	T	T	A	G	A	G	T	A	T	C	A
S1	A	C	C	T	A	C	T	T	-	T	T	T	T	T	T	A	G	A	G	T	A	T	C	A
C4	A	C	C	T	A	C	T	T	-	T	T	T	T	T	T	A	G	A	G	T	A	T	C	A
C51	A	C	C	T	A	C	T	T	-	T	T	T	T	T	T	A	G	A	G	T	A	T	C	A
P2	A	C	C	T	A	C	T	T	-	T	T	T	T	T	T	A	G	A	G	T	A	T	C	A
S18	A	C	C	T	A	C	T	T		T	T	T	T	T	T	A	G	A	G	T	A	T	C	A
T11	A	C	C	T	A	C	T	T	-	T	T	T	T	T	T	A	G	A	G	T	A	T	C	A
C1	A	C	C	T	A	C	T	T	-	T	T	T	T	T	T	A	G	A	G	T	A	T	C	A
T30	A	C	C	T	A	C	T	T	-	T	T	T	T	T	T	A	G	A	G	T	A	T	C	A
P7	A	C	C	T	A	C	T	T	-	T	T	T	T	T	T	A	G	A	G	T	A	T	C	A
C21	A	C	C	T	A	C	T	T	-	T	T	T	T	T	T	A	G	A	G	T	A	T	C	A
C18	A	C	C	T	A	C	T	T	-	T	T	T	T	T	T	A	G	A	G	T	A	T	C	A
T18	A	C	C	T	A	C	T	T	-	T	T	T	T	T	T	A	G	A	G	T	A	T	C	A
P39	A	C	C	T	A	C	T	T	-	T	T	T	T	T	T	A	G	A	G	T	A	T	C	A
P24	A	C	C	T	A	C	T	T	-	T	T	T	T	T	T	A	G	A	G	T	A	T	C	A
C13	T	T	C	T	G	T	T	T	-	T	T	T	T	T	T	A	G	A	G	T	A	T	C	A
C26	T	T	C	T	G	T	T	T	-	T	T	T	T	T	T	A	G	A	G	T	A	T	C	A
P8	T	T	C	T	G	T	T	T	-	T	T	T	T	T	T	A	G	A	G	T	A	T	C	A
P10	A	C	C	T	A	C	T	T	-	T	T	T	T	T	T	A	G	A	G	T	A	T	C	A
S48	G	C	C	T	T	T	T	T	-	C	T	T	T	C	T	A	G	A	G	A	A	C	C	A
S43	G	C	C	T	T	T	T	T	-	C	T	T	T	C	T	A	G	A	G	A	A	C	C	A
S30	G	C	C	T	T	T	T	T	-	C	T	T	T	C	T	A	G	A	G	A	A	C	C	A
S38	G	C	C	T	T	T	T	T	-	C	T	T	T	C	T	A	G	A	G	A	A	C	C	A
Td20	G	C	C	T	T	T	T	T	-	CO	T	OT	T	C	T	A	C	A	G	A	A	C	C	A
Td24	G	C	C	T	T	T	T	T	-	C	T	T	T	C	T	A	G	A	G	A	A	C	C	A
C20	G	C	C	T	T	T	T	T	-	C	T	T	T	C	T	A	G	A	G	A	A	C	C	A
T17	A	T	T	A	A	T	A	C	A	T	C	C	G	C	G	G	G	G	A	A	T	T	A	T

99/16~136.60
9

	130	132	134	135	136	137	140	142	143	145	146	147	148	149	151	152	153	155	160	161	162	163	164	166
P28	A	T	A	C	-	T	A	G	G	T	A	G	A	T	T	T	G	T	G	T	G	C	T	A
S7	A	T	A	C	-	T	A	G	G	T	A	G	A	T	T	T	G	T	G	T	G	C	T	A
P29	A	T	A	C	-	T	A	G	G	T	A	G	A	T	T	T	G	T	G	T	G	C	T	A
S11	A	T	A	C	-	T	A	G	G	T	A	G	A	T	T	T	G	T	G	T	G	C	T	A
S25	A	T	A	C	-	T	A	G	G	T	A	G	A	T	T	T	G	T	G	T	G	C	T	A
Td18	A	T	A	C	-	T	A	G	G	T	A	G	A	T	T	T	G	T	G	T	G	C	T	A
P21	A	T	A	C	-	T	A	G	G	T	A	G	A	T	T	T	G	T	G	T	G	C	T	A
T16	A	T	A	C	-	T	A	G	G	T	A	G	A	T	T	T	G	T	G	T	G	C	T	A
P17	A	T	A	C	-	T	A	G	G	T		G	A	T	T	T	G	T	G	T	G	C	T	A
C10	A	T	A	C	-	T	A	G	G	T	A	G	A	T	T	T	G	T	G	T	G	C	T	A
C9	A	T	A	C	-	T	A	G	G	T	A	G	A	T	T	T	G	T	G	T	G	C	T	A
C41	A	T	A	C	-	T	A	G	G	T	A	G	A	T	T	T	G	T	G	T	G	C	T	A
S33	A	T	A	C	-	T	A	G	G	T	A	G	A	T	T	T	G	T	G	T	G	C	T	A
S10	A	T	A	C	-	T	A	G	G	T	A	G	A	T	T	T	G	T	G	T	G	C	T	A
C6	A	T	A	C	-	T	A	G	T	T	A	G	A	C	T	T	G	T	G	T	G	C	T	A
Td17	A	T	A	C	-	T	A	G	T	T	A	G	A	C	T	T	G	T	G	T	G	C	T	A
T43	A	T	A	C	-	T	A	G	T	T	A	G	A	C	T	T	G	T	G	T	G	C	T	A
S1	A	T	A	C	-	T	A	G	T	T	A	G	A	C	T	T	G	T	G	T	G	C	T	A
C4	A	T	A	C	-	T	A	G	T	T	A	G	A	C	T	T	G	T	G	T	G	C	T	A
C51	A	T	A	C	-	T	A	G	T	T	A	G	A	C	T	T	G	T	G	T	G	C	T	A
P2	A	T	A	C	-	T	A	G	T	T	A	G	A	C	T	T	G	T	G	T	G	C	T	A
S18	A	T	A	C	-	T	A	G	T	T	A	G	A	C	T	T	G	T	G	T	G	C	T	A
T11	A	T	A	C	-	T	A	G	T	T	A	G	A	C	T	T	G	T	G	T	G	C	T	A
C1	A	T	A	C	-	T	A	G	T	T	A	G	A	C	T	T	G	C	G	T	G	C	T	A
T30	A	T	A	C	-	T	A	G	T	${ }_{T}$	A	G	A	C	T	T	G	T	G	T	G	C	T	A
P7	A	T	A	C	-	T	A	G	T	T9	A	G	A	C	T	T	G	T	G	T	G	C	T	A
C21	A	T	A	C	-	T	A	G	T	T	A	G	A	C	T	T	G	T	G	T	G	C	T	A
C18	A	T	A	C	-	T	A	G	T	T	A	G	A	C	T	T	G	T	G	T	G	C	T	A
T18	A	T	A	C	-	T	A	G	T	T	A	G	A	C	T	T	G	T	G	T	G	C	T	A
P39	A	T	A	C	-	T	A	G	T	T	A	G	A	C	T	T	G	T	G	T	G	C	T	A
P24	A	T	A	C	-	T	A	G	T	T	A	G	A	C	T	T	${ }^{-G}$	T	G	T	G	C	T	A
C13	A	T	A	C	-	T	A	G	T	T	A	G	A	C	T	C	G	T	G	T	G	C	T	A

C26	A	T	A	C	-	T	A	G	T	T	A	G	A	C	T	C	G	T	G	T	G	C	T	A
P8	A	T	A	C	-	T	A	G	T	T	A	G	A	C	T	C	G	T	G	T	G	C	T	A
P10	A	T	A	C	-	T	A	G	T	T	A	G	A	C	T	T	G	T	G	T	G	C	T	A
S48	A	T	A	C	-	A	A	G	T	T	G	G	A	T	T	T	G	T	G	T	G	C	T	A
S43	A	T	A	C	-	A	A	G	T	T	G	G	A	T	T	T	G	T	G	T	G	C	T	A
S30	A	T	A	C	-	A	A	G	T	T	G	G	A	T	T	T	G	T	G	T	G	C	T	A
S38	A	T	A	C	-	A	A	G	T	T	G	G	A	T	T	T	G	T	G	T	G	C	T	A
Td20	A	T	A	C	-	A	A	G	T	T	G	G	A	T	T	T	G	T	G	T	G	C	T	A
Td24	A	T	A	C	-	A	A	G	T	T	G	G	A	T	T	T	G	T	G	T	G	C	T	A
C20	A	T	A	C	-	A	A	G	T	T	G	G	A	T	T	T	G	T	G	T	G	C	T	A
T17	T	C	C	T	G	T	G	T	A	G	A	A	T	T	G	G	T	T	T	C	A	T	C	-

	167	169	171	172	178	179	180	181	182	185	188	190	193	194	196	197	200	203	208	209	212	214	215	217
P28	C	T	A	C	C	T	A	C	A	A	T	T	C	T	T	A	A	A	T	T	A	T	C	T
S7	C	T	A	C	C	T	A	C	A	A	T	T	C	T	T	A	A	A	T	T	A	T	C	T
P29	C	T	A	C	C	T	A	C	A	A	T	T	C	T	T	A	G	A	T	T	A	T	C	T
S11	C	T	A	C	C	T	A	C	A	A	T	T	C	T	T	A	A	A	T	T	A	T	C	T
S25	C	T	A	C	C	T	A	C	A	A	T	T	C	T	T	A	A	A	T	T	A	T	C	T
Td18	C	T	A	C	C	T	A	C	A	A	T	T	C	T	T	A	A	A	T	T	A	T	C	T
P21	C	T	A	C	C	T	A	C	A	A	T	T	C	T	T	A	A	A	T	T	A	T	C	T
T16	C	T	A	C	C	T	A	C	A	A	T	T	C	T	T	A	A	A	T	T	A	T	C	T
P17	C	T	A	C	C	T	A	C	A	A	T	T	C	T	T	A	A	A	T	T	A	T	C	T
C10	C	T	A	C	C	T	A	C	A	A	T	T	C	T	T	A	A	A	T	T	A	T	C	T
C9	C	T	A	C	C	T	A	C	A	A	T	T	C	T	T	A	A	A	T	T	A	T	C	T
C41	C	T	A	C	C	T	A	C	A	A	T	T	C	T	T	A	A	A	T	T	A	T	C	T
S33	C	T	A	C	C	T	A	C	A	A	T	T T	C	T	T	A	A	A	T	T	A	T	C	T
S10	C	T	A	C	C	T	A	C	A	A	$\mathrm{T}^{\text {T }}$	T	C	T	T	A	A	A	T	T	A	T	C	T
C6	C	T	A	C	C	T	A	C	G	A	T	\rightarrow T	C	T	T	C	G	G	T	T	G	T	C	T
Td17	C	T	A	C	C	T	A	C	G	A	T	T	O	T	T	C	G	G	T	T	G	T	C	T
T43	C	T	A	C	C	T	A	C	G	A	T	T	C	T	T	C	G	G	T	T	G	T	C	T
S1	C	T	A	C	C	T	A	C	G	A	T	T	C	T	T	C	G	G	T	T	G	T	C	T
C4	C	T	A	C	C	T	A	C	G	A	T	T	C	T	T	C	G	G	T	T	G	T	C	T

C51	C	T	A	C	C	T	A	C	G	A	T	T	C	T	T	C	G	G	T	T	G	T	C	T
P2	C	T	A	C	C	T	A	C	G	A	T	T	C	T	T	C	G	G	T	T	G	T	C	T
S18	C	T	A	C	C	T	A	C	G	A	T	T	C	T	T	C	G	G	T	T	G	T	C	T
T11	C	T	A	C	C	T	A	C	G	A	T	T	C	T	T	C	G	G	T	T	G	T	C	T
C1	C	T	A	C	C	T	A	C	G	A	T	T	C	T	T	C	G	G	T	T	G	T	C	T
T30	C	T	A	C	C	T	A	C	G	A	T	T	C	T	T	C	G	G	T	T	G	T	C	T
P7	C	T	A	C	C	T	A	C	G	A	T	T	C	T	T	C	G	G	T	T	G	T	C	T
C21	C	T	A	C	C	T	A	C	G	A	T	T	C	T	T	C	G	G	T	T	G	T	C	T
C18	C	T	A	C	C	T	A	C	G	A	T	T	C	T	T	C	G	G	T	T	G	T	C	T
T18	C	T	A	C	C	T	A	C	G	A	T	T	C	T	T	C	G	G	T	T	G	T	C	T
P39	C	T	A	C	C	T	A	C	G	A	T	T	C	T	T	C	G	G	T	T	G	T	C	T
P24	C	T	A	C	C	T	A	C	G	A	T	T	C	T	T	C	G	G	T	T	G	T	C	T
C13	C	T	A	C	C	T	A	C	A	A	T	T	C	T	T	C	A	G	T	T	A	T	C	T
C26	C	T	A	C	C	T	A	C	A	A	T	T	C	T	T	C	A	G	T	T	A	T	C	T
P8	C	T	A	C	C	T	A	C	A	A	T	T	C	T	T	C	A	G	T	T	A	T	C	T
P10	C	T	A	C	C	T	A	C	G	A	T	T	C	T	T	C	G	G	T	T	G	T	C	T
S48	T	T	A	C	C	A	A	C	A	G	T	T	C	C	T	T	T	A	T	T	A	T	T	T
S43	T	T	A	C	C	A	A	C	A	G	T	T	C	C	T	T	T	A	T	T	A	T	T	T
S30	T	T	A	C	C	A	A	C	A	G	T	T	C	C	T	T	T	A	T	T	A	T	T	T
S38	T	T	A	C	C	A	A	C	A	G	T	T	C	C	T	T	T	A	T	T	A	T	T	T
Td20	T	T	A	C	C	A	A	C	A	G	T	T	C	C	T	T	T	A	T	T	A	T	T	T
Td24	T	T	A	C	C	A	A	C	A	G	T	T	C	C	T	T	T	A	T	T	A	T	T	T
C20	T	T	A	C	C	A	A	C	A	G	T	T	C	C	T	T	T	A	T	T	A	T	T	T
T17	C	C	T	T	T	T	C	G	C	A	G	A	T	T	G	A	A	A	G	G	T	G	A	A

	219	221	224	225	227	228	230	233	234	236	239	240	241	242	243	244	245	248	249	250	252	255	258	260
P28	A	T	A	T	A	G	A	A	T	A	T	G	G	T	A	C	-	A	G	T	G	T	T	G
S7	A	T	A	T	A	G	A	A	T	A	T	G	G	T	A	C	O-	A	G	T	G	T	T	G
P29	A	T	A	T	A	G	A	A	T	A	T	G	G	T	A	C		A	G	T	G	T	T	G
S11	A	T	A	T	A	G	A	A	T	A	C	G	G	T	A	C	-	A	G	T	G	T	T	G
S25	A	T	A	T	A	G	A	A	T	A	T	G	G	T	A	C	-	A	G	T	G	T	T	G
Td18	A	T	A	T	A	G	A	A	T	A	T	G	G	T	A	C	-	A	G	T	G	T	T	G

P21	A	T	A	T	A	G	A	A	T	A	T	G	G	T	A	C	-	A	G	T	G	T	T	G
T16	A	T	A	T	A	G	A	A	T	A	T	G	G	T	A	C	-	A	G	T	G	T	T	G
P17	A	T	A	T	A	G	A	A	T	A	T	G	G	T	A	C	-	A	G	T	G	T	T	G
C10	A	T	A	T	A	G	A	A	T	A	T	G	G	T	A	C	-	A	G	T	G	T	T	G
C9	A	T	A	T	A	G	A	A	T	A	T	G	G	T	A	C	-	A	G	T	G	T	T	G
C41	A	T	A	T	A	G	A	A	T	A	T	G	G	T	A	C	-	A	G	T	G	T	T	G
S33	A	T	A	T	A	G	A	A	T	A	T	G	G	T	A	C	-	A	G	T	G	T	T	G
S10	A	T	A	T	A	G	A	A	T	A	T	G	G	T	A	C	-	A	G	T	G	T	T	G
C6	A	C	A	C	A	G	A	A	T	A	C	G	G	T	A	C	-	A	A	T	G	T	T	G
Td17	A	C	A	C	A	G	A	A	T	A	C	G	G	T	A	C	-	A	A	T	G	T	T	G
T43	A	C	A	C	A	G	A	A	T	A	C	G	G	T	A	C	-	A	A	T	G	T	T	G
S1	A	C	A	C	A	G	A	A	T	A	C	G	G	T	A	C	-	A	A	T	G	T	T	G
C4	A	C	A	C	A	G	A	A	T	A	C	G	G	T	A	C	-	A	A	T	G	T	T	G
C51	A	C	A	C	A	G	A	A	T	A	C	G	G	T	A	C	-	A	A	T	G	T	T	G
P2	A	C	A	C	A	G	A	A	T	A	-	G	G	T	A	C	-	A	A	T	G	T	T	G
S18	A	C	A	C	A	G	A	A	T	A	C	G	G	T	A	C	-	A	A	T	G	T	T	G
T11	A	C	A	C	A	G	A	A	T	A	C	G	G	T	A	C	-	A	A	T	G	T	T	G
C1	A	C	A	C	A	G	A	A	T	A	C	G	G	T	A	C	-	A	A	T	G	T	T	G
T30	A	C	A	C	A	G	A	A	T	A	C	G	G	T	A	C	-	A	A	T	G	T	T	G
P7	A	C	A	C	A	G	A	A	T	A	C	G	G	T	A	C	-	A	A	T	G	T	T	G
C21	A	C	A	C	A	G	A	A	T	A	C	G	G	T	A	C	-	A	A	T	G	T	T	G
C18	A	C	A	C	A	G	A	A	T	A	C	G	G	T	A	C	-	A	A	T	G	T	T	G
T18	A	C	A	C	A	G	A	A	T	A	C	G	G	T	A	C	-	A	A	T	G	T	T	G
P39	A	C	A	C	A	G	A	A	T	A	C	G	G	T	A	C	-	A	A	T	G	T	T	G
P24	A	C	A	C	A	G	A	A	- T	A	C	G	G	T	A	C	-	A	A	T	G	T	T	G
C13	A	C	A	C	A	G	A	A	T	A	C	G	G	T	A	C	-	A	A	T	G	T	T	G
C26	A	C	A	C	A	G	A	A	T	A	C	G	G	T	A	C	-	A	A	T	G	T	T	G
P8	A	C	A	C	A	G	A	A	T	A	C	0 G	G	T	A	C	-	A	A	T	G	T	T	G
P10	A	C	A	C	A	G	A	A	T	A	C	G	G	T	A	C	-	A	A	T	G	T	T	G
S48	A	T	A	C	A	G	T	T	C	T	T	G	G	T	A	C	-	A	A	C	T	C	T	G
S43	A	T	A	C	A	G	T	T	C	T	T	G	G	T	A	C	2	A	A	C	T	C	T	G
S30	A	T	A	C	A	G	T	T	C	T	T	G	G	T	A	C	-	A	A	C	T	C	T	G
S38	A	T	A	C	A	G	T	T0	C	T	T	O	G	T	A	C	-	A	A	C	T	C	T	G
Td20	A	T	A	C	A	G	T	T	C	T	T	G	G	T	A	C	-	A	A	C	T	C	T	G

Td 24	A	T	A	C	A	G	T	T	C	T	T	G	G	T	A	C	-	A	A	C	T	C	T	G
C 20	A	T	A	C	A	G	T	T	C	T	T	G	G	T	A	C	-	A	A	C	T	C	T	G
T 17	T	T	C	T	T	C	A	A	T	C	T	C	C	C	T	T	G	T	A	T	G	T	A	T

	262	264	266	267	268	269	271	272	273	276	278	279	280	281	283	285	286	294	295	297	299	300	303	305
P28	C	T	C	T	T	T	A	T	T	A	C	C	T	T	G	G	T	C	T	A	T	T	A	T
S7	C	T	C	T	T	T	A	T	T	A	C	C	T	T	G	G	T	C	T	A	T	T	A	T
P29	C	T	C	T	T	T	A	T	T	A	C	C	T	T	G	G	T	C	T	A	T	T	A	T
S11	C	T	C	T	T	T	A	T	T	A	C	C	T	T	G	G	T	C	T	A	T	T	A	T
S25	C	T	C	T	T	T	A	T	T	A	C	C	T	T	G	G	T	C	T	A	T	T	A	T
Td18	C	T	C	T	T	T	A	T	T	A	C	C	T	T	G	G	T	C	T	A	T	T	A	T
P21	C	T	C	T	T	T	A	T	T	A	C	C	T	T	G	G	T	C	T	A	T	T	A	T
T16	C	T	C	T	T	T	A	T	T	A	C	C	T	T	G	G	T	C	T	A	T	T	A	T
P17	C	T	C	T	T	T	A	T	T	A	C	C	T	T	G	G	T	C	T	A	T	T	A	T
C10	C	T	C	T	T	T	A	T	T	A	C	C	T	T	G	G	T	C	T	A	T	T	A	T
C9	C	T	C	T	T	T	A	T	T	A	C	C	T	T	G	G	T	C	T	A	T	T	A	T
C41	C	T	C	T	T	T	A	T	T	A	C	C	T	T	G	G	T	C	T	A	T	T	A	T
S33	C	T	C	T	T	T	A	T	T	A	C	C	T	T	G	G	T	C	T	A	T	T	A	T
S10	C	T	C	T	T	T	A	T	T	A	C	C	T	T	G	G	T	C	T	A	T	T	A	T
C6	C	T	C	T	T	T	A	T	T	G	C	A	T	T	G	G	T	T	T	A	T	T	A	T
Td17	C	T	C	T	T	T	A	T	T	G	C	A	T	T	G	G	T	T	T	A	T	T	A	T
T43	C	T	C	T	T	T	A	T	T	G	C	A	T	T	G	G	T	T	T	A	T	T	A	T
S1	C	T	C	T	T	T	A	T	T	G	C	A	T	T	G	G	T	T	T	A	T	T	A	T
C4	C	T	C	T	T	T	A	T	T	G	C	A	T	T	G	G	T	T	T	A	T	T	A	T
C51	C	T	C	T	T	T	A	T	T	G	C	A	T	T	G	G	T	T	T	A	T	T	A	T
P2	C	T	C	T	T	T	A	T	T	G	C	A	T	T	G	G	T	T	T	A	T	T	A	T
S18	C	T	C	T	T	T	A	OT	T	G	C	A	T	T	G	G	T	T	T	A	T	T	A	T
T11	C	T	C	T	T	T	A	T	T	G	C	- A	T	T	G	G	T	T	T	A	T	T	A	T
C1	C	T	C	T	T	T	A	T	T	G	C	A	T	T	G	G	T	T	T	A	T	T	A	T
T30	C	T	C	T	T	T	A	T	T	G	C	A	T	T	G	G	T	T	T	A	T	T	A	T
P7	C	T	C	T	T	T	A	T	T	G	C	A	T	T	G	G	T	T	T	A	T	T	A	T
C21	C	T	C	T	T	T	A	T	T	G	C	A	T	T	G	G	T	T	T	A	T	T	A	T

C18	C	T	C	T	T	T	A	T	T	G	C	A	T	T	G	G	T	T	T	A	T	T	A	T
T18	C	T	C	T	T	T	A	T	T	G	C	A	T	T	G	G	T	T	T	A	T	T	A	T
P39	C	T	C	T	T	T	A	T	T	G	C	A	T	T	G	G	T	T	T	A	T	T	A	T
P24	C	T	C	T	T	T	A	T	T	G	C	A	T	T	G	G	T	T	T	A	T	T	A	T
C13	C	T	C	T	T	T	A	T	T	G	C	A	T	T	G	G	T	T	T	A	T	T	A	T
C26	C	T	C	T	T	T	A	T	T	G	C	A	T	T	G	G	T	T	T	A	T	T	A	T
P8	C	T	C	T	T	T	A	T	T	G	C	A	T	T	G	G	T	T	T	A	T	T	A	T
P10	C	T	C	T	T	T	A	T	T	G	C	A	T	T	G	G	T	T	C	A	T	T	A	T
S48	C	T	C	T	C	T	A	T	T	A	C	G	C	T	G	A	T	T	C	A	T	T	T	T
S43	C	T	C	T	C	T	A	T	T	A	C	G	C	T	G	A	T	T	C	A	T	T	T	T
S30	C	T	C	T	C	T	A	T	T	A	C	G	C	T	G	A	T	T	C	A	T	T	T	T
S38	C	T	C	T	C	T	A	T	T	A	C	G	C	T	G	A	T	T	C	A	T	T	T	T
Td20	C	T	C	T	C	T	A	T	T	A	C	G	C	T	G	A	T	T	C	A	T	T	T	T
Td24	C	T	C	T	C	T	A	T	T	A	C	G	C	T	G	A	T	T	C	A	T	T	T	T
C20	C	T	C	T	C	T	A	T	T	A	C	G	C	T	G	A	T	T	C	A	T	T	T	T
T17	A	C	A	C	T	C	C	C	A	G	T	G	G	A	C	G	A	C	T	C	C	C	T	C

| | 306 | 309 | 310 | 313 | 314 | 317 | 318 | 321 | 323 | 326 | 327 | 330 | 332 | 333 | 334 | 336 | 339 | 342 | 343 | 344 | 347 | 348 | 349 | 350 |
| :--- | :---: |
| P 28 | A | A | G | T | T | C | A | A | T | T | A | T | C | T | A | C | A | T | A | T | A | C | A | T |
| S 7 | A | A | G | T | T | C | A | A | T | T | A | T | C | T | A | C | A | T | A | T | A | C | A | T |
| P 29 | A | A | G | T | T | C | A | A | T | T | A | T | C | T | A | C | A | T | A | T | A | C | A | T |
| S 11 | A | A | G | T | T | C | A | A | T | T | A | T | C | T | A | C | A | T | A | T | A | C | A | T |
| S 25 | A | A | G | T | T | C | A | A | T | T | A | T | C | T | A | C | A | T | A | T | A | C | A | T |
| $\mathrm{Td18}$ | A | A | G | T | T | C | A | A | T | T | A | T | C | T | A | C | A | T | A | T | A | C | A | T |
| P 21 | A | A | G | T | T | C | A | A | T | T | A | T | C | T | A | C | A | T | A | T | A | C | A | T |
| $\mathrm{T16}$ | A | A | G | T | T | C | A | A | T | T | A | T | C | T | A | C | A | T | A | T | A | C | A | T |
| P 17 | A | A | G | T | T | C | A | A | T | T | A | T | C | T | A | C | A | T | A | T | A | C | A | T |
| C 10 | A | A | G | T | T | C | A | A | T | T | A | T | C | T | A | C | A | T | A | T | A | C | A | T |
| C 9 | A | A | G | T | T | C | A | A | T | T | A | T | C | T | A | C | A | T | A | T | A | C | A | T |
| C 41 | A | A | G | T | T | C | A | A | T | T | A | T | C | T | A | C | A | T | A | T | A | C | A | T |
| S 3 | A | A | G | T | T | C | A | A | T | T | A | T | C | T | A | C | A | T | A | T | A | C | A | T |
| S 10 | A | A | G | T | T | C | A | A | T | T | A | T | C | T | A | C | A | T | A | T | A | C | A | T |

C6	T	G	G	C	T	C	A	A	T	T	C	T	C	T	A	T	A	T	A	T	A	T	A	T
Td17	T	G	G	C	T	C	A	A	T	T	C	T	C	T	A	T	A	T	A	T	A	T	A	T
T43	T	G	G	C	T	C	A	A	T	T	C	T	C	T	A	T	A	T	A	T	A	T	A	T
S1	T	G	G	C	T	C	A	A	T	T	C	T	C	T	A	T	A	T	A	T	A	T	A	T
C4	T	G	G	C	T	C	A	A	T	T	C	T	C	T	A	T	A	T	A	T	A	T	A	T
C51	T	G	G	C	T	C	A	A	T	T	C	T	C	T	A	T	A	T	A	T	A	T	A	T
P2	T	G	G	C	T	C	A	A	T	T	C	T	C	T	A	T	A	T	A	T	A	T	A	T
S18	T	G	G	C	T	C	A	A	T	T	C	T	C	T	A	T	A	T	A	T	A	T	A	T
T11	T	G	G	C	T	C	A	A	T	T	C	T	C	T	A	T	A	T	A	T	A	T	A	T
C1	T	G	G	C	T	C	A	A	T	T	C	T	C	T	A	T	A	T	A	T	A	T	A	T
T30	T	G	G	C	T	C	A	A	T	T	C	T	C	T	A	T	A	T	A	T	A	T	A	T
P7	T	G	G	C	T	C	A	A	T	T	C	T	C	T	A	T	A	T	A	T	A	T	A	T
C21	T	G	G	C	T	C	A	A	T	T	C	T	C	T	A	T	A	T	A	T	A	T	A	T
C18	T	G	G	C	T	C	A	A	T	T	C	T	C	T	A	T	A	T	A	T	A	T	A	T
T18	T	G	G	C	T	C	A	A	T	T	C	T	C	T	A	T	A	T	A	T	A	T	A	T
P39	T	G	G	C	T	C	A	A	T	T	C	T	C	T	A	T	A	T	A	T	A	T	A	T
P24	T	G	G	C	T	C	A	A	T	T	C	T	C	T	A	T	A	T	A	T	A	T	A	T
C13	T	G	G	C	T	C	A	A	T	T	C	T	C	C	A	T	A	T	A	T	A	T	A	T
C26	T	G	G	C	T	C	A	A	T	T	C	T	C	C	A	T	A	T	A	T	A	T	A	T
P8	T	G	G	C	T	C	A	A	T	T	C	T	C	C	A	T	A	T	A	T	A	T	A	T
P10	T	G	G	C	T	C	A	A	T	T	C	T	A	T	C	T	A	T	A	T	A	T	A	C
S48	G	T	G	T	T	C	C	T	T	T	A	A	C	T	A	T	T	A	A	T	A	C	A	T
S43	G	T	G	T	T	C	C	T	T	T	A	A	C	T	A	T	T	A	A	T	A	C	A	T
S30	G	T	G	T	T	C	C	T	T	T	A	A	C	T	A	T	T	A	A	T	A	C	A	T
S38	G	T	G	T	T	C	C	T	T	T	A	A	C	T	A	T	T	A	A	T	A	C	A	T
Td20	G	T	G	T	T	C	C	T	T	T	A	A	C	T	A	T	T	A	A	T	A	C	A	T
Td24	G	T	G	T	T	C	C	T	T	OT	A	A	C	T	A	T	T	A	A	T	A	C	A	T
C20	G	T	G	T	T	C	C	${ }^{\text {T }}$	T	T0	A	\bigcirc	C	T	A	T	T	A	A	T	A	C	A	T
T17	A	A	T	T	C	T	A	A	A	C	A	T	G	C	T	C	A	T	C	C	C	C	G	T

Q

9

	351	352	354	355	357	359	360	363	365	366	367	369	372	374	377	379	380	381	382	384	387	393	396	397
P28	C	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	T	T	C	-	C
S7	C	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	T	T	C	-	C
P29	C	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	T	T	C	-	C
S11	C	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	T	T	C	-	C
S25	C	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	T	T	C	-	C
Td18	C	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	T	T	C	-	C
P21	C	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	T	T	C	-	C
T16	C	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	T	T	C	-	C
P17	C	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	T	T	C	-	C
C10	C	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	T	T	C	-	C
C9	C	A	C	T	A	A	C	T	C	T	T	T	T	T	T	G	C	C	C	T	T	T	-	C
C41	C	A	C	T	A	A	C	T	C	T	T	T	T	T	T	G	C	C	C	T	T	T	-	C
S33	C	A	C	T	A	A	C	T	C	T	T	T	T	T	T	G	C	C	C	T	T	T	-	C
S10	C	A	C	T	A	A	C	T	C	T	T	T	T	T	T	G	C	C	C	T	T	T	-	C
C6	T	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	C	C	T	-	T
Td17	T	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	C	C	T	-	T
T43	T	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	C	C	T	-	T
S1	T	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	C	C	T	-	T
C4	T	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	C	C	T	-	T
C51	T	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	C	C	T	-	T
P2	T	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	C	C	T	-	T
S18	T	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	C	C	T	-	T
T11	T	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	C	C	T	-	T
C1	T	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	C	C	T	-	T
T30	T	A	C	T	G	A	C	T	C	${ }_{T}$	T	T	T	T	T	G	C	C	C	C	C	T	-	T
P7	T	A	C	T	G	A	C	T	C	T9	T	9 T	T	T	T	G	C	C	C	C	C	T	-	T
C21	T	A	C	T	G	A	C	T ${ }^{\text {T }}$	C	T	Td	T	T	T	T	G	C	C	C	C	C	T	-	T
C18	T	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	C	C	T	-	T
T18	T	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	C	C	T	-	T
P39	T	A	C	T	G	A	C	T	C	T	T	T	T	T	T	G	C	C	C	C	C	T	-	T
P24	T	A	C	T	G	A	C	T	C	T	T	OT	T	T	T	G	${ }^{\circ} \mathrm{C}$	C	C	C	C	T	-	T
C13	T	A	T	T	A	A	T	T	C	T	T	T	T	T	T	G	C	C	C	T	T	T	-	T

C26	T	A	C	T	A	A	T	T	C	T	T	T	T	T	T	G	C	C	C	T	T	T	-	T
P8	T	A	C	T	A	A	T	T	C	T	T	T	T	T	T	G	C	C	C	T	T	T	-	T
P10	T	A	C	G	G	G	A	T	C	G	T	T	T	T	T	G	C	C	C	C	C	T	-	T
S48	T	A	T	T	A	A	T	T	C	A	T	C	C	T	T	G	C	A	C	T	C	T	-	T
S43	T	A	T	T	A	A	T	T	C	A	T	C	C	T	T	G	C	A	C	T	C	T	-	T
S30	T	A	T	T	A	A	T	T	C	A	T	C	C	T	T	G	C	A	C	T	C	T	-	T
S38	T	A	T	T	A	A	T	T	C	A	T	C	C	T	T	G	C	A	C	T	C	T	-	T
Td20	T	A	T	T	A	A	T	T	C	A	T	C	C	T	T	G	C	A	C	T	C	T	-	T
Td24	T	A	T	T	A	A	T	T	C	A	T	C	C	T	T	G	C	A	C	T	C	T	-	T
C20	T	A	T	T	A	A	T	T	C	A	T	C	C	T	T	G	C	A	C	T	C	T	-	T
T17	C	T	C	T	G	T	C	G	G	A	G	C	A	G	C	C	T	C	T	T	G	C	C	T

	403	410	412	413	414	416	420	421	423	430	431	434	436	439	441	445	446	447	448	452	454	455	458	459
P28	A	G	A	G	T	T	G	T	T	A	G	A	T	T	A	A	T	T	T	C	T	T	A	C
S7	A	G	A	G	T	T	G	T	T	A	G	A	T	T	A	A	T	T	T	C	T	T	A	C
P29	A	G	A	G	T	T	G	T	T	A	G	A	T	T	A	A	T	T	T	C	T	T	A	C
S11	A	G	A	G	T	T	G	T	T	A	G	A	T	T	A	A	T	T	T	C	T	T	A	C
S25	A	G	A	G	T	T	G	T	T	A	G	A	T	T	A	A	T	T	T	C	T	T	A	C
Td18	A	G	A	G	T	T	G	T	T	A	G	A	T	T	A	A	T	T	T	C	T	T	A	C
P21	A	G	A	G	T	T	G	T	T	A	G	A	T	T	A	A	T	T	T	C	T	T	A	C
T16	A	G	A	G	T	T	G	T	T	A	G	A	T	T	A	A	T	T	T	C	T	T	A	C
P17	A	G	A	G	T	T	G	T	T	A	G	A	T	T	A	A	T	T	T	C	T	T	A	C
C10	A	G	A	G	T	T	G	T	T	A	G	A	T	T	A	A	T	T	T	C	T	T	A	C
C9	A	G	A	G	T	T	G	T	T	A	G	A	T	T	A	A	T	T	T	C	T	T	A	C
C41	A	G	A	G	T	T	G	T	T	A	G	A	T	T	A	A	T	T	T	C	T	T	A	C
S33	A	G	A	G	T	T	G	- T	T	A	G	A	T	T	A	A	T	T	T	C	T	T	A	C
S10	A	G	A	G	T	T	G	OT	T	A	G	A	T	T	A	A	T	T	T	C	T	T	A	C
C6	A	G	C	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	T	C	T	T	A	C
Td17	A	G	C	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	T	C	T	T	A	C
T43	A	G	C	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	T	C	T	T	A	C
S1	A	G	C	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	T	C	T	T	A	C
C4	A	G	C	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	T	C	T	T	A	C

C51	A	G	C	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	T	C	T	T	A	C
P2	A	G	C	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	T	C	T	T	A	C
S18	A	G	C	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	T	C	T	T	A	C
T11	A	G	C	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	T	C	T	T	A	C
C1	A	G	C	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	T	C	T	T	A	C
T30	A	G	C	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	T	C	T	T	A	C
P7	A	G	C	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	T	C	T	T	A	C
C21	A	G	C	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	T	C	T	T	A	C
C18	A	G	C	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	T	C	T	T	A	C
T18	A	G	C	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	T	C	T	T	A	C
P39	A	G	C	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	T	C	T	T	A	C
P24	A	G	C	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	T	C	T	T	A	C
C13	A	G	C	G	T	T	G	T	T	A	G	A	T	T	A	A	T	T	T	C	T	T	A	C
C26	A	G	C	G	T	T	G	T	T	A	G	A	T	T	A	A	T	T	T	C	T	T	A	C
P8	A	G	C	G	T	T	G	T	T	A	G	A	T	T	A	A	T	T	T	C	T	T	A	C
P10	A	G	C	G	A	T	G	T	T	C	C	A	C	C	A	A	T	A	T	C	T	T	A	C
S48	A	G	T	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	C	T	A	T	A	C
S43	A	G	T	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	C	T	A	T	A	C
S30	A	G	T	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	C	T	A	T	A	C
S38	A	G	T	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	C	T	A	T	A	C
Td20	A	G	T	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	C	T	A	T	A	C
Td24	A	G	T	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	C	T	A	T	A	C
C20	A	G	T	G	T	T	G	T	T	A	G	A	T	C	A	A	T	T	C	T	A	T	A	C
T17	C	A	A	A	T	C	T	C	A	T	T	C	T	T	G	T	C	T	A	C	T	A	G	T

	460	462	463	464	465	466	470	471	472	473	474	479	480	482	483	490	494	498	499	500	501	503	504	506
P28	T	G	T	T	T	A	T	0 T	-	A	A	A	A	A	T	A	C	T	T	T	T	A	G	T
S7	T	G	T	T	T	A	T	T	-	A	A	- A	A	A	T	A	C	T	T	T	T	A	G	T
P29	T	G	T	T	T	A	$0{ }^{T}$	T	\bigcirc	A	A	A	A	A	${ }^{T}$	A	C	T	T	T	T	A	G	T
S11	T	G	T	T	T	A	T	T	-	A	A	A	A	A	T	A	C	T	T	T	T	A	G	T
S25	T	G	T	T	T	A	T	T	-	A	A	A	A	A	T	A	C	T	T	T	T	A	G	T
Td18	T	G	T	T	T	A	T	T	-	A	A	A	A	A	T	A	C	T	T	T	T	A	G	T

P21	T	G	T	T	T	A	T	T	-	A	A	A	A	A	T	A	C	T	T	T	T	A	G	T
T16	T	G	T	T	T	A	T	T	-	A	A	A	A	A	T	A	C	T	T	T	T	A	G	T
P17	T	G	T	T	T	A	T	T	-	A	A	A	A	A	T	A	C	T	T	T	T	A	G	T
C10	T	G	T	T	T	A	T	T	-	A	A	A	A	A	T	A	C	T	T	T	T	A	G	T
C9	T	G	T	T	T	A	T	T	-	A	A	A	A	A	T	A	C	T	T	T	T	A	G	T
C41	T	G	T	T	T	A	T	T	-	A	A	A	A	A	T	A	C	T	T	T	T	A	G	T
S33	T	G	T	T	T	A	T	T	-	A	A	A	A	A	T	A	C	T	T	T	T	A	G	T
S10	T	G	T	T	T	A	T	T		A	A	A	A	A	T	A	C	T	T	T	T	A	G	T
C6	C	G	T	T	T	A	C	T	-	G	A	A	A	A	T	A	C	T	T	T	C	A	G	T
Td17	C	G	T	T	T	A	C	T	-	G	A	A	A	A	T	A	C	T	T	T	C	A	G	T
T43	C	G	T	T	T	A	C	T	-	G	A	A	A	A	T	A	C	T	T	T	C	A	G	T
S1	C	G	T	T	T	A	C	T	-	G	A	A	A	A	T	A	C	T	T	T	C	A	G	T
C4	C	G	T	T	T	A	C	T		G	A	A	A	A	T	A	C	T	T	T	C	A	G	T
C51	C	G	T	T	T	A	C	T	-	G	A	A	A	A	T	A	C	T	T	T	C	A	G	T
P2	C	G	T	T	T	A	C	T	-	G	A	A	A	A	T	A	C	T	T	T	C	A	G	T
S18	C	G	T	T	T	A	C	T	-	G	A	A	A	A	T	A	C	T	T	T	C	A	G	T
T11	C	G	T	T	T	A	C	T	-	G	A	A	A	A	T	A	C	T	T	T	C	A	G	T
C1	C	G	T	T	T	A	C	T	-	G	A	A	A	A	T	A	C	T	T	T	C	A	G	T
T30	C	G	T	T	T	A	C	T	-	G	A	A	A	A	T	A	C	T	T	T	C	A	G	T
P7	C	G	T	T	T	A	C	T	-	G	A	A	A	A	T	A	C	T	T	T	C	A	G	T
C21	C	G	T	T	T	A	C	T	-	G	A	A	A	A	T	A	C	T	T	T	C	A	G	T
C18	C	G	T	T	T	A	C	T	-	G	A	A	A	A	T	A	C	T	T	T	C	A	G	T
T18	C	G	T	T	T	A	C	T	-	G	A	A	A	A	T	A	C	T	T	T	T	A	G	T
P39	C	G	T	T	T	A	C	T	-	G	A	A	A	A	T	A	C	T	T	T	C	A	G	T
P24	C	G	T	T	T	A	C	T	-	G	A	A	A	A	T	A	C	T	T	T	C	A	G	T
C13	C	G	T	T	T	A	C	T	-	G	A	A	A	A	T	A	C	T	T	T	C	A	G	T
C26	C	G	T	T	T	A	C	T	-	G	A	A	A	A	T	A	C	T	T	T	C	A	G	T
P8	C	G	T	T	T	A	C	T	\square	GO	A	0 A	A	A	T	A	C	T	T	T	C	A	G	T
P10	T	C	T	T	T	A	C	C	A	G	A	A	A	A	T	G	C	C	T	T	C	A	T	T
S48	G	G	G	C	T	T	T	T	-	A	A	T	A	A	T	A	T	T	T	T	C	T	G	T
S43	G	G	G	C	T	T	T	T	-	A	A	T	A	G	T	A	T	T	T	T	C	T	G	T
S30	G	G	G	C	T	T	T	T	-	A	A	T	A	G	T	A	T	T	T	T	C	T	G	T
S38	G	G	G	C	T	T	T	T0	-	A	A	OT	A	G	T	A	OT	T	T	T	C	T	G	T
Td20	G	G	G	C	T	T	T	T	-	A	A	T	A	A	T	A	T	T	T	T	C	T	G	T

Td 24	G	G	G	C	T	T	T	T	-	A	A	T	A	G	T	A	T	T	T	T	C	T	G	T
C 20	G	G	G	C	T	T	T	T	-	A	A	T	A	A	T	A	T	T	T	T	C	T	G	T
T 17	T	G	G	T	A	A	C	T	-	A	C	A	C	A	C	A	C	T	G	C	T	G	C	C

	508	512	513	515	518	519	524	525	528	529	530	532	534	535	538	540	542	543	545	548	549	550	551	552
P28	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	A	A	A	A	T	C	T	T	-
S7	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	A	A	A	A	T	C	T	T	-
P29	T	T	A	T	G	G	C	A	A	C	A	$-$	T	T	C	A	A	A	A	T	C	T	T	-
S11	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	A	A	A	A	T	C	T	T	-
S25	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	A	A	A	A	T	C	T	T	-
Td18	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	A	A	A	A	T	C	T	T	-
P21	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	A	A	A	A	T	C	T	T	-
T16	T	T	A	T	G	G	C	A	A	C	A	\square	T	T	C	A	A	A	A	T	C	T	T	-
P17	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	A	A	A	A	T	C	T	T	-
C10	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	A	A	A	A	T	C	T	T	-
C9	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	A	A	A	A	T	C	T	T	-
C41	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	A	A	A	A	T	C	T	T	-
S33	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	A	A	A	A	T	C	T	T	-
S10	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	A	A	A	A	T	C	T	T	-
C6	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	T	A	A	A	T	T	T	T	-
Td17	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	T	A	A	A	T	T	T	T	-
T43	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	T	A	A	A	T	T	T	T	-
S1	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	T	A	A	A	T	T	T	T	-
C4	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	T	A	A	A	T	T	T	T	-
C51	T	T	A	T	G	G	C	A	A	C	A		T	T	C	T	A	A	A	T	T	T	T	T
P2	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	T	A	A	A	T	T	T	T	-
S18	T	T	A	T	G	G	C	${ }^{\text {A }}$	A	C	A	-	T	T	C	T	A	A	A	T	T	T	T	-
T11	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	T	A	A	A	T	T	T	T	-
C1	T	T	A	T	G	G	\bigcirc	A	A	C	A	0	T	T	0	T	A	A	A	T	T	T	T	-
T30	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	T	A	A	A	T	T	T	T	-
P7	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	T	A	A	A	T	T	T	T	-
C21	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	T	A	A	A	T	T	T	T	-

C18	T	T	A	T	G	G	C	A	A	C	A		T	T	C	T	A	A	A	T	T	T	T	-
T18	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	T	A	A	A	T	T	T	T	-
P39	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	T	A	A	A	T	T	T	T	-
P24	T	T	A	T	G	G	C	A	A	C	A	-	T	T	C	T	A	A	A	T	T	T	T	-
C13	T	T	A	T	G	G	T	A	A	C	A	-	T	T	C	A	A	A	A	T	T	C	T	-
C26	T	T	A	T	G	G	T	A	A	C	A	-	T	T	C	A	A	A	A	T	T	C	T	-
P8	T	T	A	T	G	G	T	A	A	C	A	-	T	T	C	A	A	A	A	T	T	C	T	-
P10	T	T	C	G	G	G	C	A	G	C	C	-	C	C	C	T	G	T	A	C	A	T	G	T
S48	T	C	A	T	A	G	T	A	A	C	A	-	C	T	C	C	A	A	A	T	C	T	T	-
S43	T	C	A	T	A	G	T	A	A	C	A	-	C	T	C	C	A	A	A	T	C	T	T	-
S30	T	C	A	T	A	G	T	A	A	C	A	-	C	T	C	C	A	A	A	T	C	T	T	-
S38	T	C	A	T	A	G	T	A	A	C	A	-	C	T	C	C	A	A	A	T	C	T	T	-
Td20	T	C	A	T	A	G	T	A	A	C	A	-	C	T	C	C	A	A	A	T	C	T	T	-
Td24	T	C	A	T	A	G	T	A	A	C	A		C	T	C	C	A	A	A	T	C	T	T	-
C20	T	C	A	T	A	G	T	A	A	C	A	-	C	T	C	C	A	A	A	T	C	T	T	-
T17	C	T	A	T	G	C	T	G	A	A	A	A	T	T	A	A	T	A	C	C	C	T	T	-

	554	556
P28	G	A
S7	G	A
P29	G	A
S11	G	A
S25	G	A
Td18	G	A
P21	G	A
T16	G	A
P17	G	A
C10	G	A
C9	G	A
C41	G	A
S33	G	A
S10	G	A

C6	G	G
Td17	G	G
T43	G	G
S1	G	G
C 4	G	G
C 51	G	G
P2	G	G
S18	G	G
T11	G	G
C 1	G	G
T30	G	G
P 7	G	G
C 21	G	G
C 18	G	G
T18	G	G
P 39	G	G
P 24	G	G
C 13	G	G
C 26	G	G
P 8	G	G
P 10	G	G
S48	G	T
S43	G	T
S30	G	T
S38	G	T
Td20	G	T
Td24	G	T
C 20	G	T
T17	T	A

APPENDIXE

A ward and Publications from This Thesis

Award

The Best Student Abstract, $7^{\text {th }}$ A sian Fisheries Forum. 30 November - 4 December 2004. Penang, M alaysia, The A sian Fisheries Society

Publications from this study

1. K hamnamtong, B., Thumrungtanakit, S., Klinbunga, S., Hirono, T. A oki, T. and M enasvetas, P. (2006). Identification of sex-specific expression markers of the giant tiger shrimp (Penaeus monodon). J. Biochem. M ol. Biol. 39: 37-45.
2. K hamnamtong, B., K linbunga, S. and M enasveta, P. (2005). Species identification of five penaeid shrimps using PCR-RFLP and SSCP analyses of 16 ribosomal DNA. J. Biochem M ol. Biol. 38: 491-499.
3. Khamnamtong, N., Klinbunga, S., Tassanakajon, A., Puanglarp, N. and M enasveta, P. (2002). Isolation and characterization of sex-specific markers of the black tiger shrimp (Penaeus monodon), $28^{\text {th }}$ Congress on Science and Technology of Thailand. 24-26 October 2002, Bangkok, Thailand, p. 434 (Oral presentation).
4. K linbunga, S., K hamnamtong, B., Tassanakajon, A. and M enasveta, P. (2003). M olecular genetic markers as a tool for conservation and broodstock management of penaeid shrimps. $6^{\text {th }}$ International Conference on the Environmental M anagement of Enclosed Coastal Seas. 18-21 November 2003. Bangkok, Thailand. p. 135 (Oral

5. K hamnamtong, B., K linbunga, S., Puanglarp, P. and M enasveta, P. (2004). Identification of morphological similar penaeid shrimps using PCR-RFLP and SSCP analyses. The $15^{\text {th }}$ A nnual Meeting of the Thai Society for Biotechnology. 3-6 February 2004, Chiang M ai, Thailand (Oral presentation).
6. Klinbunga, S., Pongsomboon, S., Khamnamtong, B., Tassanakajon, A. and Menasveta, P. (2004). Molecular Genetic Markers As a Tool for Broodstock M anagement and Breeding Programmes of the Giant Tiger Shrimp (Penaeus monodon). $5^{\text {th }}$ National Symposium on M arine Shrimps. 29-30 M arch 2004, Bangkok, Thailand (Oral presentation).
7. K hamnamtong, B., K linbunga, S. and M enasveta, P. (2004). Development of species-diagnostic markers for differentiation of morphological similar penaeid shrimps. $5^{\text {th }}$ National Symposium on M arine Shrimps. 29-30 M arch 2004, Bangkok, Thailand (Oral presentation).
8. K hamnamtong, B., Klinbunga, S., Tassanakajon, A. and M enasveta, P. (2004). Identification of differentially expressed genes in ovaries and testes of the giant tiger shrimp (Penaeus monodon). $30^{\text {th }}$ Congress on Science and Technology of Thailand, 19-21 October 2004, B angkok (Oral presentation).
9. Klinbunga, S., Pongsomboon, S., Supungul, P., Khamnamtong, B., Thumrungtanakit, S., Tassanakajon, A. and M enasveta, P. (2004). Genetic diversity and population structure of the giant tiger shrimp Penaeus monodon. A dvances in Shrimp Biotechnology II, $7^{\text {th }}$ A sian Fisheries Forum. 30 N ovember-4 December 2004. Penang, M alaysia (Oral presentation).
10. K hamnamtong, B., Klinbunga, S. and M enasveta, P. (2004). Development of molecular markers for differentiation of morphological similar Penaeus shrimps. Advances in Shrimp Biotechnology $11,7^{\text {th }}$ A sian Fisheries Forum. 30 November-4 December 2004. Penang, M alaysia (Oral presentation).
11. K linbunga, S., K hamnamtong, N., Thumrungtanakit, S., Puanglarp, N. and M enasveta, P. (2005). M olecular genetic markers as a tool for aquatic biotechnology. The 8 th A pplied Biology Symposium, 22 -23 J une 2005, M arriott Putrajaya Hotel, M alaysia (Plenary lecture).
12. K hamnamtong, B., Klinbunga, S. and Menasveta, P. (2005). Isolation and characterization of sex-specific expression markersin ovaries of the giant tiger shrimp Penaeus monodon. $31^{\text {st }}$ Congress on Science and Technology of Thailand, 18-20 October 2005, Nakornratchasrima, Thailand (Oral presentation).
13. K hamnamtong, B., Thumrungtanakit, S., Klinbunga, S. and M enasveta, P. (2005). Development of Female- and M ale-Specific Expression M arkers in Ovaries and Testes of the Giant Tiger Shrimp (Penaeus monodon). International Shrimp Symposium, BIOTHAILAND 2005, 2-5 November 2005, Bangkok, Thailand (Oral presentation).

Biography

Miss Bavornlak Khamnamtong was born on July 23, 1975 in Ubonratchathani Province, Thailand. She graduated with the degree of Bachelor of Science (Biochemistry) and Master of Science (Biotechnology) from Chulalongkorn University in 1997 and in 2000, respectively. She has studied for the degree of Doctoral of Science (Biotechnology) at the Program of Biotechnology, Chulalongkorn University since 2001.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

[^0]: *F and M were RAP-PCR fragments specifically found (or differentially expressed) in ovaries or testes of P. monodon, respectively. Sex-specific expression markers are illustrated in boldface. NS = non-specific amplification, - = no product, + = positively expected amplification product, $+\mathrm{I}=$ positive amplification product exhibiting a larger size.

