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CHAPTER I

INTRODUCTION

Game structures and graph structures are sometimes associated. Known games

and puzzles are simplified into graph theory problems; for examples, tic-tac-toe,

crossword and sudoku, which are paper-and-pencil games. Besides paper-and-

pencil games, several researchers are interested in pursuit-and-evasion games. They

are combinatorial games with two players which are one pursuer and one evader.

The game of cops and robbers on graphs [11, 13] is one of interesting pursuit-

and-evasion games by following two simple rules which are (i) two players (a cop

and a robber) choose their beginning vertices to stay, and (ii) they alternatively

take moves from the present vertices to its neighbor or choose not to move. Later,

researchers generalized the idea of the game on graphs into hypergraphs. Baird [2]

was the first one who introduced the cops and robbers game on hypergraphs with

slightly different rules.

In this thesis, we investigate the results on the cops and robbers game on

hypergraphs and certain special class of graphs.

We collect the basic concepts in graph and hypergraph theory and the

game of cops and robbers in Chapter II. First of all, we give some definitions and

interesting hypergraph structures. In the second part of this chapter, we introduce

useful definitions in graph theory and the structure of a special class of graphs.

Finally, we provide the rule of a considered cops and robbers game on both graphs

and hypergraphs and some studies on this game in the third part of this chapter.

In Chapter III, we characterize the cop-win hypergraphs and investigate

their products.

In the case of robber-win hypergraphs, we give a better chance to a cop and

allow more than one cop to play this game. The cop-number of certain hypergraphs



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

can be seen in Chapter IV.

After that, in Chapter V, we consider the game on a special class of graphs

which is a Kneser graph. Then, we study the cop-number of Kneser graphs and

give an algorithm of choosing vertices to prove the desired results.

Finally, we give conclusions and discussions on the future researches in Chapter

VI.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

PRELIMINARIES

We separate this chapter into three sections. In the first section, we give some

definitions and some properties of the related hypergraph structures. Then, we

give the definition of a special class of graphs and some useful graph-theoretic

properties in the second section. Next, we introduce the rule of cops and robbers

game on graphs and hypergraphs with some relevant results in the last section.

2.1 Hypergraph Structures

Definition 2.1. [16] The pair H = (V , E) is called a hypergraph including the

vertex set V or V(H) which is a finite non-empty set and the (hyper)edge set E

or E(H) which is a family of non-empty subsets of V . A hypergraph in which all

edges have the same size r ≥ 0 is called r-uniform.

Definition 2.2. [2] A vertex which is contained in only one hyperedge is called

an internal vertex and a vertex which is contained in two or more hyperedges is

called an external vertex.

Definition 2.3. [16] In a hypergraph H, two vertices are said to be adjacent if

there is a (hyper)edge E ∈ E(H) that contains both vertices.

Definition 2.4. (i) [16] For a hypergraph H, the adjacent vertices are some-

times called neighbors to each other, and the neighborhood of a vertex x of

H, denoted by NH(x), is the set of all neighbors of x and the set NH(x)∪{x}

is denoted by NH[x].

(ii) [2] A vertex x of a hypergraph H is called a corner or a pitfall if x and all

vertices connected to x are also adjacent to some other vertices; that is, there

exists a vertex y ̸= x of H such that NH[x] ⊆ NH[y].



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

(iii) [16] A weak deletion of a vertex x in a hypergraph H is a removal of x from

V(H) and from each hyperedge containing x. We write this operation as

H−x and also use H−x to represent the resulting hypergraph after a weak

deletion.

Example 2.5. Consider a hypergraph H given in Figure 2.1. The vertex set

V(H) = {x1, x2, x3, x4, x5, x6} and the edge set E(H) consists of {x1, x2, x3}, {x4, x5,

x6}, {x2, x5}, and {x3, x6}.

Figure 2.1: A hypergraph H

From H shown in Figure 2.1, we have NH[x1] = {x1, x2, x3}, NH[x2] = {x1, x2,

x3, x5}, NH[x3] = {x1, x2, x3, x6}, NH[x4] = {x4, x5, x6}, NH[x5] = {x2, x4, x5, x6}

and NH[x6] = {x3, x4, x5, x6}. Since NH[x1] = {x1, x2, x3} ⊆ {x1, x2, x3, x5} =

NH[x2] and NH[x4] = {x4, x5, x6} ⊆ {x2, x4, x5, x6} = NH[x5]. By Definition 2.4

(ii), vertices x1 and x4 are corners of H. Furthermore, if we delete a vertex x3

weakly from H, we obtain the hypergraph shown in Figure 2.2.

Figure 2.2: A hypergraph H− x3



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

After weak deleting vertex x3, we see that the hyperedge {x1, x2, x3} ∈ E(H) of

size 3 becomes a hyperedge {x1, x2} ∈ E(H−x3) of size 2 connecting the remaining

two vertices.

We would like to give the definitions of interesting hypergraph structures. First

of all, we introduce two types of k-partite hypergraphs.

Definition 2.6. [10] Let k ≥ 2 be a positive integer. A k-uniform k-partite

hypergraph has a vertex set V partitioned into k subsets V1,V2,V3, . . . ,Vk, and E

is a hyperedge if E = {v1, v2, v3, . . . , vk} where vj ∈ Vj for all 1 ≤ j ≤ k. A

k-uniform k-partite hypergraph with partite sets Vj = {v1j , v2j , v3j , . . . , v
|Vj |
j } for all

1 ≤ j ≤ k is said to be complete if E = {{vi11 , vi22 , vi33 , . . . , v
ik
k } | vijj ∈ Vj for all 1 ≤

j ≤ k and 1 ≤ ij ≤ |Vj|}.

Example 2.7. Let V = V1 ∪ V2 ∪ V3 where V1 = {a, b, c}, V2 = {a′, b′, c′} and

V3 = {a, b, c} are mutually disjoint. The complete 3-uniform 3-partite hypergraph

from Definition 2.6 constructed from V has edges as follows.

{a, a′, a}, {a, a′, b}, {a, a′, c}, {a, b′, a}, {a, b′, b}, {a, b′, c},

{a, c′, a}, {a, c′, b}, {a, c′, c}, {b, a′, a}, {b, a′, b}, {b, a′, c},

{b, b′, a}, {b, b′, b}, {b, b′, c}, {b, c′, a}, {b, c′, b}, {b, c′, c},

{c, a′, a}, {c, a′, b}, {c, a′, c}, {c, b′, a}, {c, b′, b}, {c, b′, c},

{c, c′, a}, {c, c′, b}, {c, c′, c}.

The second definition is modified from the definition given by Jirimutu and

Wang [9]

Definition 2.8. [9] Let k ≥ 2, V be partitioned into k subsets V1,V2,V3, . . . ,Vk

and σ be an integer with |V| ≥ σ. A σ-uniform k-partite hypergraph has the vertex

set V and E ⊆ V is an edge if |E| = σ and E * Vi for all 1 ≤ i ≤ k. A σ-uniform

k-partite hypergraph is said to be complete if the edge set E contains all edges

satisfying the above property.

Example 2.9. Let V = V1 ∪ V2 where V1 = {a, b, c} and V2 = {a′, b′, c′} are

mutually disjoint. The 3-uniform 2-partite hypergraph from Definition 2.8 has

edges as follows.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

{a, b, a′}, {a, c, a′}, {b, c, a′}, {a, b, b′},

{a, c, b′}, {b, c, b′}, {a, b, c′}, {a, c, c′}, {b, c, c′}.

After that, we consider the operations between two hypergraphs which leads

us to study the their products, namely, (i) the Cartesian product (ii) the minimal

and maximal rank preserving direct products and (iii) the normal and standard

strong products.

Definition 2.10. [8] Let H1 = (V1, E2) and H2 = (V2, E2) be hypergraphs. The

Cartesian product H = H1 � H2 of two hypergraphs H1 and H2 has the vertex set

V(H) = V1×V2 and the edge set E(H) = {{x1}×e2 | x1 ∈ V1, e2 ∈ E2}∪{e1×{x2} |

e1 ∈ E1, x2 ∈ V2}.

Example 2.11. Let H1 = (V1, E1) where V1 = {x1, x2, x3} and E1 = {{x1, x2, x3}}

and H2 = (V2, E2) where V2 = {y1, y2} and E1 = {{y1, y2}} shown in Figure 2.3

and 2.4, respectively.

Figure 2.3: A hypergraph H1

Figure 2.4: A hypergraph H2

We use hypergraphs H1 and H2 to construct the Cartesian product H1 � H2.

The vertex set V1×V2 = {(x1, y1), (x2, y1), (x3, y1), (x1, y2), (x2, y2), (x3, y2)} where

the edge set E(H1 � H2) = {{(x1, y1), (x2, y1), (x3, y1)}, {(x1, y2), (x2, y2), (x3, y2)},

{(x1, y1), (x1, y2)}, {(x2, y1), (x2, y2)}, {(x3, y1), (x3, y2)}}. We use ij instead of (i, j)

in H1 � H2 shown in Figure 2.5.
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Figure 2.5: The Cartesian product H1 � H2

Definition 2.12. [8] For two hypergraphs H1 = (V1, E1) and H2 = (V2, E2), their

minimal rank preserving direct product H1 ×1 H2 has the vertex set V1 × V2. A

subset of {(x1, y1), (x2, y2), (x3, y3), . . . , (xr, yr)} of V1 ×V2 is an edge in H1 ×1 H2

if and only if

(i) {x1, x2, x3, . . . , xr} is an edge in H1 and {y1, y2, y3, . . . , yr} is a subset of an

edge in H2 where xi’s are distinct vertices in H1 and yi’s are distinct vertices

in H2 for all 1 ≤ i ≤ r, or

(ii) {x1, x2, x3, . . . , xr} is a subset of an edge in H1 and {y1, y2, y3, . . . , yr} is an

edge in H2 where xi’s are distinct vertices in H1 and yi’s are distinct vertices

in H2 for all 1 ≤ i ≤ r.

Example 2.13. We use hypergraphs H1 and H2 in Example 2.11 to construct

the minimal rank preserving direct product H1 ×1 H2. The vertex set V1 × V2 =

{(x1, y1), (x2, y1), (x3, y1), (x1, y2), (x2, y2), (x3, y2)} where the edge set E(H1×1H2)

= {{(x1, y1), (x2, y2)}, {(x1, y1), (x3, y2)}, {(x1, y2), (x2, y1)}, {(x2, y1), (x3, y2)},

{(x1, y2), (x3, y1)}, {(x2, y2), (x3, y1)}}. We use ij instead of (i, j) in H1×1H2 shown

in Figure 2.6.

Definition 2.14. [8] For two hypergraphs H1 = (V1, E1) and H2 = (V2, E2), their

maximal rank preserving direct product H1 ×2 H2 has the vertex set V1 × V2. A

subset of {(x1, y1), (x2, y2), (x3, y3), . . . , (xr, yr)} of V1 ×V2 is an edge in H1 ×2 H2

if and only if
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Figure 2.6: The minimal rank preserving direct product H1 ×1 H2

(i) {x1, x2, x3, . . . , xr} is an edge of size r in H1 and there is an edge e2 in

E2 such that {y1, y2, y3, . . . , yr} is an r-multiset of elements of e2 and e2 ⊆

{y1, y2, y3, . . . , yr}, or

(ii) {y1, y2, y3, . . . , yr} is an edge of size r in H2 and there is an edge e1 in E1
such that {x1, x2, x3, . . . , xr} is an r-multiset of elements of e1 and e1 ⊆

{x1, x2, x3, . . . , xr}.

Example 2.15. We use hypergraphs H1 and H2 in Example 2.11 to construct

the maximal rank preserving direct product H1 ×2 H2. The vertex set V1 × V2 =

{(x1, y1), (x2, y1), (x3, y1), (x1, y2), (x2, y2), (x3, y2)} where the edge set E(H1×2H2)

= {{(x1, y1), (x2, y1), (x3, y2)}, {(x1, y1), (x2, y2), (x3, y1)}, {(x1, y1), (x2, y2),

(x3, y2)}, {(x1, y2), (x2, y1), (x3, y1)}, {(x1, y2), (x2, y1), (x3, y2)}, {(x1, y2), (x2, y2),

(x3, y1)}}. We use ij instead of (i, j) in H1 ×2 H2 shown on Figure 2.7.

Figure 2.7: The maximal rank preserving direct product H1 ×2 H2
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Notice that if H1 and H2 are r-uniform hypergraphs, then H1×1H2 = H1×2H2.

Definition 2.16. [8] For two hypergraphs H1 = (V1, E1) and H2 = (V2, E2), their

normal strong product H1 �1 H2 has the vertex set V1 × V2 and the edge set

E(H1 �1 H2) = E(H1 � H2) ∪ E(H1 ×1 H2).

That is, a subset {(x1, y1), (x2, y2), (x3, y3), . . . , (xr, yr)} of V1 × V2 is an edge

in H1 �1 H2 if and only if

(i) {x1, x2, x3, . . . , xr} ∈ E1 where xi’s are distinct vertices in H1 for all 1 ≤ i ≤ r

and y1 = y2 = y3 = · · · = yr ∈ V2, or

(ii) {y1, y2, y3, . . . , yr} ∈ E2 where yi’s are distinct vertices in H2 for all 1 ≤ i ≤ r

and x1 = x2 = x3 = · · · = xr ∈ V1, or

(iii) {x1, x2, x3, . . . , xr} ∈ E1 and {y1, y2, y3, . . . , yr} is a subset of an edge in H2

where xi’s are distinct vertices in H1 and yi’s are distinct vertices in H2 for

all 1 ≤ i ≤ r, or

(iv) {y1, y2, y3, . . . , yr} ∈ E2 and {x1, x2, x3, . . . , xr} is a subset of an edge in H1

where xi’s are distinct vertices in H1 and yi’s are distinct vertices in H2 for

all 1 ≤ i ≤ r.

Example 2.17. We use hypergraphs H1 and H2 in Example 2.11 to construct the

normal strong product H1 �1 H2. The vertex set V1×V2 = {(x1, y1), (x2, y1), (x3, y1),

(x1, y2), (x2, y2), (x3, y2)} where the edge set E(H1�1H2) = E(H1 � H2)∪E(H1×1

H2) in Example 2.11 and 2.13. We use ij instead of (i, j) in H1 �1 H2 shown in

Figure 2.8.

Definition 2.18. [8] For two hypergraphs H1 = (V1, E1) and H2 = (V2, E2), their

standard strong product H1 �2 H2 has the vertex set V1 × V2 and the edge set

E(H1 �2 H2) = E(H1 � H2) ∪ E(H1 ×2 H2).

That is, a subset {(x1, y1), (x2, y2), (x3, y3), . . . , (xr, yr)} of V1 × V2 is an edge

in H1 �2 H2 if and only if
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Figure 2.8: The normal strong product H1 �1 H2

(i) {x1, x2, x3, . . . , xr} ∈ E1 where xi’s are distinct vertices in H1 for all 1 ≤ i ≤ r

and y1 = y2 = y3 = · · · = yr ∈ V2, or

(ii) {y1, y2, y3, . . . , yr} ∈ E2 where yi’s are distinct vertices in H2 for all 1 ≤ i ≤ r

and x1 = x2 = x3 = · · · = xr ∈ V1, or

(iii) {x1, x2, x3, . . . , xr} ∈ E1 where xi’s are distinct vertices in H1 for all 1 ≤ i ≤ r

and there is an edge e2 in E2 such that {y1, y2, y3, . . . , yr} is an r-multiset of

elements of e2 and e2 ⊆ {y1, y2, y3, . . . , yr}, or

(iv) {y1, y2, y3, . . . , yr} ∈ E2 where yi’s are distinct vertices in H2 for all 1 ≤ i ≤ r

and there is an edge e1 in E1 such that {x1, x2, x3, . . . , xr} is an r-multiset of

elements of e1 and e1 ⊆ {x1, x2, x3, . . . , xr}.

Example 2.19. We use hypergraphs H1 and H2 in Example 2.11 to construct the

standard strong product H1 �2 H2. The vertex set V1 × V2 = {(x1, y1), (x2, y1),

(x3, y1), (x1, y2), (x2, y2), (x3, y2)} where the edge set E(H1�2H2) = E(H1 � H2)∪

E(H1 ×2 H2) in Example 2.11 and 2.15. We use ij instead of (i, j) in H1 �2 H2

shown in Figure 2.9.

Besides the products of two hypergraphs, we are interested in the n-prisms over

a hypergraph.

Definition 2.20. Let n ≥ 1 and k ≥ 2 be integers. Let H(k)
0 = (V0, E0) be a

k-uniform hypergraph where |V0| ≥ k and let H(k)
i = (Vi, Ei) be an ith copy of H(k)

0
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Figure 2.9: The standard strong product H1 �2 H2

for all 1 ≤ i ≤ n. Let vαi ∈ Vi denote an ith clone of vα0 ∈ V0 and Eβ
i ∈ Ei denote

an ith clone of Eβ
0 ∈ E0.

The n-Prisms over H(k)
0 , denoted by Prismn(H(k)

0 ), is a hypergraph which con-

sists of all vertices obtained from collection of vertices of H(k)
0 ,H(k)

1 ,H(k)
2 , . . . ,H(k)

n .

The hyperedge set of the n-prisms contains two types where the first type is the col-

lection of all hyperedges obtained from the collection of all hyperedges of H(k)
0 ,H(k)

1 ,

H(k)
2 , . . . ,H(k)

n . The second type is a collection B such that for all 1 ≤ j ≤ n,

{vαj−1, v
α
j , u

α
1 , u

α
2 , u

α
3 , . . . , u

α
k−2} ∈ B, where uα

l ∈ (Eβ
j−1 ∪ Eβ

j ) − {vαj−1, v
α
j }, vαj−1 ∈

Vj−1, vαj ∈ Vj and Eβ
j−1 ∈ Ej−1 with vαj−1 ∈ Eβ

j−1.

A vertex vαs is called an sth descendant of a vertex vαt for all 0 ≤ t ≤ s − 1

and a vertex vαr is called an rth ancestor of a vertex vαw for all r + 1 ≤ w ≤ n. A

hyperedge Eβ
s is called an sth descendant of a hyperedge Eβ

t for all 0 ≤ t ≤ s−1 and

a hyperedge Eβ
r is called an rth ancestor of a hyperedge Eβ

w for all r + 1 ≤ w ≤ n.

Example 2.21. Let H(3)
0 denote the 3-uniform 2-partite hypergraph from Defini-

tion 2.8 using V = V1 ∪ V2 where V1 = {a, b, c} and V2 = {a′, b′, c′} are mutually

disjoint. H(3)
0 has edges as follows.

{a, b, a′}, {a, c, a′}, {b, c, a′}, {a, b, b′},

{a, c, b′}, {b, c, b′}, {a, b, c′}, {a, c, c′}, {b, c, c′}.

The following list shows all edges of Prism1(H(3)
0 ), where the first two lines are

edges of H(3)
0 , the next two lines are edges of H(3)

1 and the remaining edges are
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elements in the collection B.

{a0, b0, a′0}, {a0, c0, a′0}, {b0, c0, a′0}, {a0, b0, b′0}, {a0, c0, b′0},

{b0, c0, b′0}, {a0, b0, c′0}, {a0, c0, c′0}, {b0, c0, c′0}

{a1, b1, a′1}, {a1, c1, a′1}, {b1, c1, a′1}, {a1, b1, b′1}, {a1, c1, b′1},

{b1, c1, b′1}, {a1, b1, c′1}, {a1, c1, c′1}, {b1, c1, c′1}

{a0, a1, b0}, {a0, a1, a′0}, {a0, a1, c0}, {a0, a1, b1}, {a0, a1, a′1}, {a0, a1, c1},

{b0, b1, a0}, {b0, b1, a′0}, {b0, b1, a1}, {b0, b1, a′1}, {b0, b1, c0}, {b0, b1, c1}

{c0, c1, a0}, {c0, c1, a′0}, {c0, c1, a1}, {c0, c1, a′1}, {c0, c1, b0}, {c0, c1, b1}

{a′0, a′1, a0}, {a′0, a′1, b0}, {a′0, a′1, c0}, {a′0, a′1, a1}, {a′0, a′1, b1}, {a′0, a′1, c1},

{a0, a1, b′0}, {a0, a1, b′1}, {b0, b1, b′0}, {b0, b1, b′1}, {c0, c1, b′0}, {c0, c1, b′1},

{b′0, b′1, a0}, {b′0, b′1, a1}, {b′0, b′1, b0}, {b′0, b′1, b1}, {b′0, b′1, c0}, {b′0, b′1, c1},

{a0, a1, c′0}, {a0, a1, c′1}, {b0, b1, c′0}, {b0, b1, c′1}, {c0, c1, c′0}, {c0, c1, c′1},

{c′0, c′1, a0}, {c′0, c′1, a1}, {c′0, c′1, b0}, {c′0, c′1, b1}, {c′0, c′1, c0}, {c′0, c′1, c1}.

Next, Baird [2] also gave a graph representation of a given hypergraph H as

follows.

Definition 2.22. Let H = (V(H), E(H)) be a hypergraph. A graph of a hyper-

graph, denoted by G(H), consists of a vertex set V (G(H)) and an edge set E(G(H))

such that V (G(H)) = V(H) and for u, v ∈ V (G(H)), uv ∈ E(G(H)) if {u, v} ⊆ e

for some e ∈ E(H).

Example 2.23. From a hypergraph H given in Example 2.5, its G(H) is shown

in Figure 2.10.

2.2 Graph Structures

First of all, let us introduce some important definitions involving a graph G

analogous to a hypergraph H in Definition 2.4.

Definition 2.24. (i) [16] For a graph G, the adjacent vertices are sometimes

called neighbors of each other, and all neighbors of a given vertex x are called
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Figure 2.10: G(H), where H is a hypergraph given in Example 2.5

the neighborhood of x. The neighborhood of x is denoted by NG(x) and the

set NG(x) ∪ {x} is denoted by NG[x].

(ii) [1] We say that a vertex x in a graph G is a corner (or a pitfall or irreducible)

in G if for some vertex y ̸= x of G, NG[x] ⊆ NG[y].

(iii) [16] Let V and E be the vertex set and the edge set of a graph G, respectively.

A deletion of x ∈ V from G is removing of x from V together with all edges

of G incident to x from E, denoted by G− x.

Example 2.25. Consider a graph G shown in Figure 2.11.

Figure 2.11: A graph G

We obtain that NG(x1) = {x2}, NG(x2) = {x1, x3, x5}, NG(x3) = {x2, x6},

NG(x4) = {x5}, NG(x5) = {x2, x4, x6} and NG(x6) = {x3, x5}. Since NG[x1] =

{x1, x2} ⊆ {x1, x2, x3, x5} = NG[x2] and NG[x4] = {x4, x5} ⊆ {x2, x4, x5, x6} =
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NG[x5]. By Definition 2.24, vertices x1 and x4 are corners of G. Finally, if we

delete the vertex x3 in a graph G, we obtain the graph shown in Figure 2.12.

Figure 2.12: A graph G− x3

Next, we provide the special class of graphs and its basic properties.

Definition 2.26. Let n and k be positive integers and [n] = {1, 2, 3, . . . , n}. Let

[n](k) denote the family of all k-subsets of [n]. Let k ∈ [n]. The Kneser graph

KG(n, k) is a graph whose vertex set is V (KG(n, k)) = [n](k) and the edge set

E(KG(n, k)), where UV ∈ E(KG(n, k)) if and only if U ∩ V = ∅.

Example 2.27. Consider n = 5 and k = 2. The vertex set V (KG(5, 2)) =

[5](2) = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}}. We

obtain the Kneser graph KG(5, 2) shown in Figure 2.13.

Figure 2.13: A Kneser graph KG(5, 2)
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Many researches have studied several properties on Kneser graphs [4, 5, 7, 12,

15]. We see that KG(n, k) has
(
n
k

)
vertices and 1

2

(
n
k

)(
n−k
k

)
edges. We know that

KG(n, k) is a regular graph. Indeed, each vertex of KG(n, k) has exactly
(
n−k
k

)
neighbors, which is the degree of each vertex in KG(n, k).

Note that if n < 2k, then KG(n, k) is an empty graph and KG(n, k) is usually

studied for n > 2k. Furthermore, if n = 2k, then KG(n, k) is a perfect matching

with 1
2

(
n
k

)
edges, which is a disconnected graph. It is easy to see that KG(n, k)

is a connected graph for n ≥ 2k + 1. Indeed, the diameter of KG(n, k) has been

determined by Valencia-Pabon and Vera [15], as follows.

Theorem 2.28. [15] For k ≥ 1 and n ≥ 2k + 1, diam(KG(n, k)) = ⌈ k−1
n−2k

⌉+ 1.

Definition 2.29. [12] A dominating set in a graph G is a subset S of the vertex

set V (G) such that each vertex in V (G) − S is adjacent to at least one vertex in

S. The domination number γ(G) of G is the minimum size of a dominating set in

G.

It is easy to see that if k ≥ 2 and n is suffciently large, then the smallest

dominating set of KG(n, k) is obtained by taking k + 1 disjoint k-sets.

Proposition 2.30. [12] Let k ≥ 2 and n ≥ k2 + k. Then, the domination number

γ(KG(n, k)) = k + 1.

2.3 Game Structures

Let G be a finite connected graph. A vertex-pursuit game of two players, a

cop and a robber, played on a graph G was first introduced by Quilliot [13] and

Nowakowski and Winkler [11]. The rules of the game are defined as follows:

(i) First, the cop selects a vertex to begin and the robber then selects another

vertex to begin.

(ii) In each round, the cop and the robber take altenatively moving from their

present vertex to other vertices along edges. However, they can also choose

not to move from their positions at each of their turns as well.
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There are two ways to finish the game such as the cop can catch the robber

by occupying the same vertex as the robber after finite number of moves, or the

robber can run away. The graph which the cop has the winning strategy is called

a cop-win graph; otherwise, a robber-win graph.

In [1] and [11], the characterizations of cop-win graphs are shown. Nowakowski

and Winkler [11] characterized by using the graph structure called dismantlable,

where a graph G is dismantlable if there is {v1, v2, v3, . . . , vn} of the vertices of G

such that for each i < n, vi is a corner in the subgraph induced by {v1, v2, v3, . . . , vn}

and stated the results on a finite path and an n-cycle where n ≥ 4.

Theorem 2.31. [11] A finite path is a cop-win graph and an n-cycle where n ≥ 4

is a robber-win graph.

In 1984, Aigner and Fromme [1] proved the statement that every cop-win graph

has at least one corner and also gave a characterization of cop-win graphs by using

a deletion of a vertex from a graph G and successively removing corners (in any

order) from a graph G.

Theorem 2.32. [1] Let x be a corner of a graph G and Ḡ = G− x. Then, G is a

cop-win graph if and only if Ḡ is a cop-win graph.

By the previous theorem, they obtain the following theorem.

Theorem 2.33. [1] G is a cop-win graph if and only if by successively removing

corners (in any order), G can be reduced to a single vertex.

Besides the characterization, Aigner and Fromme [1] gave a better chance to a

cop by allowing more than one cops and at least one cop has to move on their turn

which leads to investigate on the least number of cops guarateed their winning.

Definition 2.34. [1] For a finite connected graph G, c(G) denotes the minimum

number of cops needed for the cops to win and it is called the cop-number.

They investigated the bound of cop-number of given graphs.

Theorem 2.35. [1] For a graph G, c(G) ≤ γ(G).
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Theorem 2.36. [1] Let G be a graph with minimum degree δ(G) ≥ n which

contains no 3- or 4-cycles. Then, c(G) ≥ n.

Moreover, Tos̆ić [14] proved the bounded of the cop-number of the Cartesian

product of any two graphs as follows.

Theorem 2.37. [14] Let G and H be graphs with the cop-numbers c(G) and c(H),

respectively. Then, c(G � H) ≤ c(G) + c(H).

According to Kneser graphs, we can see that KG(n, 1) is the complete graph

Kn which is obviously a cop-win graph whose cop-number is 1 and we know that

the Petersen graph is the smallest Kneser graph KG(5, 2) whose cop-number is 3.

Theorem 2.38. [3] The Petersen graph with 10 vertices has cop-number 3. More-

over, for any connected graph G having at most 10 vertices and G is not isomorphic

to the Petersen graph, we have c(G) ≤ 2.

Besides playing on graphs, Baird [2] introduced the game of cops and robbers

played on hypergraphs in 2011. A cop and a robber can move from their present

vertex x to any vertex y belonging to the same hyperedge as vertex x, which

is slightly changed from the game played on graphs, or choose not to move. A

hypergraph on which cop wins is called a cop-win hypergraph and a hypergraph

on which robber wins is called a robber-win hypergraph. Then, he gave a result on

winning strategy for a cop and considered a hyperpath and a hypercycle.

Lemma 2.39. [2] The cop can play a winning strategy by remaining on external

vertices until, perhaps, the final move of the game.

Theorem 2.40. [2] A hyperpath is a cop-win hypergraph and a hypercycle is a

robber-win hypergraph.

Then, he determined the cop-number in this game on hypergraphs in the fol-

lowing definition.

Definition 2.41. [2] Let H be a finite connected hypergraph. The cop-number

c(H) of a hypergraph H is the minimum number of cops needed to guarantee that

cops win.
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It is easy to see that H is a cop-win hypergraph if and only if its cop-number

is 1. Baird [2] showed that the cop-number of hyperpath and hypercycle are 1 and

2, respectively.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

COP-WIN HYPERGRAPHS

In this chapter, we focus on cop-win hypergraphs. We divide this chapter

into two sections. In the first part, we provide a characterization of cop-win hy-

pergraphs. Next, we show the results on each product, given in Chapter II, of

cop-win hypergraphs by using its structure.

3.1 A Characterization of Cop-win Hypergraphs

To characterize the cop-win hypergraphs, we first give a necessary condition in

Lemma 3.1. Then, we analyze a graph of a hypergraph instead of considering the

hypergraph directly, which is the same idea as Baird [2].

Lemma 3.1. If H is a cop-win hypergraph, then H has at least one corner.

Proof. Assume that H is a cop-win hypergraph. Since the cop must catch the

robber with his last move, they must stay in the same hyperedges at the end.

Since the robber cannot run away, we have that, at the last move, all neighbors

of the present vertex R of the robber must be a neighbor of the present vertex C

of the cop, i.e., NH[R] ⊆ NH[C]. Hence, a vertex R is a corner in a hypergraph

H.

By Lemma 3.1, if a hypergraph H has no corner, then H is a robber-win

hypergraph. Conversely, it is not true. We can find an example of a robber-win

hypergraph having a corner given in Figure 2.1 of Example 2.5.

After that, we give the relationship between a hypergraph H and a graph G(H)

of a hypergraph H.

Lemma 3.2. If x ∈ V(H) is a corner in a hypergraph H, then x is a corner in a

graph G(H) of a hypergraph H.
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Proof. Let x be a corner in a hypergraph H. We claim that x is a corner in

a graph G(H) of a hypergraph H; that is, there exists y ∈ V (G(H)) such that

NG(H)[x] ⊆ NG(H)[y] for some y ∈ V (G(H)). Let a ∈ NG(H)[x]. By the definition

of G(H), we have {a, x} ⊆ e for some e ∈ E(H). This means a ∈ NH[x]. Since

x is a corner in H, there exists a vertex y ∈ V(H) such that NH[x] ⊆ NH[y].

Thus, a ∈ NH[y]. If a = y, then a ∈ NG(H)[y]. If a ̸= y, then {a, y} ∈ e′ for

some e′ ∈ E(H). Thus, there is an edge connecting a and y in G(H); that is, a is

adjacent to y in G(H). Therefore, a ∈ NG(H)(y) ⊆ NG(H)[y]. Hence, x is a corner

in the graph G(H) of the hypergraph H.

Theorem 3.3. Cops and robbers game on a hypergraph H is equivalent to cops

and robbers game on the graph G(H). Therefore, a hypergraph H is a cop-win

hypergraph if and only if its G(H) is a cop-win graph.

Proof. We consider a corresponding movement of a cop or a robber on hyperedges

of a hypergraph H and on edges of its G(H). For 1 ≤ i ≤ |E(H)|, we label each

edge in G(H) by Ei,j when Ei,j is an edge in G(H) representing a hyperedge Ei of

size r in H and 1 ≤ j ≤
(
r
2

)
. When a cop or a robber chooses to move from a vertex

u to a vertex v along some hyperedge Ek of H, there exists an edge Ek,l of G(H)

for some 1 ≤ l ≤
(
r
2

)
connecting a vertex u and a vertex v of G(H). Similarly,

when a cop or a robber moves from a vertex u to a vertex v along some edge Ek,l of

G(H) for some 1 ≤ l ≤
(
r
2

)
, there exists a hyperedge Ek of H connecting a vertex

u to a vertex v of H.

We see that Theorem 3.3 leads us to consider a graph G(H) of a hypergraph

H instead of H itself.

Lemma 3.4. Let x be a vertex in a hypergraph H. Then, G(H− x) = G(H)− x

where H− x is a weak deletion of a vertex x in a hypergraph H and G(H)− x is

a deletion of a vertex x in a graph G(H) of a hypergraph H.

Proof. First, we show that V (G(H − x)) = V (G(H) − x). By the Definition 2.4

(iii) and Definition 2.22, V (G(H− x)) = V(H)− x = V (G(H)− x).
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Next, we prove that E(G(H − x)) = E(G(H) − x). Let uv ∈ E(G(H) − x).

Then, both u and v is not x. Thus, u is adjacent to v in G(H)− x; that is, there

exists a hyperedge e in H such that {u, v} ⊆ e. Then, u is adjacent to v in H− x.

Therefore, uv ∈ E(G(H− x)). Hence, E(G(H)− x) ⊆ E(G(H− x)).

Conversely, let uv /∈ E(G(H)− x). Thus, u is not adjacent to v in G(H)− x.

Then, there is no a hyperedge e in H−x such that {u, v} ⊆ e. This means that u is

not adjacent to v in H−x. Therefore, uv /∈ E(G(H−x)). Hence, E(G(H−x)) ⊆

E(G(H)− x). Thus, we can conclude that G(H− x) = G(H)− x.

By Theorem 3.3 and Lemma 3.4, we can characterize a cop-win hypergraph by

weak deletion as shown in the following theorem.

Theorem 3.5. Let x ∈ V(H) be a corner in a hypergraph H. H is a cop-win

hypergraph if and only if a weak deletion H− x is a cop-win hypergraph.

Proof. Let x be a corner in a hypergraph H. By Lemma 3.2, we have x is also

a corner of a graph G(H) of a hypergraph H. Assume that H is a cop-win hy-

pergraph. By Theorem 3.3, we have G(H) is a cop-win graph. By Theorem 2.32,

G(H) − x is also a cop-win graph. By Lemma 3.4, G(H) − x = G(H − x). Since

G(H − x) = G(H) − x is a cop-win graph, by Theorem 3.3, H − x is a cop-win

hypergraph.

Conversely, we assume that H is a robber-win hypergraph. By Theorem 3.3, we

have G(H) is a robber-win graph. By Theorem 2.32, G(H)−x is also a robber-win

graph. Since G(H− x) = G(H)− x is a robber-win graph, by Theorem 3.3, H− x

is also a robber-win hypergraph.

Theorem 3.6. A hypergraph H is a cop-win hypergraph if and only if by succes-

sively weak deletion corners (in any order), H can be reduced to a trivial hypergraph.

Proof. Suppose that x1, x2, x3, . . . , x|V(H)| are vertices of a hypergraph H. Let

H1 = H and Hi = Hi−1 − xi−1 for all 2 ≤ i ≤ |V(H)|.

Let n ∈ N and let |V(H)| = n. Assume that H is a cop-win hypergraph. By

Lemma 3.1, H has at least one corner, say x1. By Theorem 3.5, we obtain that
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H2 = H− x1 is a cop-win hypergraph. By Lemma 3.1, H2 has at least one corner,

say x2. By Theorem 3.5, we have H3 = H2 − x2 is a cop-win hypergraph. By

Lemma 3.1, H3 has at least one corner, say x3. Continue this process, by Lemma

3.1 and Theorem 3.5, we obtain that Hi is a cop-win hypergraph with at least one

corner, say xi for all 2 ≤ i ≤ n. Therefore, we have a sequence of a weak deletion

of corners (x1, x2, x3, . . . , xn). Before weak deleting xn, a hypergraph Hn has only

one vertex. This means H can be reduced to a trivial hypergraph.

Conversely, we assume that by successively weak deletion corners (in any order),

a hypergraph H can be reduced to a trivial hypergraph. Then, we have a sequence

of successively weak deletion of corners (x1, x2, x3, . . . , xn). We claim that H is a

cop-win hypergraph. Since a trivial hypergraph or Hn is a cop-win hypergraph,

by Theorem 3.5, Hn−1 is a cop-win hypergraph. By Theorem 3.5 again, Hn−2 is

a cop-win hypergraph. Continue this process, by Theorem 3.5, H = H1 is also a

cop-win hypergraph.

3.2 Products of Hypergraphs

In this part, we investigate three types of the product of hypergraphs which is

the Cartesian product, the minimal (maximal) rank preserving direct product and

the normal (standard) strong product. First, we start with the Cartesian product

of any hypergraphs.

According to the definition of the Cartesian product, we see that a subset

{(x1, y1), (x2, y2), (x3, y3), . . . , (xr, yr)} of V1×V2 is an edge in H1 � H2 if and only

if

(i) {x1, x2, x3, . . . xr} ∈ E1 where xi’s are distinct vertices in H1 for all 1 ≤ i ≤ r

and y1 = y2 = y3 = · · · = yr ∈ V2, or

(ii) {y1, y2, y3, . . . yr} ∈ E2 where yi’s are distinct vertices in H2 for all 1 ≤ i ≤ r

and x1 = x2 = x3 = · · · = xr ∈ V1.
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Theorem 3.7. The Cartesian product H1 � H2 of any hypergraphs is a robber-win

hypergraph where |V(H1)| ≥ 2 and |V(H2)| ≥ 2.

Proof. Let H1 and H2 be hypergraphs where |V(H1)| ≥ 2 and |V(H2)| ≥ 2.

We would like to give a winning strategy to a robber. At some point, assume

that the cop stays at a vertex (xi1 , yj1) and the robber stays at a vertex (xi2 , yj2),

which is not a neighbor of (xi1 , yj1). Without loss of generality, assume that 1 ≤

i1 ̸= i2 ≤ |V(H1)|.

Case 1. 1 ≤ j1 = j2 ≤ |V(H2)|. Since we assume that the robber stays at a

vertex (xi2 , yj1) is not a neighbor of a vertex (xi1 , yj1) of the cop, we consider the

following cases.

Case 1.1. There is a common neighbor of vertices (xi1 , yj1) and (xi2 , yj2), says

(xi3 , yj2) where i3 ̸= i2, then the cop moves from a vertex (xi1 , yj1) to a vertex

(xi3 , yj1). Therefore, the robber can move from a vertex (xi2 , yj1) to a vertex

(xi1 , yj3) where j3 ̸= j1.

Case 1.2. There are no common neighbors of vertices (xi1 , yj1) and (xi2 , yj1).

We see that the cop moves to some vertices which is not a neighbor of (xi2 , yj1).

Then, the robber chooses not to move.

Case 2. 1 ≤ j1 ̸= j2 ≤ |V(H2)|.

Case 2.1. There is a common neighbor of vertices (xi1 , yj1) and (xi2 , yj2), says

(xi1 , yj2). Then, the cop moves from a vertex (xi1 , yj1) to a vertex (xi1 , yj2). There-

fore, the robber can move from a vertex (xi2 , yj2) to a vertex (xi2 , yj1).

Case 2.2. There is a common neighbor of vertices (xi1 , yj1) and (xi2 , yj2), says

(xi2 , yj1). Then, the cop moves from a vertex (xi1 , yj1) to a vertex (xi2 , yj1). There-

fore, the robber can move from a vertex (xi2 , yj2) to a vertex (xi1 , yj2).

Case 2.3. There are no common neighbors of vertices (xi1 , yj1) and (xi2 , yj2).

We see that the cop moves to some vertices which is not a neighbor of (xi2 , yj2).

Then, the robber chooses not to move.

Hence, the robber always find a free neighbor to run away.

Remark 1. (i) From Definition 2.12, we observe that for each vertex (xi, yj) in
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H1×1H2, there are at least one vertex of the form (xi, yj′) and at least one vertex

of the form (xi′ , yj) which are not neighbors of (xi, yj) where i ̸= i′ and j ̸= j′.

(ii) From Definition 2.14, if H1 is a k-uniform hypergraph and H2 is an l-

uniform hypergraph where k, l ≥ 2, we observe that for each vertex (xi, yj) in

H1 ×2 H2, there are either at least one vertex of the form (xi, yj′) or at least one

vertex of the form (xi′ , yj) which are not neighbors of (xi, yj) where i ̸= i′ and

j ̸= j′.

Next, we give the result on the minimal rank preserving direct product of any

hypergraphs. We see that if at least one vertex of H1 or H2 has more than one

neighbor, then there exists a vertex in H1 ×1 H2 having more than one neighbor.

Theorem 3.8. Assume that at least one vertex of H1 or H2 has more than one

neighbor. The minimal rank preserving direct product H1×1H2 of any hypergraphs

is a robber-win hypergraph where |V(H1)| ≥ 2 and |V(H2)| ≥ 2.

Proof. Let H1 and H2 be hypergraphs where |V(H1)| ≥ 2 and |V(H2)| ≥ 2.

Let (x(i), y(i)) denote a vertex of a cop at the ith turn. At the 0th turn, the cop

starts at a vertex (x(0), y(0)). If both x(0) and y(0) have no other neighbors, then

H1×1H2 is disconnected. Without loss of generality, assume that y(0) has at least

one neighbor in H2, says y. By Remark 1 (i), there is at least one vertex of the

form (x(0), v) which is not a neighbor of (x(0), y(0)) where v ̸= y(0), namely (x(0), y).

Then, the robber chooses a vertex (x(0), y) to start.

Let m ≥ 1 be a positive integer. We define the stage m to be the stage where

the robber stays at (x(m), y) where y ̸= y(m) and y is a neighbor of y(m) in H2.

We see that (x(i), y), where y ̸= y(i) and y is a neighbor of y(i) in H2, is not a

neighbor of (x(i), y(i)).

We use the mathematical induction on m to provide a winning strategy for a

robber. At the 1st turn, the cop moves from (x(0), y(0)) to (x(1), y(1)). We see that

x(1) is a neighbor of x(0) in H1 and y(1) is a neighbor of y(0) in H2. Then, the

robber can move from (x(0), y) to (x(1), y(0)), which is not a neighbor of (x(1), y(1)).

Hence, the robber enters stage 1 and we complete the basis step.
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For the induction step, assume that the robber enters stage m ≥ 2. Then, the

robber stays at (x(m), y′) where y′ ̸= y(m) and y′ is a neighbor of y(m) in H2. Next,

it’s the cop’s turn.

At the (m+ 1)th turn, the cop moves from (x(m), y(m)) to (x(m+1), y(m+1)). We

see that x(m+1) is a neighbor of x(m) in H1 and y(m+1) is a neighbor of y(m) in H2.

Then, the robber moves from (x(m), y′) to (x(m+1), y(m)), which is not a neighbor

of (x(m), y(m)).

Therefore, the robber enters stage m+ 1. Hence, the robber always find a free

neighbor to run away.

�After that, under some condition on H1 and H2, we would like to show that

the maximal rank preserving direct product H1×2H2 is a robber-win hypergraph.

However, in our consideration, we need the uniformity of each hypergraph.

Theorem 3.9. Let H1 be a k-uniform hypergraph and H2 an l-uniform hypergraph

where 2 ≤ k ≤ l. The maximal rank preserving direct product H1×2H2 is a robber-

win hypergraph where |V(H1)| ≥ 2 and |V(H2)| ≥ 2.

Proof. Let k ≥ 2 and l ≥ 2 be positive integers. Let H1 be a k-uniform hypergraph

and H2 an l-uniform hypergraph where k ≤ l.

Let (x(i), y(i)) denote a vertex of a cop at the ith turn. At the 0th turn, the cop

starts at a vertex (x(0), y(0)). We see that x(0) has at least one neighbor in H1, says

x and y(0) has at least one neighbor in H2, says y. By Remark 1 (ii), there is at

least one vertex of the form (u, y(0)) which is not a neighbor of (x(0), y(0)) where

u ̸= x(0), namely (x, y(0)). Then, the robber starts at a vertex (x, y(0)) which is not

a neighbor of (x(0), y(0)).

Let m ≥ 1 be a positive integer. We define the stage m to be the stage where

the robber stays at (x, y(m)) where x ̸= x(m) and x is a neighbor of x(m) in H1. We

see that (x, y(i)), where x ̸= x(i) and x is a neighbor of x(i) in H1, is not a neighbor

of (x(i), y(i)).

We use the mathematical induction on m to provide a winning strategy for

a robber. At the 1st turn, the cop moves from (x(0), y(0)) to (x(1), y(1)). Let v̄(i)
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denote a vertex of a robber in the ith turn. We consider a chosen v̄(1) according to

the following cases.

Case 1. x(1) = x(0) and y(1) = y(0). Then, the robber chooses not to move; that

is, v̄(1) = (x, y(0)) = (x, y(1)), which is not a neighbor of (x(1), y(1)). We see that

x ̸= x(1) and x is a neighbor of x(1) in H1.

Case 2. x(1) = x(0) and y(1) ̸= y(0). Then, the robber can move from (x, y(0)) to

(x, y(1)). Therefore, v̄(1) = (x, y(1)), which is not a neighbor of (x(1), y(1)). We see

that x ̸= x(1) and x is a neighbor of x(1) in H1.

Case 3. x(1) ̸= x(0) and y(1) ̸= y(0). Then, the robber can move from (x, y(0)) to

(x(0), y(1)). Therefore, v̄(1) = (x(0), y(1)), which is not a neighbor of (x(1), y(1)).

Hence, the robber enters stage 1 and we complete the basis step.

For the induction step, assume that the robber enters stage m ≥ 2. Then, the

robber stays at (x′, y(m)) where x′ ̸= x(m) and x′ is a neighbor of x(m) in H1.

At the (m+ 1)th turn, the cop moves from (x(m), y(m)) to (x(m+1), y(m+1)). To

win the game, the robber chooses to stay at a vertex v̄(m+1), which can be chosen

according to the following cases.

Case 1. x(m+1) = x(m) and y(m+1) = y(m). Then, the robber chooses not

to move; that is, v̄(m+1) = (x′, y(m)) = (x′, y(m+1)), which is not a neighbor of

(x(m+1), y(m+1)). We see that x′ ̸= x(m+1) and x′ is a neighbor of x(m+1) in H1.

Case 2. x(m+1) = x(m) and y(m+1) ̸= y(m). Then, the robber can move from

(x′, y(m)) to (x′, y(m+1)). Therefore, v̄(m+1) = (x′, y(m+1)), which is not a neighbor

of (x(m+1), y(m+1)). We see that x′ ̸= x(m+1) and x′ is a neighbor of x(m+1) in H1.

Case 3. x(m+1) ̸= x(m) and y(m+1) ̸= y(m). Then, the robber can move from

(x′, y(m)) to (x(m), y(m+1)). Therefore, v̄(m+1) = (x(m), y(m+1)), which is not a neigh-

bor of (x(m+1), y(m+1)).

Therefore, the robber enters stage m+ 1. Hence, the robber always find a free

neighbor to run away.

Corollary 3.10. Let m ≥ 2 be a positive integer. If H is a collection of m

hypergraphs, then both Cartesian product and minimal (maximal) rank preserving

direct product of such m hypergraphs are robber-win hypergraphs.
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Proof. We prove by the mathematical induction on m. For m = 2, the corollary

is proved by Theorem 3.7, 3.8 and 3.9. Let m > 2. Assume that both Cartesian

product and minimal (maximal) rank preserving direct product of m − 1 hyper-

graphs are robber-win hypergraphs. By induction hypothesis and Theorem 3.7,

3.8 and 3.9, we obtain that both Cartesian product and minimal (maximal) rank

preserving direct product of m hypergraphs are also robber-win hypergraphs.

By Corollary 3.10, we obtain that both Cartesian product and minimal (maxi-

mal) rank preserving direct product of m hypergraphs are robber-win hypergraphs,

but the normal (standard) strong product of m cop-win hypergraphs is not a

robber-win hypergraph.

Theorem 3.11. If H1 and H2 are cop-win hypergraphs, then H1 �∗ H2 is also a

cop-win hypergraph where ∗ = 1 or 2.

Proof. Let k and l be positive integers. Assume that H1 = (V1, E1) and H2 =

(V2, E2) are cop-win hypergraphs, where V1 = {x1, x2, x3, . . . , xk} and V2 = {y1, y2,

y3, . . . , yl}.

To consider H1 �∗ H2, for 1 ≤ i ≤ k and 1 ≤ j ≤ l, let Si = {xi} × E2 and

Tj = E1×{yj}. We consider three possible cases of the present vertex of a cop and

the present vertex of a robber.

Case 1. The cop chooses (xi, yj1) to stay and the robber chooses (xi, yj2) to

stay where j1 ̸= j2. To catch the robber, the cop moves along some edges in Si. If

yj1 and yj2 are in the same edge in H2, then the cop can occupy the same vertex

as the robber in H1 �∗ H2. Otherwise, there are two different edges of H2, one

containing yj1 and the other containing yj2 , the cop moves to the vertex (xi, yj3)

where yj3 is the vertex which the cop chooses in the next turn in his strategy in

the game on H2.

Case 2. The cop chooses (xi1 , yj) to stay and the robber chooses (xi2 , yj) to

stay where i1 ̸= i2. To catch the robber, the cop moves along some edges in Tj. If

xi1 and xi2 are in the same edge in H1, then the cop can occupy the same vertex

as the robber in H1 �∗ H2. Otherwise, there are two different edges of H1, one
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containing xi1 and the other containing xi2 , the cop moves to the vertex (xi3 , yj)

where xi3 is the vertex which the cop chooses in the next turn in his strategy in

the game on H1.

Case 3. The cop chooses (xi1 , yj1) to stay and the robber chooses (xi2 , yj2) to

stay where i1 ̸= i2 and j1 ̸= j2. To catch the robber, the cop moves along some

edges in E(H1 ×∗ H2). If both xi1 and xi2 are in the same edge in H1, and both

yj1 and yj2 are in the same edge in H2, then the cop can occupy the same vertex

as the robber in H1 �∗ H2. Otherwise, there are two different edges of H1, one

containing xi1 and the other containing xi2 , and there are two different edges of

H2, one containing yj1 and the other containing yj2 , the cop moves to the vertex

(xi3 , yj3) where xi3 is the vertex which the cop chooses in the next turn in his

strategy in the game on H1 and yj3 is the vertex which the cop chooses in the next

turn in his strategy in the game on H2.

Following the three cases after finite number of moves, at some point, the cop

can stay in the same hyperedge in both H1 and H2 as the robber does. Then, the

cop use the winning strategy on H1 and H2, before the final turn, to chase the

robber and finally, he catches the robber.

Corollary 3.12. Let m ≥ 2 be a positive integer. If H is a collection of m cop-

win hypergraphs, then the normal (standard) strong product of such m cop-win

hypergraphs is a cop-win hypergraph.

Proof. We prove by the mathematical induction on m. For m = 2, the corollary is

proved by Theorem 3.11. Let m > 2. Assume that the normal (standard) strong

product of m − 1 cop-win hypergraphs is a cop-win hypergraph. By induction

hypothesis and Theorem 3.11, we obtain that the normal (standard) strong product

of m cop-win hypergraphs is also a cop-win hypergraph.

Besides proving the products of hypergraphs by their structures, we would like

to use some theorems to show that the Cartesian product of any hypergraphs are

robber-win hypergraphs.

Lemma 3.13. The Cartesian product of any two hypergraphs has no corner.
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Proof. Let H1 = (V1, E1) and H2 = (V2, E2) be hypergraphs. Suppose that the

Cartesian product H = H1 � H2 has at least one corner. Let (x1, y1) be a corner

of H. Then, there exists (x, y) ∈ V(H) − {(x1, y1)} such that NH[(x1, y1)] ⊆

NH[(x, y)]. We see that (x1, y1) ∈ NH[(x, y)]. Thus, either x = x1 or y = y1.

Case 1. If x = x1 and y ̸= y1, then there exists an edge {{x1} × e2 | e2 ∈ E2}

connecting (x1, y) and its neighbors. We know that some neighbors of (x1, y1)

are in the form (u, y1) where u ̸= x1 which do not connect to (x1, y), which is a

contradiction.

Case 2. If x ̸= x1 and y = y1, then, there exists an edge {e1 × {y1} | e1 ∈ E1}

connecting (x, y1) and its neighbors. We know that some neighbors of (x1, y1)

are in the form (x1, v) where v ̸= y1 which do not connect to (x, y1), which is a

contradiction.

Hence, the Cartesian product of any two hypergraphs has no corner.

By Lemma 3.13, we can conclude the following theorem.

Theorem 3.14. Cartesian product of any two hypergraphs are robber-win hyper-

graphs.

By Corollary 3.10, we also have that Cartesian product of m hypergraphs are

robber-win hypergraphs.

According to minimal (maximal) preserving direct product, there exists an

example of a hypergraph H1 and a hypergraph H2 such that both H1 ×1 H2 and

H1 ×2 H2 have a corner.
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Example 3.15. We use hypergraphs H′
1 and H′

2, shown in Figure 3.1 and 3.2,

respectively, to construct the minimal (maximal) rank preserving direct product

H′
1 ×∗ H′

2 where ∗ = 1 or 2. The vertex set V1 × V2 = {(x1, y1), (x2, y1), (x1, y2),

(x2, y2), (x1, y3), (x2, y3), (x1, y4), (x2, y4)} where the edge set E(H′
1 ×1 H

′
2) =

{{(x1, y1), (x2, y2)}, {(x1, y2), (x2, y1)}, {(x1, y2), (x2, y3)}, {(x1, y2), (x2, y4)},

{(x1, y3), (x2, y2)}, {(x1, y3), (x2, y4)}, {(x1, y4), (x2, y2)}, {(x1, y4), (x2, y3)}} and the

edge set E(H1 ×2 H2) = {{(x1, y1), (x2, y1), (x1, y2)}, {(x1, y1), (x2, y1), (x2, y2)},

{(x1, y1), (x1, y2), (x2, y2)}, {(x1, y2), (x2, y1), (x2, y2)}, {(x1, y2), (x1, y3), (x2, y4)},

{(x1, y2), (x2, y3), (x1, y4)}, {(x1, y2), (x2, y3), (x2, y4)}, {(x2, y2), (x1, y3), (x1, y4)},

{(x2, y2), (x1, y3), (x2, y4)}, {(x2, y2), (x2, y3), (x1, y4)}}. We use ij instead of (i, j)

in H′
1 ×1 H

′
2 and H′

1 ×2 H
′
2 shown in Figure 3.3 and 3.4, respectively.

Figure 3.1: A hypergraph H′
1

Figure 3.2: A hypergraph H′
2

We see that a vertex (x1, y1) is a corner of both minimal rank preserving direct

product H′
1 ×1 H

′
2 and maximal rank preserving direct product H′

1 ×2 H
′
2.
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Figure 3.3: The minimal rank preserving direct product H′
1 ×1 H

′
2

Figure 3.4: The maximal rank preserving direct product H′
1 ×2 H

′
2



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

COP-NUMBER OF CERTAIN HYPERGRAPHS

We consider the cop-number of two hypergraph structures, namely, k-partite

hypergraphs and n-prisms over a hypergraph which slightly differ from such graph

structures.

4.1 Cop-Number of Complete k-Partite Hypergraphs

There are two definitions of the k-partite hypergraph. The first definition given

in Definition 2.6 is modified from the definition given by Kuhl and Schroeder [10]

and the second definition given in Definition 2.8 is modified from the definition

given by Jirimutu and Wang [9]. To investigate the cop-number of complete k-

partite hypergraphs, we compare the position of a robber with the partite set that

each cop stays. First, we consider the complete k-uniform k-partite hypergraphs

from Definition 2.6.

Theorem 4.1. A complete k-uniform k-partite hypergraph H from Definition 2.6

where each partite set has size at least 2 is a robber-win hypergraph and c(H) = 2.

Proof. First, we claim that H is a robber-win hypergraph. No matter where the

cop is in H, by the completeness of H, the robber always moves to other vertices

in the same partite set as the cop stays. Then, the robber has a winning strategy.

Thus, we have c(H) ≥ 2.

Next, we claim that two cops have a winning strategy. In the first turn of cops,

two cops choose some vertices which are in different partite sets. The robber then

chooses one vertex in H.

Case 1. The robber stays in the same partite set as one of two cops. Then,

by the definition of hyperedge, there exists a hyperedge connecting the robber and
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the other cop. Thus, such a cop can catch the robber in his next move.

Case 2. The robber stays in the different partite set from both cops. Then, by

the definition of hyperedge, there exists a hyperedge connecting each cop and the

robber. Thus, one cop can catch the robber in his next move.

Therefore, two cops win and c(H) = 2.

By Theorem 4.1, we conclude that a complete bipartite graph is also a robber-

win graph and two cops are minimum needed. Next, we consider the complete

σ-uniform k-partite hypergraphs from Definition 2.8.

Theorem 4.2. Let σ ≥ 3. A complete σ-uniform k-partite hypergraph H from

Definition 2.8 is a cop-win hypergraph.

Proof. By the definition of hyperedge and the completeness of this hypergraph,

there exists a hyperedge connecting the robber and the cop. Then, the robber is

caught in the next move of the cop.

In the case that σ = 2, the 2-uniform k-partite hypergraph H from Definition

2.8 is a k-partite graph and we can conclude the following.

Theorem 4.3. Let k ≥ 3. A complete 2-uniform k-partite hypergraph H from

Definition 2.8 (or a complete k-partite graph) is a robber-win hypergraph (or a

robber-win graph) having cop-number c(H) = 2 where |Vi| ≥ 2 for all 1 ≤ i ≤ k.

Proof. First, we show that H is a robber-win hypergraph. The robber always

moves to other vertices in the same partite set as the position of the cop. Then,

the robber has a winning strategy. Now, we have c(H) ≥ 2.

By modifying the proof of Theorem 4.1, we consider the position of the robber.

Case 1. The robber stays in the same partite set as one of two cops. Then,

there exists an edge connecting the robber and the other cop. Thus, such a cop

can catch the robber in his next move.

Case 2. The robber stays in the different partite set from both cops. Then,

there exists an edge connecting each cop and the robber. Thus, one cop can catch

the robber in his next move.
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We obtain that two cops are enough to catch the robber. Hence, c(H) = 2.

4.2 Cop-Number of n-Prisms over a Hypergraph

The definition of this family of hypergraphs which is given in Definition 2.20

is modified from the definition given by Boonklurb et.al. [6]. To consider the

cop-number of n-prisms over a k-uniform hypergraph H, we separate into two

subsections which are (i) H(k)
0 is a cop-win hypergraph and (ii) H(k)

0 is a robber-

win hypergraph.

4.2.1 n-Prisms over a Cop-win Hypergraph

In this section, the cop-number of n-prisms over a cop-win k-uniform hyper-

graph when k ≥ 3 and a cop-win 2-uniform hypergraph are considered separately.

Theorem 4.4. Let k ≥ 3 and n ≥ 2 be integers. Assume that H(k)
0 is a cop-win

k-uniform hypergraph. Then, c(Prismn(H(k)
0 )) = 1.

Proof. Let m ≥ 0 be a non-negative integer. We define the stage m to the stage

where

• the robber stays on a vertex R of hypergraph H(k)
p for some p ≥ m+ 1;

• the cop stays on an mth ancestor of a vertex R;

• next, it is the robber’s turn.

We use the mathematical induction on m to provide a winning strategy for

one cop. First, the cop places himself anywhere on H(k)
0 . Then, the robber places

himself anywhere on Prismn(H(k)
0 ), say R. Since H(k)

0 is a cop-win hypergraph, the

cop has a winning strategy on H(k)
0 . By applying the winning strategy for the cop,

he can stay on a 0th ancestor of a vertex R. If the robber stays in a hypergraph

H(k)
0 same as the cop does, then he is caught. Thus, the robber needs to stay on

a hypergraph H(k)
p for some p ≥ 1 at the beginning. Next, it is the robber’s turn.

Therefore, the cop enters the stage 0 and we complete the basis step.
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For the induction step, assume that the cop enters the stage m. That is, the

cop stays on an mth ancestor of a vertex R and then, the robber moves. Next, we

consider how the robber moves. Since H(k)
m is a copy of a hypergraph H(k)

0 , H(k)
m

is also a cop-win hypergraph. If the robber stays on a hypergraph H(k)
m same as

the cop does, then he is caught. Therefore, the robber must stay on a hypergraph

H(k)
q for some q ≥ m + 1. We see that if the robber still stays on a hypergraph

H(k)
q where q = m+ 1, he will be caught in the next turn of a cop.

Case 1. Assume that the robber still stay vertex R in H(k)
q where q ≥ m + 2.

Then, the cop climbs up to stay on the (m+1)th descendant of his previous vertex,

which means an (m+ 1)th ancestor of a vertex R.

Case 2. Assume that the robber move from vertex R to vertex R′ in H(k)
q where

q ≥ m + 2. Then, the cop moves and climbs up from an mth ancestor of a vertex

R to an (m+ 1)th ancestor of a vertex R′.

Case 3. Assume that the robber move from vertex R in H(k)
q to a (q + 1)th

descendent of vertex R. Then, the cop climbs up to stay on the (m+1)th descendant

of his previous vertex, which means an (m+ 1)th ancestor of a vertex R.

Case 4. Assume that the robber move from vertex R in H(k)
q to a (q + 1)th

descendent of vertex R′. Then, the cop moves and climbs up from an mth ancestor

of a vertex R to an (m+ 1)th ancestor of a vertex R′.

By every cases considered above, the cop stays on an (m + 1)th ancestor of a

vertex R. Then, the cop enters the stage m+ 1. Now, we complete the induction

step. After the cop enters the stage n − 1, the cop use the winning strategy in

hypergraph H(k)
n−1 to stay on the (n− 1)th ancestor of a vertex of the robber. Next,

it is the robber’s turn. No matter how the robber moves, the cop can climb up

and catch the robber, which is the stage n. Hence, Prismn(H(k)
0 ) is a cop-win

hypergraph and c(Prismn(H(k)
0 )) = 1.

Actually, if k = 2, Prismn(H(2)
0 ) can be regarded as the Cartesian product of

H(2)
0 and the path graph Pn+1 in ordinary graph. By Theorem 2.37, the cop-number

of the Cartesian product of two graphs can be bounded above by the sum of the

cop-number of each graph. Since H(2)
0 is a cop-win graph and by Theorem 2.31,
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c(Pn+1) = 1, we have c(Prismn(H(2)
0 )) ≤ c(H(2)

0 ) + c(Pn+1) = 2. Next, we claim

that one cop cannot catch the robber. Then, we consider how the robber escapes.

Case 1. Assume that the robber stays in the same hypergraph as the cop.

When the robber is threatened, the robber goes to the other hypergraphs.

Case 2. Assume that the robber stays in the different hypergraph from the cop.

Then, the robber can choose not to move.

Therefore, no matter how the cop moves, the robber always runs away. Thus,

c(Prismn(H(2)
0 )) ≥ 2 and we can conclude the following.

Theorem 4.5. Let H(2)
0 be a 2-uniform hypergraph. Assume that H(2)

0 is a cop-win

hypergraph. Then, c(Prismn(H(2)
0 )) = 2.

4.2.2 n-Prisms over a Robber-win Hypergraph

To find the cop-number of n-prisms over a robber-win hypergraph, we apply

the minimum number of cops needed to win for the hypergraph H(k)
0 to obtain the

following

Theorem 4.6. Let k ≥ 3 and n ≥ 2 be integers. Assume that H(k)
0 is a robber-

win k-uniform hypergraph having cop-number c(H(k)
0 ). Then, c(Prismn(H(k)

0 )) =

c(H(k)
0 ).

Proof. First, we claim that c(H(k)
0 )−1 cops cannot catch the robber. Without loss

of generality, assume that the robber stays on the hypergraph H(k)
0 .

Case 1. All cops stay on the hypergraph H(k)
0 . Since we need c(H(k)

0 ) cops to

win on the hypergraph H(k)
0 , c(H(k)

0 )− 1 cops are not enough.

Case 2. Some cops stay on the hypergraph H(k)
0 . Since a robber has a winning

strategy on the hypergraph H(k)
0 when there are c(H(k)

0 )− 1 cops , the robber uses

such a strategy to play with the cops in H(k)
0 and the 0th ancester of positions of

the remaining cops. Therefore, c(H(k)
0 )− 1 cops cannot catch the robber.

By both cases, c(H(k)
0 )−1 cops cannot catch the robber. Thus, c(Prismn(H(k)

0 )) ≥

c(H(k)
0 ). Next, we claim that c(H(k)

0 ) cops always catch the robber. Let m ≥ 0 be

a non-negative integer. We define the stage m to be the stage where
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• c(H(k)
0 ) cops stay on a hypergraph H(k)

m ;

• the robber stays on a vertex R of hypergraph H(k)
p for some p ≥ m+ 1;

• one cop stays on an mth ancestor of a vertex R, say the good cop;

• next, it is the robber’s turn.

We use the mathematical induction on m to provide a winning strategy for

c(H(k)
0 ) cops. Starting with the basis step, c(H(k)

0 ) cops place themselves anywhere

on H(k)
0 and the robber place himself anywhere on Prismn(H(k)

0 ), say R. Then, the

cops use the winning strategy of H(k)
0 , to send one cop stays on a 0th ancestor of a

vertex R. Thus, the robber cannot stay in H(k)
0 , which causes the robber must stay

on H(k)
p where p ≥ 1 at the beginning. Now, it is the robber’s turn. Therefore, the

cops enter the stage 0.

For the induction step, we assume that the cops enter the stage m, that is,

c(H(k)
0 ) cops stay on a hypergraph H(k)

m and a good cop stays on an mth ancestor

of a vertex R and then, it is the robber’s turn. Next, we consider how the robber

moves. Since H(k)
m is a copy of a hypergraph H(k)

0 , c(H(k)
m ) = c(H(k)

0 ). If the robber

stays on a hypergraph H(k)
m as same as the cops do, then he is caught. Thus, the

robber must stay on a hypergraph H(k)
q for some q ≥ m + 1. We see that if the

robber still stays on a hypergraph H(k)
q where q = m+ 1, he will be caught in the

next turn of a group of cops.

Case 1. Assume that the robber still stay vertex R in H(k)
q where q ≥ m + 2.

Then, a good cop climbs up to stay on the (m + 1)th descendant of his previous

vertex, which means an (m + 1)th ancestor of a vertex R and the rest of the cops

also climb up to stay on the (m+ 1)th descendant of their previous vertices.

Case 2. Assume that the robber move from vertex R to vertex R′ in H(k)
q where

q ≥ m+2. Then, a good cop moves and climbs up from an mth ancestor of a vertex

R to an (m+1)th ancestor of a vertex R′ and the rest of the cops also climb up to

stay on the (m+ 1)th descendant of their previous vertices.

Case 3. Assume that the robber move from vertex R in H(k)
q to a (q + 1)th

descendent of vertex R. Then, a good cop climbs up to stay on the (m + 1)th
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descendant of his previous vertex, which means an (m + 1)th ancestor of a vertex

R and the rest of the cops also climb up to stay on the (m + 1)th descendant of

their previous vertices.

Case 4. Assume that the robber move from vertex R in H(k)
q to a (q + 1)th

descendent of vertex R′. Then, a good cop moves and climbs up from an mth

ancestor of a vertex R to an (m+ 1)th ancestor of a vertex R′ and the rest of the

cops also climb up to stay on the (m+ 1)th descendant of their previous vertices.

Now, the cops enter the stage m+ 1. Thus, the cop can enter the stage n− 1.

We see that the cops need to follow the winning strategy in hypergraph H(k)
n−1 for

placing one cop stays on the (n− 1)th ancestor of the present vertex of the robber.

Now, it is the robber’s turn. After that, the cops climb up and catch the robber

in hypergraph H(k)
n . Hence, c(Prismn(H(k)

0 )) = c(H(k)
0 ).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

COP-NUMBER OF KNESER GRAPHS

In this chapter, we study the cop-number of Kneser graphs KG(n, k) where

n and k are positive integers. This work collaborates with Associate Professor

Henry Liu (Sun Yat-sen University, China). We divide into two parts which are

(i) n ≥ k2 + k and (ii) 2k + 1 ≤ n ≤ k2 + k − 1. Associate Professor Henry Liu

showed that c(KG(n, k)) = k+1 in the first part and the result in the second part

is my study.

5.1 Cop-Number of Kneser Graphs KG(n, k) where n ≥ k2+

k

A pitfall or a corner vertex in Definition 2.24 plays an important role by giving

a good chance to a group of cops when the robber stays at such a vertex. Since

each vertex in Kneser graphs is in the form of a set, we would like to extend this

idea to determine a similar definition as follows.

Definition 5.1. Let m be a positive integer and A1, A2, A3, . . . , Am ∈ [n](k). If

X = ∪m
i=1Ai, then X is called a pitfall cover.

Next, we can show that there exists another k-set which is disjoint from only

one k-set from a given collection of k-sets under some prescribed assumptions and

intersects the other k-sets from this collection.

Lemma 5.2. Let k ≥ 2, n ≥ k2 + k and l ∈ [k]. Let A1, A2, A3, . . . , Al, B ∈ [n](k)

be distinct k-sets such that B ∩A1 = ∅. Then, there exists a k-set C ∈ [n](k) such

that C ̸= Ai and C ∩ Ai ̸= ∅ for all i ∈ [l], and C ∩ B = ∅.
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Proof. First, suppose that l = 1. Since |[n]− (A1 ∪B)| = n− 2k ≥ k2 − k ≥ 2, we

may choose x ∈ [n]− (A1 ∪ B). Choose y ∈ A1 and set C = (A1 − {y}) ∪ {x}.

Now, suppose that l ≥ 2. Let A′
i = Ai − B for i ∈ [l], and note that A′

1 =

A1, and A′
i ̸= ∅ for i ∈ [l]. Let X = {x1, x2, x3, . . . , xp} be a pitfall cover for

{A′
1, A

′
2, A

′
3, . . . , A

′
l}. Since A′

1 = A1, p ≥ k ≥ l.

Case 1. X = A1. Since |A1| = k > l − 1, there exists one element in A1, says

x, such that (A1 − {x}) ∩ A′
j ̸= ∅ for all 2 ≤ j ≤ l. Since ∪l

j=2A
′
j ⊆ A1 and

|B| = k, we have |[n]− (A1 ∪ B)| ≥ 2. Then, we set C = (A1 − {x}) ∪ {y} where

y ∈ [n]− (A1 ∪B) and see that C ̸= Ai, |C ∩Ai| ≥ 1 for all i ∈ l and C ∩B = ∅.

Case 2. X ̸= A1. Let x1 ∈ A1. Assume that x′
i ∈ A′

i −A1 for all 2 ≤ i ≤ l. Let

M be a pitfall cover for {A′
2 − A1, A

′
3 − A1, A

′
4 − A1, . . . , A

′
l − A1}.

If |M | = 1, then x′
j1

= x′
j2

where 2 ≤ j1 ̸= j2 ≤ l. Thus, we set C =

{x1, x
′
2, y1, y2, . . . , yk−3, z} where y1, y2, y3, . . . , yk−3 ∈ A1 − {x1} and z ∈ ([n] −

{x′
2})− (A1 ∪B).

If 2 ≤ |M | = m < l − 1, then without loss of generality, assume that M =

{x′
2, x

′
3, x

′
4, . . . , x

′
m+1}, we set C = {x1, x

′
2, x

′
3, . . . , x

′
m+1, y1, . . . , yk−(m+1)} where

y1, y2, y3, . . . , yk−(m+1) ∈ A1 − {x1}.

If |M | = l − 1, then we set C = {x1, x
′
2, x

′
3, . . . , x

′
l, y1, . . . , yk−l} where y1, y2,

y3, . . . , yk−l ∈ A1 − {x1}. We see that C ̸= Ai, |C ∩ Ai| ≥ 1 for all i ∈ l and

C ∩ B = ∅.

By Lemma 5.2, we obtain that a group of cops stay at vertices {Ai}, the robber

stays at a vertex B and then the robber moves from a vertex B to a vertex C in

his next turn. Therefore, we obtain the following theorem.

Theorem 5.3. Let k ≥ 2 and n ≥ k2 + k. Then, c(KG(n, k)) = k + 1.

Proof. By Proposition 2.30 and Theorem 2.35, we have c(KG(n, k)) ≤ γ(KG(n, k))

= k+1. To prove the lower bound c(KG(n, k)) ≥ k+1, we show that if there are

only k cops, then the robber has a winning strategy. To evade the capture, the

robber maintains a distance of two from every cops. Note that by Theorem 2.28,

we have diam(KG(n, k)) = 2.
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Initially, suppose that k cops occupy the distinct vertices A1, A2, A3, . . . , Ar for

some r ∈ [k] (i.e., some vertex Ai may contain more than one cop). The robber

chooses a vertex B as follows. Let X ∈ V (KG(n, k)) − {A1, A2, A3, . . . , Ar}. If

X ∩ Ai ̸= ∅ for all i ∈ [r], then let B = X. Otherwise, if say X ∩ A1 = ∅, then

by Lemma 5.2, there exists a vertex Y ∈ V (KG(n, k))−{A1, A2, A3, . . . , Ar} such

that Y ∩ Ai ̸= ∅ for all i ∈ [r] and we let B = Y . Then, the distance between a

vertex B and a vertex Ai, d(B,Ai), is 2 for all i ∈ [r].

Subsequently, the pursuit proceeds similarly. Suppose that at some stage, the

robber is at distance two from every cops. The cops then make their move and

they cannot capture the robber. Suppose that k cops occupy the distinct vertices

U1, U2, U3, . . . , Us for some s ∈ [k] and the robber is at another vertex V . If

d(V, Ui) = 2, then the robber remains at V and the pursuit continues. Otherwise,

say d(V, U1) = 1. Thus, V ∩U1 = ∅. By Lemma 5.2, there exists a vertex W such

that W ̸= Ui, W ∩ Ui ̸= ∅ for all i ∈ [s] and W ∩ V = ∅. Then, the robber may

move from V to W and d(W,Ui) = 2 for all i ∈ [s]. This process then continues

and the robber can always evade the capture.

5.2 Cop-Number of Kneser Graphs KG(n, k) where 2k+1 ≤

n ≤ k2 + k − 1

To investigate the cop-number of KG(n, k), there are two steps in the proof.

First, we would like to show that k+1 cops are enough to win this game for k ≥ 3

is a positive integer. Second, we prove that the robber can escape when it has

exactly k cops for k ≥ 3 is a positive integer.

We need some lemmas to determine the existence of a k-set that is disjoint

from two distinct given k-sets as follows.

Lemma 5.4. Let k ≥ 3, n ≥ 2k + 2. Let A,B ∈ [n](k) be two distinct k-sets such

that |A ∩ B| ≥ k − 2. Then, there exists a k-set C ∈ [n](k) such that C ∩ A = ∅

and C ∩ B = ∅.

Proof. Let k ≥ 3, n ≥ 2k + 2. Let A,B ∈ [n](k) be two distinct k-sets such that
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|A ∩ B| ≥ k − 2. We have |A ∪ B| ≤ k + 2. Since n ≥ 2k + 2, |[n] − (A ∪ B)| =

n − |A ∪ B| ≥ k. Then, we can find a k-set C ∈ [n](k) such that C ∩ A = ∅ and

C ∩ B = ∅.

Lemma 5.5. Let k ≥ 3, n = 2k + 1. Let A,B ∈ [n](k) be two distinct k-sets such

that |A ∩ B| ≥ k − 1. Then, there exists a k-set C ∈ [n](k) such that C ∩ A = ∅

and C ∩ B = ∅.

Proof. Let k ≥ 3, n = 2k + 1. Let A,B ∈ [n](k) be two distinct k-sets such that

|A ∩ B| ≥ k − 1. We have |A ∪ B| ≤ k + 1. Since n = 2k + 1, |[n] − (A ∪ B)| =

n − |A ∪ B| ≥ k. Then, we can find a k-set C ∈ [n](k) such that C ∩ A = ∅ and

C ∩ B = ∅.

By Lemmas 5.4 and 5.5, we let one of the cops occupies at the vertex A and a

robber stays at the vertex B. We see that the robber needs to take a move every

turn.

For a given collection of k+2 distinct k-sets under some prescribed assumptions,

we show that it has no k-sets in which they intersect the k + 1 k-sets from this

collection and are disjoint from the remaining one.

Lemma 5.6. Let k ≥ 3 and 2k + 1 ≤ n ≤ k2 + k − 1. Let {Ai}k+1
i=1 ⊆ [n](k)

and B ∈ [n](k) be distinct k-sets. If {Ai}k+1
i=1 has properties that A1 ∩ B = ∅,

|Aj ∩ B| = k − 1, |Aj ∩ A1| = 1 for all 2 ≤ j ≤ k + 1 and Aj1 ∩ A1 ̸= Aj2 ∩ A1

where j1 ̸= j2 and 2 ≤ j1, j2 ≤ k + 1, then there are no k-sets C ̸= Ai such that

C ∩ B = ∅ and C ∩ Ai ̸= ∅ for all i ∈ [k + 1].

Proof. Let k ≥ 3 and 2k+1 ≤ n ≤ k2 + k− 1. Let {Ai}k+1
i=1 ⊆ [n](k) and B ∈ [n](k)

be distinct k-sets. Assume that there exist k + 1 Ai’s such that A1 ∩ B = ∅,

|Aj ∩B| = k−1, |Aj ∩A1| = 1 for all j ̸= 1 and Aj1 ∩A1 ̸= Aj2 ∩A1 where j1 ̸= j2.

Suppose that there is a k-set C ̸= Ai such that C ∩B = ∅ and C ∩Ai ̸= ∅ for

all i ∈ [k+1]. Since |Aj ∩B| = k− 1, we have |Aj −B| = 1. Then, without loss of

generality, assume that Aj −B = {j} for all 2 ≤ j ≤ k+1. Since Aj −B = {j} for

all 2 ≤ j ≤ k + 1, we have C = ∪k+1
j=2{j}. Since A1 ∩ B = ∅, |Aj ∩ A1| = 1 for all

j ̸= 1 and Aj1 ∩A1 ̸= Aj2 ∩A1 where j1 ̸= j2, A1 = C, which is a contradiction.
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Therefore, we let the k + 1 k-sets {Ai}k+1
i=1 to be positions of each k + 1 cops

and the other k-set B to be the robber’s position. Then, the nonexistence of a

k-set C from Lemma 5.6 guarantees that the robber has no free neighbors. Now,

we would like to show that k + 1 cops is enough to win the game. First of all,

we need to define the notation and one important cop using in the algorithm of

choosing vertices in the next turn for each cop.

Definition 5.7. Let i and j be integers such that i ∈ [k + 1] and j ≥ 0. Let A
(j)
i

denote a vertex which the ith cop stays in the jth turn and B(j) denote a vertex

which a robber stays in the jth turn.

Definition 5.8. On the graph KG(n, k), let the ith cop stays at Ai for each

i ∈ [k + 1] and the robber stays at B. If |Ai ∩ B| is maximized, then we call the

ith cop a guarding cop.

Next, we determine an algorithm of choosing vertices in the next turn for each

cop.

Our Inductive Choosing. Let A
(0)
i denote a vertex for which the ith cop

stays at the beginning of the game. Without loss of generality, we let A
(0)
1 be

a vertex of a guarding cop. Next, we define A
(0)
2 , A

(0)
3 , A

(0)
4 , . . . , A

(0)
k+1 such that

|A(0)
l ∩B(0)| ≤ |A(0)

l+1 ∩B(0)| for all 2 ≤ l ≤ k+1. We let MIN be a condition that

for a fixed B(r),
∑k+1

l=2

∑k+1
l′=l+1 |(A

(r+1)
l − B(r)) ∩ (A

(r+1)
l′ − B(r))| is minimized.

Basis Step. Let 2 ≤ l ≤ k + 1 be an integer. In the first turn, we let the lth

cop moves from A
(0)
l to A

(1)
l such that

(i) A
(1)
l = (B(0)−A

(0)
l )∪C where C ⊆ [n]−(B(0)∪A(0)

l ) and |C| = k−|B(0)−A
(0)
l |;

and

(ii) A
(1)
l satisfies A

(1)
l ̸= A

(0)
l , A(1)

l ∩ A
(0)
l = ∅ and (A

(1)
l − B(0)) ∩ A

(0)
1 = ∅; and

(iii) Check MIN.

By Lemma 5.4, we always let the 1st cop moves from A
(0)
1 to A

(1)
1 such that

A
(1)
1 ̸= A

(0)
1 , A(1)

1 ∩A(0)
1 = ∅, A(1)

1 ∩B(0) = ∅ and |A(1)
1 ∩A(1)

l | ≥ 1 for all l ̸= 1. Then,
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the robber can move from B(0) to B(1), where B(1) ∩B(0) = ∅ and B(1) ∩A
(1)
i ̸= ∅

for all i ∈ [k + 1].

Remark 2. We give the example of how we choose the vertices when k = 3 and

n = 8, we can choose vertices {1, 2, 3}, {1, 2, 5}, {3, 4, 5} and {6, 7, 8} as the four

cops’ beginning positions.

If the robber chooses {1, 3, 8} as his beginning vertex, then the 1st cop starts

with a vertex A
(0)
1 = {1, 2, 3}. We see that {1, 2, 3} and {1, 3, 8} satisfy Lemma 5.4.

Next, the 2nd, 3rd and 4th cops start with vertices A
(0)
2 = {6, 7, 8}, A(0)

3 = {3, 4, 5}

and A
(0)
4 = {1, 2, 5}, respectively.

In the first turn, we begin with a choosing vertex for the 2nd cop by following

the basis step. We let A
(1)
l = (B(0) − A

(0)
l ) ∪ C where C ⊆ [n]− (B(0) ∪ A

(0)
l ) and

|C| = k − |B(0) − A
(0)
l |.

Since A
(0)
2 = {6, 7, 8} and B(0) = {1, 3, 8}, we have B(0) − A

(0)
2 = {1, 3}. Next,

we choose 5 from [n] − (B(0) ∪ A
(0)
2 ) = {2, 4, 5}. Therefore, the 2nd cop moves to

the vertex {1, 3, 5}.

Next, we consider how to choose vertices for 3rd and 4th cops by the same idea

as choosing for the 2nd cop.

Since A
(0)
3 = {3, 4, 5} and B(0) = {1, 3, 8}, we have B(0) − A

(0)
3 = {1, 8}. Next,

we choose 6 from [n] − (B(0) ∪ A
(0)
3 ) = {2, 6, 7}. Therefore, the 3rd cop moves to

the vertex {1, 8, 6}.

Since A
(0)
4 = {1, 2, 5} and B(0) = {1, 3, 8}, we have B(0) − A

(0)
4 = {3, 8}. Next,

we choose 4 from [n] − (B(0) ∪ A
(0)
4 ) = {4, 6, 7}. Therefore, the 4th cop moves to

the vertex {3, 8, 4}.

We see that A(1)
l satisfies A(1)

l ̸= A
(0)
l , A(1)

l ∩A(0)
l = ∅ and (A

(1)
l −B(0))∩A(0)

1 = ∅

for all 2 ≤ l ≤ 4 and {A(1)
l }4l=2 satisfies MIN.

We obtain that the 2nd, 3rd and 4th cops move from vertices A
(0)
2 = {6, 7, 8},

A
(0)
3 = {3, 4, 5} and A

(0)
4 = {1, 2, 5} to vertices A

(1)
2 = {1, 3, 5}, A(1)

3 = {1, 8, 6} and

A
(1)
4 = {3, 8, 4}, respectively. Next, we let the 1st cop moves from A

(0)
1 = {1, 2, 3}

to A
(1)
1 = {4, 5, 6}.
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We see that A
(1)
1 ̸= A

(0)
1 , A(1)

1 ∩A
(0)
1 = ∅, A(1)

1 ∩B(0) = ∅ and |A(1)
1 ∩A

(1)
l | ≥ 1

for all l ̸= 1.

By Remark 2, we can guarantee that there exist positions for each four cops

in the first turn of the game on KG(8, 3). Then, we continue this process for the

other cases depending on n and k. Note that actually, the chosen numbers in this

remark can be changed. However, one need to check that they satisfy MIN.

For r ≥ 2, we let GC be a condition that A
(r)
1 ̸= A

(r−1)
1 , A(r)

1 ∩ A
(r−1)
1 = ∅,

A
(r)
1 ∩ B(r−1) = ∅ and |A(r)

1 ∩ A
(r)
l | ≥ 1 for all l ̸= 1.

Induction Step. Let r ≥ 1 be an integer. In the (r+1)th turn, we choose vertex

A
(r+1)
i for the ith cop by an algorithm of choosing vertices in the next turn for each

cop in Figure 5.1

For more detail, we would like to give the example of how we use the algorithm

of choosing vertices when k = 3 and n = 8.

Example 5.9. We choose vertices {1, 2, 3}, {1, 2, 5}, {3, 4, 5} and {6, 7, 8} as the

four cops’ beginning positions and the robber chooses {1, 3, 8} as his beginning

vertex.

We have A
(0)
1 = {1, 2, 3}, A(0)

2 = {6, 7, 8}, A(0)
3 = {3, 4, 5}, A(0)

4 = {1, 2, 5} and

B(0) = {1, 3, 8}.

In the first turn, each cop move from A
(0)
1 , A

(0)
2 , A

(0)
3 , A

(0)
4 to A

(1)
1 = {4, 5, 6},

A
(1)
2 = {1, 3, 5}, A(1)

3 = {1, 8, 6}, A(1)
4 = {3, 8, 4}, respectively, see Remark 2. Then,

we need to check that {A(1)
i }4i=1 and B(0) satisfy Lemma 5.6 and found that they

satisfy Lemma 5.6. Thus, the robber staying on vertex B(0) must be caught in the

next turn of a group of cops.

Next, we give the example of how we use the algorithm of choosing vertices

when k = 4 and n = 10.

Example 5.10. We choose vertices {1, 2, 3, 4}, {1, 2, 4, 5}, {1, 2, 5, 6}, {3, 4, 5, 6}

and {7, 8, 9, 10} as the five cops’ beginning positions and the robber chooses

{1, 2, 3, 8} as his beginning vertex.
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Figure 5.1: An algorithm of choosing vertices in the next turn for each cop
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The 1st cop starts with a vertex A
(0)
1 = {1, 2, 3, 4}. We see that {1, 2, 3, 4} and

{1, 2, 3, 8} satisfy Lemma 5.4. Next, the 2nd, 3rd, 4th and 5th cops start with vertices

A
(0)
2 = {7, 8, 9, 10}, A(0)

3 = {3, 4, 5, 6}, A(0)
4 = {1, 2, 5, 6} and A

(0)
5 = {1, 2, 4, 5},

respectively.

In the first turn, we begin with a choosing vertex for the 2nd cop by following

the basis step. We let A
(1)
l = (B(0) − A

(0)
l ) ∪ C where C ⊆ [n]− (B(0) ∪ A

(0)
l ) and

|C| = k − |B(0) − A
(0)
l |.

Since A
(0)
2 = {7, 8, 9, 10} and B(0) = {1, 2, 3, 8}, we have B(0)−A

(0)
2 = {1, 2, 3}.

Next, we choose 5 from [n]− (B(0)∪A
(0)
2 ) = {4, 5, 6}. Therefore, the 2nd cop moves

to the vertex {1, 2, 3, 5}.

Next, we consider how to choose vertices for 3rd, 4th and 5th cops by the same

idea as choosing for the 2nd cop.

Since A
(0)
3 = {3, 4, 5, 6} and B(0) = {1, 2, 3, 8}, we have B(0) − A

(0)
3 = {1, 2, 8}.

Next, we choose 10 from [n] − (B(0) ∪ A
(0)
3 ) = {7, 9, 10}. Therefore, the 3rd cop

moves to the vertex {1, 2, 8, 10}.

Since A
(0)
4 = {1, 2, 5, 6} and B(0) = {1, 2, 3, 8}, we have B(0) − A

(0)
4 = {3, 8}.

Next, we choose 4 and 9 from [n]− (B(0) ∪A
(0)
4 ) = {4, 7, 9, 10}. Therefore, the 4th

cop moves to the vertex {3, 8, 4, 9}.

Since A
(0)
5 = {1, 2, 4, 5} and B(0) = {1, 2, 3, 8}, we have B(0) − A

(0)
4 = {3, 8}.

Next, we choose 6 and 7 from [n]− (B(0) ∪A
(0)
4 ) = {6, 7, 9, 10}. Therefore, the 4th

cop moves to the vertex {3, 8, 6, 7}.

We see that A(1)
l satisfies A(1)

l ̸= A
(0)
l , A(1)

l ∩A(0)
l = ∅ and (A

(1)
l −B(0))∩A(0)

1 = ∅

for all 2 ≤ l ≤ 5 and {A(1)
l }5l=2 satisfies MIN.

We obtain that the 2nd, 3rd, 4th and 5th cops move from vertices A(0)
2 = {7, 8, 9, 10},

A
(0)
3 = {3, 4, 5, 6}, A(0)

4 = {1, 2, 5, 6} and A
(0)
5 = {1, 2, 4, 5} to vertices A

(1)
2 =

{1, 2, 3, 5}, A(1)
3 = {1, 2, 8, 10}, A(1)

4 = {3, 8, 4, 9} and A
(1)
5 = {3, 8, 6, 7}, respec-

tively. Next, we let the 1st cop moves from A
(0)
1 = {1, 2, 3, 4} to A

(1)
1 = {5, 6, 9, 10}.

We see that A
(1)
1 ̸= A

(0)
1 , A(1)

1 ∩A
(0)
1 = ∅, A(1)

1 ∩B(0) = ∅ and |A(1)
1 ∩A

(1)
l | ≥ 1

for all l ̸= 1. Then, we need to check that {A(1)
i }5i=1 and B(0) satisfy Lemma 5.6

and found that they does not satisfy Lemma 5.6. Thus, the robber can find free
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neigbors to stay in his next turn.

If the robber chooses {4, 5, 7, 10} as his next position, then we compare∑
l≥2 (k − |B(1) − A

(1)
l |) and

∑
l≥2 (k − |B(0) − A

(0)
l |). Then, we obtain that∑

l≥2 (k − |B(1) − A
(1)
l |) = 4 and

∑
l≥2 (k − |B(0) − A

(0)
l |) = 6. By our algorithm

of choosing, we have
∑

l≥2 (k − |B(1) − A
(1)
l |) <

∑
l≥2 (k − |B(0) − A

(0)
l |). Then, we

let A(r+1)
l = (B(r)−A

(r)
l )∪C where C ⊆ [n]−(B(0)∪A(0)

l ) and |C| = k−|B(0)−A
(0)
l |

and A
(r+1)
1 = B(r−1).

Therefore, A
(2)
2 = {4, 7, 10} ∪ {8} = {4, 7, 10, 8}, A(2)

3 = {4, 5, 7} ∪ {3} =

{4, 5, 7, 3}, A(2)
4 = {5, 7, 10}∪{1} = {5, 7, 10, 1}, A(2)

5 = {4, 7, 10}∪{2} = {4, 7, 10, 2}

and A
(3)
1 = B(0) = {1, 2, 3, 8}. We see that A

(2)
l for all l ̸= 1 satisfies MIN and

A
(2)
1 satisfies GC.

Thus, we need to check that {A(2)
i }5i=1 and B(1) satisfy Lemma 5.6 and found

that they satisfy Lemma 5.6. Hence, the robber staying on vertex B(1) must be

caught in the next turn of a group of cops.

By Example 5.9 and 5.10, we can guarantee that the group of cops wins by

these strategies. Then, we apply an algorithm of choosing vertices to the other

cases depending on n, k and the positions of robber.

By following our algorithm of choosing vertices, we need to show that a game

of cops and robbers is terminated at some point where {Ai}k+1
i=1 and B satisfies

Lemma 5.6 as follows.

Lemma 5.11. By the algorithm of choosing vertices, there exists a turn f th such

that {A(f)
i }k+1

i=1 and B(f−1) satisfy Lemma 5.6.

Proof. Assume that {A(r)
i }k+1

i=1 and B(r−1) does not satisfy Lemma 5.6 where r ≥ 1.

We consider each condition in our algorithm of choosing vertices.

Case I. If
∑

l≥2 (k − |B(r) − A
(r)
l |) =

∑
l≥2 (k − |B(r−1) − A

(r−1)
l |), there exist l′

such that |B(r) − A
(r)
l′ | ̸= k − 1 and |B(r) − A

(r)
l′ | = |B(r−1) − A

(r−1)
l′ |, then we let

• A
(r+1)
l′ = (B(r) − A

(r)
l′ ) ∪ C ∪ {y} where C ⊆ [n] − (B(0) ∪ A

(0)
l′ ), |C| = k −

|B(0) − A
(0)
l′ | − 1 and y ∈ ([n]− B(r))− (A

(r)
l′ ∪B(r−1)); and
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• A
(r+1)
1 = (B(r−1) − {x}) ∪ {y} where x ∈ (B(r−1) − A

(r+1)
l′ )− ∪l ̸=l′A

(r+1)
l .

We claim that
∑

l≥2 (k − |B(r+1) − A
(r+1)
l |) <

∑
l≥2 (k − |B(r) − A

(r)
l |).

Case 1. y /∈ B(r+1). We have |B(r+1) − A
(r+1)
l′ | > |B(r) − A

(r)
l′ |, which implies

that k−|B(r+1)−A
(r+1)
l′ | > k−|B(r)−A

(r)
l′ |. Then,

∑
l≥2 (k − |B(r+1) − A

(r+1)
l |) <∑

l≥2 (k − |B(r) − A
(r)
l |).

Case 2. y ∈ B(r+1). Since |B(r) − A
(r)
l′ | ̸= k − 1, we have |B(r) − A

(r)
l′ | ≤ k − 2,

so k − |B(r) − A
(r)
l′ | ≥ 2. Thus, there are at least one element other than y in

A
(r+1)
l′ − B(r), says z.

Case 2.1. z /∈ B(r+1). We have |B(r+1) − A
(r+1)
l′ | > |B(r) − A

(r)
l′ | which is same

as Case 1.

Case 2.2. z ∈ B(r+1). Since B(r+1) ̸= A
(r+1)
1 , we have |A(r+1)

1 − B(r+1)| ≥ 1.

Let w ∈ A
(r+1)
1 − B(r+1). Since |A(r+1)

1 ∩ A
(r+1)
j | ≥ 1 for all 2 ≤ j ≤ k + 1,

there exists j′ such that w ∈ A
(r+1)
j′ . Then, |B(r+1) − A

(r+1)
j′ | > |B(r) − A

(r)
j′ |.

Thus,
∑

l≥2 (k − |B(r+1) − A
(r+1)
l |) <

∑
l≥2 (k − |B(r) − A

(r)
l |), which is the follow-

ing case.

Case II. If
∑

l≥2 (k − |B(r) − A
(r)
l |) <

∑
l≥2 (k − |B(r−1) − A

(r−1)
l |), then by our

algorithm, for 2 ≤ l ≤ k + 1, A
(r+1)
l − (B(r) − A

(r)
l ) ⊆ B(r−1) − A

(r)
l . Thus,

|A(r+1)
l − (B(r) − A

(r)
l )| ≤ |B(r−1) − A

(r)
l |. Since we know that |A(r+1)

l − B(r)| <

|A(r+1)
l − (B(r) − A

(r)
l )|, we have |A(r+1)

l − B(r)| < |B(r−1) − A
(r)
l |. Thus, |A(r+1)

l ∩

B(r)| > |A(r)
l ∩ B(r−1)| for 2 ≤ l ≤ k + 1.

Since each set is of size k, we obtain that, for 2 ≤ l ≤ k + 1, there exists a

turn rthl such that |A(rl+1)
l ∩ B(rl)| = k − 1. By continue this process, we may

have |A(t)
l ∩ B(t−1)| = k − 1 for all 2 ≤ l ≤ k + 1 at some turn tth. When we

consider Case I, we then obtain Case II in the next turn. Thus, we can conclude

the same result. Next, we remain to show that there exists a turn f th such that

A
(f)
j1

∩ A
(f)
1 ̸= A

(f)
j2

∩ A
(f)
1 where 2 ≤ j1 ̸= j2 ≤ k + 1.

Since |B(t)−A
(t)
l | = |A(t+1)

l ∩B(t)| and |B(t+1)−A
(t+1)
l | ≥ |B(t)−A

(t)
l |, we have

|B(t+1)−A
(t+1)
l | = k−1 for all 2 ≤ l ≤ k+1. It means that

∑
l≥2 (k − |B(t) − A

(t)
l |) =

k =
∑

l≥2 (k − |B(t−1) − A
(t−1)
l |). If B(t) − A

(t+1)
j1

̸= B(t) − A
(t+1)
j2

for all 2 ≤ j1 ̸=

j2 ≤ k + 1, we let
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• A
(t+2)
1 = B(t) and

• A
(t+2)
j = (B(t+1)−A

(t+1)
j )∪C where C ⊆ B(t)−A

(t+1)
j and |C| = k−|B(t+1)−

A
(t+1)
j | for all 2 ≤ j ≤ k + 1.

Therefore, A(t+2)
j1

∩ A
(t+2)
1 ̸= A

(t+2)
j2

∩ A
(t+2)
1 where 2 ≤ j1 ̸= j2 ≤ k + 1.

If there exists j2 > j1 such that B(t) − A
(t+1)
j1

= B(t) − A
(t+1)
j2

, then we let

• A
(t+2)
j2

= (B(t+1) − A
(t+1)
j2

) ∪ {y} where y ∈ ([n]− B(t+1))− (A
(t+1)
j2

∪ B(t));

• A
(t+2)
j = (B(t+1) − A

(t+1)
j ) ∪ C where C ⊆ B(t) − A

(t+1)
j , |C| = k − |B(t+1) −

A
(t+1)
j | and j ̸= j2; and

• A
(t+2)
1 = (B(t) − {x}) ∪ {y} where x ∈ (B(t) − A

(t+2)
j2

)− ∪j ̸=j2A
(t+2)
j

Therefore, A(t+2)
j1

∩A
(t+2)
1 ̸= A

(t+2)
j2

∩A
(t+2)
1 . Then, A(t+2)

l1
∩A

(t+2)
1 ̸= A

(t+2)
l2

∩A
(t+2)
1

where 2 ≤ l1 ̸= l2 ≤ k + 1.

From case I and case II, since |A(t+2)
j ∩A

(t+2)
1 | = k − |B(t+2) −A

(t+2)
j |, we have

|A(t+2)
j ∩A

(t+2)
1 | = 1 for all 2 ≤ j ≤ k+1. In our consideration, each choosing step

needs to satisfy MIN and GC. Therefore, A(t+2)
l1

∩ A
(t+2)
1 ̸= A

(t+2)
l2

∩ A
(t+2)
1 where

2 ≤ l1 ̸= l2 ≤ k + 1. Now, we obtain that {A(t+2)
i }k+1

i=1 and B(t+1) satisfy Lemma

5.6. Then, we will choose f = t+ 2.

By the previous lemma, we can guarantee that our algorithm of choosing ver-

tices leads us to obtain a final turn where the positions of the k + 1 cops satisfy

Lemma 5.6. It means that a group of k + 1 cops can guard all robber’s neighbors,

which causes robber cannot run away. In our algorithm, we need to find a guarding

cop A
(0)
1 which need to satisfies Lemma 5.4.

Note that, thereafter, we write {a, b, c} as abc and write p to represent p where

p is a positive integer and p ≥ 10.

Lemma 5.12. There exists a guarding cop on KG(n, k) where 3 ≤ k ≤ 5 and

2k + 2 ≤ n ≤ k2 + k − 1.
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Proof. When k = 3, let 123, 125, 345 and 678 be the starting vertices for four cops.

We claim that there exists a guarding cop which satisfies Lemma 5.4. We consider

all possible vertex for a robber. We separate into three generating sets; that is,

P = {1, 2, 4}, Q = {3, 5} and R = {6, 7, 8}. Let (p, q, r) denote the number of

chosen elements of the position of the robber from P,Q and R, respectively.

Case 1. (0, 2, 1). We choose 345 to be the position of the guarding cop.

Case 2. (1, 1, 1) and 4 is not chosen. We choose one of {123, 125} to be the

position of the guarding cop depending on the chosen elements from set Q.

Case 3. (2, 0, 1) and 4 is chosen. We choose 345 to be the position of the

guarding cop.

When k = 4, let 1234, 1245, 1256, 3456 and 78910 be the starting vertices for

five cops. We claim that there exists a guarding cop which satisfies Lemma 5.4.

We consider all possible vertex for a robber. We separate into three generating

sets; that is, P = {1, 2}, Q = {3, 4, 5, 6} and R = {7, 8, 9, 10}. Let (p, q, r) denote

the number of chosen elements of the position of the robber from P,Q and R,

respectively.

Case 1. (0, 2, 2). We choose 78910 to be the position of the guarding cop.

Case 2. (0, 3, 1). We choose 3456 to be the position of the guarding cop.

Case 3. (1, 1, 2). We choose 78910 to be the position of the guarding cop.

Case 4. (1, 2, 1). We choose 3456 to be the position of the guarding cop.

Case 5. (2, 1, 1). We choose one of {1234, 1245, 1256} to be the position of the

guarding cop depending on the chosen elements from set Q.

When k = 5, let 12345, 12456, 12567, 12673, 34567 and 8910 11 12 be the start-

ing vertices for six cops. We claim that there exists a guarding cop which satisfies

Lemma 5.4. We consider all possible vertex for a robber. We separate into three

generating sets; that is, P = {1, 2}, Q = {3, 4, 5, 6, 7} and R = {8, 9, 10, 11, 12}.

Let (p, q, r) denote the number of chosen elements of the position of the robber

from P,Q and R, respectively.

Case 1. (0, 2, 3). We choose 8910 11 12 to be the position of the guarding cop.

Case 2. (0, 3, 2). We choose 34567 to be the position of the guarding cop.
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Case 3. (0, 4, 1). We choose 34567 to be the position of the guarding cop.

Case 4. (1, 1, 3). We choose 8910 11 12 to be the position of the guarding cop.

Case 5. (1, 2, 2). We choose one of {12345, 12456, 12567, 12673} to be the

position of the guarding cop depending on the chosen elements from set Q.

Case 6. (1, 3, 1). We choose 34567 to be the position of the guarding cop.

Case 7. (2, 1, 2). We choose one of {12345, 12456, 12567, 12673} to be the

position of the guarding cop depending on the chosen elements from set Q.

Case 8. (2, 2, 1). We choose one of {12345, 12456, 12567, 12673} to be the

position of the guarding cop depending on the chosen elements from set Q.

Note that if there are more than one vertices to be the position of the guarding

cop in each case, we can choose the other one instead.

By Lemma 5.12, we have the guarding cop to use with our algorithm of choosing

vertices. By Lemma 5.11 and Lemma 5.6, the robber cannot escape and we obtain

the theorem as follows

Theorem 5.13. Let 3 ≤ k ≤ 5 and 2k + 2 ≤ n ≤ k2 + k − 1. Then, k + 1 cops

are enough to catch the robber.

Next, it remains to show that k cops is not enough to catch the robber. A

pitfall cover in Definition 5.1 leads us to show that the robber’s neighbor in his

next turn exists to evade.

We start with k = 3 and 8 ≤ n ≤ 11. Then, we would like to investigate that

there exists a 3-set which intersects at most three 3-sets, says {Ai} and is disjoint

from the other one, says B. Therefore, we obtain the following Lemma.

Lemma 5.14. Let k = 3, 8 ≤ n ≤ 11 and 1 ≤ l ≤ 3. Let {Ai}li=1 ⊆ [n](3) and

B ∈ [n](3) be distinct 3-sets such that B ∩ A1 = ∅. Then, there exists a 3-set

C ∈ [n](3) such that C ̸= Ai and C ∩ Ai ̸= ∅ for all 1 ≤ i ≤ l and C ∩B = ∅.

Proof. Let A′
i = Ai − B for all 1 ≤ i ≤ l. Note that A′

1 = A1 and A′
i ̸= ∅ for all

1 ≤ i ≤ l. Let X = {x1, x2, x3 . . . , xp} be a pitfall cover for {A′
1, A

′
2, A

′
3, . . . , A

′
l}.
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Since A′
1 = A1, p ≥ 3 ≥ l. We may assume that xi ∈ A′

i for all 1 ≤ i ≤ l. We

separate into three cases depending on l.

Case 1. l = 1. We have |[n] − (A1 ∪ B)| ≥ 8 − 6 = 2. We may choose

y ∈ [n]− (A1 ∪ B). Then, we set C = (A1 − {x}) ∪ {y} where x ∈ A1.

Case 2. l = 2.

Case 2.1. X = A1. Since |A1| = k > l − 1, there exists one element in A1,

says x, such that (A1 − {x}) ∩ A′
2 ̸= ∅. Since A′

2 ⊆ A1 and |B| = 3, we have

|[n]− (A1 ∪B)| ≥ 2. Then, we set C = (A1 −{x})∪{y} where y ∈ [n]− (A1 ∪B).

We see that C ̸= Ai, |C ∩ Ai| ≥ 1 for all 1 ≤ i ≤ 2 and C ∩ B = ∅.

Case 2.2. X ̸= A1. We set C = {x1, x
′
2, z} where x1 ∈ A1, x

′
2 ∈ A′

2 − A1 and

z ∈ ([n] − {x′
2}) − (A1 ∪ B). We see that C ̸= Ai, |C ∩ Ai| ≥ 1 for all 1 ≤ i ≤ 2

and C ∩ B = ∅.

Case 3. l = 3.

Case 3.1. X = A1. Since |A1| = k > l − 1, there exists one element in A1,

says x, such that (A1 − {x}) ∩ A′
j ̸= ∅ for all 2 ≤ j ≤ 3. Since A′

2 ∪ A′
3 ⊆ A1

and |B| = 3, we have |[n] − (A1 ∪ B)| ≥ 2. Then, we set C = (A1 − {x}) ∪ {y}

where y ∈ [n]− (A1 ∪ B) and see that C ̸= Ai, |C ∩ Ai| ≥ 1 for all 1 ≤ i ≤ 3 and

C ∩ B = ∅.

Case 3.2. X ̸= A1. Let x1 ∈ A1. Assume that x′
i ∈ A′

i − A1 for all 2 ≤ i ≤ 3.

If x′
2 = x′

3, then we set C = {x1, x
′
2, z} where z ∈ ([n]− {x′

2})− (A1 ∪B).

If x′
2 ̸= x′

3, then we set C = {x1, x
′
2, x

′
3}.

We see that C ̸= Ai, |C ∩ Ai| ≥ 1 for all 1 ≤ i ≤ 3 and C ∩ B = ∅.

For k = 4 and 10 ≤ n ≤ 19, we use the same idea as the previous lemma when

k = 3 to obtain the following lemma.

Lemma 5.15. Let k = 4, 10 ≤ n ≤ 19 and 1 ≤ l ≤ 4. Let {Ai}li=1 ⊆ [n](4) and

B ∈ [n](4) be distinct 4-sets such that B ∩ A1 = ∅. Then, there exists a 4-set

C ∈ [n](4) such that C ̸= Ai and C ∩ Ai ̸= ∅ for all 1 ≤ i ≤ l and C ∩B = ∅.

Proof. Let A′
i = Ai − B for all 1 ≤ i ≤ l. Note that A′

1 = A1 and A′
i ̸= ∅ for all

1 ≤ i ≤ l. Let X = {x1, x2, x3, . . . , xp} be a pitfall cover for {A′
1, A

′
2, A

′
3 . . . , A

′
l}.
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Since A′
1 = A1, p ≥ 4 ≥ l. We may assume that xi ∈ A′

i for all 1 ≤ i ≤ l. We

separate into four cases depending on l.

Case 1. l = 1. We have |[n] − (A1 ∪ B)| ≥ 10 − 8 = 2. We may choose

y ∈ [n]− (A1 ∪ B). Then, we set C = (A1 − {x}) ∪ {y} where x ∈ A1.

Case 2. l = 2.

Case 2.1. X = A1. Since |A1| = k > l − 1, there exists one element in A1,

says x, such that (A1 − {x}) ∩ A′
2 ̸= ∅. Since A′

2 ⊆ A1 and |B| = 4, we have

|[n]− (A1 ∪B)| ≥ 2. Then, we set C = (A1 −{x})∪{y} where y ∈ [n]− (A1 ∪B).

We see that C ̸= Ai, |C ∩ Ai| ≥ 1 for all 1 ≤ i ≤ 2 and C ∩ B = ∅.

Case 2.2. X ̸= A1. We set C = {x1, x
′
2, y1, z}. where x1 ∈ A1, x

′
2 ∈ A′

2 −

A1, y1 ∈ A1 − {x1} and z ∈ ([n] − {x′
2}) − (A1 ∪ B). We see that C ̸= Ai,

|C ∩ Ai| ≥ 1 for all 1 ≤ i ≤ 2 and C ∩ B = ∅.

Case 3. l = 3.

Case 3.1. X = A1. Since |A1| = k > l − 1, there exists one element in A1,

says x, such that (A1 − {x}) ∩ A′
j ̸= ∅ for all 2 ≤ j ≤ 3. Since A′

2 ∪ A′
3 ⊆ A1

and |B| = 4, we have |[n] − (A1 ∪ B)| ≥ 2. Then, we set C = (A1 − {x}) ∪ {y}

where y ∈ [n]− (A1 ∪ B) and see that C ̸= Ai, |C ∩ Ai| ≥ 1 for all 1 ≤ i ≤ 3 and

C ∩ B = ∅.

Case 3.2. X ̸= A1. Let x1 ∈ A1. Assume that x′
i ∈ A′

i − A1 for all 2 ≤ i ≤ 3.

If x′
2 = x′

3, then we set C = {x1, x
′
2, y1, z} where y1 ∈ A1 − {x1} and z ∈

([n]− {x′
2})− (A1 ∪B).

If x′
2 ̸= x′

3, then we set C = {x1, x
′
2, x

′
3, y1} where y1 ∈ A1 − {x1}.

We see that C ̸= Ai, |C ∩ Ai| ≥ 1 for all 1 ≤ i ≤ 3 and C ∩ B = ∅.

Case 4. l = 4.

Case 4.1. X = A1. Since |A1| = k > l − 1, there exists one element in A1,

says x, such that (A1 − {x}) ∩ A′
j ̸= ∅ for all 2 ≤ j ≤ 4. Since ∪4

j=2A
′
j ⊆ A1

and |B| = 4, we have |[n] − (A1 ∪ B)| ≥ 2. Then, we set C = (A1 − {x}) ∪ {y}

where y ∈ [n]− (A1 ∪ B) and see that C ̸= Ai, |C ∩ Ai| ≥ 1 for all 1 ≤ i ≤ 4 and

C ∩ B = ∅.

Case 4.2. X ̸= A1. Let x1 ∈ A1. Assume that x′
i ∈ A′

i − A1 for all 2 ≤ i ≤ 4.
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Let M be a pitfall cover for {A′
2 − A1, A

′
3 − A1, A

′
4 − A1}.

If |M | = 1, then x′
j1

= x′
j2

where 2 ≤ j1 ̸= j2 ≤ 4. Thus, we set C =

{x1, x
′
2, y1, z} where y1 ∈ A1 − {x1} and z ∈ ([n]− {x′

2})− (A1 ∪ B).

If |M | = 2, then without loss of generality, assume that M = {x′
2, x

′
3}, we set

C = {x1, x
′
2, x

′
3, y1} where y1 ∈ A1 − {x1}.

If |M | = 3, then we set C = {x1, x
′
2, x

′
3, x

′
4}.

We see that C ̸= Ai, |C ∩ Ai| ≥ 1 for all 1 ≤ i ≤ 4 and C ∩ B = ∅.

Besides k = 3 and k = 4, we also show the existence of a 5-set which intersects

at most five 5-sets, but is disjoint from another 5-set.

Lemma 5.16. Let k = 5, 12 ≤ n ≤ 29 and 1 ≤ l ≤ 5. Let {Ai}li=1 ⊆ [n](5) and

B ∈ [n](5) be distinct 5-sets such that B ∩ A1 = ∅. Then, there exists a 5-set

C ∈ [n](5) such that C ̸= Ai and C ∩ Ai ̸= ∅ for all 1 ≤ i ≤ l and C ∩B = ∅.

Proof. Let A′
i = Ai − B for all 1 ≤ i ≤ l. Note that A′

1 = A1 and A′
i ̸= ∅ for all

1 ≤ i ≤ l. Let X = {x1, x2, x3, . . . , xp} be a pitfall cover for {A′
1, A

′
2, A

′
3 . . . , A

′
l}.

Since A′
1 = A1, p ≥ 5 ≥ l. We may assume that xi ∈ A′

i for all 1 ≤ i ≤ l. We

separate into five cases depending on l.

Case 1. l = 1. We have |[n] − (A1 ∪ B)| ≥ 12 − 10 = 2. We may choose

y ∈ [n]− (A1 ∪ B). Then, we set C = (A1 − {x}) ∪ {y} where x ∈ A1.

Case 2. l = 2.

Case 2.1. X = A1. Since |A1| = k > l − 1, there exists one element in A1,

says x, such that (A1 − {x}) ∩ A′
2 ̸= ∅. Since A′

2 ⊆ A1 and |B| = 5, we have

|[n]− (A1 ∪B)| ≥ 2. Then, we set C = (A1 −{x})∪{y} where y ∈ [n]− (A1 ∪B).

We see that C ̸= Ai, |C ∩ Ai| ≥ 1 for all 1 ≤ i ≤ 2 and C ∩ B = ∅.

Case 2.2. X ̸= A1. We set C = {x1, x
′
2, y1, y2, z}. where x1 ∈ A1, x

′
2 ∈

A′
2 −A1, y1, y2 ∈ A1 − {x1} and z ∈ ([n]− {x′

2})− (A1 ∪B). We see that C ̸= Ai,

|C ∩ Ai| ≥ 1 for all 1 ≤ i ≤ 2 and C ∩ B = ∅.

Case 3. l = 3.

Case 3.1. X = A1. Since |A1| = k > l − 1, there exists one element in A1,

says x, such that (A1 − {x}) ∩ A′
j ̸= ∅ for all 2 ≤ j ≤ 3. Since A′

2 ∪ A′
3 ⊆ A1
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and |B| = 5, we have |[n] − (A1 ∪ B)| ≥ 2. Then, we set C = (A1 − {x}) ∪ {y}

where y ∈ [n]− (A1 ∪ B) and see that C ̸= Ai, |C ∩ Ai| ≥ 1 for all 1 ≤ i ≤ 3 and

C ∩ B = ∅.

Case 3.2. X ̸= A1. Let x1 ∈ A1 Assume that x′
i ∈ A′

i − A1 for all 2 ≤ i ≤ 3.

If x′
2 = x′

3, then we set C = {x1, x
′
2, y1, y2, z} where y1, y2 ∈ A1 − {x1} and

z ∈ ([n]− {x′
2})− (A1 ∪ B).

If x′
2 ̸= x′

3, then we set C = {x1, x
′
2, x

′
3, y1, y2} where y1, y2 ∈ A1 − {x1}.

We see that C ̸= Ai, |C ∩ Ai| ≥ 1 for all 1 ≤ i ≤ 3 and C ∩ B = ∅.

Case 4. l = 4.

Case 4.1. X = A1. Since |A1| = k > l − 1, there exists one element in A1,

says x, such that (A1 − {x}) ∩ A′
j ̸= ∅ for all 2 ≤ j ≤ 4. Since ∪4

j=2A
′
j ⊆ A1

and |B| = 5, we have |[n] − (A1 ∪ B)| ≥ 2. Then, we set C = (A1 − {x}) ∪ {y}

where y ∈ [n]− (A1 ∪ B) and see that C ̸= Ai, |C ∩ Ai| ≥ 1 for all 1 ≤ i ≤ 4 and

C ∩ B = ∅.

Case 4.2. X ̸= A1. Let x1 ∈ A1 Assume that x′
i ∈ A′

i − A1 for all 2 ≤ i ≤ 4.

Let M be a pitfall cover for {A′
2 − A1, A

′
3 − A1, A

′
4 − A1}.

If |M | = 1, then x′
j1

= x′
j2

where 2 ≤ j1 ̸= j2 ≤ 4. Thus, we set C =

{x1, x
′
2, y1, y2, z} where y1, y2 ∈ A1 − {x1} and z ∈ ([n]− {x′

2})− (A1 ∪ B).

If |M | = 2, then without loss of generality, assume that M = {x′
2, x

′
3}, we set

C = {x1, x
′
2, x

′
3, y1, y2} where y1, y2 ∈ A1 − {x1}.

If |M | = 3, then we set C = {x1, x
′
2, x

′
3, x

′
4, y1} where y1 ∈ A1 − {x1}.

We see that C ̸= Ai, |C ∩ Ai| ≥ 1 for all 1 ≤ i ≤ 4 and C ∩ B = ∅.

Case 5. l = 5.

Case 5.1. X = A1. Since |A1| = k > l − 1, there exists one element in A1,

says x, such that (A1 − {x}) ∩ A′
j ̸= ∅ for all 2 ≤ j ≤ 5. Since ∪5

j=2A
′
j ⊆ A1

and |B| = 5, we have |[n] − (A1 ∪ B)| ≥ 2. Then, we set C = (A1 − {x}) ∪ {y}

where y ∈ [n]− (A1 ∪ B) and see that C ̸= Ai, |C ∩ Ai| ≥ 1 for all 1 ≤ i ≤ 5 and

C ∩B = ∅.

Case 5.2. X ̸= A1. Let x1 ∈ A1 Assume that x′
i ∈ A′

i − A1 for all 2 ≤ i ≤ 5.

Let M be a pitfall cover for {A′
2 − A1, A

′
3 − A1, A

′
4 − A1, A

′
5 − A1}.
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If |M | = 1, then x′
j1

= x′
j2

where 2 ≤ j1 ̸= j2 ≤ 5. Thus, we set C =

{x1, x
′
2, y1, y2, z} where y1, y2 ∈ A1 − {x1} and z ∈ ([n]− {x′

2})− (A1 ∪ B).

If 2 ≤ |M | = m ≤ 3, then without loss of generality, assume that M =

{x′
2, x

′
3, x

′
4, . . . , x

′
m+1}, we set C = {x1, x

′
2, x

′
3, . . . , x

′
m+1, y1, . . . , yk−(m+1)} where

y1, y2, y3, . . . , yk−(m+1) ∈ A1 − {x1}.

If |M | = 4, then we set C = {x1, x
′
2, x

′
3, x

′
4, x

′
5}.

We see that C ̸= Ai, |C ∩ Ai| ≥ 1 for all 1 ≤ i ≤ 5 and C ∩ B = ∅.

Therefore, we let the l k-sets {Ai}li=1 be occupied by k cops and the other k-set

B occupied by the robber where 1 ≤ l ≤ k. Thus, we see that the k-set C can be

the robber’s position in his next turn. Then, we will use the Lemmas 5.14, 5.15

and 5.16 to show that no matter where the k cops stay, there exists a free neighbor

for the robber. However, in our consideration, Kneser graphs KG(n, k) need to

have diameter 2. By Theorem 2.28, we have to consider the cases when n ≥ 3k−1.

Theorem 5.17. c(KG(n, 3)) = 4 for all 8 ≤ n ≤ 11.

Proof. Let 8 ≤ n ≤ 11. By Theorem 5.13, we have c(KG(n, 3)) ≤ 4. By Theorem

2.28, we have diam(KG(n, 3)) = 2. We claim that the robber has a winning

strategy when there are three cops. Since KG(n, 3) has diameter 2, the robber

must stay far from all cops by distance 2.

Suppose that 3 cops occupy the distinct vertices A1, A2, A3, . . . , Al for some

1 ≤ l ≤ 3. Then, the robber chooses a vertex B as follows. Let X ∈ V (KG(n, k))−

{A1, A2, A3, . . . , Al}. If X ∩ Ai ̸= ∅ for all 1 ≤ i ≤ l, then we choose B =

X. Otherwise, say X ∩ A1 = ∅, by Lemma 5.14, there exists a vertex C ∈

V (KG(n, 3))− {A1, A2, A3, . . . , Al} such that C ∩ Ai ̸= ∅ for all 1 ≤ i ≤ l, so we

choose B = C. Then, d(B,Ai) = 2 for all 1 ≤ i ≤ l.

Suppose that, at some stage, the robber is at distance two from every cop.

Then, the cops make their move and see that they do not catch the robber. Assume

that 3 cops occupy the distinct vertices V1, V2, V3, . . . , Vr for some 1 ≤ r ≤ 3, and

the robber stay at vertex V . If d(V, Vi) = 2 for all 1 ≤ i ≤ r, then the robber

chooses not to move. Otherwise, say d(V, V1) = 1. Thus, V ∩ V1 = ∅. By Lemma
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5.14, there exists a vertex W such that W ̸= Vi, W ∩ Vi for all 1 ≤ i ≤ r, and

W ∩V = ∅. Then, the robber decides to move from V to W ; that is, d(W,Vi) = 2

for all 1 ≤ i ≤ r. Hence, the robber always escape.

Theorem 5.18. c(KG(n, 4)) = 5 for all 11 ≤ n ≤ 19.

Proof. Let 11 ≤ n ≤ 19. By Theorem 5.13, we have c(KG(n, 4)) ≤ 5. By

Theorem 2.28, we have diam(KG(n, 4)) = 2. We claim that the robber has a

winning strategy when there are four cops. Since KG(n, 4) has diameter 2, the

robber must stay far from all cops by distance 2.

Suppose that 4 cops occupy the distinct vertices A1, A2, A3, . . . , Al for some

1 ≤ l ≤ 4. Then, the robber chooses a vertex B as follows. Let X ∈ V (KG(n, k))−

{A1, A2, A3, . . . , Al}. If X ∩ Ai ̸= ∅ for all 1 ≤ i ≤ l, then we choose B =

X. Otherwise, say X ∩ A1 = ∅, by Lemma 5.15, there exists a vertex C ∈

V (KG(n, 4))− {A1, A2, A3, . . . , Al} such that C ∩ Ai ̸= ∅ for all 1 ≤ i ≤ l, so we

choose B = C. Then, d(B,Ai) = 2 for all 1 ≤ i ≤ l.

Suppose that, at some stage, the robber is at distance two from every cop.

Then, the cops make their move and see that they do not catch the robber. Assume

that 4 cops occupy the distinct vertices V1, V2, V3, . . . , Vr for some 1 ≤ r ≤ 4, and

the robber stay at vertex V . If d(V, Vi) = 2 for all 1 ≤ i ≤ r, then the robber

chooses not to move. Otherwise, say d(V, V1) = 1. Thus, V ∩ V1 = ∅. By Lemma

5.15, there exists a vertex W such that W ̸= Vi, W ∩ Vi for all 1 ≤ i ≤ r, and

W ∩V = ∅. Then, the robber decides to move from V to W ; that is, d(W,Vi) = 2

for all 1 ≤ i ≤ r. Hence, the robber always escape.

Theorem 5.19. c(KG(n, 5)) = 6 for all 14 ≤ n ≤ 29.

Proof. Let 14 ≤ n ≤ 29. By Theorem 5.13, we have c(KG(n, 5)) ≤ 6. By

Theorem 2.28, we have diam(KG(n, 5)) = 2. We claim that the robber has a

winning strategy when there are five cops. Since KG(n, 5) has diameter 2, the

robber must stay far from all cops by distance 2.

Suppose that 5 cops occupy the distinct vertices A1, A2, A3, . . . , Al for some

1 ≤ l ≤ 5. Then, the robber chooses a vertex B as follows. Let X ∈ V (KG(n, k))−
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{A1, A2, A3, . . . , Al}. If X ∩ Ai ̸= ∅ for all 1 ≤ i ≤ l, then we choose B =

X. Otherwise, say X ∩ A1 = ∅, by Lemma 5.16, there exists a vertex C ∈

V (KG(n, 5))− {A1, A2, A3, . . . , Al} such that C ∩ Ai ̸= ∅ for all 1 ≤ i ≤ l, so we

choose B = C. Then, d(B,Ai) = 2 for all 1 ≤ i ≤ l.

Suppose that, at some stage, the robber is at distance two from every cop.

Then, the cops make their move and see that they do not catch the robber. Assume

that 5 cops occupy the distinct vertices V1, V2, V3, . . . , Vr for some 1 ≤ r ≤ 5, and

the robber stay at vertex V . If d(V, Vi) = 2 for all 1 ≤ i ≤ r, then the robber

chooses not to move. Otherwise, say d(V, V1) = 1. Thus, V ∩ V1 = ∅. By Lemma

5.16, there exists a vertex W such that W ̸= Vi, W ∩ Vi for all 1 ≤ i ≤ r, and

W ∩V = ∅. Then, the robber decides to move from V to W ; that is, d(W,Vi) = 2

for all 1 ≤ i ≤ r. Hence, the robber always escape.

By Theorems 5.17, 5.18 and 5.19, we can conclude that

Theorem 5.20. Let 3 ≤ k ≤ 5 and 3k − 1 ≤ n ≤ k2 + k − 1. Then, cop-number

on KG(n, k) is k + 1.

For n = 2k + 1, we know that the lower bound of the cop-number may be

obtained by considering the minimum degree of the graph under consideration.

Since KG(n, k) is a regular graph, each vertex of KG(n, k) has exactly
(
n−k
k

)
neighbors. Thus, the degree of each vertex in KG(n, k) is

(
n−k
k

)
. We know that

KG(2k + 1, k) is a k-odd graph, its girth is 6 [17], which means it has no 3- or

4-cycles. Since its degree is k + 1, by Theorem 2.36, c(KG(2k + 1, k)) ≥ k + 1.

It is easy to see that the case k = 3 satisfies our choosing algorithm and the

previous lemmas. First, we show the existence of a guarding cop.

Lemma 5.21. There exists a guarding cop on KG(7, 3).

Proof. When k = 3, let 123, 125, 345 and 467 be the starting vertices for four cops.

We claim that there exists a guarding cop which satisfies Lemma 5.4. We consider

all possible vertices for a robber. We separate into three generate sets; that is,

P = {1, 2}, Q = {3, 5} and R = {4, 6, 7}. Let (p, q, r) denote the number of chosen

elements of the position of the robber from P,Q and R, respectively.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60

Case 1. (0, 2, 1) and 4 is not chosen. We choose 345 to be the position of the

guarding cop.

Case 2. (1, 0, 2) and 4 is chosen. We choose 467 to be the position of the

guarding cop.

Case 3. (1, 1, 1) and 4 is not chosen. We choose one of {123, 125} to be the

position of the guarding cop depending on the chosen elements from set Q.

Case 4. (1, 1, 1) and 4 is chosen. We choose 345 to be the position of the

guarding cop.

Case 5. (2, 0, 1) and 4 is chosen. We choose one of {123, 125} to be the position

of the guarding cop.

By Lemma 5.21, we have the guarding cop to use our choosing algorithm. By

Lemma 5.11 and Lemma 5.6, the robber cannot escape. We obtain theorem as

follows

Theorem 5.22. In KG(7, 3), four cops is enough to catch the robber; that is,

c(KG(7, 3)) ≤ 4.

By Theorems 2.36 and 5.22, we can conclude that

Theorem 5.23. Cop-number of KG(7, 3) is 4.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VI

CONCLUSION AND DISCUSSION

First, in Chapter III, we are interested in the results on cop-win hypergraphs.

We characterize cop-win hypergraphs H by successively weak deletion corner (in

any order) to reduce H to be a trivial hypergraph and provide some results on

each product of hypergraphs in Table 6.1.

Cop-win
hypergraphs

Robber-win
hypergraphs

Cartesian product Robber-win hypergraph Robber-win hypergraph
Minimal rank

preserving direct product Robber-win hypergraph Robber-win hypergraph

Maximal rank
preserving direct product

(uniformity of each hypergraph is needed)

Robber-win hypergraph Robber-win hypergraph

Normal (Standard)
strong product Cop-win hypergraph still open

Table 6.1: The results on product of hypergraphs

Next, in Chapter IV, we give a better chance to cop to allow more than one

cop to play this game and investigate the minimum number of cops to guarantee

that they have a winning strategy, called a cop-number. We focus on two struc-

tures of hypergraphs, namely, the complete k-partite hypergraphs and n-prisms

over a hypergraph. Thus, we conclude that the cop-number of each structure of

hypergraphs in Table 6.2.

Finally, by the concept on cop-number in cops and robbers on graphs, it leads

us to study on the Kneser graphs KG(n, k) in Chapter V. We observe that that

c(KG(n, k)) can be concluded in Table 6.3.

As for the future research, we suggest one to investigate the cop-number of

n-Prisms over a robber-win hypergraph H(2)
0 and Kneser graphs in the remaining

cases.
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Cop-number
Complete k-uniform
k-partite hypergraph 2 with |Vi| ≥ 2 for all 1 ≤ i ≤ k

Complete σ-uniform
k-partie hypergraph

1 where σ ≥ 3
2 where σ = 2, k ≥ 3 and |Vi| ≥ 2 for all 1 ≤ i ≤ k

n-Prisms over
a cop-win hypergraph H(k)

0

1 where k ≥ 3
2 where k = 2

n-Prisms over
a robber-win hypergraph H(k)

0

c(H(k)
0 ) where k ≥ 3

Table 6.2: Cop-number of certain hypergraphs

Cop-number c(KG(n, k))
n = 2k + 1 2k + 2 ≤ n ≤ 3k − 2 3k − 1 ≤ n ≤ k2 + k − 1 n ≥ k2 + k

k = 2 3 N/A 3 3
k = 3 4 N/A 4 4
k = 4 Still open Still open 5 5
k = 5 Still open Still open 6 6
k ≥ 6 Still open Still open Still open k + 1

Table 6.3: Cop-number of Kneser graphs
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