

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2564
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

PANCYCLICITY AND VERTEX PANCYCLICITY FOR SOME PRODUCTS OF GRAPHS

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Mathematics Department of Mathematics and Computer Science

Faculty of Science
Chulalongkorn University
Academic Year 2021
Copyright of Chulalongkorn University

PANCYCLICITY AND VERTEX PANCYCLICITY FOR SOME PRODUCTS OF GRAPHS

By
Miss Artchariya Muaengwaeng
Field of Study
Thesis Advisor
Thesis Co-Advisor
Mathematics
Associate Professor Ratinan Boonklurb, Ph.D.
Assistant Professor Sirirat Singhun, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

Dean of the Faculty of Science
(Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

อัจฉริยา เมืองแวง : ความเป็นแพนไซคลิกและความเป็นเวอร์เท็กซ์แพนไซคลิกสำหรับผล คูณของกราฟบางชนิด. (PANCYCLICITY AND VERTEX PANCYCLICITY FOR SOME PRODUCTS OF GRAPHS)
อ.ที่ปรึกษาวิทยานิพนธ์หลัก : รองศาสตราจารย์ ดร.รตินันท์ บุญเคลือบ
อ.ที่ปรึกษาวิทยานิพนธ์ร่วม : ผู้ช่วยศาสตราจารย์ ดร.ศิริรัตน์ สิงหันต์, 66 หน้า.

กราฟ G อันดับ n เป็นแพนไซคลิก ถ้า G มีวัฏจักรความยาว l เมื่อ $3 \leq l \leq n$ กราฟ G อันดับ n เป็นเวอร์เท็กซ์แพนไซคลิก ถ้าจุดยอดแต่ละจุดของ G อยู่บนวัฏจักรความยาว l สำหรับแต่ละ $3 \leq l \leq n$ ในวิทยานิพนธ์ฉบับนี้ เราพิสูจน์ว่า n-ปริซึมทั่วไปของกราฟกระโปรงใด ๆ เป็นแพนไซคลิก สำหรับ $n \geq 2$ นอกจากนั้นเราได้ศึกษาความเป็นเวอร์เท็กซ์แพนไซคลิกบนผลคูณแบบพจนานุกรม ของกราฟบางชนิด เราพบว่า ถ้ากราฟ G_{1} เป็นกราฟติดตามได้ที่มีจำนวนจุดยอดเป็นจำนวนคู่ และ G_{2} เป็นกราฟที่มีเส้นเชื่อมอย่างน้อยหนึ่งเส้น แล้ว ผลคูณแบบพจนานุกรมของ G_{1} และ G_{2} (หรือ $G_{1} \circ G_{2}$) เป็นเวอร์เท็กซ์แพนไซคลิก ถ้า G_{1} และ G_{2} เป็นกราฟติดตามได้ที่มีเส้นเชื่อมอย่างน้อยหนึ่งเส้น แล้ว $G_{1} \circ G_{2}$ เป็นเวอร์เท็กซ์แพนไซคลิก และ ถ้ากราฟ G_{1} มีวัฏจักรแฮมิลตันและ G_{2} เป็นกราฟที่มีเส้น เชื่อมอย่างน้อยหนึ่งเส้น แล้ว $G_{1} \circ G_{2}$ เป็นเวอร์เท็กซ์แพนไซคลิก

สาขาวิชา คณิตศาสตร์

ปีการศึกษา 2561 ลายมือชื่อ อ.ที่ปรึกษาหลัก \qquad ลายมือชื่อ อ.ที่ปรึกษาร่วม \qquad
\# \# 6172902723: MAJOR MATHEMATICS
KEYWORDS : HAMILTONIAN/ PANCYCLIC/ VERTEX PANCYCLIC/ REDUCED HALIN GRAPHS/ SKIRTED GRAPHS/ CARTESIAN PRODUCT/ LEXICOGRAPHIC PRODUCT

ARTCHARIYA MUAENGWAENG : PANCYCLICITY AND VERTEX PANCYCLICITY FOR SOME PRODUCTS OF GRAPHS
ADVISOR: ASSOCIATE PROFESSOR RATINAN BOONKLURB, Ph.D. CO-ADVISOR : ASSISTANT PROFESSOR SIRIRAT SINGHUN, Ph.D., 66 pp.

A graph G of order n is said to be pancyclic if it contains a cycle of each length l for $3 \leq l \leq n$. A graph G of order n is vertex pancyclic if each vertices of G is contained in a cycle of each length l for $3 \leq l \leq n$. In this dissertation, we show that the n-generalized prism over any skirted graph is pancyclic for $n \geq 2$. Furthermore, we study vertex pancyclicity of the lexicographic product of graphs. We obtain that if G_{1} is a traceable graph of even order and G_{2} is a graph with at least one edge, then the lexicographic product of G_{1} and G_{2} (or $G_{1} \circ G_{2}$) is vertex pancyclic; if G_{1} and G_{2} are nontrivial traceable graphs, then $G_{1} \circ G_{2}$ is vertex pancyclic; and if G_{1} is Hamiltonian and G_{2} is a graph with at least one edge, then $G_{1} \circ G_{2}$ is vertex pancyclic.

Department : Mathematics and Computer Science Student's Signature
\qquad
Academic Year : \qquad Co-Advisor's Signature \qquad

ACKNOWLEDGEMENTS

First and foremost, I would like to express my special thanks of gratitude to my thesis advisors, Associate Professor Dr. Ratinan Boonklurb and Assistant Professor Dr. Sirirat Singhun, for their continuous guidance and support throughout the time of my thesis research. I also deeply thank my thesis committee members, Associate Professor Dr. Chariya Uiyyasathian, Assistant Professor Dr. Teeradej Kittipassorn, Assistant Professor Dr. Teeraphong Phongpattanacharoen and Assistant Professor Dr. Tanawat Wichianpaisarn, for their constructive comments and suggestions. Furthermore, I would like to thank all teachers who have taught me and given me advice throughout my life.

I am extremely grateful to my beloved family for their love, prayers, encouragement, caring and financial support throughout my life, it really meant a lot. Also, I would like to thank my friends for their support, guidance, and great friendship.

Finally, I am grateful to the Human Resource Development in Science Project (Science Achievement Scholarship of Thailand, SAST) for financial support throughout my graduate study.

จุฬาลงกรณ์มหาวิทยาลัย

CONTENTS

page
ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF FIGURES viii
CHAPTER
I INTRODUCTION 1
1.1 Preliminaries 1
1.2 Introduction 5
II THE n-GENERALIZED PRISM OVER A SKIRTED GRAPH WITH THREE SPECIFIC TYPES 7
2.1 Preliminary results and motivation 9
2.2 The n-generalized prism over a skirted graph of type I or III 16
2.3 The n-generalized prism over a skirted graph of type II 19
2.4 Conclusion and discussion 23
III THE n-GENERALIZED PRISM OVER A SKIRTED GRAPH 24
3.1 Preliminary results and motivation 24
3.2 Pancyclicity of the n-generalized prism over a triangle 27
3.3 Pancyclicity of the n-generalized prism over a skirted graph 30
3.4 Conclusion and discussion 43
IV THE LEXICOGRAPHIC PRODUCTS OF SOME GRAPHS 44
4.1 Preliminary results and motivation 44
4.2 Vertex pancyclicity of some lexicographic products 47
4.3 Conclusion and discussion 59
V CONCLUSIONS 61
REFERENCES 63
VITA 65

LIST OF FIGURES

Figure

page
2.1 (a) A side skirted T and (b) a skirted graph $G=T \cup P \ldots \ldots \ldots \ldots \ldots .8$
2.2 The $\left(u_{0}, u_{\alpha}\right)$-path, $\left(a, u_{\alpha}\right)$-path and $\left(a, u_{0}\right)$-path of $G\left(a, u_{0}, u_{\alpha}\right) \ldots \ldots \ldots 10$
2.3 (a) $\left(a, u_{\alpha}\right)$-path, (b) $\left(u_{0}, u_{\alpha}\right)$-path and (c) $\left(a, u_{0}\right)$-path $\ldots \ldots \ldots \ldots \ldots \ldots .11$
2.4 A skirted graph of order 7 containing no cycle of length $4 \ldots \ldots \ldots \ldots$.......... 12
2.5 Skirted graphs of order $2 m-1$ of type I, II and III 15
$3.1 C\left(v_{1}, u_{3}, u_{4}\right)$ and $C\left(v_{3}, u_{6}, u_{8}\right)$ are triangles in $G\left(a, u_{0}, u_{8}\right)$, while $C\left(a, u_{0}, u_{2}\right)$ is not a triangle
3.2 (a) a skirted graph $G\left(a, u_{0}, u_{8}\right)$, (b) and (c) skirted graphs obtained from $G\left(a, u_{0}, u_{8}\right)$ by contracting triangles $C\left(v_{1}, u_{3}, u_{4}\right)$ and $C\left(v_{3}, u_{6}, u_{8}\right)$, respectively
3.3 The dashed line represents a spanning cycle of length $m n$ containing edges $v_{1}^{(1)} v_{2}^{(1)}$ and $v_{1}^{(n)} v_{2}^{(n)}$
3.4 (a) The dashed line represents a cycle of length 18 in $P_{6} \square P_{3}$ and (b) The dashed line represents a cycle of length 20 in $P_{7} \square P_{3}$
3.5 The dashed line represents a cycle of length $2 m-1$ in $G \square P_{2}$ containing edge $v_{m-t-1}^{(2)} v_{m-t}^{(2)}$ where G is a skirted graph in Theorem 3.16 36
3.6 (a) The dashed line represents a cycle of length $3 m-2$ in $G \square P_{3}$ when $m-1$ is even and (b) The dashed line represents a cycle of length $3 m-3$ in $G \square P_{3}$ when $m-1$ is odd
3.7 (a) The dashed line represents $C_{o d d}$ of length $m(n-3)-1$ and (b) The dashed line represents $C_{\text {even }}$ of length $m(n-3)$
4.1 (a) Joining vertex $\left(x_{1}, y_{1}\right)$ to a path $P\left(\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right)\right)$ and (b) Joining the edge $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{1}\right)$ to a path $P\left(\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right)\right)$
4.2 (a) A path $P\left(\left(x_{2 t}, y_{2}\right),\left(x_{1}, y_{2}\right)\right)$ and (b) A path $P\left(\left(x_{1}, y_{1}\right),\left(x_{2 t}, y_{2}\right)\right)$ of length $2 t+1$
4.3 (a) A path $P^{*}\left(\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right)\right)$ of length $2 t k-1$ and (b) A path $P\left(\left(x_{2 t+1}, y_{1}\right)\right.$, $\left.\left(x_{2 t+1}, y_{2}\right)\right)$

CHAPTER I

INTRODUCTION

In this disseration, we study pancyclicity and vertex pancyclicity of the Cartesian product and the lexicographic product of graphs. We first introduce some basic definitions in graph theory which are used in this dissertation as follows.

1.1 Preliminaries

Every graph that we consider in this dissertation is a finite, undirected and simple graph $G=(V(G), E(G))$ with the vertex set $V(G)$ and the edge set $E(G)$. Most of the basic graph theory terminologies in this research follow from West's textbook [19].

We say that G is a graph of order m if $|V(G)|=m$. The set of all neighbors of a vertex v in G is denoted by $N(v)$ and $d(v)$ is the degree of the vertex v in G, i.e., the number of vertices which are adjacent to v in G. The maximum degree of G is denoted by $\Delta(G)$. The length of a path or a cycle is the number of its edges. A path of length $n-1$ is denoted by P_{n}. The followings are several terminologies that we use in this dissertation.

Definition 1.1. A graph is called trivial if it contains only one vertex and no edges. Otherwise, it is nontrivial. An empty graph is a graph having no edges.

Definition 1.2. If $S \subseteq V(G)$ and $M \subseteq E(G)$, then we write $G-S$ and $G-M$ for the subgraph obtained by deleting the set of vertices S and the set of edges M, respectively. In particular, if $S=\{v\}$ and $M=\{e\}$ are singleton sets, then we write $G-v$ and $G-e$ instead of $G-\{v\}$ and $G-\{e\}$, respectively.

Definition 1.3. If H and G are graphs such that $V(H) \subseteq V(G)$ and $E(H) \subseteq$ $E(G)$, then H is a subgraph of G. In particular, if $V(H)=V(G)$, then H is a
spanning subgraph of G.
Definition 1.4. A subgraph H of G is called an induced subgraph of G whenever u and v are vertices of H and $u v$ is an edge of G, then $u v$ is an edge of H. If S is a nonempty subset of $V(G)$, the subgraph of G induced by S is the induced subgraph with vertex set S and denoted by $G[S]$.

Definition 1.5. In a graph G and its subgraph $H=(V(H), E(H))$, the contraction of H into a single vertex is a replacement of H by a single vertex u^{*} and the edges incident to u^{*} are all edges formerly incident to some vertices in $V(H)$.

Note that the complete graph of order n is denoted by K_{n}, the complete bipartite graph with the partite sets X and Y where $|X|=p$ and $|Y|=q$ is denoted by $K_{p, q}$. The notion $P(s, t)$ is referred to an (s, t)-path of a graph G as a path in G from s to t. For paths $P(s, t)$ and $P(t, k)$ of which t is only one common vertex, the union of $P(s, t)$ and $P(t, k)$ is a path from s to k, denoted by $P(s, t) P(t, k)$.

Definition 1.6. A tree is a connected graph with no cycles.
Definition 1.7. A rooted tree is a tree with one vertex a chosen as its root. For each vertex u of a rooted tree with root a, let $P(u)$ be the unique (a, u)-path. Then,
(i) the parent of u is its neighbor on $P(u)$;
(ii) the children of u are its other neighbors in the rooted tree;
(iii) the descendents of u are the vertices v of the rooted tree such that $P(v)$ contains u;
(iv) the leaves are vertices of the rooted tree having no children;
(v) the internal vertices are vertices of the rooted tree having children.

Definition 1.8. (i) A graph is called a planar graph if it can be drawn in the plane without edges crossing. This drawing is called an embedding in the plane or a planar embedding.
(ii) A plane graph is a planar embedding of a planar graph.
(iii) A bounded face of a plane graph is a region bounded by edges. An unbounded face of a plane graph is the region with unbounded area.
(iv) An edge e that bounds a face f is said to be incident to f. If a vertex v is an endpoint of e, then v is also incident to f.

The following definitions are products of two graphs which we consider in this dissertation.

Definition 1.9. (i) Let G and H be two graphs. The Cartesian product of graphs G and H, denoted by $G \square H$, is defined as the graph with vertex set $V(G) \times V(H)$ and an edge $\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right\}$ is present in the Cartesian product whenever $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$ or symmetrically $v_{1}=v_{2}$ and $u_{1} u_{2} \in E(G)$.
(ii) For $n \geq 2$ and $P_{n}=v_{1} v_{2} v_{3} \cdots v_{n}$, we call the graph $G \square P_{n}$, the n-generalized prism over a graph G. The 2-generalized prism over a graph G is called the prism over a graph G. For convenience, the n-generalized prism over a graph G is referred to the family of the n-generalized prisms over a graph G for all $n \geq 2$.

Definition 1.10. Let G and H be two graphs. The lexicographic product or graph composition of G and H, denoted by $G \circ H$, is defined as a graph with vertex set $V(G) \times V(H)$ and an edge $\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right\}$ is present in the lexicographic product whenever $u_{1} u_{2} \in E(G)$ or ($u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$). The double graph of a graph G is $G \circ P_{2}$.

Since this dissertation consider hamiltonicity, pancyclicity as well as vertex pancyclicity of a graph, we collect all definitions involved as follows.

Definition 1.11. (i) A path in G is a Hamiltonian path or a spanning path if it contains all vertices of G.
(ii) A graph G is traceable if G contains a Hamiltonian path.
(ii) A cycle of G is a Hamiltonian cycle if it contains all vertices of G.
(iv) A graph G is said to be Hamiltonian if it contains a Hamiltonian cycle. Otherwise, G is non-Hamiltonian.

Definition 1.12. (i) A graph G of order $n \geq 3$ is said to be pancyclic if it contains a cycle of each length l for $3 \leq l \leq n$.
(ii) A graph G of order n is almost pancyclic [4] if it contains a cycle of each length l for $3 \leq l \leq n$ except possibly for a single even length. We use the term m-almost pancyclic for an almost pancyclic graph without a cycle of even length m.
(iii) A vertex of a graph G of order n is k-vertex pancyclic if it is contained in a cycle of each length l for $k \leq l \leq n$, and a graph G is vertex k-pancyclic if all vertices of G are k-vertex pancyclic. Note that a vertex 3-pancyclic graph is simply called a vertex pancyclic graph.
(iv) A graph G of order n is vertex even pancyclic if each vertex of G is contained in a cycle of each even length l for $3<l \leq n$.

1.2 Introduction

The topological structure of an interconnection network or network is usually well-known that it can be represented by a graph. The processors can be regarded by vertices or nodes and the communication links between processors can be expressed by edges connecting two vertices together. The study of structural properties of a network is beneficial for parallel or distributed systems. The problem of finding cycles of various lengths in networks or graphs receives much attention from researchers because this is a key measurement for evaluating the suitability of the network's structure for its applications and more information, see [20].

Pancyclicity in graph theory refers to the problem of finding cycles of all lengths from 3 to its order. It was first investigated in the context of tournaments by Harary and Moser [10], Moon [13] and Alspach [1]. Bondy [3] was the first one who introduced and extended the concept of pancyclicity from directed graphs to undirected graphs. In 1971, Bondy [2] posed a metaconjecture which states that almost any nontrivial condition on a graph which implies that the graph is Hamiltonian also implies that the graph is pancyclic (there may be a simple family of exceptional graphs). There are a number of works that correspond to this metaconjecture. For instances, in 1960, Ore 14 introduced the degree sum condition which states that "for each pair of non-adjacent vertices u, v in $G, d(u)+$ $d(v) \geq n(G)$ " and showed that if G is a graph satisfying the degree sum condition, then G is Hamiltonian. Bondy [3] showed that if G is graph satisfying the degree sum condition, then G is pancyclic or $G=K_{n / 2, n / 2}$. Moreover, in terms of degree sequence of a graph, Chvátal [7] showed that if G is a graph of order $n \geq 3$ with vertex degree sequence $d_{1} \leq d_{2} \leq d_{3} \leq \cdots \leq d_{n}$ and $d_{k} \leq k<n / 2$ implies $d_{n-k} \geq n-k$, then G is Hamiltonian. Schmeichel and Hakimi [18] showed that if G satisfies such condition introduced by Chvátal [7], then G is either pancyclic or bipartite. Recently, the concept of pancyclicity was also extended to hypergraphs, for example, see [9] and [12].

Meanwhile, for the prism over a graph G, there are some Hamiltonian and pancyclicity results. For example, Paulraja [15 proved in 1993 that if G is a 3connected 3-regular graph, then the prism $G \square P_{2}$ is Hamiltonian. In 2001, Goddard [8] showed that if G is a 3-connected 3-regular graph that contains a triangle, then the prism $G \square P_{2}$ is pancyclic. In 2009, Čada et al. [5] showed that if G is a connected almost claw-free graph and $n \geq 4$ is an even integer, then $G \square P_{n}$ is Hamiltonian. They also showed that if G is a 1-pendent cactus with $\Delta(G) \leq$ $\frac{1}{2}(n+2)$ and $n \geq 4$ is an even integer, then $G \square P_{n}$ is vertex even pancyclic, i.e., each vertex of $G \square P_{n}$ is contained in a cycle of each even length.

In this study, we first show that the n-generalized prism over any skirted graph is Hamiltonian. To satisfy the metaconjecture, we investigate the pancyclicity of the n-generalized prism over any skirted graph.

In Chapter II, we first show that the n-generalized prism over any skirted graph is Hamiltonian and show that the n-generalized prism over a skirted graph with three specific types is Hamiltonian by applying the lemma given by Bondy and Lovász [4]. However, this technique cannot be applied to prove the pancyclicity of the n-generalized prism over any skirted graph.

In Chapter III, we prove that the n-generalized prism over any skirted graph is pancyclic. In the final part of this chapter, we discuss the vertex pancyclicity of the n-generalized prism over any skirted graph and we can see that the n-generalized prism over any skirted graph is not always vertex pancyclic. This motivates us to investigate the other product of graphs, that is, the lexicographic product.

In Chapter IV, we study the vertex pancyclicity over the lexicographic product of some graphs. We investigate some sufficient conditions for vertex pancyclicity over the lexicographic product of complete graphs K_{n}, paths P_{n} or cycles C_{n} with a general graph.

In Chapter V, the conclusion for our work is given and the disscussion for our future research as well as some open problems are provided.

CHAPTER II

THE n-GENERALIZED PRISM OVER

A SKIRTED GRAPH WITH THREE SPECIFIC TYPES

In this chapter, we study pancyclicity of the n-generalized prism over a skirted graph with three specific types introduced by Bondy and Lovász [4]. We provide some basis definitions in graph theory which are used in Chapter II and Chapter III as follows.

Definition 2.1. Let G be a graph and a path $P_{n}=v_{1} v_{2} v_{3} \cdots v_{n}$. If $u \in V(G)$, then, for convenience, we refer to the vertex u in its i-th copy in $G \square P_{n}$ as $u^{(i)}$ instead of $\left(u, v_{i}\right)$.

Definition 2.2. (i) A Halin graph [4] is a plane graph $\mathscr{H}=T \cup C$, where T is a planar embedding tree with no vertices of degree two and at least one vertex of degree at least three and C is the cycle connecting the leaves of T in the cyclic order determined by the embedding of T.
(ii) Let x be a vertex of C and a be the neighbor of x in T. Then, the graph $G=\mathscr{H}-x$ is called a reduced Halin graph with root a. Clearly, $G=T^{\prime} \cup P$ where $T^{\prime}=T-x$ and $P=C-x$. Note that T^{\prime} has no vertex of degree two except possibly the vertex a.

For technical reasons, Bondy and Lovász [4] regarded that a single vertex is also a reduced Halin graph. Actually, in literatures, a reduced Halin graph which is not a single vertex can be represented by a diagram that is similar to a skirted graph. Hence, in this dissertation, we use the term skirted graph instead of a reduced Halin graph which is not a single vertex.

In this research, we are interested in the pancyclicity of the Cartesian product of a skirted graph G and a path P_{n} for $n \geq 2$ (the n-generalized prism over a
skirted graph G). We can see that the Cartesian product is pancyclic only if the order of G is at least 2 . As we mention before, here, we recall that a skirted graph is isomorphic to a reduced Halin graph defined by Bondy and Lovász [4]. However, we exclude the case of a single vertex.

Before giving a definition of a skirted graph, let us introduce a definition of a side skirt as follows.

Definition 2.3. A side skirt is a planar embedding rooted tree $T, T \neq P_{2}$, where the root of T is a vertex of degree at least two and all other vertices, except its leaves, are of degree at least three. In addition, the structure of T is embedded in such a way that the root is at the top.

Definition 2.4. A skirted graph is a plane graph $G=T \cup P$, where T is a side skirt and P is the path connecting the leaves of T in the order determined by the embedding of T starting from the vertex on the far left to the vertex on the far right (see Figure 2.1).

(a)

(b)

Figure 2.1: (a) A side skirted T and (b) a skirted graph $G=T \cup P$

Let $G=T \cup P$ be a skirted graph, a be the root of T and u_{0}, u_{α} be the endpoints of P. Then, the graph G is called a skirted graph with root a and is denoted by $G\left(a, u_{0}, u_{\alpha}\right)$. We notice that if u is an internal vertex of a side skirt T, then u and its descendents induce a skirted subgraph of G with root u.

In the following section, we provide our preliminary results on hamiltonicity and pancyclicity as well as the motivation of the main results of this chapter.

2.1 Preliminary results and motivation

In 1971, Bondy [2] posed a metaconjecture: almost any nontrivial condition on a graph which implies that the graph is Hamiltonian also implies that the graph is pancyclic (there may be a simple family of exceptional graphs). There are a number of works that correspond to this metaconjecture, see [3], [14] and [16] for more examples.

Meanwhile, for the prism over a graph G, there are some Hamiltonian and pancyclicity results. For example, Paulraja [15] proved in 1993 that if G is a 3connected 3-regular graph, then the prism $G \square P_{2}$ is Hamiltonian. In 2001, Goddard [8] showed that if G is a 3 -connected 3-regular graph that contains a triangle, then the prism $G \square P_{2}$ is pancyclic.

This motivates us to be interested in hamiltonicity and pancyclicity of the n-generalized prism over a skirted graph.

Since our skirted graphs are isomorphic to reduced Halin graphs defined by Bondy and Lovász [4], we obtain the following theorem and lemma from their study.

Theorem 2.5 (Bondy and Lovász [4]). Any skirted graph is Hamiltonian.

Definition 2.6. For any skirted graph with root $a, G\left(a, u_{0}, u_{\alpha}\right)$, we denote the path P of length α by $u_{0} u_{1} u_{2} \cdots u_{\alpha}$, and the (a, u_{α})-path of length β and (a, u_{0})-path of length γ in T by $v_{0} v_{1} v_{2} \cdots v_{\beta}$ and $w_{0} w_{1} w_{2} \cdots w_{\gamma}$, respectively. Thus, $v_{0}=w_{0}=a$, $u_{0}=w_{\gamma}$, and $u_{\alpha}=v_{\beta}$ (see Figure 2.2).

Lemma 2.7 (Bondy and Lovász [4]). Let $G=G\left(a, u_{0}, u_{\alpha}\right)$ be a reduced Halin graph or a skirted graph of order m. Then, G contains:
(i) an (a, $\left.u_{\alpha}\right)$-path of each length l for $\alpha+\gamma \leq l \leq m-1$;
(ii) a $\left(u_{0}, u_{\alpha}\right)$-path of each length l for $\alpha \leq l \leq m-1$.

Remark 2.8. We obtain that

Figure 2.2: The $\left(u_{0}, u_{\alpha}\right)$-path, $\left(a, u_{\alpha}\right)$-path and $\left(a, u_{0}\right)$-path of $G\left(a, u_{0}, u_{\alpha}\right)$
(i) Lemma 2.7(i) gives an (a, u_{0})-path of each length l for $\alpha+\beta \leq l \leq m-1$ by the symmetry of $G\left(a, u_{0}, u_{\alpha}\right)$.
(ii) Since a child of the root a and all of its descendents induce a skirted subgraph of G, we can apply Lemma 2.7(ii) to each of the induced skirted subgraphs of G and obtain that G contains a $\left(u_{0}, u_{\alpha}\right)$-path of each length l for $\alpha \leq l \leq$ $m-2$ (without the root a).

The following theorem is an immediate observation about the existence of a Hamiltonian cycle over the n-generalized prism over any skirted graph.

Theorem 2.9. The n-generalized prism over any skirted graph is Hamiltonian.
Proof. Let $G=G\left(a, u_{0}, u_{\alpha}\right)$ be a skirted graph of order m and P_{n} be a path of length $n-1$. We show that $G \square P_{n}$ is Hamiltonian by finding a cycle of length $m n$ in $G \square P_{n}$. To show that $G \square P_{n}$ contains a cycle of length $m n$, we give the following paths and then link them together with edges joining each copy of G.

- The first and the last copies of G contain paths $P\left(a^{(1)}, u_{\alpha}^{(1)}\right)$ and $P\left(a^{(n)}, u_{\alpha}^{(n)}\right)$, respectively, of length $m-1$ by Lemma 2.7(i). Also, a path $P\left(a^{(n)}, u_{0}^{(n)}\right)$ of length $m-1$ of the last copy of G exists by the symmetry of G in Remark 2.8 (i) (see Figures 2.3 (a) and 2.3 (c)).
- The remaining $n-2$ copies of G contain a path $P\left(u_{0}^{(i)}, u_{\alpha}^{(i)}\right)$ of length $m-2$ (without the root $a^{(i)}$) for $2 \leq i \leq n-1$, which exists by Remark 2.8(ii).
- The path $P\left(a^{(n)}, a^{(1)}\right)=a^{(n)} a^{(n-1)} a^{(n-2)} \cdots a^{(1)}$ is a path in $G \square P_{n}$ from the last copy to the first copy of G.

(a)

(b)

(c)

Figure 2.3: (a) (a, u_{α})-path, (b) $\left(u_{0}, u_{\alpha}\right)$-path and (c) $\left(a, u_{0}\right)$-path

Now, we link each path by edge $x_{i}=u_{0}^{(i)} u_{0}^{(i+1)}$ when i is even and edge $y_{i}=$ $u_{\alpha}^{(i)} u_{\alpha}^{(i+1)}$ when i is odd. The cycle of length $m n$ is

$$
P\left(a^{(1)}, u_{\alpha}^{(1)}\right) y_{1} P\left(u_{\alpha}^{(2)}, u_{0}^{(2)}\right) x_{2} P\left(u_{0}^{(3)}, u_{\alpha}^{(3)}\right) y_{3} \cdots x_{n-1} P\left(u_{0}^{(n)}, a^{(n)}\right) P\left(a^{(n)}, a^{(1)}\right)
$$

when n is odd or

$$
P\left(a^{(1)}, u_{\alpha}^{(1)}\right) y_{1} P\left(u_{\alpha}^{(2)}, u_{0}^{(2)}\right) x_{2} P\left(u_{0}^{(3)}, u_{\alpha}^{(3)}\right) y_{3} \cdots y_{n-1} P\left(u_{\alpha}^{(n)}, a^{(n)}\right) P\left(a^{(n)}, a^{(1)}\right)
$$

when n is even.
This completes the proof.
By linking paths $P\left(a^{(1)}, u_{\alpha}^{(1)}\right)$ and $P\left(a^{(2)}, u_{\alpha}^{(2)}\right)$ of length $m-1$ of the first and the second copies of G and edges $u_{\alpha}^{(1)} u_{\alpha}^{(2)}$ and $a^{(1)} a^{(2)}, G \square P_{2}$ also contains a Hamil-
tonian cycle.
We consider a skirted graph of order 7 containing no cycle of length 4 as shown in Figure 2.4.

Figure 2.4: A skirted graph of order 7 containing no cycle of length 4

To study the n-generalized prism over a skirted graph, we start by investigating the n-generalized prism over this skirted graph as follows.

Theorem 2.10. Let $G=G\left(a, u_{0}, u_{3}\right)$ be the skirted graph shown in Figure 2.4. Then, $G \square P_{n}$ is pancyclic for $n \geq 2$.

Proof. Let $G=G\left(a, u_{0}, u_{3}\right)$ be a skirted graph of order 7 such that G contains no cycle of length 4 (see Figure 2.4). We show that the n-generalized prism over G is pancyclic by the mathematical induction on n. It is easy to see that $G \square P_{2}$ contains a cycle of each length l for $3 \leq l \leq 14$. Thus, $G \square P_{2}$ is pancyclic.

For $n=3$, since $G \square P_{2}$ is a subgraph of $G \square P_{3}$ and $G \square P_{2}$ is pancyclic, $G \square P_{3}$ contains a cycle of each length l for $3 \leq l \leq 14$. It suffices to show that $G \square P_{3}$ contains a cycle of each length l for $15 \leq l \leq 21$. Two steps are shown. The first one is finding a cycle of each length l for $17 \leq l \leq 21$ and the second one is finding cycles of lengths 15 and 16 .

Step 1: To show that $G \square P_{3}$ contains cycles of such lengths, we give the following paths and then link them together with edges joining each copy of G.

- The first copy of G contains a path $P\left(a^{(1)}, u_{3}^{(1)}\right)$ of each length l for $5 \leq l \leq 6$ by Lemma 2.7(i). Also, for the last copy of G, a path $P\left(a^{(3)}, u_{0}^{(3)}\right)$ of each length l for $5 \leq l \leq 6$ exists by the symmetry of G in Remark 2.8 (i).
- The middle copy of G contains a path $P\left(u_{0}^{(2)}, u_{3}^{(2)}\right)$ of each length l for $3 \leq$ $l \leq 5$ (without the root $a^{(2)}$), which exists by Remark 2.8(ii).
- The path $P\left(a^{(3)}, a^{(1)}\right)=a^{(3)} a^{(2)} a^{(1)}$ of length 2 is a path in $G \square P_{3}$ from the last copy to the first copy of G.

Now, we link each path (maybe of different sizes) by edges $e_{1}=u_{3}^{(1)} u_{3}^{(2)}$ and $e_{2}=u_{0}^{(2)} u_{0}^{(3)}$. The cycle of length l for $17 \leq l \leq 21$ is

$$
P\left(a^{(1)}, u_{3}^{(1)}\right) e_{1} P\left(u_{3}^{(2)}, u_{0}^{(2)}\right) e_{2} P\left(u_{0}^{(3)}, a^{(3)}\right) P\left(a^{(3)}, a^{(1)}\right)
$$

Step 2: To show that $G \square P_{3}$ contains cycles of length 15 and 16 , we give the following paths and then link them together with edges joining each copy of G.

- The first copy of G contains $P\left(a^{(1)}, u_{3}^{(1)}\right)=a^{(1)} a_{1}^{(1)} u_{1}^{(1)} u_{2}^{(1)} u_{3}^{(1)}$ of length 4.
- The middle copy of G contains $P\left(u_{3}^{(2)}, u_{0}^{(2)}\right)=u_{3}^{(2)} u_{2}^{(2)} u_{1}^{(2)} u_{0}^{(2)}$ of length 3.
- The last copy of G contains $P^{*}\left(u_{0}^{(3)}, a^{(3)}\right)=u_{0}^{(3)} u_{1}^{(3)} u_{2}^{(3)} u_{3}^{(3)} a_{2}^{(3)} a^{(3)}$ of length 5 and $P\left(u_{0}^{(3)}, a^{(3)}\right)=u_{0}^{(3)} u_{1}^{(3)} u_{2}^{(3)} a_{2}^{(3)} a^{(3)}$ of length 4.
- The path $P\left(a^{(3)}, a^{(1)}\right)=a^{(3)} a^{(2)} a^{(1)}$ of length 2 is a path in $G \square P_{3}$ from the last copy to the first copy of G.

Now, we link each path by edges $e_{1}=u_{3}^{(1)} u_{3}^{(2)}$ and $e_{2}=u_{0}^{(2)} u_{0}^{(3)}$. The cycle of length 16 is $P\left(a^{(1)}, u_{3}^{(1)}\right) e_{1} P\left(u_{3}^{(2)}, u_{0}^{(2)}\right) e_{2} P^{*}\left(u_{0}^{(3)}, a^{(3)}\right) P\left(a^{(3)}, a^{(1)}\right)$. The cycle of length 15 is $P\left(a^{(1)}, u_{3}^{(1)}\right) e_{1} P\left(u_{3}^{(2)}, u_{0}^{(2)}\right) e_{2} P\left(u_{0}^{(3)}, a^{(3)}\right) P\left(a^{(3)}, a^{(1)}\right)$.

Therefore, $G \square P_{3}$ is pancyclic.
For $n \geq 4$, suppose that $G \square P_{n-1}$ is pancyclic, i.e., $G \square P_{n-1}$ contains a cycle of each length l for $3 \leq l \leq 7(n-1)$. We shall find a cycle of each length l for $7(n-1)+1 \leq l \leq 7 n$ in $G \square P_{n}$.

To show that $G \square P_{n}$ contains cycles of such lengths, we give the following paths and then link them together with edges joining each copy of G.

- The first copy and the last copy of G contain $P\left(a^{(1)}, u_{3}^{(1)}\right)$ and $P\left(a^{(n)}, u_{3}^{(n)}\right)$, respectively, of each length l for $5 \leq l \leq 6$ by Lemma 2.7(i). Also, for the last copy of G a path $P\left(a^{(n)}, u_{0}^{(n)}\right)$ of each length l for $5 \leq l \leq 6$ exists by the symmetry of G in Remark 2.8(i).
- The remaining $n-2$ copies of G contain a path $P\left(u_{0}^{(i)}, u_{3}^{(i)}\right)$ of each length l for $3 \leq l \leq 5$ (without the root $a^{(i)}$) for $2 \leq i \leq n-1$, which exists by Remark 2.8(ii).
- The path $P\left(a^{(n)}, a^{(1)}\right)=a^{(n)} a^{(n-1)} a^{(n-2)} \cdots a^{(1)}$ of length $n-1$ is a path in $G \square P_{n}$ from the last copy to the first copy of G.

Now, we link each path (maybe of different sizes) by edge $x_{i}=u_{0}^{(i)} u_{0}^{(i+1)}$ when i is even and edge $y_{i}=u_{3}^{(i)} u_{3}^{(i+1)}$ when i is odd. The cycle of length l for $5 n+2 \leq$ $l \leq 7 n$ is

$$
P\left(a^{(1)}, u_{3}^{(1)}\right) y_{1} P\left(u_{3}^{(2)}, u_{0}^{(2)}\right) x_{2} P\left(u_{0}^{(3)}, u_{3}^{(3)}\right) y_{3} \cdots x_{n-1} P\left(u_{0}^{(n)}, a^{(n)}\right) P\left(a^{(n)}, a^{(1)}\right)
$$

when n is odd or

$$
P\left(a^{(1)}, u_{3}^{(1)}\right) y_{1} P\left(u_{3}^{(2)}, u_{0}^{(2)}\right) x_{2} P\left(u_{0}^{(3)}, u_{3}^{(3)}\right) y_{3} \cdots y_{n-1} P\left(u_{3}^{(n)}, a^{(n)}\right) P\left(a^{(n)}, a^{(1)}\right)
$$

when n is even.
Since $5 n+2 \leq 7(n-1)+1$ for $n \geq 4, G \square P_{n}$ contains a cycle of each length l for $7(n-1)+1 \leq l \leq 7 n$.

Therefore, $G \square P_{n}$ is pancyclic.

We have that the n-generalized prism over any skirted graph is Hamiltonian. Then, to satisfy the metaconjecture, we are interested to see that Is the n-generalized prism over any skirted graph pancyclic? To answer this question, we start by investigating the n-generalized prism over a skirted graph with three specific types. These three types were introduced by Bondy and Lovász [4] in 1985. They studied the pancyclicity for a Halin graph. To show that a Halin graph is almost pancyclic,
they restricted the problem into a reduced Halin graph and then showed that a reduced Halin graph is almost pancyclic, i.e., it contains cycles of each length l for $3 \leq l \leq n$, except, possibly, for one even value of l. Moreover, if it contains no cycle of even length m, where $3<m \leq n$, then it contains a subgraph which is also a skirted graph of order $2 m-1$ of type I, II or III (see Figure 2.5).

Figure 2.5: Skirted graphs of order $2 m-1$ of type I, II and III

From Figure 2.5, we note that types I and III contain $\alpha=m-1, \beta=2$ and $\gamma=2$, while $\alpha=m-1, \beta=m / 2$ and $\gamma=m / 2$ for type II.

Since α, β and γ of types I and III are the same, while the other type has different values of β and γ, we separate the main study of this chapter into two sections. When $m=4$, we can see that the skirted graphs of these three types are the skirted graph shown in Figure 2.4. Furthermore, we already showed that the n-generalized prism over the skirted graph in Figure 2.4 is pancyclic. Thus, we next consider the case that $m \geq 6$.

In Section 2.2, we prove the pancyclicity results for the n-generalized prism over a skirted graph of type I or III by using Lemma 2.7 and the mathematical induction on n. In Section 2.3, by using a similar idea, we can also prove the pancyclicity of the n-generalized prism over a skirted graph of type II. Finally, conclusion and discussion about this topic are given in Section 2.4.

2.2 The n-generalized prism over a skirted graph of type I or III

We already know that a skirted graph $G=G\left(a, u_{0}, u_{\alpha}\right)$ of type I or III of order $2 m-1$ is m-almost pancyclic, i.e., G contains a cycle of each length l for $3 \leq l \leq 2 m-1$ except for a cycle of even length m. Since G is a subgraph of $G \square P_{2}, G \square P_{2}$ contains such cycles of length l for $3 \leq l \leq 2 m-1$ except possibly $l=m$. To show that $G \square P_{2}$ is pancyclic, we first show that $G \square P_{2}$ contains a cycle of length m.

Lemma 2.11. Let $G=G\left(a, u_{0}, u_{\alpha}\right)$ be a skirted graph of order $2 m-1$, where m is an even integer such that $m \geq 6$ and G is of type I or III. Then, $G \square P_{2}$ contains a cycle of each length l where l is an even integer ranging from 4 to $2 m+6$.

Proof. Since G is of type I or III, it contains $m+3$ consecutive vertices which are incident to the unbounded face, called $w_{0}, w_{1}, w_{2}, \ldots, w_{m+2}$, respectively. We define a sequence of $m+2$ cycles in $G \square P_{2}$ as follows.

$$
\begin{gathered}
w_{1}^{(1)} w_{0}^{(1)} w_{0}^{(2)} w_{1}^{(2)} w_{1}^{(1)} w_{1}^{(1)} w_{0}^{(1)} w_{0}^{(2)} w_{1}^{(2)} w_{2}^{(2)} w_{2}^{(1)} \\
w_{3}^{(1)} w_{2}^{(1)} w_{1}^{(1)} w_{0}^{(1)} w_{0}^{(2)} w_{1}^{(2)} w_{2}^{(2)} w_{3}^{(2)} w_{3}^{(1)}, \\
\cdots, \\
w_{m+2}^{(1)} w_{m+1}^{(1)} w_{m}^{(1)} w_{m-1}^{(1)} \cdots w_{1}^{(1)} w_{0}^{(1)} w_{0}^{(2)} w_{1}^{(2)} \cdots w_{m}^{(2)} w_{m+1}^{(2)} w_{m+2}^{(2)} w_{m+2}^{(1)}
\end{gathered}
$$

The length of each cycle in the sequence increases as an arithmetic sequence with the common difference 2. Then, the last cycle

$$
w_{m+2}^{(1)} w_{m+1}^{(1)} w_{m}^{(1)} w_{m-1}^{(1)} \cdots w_{1}^{(1)} w_{0}^{(1)} w_{0}^{(2)} w_{1}^{(2)} \cdots w_{m}^{(2)} w_{m+1}^{(2)} w_{m+2}^{(2)} w_{m+2}^{(1)}
$$

of this sequence has length $2 m+6$. Since the first cycle $w_{1}^{(1)} w_{0}^{(1)} w_{0}^{(2)} w_{1}^{(2)} w_{1}^{(1)}$ is
a cycle of length 4 , the lengths of the cycles are even integers ranging from 4 to $2 m+6$.

By Lemma 2.11, we can see that if $G=G\left(a, u_{0}, u_{\alpha}\right)$ is a skirted graph of order $2 m-1$ of type I or III, where $m \geq 6$ is an even integer, then $G \square P_{2}$ contains a cycle of length m. Next, we need the following lemma to show that the n-generalized prism over a skirted graph of order $2 m-1$ of type I or III is pancyclic.

Lemma 2.12. Let $G=G\left(a, u_{0}, u_{\alpha}\right)$ be a skirted graph of order $2 m-1$, where m is an even integer such that $m \geq 6$, and G is of type I or III. Then, $G \square P_{2}$ is pancyclic.

Proof. By the result of Bondy and Lovász in [4] that $G=G\left(a, u_{0}, u_{\alpha}\right)$ is m almost pancyclic and Lemma 2.11, $G \square P_{2}$ contains a cycle of each length l for $3 \leq l \leq 2 m-1$. It suffices to show that the prism over G contains a cycle of each length l for $2 m \leq l \leq 4 m-2$.

For $1 \leq i \leq 2$, the i-th copy of G contains a path $P\left(u_{0}^{(i)}, u_{\alpha}^{(i)}\right)$ of length l for $m-1 \leq l \leq 2 m-2$, by Lemma 2.7(ii). We link each path $P\left(u_{0}^{(i)}, u_{\alpha}^{(i)}\right)$ (maybe of different sizes) for $1 \leq i \leq 2$ together with edges $u_{0}^{(1)} u_{0}^{(2)}$ and $u_{\alpha}^{(1)} u_{\alpha}^{(2)}$. The cycle of each length l for $2 m \leq l \leq 4 m-2$ is $P\left(u_{0}^{(1)}, u_{\alpha}^{(1)}\right) u_{\alpha}^{(1)} u_{\alpha}^{(2)} P\left(u_{\alpha}^{(2)}, u_{0}^{(2)}\right) u_{0}^{(2)} u_{0}^{(1)}$.

Therefore, $G \square P_{2}$ is pancyclic.
By using Lemma 2.12 as a basis step, we can use the mathematical induction to establish the following result.

Theorem 2.13. Let $G=G\left(a, u_{0}, u_{\alpha}\right)$ be a skirted graph of order $2 m-1$, where m is an even integer such that $m \geq 6$, and of type I or III. Then, $G \square P_{n}$ is pancyclic for $n \geq 2$.

Proof. We prove by the mathematical induction on the order of P_{n}. The basis step is already done by Lemma 2.12. For $n \geq 3$, suppose that $G \square P_{n-1}$ is pancyclic, i.e., $G \square P_{n-1}$ contains a cycle of each length l for $3 \leq l \leq(n-1)(2 m-1)$. We shall find a cycle of each length l for $(n-1)(2 m-1)+1 \leq l \leq n(2 m-1)$.

To show that $G \square P_{n}$ contains cycles of such length, we give the following paths and then link them together with edges joining each copy of G.

- The first copy and the last copy of G contain $P\left(a^{(1)}, u_{\alpha}^{(1)}\right)$ and $P\left(a^{(n)}, u_{\alpha}^{(n)}\right)$, respectively, of each length l for $m+1 \leq l \leq 2 m-2$ by Lemma 2.7(i). Also, for the last copy of G a path $P\left(a^{(n)}, u_{0}^{(n)}\right)$ of each length l for $m+1 \leq l \leq 2 m-2$ exists by the symmetry of G in Remark 2.8(i).
- The remaining $n-2$ copies of G contain a path $P\left(u_{0}^{(i)}, u_{\alpha}^{(i)}\right)$ of each length l for $m-1 \leq l \leq 2 m-3$ (without the root $a^{(i)}$) for $2 \leq i \leq n-1$, which exists by Remark 2.8(ii).
- The path $P\left(a^{(n)}, a^{(1)}\right)=a^{(n)} a^{(n-1)} a^{(n-2)} \cdots a^{(1)}$ of length $n-1$ is a path in $G \square P_{n}$ from the last copy to the first copy of G.

Now, we link each path (maybe of different sizes) by edge $x_{i}=u_{0}^{(i)} u_{0}^{(i+1)}$ when i is even and edge $y_{i}=u_{\alpha}^{(i)} u_{\alpha}^{(i+1)}$ when i is odd. The cycle of length l for $m n+n+2 \leq$ $l \leq n(2 m-1)$ is

$$
P\left(a^{(1)}, u_{\alpha}^{(1)}\right) y_{1} P\left(u_{\alpha}^{(2)}, u_{0}^{(2)}\right) x_{2} P\left(u_{0}^{(3)}, u_{\alpha}^{(3)}\right) y_{3} \cdots x_{n-1} P\left(u_{0}^{(n)}, a^{(n)}\right) P\left(a^{(n)}, a^{(1)}\right)
$$

when n is odd or

$$
P\left(a^{(1)}, u_{\alpha}^{(1)}\right) y_{1} P\left(u_{\alpha}^{(2)}, u_{0}^{(2)}\right) x_{2} P\left(u_{0}^{(3)}, u_{\alpha}^{(3)}\right) y_{3} \cdots y_{n-1} P\left(u_{\alpha}^{(n)}, a^{(n)}\right) P\left(a^{(n)}, a^{(1)}\right)
$$

when n is even.
We can conclude that $G \square P_{n}$ is pancyclic if $m n+n+2 \leq(n-1)(2 m-1)+1$, that is, $n \geq 2 m /(m-2)$. Since $3 \geq 2 m /(m-2)$ for all $m \geq 6, n \geq 2 m /(m-2)$ for all $n \geq 3$.

Therefore, $G \square P_{n}$ is pancyclic.

2.3 The n-generalized prism over a skirted graph of type II

We already know that a skirted graph $G=G\left(a, u_{0}, u_{\alpha}\right)$ of type II of order $2 m-1$ is m-almost pancyclic, i.e., G contains a cycle of each length l for $3 \leq l \leq$ $2 m-1$ except for a cycle of even length m. Since G is subgraph of $G \square P_{2}, G \square P_{2}$ contains such cycles of length l for $3 \leq l \leq 2 m-1$ except possibly $l=m$. To show that $G \square P_{2}$ is pancyclic, we first show that $G \square P_{2}$ contains a cycle of length m.

Lemma 2.14. Let $G=G\left(a, u_{0}, u_{\alpha}\right)$ be a skirted graph of order $2 m-1$, where m is an even integer such that $m \geq 6$ and G is of type II. Then, $G \square P_{2}$ contains a cycle of each length l where l is an even integer ranging from 4 to $4 m-2$.

Proof. Since G is of type II, it contains $2 m-1$ consecutive vertices which are incident to the unbounded face, called $w_{0}, w_{1}, w_{2}, \ldots, w_{2 m-2}$, respectively. We define a sequence of $2 m-2$ cycles in $G \square P_{2}$ as follows.

$$
\begin{gathered}
w_{1}^{(1)} w_{0}^{(1)} w_{0}^{(2)} w_{1}^{(2)} w_{1}^{(1)}, \\
w_{2}^{(1)} w_{1}^{(1)} w_{0}^{(1)} w_{0}^{(2)} w_{1}^{(2)} w_{2}^{(2)} w_{2}^{(1)}, \\
w_{3}^{(1)} w_{2}^{(1)} w_{1}^{(1)} w_{0}^{(1)} w_{0}^{(2)} w_{1}^{(2)} w_{2}^{(2)} w_{3}^{(2)} w_{3}^{(1)},
\end{gathered}
$$

$$
w_{2 m-2}^{(1)} w_{2 m-3}^{(1)} w_{2 m-4}^{(1)} w_{2 m-5}^{(1)} \cdots w_{1}^{(1)} w_{0}^{(1)} w_{0}^{(2)} w_{1}^{(2)} \cdots w_{2 m-4}^{(2)} w_{2 m-3}^{(2)} w_{2 m-2}^{(2)} w_{2 m-2}^{(1)} .
$$

The length of each cycle in the sequence increases as an arithmetic sequence with the common difference 2 . Then, the last cycle

$$
w_{2 m-2}^{(1)} w_{2 m-3}^{(1)} w_{2 m-4}^{(1)} w_{2 m-5}^{(1)} \cdots w_{1}^{(1)} w_{0}^{(1)} w_{0}^{(2)} w_{1}^{(2)} \cdots w_{2 m-4}^{(2)} w_{2 m-3}^{(2)} w_{2 m-2}^{(2)} w_{2 m-2}^{(1)}
$$

of this sequence has length $4 m-2$. Since the first cycle $w_{1}^{(1)} w_{0}^{(1)} w_{0}^{(2)} w_{1}^{(2)} w_{1}^{(1)}$ is a cycle of length 4 , the lengths of the cycles are even integers ranging from 4 to
$4 m-2$.
By Lemma 2.14, we can see that if $G=G\left(a, u_{0}, u_{\alpha}\right)$ is a skirted graph of order $2 m-1$ of type II, where $m \geq 6$ is an even integer, then $G \square P_{2}$ contains a cycle of length m. Next, we need the following lemmas to show that the n-generalized prism over a skirted graph of order $2 m-1$ of type II is pancyclic.

Lemma 2.15. Let $G=G\left(a, u_{0}, u_{\alpha}\right)$ be a skirted graph of order $2 m-1$, where m is an even integer such that $m \geq 6$, and G is of type II. Then, $G \square P_{2}$ is pancyclic.

Proof. By the result of Bondy and Lovász in [4] that $G=G\left(a, u_{0}, u_{\alpha}\right)$ is m-almost pancyclic and Lemma 2.14, $G \square P_{2}$ contains a cycle of each length $l, 3 \leq l \leq 2 m-1$. It suffices to show that the prism over G contains a cycle of each length l for $2 m \leq l \leq 4 m-2$.

For $1 \leq i \leq 2$, the i-th copy of G contains a path $P\left(u_{0}^{(i)}, u_{\alpha}^{(i)}\right)$ of length l for $m-1 \leq l \leq 2 m-2$, by Lemma 2.7(ii). We link each path $P\left(u_{0}^{(i)}, u_{\alpha}^{(i)}\right)$ (maybe of different sizes) for $1 \leq i \leq 2$ together with edges $u_{0}^{(1)} u_{0}^{(2)}$ and $u_{\alpha}^{(1)} u_{\alpha}^{(2)}$. The cycle of each length l for $2 m \leq l \leq 4 m-2$ is $P\left(u_{0}^{(1)}, u_{\alpha}^{(1)}\right) u_{\alpha}^{(1)} u_{\alpha}^{(2)} P\left(u_{\alpha}^{(2)}, u_{0}^{(2)}\right) u_{0}^{(2)} u_{0}^{(1)}$.

Therefore, $G \square P_{2}$ is pancyclic.
Lemma 2.16. Let $G=G\left(a, u_{0}, u_{\alpha}\right)$ be a skirted graph of order $2 m-1$, where m is an even integer such that $m \geq 6$ and G is of type II. Then, $G \square P_{3}$ is pancyclic.

Proof. Let $G=G\left(a, u_{0}, u_{\alpha}\right)=T \cup P$ be a skirted graph of type II. By Lemma 2.15, $G \square P_{3}$ contains a cycle of each length l for $3 \leq l \leq 4 m-2$. It suffices to show that $G \square P_{3}$ contains a cycle of each length l for $4 m-1 \leq l \leq 6 m-3$. Two steps are shown. The first one is finding a cycle of each length l for $4 m+1 \leq l \leq 6 m-3$ and the second one is finding cycles of length $4 m-1$ and $4 m$.

Step 1: To show that $G \square P_{3}$ contains cycles of such length, we give the following paths and then link them together with edges joining each copy of G.

- The first copy of G contains a path $P\left(a^{(1)}, u_{\alpha}^{(1)}\right)$, of each length l for $(3 m-$ $2) / 2 \leq l \leq 2 m-2$ by Lemma 2.7(i). Also, for the last copy of G, a path
$P\left(a^{(3)}, u_{0}^{(3)}\right)$ of each length l for $(3 m-2) / 2 \leq l \leq 2 m-2$ exists by the symmetry of G in Remark 2.8(i).
- The middle copy of G contains a path $P\left(u_{0}^{(2)}, u_{\alpha}^{(2)}\right)$ of each length l for $m-1 \leq$ $l \leq 2 m-3$ (without the root $a^{(2)}$), which exists by Remark 2.8 (ii).
- The path $P\left(a^{(3)}, a^{(1)}\right)=a^{(3)} a^{(2)} a^{(1)}$ of length 2 is a path in $G \square P_{3}$ from the last copy to the first copy of G.

Now, we link each path (maybe of different sizes) by edges $e_{1}=u_{\alpha}^{(1)} u_{\alpha}^{(2)}$ and $e_{2}=u_{0}^{(2)} u_{0}^{(3)}$. The cycle of length l for $4 m+1 \leq l \leq 6 m-3$ is

$$
P\left(a^{(1)}, u_{\alpha}^{(1)}\right) e_{1} P\left(u_{\alpha}^{(2)}, u_{0}^{(2)}\right) e_{2} P\left(u_{0}^{(3)}, a^{(3)}\right) P\left(a^{(3)}, a^{(1)}\right)
$$

Step 2: To show that $G \square P_{3}$ contains cycles of lengths $4 m-1$ and $4 m$, we modify the cycle of length $4 m+1$ from Step 1 , where $P\left(a^{(1)}, u_{\alpha}^{(1)}\right)$ and $P\left(u_{0}^{(3)}, a^{(3)}\right)$ have length $(3 m-2) / 2$ and $P\left(u_{\alpha}^{(2)}, u_{0}^{(2)}\right)$ has length $m-1$. For the first copy of G, let $P\left(a^{(1)}, u_{0}^{(1)}\right)$ be the path of length $m / 2$ from $a^{(1)}$ to $u_{0}^{(1)}$ containing all vertices which are incident to the unbounded face of G and $P\left(u_{0}^{(1)}, u_{\alpha}^{(1)}\right)$ be the path of length $m-1$ from $u_{0}^{(1)}$ to $u_{\alpha}^{(1)}$ containing all vertices which are incident to the unbounded face of G. Then, $P\left(a^{(1)}, u_{\alpha}^{(1)}\right)=P\left(a^{(1)}, u_{0}^{(1)}\right) P\left(u_{0}^{(1)}, u_{\alpha}^{(1)}\right)$ is the path of length $(3 m-2) / 2$ containing the vertex $u_{0}^{(1)}$. Similary, for the third copy of G, we have that $P\left(u_{0}^{(3)}, a^{(3)}\right)=P\left(u_{0}^{(3)}, u_{\alpha}^{(3)}\right) P\left(u_{\alpha}^{(3)}, a^{(3)}\right)$ is the path of length $(3 m-2) / 2$ containing the vertex $u_{\alpha}^{(3)}$. Then, removing vertex $u_{0}^{(1)}$ (respectively $u_{0}^{(1)}$ and $u_{\alpha}^{(3)}$) makes the cycle of length $4 m+1$ to become a cycle of length $4 m$ (respectively a cycle of length $4 m-1$).

Therefore, $G \square P_{3}$ is pancyclic.
We see that, in the proof of Lemma 2.16, the Cartesian product of $G=$ $G\left(a, u_{0}, u_{\alpha}\right)$ and a path of order 3, we have to consider the special case as shown in Step 2. However, there is no special case when we show that $G \square P_{n}$ is pancyclic for $n \geq 4$.

By using Lemmas 2.15 and 2.16 as a basis step, we can use the mathematical induction to establish the following result.

Theorem 2.17. Let $G=G\left(a, u_{0}, u_{\alpha}\right)$ be a skirted graph of order $2 m-1$, where m is an even integer such that $m \geq 6$ and G is of type II. Then, $G \square P_{n}$ is pancyclic for $n \geq 2$.

Proof. We prove by the mathematical induction on the order of P_{n}. The basis step is already done by Lemmas 2.15 and 2.16 for $n=2$ and $n=3$, respectively. For $n \geq 4$, suppose that $G \square P_{n-1}$ is pancyclic, i.e., $G \square P_{n-1}$ contains a cycle of each length l for $3 \leq l \leq(n-1)(2 m-1)$. We shall find a cycle of each length l for $(n-1)(2 m-1)+1 \leq l \leq n(2 m-1)$.

To show that $G \square P_{n}$ contains cycles of such lengths, we give the following paths and then link them together with edges joining each copy of G.

- The first copy and the last copy of G contain $P\left(a^{(1)}, u_{\alpha}^{(1)}\right)$ and $P\left(a^{(n)}, u_{\alpha}^{(n)}\right)$, respectively, of each length l for $(3 m-2) / 2 \leq l \leq 2 m-2$ by Lemma 2.7(i). Also, for the last copy of G a path $P\left(a^{(n)}, u_{0}^{(n)}\right)$ of each length l for $(3 m-2) / 2 \leq l \leq 2 m-2$ exists by the symmetry of G in Remark 2.8(i).
- The remaining $n-2$ copies of G contain a path $P\left(u_{0}^{(i)}, u_{\alpha}^{(i)}\right)$ of each length l for $m-1 \leq l \leq 2 m-3$ (without the root $a^{(i)}$) for $2 \leq i \leq n-1$, which exists by Remark 2.8(ii).
- The path $P\left(a^{(n)}, a^{(1)}\right)=a^{(n)} a^{(n-1)} a^{(n-2)} \cdots a^{(1)}$ of length $n-1$ is a path in $G \square P_{n}$ from the last copy to the first copy of G.

Now, we link each path (maybe of different sizes) by edge $x_{i}=u_{0}^{(i)} u_{0}^{(i+1)}$ when i is even and edge $y_{i}=u_{\alpha}^{(i)} u_{\alpha}^{(i+1)}$ when i is odd. The cycle of length l for $m n+$ $m+n-2 \leq l \leq n(2 m-1)$ is

$$
P\left(a^{(1)}, u_{\alpha}^{(1)}\right) y_{1} P\left(u_{\alpha}^{(2)}, u_{0}^{(2)}\right) x_{2} P\left(u_{0}^{(3)}, u_{\alpha}^{(3)}\right) y_{3} \cdots x_{n-1} P\left(u_{0}^{(n)}, a^{(n)}\right) P\left(a^{(n)}, a^{(1)}\right)
$$

when n is odd or

$$
P\left(a^{(1)}, u_{\alpha}^{(1)}\right) y_{1} P\left(u_{\alpha}^{(2)}, u_{0}^{(2)}\right) x_{2} P\left(u_{0}^{(3)}, u_{\alpha}^{(3)}\right) y_{3} \cdots y_{n-1} P\left(u_{\alpha}^{(n)}, a^{(n)}\right) P\left(a^{(n)}, a^{(1)}\right)
$$

when n is even.
We can conclude that $G \square P_{n}$ is pancyclic if $m n+m+n-2 \leq(n-1)(2 m-1)+1$, that is, $n \geq(3 m-4) /(m-2)$. Since $4>(3 m-4) /(m-2)$ for all $m \geq 6$, $n \geq(3 m-4) /(m-2)$ for all $n \geq 4$.

Therefore, $G \square P_{n}$ is pancyclic.

2.4 Conclusion and discussion

In this chapter, we prove that the n-generalized prism over a skirted graph of type I, II or III are pancyclic by applying the lemma given by Bondy and Lovász [4]. To apply the lemma, we have to know the exact number of vertices which are incident to the unbounded face of each skirted graph. This constraint is the reason why the technique in this chapter cannot be directly applied to the n-generalized prism of any skirted graphs. Thus, we will develop a technique to overcome this difficulty in the next chapter.

CHAPTER III THE n-GENERALIZED PRISM OVER A SKIRTED GRAPH

In this chapter, we study pancyclicity of the n-generalized prism over a skirted graph. We first provide our preliminary results on hamiltonicity and pancyclicity as well as the motivation of the main results of this chapter as follows.

3.1 Preliminary results and motivation

In 1971, Bondy [2] posed a metaconjecture: almost any nontrivial condition on a graph which implies that the graph is Hamiltonian also implies that the graph is pancyclic (there may be a simple family of exceptional graphs). From Chapter II, we have proved that the n-generalized prism over any skirted graph is Hamiltonian. This metaconjecture motivates us to investigate the pancyclicity of the n-generalized prism over any skirted graph. However, the technique that we use in Chapter II cannot be directly applied to any skirted graphs other than those three types since we do not know the exact configuration of their vertices and edges. Thus, we develop a technique to overcome this difficulty in this chapter.

From Chapter II, we have proved the following theorem.

Theorem 3.1. The n-generalized prism over any skirted graph is Hamiltonian.

Now, we notice that a skirted graph $G=T \cup P$ contains a cycle of length 3 where one of the edges of such cycle belongs to the path P as follows.

Lemma 3.2. A skirted graph $G=T \cup P$ contains a cycle of length 3 with exactly one edge of the cycle belongs to the path P.

Proof. To prove this statement, we let $P=u_{0} u_{1} u_{2} \cdots u_{\alpha}$. Let $T^{\prime \prime}$ be a rooted tree obtained by deleting all leaves of T. If $T^{\prime \prime}$ is a singleton, then it means that all children of the root a of T are leaves of T. Since a has at least two children, $G=T \cup P$ contains a cycle of length 3 with exactly one edge of the cycle belongs to the path P. Otherwise, $T^{\prime \prime}$ contains a vertex u of degree one. This implies that u is an internal vertex of T such that all of its children are leaves of T. Since u has at least two children. Let U be the set of all children of u. Thus, $U \subseteq V(P)$ and $|U| \geq 2$. Let $u_{i} \in U$ and i be the minimum index of vertices in U. Since u has at least two children and P is obtained by connecting the leaves of T in the order determined by the embedding of $T, u_{i+1} \in U$. Thus, $\left\{u, u_{i}, u_{i+1}\right\}$ induces a cycle of length 3 in G. Moreover, this cycle has one edge $u_{i} u_{i+1}$ belongs to the path P.

In general, a triangle in graph theory usually means a cycle of length 3 . However, in this research, we define a triangle as follows.

Definition 3.3. Let $G\left(a, u_{0}, u_{\alpha}\right)=T \cup P$ be a skirted graph with $P=u_{0} u_{1} u_{2} \cdots u_{\alpha}$. For $i, j \in\{0,1,2, \ldots, \alpha\}$ and $i<j$, an induced subgraph $C\left(u, u_{i}, u_{j}\right)$ of $G\left(a, u_{0}, u_{\alpha}\right)$ is said to be a triangle in $G\left(a, u_{0}, u_{\alpha}\right)$ if

- u is an internal vertex of T such that all children of u are leaves of T and;
- u_{i} is the first vertex and u_{j} is the last vertex in P in which u_{i} and u_{j} are children of u.

Moreover, since P is obtained by connecting the leaves of T in the order determined by the embedding of T, vertices between u_{i} and u_{j} in the path P, $u_{i+1}, u_{i+2}, u_{i+3}, \ldots, u_{j-1}$, are all children of u (see Figure 3.1).

Observation 3.4. From Definition 3.3, a triangle $C\left(u, u_{i}, u_{j}\right)$ of $G\left(a, u_{0}, u_{\alpha}\right)$ is also a skirted graph $T^{\prime} \cup P^{\prime}$ containing the side skirt T^{\prime} with root u and the path $P^{\prime}=u_{i} u_{i+1} u_{i+2} \cdots u_{j}$. Note that u has degree at least two because $i<j$.

Figure 3.1: $C\left(v_{1}, u_{3}, u_{4}\right)$ and $C\left(v_{3}, u_{6}, u_{8}\right)$ are triangles in $G\left(a, u_{0}, u_{8}\right)$, while $C\left(a, u_{0}, u_{2}\right)$ is not a triangle

We obtain from the proof of Lemma 3.2 that a skirted graph $G=T \cup P$ contains a cycle of length 3 induced by $\left\{u, u_{i}, u_{i+1}\right\}$ in G. Since all children of u are leaves of T, we can extend such cycle into a triangle. Therefore, a skirted graph contains a triangle.

Lemma 3.5. Let $G\left(a, u_{0}, u_{\alpha}\right)=T \cup P$ be a skirted graph with $P=u_{0} u_{1} u_{2} \cdots u_{\alpha}$. If G^{\prime} is a simple graph obtained from a skirted graph $G\left(a, u_{0}, u_{\alpha}\right)$ by contracting a triangle $C\left(u, u_{i}, u_{j}\right)$ of $G\left(a, u_{0}, u_{\alpha}\right)$ where $u \neq a$. Then, G^{\prime} is a skirted graph.

Proof. Let $G\left(a, u_{0}, u_{\alpha}\right)=T \cup P$ be a skirted graph and $C\left(u, u_{i}, u_{j}\right)$ be a triangle in $G\left(a, u_{0}, u_{\alpha}\right)$ for some $0 \leq i \leq \alpha-1$ and $i<j$. Let G^{\prime} be a simple graph obtained from $G\left(a, u_{0}, u_{\alpha}\right)$ by contracting $C\left(u, u_{i}, u_{j}\right)$ and u^{*} be the vertex of G^{\prime} representing the triangle $C\left(u, u_{i}, u_{j}\right)$, i.e., all vertices $u, u_{i}, u_{i+1}, u_{i+2}, \ldots, u_{j}$ are contracted into one vertex u^{*}. Since $u \neq a, G^{\prime}$ is not a trivial graph.

Consider the side skirt T of $G\left(a, u_{0}, u_{\alpha}\right)$. It can be regarded that we obtain T^{\prime} from T by deleting all children of u and then turn the internal vertex u to be a leaf u^{*} of T^{\prime}. The contraction does not affect the degree of other vertices in $G\left(a, u_{0}, u_{\alpha}\right)$. Thus, T^{\prime} is a side skirt. Now, we consider the path P of $G\left(a, u_{0}, u_{\alpha}\right)$. The contraction turns the path $P=u_{0} u_{1} u_{2} \ldots u_{\alpha}$ into the path $P^{\prime}=u_{0} u_{1} \ldots u_{i-1} u^{*} u_{j+1} \ldots u_{\alpha}$ in G^{\prime}. Since the contraction does not affect the degree of other vertices outside the triangle, all leaves of T except $u_{i}, u_{i+1}, u_{i+2}, \ldots, u_{j}$ are still the leaves of T^{\prime}. Thus,
all vertices of P^{\prime} are all leaves of T^{\prime}. Since G^{\prime} is a union $T^{\prime} \cup P^{\prime}, G^{\prime}$ is a skirted graph.

Note that $G^{\prime}=G^{\prime}\left(a, u_{0}, u_{\alpha}\right)$ if $i, j \notin\{0, \alpha\}, G^{\prime}=G^{\prime}\left(a, u^{*}, u_{\alpha}\right)$ if $i=0$ (in this case, $j \neq \alpha$) and $G^{\prime}=G^{\prime}\left(a, u_{0}, u^{*}\right)$ if $j=\alpha$ (in this case, $i \neq 0$). However, to prove Lemma 3.5, we do not care about the endpoints of the path P^{\prime} in G^{\prime}. Thus, we just wrote G^{\prime}.

The following figure shows skirted graphs $G^{\prime}\left(a, u_{0}, u_{8}\right)$ and $G^{\prime}\left(a, u_{0}, u^{*}\right)$ obtained from skirted graph $G\left(a, u_{0}, u_{8}\right)$ by contracting triangles $C\left(v_{1}, u_{3}, u_{4}\right)$ and $C\left(v_{3}, u_{6}, u_{8}\right)$, respectively

(a)

(b)

(c)

Figure 3.2: (a) a skirted graph $G\left(a, u_{0}, u_{8}\right)$, (b) and (c) skirted graphs obtained from $G\left(a, u_{0}, u_{8}\right)$ by contracting triangles $C\left(v_{1}, u_{3}, u_{4}\right)$ and $C\left(v_{3}, u_{6}, u_{8}\right)$, respectively

From Lemma 3.5, we already know that if G^{\prime} is a simple graph obtained from a skirted graph $G\left(a, u_{0}, u_{\alpha}\right)$ by contracting a triangle $C\left(u, u_{i}, u_{j}\right)$ of $G\left(a, u_{0}, u_{\alpha}\right)$ where $u \neq a$. Then, G^{\prime} is a skirted graph. Next, we investigate the case that $u=a$. By the definition of a triangle, we obtain that $i=0$ and $j=\alpha$. Thus, in this case, the skirted graph $G\left(a, u_{0}, u_{\alpha}\right)$ is a triangle. In the next section, we prove the pancyclicity results for the n-generalized prism over a triangle.

3.2 Pancyclicity of the n-generalized prism over a triangle

To show that the n-generalized prism over a triangle is pancyclic, we need the following lemmas.

Lemma 3.6. Let $C=C\left(u, u_{0}, u_{\alpha}\right)$ be a triangle of order $\alpha+2$. Then, C contains:
(i) a (u, u_{α})-path of each length l for $1 \leq l \leq \alpha+1$;
(ii) $a\left(u_{0}, u_{\alpha}\right)$-path of lengths α and $\alpha+1$.

Proof. Let $C=C\left(u, u_{0}, u_{\alpha}\right)=T \cup P$ be a triangle of order $\alpha+2$ and $P=$ $u_{0} u_{1} u_{2} \cdots u_{\alpha}$. We prove this statement by the mathematical induction on α. If $\alpha=1$, then C is a cycle of length 3 . It contains (i) a (u, u_{1})-path of lengths 1 and 2 and (ii) a (u_{0}, u_{1})-path of lengths 1 and 2 . Now, we suppose that the statement holds for all triangles of order less than $\alpha+2$ where $\alpha>1$.

Let $C^{\prime}=\left(T-u_{\alpha}\right) \cup\left(P-u_{\alpha}\right)$. Then, $C^{\prime} \equiv C\left(u, u_{0}, u_{\alpha-1}\right)$ is a triangle subgraph of C. By the induction hypothesis, we obtain that $C\left(u, u_{0}, u_{\alpha-1}\right)$ contains (i) a $\left(u, u_{\alpha-1}\right)$-path of each length l for $1 \leq l \leq \alpha$ and (ii) a $\left(u_{0}, u_{\alpha-1}\right)$-path of lengths $\alpha-1$ and α.

Since u_{α} is adjacent to u in C, C contains a (u, u_{α})-path of length 1 . Since u_{α} is adjacent to $u_{\alpha-1}$ in C, we can extend a $\left(u, u_{\alpha-1}\right)$-path of length l to a $\left(u, u_{\alpha}\right)$-path of length $l+1$. Thus, C contains (i) a $\left(u, u_{\alpha}\right)$-path of each length l for $1 \leq l \leq \alpha+1$ and (ii) a (u_{0}, u_{α})-path of lengths α and $\alpha+1$.

Remark 3.7. We obtain that
(i) Lemma 3.6(i) gives a $\left(u, u_{0}\right)$-path of each length l for $1 \leq l \leq \alpha+1$ by the symmetry of $C\left(u, u_{0}, u_{\alpha}\right)$.
(ii) $P=u_{0} u_{1} u_{2} \ldots u_{\alpha}$ is a $\left(u_{0}, u_{\alpha}\right)$-path of length α (without the vertex u) in $C\left(u, u_{0}, u_{\alpha}\right)$.

The following lemma is an immediate observation about the pancyclicity of the prism over a triangle.

Lemma 3.8. The prism over a triangle is pancyclic.
Proof. Let $\alpha \geq 1$ and $C=C\left(u, u_{0}, u_{\alpha}\right)$ be a triangle of length $\alpha+2$. For $1 \leq s \leq 2$, the s-th copy of C contains a $\left(u^{(s)}, u_{\alpha}^{(s)}\right)$-path of each length l for $1 \leq l \leq \alpha+1$
by Lemma 3.6(i). We link each $\left(u^{(1)}, u_{\alpha}^{(1)}\right)$-path and $\left(u^{(2)}, u_{\alpha}^{(2)}\right)$-path (maybe of different sizes) together with edges $u^{(1)} u^{(2)}$ and $u_{\alpha}^{(1)} u_{\alpha}^{(2)}$. We obtain a cycle of each length l for $4 \leq l \leq 2 \alpha+4$. Since C contains a cycle of length $3, C \square P_{2}$ is pancyclic.

By using Lemma 3.8 as a basic step, we can use the mathematical induction to establish the following result.

Theorem 3.9. The n-generalized prism over a triangle is pancyclic.
Proof. Let $\alpha \geq 1$ and $C=C\left(u, u_{0}, u_{\alpha}\right)$ be a triangle of order $\alpha+2$ and P_{n} be a path of order $n \geq 2$. We prove that $C \square P_{n}$ is pancyclic by the mathematical induction on n. The basic step is already done by Lemma 3.8. For $n \geq 3$, suppose that $C \square P_{n-1}$ is pancyclic. Since $C \square P_{n-1}$ is a subgraph of $C \square P_{n}, C \square P_{n}$ contains a cycle of each length l for $3 \leq l \leq(\alpha+2)(n-1)$. We shall find a cycle of each length l for $(\alpha+2)(n-1)+1 \leq l \leq(\alpha+2) n$.

To show that $C \square P_{n}$ contains a cycle of such lengths, we give the following paths and link them together with edges joining each copy of C.

- The first copy and the last copy of C contain $P\left(u^{(1)}, u_{\alpha}^{(1)}\right)$ and $P\left(u^{(n)}, u_{\alpha}^{(n)}\right)$, respectively, of each length l for $1 \leq l \leq \alpha+1$ by Lemma 3.6(i). Also, for the last copy of C, a path $P\left(u^{(n)}, u_{0}^{(n)}\right)$ of each length l for $1 \leq l \leq \alpha+1$ exists by the symmetry of C in Remark 3.7(i).
- The remaining $n-2$ copies of G contain the path $P\left(u_{0}^{(s)}, u_{\alpha}^{(s)}\right)$ of length α (without the root $u^{(s)}$) for $2 \leq s \leq n-1$, which exists by Remark 3.7(ii).
- The path $P\left(u^{(n)}, u^{(1)}\right)=u^{(n)} u^{(n-1)} u^{(n-2)} \cdots u^{(1)}$ of length $n-1$ is a path in $C \square P_{n}$ from the last copy to the first copy of C.

Now, we link each path (maybe of different sizes) by edge $u_{\alpha}^{(s)} u_{\alpha}^{(s+1)}$ when s is odd and by edge $u_{0}^{(s)} u_{0}^{(s+1)}$ when s is even. We obtain a cycle of each length l for $(\alpha+2) n-2 \alpha \leq l \leq(\alpha+2) n$. Since $(\alpha+2) n-2 \alpha \leq(\alpha+2)(n-1)+1$ for all $\alpha \geq 1, C \square P_{n}$ contains a cycle of each length l for $(\alpha+2)(n-1)+1 \leq l \leq(\alpha+2) n$. Therefore, $C \square P_{n}$ is pancyclic.

3.3 Pancyclicity of the n-generalized prism over a skirted graph

To show that the n-generalized prism over a skirted graph is pancyclic, we first establish the preliminary results of even cycles in the n-generalized prism over a skirted graph. Note that since a skirted graph is traceable, we investigate the n-generalized prism over a path instead of the n-generalized prism over a skirted graph as follows.

3.3.1 Even cycles in the n-generalized prism over a path

Let $n \geq 2$ be an even integer and $m \geq 2$, we need the following lemma to prove that $P_{m} \square P_{n}$ contains a cycle of each even length l where l is an even integer ranging from 4 to $m n$.

Lemma 3.10. Suppose that $m \geq 2$. Then, the prism over P_{m} contains a cycle of each length l where l is an even integer ranging from 4 to $2 m$. Moreover, if $P_{m}=v_{1} v_{2} v_{3} \cdots v_{m}$, then the edges $v_{1}^{(1)} v_{2}^{(1)}$ and $v_{1}^{(2)} v_{2}^{(2)}$ of the first copy and the second copy of $P_{m} \square P_{2}$, respectively, are contained in a cycle of each even length l for $4 \leq l \leq 2 m$.

Proof. Let $P_{m}=v_{1} v_{2} v_{3} \cdots v_{m}$. We define a sequence of $m-1$ cycles in $P_{m} \square P_{2}$ as follows.

$$
\begin{gathered}
v_{2}^{(1)} v_{1}^{(1)} v_{1}^{(2)} v_{2}^{(2)} v_{2}^{(1)}, \\
v_{3}^{(1)} v_{2}^{(1)} v_{1}^{(1)} v_{1}^{(2)} v_{2}^{(2)} v_{3}^{(2)} v_{3}^{(1)}, \\
v_{4}^{(1)} v_{3}^{(1)} v_{2}^{(1)} v_{1}^{(1)} v_{1}^{(2)} v_{2}^{(2)} v_{3}^{(2)} v_{4}^{(2)} v_{4}^{(1)}, \\
\cdots, \\
v_{m}^{(1)} v_{m-1}^{(1)} v_{m-2}^{(1)} v_{m-3}^{(1)} \cdots v_{2}^{(1)} v_{1}^{(1)} v_{1}^{(2)} v_{2}^{(2)} \cdots v_{m-2}^{(2)} v_{m-1}^{(2)} v_{m}^{(2)} v_{m}^{(1)}
\end{gathered}
$$

The length of each cycle in the sequence increases as an arithmetic sequence with
the common difference 2 . Then, the last cycle

$$
v_{m}^{(1)} v_{m-1}^{(1)} v_{m-2}^{(1)} v_{m-3}^{(1)} \cdots v_{2}^{(1)} v_{1}^{(1)} v_{1}^{(2)} v_{2}^{(2)} \cdots v_{m-2}^{(2)} v_{m-1}^{(2)} v_{m}^{(2)} v_{m}^{(1)}
$$

of this sequence has length $2 m$. Since the first cycle $v_{2}^{(1)} v_{1}^{(1)} v_{1}^{(2)} v_{2}^{(2)} v_{2}^{(1)}$ is a cycle of length 4 , the lengths of the cycles are even integers ranging from 4 to $2 m$. Moreover, $v_{1}^{(1)} v_{2}^{(1)}$ and $v_{1}^{(2)} v_{2}^{(2)}$ are edges contained in all even cycles.

Observation 3.11. For $n \geq 2$ is an even integer and $m \geq 2$, if $P_{m}=v_{1} v_{2} v_{3} \cdots v_{m}$, then the edges $v_{1}^{(1)} v_{2}^{(1)}$ and $v_{1}^{(n)} v_{2}^{(n)}$ of the first copy and the last copy of $P_{m} \square P_{n}$, respectively, are contained in a cycle of length mn (see Figure 3.3).

Figure 3.3: The dashed line represents a spanning cycle of length $m n$ containing edges $v_{1}^{(1)} v_{2}^{(1)}$ and $v_{1}^{(n)} v_{2}^{(n)}$

By using Lemma 3.10 as a basic step, we can use the mathematical induction to establish the following result.

Lemma 3.12. Suppose that $n \geq 2$ is an even integer and $m \geq 2$. Then, the n-generalized prism over P_{m} contains a cycle of each length l where l is an even
integer ranging from 4 to $m n$. Moreover, if $P_{m}=v_{1} v_{2} v_{3} \cdots v_{m}$, then the edge $v_{1}^{(1)} v_{2}^{(1)}$ of the first copy of $P_{m} \square P_{n}$ is contained in a cycle of each even length l for $4 \leq l \leq m n$.

Proof. Let $P_{m}=v_{1} v_{2} v_{3} \cdots v_{m}$ where $m \geq 2$ and $n=2 k$ for some positive integer k. We prove by the mathematical induction on k. The basic step is already done by Lemma 3.10. For $k \geq 2$, suppose that $P_{m} \square P_{2(k-1)}$ contains a cycle of each even length l where l is an even integer ranging from 4 to $2 m(k-1)$. We shall find an even cycle of each length l for $2 m(k-1)+2 \leq l \leq 2 m k$.

Here, let us regard $P_{m} \square P_{2(k-1)}$ as a subgraph of $P_{m} \square P_{2 k}$ induced by the set of all vertices of the first $2(k-1)$ copies of P_{m}. By Observation 3.11, there is a cycle C^{*} of length $2 m(k-1)$ in $P_{m} \square P_{2(k-1)}$ containing the edges $v_{1}^{(1)} v_{2}^{(1)}$ and $v_{1}^{(2 k-2)} v_{2}^{(2 k-2)}$.

Now, we consider the last two copies of P_{m}. The vertices of these two copies induce a subgraph $P_{m} \square P_{2}$ of $P_{m} \square P_{2 k}$. By Lemma 3.10, an edge $v_{1}^{(2 k-1)} v_{2}^{(2 k-1)}$ is contained in a cycle of each even length l for $4 \leq l \leq 2 m$ in $P_{m} \square P_{2 k}$. Since $v_{1}^{(2 k-2)} v_{1}^{(2 k-1)}$ and $v_{2}^{(2 k-2)} v_{2}^{(2 k-1)}$ are edges of $P_{m} \square P_{2 k}$, we delete edges $v_{1}^{(2 k-2)} v_{2}^{(2 k-2)}$ and $v_{1}^{(2 k-1)} v_{2}^{(2 k-1)}$ and then join $v_{1}^{(2 k-1)}$ to $v_{1}^{(2 k-2)}$ and $v_{2}^{(2 k-1)}$ to $v_{2}^{(2 k-2)}$, respectively. Then, C^{*} can be extended to a cycle of each even length l for $2 m(k-1)+4 \leq l \leq$ $2 m k$. Next, we extend C^{*} to be a cycle of even length $2 m(k-1)+2$ by replacing the edge $v_{1}^{(2 k-2)} v_{2}^{(2 k-2)}$ with the path $v_{1}^{(2 k-2)} v_{1}^{(2 k-1)} v_{2}^{(2 k-1)} v_{2}^{(2 k-2)}$.

Moreover, since the cycle C^{*} contains edge $v_{1}^{(1)} v_{2}^{(1)}$ and the extension of C^{*} does not affect the edge $v_{1}^{(1)} v_{2}^{(1)}$, it is contained in a cycle of each even length l for $4 \leq l \leq m n$.

By Lemma 3.12, $P_{m} \square P_{n}$ contains an even cycle of each length l for $4 \leq l \leq m n$ when n is even. Next, to investigate the case that n is odd, we will only examine the case that $n=3$ as follows.

Lemma 3.13. Suppose that $m \geq 2$. Then, the 3 -generalized prism over P_{m} contains a cycle of each length l where l is an even integer ranging from 4 to 3 m . Moreover, if $P_{m}=v_{1} v_{2} v_{3} \cdots v_{m}$, then the edge $v_{1}^{(1)} v_{2}^{(1)}$ of the first copy of $P_{m} \square P_{3}$
is contained in:
(i) a cycle of each even length l for $4 \leq l \leq 3 m$ if m is even;
(ii) a cycle of each even length l for $4 \leq l \leq 3 m-1$ if m is odd.

Proof. Let $m \geq 2$ and $P_{m}=v_{1} v_{2} v_{3} \cdots v_{m}$. Here, let us regard $P_{m} \square P_{2}$ as a subgraph of $P_{m} \square P_{3}$ induced by vertices of the first two copies of P_{m}. By Lemma 3.10 and $P_{m} \square P_{2}$ is a subgraph of $P_{m} \square P_{3}, P_{m} \square P_{3}$ contains a cycle of each length l where l is an even integer ranging from 4 to $2 m$ and the edge $v_{1}^{(1)} v_{2}^{(1)}$ of the first copy of $P_{m} \square P_{n}$ is contained in a cycle of each length l where l is an even integer ranging from 4 to $2 m$. We shall find an even cycles of each length l for $2 m+2 \leq l \leq 3 m$. By Lemma 3.10, $P_{m} \square P_{2}$ contains a cycle

$$
C^{*}=v_{m}^{(1)} v_{m-1}^{(1)} v_{m-2}^{(1)} v_{m-3}^{(1)} \cdots v_{2}^{(1)} v_{1}^{(1)} v_{1}^{(2)} v_{2}^{(2)} \cdots v_{m-2}^{(2)} v_{m-1}^{(2)} v_{m}^{(2)} v_{m}^{(1)}
$$

of length $2 m$ in which it contains $v_{1}^{(1)} v_{2}^{(1)}$.
Now, we consider the second and the third copies of P_{m}. For an odd integer j such that $1 \leq j \leq m-1$, there is a path $P_{j}=v_{j}^{(2)} v_{j}^{(3)} v_{j+1}^{(3)} v_{j+1}^{(2)}$ of length 3 in $P_{m} \square P_{3}$.

Since $v_{j}^{(3)}$ and $v_{j+1}^{(3)}$ have not been contained in C^{*} for all odd integers j, we replace each edge $v_{j}^{(2)} v_{j+1}^{(2)}$ with each path P_{j}. Then, C^{*} can be extended to a cycle of each even length l for $2 m+2 \leq l \leq 3 m$. Since this extension does not change anything in the first copy of P_{m}, the extended cycle still contains the edge $v_{1}^{(1)} v_{2}^{(1)}$.

Moreover, we can see that (i) if m is even, then $v_{1}^{(1)} v_{2}^{(1)}$ is contained in a cycle of each even length l for $4 \leq l \leq 3 m$ ($3 m$ is even); (ii) if m is odd, then $v_{1}^{(1)} v_{2}^{(1)}$ is contained in a cycle of each even length l for $4 \leq l \leq 3 m-1$ ($3 m$ is odd).

Figure 3.4 shows examples of cycles of length 18 and 20 in $P_{6} \square P_{3}$ and $P_{7} \square P_{3}$, respectively.

Remark 3.14. From the proof of Lemma 3.13, we obtain the cycles of length $3 m$ when m is even and $3 m-1$ when m is odd. We notice that, apart from edge $v_{1}^{(1)} v_{2}^{(1)}$, these two cycles also contain an edge $v_{1}^{(3)} v_{2}^{(3)}$ when $m \geq 3$.

Figure 3.4: (a) The dashed line represents a cycle of length 18 in $P_{6} \square P_{3}$ and (b) The dashed line represents a cycle of length 20 in $P_{7} \square P_{3}$

3.3.2 Main results

To show that the n-generalized prism over any skirted graph is pancyclic, we start by providing some observations and investigating the pancyclicity of the prism over a skirted graph; and the pancyclicity of the 3 -generalized prism over a skirted graph as follows.

Observation 3.15. Let $m \geq 3, \alpha \geq 2$ and $G\left(a, u_{0}, u_{\alpha}\right)=T \cup P$ be a skirted graph of order m with $P=u_{0} u_{1} u_{2} \cdots u_{\alpha}$ and $C=C\left(u, u_{i}, u_{j}\right)$ be a triangle of order t in $G\left(a, u_{0}, u_{\alpha}\right)$ such that $u \neq a$. Then, $m-t>1$. Let G^{\prime} be a skirted graph of order $m-(t-1)$ obtained from a skirted graph $G\left(a, u_{0}, u_{\alpha}\right)$ by contracting the triangle C and u^{*} be the vertex of G^{\prime} representing the triangle C. By Theorem 2.5, G^{\prime} is Hamiltonian. Let $C^{\prime}=u^{*} v_{1} v_{2} v_{3} \cdots v_{m-t} u^{*}$ be a spanning cycle in G^{\prime}. Then, there is a spanning path $P^{\prime}=u^{*} v_{1} v_{2} v_{3} \cdots v_{m-t}$ in G^{\prime}.

Since u^{*} is the vertex of G^{\prime} representing the triangle C and v_{1} is adjacent to u^{*}, v_{1} is adjacent to either u, u_{i} or u_{j} in $G\left(a, u_{0}, u_{\alpha}\right)$. Let $G=G\left(a, u_{0}, u_{\alpha}\right)$.

- If $v_{1} u_{j} \in E(G)$, then $P\left(u_{i}, v_{m-t}\right)=u_{i} u_{i+1} u_{i+2} \cdots u_{j} v_{1} v_{2} \cdots v_{m-t}$ is a path of length $m-2$ (without the vertex u) in G.
- If $v_{1} u_{i} \in E(G)$, then $P\left(u_{j}, v_{m-t}\right)=u_{j} u_{j-1} u_{j-2} \cdots u_{i} v_{1} v_{2} \cdots v_{m-t}$ is a path of length $m-2$ (without the vertex u) in G.
- If $v_{1} u \in E(G)$, then v_{m-t} is adjacent to either u_{i} or u_{j} in $G\left(a, u_{0}, u_{\alpha}\right)$. Note that $v_{1} \neq v_{m-t}$ since $m-t>1$.
- If $v_{m-t} u_{j} \in E(G)$, then
$P\left(u_{i}, v_{1}\right)=u_{i} u_{i+1} u_{i+2} \cdots u_{j} v_{m-t} v_{m-t-1} v_{m-t-2} \cdots v_{1}$ is a path of length $m-2$ (without the vertex u) in G.
- If $v_{m-t} u_{i} \in E(G)$, then
$P\left(u_{j}, v_{1}\right)=u_{j} u_{j-1} u_{j-2} \cdots u_{i} v_{m-t} v_{m-t-1} v_{m-t-2} \cdots v_{1}$ is a path of length $m-2$ (without the vertex u) in G.

We notice that the vertex u is not contained in each of these four paths and the vertex u is adjacent to the first two vertices of such paths. This note is used in the proof of the following theorems.

Theorem 3.16. The prism over any skirted graph is pancyclic.
Proof. First, we consider a single skirted graph. Let $G=G\left(a, u_{0}, u_{\alpha}\right)=T \cup P$ be a skirted graph of order m with $P=u_{0} u_{1} u_{2} \cdots u_{\alpha}$. Let $C=C\left(u, u_{i}, u_{j}\right)$ be a triangle of order t in $G\left(a, u_{0}, u_{\alpha}\right)$, where $t \leq m$. If $u=a$, then G itself is a triangle. By Theorem 3.9, the prism over G is pancyclic. Now, we assume that $u \neq a$.

Let G^{\prime} be a skirted graph of order $m-(t-1)$ obtained from a skirted graph G by contracting the triangle C and u^{*} be the vertex of G^{\prime} representing the triangle C. By Theorem 2.5, G^{\prime} is Hamiltonian. Let $C^{\prime}=u^{*} v_{1} v_{2} v_{3} \cdots v_{m-t} u^{*}$ be a spanning cycle in G^{\prime}. Then, $P^{\prime}=u^{*} v_{1} v_{2} v_{3} \cdots v_{m-t}$ is a spanning path in G^{\prime}.

Since u^{*} is the vertex of G^{\prime} representing the triangle C and v_{1} is adjacent to u^{*}, v_{1} is adjacent to either u, u_{i} or u_{j}. By Observation 3.15, without loss of generality, let v_{1} be adjacent to u_{j}. Then, $P\left(u_{i}, v_{m-t}\right)=u_{i} u_{i+1} u_{i+2} \cdots u_{j} v_{1} v_{2} \cdots v_{m-t}$ is a path of length $m-2$ (without the vertex u) in G.

Now, consider prism over a skirted graph which contains the first and the second copies of the same skirted graph. By Lemma 3.10, $P\left(u_{i}, v_{m-t}\right) \square P_{2}$ contains a cycle C^{*} of each even length l for $4 \leq l \leq 2(m-1)$ in which it contains the edge $u_{i}^{(1)} u_{i+1}^{(1)}$. Since $P\left(u_{i}, v_{m-t}\right) \square P_{2}$ is a subgraph of $G \square P_{2}$, the prism over G contains a cycle of
each even length l for $4 \leq l \leq 2(m-1)$.
We shall find a cycle of each odd length l for $5 \leq l \leq 2 m-1$. Since $P=$ $u_{i}^{(1)} u^{(1)} u_{i+1}^{(1)}$ is a path of length 2 in $G \square P_{2}$ and $u^{(1)}$ is not contained in C^{*}, we replace edge $u_{i}^{(1)} u_{i+1}^{(1)}$ with the path P. Then, C^{*} can be extended to a cycle of length $l+1$. Since $4 \leq l \leq 2(m-1)$, we obtain a cycle of each odd length l for $5 \leq l \leq 2 m-1$.

Since G contains a cycle of length 3 , the prism over G also contains a cycle of length 3. By Theorem 3.1, the prism over G is Hamiltonian, i.e., it contains a cycle of length $2 m$. Therefore, the prism over G is pancyclic.

Remark 3.17. From the proof of Theorem 3.16, the edge $v_{m-t-1}^{(2)} v_{m-t}^{(2)}$ of the second copy of $G \square P_{2}$ is contained in the odd cycle of length $2 m-1$ (see Figure 3.5).

Figure 3.5: The dashed line represents a cycle of length $2 m-1$ in $G \square P_{2}$ containing edge $v_{m-t-1}^{(2)} v_{m-t}^{(2)}$ where G is a skirted graph in Theorem 3.16

Next, we consider the pancyclicity of the 3-generalized prism over a skirted graph.

Theorem 3.18. The 3 -generalized prism over a skirted graph is pancyclic.
Proof. First, we consider a single skirted graph. Let $G=G\left(a, u_{0}, u_{\alpha}\right)=T \cup P$ be a skirted graph of order m with $P=u_{0} u_{1} u_{2} \cdots u_{\alpha}$. Let $C=C\left(u, u_{i}, u_{j}\right)$ be a triangle of order t in $G\left(a, u_{0}, u_{\alpha}\right)$, where $t \leq m$. If $u=a$, then G itself is a triangle. By Theorem 3.9, $G \square P_{3}$ is pancyclic. Now, we assume that $u \neq a$.

Let G^{\prime} be a skirted graph of order $m-(t-1)$ obtained from a skirted graph G by contracting the triangle C and u^{*} be the vertex of G^{\prime} representing the triangle
C. By Theorem 2.5, G^{\prime} is Hamiltonian. Let $C^{\prime}=u^{*} v_{1} v_{2} v_{3} \cdots v_{m-t} u^{*}$ be a spanning cycle in G^{\prime}. Then, we let $P^{\prime}=u^{*} v_{1} v_{2} v_{3} \cdots v_{m-t}$ be a spanning path in G^{\prime}.

Since u^{*} is the vertex of G^{\prime} representing the triangle C and v_{1} is adjacent to u^{*}, v_{1} is adjacent to either u, u_{i} or u_{j}. By Observation 3.15, without loss of generality, let v_{1} be adjacent to u_{j}. Then, $P\left(u_{i}, v_{m-t}\right)=u_{i} u_{i+1} u_{i+2} \cdots u_{j} v_{1} v_{2} \cdots v_{m-t}$ is a path of length $m-2$ (without the vertex u) in G.

Now, consider the 3-generalized prism over a skirted graph which contains three copies of the same skirted graph. Since $P\left(u_{i}, v_{m-t}\right) \square P_{3}$ is a subgraph of $G \square P_{3}$, we show that $G \square P_{3}$ is pancyclic by applying Lemma 3.13. Then, we consider two cases as follows.

Case 1. $m-1$ is even. By Lemma 3.13(i), $P\left(u_{i}, v_{m-t}\right) \square P_{3}$ contains a cycle of each even length l for $4 \leq l \leq 3(m-1)$ in which it contains the edge $u_{i}^{(1)} u_{i+1}^{(1)}$. Note that, for all $1 \leq s \leq 3$, vertex $u^{(s)}$ has not been contained in $P\left(u_{i}, v_{m-t}\right) \square P_{3}$. To find an odd cycle, we replace $u_{i}^{(1)} u_{i+1}^{(1)}$ of such cycles with a path $u_{i}^{(1)} u^{(1)} u_{i+1}^{(1)}$ and then obtain a cycle of each odd length l for $5 \leq l \leq 3(m-1)+1=3 m-2$. Let C^{\prime} be the cycle of length $3 m-2$ without the vertex $u^{(3)}$ (see Figure 3.6 (a)). By Remark 3.14, C^{\prime} contains the edge $u_{i}^{(3)} u_{i+1}^{(3)}$. Then, we replace $u_{i}^{(3)} u_{i+1}^{(3)}$ of C^{\prime} with a path $u_{i}^{(3)} u^{(3)} u_{i+1}^{(3)}$ and then obtain a cycle of length $3 m-1$. Thus, we obtain that $G \square P_{3}$ contains a cycle of each length l for all $4 \leq l \leq 3 m-1$.

Case 2. $m-1$ is odd. By Lemma 3.13(ii), $P\left(u_{i}, v_{m-t}\right) \square P_{3}$ contains a cycle of each even length l for $4 \leq l \leq 3(m-1)-1$ in which it contains edge $u_{i}^{(1)} u_{i+1}^{(1)}$. Note that, for all $1 \leq s \leq 3$, vertex $u^{(s)}$ has not been contained in $P\left(u_{i}, v_{m-t}\right) \square P_{3}$. To find an odd cycle, we replace $u_{i}^{(1)} u_{i+1}^{(1)}$ of such cycles with a path $u_{i}^{(1)} u^{(1)} u_{i+1}^{(1)}$ and then obtain a cycle of each odd length l for $5 \leq l \leq 3(m-1)=3 m-3$. Let C^{\prime} be the cycle of length $3 m-3$ without vertex $u^{(3)}$ (see Figure 3.6 (b)). By Remark 3.14, C^{\prime} contains edge $u_{i}^{(3)} u_{i+1}^{(3)}$. Thus, we replace $u_{i}^{(3)} u_{i+1}^{(3)}$ of C^{\prime} with a path $u_{i}^{(3)} u^{(3)} u_{i+1}^{(3)}$ and then obtain a cycle of length $3 m-2$. Therefore, $G \square P_{3}$ contains a cycle of each length l for all $4 \leq l \leq 3 m-2$.

We shall find a cycle of length $3 m-1$ in $G \square P_{3}$. Recall that $C=C\left(u, u_{i}, u_{j}\right)$ is a triangle of order t in $G=G\left(a, u_{0}, u_{\alpha}\right)$ such that $u \neq a$. To show that $G \square P_{3}$

Figure 3.6: (a) The dashed line represents a cycle of length $3 m-2$ in $G \square P_{3}$ when $m-1$ is even and (b) The dashed line represents a cycle of length $3 m-3$ in $G \square P_{3}$ when $m-1$ is odd
contains a cycle of length $3 m-1$, we give the following paths and link them together with edges joining each copy of G.

- For the first copy of G, we consider subgraph G^{\prime}.

In the first case, let $u_{j}=u_{\alpha}$. Since $u \neq a$, we have $u_{j} \neq u_{\alpha}$ or $u_{i} \neq u_{0}$. Thus, in this case, $u_{i} \neq u_{0}$ and $C\left(u, \bar{u}_{i}, u_{j}\right)=C\left(u, u_{i}, u_{\alpha}\right)$. Then, $G^{\prime}=$ $G^{\prime}\left(a, u_{0}, u^{*}\right)$. Since G^{\prime} is a skirted graph, by Lemma 2.7, G^{\prime} contains an $\left(a, u^{*}\right)$-path $P_{G^{\prime}}\left(a, u^{*}\right)$ of length $m-t$. Suppose that v^{\prime} is adjacent to u^{*} in $P_{G^{\prime}}\left(a, u^{*}\right)$. Then, v^{\prime} is adjacent to either u or u_{i} in G. We consider two cases as follows.

- If v^{\prime} is adjacent to u, then $P\left(v^{\prime}, u_{j}\right)=v^{\prime} u u_{i+1} u_{i+2} \cdots u_{j}$ is a path of length $t-1$ (without the vertex u_{i}).
- If v^{\prime} is adjacent to u_{i}, then $P\left(v^{\prime}, u_{j}\right)=v^{\prime} u_{i} u_{i+1} u_{i+2} \cdots u_{j}$ is a path of length $t-1$ (without the vertex u).

Therefore, we can extend the path $P_{G^{\prime}}\left(a, u^{*}\right)$ of length $m-t$ in G^{\prime} to be a path $P\left(a, u_{\alpha}\right)$ of length $m-2$ in G by replacing the edge $v^{\prime} u^{*}$ of G^{\prime} with the path $P\left(v^{\prime}, u_{j}\right)$.
Now, let $u_{j} \neq u_{\alpha}$. Then, $G^{\prime}=G^{\prime}\left(a, w, u_{\alpha}\right)$. Note that $w=u^{*}$ if $u_{i}=u_{0}$.

Otherwise, $w=u_{0}$. Since $G^{\prime}\left(a, w, u_{\alpha}\right)$ is a skirted graph, by Lemma 2.7, G^{\prime} contains an $\left(a, u_{\alpha}\right)$-path $P_{G^{\prime}}\left(a, u_{\alpha}\right)$ of length $m-t$. Since $P_{G^{\prime}}\left(a, u_{\alpha}\right)$ is a spanning path in $G^{\prime}, P_{G^{\prime}}\left(a, u_{\alpha}\right)$ contains the vertex u^{*}. Suppose that v^{\prime} and $v^{\prime \prime}$ are adjacent to u^{*} in $P_{G^{\prime}}\left(a, u_{\alpha}\right)$. Then, each of v^{\prime} and $v^{\prime \prime}$ is adjacent to either u, u_{i} or u_{j} in G. We consider three cases as follows.

- If $v^{\prime} u_{i}, u_{j} v^{\prime \prime} \in E(G)$, then $P\left(v^{\prime}, v^{\prime \prime}\right)=v^{\prime} u_{i} u_{i+1} u_{i+2} \cdots u_{j} v^{\prime \prime}$ is a path of length t (without the vertex u).
- If $v^{\prime} u, u_{j} v^{\prime \prime} \in E(G)$, then $P\left(v^{\prime}, v^{\prime \prime}\right)=v^{\prime} u u_{i+1} u_{i+2} \cdots u_{j} v^{\prime \prime}$ is a path of length t (without the vertex u_{i}).
- If $v^{\prime} u, u_{i} v^{\prime \prime} \in E(G)$, then $P\left(v^{\prime}, v^{\prime \prime}\right)=v^{\prime} u u_{j-1} u_{j-2} \cdots u_{i+1} u_{i} v^{\prime \prime}$ is a path of length t (without the vertex u_{j}).

Therefore, we can extend the path $P_{G^{\prime}}\left(a, u_{\alpha}\right)$ of length $m-t$ in G^{\prime} to be a path $P\left(a, u_{\alpha}\right)$ of length $m-2$ in G by replacing the path $v^{\prime} u^{*} v^{\prime \prime}$ in $P_{G^{\prime}}\left(a, u_{\alpha}\right)$ with the path $P\left(v^{\prime}, v^{\prime \prime}\right)$. Thus, the first copy of G contains a path $P\left(a^{(1)}, u_{\alpha}^{(1)}\right)$ of length $m-2$.

- By Remark 2.8(ii), the second copy of G contains a $\left(u_{0}^{(2)}, u_{\alpha}^{(2)}\right)$-path $P\left(u_{0}^{(2)}, u_{\alpha}^{(2)}\right)$ of length $m-2$ (without the root $a^{(2)}$).
- By Remark 2.8(i), the last copy of G contains an $\left(a^{(3)}, u_{0}^{(3)}\right)$-path $P\left(a^{(3)}, u_{0}^{(3)}\right)$ of length $m-1$.
- The path $P^{*}=a^{(3)} a^{(2)} a^{(1)}$ of length 2 is a path in $G \square P_{3}$ from the last copy to the first copy of G.

Now, we link each path by edges $u_{\alpha}^{(1)} u_{\alpha}^{(2)}$ and $u_{0}^{(2)} u_{0}^{(1)}$. The cycle of length $3 m-1$ is

$$
P\left(a^{(1)}, u_{\alpha}^{(1)}\right) P\left(u_{\alpha}^{(2)}, u_{0}^{(2)}\right) P\left(u_{0}^{(3)}, a^{(3)}\right) P^{*}
$$

Therefore, $G \square P_{3}$ contains a cycle of length $3 m-1$.
From these two cases, we obtain that $G \square P_{3}$ contains a cycle of each length l for all $4 \leq l \leq 3 m-1$. Since G is a skirted graph, by Lemma 3.2, G contains a
cycle of length 3. By Theorem 3.1, $G \square P_{3}$ is Hamiltonian, i.e., it contains a cycle of length 3 m . Therefore, $G \square P_{3}$ is pancyclic.

By the proof of Theorem 3.18, the pancyclicity of the 3-generalized prism over a skirted graph, we need to consider the special case using the technique that we have used in Chapter II. However, there is no special case when we show that $G \square P_{n}$ is pancyclic for $n \geq 4$. Therefore, we prove the following theorem by considering $n \geq 4$.

Theorem 3.19. The n-generalized prism over any skirted graph is pancyclic.
Proof. First, we consider a single skirted graph. Let $G=G\left(a, u_{0}, u_{\alpha}\right)=T \cup P$ be a skirted graph of order m with $P=u_{0} u_{1} u_{2} \cdots u_{\alpha}$. Let P_{n} be a path of order $n \geq 2$. If $n=2$ or 3 , then we respectively obtain from Theorems 3.16 and 3.18 that $G \square P_{n}$ is pancyclic. Suppose now that $n \geq 4$.

Let $C=C\left(u, u_{i}, u_{j}\right)$ be a triangle of order t in $G\left(a, u_{0}, u_{\alpha}\right)$, where $t \leq m$. If $u=a$, then G itself is a triangle. By Theorem 3.9, the n-generalized prism over G is pancyclic. Now, we assume that $u \neq a$.

Let G^{\prime} be a skirted graph of order $m-(t-1)$ obtained from a skirted graph G by contracting the triangle C and u^{*} be the vertex of G^{\prime} representing the triangle C. By Theorem 2.5, G^{\prime} is Hamiltonian. Let $C^{\prime}=u^{*} v_{1} v_{2} v_{3} \cdots v_{m-t} u^{*}$ be a spanning cycle in G^{\prime}. Then, $P^{\prime}=u^{*} v_{1} v_{2} v_{3} \cdots v_{m-t}$ is a spanning path in G^{\prime}.

Since u^{*} is the vertex of G^{\prime} representing the triangle C and v_{1} is adjacent to u^{*}, v_{1} is adjacent to either u, u_{i} or u_{j}. By Observation 3.15, without loss of generality, let v_{1} be adjacent to u_{j}. Then, $P\left(u_{i}, v_{m-t}\right)=u_{i} u_{i+1} u_{i+2} \cdots u_{j} v_{1} v_{2} \cdots v_{m-t}$ is a path of length $m-2$ (without the vertex u) in G.

Now, consider the n-generalized prism over a skirted graph which contains n copies of the same skirted graph. Since $u_{i} u, u u_{i+1} \in E(G)$, there is a path $P_{m}^{\prime}=u_{i} u u_{i+1} u_{i+2} \cdots u_{j} v_{1} \cdots v_{m-t}$ of length $m-1$ in G, i.e., P_{m}^{\prime} is a spanning path in G. We can see that $P_{m}^{\prime} \square P_{n}$ is a subgraph of $G \square P_{n}$.

To show that $G \square P_{n}$ is pancyclic, we consider two cases as follows.

Case 1. n is even. By Lemma 3.12, $P_{m}^{\prime} \square P_{n}$ contains a cycle of each even length l for $4 \leq l \leq m n$. Since $P_{m}^{\prime} \square P_{n}$ is a subgraph of $G \square P_{n}, G \square P_{n}$ contains a cycle of each even length l for $4 \leq l \leq m n$. We shall find a cycle of each odd length in $G \square P_{n}$ by considering two disjoint induced subgraphs $G \square P_{2}$ and $G \square P_{n-2}$ of $G \square P_{n}$, where $G \square P_{2}$ is induced by the first two copies of G and $G \square P_{n-2}$ is induced by the last $n-2$ copies of G.

First, we consider $G \square P_{2}$. By Theorem 3.16, $G \square P_{2}$ contains a cycle of each length l for $3 \leq l \leq 2 m$. Since $G \square P_{2}$ is a subgraph of $G \square P_{n}$, we obtain that $G \square P_{n}$ contains a cycle of each length l for $3 \leq l \leq 2 m$. Let C^{*} be the cycle of length $2 m-1$ in $G \square P_{n}$ containing edge $v_{m-t-1}^{(2)} v_{m-t}^{(2)}$, which exists by Remark 3.17.

Next, we consider subgraph $G \square P_{n-2}$ induced by the last $n-2$ copies of G, in order to show that $G \square P_{n}$ contains a cycle of each odd length l for $2 m+1 \leq$ $l \leq m n-1$. Since $P_{m}^{\prime} \square P_{n-2}$ is a subgraph of $G \square P_{n-2}$, we can consider cycles in $P_{m}^{\prime} \square P_{n-2}$ instead of $G \square P_{n-2}$. Since $n-2$ is even, by Lemma 3.12 and the reverse of the path P_{m}^{\prime}, the edge $v_{m-t-1}^{(3)} v_{m-t}^{(3)}$ is contained in a cycle of each length l where l is an even integer ranging from 4 to $m(n-2)$ in $P_{m}^{\prime} \square P_{n-2}$. Since $v_{m-t-1}^{(2)} v_{m-t-1}^{(3)}, v_{m-t}^{(2)} v_{m-t}^{(3)}, v_{m-t-1}^{(3)} v_{m-t}^{(3)} \in E\left(G \square P_{n}\right)$, we delete the edge $v_{m-t-1}^{(2)} v_{m-t}^{(2)}$ of C^{*} and then join $v_{m-t-1}^{(2)}$ to $v_{m-t-1}^{(3)}$ and $v_{m-t}^{(2)}$ to $v_{m-t}^{(3)}$. Then, we can extend C^{*} to be a cycle of length $2 m+1$. In addition, we delete the edge $v_{m-t-1}^{(3)} v_{m-t}^{(3)}$ of each cycle of each length l in $P_{m}^{\prime} \square P_{n-2}$ and then join $v_{m-t-1}^{(2)}$ to $v_{m-t-1}^{(3)}$ and $v_{m-t}^{(2)}$ to $v_{m-t}^{(3)}$. Then, we can extend C^{*} to be a cycle of each length l for $2 m+3 \leq l \leq m n-1$. Therefore, $G \square P_{n}$ is pancyclic.

Case 2. n is odd. Since $n-3 \geq 2$ is even, by Case $1, G \square P_{n-3}$ contains a cycle of each length l for $3 \leq l \leq m(n-3)$. Thus, we consider two disjoint induced subgraphs $G \square P_{n-3}$ and $G \square P_{3}$ of $G \square P_{n}$, where $G \square P_{n-3}$ is induced by the first $n-3$ copies of G and $G \square P_{3}$ is induced by the last three copies of G.

We shall find a cycle of each remaining length l for $m(n-3)+1 \leq l \leq m n$. Recall that G is a skirted graph of order m and $P_{m}^{\prime}=u_{i} u u_{i+1} u_{i+2} \cdots u_{j} v_{1} \cdots v_{m-t}$ is a spanning path in G. Then, $P_{m}^{\prime} \square P_{n}$ is a subgraph of $G \square P_{n}$. Let $C_{\text {odd }}$ be the cycle of odd length $m(n-3)-1$ in $P_{m}^{\prime} \square P_{n-3}$ containing the edge $v_{m-t}^{(n-3)} v_{m-t-1}^{(n-3)}$
(see Figure $3.7(\mathrm{a})$) and $C_{\text {even }}$ be the cycle of even length $m(n-3)$ in $P_{m}^{\prime} \square P_{n-3}$ containing the edge $v_{m-t}^{(n-3)} v_{m-t-1}^{(n-3)}$ (see Figure $3.7(\mathrm{~b})$).

(a)

(b)

Figure 3.7: (a) The dashed line represents $C_{\text {odd }}$ of length $m(n-3)-1$ and (b) The dashed line represents $C_{\text {even }}$ of length $m(n-3)$

Consider $G \square P_{3}$. By Lemma 3.13(i) and the reverse of the path $P_{m}^{\prime}, G \square P_{3}$ contains a cycle of each even length l for $4 \leq l \leq 3 m$ containing edge $v_{m-t}^{(n-2)} v_{m-t-1}^{(n-2)}$.

First of all, we replace the edge $v_{m-t-1}^{(n-3)} v_{m-t}^{(n-3)}$ of the cycle $C_{o d d}$ with the path $v_{m-t-1}^{(n-3)} v_{m-t-1}^{(n-2)} v_{m-t}^{(n-2)} v_{m-t}^{(n-3)}$ and then obtain a cycle of odd length $m(n-3)+1$. Next, we delete the edge $v_{m-t-1}^{(n-3)} v_{m-t}^{(n-3)}$ of $C_{o d d}$ and the edge $v_{m-t-1}^{(n-2)} v_{m-t}^{(n-2)}$ of each cycle of each even length l in $G \square P_{3}$ and then join $v_{m-t-1}^{(n-3)}$ to $v_{m-t-1}^{(n-2)}$ and $v_{m-t}^{(n-3)}$ to $v_{m-t}^{(n-2)}$. Hence, we can extend $C_{\text {odd }}$ of length $m(n-3)-1$ to be a cycle of each odd length l for $m(n-3)+3 \leq l \leq m n-1$ when m is even and extend $C_{o d d}$ to be a cycle of each odd length l for $m(n-3)+3 \leq l \leq m n-2$ when m is odd. Thus, $G \square P_{n}$ contains a cycle of each odd length l for $m(n-3)+1 \leq l \leq m n-1$ when m is even and a cycle of each odd length l for $m(n-3)+1 \leq l \leq m n-2$ when m is
odd.
For cycles of even length, in a similar way, we extend $C_{\text {even }}$ of length $m(n-3)$ to be a cycle of each even length l for $m(n-3)+2 \leq l \leq m n$ when m is even and extend $C_{\text {even }}$ to be a cycle of each even length l for $m(n-3)+2 \leq l \leq m n-1$ when m is odd. Since $G \square P_{n}$ is Hamiltonian, it contains a cycle of length $m n$.

Thus, $G \square P_{n}$ contains a cycle of each length l for $m(n-3)+1 \leq l \leq m n$. Therefore, $G \square P_{n}$ is pancyclic.

3.4 Conclusion and discussion

In this chapter, we prove that the n-generalized prism over a skirted graph is pancyclic. The result holds for any skirted graph, even though we have not known the exact configuration of this family of graphs. Moreover, since the Cartesian product of a graph G and a path P_{n} (or $G \square P_{n}$) is a subgraph of $G \square C_{n}$ and $G \square K_{n}$, the results can be concluded in a similar way when P_{n} is replaced by C_{n} or K_{n} for $n \geq 3$.

For the vertex pancyclicity of the n-generalized prism over a skirted graph G, we notice that there are vertices of G in which it is not contained in any cycle of length 3 in G. Moreover, the Cartesian product of G and a path does not generate a cycle of length 3 . Thus, the n-generalized prism over a skirted graph is not vertex pancyclic. This motivates us to investigate the other product of graphs in the next chapter.

CHAPTER IV THE LEXICOGRAPHIC PRODUCTS OF SOME GRAPHS

To study vertex pancyclicity over lexicographic products of some graphs, we first provide the preliminary results and motivation of the main results of this chapter as follows.

4.1 Preliminary results and motivation

Apart from pancyclicity, there are a number of works showing that several nontrivial sufficient conditions on a graph which implies that the graph is Hamiltonian also implies that the graph is vertex k-pancyclic for some k. For instance, in 1960, Ore 14 introduced the degree sum condition which was stated that "for each pair of non-adjacent vertices u, v in $G, d(u)+d(v) \geq n(G) "$ and showed that if G is a graph satisfying the degree sum condition, then G is Hamiltonian. Bondy [3] showed that if G is graph satisfying the degree sum condition, then G is pancyclic or $G=K_{n / 2, n / 2}$. In 1984, Cai [6] considered the degree sum condition and proved that a graph G satisfying this condition is vertex 4-pancyclic or $G=K_{n / 2, n / 2}$, see [16] for more examples.

For Cartesian product of graphs, there also are a bunch of works relating to the metaconjecture, i.e., almost any nontrivial condition on the Cartesian product of graphs which implies that the Cartesian product of graphs is Hamiltonian also implies that the Cartesian product of graphs is pancyclic (there may be a simple family of exceptional graphs). The following theorems are some conditions concerning hamiltonicity of the Cartesian product of graphs which imply pancyclicity.

Theorem 4.1. The conditions concerning hamiltonicity are provided as follows.
(i) [15] If G is a 3-connected cubic graph, then $G \square P_{2}$ is Hamiltonian.
(ii) 15) If G is an even 3-cactus, then $G \square P_{2}$ is Hamiltonian.
(iii) 1才 If G is a connected graph, then $G \square K_{n}$ is Hamiltonian for $\Delta(G) \leq n$.
(iv) [5] If G is a connected graph, then $G \square C_{n}$ is Hamiltonian for $\Delta(G) \leq n$.
(v) [5] Let G be a connected almost claw-free graph and $n \geq 4$ be an even integer. Then, $G \square P_{n}$ is Hamiltonian.

A cactus is a connected graph in which every block is a K_{2} or a cycle, where a block is a maximal 2-connected subgraph. A 3-cactus is a cactus with maximum degree 3 . An even 3 -cactus is a 3 -cuctus in which all of its cycles are of even length.

However, such conditions only imply that the Cartesian product of graphs is vertex even pancyclic as follows.

Theorem 4.2. The conditions concerning vertex even pancyclicity are provided as follows.
(i) [8] If G is a 3-connected cubic graph, then $G \square P_{2}$ is vertex even pancyclic.
(ii) [8] If G is an even 3 -cactus, then $G \square P_{2}$ is vertex even pancyclic.
(iii) [5] Let n be even and $n \geq 4$. If G is a 1-pendent cactus with $\Delta(G) \leq \frac{1}{2}(n+2)$, then $G \square P_{n}$ is vertex even pancyclic.

A claw is a $K_{1,3}$. The vertex of degree 3 is its center. For a set $B \subseteq V(G), B$ is a dominating set if every vertex of G is in B or has a neighbor in B. A graph G is 2 -dominated if the size of a minimum dominating set of G is at most 2. A graph G is called an almost claw-free graph if the set of center vertices of induced claws in G is independent and the neighborhood of each center vertex induces a 2-dominated subgraph. For a graph G, a vertex of degree 1 in G is called pendent if its neighbor is a vertex of degree at least 3 in G. A 1-pendent cactus is a cactus in which every vertex v has at most 1 pendent neighbor (v can have other non pendent neighbors).

Here, we notice that vertex pancyclicity over the Cartesian product of graphs is affected by the number of edges between each copy of a graph. This motivates us to consider the lexicographic product of graphs that contains more edges.

Observation 4.3. From the definitions of the Cartesian product of graphs and the lexicographic product of graphs G and H given in Chapter I, we can see that $V(G \square H)=V(G \circ H)$ and $E(G \square H) \subset E(G \circ H)$. Therefore, the vertex pancyclicity over $G \square H$ implies the vertex pancyclicity over $G \circ H$. Here, we only consider vertex pancyclicity over $G \circ H$ on the conditions that do not imply vertex pancyclic over $G \square H$.

For the pancyclicity of the lexicographic product of graphs, there are a few results. In 2006, Kaiser and Kriesell [11] investigated toughness conditions on a graph G that the lexicographic product of G and a graph is Hamiltonian and also pancyclic in which states that if G is 4-tough and H contains at least one edge, then $G \circ H$ is pancyclic. In addition, they proved the following theorem.

Theorem 4.4. [11] If G and H are graphs with at least one edge each, then $G \circ H$ either has no cycles, or it contains cycles of all lengths between the length of the shortest cycle and the length of the longest cycle.

The following theorem on vertex pancyclic will be used in this chapter.
Theorem 4.5. [G] Let G be a graph of order $n \geq 4$ with $d(u)+d(v) \geq n$ for distinct nonadjacent vertices u, v in G. Then, G is vertex 4-pancyclic unless n is even and $G=K_{n / 2, n / 2}$.

We know that a vertex pancyclic graph is Hamiltonian. Then, a non-Hamiltonian graph is not vertex pancyclic. Here, we provide a necessary condition for a graph to be Hamiltonian as follows.

Theorem 4.6. 1g] If G has a Hamiltonian cycle, then for each nonempty set $S \subseteq V$, the graph $G-S$ has at most $|S|$ components.

To study vertex pancyclicity over the lexicographic products of graphs, we start by investigating the lexicographic product of K_{n} and a graph G in Subsection 2.1. By Theorem 4.5, we obtain that $K_{n} \circ G$ is vertex pancyclic for $n \geq 3$. In Subsection 2.2, we show that $G_{1} \circ G_{2}$ is vertex pancyclic if G_{1} is a traceable graph of even order and G_{2} is a graph with at least one edge. Since G_{1} is traceble, we consider the lexicographic product of a path and G_{2} instead of the lexicographic product of G_{1} and G_{2}. Furthermore, we directly show that if G_{1} and G_{2} are nontrivial traceable graphs, then $G_{1} \circ G_{2}$ is vertex pancyclic. In Subsection 2.3, we show that if G_{1} is Hamiltonian and G_{2} is a graph with at least one edge, then $G_{1} \circ G_{2}$ is vertex pancyclic. Since G_{1} is Hamiltonian, we consider the lexicographic product of a cycle and G_{2} instead of the lexicographic product of G_{1} and G_{2}.

4.2 Vertex pancyclicity of some lexicographic products

4.2.1 Complete Graphs

First of all, we investigate the lexicographic product of a complete graph and a general graph. Let K_{n} be a complete graph of order n and A_{k} be an empty graph of order k. Theorem 4.5 gives us the following theorem.

Theorem 4.7. $K_{n} \circ A_{k}$ is vertex pancyclic for $n \geq 3$ and $k \geq 1$.
Proof. Let (x, y) be any vertex of $K_{n} \circ A_{k}$. Then, $N((x, y))=\bigcup_{x^{\prime} \in V\left(K_{n}\right)-\{x\}}\left\{\left(x^{\prime}, y\right) \mid\right.$ $\left.y \in V\left(A_{k}\right)\right\}$. Since $n \geq 3$, there are $x_{i}, x_{j} \in V\left(K_{n}\right)-\{x\}$ such that $x_{i} \neq x_{j}$. Then, $(x, y)\left(x_{i}, y\right)\left(x_{j}, y\right)(x, y)$ forms a cycle of length 3 containing (x, y).

Next, we can see that the order of $K_{n} \circ A_{k}$ is $n k$ and $|N((x, y))|=(n-1) k$. Let $u, v \in V\left(K_{n} \circ A_{k}\right)$ such that $u v \notin E\left(K_{n} \circ A_{k}\right)$. Then, $d(u)+d(v)=2(n-1) k=$ $2 n k-2 k \geq n k$. Since $K_{n} \circ A_{k}$ is not isomorphic to a balance complete bipartite graph $K_{\frac{n k}{2}, \frac{n k}{2}}$, by Theorem 4.5, we obtain that $K_{n} \circ A_{k}$ is vertex 4-pancyclic. Thus, (x, y) is contained in a cycle of each length l for $4 \leq l \leq n k$. Therefore, $K_{n} \circ A_{k}$ is vertex pancyclic.

Since A_{k} is a spanning subgraph of all graphs of order k, we obtain the following corollary.

Corollary 4.8. Let $n \geq 3$ and G be a graph. Then, $K_{n} \circ G$ is vertex pancyclic.
By Corollary 4.8, since C_{3} is a complete graph of order 3, we obtain the following corollary.

Corollary 4.9. Let G be a graph. Then, $C_{3} \circ G$ is vertex pancyclic.

4.2.2 Paths

We start this section by considering the lexicographic product of a path P_{2} and any graph as follows.

Let $P_{2}=x_{1} x_{2}$ and A_{k} be an empty graph of order k. Then, $P_{2} \circ A_{k}$ is isomorphic to a balanced complete bipartite graph $K_{k, k}$ with two partite sets, V_{1} and V_{2}, where $V_{1}=\left\{\left(x_{1}, y\right) \mid y \in A_{k}\right\}$ and $V_{2}=\left\{\left(x_{2}, y\right) \mid y \in A_{k}\right\}$.

Since a balanced complete bipartite graph $K_{k, k}$ is Hamiltonian and also vertex even pancyclic for $k \geq 2$ (to prove that $K_{k, k}$ is vertex even pancyclic, we can use the result that it is Hamiltonian), we obtain that $P_{2} \circ A_{k}$ is vertex even pancyclic for $k \geq 2$. Since A_{k} is a spanning subgraph of any graph of order k, we obtain the following remark.

Remark 4.10. Let G be a nontrivial graph. Then, $P_{2} \circ G$ is vertex even pancyclic.

Now, we investigate the lexicographic product of P_{2} and a graph G as follows.
Theorem 4.11. Let G be a nontrivial graph with at least one edge. Then, $P_{2} \circ G$ is vertex pancyclic.

Proof. Let $P_{2}=x_{1} x_{2}$ and $V(G)=\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{k}\right\}$ for $k \geq 2$. Since G contains at least one edge, assume that $y_{1} y_{2} \in E(G)$. Then, $\left(x_{1}, y_{1}\right)\left(x_{1}, y_{2}\right)$ and $\left(x_{2}, y_{1}\right)\left(x_{2}, y_{2}\right)$ are edges of $P_{2} \circ G$. Let $(x, y) \in V\left(P_{2} \circ G\right)$. If $x=x_{1}$, then (x, y) is adjacent to both vertices $\left(x_{2}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. Thus, $(x, y)\left(x_{2}, y_{1}\right)\left(x_{2}, y_{2}\right)(x, y)$ is a cycle of length 3 containing (x, y). If $x=x_{2}$, then (x, y) is adjacent to both vertices $\left(x_{1}, y_{1}\right)$ and
$\left(x_{1}, y_{2}\right)$. Thus, $(x, y)\left(x_{1}, y_{1}\right)\left(x_{1}, y_{2}\right)(x, y)$ is a cycle of length 3 containing (x, y). Thus, each vertex of $P_{2} \circ G$ is contained in a cycle of length 3 .

Since G contains a cycle of length $3, P_{2} \circ G$ is not isomorphic to any complete bipartite graph. Since $P_{2} \circ G$ is of order $2 k \geq 4$ with $d(u)+d(v) \geq 2 k$ for any pair of distinct nonadjacent vertices u and v in $P_{2} \circ G$, by Theorem 4.5, G is vertex 4-pancyclic.

Therefore, $P_{2} \circ G$ is vertex pancyclic.
Now, we consider the lexicographic product of a path P_{n} for $n \geq 2$ and a graph G as follows.

Remark 4.12. For any k and $n \geq 3, P_{n} \circ A_{k}$ is non-Hamiltonian.
Let $P_{n}=x_{1} x_{2} x_{3} \cdots x_{n}$ and $V\left(A_{k}\right)=\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{k}\right\}$. Choose $S=\left\{\left(x_{2}, y\right) \mid y \in\right.$ $\left.V\left(A_{k}\right)\right\}$. Then, $|S|=k$. Let H denote the graph $\left(P_{n} \circ A_{k}\right)-S$. Then, H has at least $k+1$ components, namely, $H\left[\left(x_{1}, y_{1}\right)\right], H\left[\left(x_{1}, y_{2}\right)\right], H\left[\left(x_{1}, y_{3}\right)\right], \ldots, H\left[\left(x_{1}, y_{k}\right)\right]$ and $H\left[\left\{\left(x_{i}, y\right) \mid i \in\{3,4,5, \ldots, n\}, y \in V(G)\right\}\right]$. By Theorem 4.6, $P_{n} \circ A_{k}$ is nonHamiltonian.

From Remark 4.12, we can see that the lexicographic product of P_{n} and an empty graph is non-Hamiltonian and not vertex pancyclic. We invertigate the condition of a graph G for $P_{n} \circ G$ to be vertex pancyclic and show that $P_{n} \circ G$ is vertex pancyclic when n is even and G contains at least one edge. We start with the following lemmas.

Lemma 4.13. Let $k \geq 2$. If u and v are on different partite sets of a complete bipartite graph $K_{k, k}$, then there is a path $P(u, v)$ in $K_{k, k}$ of each odd length l for $1 \leq l \leq 2 k-1$.

Proof. Let $K_{k, k}$ be a complete bipartite graph for $k \geq 2$ with partite sets V_{1} and V_{2}. Assume that $u \in V_{1}$ and $v \in V_{2}$. For $k=2$, let $u^{\prime} \in V_{1}-\{u\}$ and $v^{\prime} \in V_{2}-\{v\}$. We obtain that $u v$ and $u v^{\prime} u^{\prime} v$ are paths $P(u, v)$ of length 1 and 3 , respectively.

For $k \geq 3$, let $V_{1}^{*}=V_{1}-\{u\}$ and $V_{2}^{*}=V_{2}-\{v\}$. We can see that $K_{k-1, k-1}$ is a subgraph of $K_{k, k}$ induced by $V_{1}^{*} \cup V_{2}^{*}$. Since a balanced complete bipartite
graph is vertex even pancyclic, $K_{k-1, k-1}$ contains a cycle of each even length l for $4 \leq l \leq 2(k-1)$. Let $C=v_{1} v_{2} v_{3} \cdots v_{l} v_{1}$ be a cycle in $K_{k-1, k-1}$ of even length l for some $4 \leq l \leq 2(k-1)$. Then, any two consecutive vertices of C contain in the different partite sets. Without loss of generality, let $v_{1} \in V_{1}^{*}$ and $v_{2} \in V_{2}^{*}$. We see that $v_{i} \in V_{1}^{*}$ if i is odd and $v_{i} \in V_{2}^{*}$ if i is even and $v_{1} v, v_{2} u \in E\left(K_{k, k}\right)$. Then, $u v_{2} v_{3} \cdots v_{l} v_{1} v$ is a path $P(u, v)$ in $K_{k, k}$ of length $l+1$. Note that $l+1$ is an odd number. Since l is an arbitrary even number between 4 and $2(k-1)$, there exists a path $P(u, v)$ in $K_{k, k}$ of each odd length l for $5 \leq l \leq 2 k-1$. In addition, $u v$ and $u v_{2} v_{1} v$ are paths from u to v in $K_{k, k}$ of length 1 and 3 , respectively.

Therefore, there exists a path $P(u, v)$ in $K_{k, k}$ of each odd length l for $1 \leq l \leq$ $2 k-1$.

Lemma 4.14. Let $n \geq 2$ be even and G be a nontrivial graph of order k. If $P_{n}=x_{1} x_{2} x_{3} \cdots x_{n}$ is a path and $y_{1} y_{2} \in E(G)$, then $P_{n} \circ G$ contains a path $P\left(\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right)\right)$ of each length l for $1 \leq l \leq n k-1$.

Proof. Let $P_{n}=x_{1} x_{2} x_{3} \cdots x_{n}$ and $V(G)=\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{k}\right\}$ for $k \geq 2$. Since $y_{1} y_{2} \in E(G)$, vertices $\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right),\left(x_{2}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ form a clique of order 4. Then, there are paths $P\left(\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right)\right)$ of length l for $1 \leq l \leq 3$.

We prove by the mathematical induction on n. For $n=2$, let $V_{1}^{*}=\left\{\left(x_{1}, y\right) \mid y \in\right.$ $\left.V(G)-\left\{y_{1}\right\}\right\}$ and $V_{2}^{*}=\left\{\left(x_{2}, y\right) \mid y \in V(G)-\left\{y_{1}\right\}\right\}$. We can see that $K_{k-1, k-1}$ of which its vertex set is $V_{1}^{*} \cup V_{2}^{*}$ is a subgraph of $P_{n} \circ G$. Since $\left(x_{1}, y_{2}\right) \in V_{1}^{*}$ and $\left(x_{2}, y_{2}\right) \in V_{2}^{*}$, by Lemma 4.13, there exists a path $P\left(\left(x_{1}, y_{2}\right)\left(x_{2}, y_{2}\right)\right)$ in $K_{k-1, k-1}$ of each odd length l for $1 \leq l \leq 2(k-1)-1$. To show that there exists a path $P\left(\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right)\right)$ of each length l for $1 \leq l \leq 2 k-1$, we extend the path $P\left(\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right)\right)$ of each length l for $1 \leq l \leq 2 k-3$ as follows.
(a) Join the vertex $\left(x_{1}, y_{1}\right)$ with the vertex $\left(x_{2}, y_{2}\right)$ of $P\left(\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right)\right)$ (see Figure 4.1(a)).
(b) Join the vertex $\left(x_{2}, y_{1}\right)$ of the edge $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{1}\right)$ with the vertex $\left(x_{2}, y_{2}\right)$ of $P\left(\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right)\right)$ (see Figure 4.1(b)).

Then, a path $P\left(\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right)\right)$ of each odd length l for $1 \leq l \leq 2 k-3$ can

Figure 4.1: (a) Joining vertex $\left(x_{1}, y_{1}\right)$ to a path $P\left(\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right)\right)$ and (b) Joining the edge $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{1}\right)$ to a path $P\left(\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right)\right)$
be extended to a path $P\left(\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right)\right)$ of each even length l for $2 \leq l \leq 2 k-2$ by (a), and of each odd length l for $3 \leq l \leq 2 k-1$ by (b). Thus, we obtain that there exists a path $P\left(\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right)\right)$ of each length l for $1 \leq l \leq 2 k-1$.

For the induction step, let $t \in \mathbb{N}$ and suppose that the statement holds for all even $n, n \leq 2 t$. We show that the statement still holds for $n=2 t+2$. Let $V_{i}=\left\{\left(x_{i}, y\right) \mid y \in V(G)\right\}$ for $i \in\{1,2,3, \ldots, 2 t+2\}$. The set $\bigcup_{i=1}^{2 t} V_{i}$ induces a subgraph $P_{2 t} \circ G$ of $P_{2 t+2} \circ G$. By the induction hypothesis, $P_{2 t+2} \circ G$ contains paths $P\left(\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right)\right)$ of each length l for $1 \leq l \leq 2 t k-1$. In order to show that there exists a path $P\left(\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right)\right)$ of each length l for $2 t k \leq l \leq(2 t+2) k-1$, we perform the following three steps.
(i) We show that there is a path $P\left(\left(x_{2 t}, y_{2}\right),\left(x_{1}, y_{2}\right)\right)$ of length $2 t(k-1)-1$ (without vertices $\left(x_{i}, y_{1}\right)$ for all i). Let $V_{i}^{*}=\left\{\left(x_{i}, y\right) \mid y \in V(G)-\left\{y_{1}\right\}\right\}$ for all $i \in\{1,2,3, \ldots, 2 t\}$. Consider each pair of vertex set $V_{2 j-1}^{*}$ and $V_{2 j}^{*}$ for all $j \in$ $\{1,2,3, \ldots, t\}$. We can see that the set $V_{2 j-1}^{*} \cup V_{2 j}^{*}$ induces a subgraph $K_{k-1, k-1}$ of $P_{n} \circ G$. By Lemma 4.13, there is a path $P\left(\left(x_{2 j-1}, y_{2}\right),\left(x_{2 j}, y_{2}\right)\right)$ of length $2 k-3$. We connect such t paths, $P\left(\left(x_{2 j-1}, y_{2}\right),\left(x_{2 j}, y_{2}\right)\right)$ for all $j \in\{1,2,3, \ldots, t\}$, together to obtain path $P\left(\left(x_{1}, y_{2}\right),\left(x_{2 t}, y_{2}\right)\right)$ of length $2 t(k-1)-1$. By reversing path $P\left(\left(x_{1}, y_{2}\right),\left(x_{2 t}, y_{2}\right)\right)$, there is a path $P\left(\left(x_{2 t}, y_{2}\right),\left(x_{1}, y_{2}\right)\right)$ of length $2 t(k-1)-1$ (see Figure 4.2(a)).
(ii) We show that there is a path $P\left(\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right)\right)$ of length $2 t k$. From (i), we get $P\left(\left(x_{2 t}, y_{2}\right),\left(x_{1}, y_{2}\right)\right)$ of length $2 t(k-1)-1$ and the path $P\left(\left(x_{1}, y_{1}\right),\left(x_{2 t}, y_{2}\right)\right)=$ $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{1}\right)\left(x_{3}, y_{1}\right) \cdots\left(x_{2 t}, y_{1}\right)\left(x_{2 t+1}, y_{1}\right)\left(x_{2 t}, y_{2}\right)$ is a path of length $2 t+1$ (see Figure 4.2(b)). Connecting $P\left(\left(x_{2 t}, y_{2}\right),\left(x_{1}, y_{2}\right)\right)$ to $P\left(\left(x_{1}, y_{1}\right),\left(x_{2 t}, y_{2}\right)\right)$ yields a
path $P\left(\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right)\right)$ of length $2 t k$.

(a)

(b)

Figure 4.2: (a) A path $P\left(\left(x_{2 t}, y_{2}\right),\left(x_{1}, y_{2}\right)\right)$ and (b) A path $P\left(\left(x_{1}, y_{1}\right),\left(x_{2 t}, y_{2}\right)\right)$ of length $2 t+1$
(iii) We show that there is a path $P\left(\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right)\right)$ of each length l for $2 t k+$ $1 \leq l \leq(2 t+2) k-1$. Let $P\left(\left(x_{1}, y_{1}\right),\left(x_{2 t}, y_{1}\right)\right)=\left(x_{1}, y_{1}\right)\left(x_{2}, y_{1}\right)\left(x_{3}, y_{1}\right) \cdots\left(x_{2 t}, y_{1}\right)$ be a path of length $2 t-1$. . By connecting $P\left(\left(x_{1}, y_{1}\right),\left(x_{2 t}, y_{1}\right)\right)$ with the path $P\left(\left(x_{2 t}, y_{2}\right),\left(x_{1}, y_{2}\right)\right)$ of length $2 t(k-1)-1$ from (i), we obtain $P^{*}\left(\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right)\right)$ of length $2 t k-1$ (see Figure 4.3(a)). Consider the set $V_{2 t+1} \cup V_{2 t+2}$. The set $V_{2 t+1} \cup V_{2 t+2}$ induces a subgraph $P_{2} \circ G$ of $P_{2 t+2} \circ G$. Then, $P_{2 t+2} \circ G$ contains a path $P\left(\left(x_{2 t+1}, y_{1}\right),\left(x_{2 t+1}, y_{2}\right)\right)$ of each length l for $1 \leq l \leq 2 k-1$ where each vertex of $P\left(\left(x_{2 t+1}, y_{1}\right),\left(x_{2 t+1}, y_{2}\right)\right)$ contains in the set $V_{2 t+1} \cup V_{2 t+2}$ (see Figure 4.3(b)). Since $\left(x_{2 t+1}, y_{1}\right)$ and $\left(x_{2 t+1}, y_{2}\right)$ are adjacent to vertices $\left(x_{2 t}, y_{1}\right)$ and $\left(x_{2 t}, y_{2}\right)$, we replace the edge $\left(x_{2 t}, y_{1}\right)\left(x_{2 t}, y_{2}\right)$ of $P^{*}\left(\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right)\right)$ by $P\left(\left(x_{2 t+1}, y_{1}\right),\left(x_{2 t+1}, y_{2}\right)\right)$ of each length l for $1 \leq l \leq 2 k-1$ and obtain a path $P\left(\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right)\right)$ of each length l for $2 t k+1 \leq l \leq(2 t+2) k-1$.

Therefore, there exist paths $P\left(\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right)\right)$ of each length l for $1 \leq l \leq$

(a)

(b)

Figure 4.3: (a) A path $P^{*}\left(\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right)\right)$ of length $2 t k-1$ and (b) A path $P\left(\left(x_{2 t+1}, y_{1}\right),\left(x_{2 t+1}, y_{2}\right)\right)$
$n k-1$ for n is an even number $n \geq 2$.

By reversing path $P_{n}=x_{1} x_{2} x_{3} \cdots x_{n}$ into $x_{n} x_{n-1} x_{n-2} \ldots x_{1}$, we also obtain that $P_{n} \circ G$ contains path $P\left(\left(x_{n}, y_{1}\right),\left(x_{n}, y_{2}\right)\right)$ of each length l for $1 \leq l \leq n k-1$ when n is even.

Theorem 4.15. Let $n \geq 2$ be even. If G is a graph with at least one edge, then $P_{n} \circ G$ is vertex pancyclic.

Proof. Let $P_{n}=x_{1} x_{2} x_{3} \cdots x_{n}$ and $V(G)=\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{k}\right\}$ for $k \geq 2$. Since G contains at least one edge, without loss of generality, we assume that $y_{1} y_{2} \in E(G)$.

We prove by the mathematical induction on n. For $n=2$, Theorem 4.11 yileds that $P_{2} \circ G$ is vertex pancyclic.

For the induction step, let $t \in \mathbb{N}$ and suppose that the statement holds for all even n, where $n \leq 2 t$. We show that the statement still holds for $n=2 t+2$. Let $V_{i}=\left\{\left(x_{i}, y\right) \mid y \in V(G)\right\}$ for $i \in\{1,2,3, \ldots, 2 t+2\}$. Then, each $\bigcup_{i=1}^{2 t} V_{i}$ and $\bigcup_{i=2}^{2 t+2} V_{i}$ induces a subgraph $P_{2 t} \circ G$ of $P_{2 t+2} \circ G$. By the induction hypothesis,
a vertex in the induced subgraph $P_{2 t} \circ G$ is contained in a cycle of each length l for $3 \leq l \leq 2 t k$. Then, each vertex of $P_{2 t+2} \circ G$ is contained in a cycle of each length l for $3 \leq l \leq 2 t k$. In order to show that $P_{2 t+2} \circ G$ is vertex pancyclic, we show that each vertex of $P_{2 t+2} \circ G$ is contained in a cycle of each length l for $2 t k+1 \leq l \leq(2 t+2) k$.

Let (x, y) be a vertex of $P_{n} \circ G$. Without loss of generality, we assume that $(x, y) \in \bigcup_{i=1}^{2 t} V_{i}$. We perform two steps as follows.
(i) We show that there is a cycle of length $2 t k+1$ containing (x, y). By Lemma 4.14 and the reversing path, there is a path $P\left(\left(x_{2 t}, y_{1}\right),\left(x_{2 t}, y_{2}\right)\right)$ of length $2 t k-1$ in the subgraph of $P_{2 t+2} \circ G$ induced by $\bigcup_{i=1}^{2 t} V_{i}$. Moreover, $P\left(\left(x_{2 t}, y_{1}\right),\left(x_{2 t}, y_{2}\right)\right)$ contains (x, y). Since $\left(x_{2 t+1}, y_{1}\right)$ is adjacent to two end verties of $P\left(\left(x_{2 t}, y_{1}\right),\left(x_{2 t}, y_{2}\right)\right)$, we connect $\left(x_{2 t+1}, y_{1}\right)$ to each end vertex of $P\left(\left(x_{2 t}, y_{1}\right),\left(x_{2 t}, y_{2}\right)\right)$. Then, a cycle of length $2 t k+1$ containing (x, y) is obtained.
(ii) We show that there is a cycle of each length l for $2 t k+2 \leq l \leq(2 t+2) k$ containing (x, y). We can see that $P_{2} \circ G$ is the subgraph of $P_{2 t+2} \circ G$ induced by $V_{2 t+1} \cup V_{2 t+2}$. By Lemma 4.14, there is a path $P\left(\left(x_{2 t+1}, y_{1}\right),\left(x_{2 t+1}, y_{2}\right)\right)$ in $P_{2} \circ G$ of each length l for $1 \leq l \leq 2 k-1$. For the subgraph of $P_{2 t} \circ G$ of $P_{2 t+2} \circ G$ induced by $\bigcup_{i=1}^{2 t} V_{i}$, we obtain (from Lemma 4.14 and the reversing path) a path $P\left(\left(x_{2 t}, y_{1}\right),\left(x_{2 t}, y_{2}\right)\right)$ of length $2 t k-1$ containing vertex (x, y). Since $\left(x_{2 t+1}, y_{1}\right)$ and $\left(x_{2 t+1}, y_{2}\right)$ are adjacent to $\left(x_{2 t}, y_{1}\right)$ and $\left(x_{2 t}, y_{2}\right)$, respectively, we connect each end vertex of $P\left(\left(x_{2 t+1}, y_{1}\right),\left(x_{2 t+1}, y_{2}\right)\right)$ to each end vertex of $P\left(\left(x_{2 t}, y_{1}\right),\left(x_{2 t}, y_{2}\right)\right)$ together. Then, (x, y) is contained in a cycle of each length l for $2 t k+2 \leq l \leq$ $(2 t+2) k$.

Therefore, $P_{n} \circ G$ is vertex pancyclic for even n.
By Theorem 4.15, we obtain that $P_{n} \circ G$ is vertex pancyclic if n is even and G is a graph with at least one edge. Since a path P_{n} is a subgraph of traceable graphs of order n, we obtain the following corollary.

Corollary 4.16. If G_{1} is a traceable graph of even order and G_{2} is a graph with at least one edge, then $G_{1} \circ G_{2}$ is vertex pancyclic.

Example 4.17. The Petersen graph is a graph of order 10 containing a Hamiltonian path. By Corollary 4.16, the lexicographic product of the Petersen graph and a graph of at least one edge is vertex pancyclic.

Next, we investigate the lexicographic product of odd paths and a graph.
Theorem 4.18. Let $n>2$ be odd. If G is a graph of order $k>\frac{n+1}{2}$ with exactly one edge, then $P_{n} \circ G$ is not vertex pancyclic.

Proof. Let $P_{n}=x_{1} x_{2} x_{3} \cdots x_{n}$ and $V(G)=\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{k}\right\}$ where $k>\frac{n+1}{2}$. Assume that $E(G)=\left\{y_{1} y_{2}\right\}$. Choose $S=\bigcup_{i \in\{2,4,6, \ldots, n-1\}}\left\{\left(x_{i}, y\right) \mid y \in V(G)\right\}$. Then, $|S|=k\left(\frac{n-1}{2}\right)$. Let H denote the graph $\left(P_{n} \circ G\right)-S$. Then, H has $(k-1)\left(\frac{n+1}{2}\right)$ components, namely, $H\left[\left\{\left(x_{i}, y_{1}\right),\left(x_{i}, y_{2}\right)\right\}\right], H\left[\left(x_{i}, y_{3}\right)\right], H\left[\left(x_{i}, y_{4}\right)\right], \ldots, H\left[\left(x_{i}, y_{k}\right)\right]$ for all $i \in\{1,3,5, \ldots, n\}$. Since $k>\frac{n+1}{2},(k-1)\left(\frac{n+1}{2}\right)>k\left(\frac{n-1}{2}\right)$. By Theorem 4.6, $P_{n} \circ G$ is non-Hamiltonian. Therefore, $P_{n} \circ G$ is not vertex pancyclic.

Therefore, if n is odd and G is a graph with the same condition as in Theorem 4.15 , i.e., G is a graph with at least one edge, then we cannot conclude anything about vertex pancyclic of $P_{n} \circ G$.

Now, we investigate the condition that provide vertex pancyclic over the lexicographic product of graphs. We consider nontrivial traceable graphs G_{1} and G_{2} as follows.

Theorem 4.19. If G_{1} and G_{2} are nontrivial traceable graphs, then $G_{1} \circ G_{2}$ is vertex pancyclic.

Proof. Let G_{1} and G_{2} be traceable graphs of order n and m, respectively, for $n, m \geq 2$. Let $P_{n}=x_{1} x_{2} x_{3} \cdots x_{n}$ and $P_{m}=y_{1} y_{2} y_{3} \cdots y_{m}$ be spanning paths in G_{1} and G_{2}, respectively.

If n is even, by Corollary 4.16, $G_{1} \circ G_{2}$ is vertex pancyclic. Assume that n is odd. Let $P_{n-1}=x_{1} x_{2} x_{3} \cdots x_{n-1}$ and $P_{n-1}^{*}=x_{2} x_{3} x_{4} \cdots x_{n}$ be subgraphs of P_{n}. We can see that $P_{n-1} \circ G_{2}$ and $P_{n-1}^{*} \circ G_{2}$ are subgraphs of $G_{1} \circ G_{2}$. By Theorem 4.15, $P_{n-1} \circ G_{2}$ and $P_{n-1}^{*} \circ G_{2}$ are vertex pancyclic. Then, each vertex of $G_{1} \circ G_{2}$ is contained in a cycle of each length l for $3 \leq l \leq k(n-1)$.

We show that each vertex of $G_{1} \circ G_{2}$ is contained in a cycle of each length l for $(n-1) k+1 \leq l \leq n k$. Let $\left(x_{i}, y_{j}\right)$ be a vertex of $G_{1} \circ G_{2}$ for some $i \in\{1,2,3, \ldots, n\}$ and $j \in\{1,2,3, \ldots m\}$.

By the symmetry of $G_{1} \circ G_{2}$, the idea of proof for the vertex $\left(x_{n}, y_{j}\right)$ is similar to the proof of the vertex $\left(x_{1}, y_{j}\right)$. Then, without loss of generality, let $i \in\{1,2,3, \ldots, n-1\}$. Now, we consider the subgraph $P_{n-1} \circ G_{2}$. Similar to the prove of Theorem 4.15, by reversing a path P_{n-1} of Lemma 4.14, there is a path $P\left(\left(x_{n-1}, y_{1}\right),\left(x_{n-1}, y_{2}\right)\right)$ of length $(n-1) k-1$ containing vertex $\left(x_{i}, y_{j}\right)$. Consider subgraph $\left\{x_{n}\right\} \circ G_{2}$ of $G_{1} \circ G_{2}$. This subgraph contains a path $P\left(\left(x_{n}, y_{1}\right),\left(x_{n}, y_{j}\right)\right)=$ $\left(x_{n}, y_{1}\right)\left(x_{n}, y_{2}\right)\left(x_{n}, y_{3}\right) \cdots\left(x_{n}, y_{j}\right)$ where $j \in\{1,2,3, \ldots, k\}$. Since each vertex of $P\left(\left(x_{n}, y_{1}\right),\left(x_{n}, y_{j}\right)\right)$ is adjacent to vertices $\left(x_{n-1}, y_{1}\right)$ and $\left(x_{n-1}, y_{2}\right)$, we connect $P\left(\left(x_{n-1}, y_{1}\right),\left(x_{n-1}, y_{2}\right)\right)$ with each end vertex of $P\left(\left(x_{n}, y_{1}\right),\left(x_{n}, y_{j}\right)\right)$, respectively, for all $j \in\{1,2,3, \ldots, k\}$. Then, $\left(x_{i}, y_{j}\right)$ is contained in a cycle of length l for $(n-1) k+1 \leq l \leq n k$.

Therefore, $G_{1} \circ G_{2}$ is vertex pancyclic.
By Theorem 4.19, we obtain that $P_{n} \circ P_{2}$ is vertex pancyclic for all $n \geq 2$ even though n is an odd number, the following corollary is proved.

Corollary 4.20. If G is a nontrivial traceable graph, then the double graph of G is vertex pancyclic.

4.2.3 Cycles

Theorem 4.21. Let $n \geq 3, k \geq 1$ and A_{k} be an empty graph of order k. Then, $C_{n} \circ A_{k}$ is Hamiltonian.

Proof. We see that $C_{n} \circ A_{1}$ is C_{n} which is Hamiltonian. Assume that $k>1$. Let $C_{n}=x_{1} x_{2} x_{3} \cdots x_{n} x_{1}$ and $V\left(A_{k}\right)=\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{k}\right\}$. We can see that the path $x_{1} x_{2} x_{3} \cdots x_{n}$ in C_{n} forms the path $P_{i}=\left(x_{1}, y_{i}\right)\left(x_{2}, y_{i}\right)\left(x_{3}, y_{i}\right) \cdots\left(x_{n}, y_{i}\right)$ in $C_{n} \circ A_{k}$ for each $i \in\{1,2,3, \ldots, k\}$. Let $e_{i}=\left(x_{n}, y_{i}\right)\left(x_{1}, y_{i+1}\right)$ for $i \in\{1,2,3, \ldots, k-1\}$ and $e_{k}=\left(x_{n}, y_{k}\right)\left(x_{1}, y_{1}\right)$. For $i \in\{1,2,3, \ldots, k-1\}$, each pair of paths P_{i} and P_{i+1}
is connected by the edge e_{i} and the paths P_{k} and P_{1} are connected by the edge e_{k}. A Hamiltonian cycle in $C_{n} \circ A_{k}$ is

$$
P_{1} e_{1} P_{2} e_{2} P_{3} e_{3} \cdots e_{k-1} P_{k} e_{k}
$$

Since $C_{n} \circ A_{k}$ is a subgraph of $C_{n} \circ G$ for any graph G of order k, we obtain the following corollaries.

Corollary 4.22. If $n \geq 3$ and G is a graph, then $C_{n} \circ G$ is Hamiltonian.

Corollary 4.23. If G_{1} is Hamiltonian and G_{2} is a graph, then $G_{1} \circ G_{2}$ is Hamiltonian.

Corollary 4.23 does not hold for the Cartesian product $G_{1} \square G_{2}$. For counter example, let G_{2} be disconnected. Then, $G_{1} \square G_{2}$ is disconnected (and of course non-Hamiltonian) although G_{1} is Hamiltonian.

By Corollary 4.9, $C_{3} \circ A_{k}$ is vertex pancyclic for $k \geq 1$. Unfortunately, the lexicographic product of cycle C_{n} for $n \geq 4$ and empty graph A_{k} for $k \geq 1$ is not always vertex pancyclic. For instance, $C_{7} \circ A_{2}$ contains no cycle of length 5 . Now, we investigate the condition of G that allows the product $C_{n} \circ G$ to be vertex pancyclic.

Theorem 4.24. Let $n \geq 3$. If G is a graph with exactly one edge, then $C_{n} \circ G$ is vertex pancyclic.

Proof. Let $C_{n}=x_{1} x_{2} x_{3} \cdots x_{n} x_{1}$ and $V(G)=\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{k}\right\}$ for $k \geq 2$. Since G contains exactly one edge, assume that $y_{1} y_{2} \in E(G)$. We can see that $P_{n} \circ G$ is a spanning subgraph of $C_{n} \circ G$ where $P_{n}=x_{1} x_{2} x_{3} \cdots x_{n}$. By Theorem 4.15, $C_{n} \circ G$ is vertex pancyclic if n is even.

Assume that n is odd. Let $P_{n-1}=x_{1} x_{2} x_{3} \cdots x_{n-1}$ and $P_{n-1}^{*}=x_{2} x_{3} x_{4} \cdots x_{n}$. We can see that $P_{n-1} \circ G$ and $P_{n-1}^{*} \circ G$ are subgraphs of $C_{n} \circ G$ induced by $V\left(\left(P_{n}-x_{n}\right) \circ G\right)$ and $V\left(\left(P_{n}-x_{1}\right) \circ G\right)$, respectively. By Theorem 4.15, $P_{n-1} \circ G$
and $P_{n-1}^{*} \circ G$ are vertex pancyclic. Then, each vertex of $C_{n} \circ G$ is contained in a cycle of each length l such that $3 \leq l \leq(n-1) k$.

By Theorem 4.4 and Corollary 4.22, $C_{n} \circ G$ contains a cycle of each length l for $3 \leq l \leq n k$. Now, we show that each vertex is contained in a cycle of each length l for $(n-1) k+1 \leq l \leq n k$. For $(n-1) k+1 \leq l \leq n k$, let $C_{l}=$ $\left(x_{i_{1}}, y_{j_{1}}\right)\left(x_{i_{2}}, y_{j_{2}}\right)\left(x_{i_{3}}, y_{j_{3}}\right) \cdots\left(x_{i_{l}}, y_{j_{l}}\right)\left(x_{i_{1}}, y_{j_{1}}\right)$ be a cycle in $C_{n} \circ G$ of length l. We consider two cases as follows.

Case 1. $y_{1} y_{2}$ does not induce an edge in C_{l}. Then, C_{l} is a cycle in $C_{n} \circ A_{k}$. Let $\left(x_{s}, y_{t}\right)$ be a vertex of $C_{n} \circ G$ where $s \in\{1,2,3, \ldots, n\}$ and $t \in\{1,2,3, \ldots, k\}$. We consider two subcases as follows.

Subcase 1.1. If $x_{s}=x_{i_{\beta}}$ for some $\beta \in\{1,2,3, \ldots l\}$, then $\left(x_{s}, y_{j_{\beta}}\right)=$ $\left(x_{i_{\beta}}, y_{j_{\beta}}\right) \in C_{l}$. Since C_{l} is in $C_{n} \circ A_{k}, x_{i_{\alpha}} \neq x_{i_{\alpha+1}}$ for any $\alpha \in\{1,2,3, \ldots l-1\}$ and $x_{i_{l}} \neq x_{i_{1}}$. This implies that $x_{i_{\beta-1}} x_{i_{\beta}}, x_{i_{\beta}} x_{i_{\beta+1}} \in E\left(C_{n}\right)$. Since $x_{s}=x_{i_{\beta}}$, $\left(x_{i_{\beta-1}}, y_{j_{\beta-1}}\right)\left(x_{s}, y_{t}\right)$ and $\left(x_{s}, y_{t}\right)\left(x_{i_{\beta+1}}, y_{j_{\beta+1}}\right)$ are edges in $C_{n} \circ G$. Thus, we can replace $\left(x_{i_{\beta}}, y_{j_{\beta}}\right)$ in C_{l} by $\left(x_{s}, y_{t}\right)$. Therefore, $\left(x_{s}, y_{t}\right)$ is contained in a cycle of length l.

Subcase 1.2. If $x_{s} \neq x_{i_{\alpha}}$ for all $\alpha \in\{1,2,3, \ldots l\}$, we translate cycle C_{l} to be C_{l}^{*} by defining an injective function. Let $i_{w}=\max \left\{i_{\alpha} \mid\left(x_{i_{\alpha}}, y_{j_{\alpha}}\right) \in C_{l}\right\}$. We define an injective function $\varphi:\{1,2,3, \ldots, n\} \rightarrow \mathbb{Z}_{n}$ by $\varphi\left(i_{\alpha}\right)=\left(i_{\alpha}+s-\right.$ $\left.i_{w}\right)(\bmod n)$. This function translates indices in each vertex $\left(x_{i_{\alpha}}, y_{j_{\alpha}}\right)$ of the cycle C_{l}. The vertices with new indices are vertices of cycle C_{l}^{*}. From this function, vertex $\left(x_{i_{w}}, y_{j_{w}}\right)$ is translate into vertex $\left(x_{s}, y_{j_{w}}\right)$. If $y_{t}=y_{j_{w}}$, then $\left(x_{s}, y_{t}\right)=\left(x_{s}, y_{j_{w}}\right)$ is contained in C_{l}^{*}. Assume that $y_{t} \neq y_{j_{w}}$. We can replace vertex $\left(x_{s}, y_{j_{w}}\right)$ by vertex $\left(x_{s}, y_{t}\right)$ as shown in Subcase 1.1. Hence, $\left(x_{s}, y_{t}\right)$ is contained in a cycle of length l.

Case 2. $y_{1} y_{2}$ induces an edge in C_{l}. Let S be a subgraph of G induced by the set $\left\{y_{1}, y_{2}\right\}$. Then, S is a path $y_{1} y_{2}$. If $k=2$, then $C_{n} \circ G=C_{n} \circ P_{2}$. By Theorem 4.20, $C_{n} \circ G$ is vertex pancyclic. Now, we assume that $k>2$. Let \mathbb{S}_{1} and \mathbb{S}_{2} be subgraphs of $C_{n} \circ G$ induced by $C_{n} \circ S$ and $C_{n} \circ(G-S)$, respectively. Then, $V\left(\mathbb{S}_{1}\right)=\left\{\left(x_{i}, y_{j}\right) \mid i \in\{1,2,3, \ldots n\}\right.$ and $\left.j \in\{1,2\}\right\}$ and $V\left(\mathbb{S}_{2}\right)=\left\{\left(x_{i}, y_{j}\right) \mid i \in\right.$ $\{1,2,3, \ldots n\}$ and $j \in\{3,4,5, \ldots, k\}\}$. We can see that $V\left(C_{n} \circ G\right)=V\left(\mathbb{S}_{1}\right) \cup V\left(\mathbb{S}_{2}\right)$.

We first show that all vertices of \mathbb{S}_{1} are contained in a cycle of length l. Since $y_{1} y_{2}$ forms an edge in C_{l}, C_{l} contains an edge of \mathbb{S}_{1}. Then, there are vertices $\left(x_{i}, y_{1}\right)$ and $\left(x_{i}, y_{2}\right)$ contained in C_{l} as consecutive vertices for some $i \in\{1,2,3, \ldots, n\}$. We translate cycle C_{l} into C_{l}^{*}, as shown in Subcase 1.2, and obtain that all vertices in \mathbb{S}_{1} are contained in a cycle of length l.

Next, we show that each vertex of \mathbb{S}_{2} is contained in a cycle of length l. Consider a cycle of maximum length in \mathbb{S}_{1}. The length of such cycles is at most $2 n$. Since the length of C_{l} is at least $(n-1) k+1$ and $(n-1) k+1>2 n$ for $k>2$, the cycle C_{l} contains a vertex of \mathbb{S}_{2}. Let $\left(x_{s}, y_{t}\right)$ be any vertex in $C_{n} \circ \mathbb{S}_{2}$. If $x_{s}=x_{i_{\beta}}$ for some $i_{\beta} \in\left\{i_{\alpha} \mid\left(x_{i_{\alpha}}, y_{j_{\alpha}}\right) \in \mathbb{S}_{2}\right\}$, then $\left(x_{i_{\beta}}, y_{j_{\beta}}\right) \in C_{l}$. Similar to Subcase 1.1, we can replace vertex $\left(x_{i_{\beta}}, y_{j_{\beta}}\right)$ by $\left(x_{s}, y_{t}\right)$. Thus, $\left(x_{s}, y_{t}\right)$ is in a cycle of length l. If $x_{s} \neq x_{i_{\beta}}$ for all $i_{\beta} \in\left\{i_{\alpha} \mid\left(x_{i_{\alpha}}, y_{j_{\alpha}}\right) \in \mathbb{S}_{2}\right\}$, then let $i_{w}=\max \left\{i_{\alpha} \mid\left(x_{i_{\alpha}}, y_{j_{\alpha}}\right) \in \mathbb{S}_{2}\right\}$. Similar to Subcase 1.2, we can translate cycle C_{l} into C_{l}^{*}. Then, vertex ($x_{i_{w}}, y_{j_{w}}$) is translated into $\left(x_{s}, y_{j_{w}}\right)$. If $y_{t}=y_{j_{w}}$, then $\left(x_{s}, y_{t}\right)$ is contained in C_{l}^{*}. Otherwise, we can replace vertex $\left(x_{s}, y_{j_{w}}\right)$ by $\left(x_{s}, y_{t}\right)$ as shown in Subcase 1.1.

From these two cases, we conclude that each vertex is contained in a cycle of each length l for $(n-1) k+1 \leq l \leq n k$. Therefore, $C_{n} \circ G$ is vertex pancyclic.

From Theorem 4.24, we can see that adding more edges into the graph G does not affect vertex pancyclic property. Thus, we obtain the following corollary.

Corollary 4.25. Let $n \geq 3$. If G is a graph with at least one edge, then $C_{n} \circ G$ is vertex pancyclic.

If G_{1} is Hamiltonian containing a spanning cycle C_{n}, then C_{n} is a subgraph of G_{1}. We can extend Corollary 4.25 as follows.

Corollary 4.26. If G_{1} is Hamiltonian and G_{2} is a graph with at least one edge, then $G_{1} \circ G_{2}$ is vertex pancyclic.

4.3 Conclusion and discussion

This chapter obtains that $C_{n} \circ G$ is vertex pancyclic provided that $|E(G)| \geq 1$ and $n \geq 3$ and $K_{n} \circ G$ is vertex pancyclic for all positive integers n. However, the
vertex pancyclicity of $P_{n} \circ G$ can be obtained only for $n \geq 2$ is an even integer. If $n=1$, then $P_{1} \circ G=G$. Thus, the vertex pancyclicity of $P_{1} \circ G$ depends on G. If $n \geq 3$ is an odd integer, then we can see from Theorem 4.18 that the vertex pancyclicity of $P_{n} \circ G$ may depend on some conditions on n and k. Therefore, our future research will try to find the conditions which imply the vertex pancyclicity of the $P_{n} \circ G$ when $n \geq 3$ is odd integer.

CHAPTER V

CONCLUSIONS

The present research was conducted to investigate the pancyclicity of the n generalized prism over any skirted graph and the vertex pancyclicity of the lexicographic product of some graphs. It was found that
(i) the n-generalized prism over any skirted graph is Hamiltonian (see Theorem 2.9);
(ii) the n-generalized prism over a skirted graph with three specific types given by Bondy and Lovász [4] is pancyclic (see Theorems 2.13 and 2.17);
(iii) the n-generalized prism over any skirted graph is pancyclic (see Theorem 3.19);
(iv) if G_{1} is a traceable graph of even order and G_{2} is a graph with at least one edge, then $G_{1} \circ G_{2}$ is vertex pancyclic (see Theorem 4.15 and Corollary 4.16);
(v) if G_{1} and G_{2} are nontrivial traceable graphs, then $G_{1} \circ G_{2}$ is vertex pancyclic (see Theorem 4.19);
(vi) if G_{1} is Hamiltonian and G_{2} is a graph with at least one edge, then $G_{1} \circ G_{2}$ is vertex pancyclic (see Theorem 4.24).

Although the third result implies the second result, the cycles obtained from the proof of the second result is more elective than the cycles from the proof of the third result. Thus, we still provide the proof of the second result.

For the lexicographic product of graphs, since a skirted graph is Hamiltonian, the sixth result implies that the lexicographic product of a skirted graph and a graph with at least one edge is vertex pancyclic. In particular, the lexicographic product of a skirted graph and a path is vertex pancyclic.

However, we have not investigated the vertex k-pancyclicity for some k of the n-generalized prism over any skirted graph. Therefore, it is recommended that further studies investigating more details about the vertex k-pancyclicity for some k of the n-generalized prism over any skirted graph should be conducted.

REFERENCES

[1] Alspach, B.: Cycles of each length in regular tournaments, Canad. Math. Bull. 10(2), 283-286 (1967).
[2] Bondy, J.A. Pancyclic graph. In Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing, Baton Rouge, LA, USA, 8-11 March 1971; pp. 167-172.
[3] Bondy, J.A.: Pancyclic graphs I, J. Combin. Theory Ser. B 11, 80-84 (1971).
[4] Bondy, J.A., Lovász, L.: Lengths of cycles in Halin graphs, J. Graph Theory 8, 397-410 (1985).
[5] Čada, R., Flandrin, E., Li, H.: Hamiltonicity and pancyclicity of Cartesian products of graphs, Discrete Math. 309, 6337-6343 (2009).
[6] Cai, X.-T.: On the panconnectivity of Ore graph, Sci. Sin. Ser. A 27(7), 684-694 (1984).
[7] Chvátal, V.: On Hamilton's ideals, J. Combin. Theory Ser. B 12(2), 163-168 (1972).
[8] Goddard, W., Henning, M.A.: Pancyclicity of the prism, Discrete Math. 234, 139-142 (2001).
[9] Guo, Y., Surmacs, M.: Pancyclic arcs in Hamiltonian cycles of hypertournaments, J. Korean Math.Soc. 51(6), 1141-1154 (2014).
[10] Harary, F., Moser, L.: The theory of round robin tournaments, Amer. Math. Monthly 73(3), 231-246 (1966).
[11] Kaiser, T., Kriesell, M.: On the pancyclicity of lexicographic products, Graphs Combin. 22, 51-58 (2006).
[12] Kostochka, A., Luo, R., Zirlin, D.: Super-pancyclic hypergraphs and bipartite graphs, J. Combin. Theory Ser. B 145, 450-465 (2020).
[13] Moon, J.W.: On subtournaments of a tournament, Canad. Math. Bull. 9(3), 297-301 (1966).
[14] Ore, O.: Note on Hamilton circuits, Amer. Math. Monthly 67(1), 55 (1960).
[15] Paulraja, P.: A characterization of Hamiltonian prisms, J. Graph Theory 17, 161-171 (1993).
[16] Randerath, B., Schiermeyer, I., Tewes, M., Volkmann, L.: Vertex pancyclic graphs, Discrete Appl. Math. 120, 219-237 (2002).
[17] Rosenfeld, M., Barnette, D.: Hamiltonian circuits in certain prisms, Discrete Math. 5, 389-394 (1973).
[18] Schmeichel, E.F., Hakimi, S.L.: Pancyclic graphs and a conjecture of Bondy and Chvátal, J. Combin. Theory Ser. B 17(1), 22-34 (1974).
[19] West, D.B.: Introduction to graph theory, 2nd ed.; Pearson Education: Hoboken, NJ, USA, 2000.
[20] Xu, J.-M., Ma, M.-J.: Survey on path and cycle embedding in some networks, Front. Math. China 4(2), 217-252 (2009).

Name
Miss Artchariya Muaengwaeng
Date of Birth 24 October 1993
Place of Birth Roi-et, Thailand

Education † B.Sc. (Mathematics) (First Class Honours), KhonKaen University, 2015
\dagger M.Sc. (Mathematics), Chulalongkorn University, 2018
Scholarship Science Achievement Scholarship of Thailand (SAST)

Conference

Publication

Proceeding
Muaengwaeng, A., Boonklurb, R. and Singhun, S., "Defective colorings and defective colorings which each color class contains no cycle for bipartite k uniform hypergraph" Proceeding of the $23^{\text {rd }}$ Annual Meeting in Mathematics (AMM 2018), (hosted by King Mongkut's University of Technology Thonburi (KMUTT)), Mandarin Hotel, Bangkok, Thailand, May 3-5, 2018, CGT096.

Publication Articles

\dagger Boonklurb, R., Muaengwaeng, A. and Singhun, S.: Defective colorings on k-uniform hypergraphs, J. Discrete Math. Sci. Cryptogr. 24(7), 2001-2016 (2020). https://doi.org/ 10.1080/09720529.2021.1925450.
\dagger Muaengwaeng, A., Boonklurb, R. and Singhun, S.: Pancyclicity of generalized prisms over specific types of skirted graphs, Thai J. Math. Special Issue (2022): Annual Meeting in Mathematics 2021, 53-63.
\dagger Muaengwaeng, A., Boonklurb, R. and Singhun, S.: Pancyclicity of the n-Generalized prism over skirted graphs, Symmetry 14(4), 816 (2022). https:// doi.org/ 10.3390/ sym14040816.
\dagger Muaengwaeng, A., Boonklurb, R. and Singhun, S.: Vertex pancyclicity over lexicographic products, AKCE Int.
J. Graphs Comb. 19(1), 79-86 (2022). https://doi.org/ 10.1080/09728600.2022.2059416.

Chulalongkorn University

