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KEYWOR
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Weedy rice is one of the most notorious weeds occurring in rice-growing 

areas, especially in South-East Asia. Weedy rice especially in form of paddy seed is 

difficult to manage and separate as they provide common features (morphological 

resemblance) to cultivated rice. This work presents a modification of self-

organizing map (SOMs) for the classification of weedy rice from cultivated rice via 

in situ direct sample analysis from paddy seed using near-infrared (NIR) 

spectroscopy and hyperspectral NIR camera. The sample pretreatment was carried 

out by a cyclone vacuum machine to remove the contaminated particles and other 

impurities. The physical characteristics and the thermal behavior of rice samples 

were investigated by optical microscope and thermogravimetric analysis (TGA), 

respectively, and the volatile chemical profiles were monitored by using DART-

MS. They provide the distinctive patterns between cultivated rice and weed rice. A 

near-infrared with reflectance accessory was used for direct sample analysis. The 

acquired NIR spectra were smoothed using Savitzky-Golay polynomial, baseline-

aligned using standard normal variate (SNV), mean-centered and the second 

derivative was calculated to reveal the significant NIR regions. Self-organizing 

maps was well-optimized and was applied for the classification of weedy samples 

from four cultivated rice. The results were validated and were achieved very high 

predictive value in the range of 91% to 99% and 88% to 99% for precision and 

accuracy, respectively. Furthermore, the developed supervised SOMs was applied 

on the pair-wise hyperspectral image to generate the supervised global SOM map 

with different color scales as the representative of each sample class. Each 

hyperspectral pixel from the sample image was validated with the global map, then, 

the color of best map unit (BMU) was re-projected on the image pixel. The process 

was undergone until all image pixels was projected with the color of BMU. The 

classification was achieved by the ratio of the projected color on the sample image. 

The classification accuracy for weedy seeds was 90%, demonstrating the potential 

of a global model for seed quality assessment. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Introduction 

1.1.1 Weedy rice problem 

Rice is an important crop that serves more than half of the world population 

consumption as a staple food 1. It is an essential nutritional resource and is globally 

grown on approximately 153 million hectares of land with 90% of the rice production 

area worldwide harvested in Asia 2. Due to continuous growth of economies and 

population throughout the world, therefore high-yields, high-quality and genuineness 

of rice are needed 3. In cooperate farming, the rice seed with authentical family gene 

is supplied by either the large registered companies or government associations in 

order to plant in the large-scale agriculture farms and avoid seed mutagenesis. 

However, especially in developing countries, the small farmer communities with local 

plant fields contribute on the majority up to 70-95% of the farming population  4, 5. 

The traditional image of farm households reflects that they focus on rice farming with 

various types on the same rural farm area. Moreover, they trend to reduce planting 

costs by collecting the harvested rice seeds in order to re-plant in the next season. 

These traditional behaviors including human selection and out crossed hybridization 

with some wild rice species cause random mutations on the harvested rice product. 6, 

7. This makes the rice seed contains high level of genetic diversity even at a local 

level and it is impossible to differentiate and identify the quality and authenticity of 

rice paddy seeds by human visualization platform.  

There are generally two species, namely Oryza sativa and O. glaberrima as 

the most popular cultivated rice. They are more widely distributed and are produced 

in Asia, especially in Thailand 7. Weedy rice (Oryza sativa f. spontanea) is one of the 

aftermaths of the mutagenesis. It is the most notorious weed occurring in rice-growing 

areas worldwide and the problems are still prevailing. The weedy rice can be called as 

“red rice” (as shown in Figure 1.1) because of its appearance in the red pericarp 1, 8. 

However, the weedy rice phenotypes with white, light red, and light green pericarps 

could be also found 2. Weedy rice may be defined explicitly as unwanted rice that 

infests and competes with rice and alternate crops. They could be fast outbreaks 
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through the field as they are generally taller, have a higher growth rate, and produce 

more tillers than cultivated rice 8. 

 

 
 

 

Figure 1.1 Physical appearance of weedy rice, which can be called as “red rice” 

from paddy seed and grain seed compared with the cultivated rice 

 

Nowadays, the spreading of the weedy rice is now becoming a serious 

problem found in local rice-planting areas all over the world, especially the areas 

where the rice seeds are directly transferred to be planted for the next season 9, 10. This 

is not only affected to the household planting but also influences to the rice industry 

for separating them from the regular cultivated rice. The presence of weedy rice in the 

fields diminishes the farmer’s income both quantitatively through reduction of grain 

yield and qualitatively through lowered commodity value at harvest. As a result, it 

leads to loss of economic benefits –particularly in terms of the additional costs 

associated with managing the rice crisis 11. In Asian countries, weedy rice has been 

reported to reduce rice yield from 16% to 74% 12.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

   1.1.2 Strategies for controlling weedy rice 

Therefore, in order to avoid the negative consequences of the weedy seed 

outbreak, it is necessary to conduct and control seed quality using effective control 

methods 2, 13. There are several standard methods to elucidate authenticity, 

contamination, and genetic of rice cultivation, such as the DNA finger-printing 

method 3, enzyme linked immunosorbent assays 14, high performance liquid 

chromatography 15, 16. These methods offer high precision and accuracy; however, 

they are also burdensome, high cost, complicated operation, and time consuming 14. 

They may not be appropriate for testing a large number of samples. On the other 

hand, there are still have many particular methods which are straightforward, and no 

requirement of high-class instruments. For example, preventive method including 

certified seed, cleaning of machinery and field inspections 17. However, high 

investment cost leads to the limitation of these procedures. Other cultural methods 

include soil tillage, burning of stubble and straw, stale seedbed preparation, water 

seeding, transplanting, and crop rotation 18. However, all these methods have many 

deficiencies, such as multi-stage process, extreme supply source and intensive labor. 

The mechanic method 19 is also a useful approach; unfortunately, it has several 

drawbacks, such as being time-consuming and ineffective compared to chemical 

treatment. To get more details, different strategies and methods to control weedy rice 

were summarized in Table 1.1 
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Table 1.1 Strategies to control and manage weedy rice in the real plant field 

Control 

Strategy 

Control Method Disadvantages Ref 

Preventive ▪ Certified seeds 

▪ Cleaning of machinery 

▪ Field Inspections 

▪ High production 

costs 

17 

Cultural ▪ Soil tillage (minimum 

tillage) 

▪ Fallowing 

▪ Burning of stubble and 

straw 

▪ Stale seed bed preparation 

▪ Water seeding 

▪ Water management 

▪ Rice variety 

▪ Hand weeding 

▪ Transplanting 

▪ Crop rotation 

▪ Multi-stage process 

▪ Extreme supply 

source 

▪ Intensive Labor 

18 

Mechanical ▪ Before rice planting 

▪ After rice planting 

▪ More time 

consuming and 

significantly less 

effective than 

chemical treatment 

19 

Chemical ▪ Pre-plant application 

▪ Post-plant application 

▪ Ineffective result 

because weedy rice 

and cultivated rice 

belong to the same 

biological species 

18 

Genetic ▪ Biotechnology: Herbicide-

resistant rice varieties 

▪ DNA finger-printing 

method 

▪ Require highly 

expert 

▪ Time consuming 

20 

 

 

1.1.3 Literature reviews on spectroscopy  

To overcome the drawback of traditional strategies mentioned above, an 

invasive technique to reveal the authenticity of rice seed is necessary. Near infrared 
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spectroscopy (NIR) is one of alternative methods for agricultural quality assessment. 

It is a simple, rapid, non-destructive 8, 21-24, and environmentally friendly technique 

that has been used in several fields especially in quality control of agricultural 

products 25, 26 and food processing 14, 27.   

Specifically, in previous studies for rice seed quality evaluation, NIR 

spectroscopy has been used for seed purity analysis 28, seed cultivar identification 29, 

and seed authenticity detection 30. However, the spectral information obtained by this 

method is theoretically confined to only a tiny section of a sample where the 

measuring probe is positioned, without taking into account the spatial information 31. 

Therefore, in order to recover a representative spectral fingerprint of the entire 

sample, the sample being studied should be sufficiently homogeneous. This drawback 

of traditional spectroscopy can be easily alleviated by adopting near-infrared (NIR) 

hyperspectral imaging (HSI) techniques to incorporate spectral and spatial 

information.  

In 2011, Fernando et al. 32 integrated spectral and image analysis of 

hyperspectral image for prediction of apple fruit firmness and soluble solid contents. 

In 2013, Wenqian et al. 33 performed hyperspectral imaging with the NIR wavelength 

range of 1000 to 2500 nm to detect bruises on ‘Fuji’ apples. Qin et al. 34 established a 

small-feature of hyperspectral reflectance imaging for real-time detection of grape 

canker, but the captured image only provides a small area of observations from the 

whole fruit. Although the NIR hyperspectral imaging system is an effective technique, 

it provides the massive data volume, complex spectral information, and time 

consuming to acquire and collect the data. Multispectral imaging based on selected 

critical wavelengths has received great attention. Due to their relative small size of 

spectral data, low instrument cost and high analytical speed, multispectral imaging 

systems could be widely used in on-line detection and be applied in manufacturing 

scale for agricultural products 35. Huang et al. 36 selected three effective wavelengths 

750, 820 and 960 nm to detect the bruises of apples. However, few selected and 

discrete wavelengths would be carefully determined because they may be one of the 

reasons that causes worse performances on the detection of agricultural product 

characteristics 37. 
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There are many applications of NIR spectroscopy as well as multispectral and 

hyperspectral imaging technologies for measuring quality seed quality assessment. 

In 2020, Su et al. reviewed that the strategy of utilizing both spatial and 

spectral information in the discriminating stage has been proposed to improve the 

existing state of weed detection. Combining NIR spectroscopy and hyperspectral 

imaging provides richer spatial and spectral data, and it demonstrates a more vital 

ability to distinguish between crops and weeds 38. This is consistent with a review by 

ElMasry and Nakauchi that machine vision has currently been used as a proficient 

inspection technique for visualizing the inherent physicochemical qualities among 

many food products during quality and safety assessments; in addition, it also 

provides geometrical, textural, and aesthetic elements 39. With the progress of current 

science and technology, NIR hyperspectral technology has been applied in a variety 

of industries, including quality assessment, seed quality identification 40, 41, seed 

authenticity detection 42 and agricultural product quality breeding 43. NIR 

hyperspectral technology has been proven to be a fast and non-destructive multi-

component analytical approach allowing many determinations simultaneously without 

extensive sample preparation 43, 44.            

Furthermore, hyperspectral imaging evaluation frequently generates a vast 

amount of high dimension data, which involves the use of effective chemometric 

techniques to extract and understand critical and insightful information 44, 45. 

Furthermore, hyperspectral imaging evaluation frequently generates a vast amount of 

high dimension data, which involves the use of effective chemometric techniques to 

extract and understand critical and insightful information 44, 45. In particular, there are 

several mathematical approaches such as linear discriminant analysis (LDA) 46, partial 

least squares discriminant analysis (PLS-DA) 47, the k-nearest neighbors (kNN) 48, 

support vector machine (SVM) 49, principal component analysis (PCA) 50, and 

artificial neural networks (ANNs) 38 to be performed on the complex NIR dataset in 

order to visualize, estimate, predict and classify product quality as shown in Table 1.2 
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Table 1.2 Literature reviews of quality assessment on agricultural products by 

using NIR combined with chemometrics. 

 

Year 

 

System 

 

NIR mode 

Chemometrics  

Ref Method Number of 

latent variables 

(LVs) 

2012 Determine antioxidant activity 

of bamboo leaf extract 

Reflectance 

 

PLS 

 

5 

 

51 

2014 Discriminate between red 

wines of different designation 

of origin 

Transmittance 

 

PCA 

SVM 

LDA 

2 52 

2017 Predict the internal quality 

index in variety nectarine 

samples 

Reflectance 

 

PLS 7 53 

2019 Distinguish almonds cultivated 

in the Avola area from others 

presenting a different geogra-

phical origin 

Reflectance 

 

PLS-DA 

SIMCA 

 

4 54 

2019 Predict quality and maturation 

stage attributes of wine grapes 

Reflectance 

 

PCR 

PLSR 

2 

7 

55 

2019 Discriminate green tea with 

grades, varieties and 

geographical origins 

Reflectance 

 

PCA 

SVM 

 

5 

3 

 

56 

*Note PLS-DA : Partial least squares-discriminant Analysis ;  SIMCA : Soft Independent Modelling of class 

Analogies, PCR : Principal component regression  ;  PLSR : Partial least square regression, PCA : Principal 

component analysis ;  SVM : Support vector machine, PCA-LDA : Principal component analysis combined with 

linear discriminant analysis  

 

Determination of the significant number of latent variables (LVs) in 

multivariate analysis techniques is one of the important steps to build the statistical 

model with high efficiency 57. The number of latent variables should be re-determined 

whenever the new set of samples is added in the calculation in order to keep the 

prediction viability. The extra added samples would gather the variance in the dataset; 

therefore, the calibration model needs to be re-generated. The calibration model from 

these stated methods is based on the defining model, which is valid at the time, but it 

needs to be modified as time goes on. These are a kind of impact limitation of the 
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“progressing time window” research to be applied in a practical way because the data 

may be ever-increasing, generated in the period of time and the developed model 

might not be valid when time passes quickly.    

A more concrete picture is shown in the Figure 1.2, the reduction methods 

such as principal component analysis (PCA), which require re-calculating the number 

of latent variables (LVs) every time a new set of samples is added to maintain 

prediction viability. Furthermore, the classification strategy involves either linear 

(EDC, LDA, PLS-DA) or non-linear (QDA, SVM, KNN), each of which has its own 

set of difficulties to be calculated. The selection of classification method is the pain 

point when the underlying data is difficult to defined as linear or non-linear, therefore, 

an inappropriate classifier will lead to the overfitting problem.  

 

 

Figure 1.2 Conventional modeling method 

 

SOMs (Self-Organizing Maps) is artificial neural networks (ANNs) that are 

not dependent on latent variables. Furthermore, the technique can be applied to data 

that is either linear or non-linear 58-60. SOMs is extensively performed on complex 

relationships between the samples (NIR spectra in the case) which can be revealed 

through by only the single map. It simplifies the analysis allows multivariate 

exploratory comparisons between sample-to-sample by direct visual inspection 61-63. 

Recently, SOMs have recently become a popular and powerful technique for 

analyzing multicomponent data especially agricultural product assessment, In 2006, 

Lin and Wang 64 compared SOMs with various hierarchical cluster analysis methods. 

The results showed that the performance of SOMs to cluster groups of samples is 

better than other hierarchical clustering methods. In 2008, Siripatrawan 65 showed the 
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application of electronic nose sensors combined with SOMs as an effective feature 

extraction method to determine the foodborne pathogens contamination in a packaged 

fresh vegetable. In the same year, Meunkaewjinda et al. 66 presented automatic plant 

disease diagnosis using multiple artificial intelligent techniques including self-

organizing feature map together with a back-propagation neural network. In 2017, 

Luna et al. 67 presented a study of chemometric tools for the classification of Coffea 

canephora (whole beans) cultivars via in situ direct sample analysis using near-

infrared spectroscopy (NIR). The result showed that SOMs are highly effective 

method which can provide 100% correct identification of testing samples.  In 2019, 

Theanjumpol et al. 68 detected and estimated the occurrence of granulation in ‘Sai 

Num Pung’ tangerine based on the use of near infrared (NIR) spectroscopy and 

difference classification models. The results revealed that the classification results 

from supervised self-organizing map (SSOM) could provide the best predictive 

granulation level.  

To our knowledge, there are no studies on the use of NIR technique combined 

with SOMs to distinguish between cultivated rice and weedy rice directly from paddy 

seeds. In this study, a modified algorithm of self-organizing maps (SOMs) network 

architecture is developed in the form of a global map model. The global map model 

was calculated using reference samples (weedy rice and cultivated rice paddy seed in 

the case). The prediction and classification of unknown samples from other sources 

can be performed using the supervised SOM map model without any regeneration. 

When the unknown sample is introduced, the map model will start to learn and search 

the best matching unit (BMU). If BMU of an unknown sample is determined and give 

the larger value in the region of “weedy rice”, unknown sample will be assigned to the 

class of “weedy rice”. On the other hand, If BMU of an unknown sample is 

determined and give the larger value in the region of “cultivated rice”, unknown 

sample will be assigned to the class of “cultivated rice”. The following section of the 

experiment will be undertaken utilizing the NIR spectroscopic approach combined 

with the global SOM map after empirical evidence demonstrates that weedy rice can 

be discriminated from cultivated rice (discussed in Chapter 3). In this second part, 

weed rice will be distinguished from cultivated rice directly from the object on the 

image. This process has been simply done by projection the color shades e.g. red, 
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green, and blue to the image in order to visualize the types of the image object. This 

proposed approach is more practical to be used in the real situation. It is the first 

attempt in NIR hyperspectral imaging applications in seed quality monitoring by 

using actual HSI data for the analysis (discussed in Chapter 4). The overview of the 

research theme is diagrammatically summarized in Figure 1.3. 

 

Figure 1.3 Overview of the research theme involving NIR and NIR-hyperspectral 

imaging combined with modified SOMs as the global map for rice seed 

classification inspection 

 

1.2 Objective of this work 

To modify the classifier model based on supervised SOMs in order to discriminate the 

weedy rice from cultivated rice directly from paddy seed for seed quality assessment 

 

1.3 Scope of this work 

1. Raw rice products from trustworthy organizations will be emphasized on the 

study. 

2. The collected seed samples will be pre-treated by using cyclone vacuum 

machine to remove the contaminated particles and other impurities attached 

on the rice seeds. 

3. All seed samples were kept in the vacuum boxes at room temperature prior to 

perform the NIR measurements. 

4. Thermo Scientific™ Nicolet™ iS5N FT-NIR spectrometer with extended 

range indium gallium arsenide (InGaAs) detector, high intensity halogen 

light source and temperature stabilized solid-state Near-IR diode laser 
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purchased from thermo fisher scientific will be used to acquire NIR spectra 

of the seed samples. 

5. hyperspectral images of the rice samples were acquired by using one push 

broom HSI which comprises an imaging spectrograph (Imspector N17E; 

Specim, Spectral Imaging Ltd., Oulu, Finland), a CCD camera (Xeva 992; 

Xenics Infrared Solutions, Belgium), two 500 W tungsten–halogen light 

sources (Lowel Light Inc., NY, USA), and control software (Specim’s 

LUMO Software Suite; Spectral Imaging Ltd., Oulu, Finland). 

6. Unsupervised Pattern Recognition, Supervised Pattern Recognition and 

Variable selection will be performed using SOMs as a statistical method to 

deal with the complex dataset.  

7. All statistical and mathematical calculation will be performed using program 

MATLAB version R2019b with in-house coding algorithm. Recommended 

& minimum computer configurations: processor CPU (Intel Core i5, sixth 

generation or newer or equivalent), operating system (Microsoft windows 10 

professional x64), and Memory (16 GB RAM). 

 

1.4 Benefit of this dissertation 

A powerful invasive, green and simple techniques which could be performed fast and 

accurate without using extra chemicals and process required to assess and inspect of 

rice seed quality. 
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CHAPTER II 

THEORETICAL BACKGROUND 

 

2.1 Near infrared spectroscopy 

Near infrared spectroscopy (NIR) is well-established as a rapid and non-

destructive analytical technique 69. As shown in Figure 2.1, the record regions (780–

2500 nm) contain 1st-3rd overtones as well as combinations of fundamental 

vibrations of C-H, O-H, and N-H chemical functional groups, which are the principal 

constituents of agricultural products. Although their molar absorptivity are low and 

detection limits are around 0.1% but they are adequate to be used for original tracing, 

adulteration, authenticity and discrimination detection in agricultural products 70, 71. 

 

 
 

 

Figure 2.1 the range of electromagnetic radiation in UV (10 nm to 400 nm), 

visible (400 to 700 nm), infrared (700 nm to 1 mm) and NIR (700nm-2500 nm) 

 

 

There are three modes of data collection including reflectance, transmittance, 

and transflectance. Different spectral modes have been assigned for different samples 

depending on the types, physical properties, and characteristics of the samples 72. The 

transmittance mode measures the amount of light transmitting through the sample, 
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which is usually used for the analysis of liquid samples and certain solid samples such 

as grains, meat, and dairy products 72. In case of the reflectance mode, the radiation 

light is reflected from the sample surface and return to the detector which is situated at 

the critical angle of the light source to capture the reflected light from the sample. 

This mode is usually used for solid or granular samples 73.  In case of transflectance 

mode, it is a combination of reflectance and transmittance. It is in doubling the optical 

path as the radiation beam passes twice through the sample 71 which is suitable for 

internal disorder detection such as detecting brown spots in pear 74. The schematic 

figure of the three data collection modes is shown in Figure 2.2. 

 

 
 

 

Figure 2.2 Mode of data acquisition using NIR spectroscopy involving (a) 

transmittance; (b) reflectance and (c) transflectance 72. 

 

 

NIR spectroscopy has been continuously developed as a powerful technique 

for assessing internal and external quality attributes of agricultural products 75. The 

NIR data was acquired as a single spectrum which represents whole underlying 

chemical distribution on the sample. In case of non-homogeneous samples, the spatial 

information of the sample could not be collected. Recently, a potential of NIR 

spectroscopy has been further developed including multi- and hyperspectral imaging 

techniques which also provide both spectral, spatial information and time-resolved 

spectroscopy which allows measurement of absorption and scattering processes 
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separately 76. The images can be analyzed and visualized as chemical images, 

providing identification as well as localization of chemical compounds in non-

homogenous samples such as seeds, grain, fruit and meet 77. 

 

2.2 NIR hyperspectral imaging 

Regarding of detecting the molecular bonds in the sample, the HSI technique 

in association with near infrared (NIR) spectroscopy is commonly used to identify or 

inspect various seed components 43. The potential of NIR hyperspectral imaging 

techniques can provide both spectral and spatial information 76, enabling chemical 

image analysis and visualization, as well as the identification and localization of 

chemical compounds in nonhomogeneous sample  77. Before entering the various 

image operations which can be performed to hyperspectral images, it's vital to 

understand how these images are constructed and what are the parameters of the 

system that created them. Based on the relative movement between the sample and the 

detection unit, a hyperspectral image can be obtained in three different ways (i.e. the 

camera and spectrograph): point-to-point spectral scanning (whisk-broom imaging); 

line-by-line spatial scanning (push-broom imaging); and area scanning (staring 

imaging or wavelength scanning) 78. Since continuous scanning in one direction has 

been used, line scanning is therefore exceptionally suitable for food quality 

monitoring and safety inspection in conveyor belt systems 79.  

The setup of a NIR hyperspectral imaging system (1000 – 2500 nm) is shown 

in Figure 2.3a 80, 81. It consists of a CCD camera, a spectrograph, a standard C-mount 

lens, an illumination unit (tungsten halogen lamps), a translation stage and a computer 

supported with a data acquisition software. The sample is scaned with pixels by 

pixels. The reflected light of each pixel is recorded as a NIR spectrograph and then the 

sample image is captured by the CCD array detector 81. The collected image data is 

presented in the form of a three-dimensional matrix called a hypercube. This 

hypercube consists of row and column of pixels that each pixel represents a NIR 

spectrum as a depth profile. The spectrum of each pixel can be visualized and the 

image plane at each respective wavelength can be revealed 82. The obtained 

hypercube with its spatial and wavelength dimensions contains an NIR spectrum for 

each pixel is shown in Figure 2.3b. 
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Figure 2.3 (a) Scheme of the main parts used in NIR hyperspectral imaging 

system. (b)    Illustration of an NIR hyperspectral imaging hypercube comprising 

wavelength (depth profile) and spatial (x-and y- pixels) dimensions. 

 

 

Hyperspectral imaging technique evaluates the product quality based on 

integrated computer image processing by combining color and spectral images. The 

color imaging system will be used to measure morphological characteristics 

(dimensions, color, shape, texture, etc.), germination ability (radicle elongation, 

timing of germination, germination speed, vigor, and so on), and seed disorders 

(infected parts, pest attacks, abiotic stress, and so on). In accompanying with color 

imaging system, the spectral image processor will be used in conjunction with the 

color imaging system to offer spectrum information about the investigated seeds in 

order to provide comprehensive information about the chemical components (protein, 

lipid, moisture, pigments, and so on) of the seeds 31.  
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2.3 Chemometrics 

NIR hyperspectral technology has been shown to be an efficient technique for 

seed quality assessment that allows simultaneous measurements without requiring 

sample preparation 83. Nonetheless, a single hyperspectral image can consist of up to 

200000 spectra, chemometric techniques are therefore required to handle such large 

data sets 82. Chemometrics (or multivariate data analysis) is an approach for 

manipulating and extracting useful information from spectral data using mathematics 

and statistics. Apart from obtaining relevant information, Mathematical procedures can 

be used to eliminate unwanted information (such as spectrum noise or particle size 

impact) without sacrificing critical or required data 71, 82. 

 

2.3.1 Preprocessing 

2.3.1.1 Interquartile range (IQR) 

The Interquartile Range (IQR), commonly known as the middle 50%, is a 

percentage ranging from the 25th to the 75th percentile 84. IQR formular is shown 

below (Eq. 1):  

 

           Q3 – Q1 = IQR                                               (1) 

 

where,  

IQR = Interquartile range (IQR = Q2) 

Q1 = (1/4)[(n + 1)]th term)  

Q3 = (3/4)[(n + 1)]th term) 

n = number of variables 

 

As it is a statistical dispersion measurement, the interquartile range can be 

effectively used as an indicator to identify outliers.  They are observation that occur 

outside that fall below Q1 - 1.5 IQR or above Q3 + 1.5 IQR as shown in Figure 2.4 85.  

 

https://en.wikipedia.org/wiki/Statistical_dispersion
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Figure 2.4 Interquartile range (IQR) projection on a normally distributed 

density. The median of IQR the equivalent to the mean 0 σ. The value IQR =    

Q3 – Q1 corresponds to 50% of the density distribution and the first quartile 

corresponds to −0.67 of the population while the third quartile corresponds       

to +0.67 

 

2.3.1.2 Savitzky-Golay smoothing 

Savitzky-Golay filter (SG) is linear and shift-invariant. It performs on a vector 

of input sample x[n] to generate a smoothed output vector y[n]. Figure 2.5 illustrates 

the basic concept of least-squares polynomial smoothing by portraying a signal 

sequence of samples x(n) as solid dots. In consideration of the group of 2M+1 

samples centered at n = 0 as a starting point, the coefficients of polynomial is obtained 

86.  

   𝑝(𝑛) = ∑ 𝑎𝑘𝑛𝑘𝑁
𝑘 = 0                                              (2) 

where p(n) is least-squares polynomial smoothing function, 𝑎𝑘 is least-squares 

principal, n is number of interval shifts. 

 

The deliberation is the same for any other different collection of 2H+1 input samples, 

where H refer to the “half width” of the approximation interval.  
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Figure 2.5 Illustration of least-squares smoothing by locally fitting a second-

degree polynomial (solid line) to five input samples: • denotes the input samples, 

○ denotes the least-squares output sample, and × denotes the effective impulse 

response samples (weighting constants). (The dotted line denotes the polynomial 

approximation to centered unit impulse.) 

 

In particular, the approximation interval does not have to be symmetric around the 

evaluation point resulting in nonlinear phase filters. This may be beneficial for 

smoothing at the ends of finite-length input sequences. In consonant with output at the 

next sample, it is retrieved by shifting the analysis interval to the right by one sample, 

revising the origin to be the position of the middle sample of the new block of 2M+1 

samples, and repeating the polynomial fitting and evaluation at the central point. This 

can be accomplished for each input sample, leading to a new polynomial and a new 

value for the output sequence y[n] 

 

𝑦(𝑛) = ∑ ℎ[𝑚]𝑥[𝑛 − 𝑚]𝑀
𝑚 = −𝑀                                    (3) 

 

where y(n) is new polynomial and a new value for the output sequence, M fitting 

sequence with 2M+1, and h[m] is finite impulse response value, which was adopted 

as a weighted value. 
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The value mark with × (in Figure 2.5) are the shifted impulse responses h[0 – m] that 

might be employed to calculate the output samples labeled with ○, thereby 

substituting the polynomial fitting procedure at each sample with a single assessment 

of Eq 3. 

 

2.3.1.4 Standard Normal Variate (SNV) 

Standard Normal Variate (SNV) is one of well-known preprocessing 

technique which used to reduce the scattering and multiplication effects of particle 

sizes as well as disparities in the global intensities of the signals 87. Each spectrum is 

scaled by dividing its standard deviation by its center as shown in Eq 4. 

 

𝑥𝑖,𝑗
𝑆𝑁𝑉  =  

(𝑥𝑖,𝑗−�̅�𝑖)

√
∑ (𝑥𝑖,𝑗−�̅�𝑖)2𝑛

𝑗=1

𝑛−1

                                                        (4) 

 

where 𝑥𝑖,𝑗
𝑆𝑁𝑉is the element of the transformed spectrum and 𝑥𝑖,𝑗 is the corresponding 

original element of the spectrum i at variable j, �̅�𝑖 is the mean of spectrum i, and n is 

the number of variables or wavelengths in the spectrum. 

 

SNV is particularly remarkable because the transformation is carried out on individual 

samples. However, it should be noted that SNV procedure is related to sum of the 

deviation of absorbance at individual wavelengths, artificial negative correlation can 

be occurred 88.  

 

2.3.1.5 Second derivative 

Derivatives are a technique for addressing with two common issues in NIR 

spectra: overlapping peaks and excessive baseline variations. According to the 

increment of linear baseline in NIR spectra, the second derivative tends to be 

preferred because it contain negative peaks where the original had a peak resulting in 

simple interpretation. Second derivative is performed to extract hidden information in 

the spectrum and eliminate baseline effect. Integer derivatives, on the other hand, lack 
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the sensitivity to gradual alterations in slit and curvature, resulting in noise 

introduction and information loss 89. 

The general method of calculating derivative is shown Eq. 5 90. If A is a 

spectrum defined for evenly spaced wavelength ʎn, n = 0,1,…,N-1, then the first 

derivative 𝐴𝑛
′  at point n is defined by:  

 

𝐴𝑛
′  =  𝐴𝑛+𝑔  −  𝐴𝑛 − �́�                                                   (5) 

 

where g is an integer called the gap or derivative size and  𝐴𝑛 is the NIR value at 

point n. Similarly, the second derivative are defined in Eq 6. 

 

𝐴𝑛
′′  =  𝐴𝑛+2𝑔  −  2𝐴𝑛  +  𝐴𝑛−2�́�                                        (6) 

 

 

2.3.2 Principal Component Analysis 

Principal component analysis (PCA) is one of popular tool from multivariate 

statistics that help to drastically reduce dimensionality in a large dataset, while that 

most of the crucial information is preserved 91. Basically, PCA was used to extract the 

major component from data matrix base on two main concepts: the number of 

meaningful PCs which ideally equal to the number of significant component (for 

example, if there are three components in the mixture, then only three PCs should be 

expected), and the other one is characterization of each PC by loadings and scores.  

   NIPALS (Nonlinear Iterative Partial Least Squares) is an ordinary, iterative 

algorithm frequently used for PCA 62, 92. In short, it extracts components one at a time, 

and can be stopped after the desired number of PCs has been obtained. The steps are 

as follows: 

1.   Originate a data matrix X which is used for PCA. 

2. Take a column of this matrix (often the column with greatest sum of squares) as 

the first guess of the scores first principal component; called 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

3. The loading vector  𝑝𝑢𝑛𝑛𝑜𝑟𝑚
𝑻  is calculated:  𝑝𝑢𝑛𝑛𝑜𝑟𝑚

𝑻  =       
(𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑇 )(𝑿 )

(𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑻 )( 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙)
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4. The loading vector is normalized to unit length: 𝑝𝑛𝑜𝑟𝑚
𝑻  =       

𝑝𝑛𝑜𝑟𝑚
𝑻

(𝑝𝑢𝑛𝑛𝑜𝑟𝑚
𝑻 )(𝑝𝑛𝑜𝑟𝑚)

 

5. The new score vector is calculated: 𝑡𝑛𝑒𝑤  = (𝑿)(𝑝𝑛𝑜𝑟𝑚
𝑻 )                                       

6. Check for convergence by comparing the 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑛𝑑 𝑡𝑛𝑒𝑤 . The sum of squared 

differences between all elements of the two consecutive score vectors is 

calculated. If the value meets the criterion (small enough), this indicates that the 

PC has been extracted; otherwise, replace 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑖𝑡ℎ 𝑡𝑛𝑒𝑤 and return to step 2, 

repeating until convergence is achieve  

7. Subtract the effect of the new PC from the data matrix to obtain a residual data 

matrix: 

𝑬 =  𝑿 −  𝑡𝑝𝑻 

where E is residual data matrix, 𝑿 is column with the greatest sum of squares 

(variance), t is score vector, p is loading vector, T is transpose. 

8. If it desires to compute further PCs, substitute the residual data matrix for X and 

go to step 2. 

 

The eigenvalue (x) for each component is calculated by the sum of the squares of 

the scores vector of all I samples:  

ç𝑎  =  ∑ 𝑡𝑖𝑎
2

𝐼

𝑖=1

 

 where ç𝑎 is eigenvalues, I is sample, t is score vector. 

 

∑ ç𝑎

𝐼

𝑖=1

 =  ∑ ∑ 𝑥𝑖𝑗
2

𝐼

𝑖=1

𝐽

𝑗=1

 

      where ∑ ç𝑎
𝐼
𝑖=1  is the sum of all eigenvalues, ∑ ∑ 𝑥𝑖𝑗

2𝐼
𝑖=1

𝐽
𝑗=1  is equal to the sum of 

squares of the data matrix. 

 

The significance of each PC can be determined using the percentage of the total 

amount of variance calculated by 
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%ç𝑎 = 
ç𝑎

∑ ∑ 𝑥𝑖𝑗
2𝐼

𝑖=1
𝐽
𝑗=1

 x 100 

 

where %ç𝑎 percentage of the total amount of variance. 

 

 

2.3.3 Euclidean Distance (ED) 

 The Euclidean distance to centroids is a straightforward classification 93. It is 

employed to measure the length of a line segment between the two points in 

Euclidean space. Owing to the fundamental concept of this method, the centroid of 

each class g (�̅�𝑔) in a dataset are created. For each of the variables, the centroids are 

computed using the mean among all samples in a group. Beside the mean of each 

group, no further information regarding class distribution is available for this method, 

and it is presumed that the distribution of samples around the centroid is     

symmetrical 62. The Euclidean distance of a sample i(𝑥𝑖)  from class g is calculated as 

below: 
 

𝑑𝑖𝑔  =  √(𝑥𝑖 − �̅�𝑔)(𝑥𝑖 − �̅�𝑔)𝑇  

where 𝑑𝑖𝑔 is the Euclidean distance between sample i and the centroid of class g. 

 

2.3.4 Linear Discriminant Analysis (LDA) 

Linear discriminant analysis (LDA) is one of the most famous supervised 

method to extract discriminative features and expand to various variables. It involves 

a pooled variance-covariance matrix (Sp) in distance measurement. The distance 

between samples to the class centroid is weighted based on the overall variance of 

each variable. Consequently, any correlation between variables (if present) is now 

properly considered. The Mahalanobis distance is used to calculate the LDA distance 

to the class centroid g as follows 62, 94: 

 

𝑑𝑖𝑔  =  √(𝑥𝑖 − �̅�𝑔)𝑺𝒑
−1(𝑥𝑖 − �̅�𝑔)T 

 

where 𝑺𝒑 is the pooled covariance matrix, calculated for two classes as follows: 
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𝑺𝒑  =  
∑ (𝐼𝑔 − 1)𝑆𝑔

𝐺
𝑔=1

∑ (𝐼𝑔 − 1𝐺
𝑔=1 )

 

where  𝐼𝑔 is the number of samples in class g and Sg is the variance–covariance matrix 

for group g. It's imperative to note that the LDA approach uses the Mahalanobis 

distance relying on a variance–covariance matrix for the entire dataset, rather than for 

each class individually 62. 

 

2.3.5 Quadratic Discriminant Analysis (QDA)  

The correlation between variables is taken into account in the LDA method 

where the measurements are expected to be regularly distributed. QDA is comparable 

to LDA, except instead of utilizing overall pooled matrix, it uses the variance–

covariance matrix of each class. Consequently, QDA does not infer that the variances 

of different classes have a similar variance–covariance matrix. The distance can be 

calculated as follows: 

 

𝑑𝑖𝑔  =  √(𝑥𝑖 − �̅�𝑔)𝑆𝑔
−1(𝑥𝑖 − �̅�𝑔)𝑇 

where 𝑺𝒈 is the variance–covariance matrix of class g. 

 

It can be observed that the calculation of both LDA and QDA method are required 

variance–covariance matrix (S) which result to a limitation of these methods. On the 

assumption of the number of variables in a dataset is greater than the number of 

samples, S will be a singular matrix that cannot be inverted. As state by EDC, LDA, 

and QDA,  the class of a sample is assigned to the class with the minimum distance; 

moreover, they can be employed to classify multiple classes (two or more classes) 62. 

 

2.3.6 Partial Least Squares Discriminant Analysis (PLSDA) 
Partial Least Squares Discriminant Analysis is regression technique that 

functions by projecting the original data onto latent variable space. Because it intends 

to determine the best latent variables to represent the data, it is therefore similar to the 

PCA approach 94, 95. With exception of PCA, however, PLS is a widely used method 

for determining the best latent variables describing the relationship between a data 
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matrix X (usually containing spectra or chromatographic data) and a class 

membership matrix C (usually containing quantitative values such as class labels or 

concentrations). The fundamental PLS-DA equations are as follows:  

 

X = T P + E 

c = T q + f 

 

where T is common score matrix for this implementation. E and f can be considered 

residuals. In the following algorithm, the consecutive columns of the score matrix T 

(PLS components) are orthogonal, while the rows of the X loadings matrix P are not. 

On the other hand, the models with successive PLS components are additive since the 

scores are orthogonal 94. 

To be noted that PLS-DA is a feature extraction and classification algorithm 

that perform better than PCA and LDA. One explicit reason is because PCA scores do 

not always explain differences between samples but rather variances in the spectral 

data 96. 

 

2.3.7 Self-organizing Maps (SOMs) 

SOMs (Self-Organizing Maps) were first introduced by Kohonen 20 years ago 

and are now extensively used to visualize sample relationships; moreover, it can 

reveal hidden patterns in the datasets 63, 97, 98. The SOM is a neural network method 

that can be applied for both unsupervised and supervised learning. It is an effective 

alternative to PCA for visualizing data. Comparable to scores plots, a SOM map 

illustrates the relationship between samples and component planes that can be used to 

display distinguishing variables. SOM map is created using hexagonal or square units; 

however, only the hexagonal unit is described in this work. A weight (w) for each 

variable is contained in each map unit (u) on a SOM map, resulting in a 1 x J weight 

vector (note: J equals the number of variables in the dataset). A rough depiction is 

produced if the number of map units is small, meanwhile a better detailed map of the 

samples is provided if the number of map units is large 99. For the sake of clarity, the 

SOM calculation algorithm for unsupervised learning is as follows: 
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1. An initial output map is established in M x N = K unit. A weight vector (w) of 

each unit will be randomly chosen from the maximum and minimum values of 

variable j in the input data. It's worth noting that the sizes of M and N should be 

carefully evaluated in order to cover the majority of samples that will be matched 

in the following step. 

2. Sample vectors (xs) in the dataset are then compared with the weight vector of 

each unit (wk) on the initial SOM map from step 1. The Euclidean distance 

between xs and wk for each map unit k is calculate: 

 

𝑑𝑠𝑘  =  √(𝑥𝑠 − 𝑤𝑘)(𝑥𝑠 − 𝑤𝑘)T 

 

Considering the rows of 𝑥𝑠 as vectors, compute the distance matrix between each 

pair of vectors. This process will be repeated until the distance of K units on the 

map is calculated. 

3. The map unit that gives the smallest distance will be declared as the best matching 

unit (BMU) of the chosen sample (𝑥𝑠): 𝐵𝑀𝑈 =  {𝑑𝑠𝑘𝑘
𝑚𝑖𝑛 } 

4. The BMU and the neighboring map units (Nb) within the length from the BMU are 

updated to become more similar to the sample vector xs. The learning rate which is 

used to determine the amount that a map unit can learn to represent a sample in 

each iteration is calculated: 

 

𝑤𝑘  =  {
𝑤𝑘  +  𝑤𝛼(𝑥𝑠 − 𝑤𝑘)       𝑘 ∈  𝑁𝑏

𝑤𝑘                                          𝑘 ∈  𝑁𝑏
 

 

where α is the learning rate and w is the neighborhood learning weight. The 

amount of learning decreases with each iteration of the algorithm, as does the 

neighborhood learning rate with distance from the BMU. 

 

The learning of the entire process is repeated until the map regions are stable (for 

approximately 10,000 times) 100. The overall of calculation protocol of SOM is 

illustrated graphically in Figure 2.6.  
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Figure 2.6 Calculation protocol of SOM for unsupervised learning 

 

After the training process, the samples containing similar underlying 

information are closely mapped together. Samples originated from the same groups 

are assigned into analogous regions on the SOM map, while samples from different 

groups are laid on the different regions. For visualization, the color map is created to 

reveal the clusters of samples. The shading of the color map units is updated in each 

iteration which directly related to the updated SOM map. The color map will help in 

interpretation and so it is possible to monitor it in real time during the training 

process. The intensive details of SOM algorithm including the BMU, adjusted 

learning rate, neighborhood widths, etc. during the training process was already 

explained in our previous study elsewhere 62, 99, 101.  
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CHAPTER III 

DISCRIMINATION OF WEEDY RICE USING NEAR INFRARED 

SPECTROSCOPY AND MODIFIED SELF-ORGANIZING MAPS 

(SOMS) 

 

In the study, we aim to modify the classifier model based on supervised SOMs 

in order to discriminate the weedy rice from cultivated rice directly from paddy seed 

for seed quality assessment. The rice seeds involving weedy (red, ellipsoid and long 

tail) and four cultivated rice including Khao Hom Mali 105 (KHML105), Kor Khor 

49 (RD49), Pratumtani1 (PTT1) and Phitsanulok2 (PL2) which were collected from 

trusted distributors certificated by Rice Department Ministry of Agriculture and 

Cooperatives, Thailand. Physical characteristic and thermal behavior of the rice 

samples were observed by optical microscope and thermogravimetric analysis (TGA), 

respectively. To access chemical information, the NIR spectra were acquired and 

examined by reflection NIR spectrometer. To discriminate class of rice sample, SOM 

classifier was generated with well optimization in order to prevent the overfitting 

problem. The performance of SOM classifier was validated with 100 different training 

and test sets to obtain the robust prediction. The classification performance was 

monitored by several indices including sensitivity, specificity, precision, accuracy, 

and misclassification error. It should be noted that the detection on the mixed 

proportion of weedy rice seems more significant than the classification in real 

application. However, the prediction of the mixed proportion usually could not be 

discovered until the classification of the target object (weedy rice) is completely 

achieved especially for the unknown system. In our study, to classify the weedy rice 

directly from paddy seed by using NIR technique has not been reported elsewhere so 

far. Therefore, to prove the capability of NIR technique combined with our modified 

SOM method in order to discriminate the weedy rice (the target object) from the 

cultivated rice is the first priority. This work could be further expanded to develop a 

multi-spectral camera instead of expensive standard laboratory instruments in order to 

reach a broad user community for seed quality assessments and inspections in the 

future. Further detail was shown in Appendices (Figure A2). 
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3.1 Experimental Setup 

3.1.1 Sample collection and preparation 

Three types of weedy rice (paddy seed) involving red weedy, ellipsoid weedy 

and long tail weedy were collected from the local fields at Phrom Phiram district, 

Phitsanulok province, Thailand. Moreover, the four types of standard cultivated rice 

seeds including Khao Hom Mali 105 (KHML105), Kor Khor 49 (RD49), Pratumtani1 

(PTT1) and Phitsanulok (PL2) were collected from Lifestyle and Spirit of Thai 

Farmers-Nahai Chai Learning Center at Supanburi province, Thailand. They are 

certificated by Rice Department Ministry of Agriculture and Cooperatives, Thailand. 

All details of these samples are shown in Table 3.1. The collected seed samples were 

pre-treated by using cyclone vacuum machine to remove the contaminated particles 

and other impurities attached on the rice husk. After that, the seed samples were 

safely kept in the vacuum boxes at room temperature prior to acquire the NIR 

measurements. The cyclone vacuum machine was shown in appendices Figure A1. 

 

Table 3.1 Information of collected weedy seeds and rice seeds from the 

certificated rice seed distributors in Thailand 

Type of 

rice 

Common 

name 

Species Plant 

Origin 

Harvest 

date 

Collecting 

date 

NIR 

acquisition 

date 

Number 

of 

Detection 

(Spectra) 

Weedy Red rice 
Oryza sativa 

f. spontanea 
Phitsanulok 1 Nov 2019 8 Nov 2019 22 Jan 2020 500 

Weedy Ellipsoid 
Oryza sativa 

f. spontanea 
Phitsanulok 1 Nov 2019 8 Nov 2019 24 Jan 2020 500 

Weedy Long tail 
Oryza sativa 

f. spontanea 
Phitsanulok 1 Nov 2019 8 Nov 2019 26 Jan 2020 500 

KHML105 Hommali105 
Oryza sativa 

L. 
Phitsanulok 1 Nov 2019 8 Nov 2019 16 Feb 2020 500 

RD49 Kor Khor 49 
Oryza sativa 

L. 
Suphanburi 17 Dec 2019 24 Dec2019 21 Feb 2020 500 

PTT1 Phatumtani1 
Oryza sativa 

L. 
Suphanburi 17 Dec 2019 24 Dec 2019 24 Feb 2020 500 

PL2 Phitsanulok2 
Oryza sativa 

L. 
Suphanburi 17 Dec 2019 24 Dec 2019 26 Feb 2020 500 

 

3.1.2 NIR Spectral acquisition 

Thermo Scientific™ Nicolet™ iS5N FT-NIR spectrometer with extended 

range indium gallium arsenide (InGaAs) detector, high intensity halogen light source 

and temperature stabilized solid-state Near-IR diode laser purchased from Thermo 
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Fisher Scientific was used to acquire NIR spectra of the seed samples. Regarding with 

acquisition process, we try to include all variations during the detection including 

variations from instrument, light scattering variation and sample variation. Owing to 

the experiment part, the samples were prepared in 5 different batches (variation from 

sample). In each batch, the rice sample was randomly rolled gently to obtain the 

uniform mixing. After rolling, the NIR spectra were continuously acquired for 10 

repeated times without moving the sample container (instrument variation). The 

mixing process was repeated for 10 times for each batch (light scattering variation). 

Therefore, the total NIR spectra of each sample type was up to 500 spectra from                                        

5 different batches   10 mixing   10 repeated detections. The background was re-

measured in every 10 spectra. The scheme of the data acquisition with the brief 

explanation was added in Figure 3.1. Prior to data acquisition, the samples were 

prepared with the identical height and the surface of the samples were flattened to 

avoid the interfered scattering effects. Furthermore, the black box was used to cover 

the sample holder to avoid the error from external incident lights while the spectrum 

was acquired. The NIR spectra of the samples were collected using reflection mode in 

the range of 1000 nm–2400 nm with 16 averaged scans. Throughout the experiment, a 

room temperature was controlled at 27–29 ºC. 

 

 
 

 

Figure 3.1 The scheme of the NIR acquisition procedure 
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3.1.3 Thermogravimetric analysis (TGA) 

The thermogravimetric experiments were conducted by using Perkin Elmer 

Pyris 1 TGA Thermogravimetric Analyzer to reveal the thermal behavior of a sample. 

The system was carried out under the inert condition with a steady nitrogen flow of 20 

mL/min. All samples were prepared in the range of 3–15 mg prior to be pyrolyzed. To 

remove the adsorbed water and moisture on the sample, the sample was firstly 

isothermal heated at 35ºC for 1 minute. After isothermal scan, the samples were 

continuously heated with rate of 20ºC/min from 50ºC to 800ºC.  

 

3.2 Data analysis 

3.2.1 Preprocessing method 

In the first step of data analysis, the interquartile range (IQR), which is the 

difference between the 75th percentile and the 25th percentile, is used to detect outliers. 

The average NIR spectrum of each sample class was calculated as a centroid of the 

class. Euclidean distance of the NIR spectrum of in-class samples was then computed. 

Samples provide Euclidean distance outside 1.5  interquartile range (IQR) from the 

average in-class NIR spectrum are identified as outliers and subsequently eliminated. 

84, 102 After that, the spectra will be performed by the Savitsky-Golay smoothing 

coupled with standard normal variate (SNV) in order to effectively remove the signal 

variation from light scattering in the heterogenous samples 103. 

 

3.2.2 Self-organizing maps (SOMs) 

A self-organizing map (SOMs) is one of the most well-known artificial neural 

networks (ANNs) 98, 104. The main principal of SOMs is its ability to not only 

transform multi-dimensional data into visually decipherable clusters in a low-

dimensional grids (2D grids) form, but also maintain relative distances between 

existing data units in a multidimensional space form 61. Basically, SOMs involves two 

processes including vector quantization and vector projection. At the beginning, 

SOMs was used as unsupervised model where only the predictive data was used for 

constructing the model 63, 99  To generate SOM map, it starts from initializing the map 

as represented by the two-dimensional hexagonal. Each map unit consists of the 

weight vector which was randomly generated from a uniform distribution between the 
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maximum and minimum intensities in the dataset. In particular, the number of map 

layers is set to be equal number of variables J (wavelengths in the case) in the dataset 

A map can be generated by M  N units which was normally set to approximately 2.5 

times compared with number of samples in the dataset. During each training step, a 

sample vector xs from data matrix X is randomly chosen and projected on each map. 

Euclidean distance between a sample vector and weight vector on each map unit is 

calculated. For each sample, the unit with the smallest distance to the chosen input 

sample is selected as a Best Matching Unit (BMU). The BMU and its neighboring 

units are updated to become more similar to the sample vector. The learning rate 

could be adjusted to determine the amount that a map unit can learn to represent a 

sample vector in each iteration. The iterations are repeated for approximately 10,000 

times until the map regions are stable 100. After the training process, the samples 

containing similar underlying information are closely mapped together. Samples 

originated from the same groups are assigned into analogous regions on the SOM 

map, while samples from different groups are laid on the different regions. For 

visualization, the color map is created to reveal the clusters of samples. The shading 

of the color map units is updated in each iteration which directly related to the 

updated SOM map. The color map will help in interpretation and so it is possible to 

monitor it in real time during the training process. The details of SOM algorithm 

including the BMU, adjusted learning rate, neighborhood widths, etc. during the 

training process was already explained in our previous study elsewhere 62, 99, 101 Most 

of SOM algorithm are applied in an unsupervised learning aspect similar to clustering, 

visualization, and dimensionality reduction. However, unsupervised SOMs cannot be 

used as a classifier in order to predict class of the unknown samples. Therefore, the 

supervised SOMs was developed in our previous study 59 in order to improve the 

capability of SOMs to be used for visualization and also classification. In supervised 

SOMs, the class weight vector (K) including information of class membership is 

added to the initial map. The dimension of the class weight vector is depending on the 

number of classes in the data, for example, if the data contains three classes involving 

A, B and C, then the class weight vector will be assigned as [w 0 0], [0 w 0] and [0 0 

w], respectively. The class weight vector will be also trained during the iteration 

similar to the color and SOM maps. The separation between different groups of 
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samples in supervised method are strongly influenced by the Optimal Scaling Value 

(w). The samples are forced into predefined groups on the map when the large value 

of w is used. On the other hand, the class membership has little influence on learning 

process, and classes may not always be clearly separated when the small value of w is 

used. Therefore, the Optimal Scaling Value (w) is the important parameter which is 

needed to be optimized in the supervised method as it strongly affects to performance 

of the classifier. To predict class of an unknown sample, the BMU of the unknown 

sample is searched by assigned to the SOM unit with the smallest Euclidean distance. 

The class of the sample is assigned by the class with the largest value of class weight 

vector, for example, if class weight vector of BMU is [2.5 3.7 1.2], the class of sample 

will be assigned to class B as it provided the largest value. The scheme of supervised 

SOM algorithm is expressed in Figure 3.2 and the details of supervised SOM 

algorithm including the BMU, adjusted learning rate, neighborhood widths, optimized 

optimal scaling value etc. during the training process was already explained in our 

previous study elsewhere 59, 101  
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Figure 3.2 Schematic diagram for sample visualization and classification of 

weedy rice and cultivated rice using the modified supervised SOMs for K classes 

and J variables with the SOM map in dimension of M  N. The modified SOMs 

can be operated in two modes involving the training process of supervised SOM 

map to be used as reference map for the classification purpose and the class 

determination of an unknown sample by mapping the unknown to the reference 

SOM map. 

 

 

In this work, validation was used to estimate the performance of the classifier 

by dividing the data into training set and test set. The supervised SOM map was 

constructed from the training set to predict the test set. Two-thirds of the dataset was 

randomly split into a training set and the remaining samples was assigned as test set. 

The training set samples were used to generate the supervised SOM map to be used as 

a classifier to predict the class of either training set or test set samples. This procedure 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 34 

was repeated for 100 times using different random splits of the data, each time 

constructing different classifier model to reveal the robustness of the supervised SOM 

model 105.  

 

 

3.3 Result and discussion 

3.3.1 Rice seed characteristics 

In order to visualize the features of rice seed, each type of rice seed including 

weedy rice and cultivated rice was photographed by digital microscope camera as 

shown in Figure 3.3. In case of weedy seed, they consist of red weedy, ellipsoid 

weedy and long tail weedy that their external appearances are slightly different. When 

they were compared with the cultivated varieties (KHML105, RD49, PTT1 and PL2), 

the weedy ecotypes were slightly shorter, rather dark-red pericarp and longer tail. 

However, it is undeniable that most weedy rice ecotypes are so phonologically and 

morphologically similar to cultivated rice varieties in term of shape and color. It 

causes difficulty in order to discriminate weedy rice from cultivated varieties directly 

from paddy seed by human visualization as shown in Figure 3.3(a)–3.3(g). In the 

experiment, a developed cyclone was used to remove contaminated particles on the 

rice husk surface. The rice husk with magnification of 100 captured by optical 

microscope of paddy rice seed before and after incubating in the cyclone was 

investigated as shown in Figure 3.3(h)–3.3(i), respectively. There are no significant 

differences in physical characteristics between with/without cyclone. It might be 

suggested that cyclone vacuum machine is appropriate to remove the external 

substance contaminated on rice husk and can keep their chemical characteristics, 

resulting the acquired spectra come from their intrinsic factors. 
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Figure 3.3 Morphological features of rice seeds including weedy rice seeds: (a) 

red weedy, (b) ellipsoid weedy, (c) long tail weedy and cultivated rice seeds: (d) 

KHML105, (e) RD49, (f) PTT1 and (g) PL2. The magnified optical images. On 

the right-hand side showed the optical microscope images (100) of the rice (h) 

without cyclone (i) with cyclone. 

 

 

The thermal stabilities and decomposition of the rice husk from weedy seed 

and cultivated seed were investigated using TGA which scans from 50ºC to 800ºC 

with temperature rate of 20ºC/min under N2 flow in dynamic heating conditions. The 

thermal profiles could provide about physical and chemical phenomena including 

chemical compositions of the samples. Generally, the pyrolysis of any biomass can be 

divided into three phases including drying and evaporation of light components 

(phase 1), devolatilization of hemicellulose and cellulose (phase 2) and decomposition 

of lignin (phase 3) 106 
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Figure 3.4 (a) TGA and (b) DTG curve of weedy (blue line) and cultivated rice 

(red line) with heating rate 20°C/min under nitrogen flow 

 

According to TGA/DTG thermograms in Figure 3.4, the weight loss takes 

place with three distinct steps corresponding to the water evaporation and pyrolysis 

stages. The first loss of weight at 80–100ºC is due to the evaporation of adsorbed 

water and dehydration of rice husk 107. Both of weedy and cultivated rice paddy seed 

are hydrophilic (with enormous of –OH group) which easily adsorbed by water in air 

108. However, this involves only 3.5% weight loss. Typically, rice husk contains the 

main component including cellulose (25 to 35%), hemicellulose (18 to 21%), lignin( 

26 to 31%), silica (15 to 17%), soluble (2 to 5%), and moisture ca (7.5%) 109, 110. The 

onset of the peaks from DTG thermograms at 332.95ºC and 301.7ºC for the weedy 

rice husk and the cultivated rice, respectively. These onsets of pyrolysis stage 

represent the starting point of decomposition of rice husk due to the degradation of 

hemicelluloses and cellulose. Hemicellulose composes amorphous structure with 

degradation thought the peak at 300-310ºC, while the sharp decrease in weight might 

relate to the splitting of cellulose macromolecules (at > 320ºC). 111. At temperature 

above 400ºC, degradation of lignin starts, and the residue consists primarily of 

charcoal from lignin decomposition. Interestingly, the weedy rice husk provides the 

remaining 37.68% weight residue, whereas only 20.64% weight residue for cultivated 

rice (Figure 3a). The charcoal of lignin decomposition in the step shows significantly 

different. It might be assumed that lignin contents and derivative of carbohydrate 
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compositions in weedy rice husk and cultivated rice husk is undoubtedly different that 

shows high possibility to be monitored by spectroscopic technique discussed in the 

next section.  

 

 

3.3.2 NIR spectra of rice 

Figure 3.5 shows average NIR spectra of paddy seed of the cultivated rice and 

weedy rice samples in the wavelength regions of 1000 nm–2400 nm. It can be seen 

that different types of rice samples generate different NIR pattern. Predominant 

differences in the NIR spectra may originate from the inequality amount of chemical 

compositions on the rice husks. This is in good agreement with the thermal 

decompositions observed from the TGA thermograms. However, it is not easy to 

identify the overtone which distinct type of rice samples directly from the average 

NIR spectra. The variance of the average NIR spectra was calculated and plotted in 

Figure 3.5a (bottom line). Any overtone regions which provide a high variance with 

two time of standard deviation (2SD) indicates the possible features to discriminate 

type of rice samples. These characteristic reflection bands are similar to those of 

paddy rice seed reported by others 112. The band of 1068 nm presents first overtone of 

O–H stretching mode while band of 1148 nm corresponds to second overtone of C–H 

stretching. The reflection bands at 1068 nm–1148 nm might be assigned to be part of 

either glucose 113 or lignin 114, 115.  The reflection bands at 1400 nm–1450 nm mainly 

represent first overtone of O–H stretching of amorphous / free OH groups / weakly 

hydrogen bond of polysaccharides 112, 116. The reflection bands at 1604 nm–1690 nm 

are second overtone of C-H stretching of aromatic 115 and phenolic hydroxyl group 116 

of lignin. Moreover, the reflection bands at 1932 nm–1945 nm are attributed to 

polysaccharide 117 arising from the vibration of O–H stretching, O–H bending, and  

O–H combination 118. Eventually, the reflection band at 2244 nm is combination band 

of O–H stretching/ C–O stretching which corresponds to cellulose 119. These assigned 

bands are in good agreement with the variation observed in the second derivative 

superimposed spectra presented in Figure 4b. According to the reflection intensity of 

superimposed peaks at 1148 and 1690 nm corresponding to lignin, it can be seen that 

the reflection intensity of weedy rice is higher than the cultivated rice. This might be 
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suggested that the two types of the paddy seeds majorly consist of the different 

amount of lignin content which is consistent with the TGA result  

 

 

 
 

Figure 3.5 NIR spectra of weedy (blue), KHML105 (red), RD49 (black), PTT1 

(green) and PL2 (orange) after performing (a) standard normal variate (SNV) 

with the variance plot on the bottom (b) second derivative and (c) the band 

assignment of significant NIR regions for rice discrimination. The inset figures 

demonstrate the variation of 2nd derivative spectra chosen by NIR region with 

high variance. 

 

 

3.3.3 Classification of rice by SOMs 

It can be clearly seen that thermal and chemical properties of the weedy rice is 

strongly different from the cultivated rice as they provide the different patterns of 

thermogram and NIR spectra. In the section, we try to perform the statistical methods 

to differentiate the NIR spectra of the weedy rice from the cultivated rice. There are 

five different cases to be investigated that involves (I) weedy vs KHML105, (II) 
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weedy vs RD49, (III) weedy vs PTT1 and (IV) weedy vs PL2, respectively and (V) 

weedy vs combination of all types of the cultivated rice. In the study, the modified 

Self Organizing Maps (SOMs) was used here in order to visualize the underlying 

relationship and to classify group of the rice samples. Typically, supervised SOMs 

operates in two modes including (i) model construction and (ii) classified mapping. 

The map was trained by using the input samples which are training set in the case. 

Whereas the constructed map was automatically used to classify group of test set 

samples. To reveal the robustness of the generated SOM model, the dataset was 

divided into training set and test set for several times (100 iterations in the case) 105. A 

modified algorithm of self-organizing map network architecture has been used to 

differentiate the weedy and the cultivated rice in the form of two-dimensional 

mapping. Herein, the SOM map with the size of units 20  30 (600 in total) was used 

in the study. The scaling value (w) was carefully optimized to avoid the overfitting 

problem. If value of w is too small, classifier model will not adequately influence the 

generated map to classify unknown samples. On the other hand, if large value of w is 

used, classifier model will overfit resulting in poor performance of classification 

especially for test set samples 59. The satisfied scaling value for SOM classifier in 

each case was chosen by considering the maximum point of the classification rate 

from both training and test set. The %Correctly Classified (%CC) is used as a 

classification rate index to determine the promising value of w in each case. The %CC 

is basically calculated from the frequency of corrected prediction. A higher %CC 

refer to the greater model, resulting in greater accuracy and precision of unknown 

classification. The overall %CC of the training and test sets using the different scaling 

values (w) is shown in Figure 3.6. In all cases, the %CC of both training set and test 

set is monitored when scaling value was changed to build the supervised SOM model. 

Initially, the %CC increases when w is raised up until the classification model is 

either stabilize or slightly decrease when higher value of w is used. The optimal 

scaling value for each case is directly determined at a certain point where the rate of 

%CC is either flatted off or slightly decreased. From this, it can be determined that the 

optical scaling values equal to w = 1 for case I–IV, while the optimal w = 4 for case 

V, respectively.  
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Figure 3.6 Percent Correct Classified (%CC) of the training set and test set 

(average from 100 iterations) with the different scaling value (w) used to build 

the supervised SOM model for (a) case I : weedy vs KHML105, (b) case II : 

weedy vs RD49, (c) case III : weedy vs PTT1, , (d) case IV : weedy vs PL2,  (e) 

case V : weedy vs mix cultivated rice with the selected optimal scaling value for 

each case including %CC of training and test set. 

 

 

For unsupervised pattern recognition, our modified SOMs are neural networks 

which offer some advantages over the orthogonal linear transformation method e.g., 

Principal Component Analysis (PCA) because SOMs could work well in either linear- 

or non-linear underlying dataset and it provides more options for graphical 

representation. In the case, the score plots of the top 3 largest principal component 

(PC1–PC3) of the dataset case I–V are displayed in the Figure 3.7a. The cluster 

separation of samples from the score plots are compared with the unsupervised and 

supervised SOM map as shown in Figure 3.7b and 6c, respectively. It could be seen 

that in PC score plots, the groups of samples are considerably overlapped, and the 

symbols becomes crowded and hard to distinguish, while the sample groups are 
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reasonably well spread out from the SOM maps. The separation of sample cluster is 

dramatically improved when our developed SOM are used. It can be seen that there 

are very distinct regions especially in case (II), case (III) and case (IV) suggesting that 

the characteristic patterns of NIR spectra of RD49, PTT1, and PL2 are strongly 

distinguished from the weedy. On the other hand, there is not such good separation for 

case (I) and (V) which suggests that the variability from the cultivated rice has 

relatively small influence on the overall map. However, this is not surprised as it is 

expected that most of chemical compositions are similar in the cultivated rice. This 

cannot easily recognize the differences when using only unsupervised method. 

Supervised SOMs using the optimal scaling values were performed to the same 

dataset for all cases. These supervised maps are shown in Figure 3.7c. It can be seen 

that there is dramatically improved the separation between groups of rice sample on 

these maps for all cases especially for case (V) to compare the types of cultivated rice. 

To be fair, the main application of the supervised SOM map is not for visualization of 

the data because it will tend to give bias interpretation according to the addition of 

class variables in the initial map before training. However, these map appearances are 

similar to the classifier used for prediction the class of unknown samples.  
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Figure 3.7 (a) PCA score plots (PC1-PC3), (b) Unsupervised SOMs and (c) 

Supervised SOMs of Case (I)–Case (V) using the optimal scaling values (w)  

 

 

To evaluate the classification method, the performance indices of the 

developed method were calculated based on the results from the contingency table. 

For case I–IV, we define the positive case as the class of weedy rice, while the 

negative case corresponds to the cultivated rice. On the other hand, for case V, the 

approach of one vs all was employed when positive case refers to weedy rice and 

negative case represents mix cultivated rice (KHML105 + RD49 + PTT1 +PL2). 

From the contingency table, four indicators could be calculated where TP is the 
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number of correctly classified for positive case, FP is the number of negative cases 

that were classified as positive, TN is the number of correctly classified negative 

cases, and FN is the number of positive cases that were classified as negative. From 

these assigned indices, the classification performances including sensitivity, 

specificity, precision, accuracy and misclassification error can be computed as 

follows: 

 

Sensitivity = TP/(TP+FN)  Specificity = TN/(TN+FP) 

Precision = TP/(TP+FP)   Accuracy = (TP + TN) / (TP + FP + TN + FN) 

Misclassification error = (FP + FN) / (TP + FP + TN + FN) 

 

 These performance indices are commonly used as metric for evaluation of the 

developed classifier model. The sensitivity refers to the ability of the classifier to 

correctly identify those samples with positive class. A high sensitivity is clearly 

imperative where the classifier is used to identify the correct positive class. On the 

other hand, specificity is inversely proportional to sensitivity where it has the ability 

of the classifier to correctly identify the samples with negative class. The accuracy 

and precision play significant roles to reveal the prediction rate where the classifier 

model can be very precise but inaccurate. The higher the value of those indices, the 

better classification is made. In case of misclassification error, it is directly related to 

the accuracy as the summation of accuracy and misclassification error should be equal 

to 1. 120, 121. Table 3.2 summarizes the classification results which demonstrate the 

correctness of a model classifies the dataset in each class for case I–case V. 
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Table 3.2 Performance indices including sensitivity, specificity, precision, 

accuracy and misclassification error (ME) averaged from 100 iterations of 

training and test set using supervised SOM classifies with optimal scaling values  

 
  Sensitivity Specificity Precision Accuracy M.E 

Case I 

Positive class: Weedy 

Negative class: KHML105 

Train 0.94±0.01 0.79±0.04 0.93±0.01 0.90±0.01 0.10±0.01 

Test 0.94±0.02 0.73±0.06 0.91±0.02 0.88±0.01 0.12±0.01 

Case II 

Positive class: Weedy 

Negative class: RD49 

Train 1.00±0.00 0.96±0.02 0.99±0.01 0.99±0.01 0.01±0.01 

Test 1.00±0.00 0.96±0.02 0.99±0.01 0.99±0.01 0.01±0.01 

Case III 

Positive class: Weedy 

Negative class: PTT1 

Train 0.95±0.01 0.81±0.03 0.94±0.01 0.91±0.01 0.09±0.01 

Test 0.94±0.02 0.84±0.04 0.95±0.01 0.92±0.01 0.08±0.01 

Case IV 

Positive class: Weedy 

Negative class: PL2 

Train 0.95±0.01 0.87±0.02 0.96±0.01 0.93±0.00 0.07±0.00 

Test 0.94±0.01 0.78±0.03 0.92±0.01 0.90±0.01 0.10±0.01 

Case V 

Positive class: Weedy 

Negative class: mixed 

cultivated rice 

Train 0.86±0.03 0.85±0.02 0.80±0.02 0.85±0.01 0.15±0.01 

Test 0.82±0.02 0.85±0.02 0.80±0.02 0.84±0.01 0.16±0.01 

 

 

From Table 3.2, the standard deviation of the indices is small suggesting that 

several splits of training and test set with 100 iterations are required to obtain a stable 

estimation. The prediction in training set is an indicator of how well the model is 

optimized, while the prediction in test set has meaning as to show how well the 

classifier model can be used to predict the unknown data. In all cases, the prediction 

from training set and test set are relatively small different that reveals the classifier 

model was well optimized and not overfitting. For case I–IV, it could be seen that the 

sensitivity and specificity are not good balance. The sensitivity (proportion of weedy 

rice that is correctly identified as weedy) are approximately 5%–15% higher than the 

specificity. This suggests that the proposed methods could be preferably used to 

predict class of weedy rice rather than to predict class of cultivated rice because there 

are only a few false negatives occurred. Sensitivity of   0.94 is observed in cases I–

IV. Even it is not good balance prediction for positive (weedy) and negative classes 

(cultivated rice) but the developed model is appropriated to our study for discriminate 
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weedy rice from the cultivated rice. The classifier model generated for case I–IV give 

very high value of precision (0.91–0.99) and accuracy (0.88–0.99). This reveals that 

the classifier model does not give bias prediction due to unequal class size. From 

performance indices obtained from case I–IV, it could be concluded that the 

developed classifier using supervised SOMs can be used to classify and discriminate 

the weedy rice from the cultivated rice with high precision and accuracy. For case V, 

we further observed the discrimination power of the model in order to classify weedy 

rice from the mixed cultivated rice. Interestingly, it can be seen there is a good 

balance between the sensitivity (0.82) and specificity (0.85) which suggests that the 

classifier of the model in case V is not biased toward either group. Due to the big 

variations from the mixed cultivated rice, the precision and accuracy for case V is 

reduced to 0.80 and 0.84, respectively. However, the prediction accuracy and 

precision are still in acceptable range ( 0.80). In consideration of the performance 

and validation using different chemometric methodologies involving Euclidean 

distance to centroid (EDC), Linear discriminant analysis (LDA), Quadratic 

discriminant analysis (QDA) and Partial least square discriminant analysis (PLSDA), 

they are compared with the developed SOMs using the merit performance indices as 

shown in Table 3.2. Here in, it can be observed that the performance of SOMs is 

optimal for all parameters and all cases, demonstrating the suitability of the method to 

discriminate weedy rice out of cultivated rice 
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Table 3.3 Table of merit for the discrimination of weedy rice out of cultivated 

rice using different chemometric methodologies involving Euclidean distance to 

centroids (EDC), Linear discriminant analysis (LDA), Quadratic discriminant 

analysis (QDA), Partial least-squares discriminant analysis (PLSDA) and our 

developed SOMs.  

 
Sensitivity Specificity Precision Accuracy M.E. 

Case I : 

Weedy vs 

KHML105 

SOMs 

train 0.94±0.01 0.79±0.04 0.93±0.01 0.90±0.01 0.10±0.01 

test 0.94±0.02 0.73±0.06 0.91±0.02 0.88±0.01 0.12±0.01 

EDC 
train 0.59±0.01 0.57±0.01 0.80±0.01 0.58±0.01 0.42±0.01 

test 0.59±0.02 0.56±0.03 0.79±0.01 0.58±0.02 0.41±0.02 

LDA 

(4 PCs) 

train 0.83±0.01 0.84±0.01 0.92±0.01 0.83±0.01 0.17±0.01 

test 0.82±0.02 0.84±0.02 0.92±0.01 0.83±0.01 0.17±0.01 

QDA 
train 0.82±0.01 0.86±0.01 0.94±0.01 0.83±0.01 0.17±0.01 

test 0.82±0.01 0.86±0.02 0.94±0.01 0.83±0.01 0.17±0.02 

PLSDA 

(6 PCs) 

train 0.76±0.01 0.91±0.01 0.92±0.01 0.81±0.01 0.19±0.01 

test 0.75±0.02 0.90±0.02 0.92±0.01 0.80±0.02 0.20±0.02 

 

 
Sensitivity Specificity Precision Accuracy M.E. 

Case II : 

Weedy vs 

RD49 

SOMs 

train 1.00±0.00 0.96±0.02 0.99±0.01 0.99±0.01 0.01±0.01 

test 1.00±0.00 0.96±0.02 0.99±0.01 0.99±0.01 0.01±0.01 

EDC 
train 0.92±0.04 0.92±0.05 0.92±0.02 0.91±0.04 0.09±0.04 

test 0.91±0.04 0.92±0.06 0.91±0.02 0.90±0.05 0.10±0.05 

LDA 

(2 PCs) 

train 0.89±0.01 0.82±0.01 0.93±0.01 0.87±0.01 0.13±0.01 

test 0.88±0.02 0.81±0.03 0.93±0.01 0.87±0.01 0.13±0.01 

QDA 
train 0.88±0.01 0.83±0.01 0.94±0.01 0.86±0.01 0.14±0.01 

test 0.88±0.02 0.83±0.02 0.94±0.01 0.86±0.01 0.14±0.01 

PLSDA 

(4 PCs) 

train 0.98±0.01 1.00±0.00 0.99±0.01 0.98±0.01 0.02±0.01 

test 0.97±0.01 1.00±0.00 0.99±0.01 0.98±0.01 0.02±0.01 
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Sensitivity Specificity Precision Accuracy M.E. 

Case III : 

Weedy vs 

PTT1 

SOMs 

train 0.95±0.01 0.81±0.03 0.94±0.01 0.91±0.01 0.09±0.01 

test 0.94±0.02 0.84±0.04 0.95±0.01 0.92±0.01 0.08±0.01 

EDC 
train 0.68±0.03 0.64±0.02 0.85±0.01 0.67±0.03 0.33±0.03 

test 0.68±0.04 0.64±0.05 0.85±0.02 0.67±0.04 0.33±0.04 

LDA 

(2 PCs) 

train 0.81±0.01 0.75±0.01 0.90±0.01 0.80±0.01 0.20±0.01 

test 0.81±0.02 0.75±0.03 0.90±0.01 0.79±0.01 0.21±0.01 

QDA 
train 0.77±0.01 0.79±0.01 0.91±0.01 0.78±0.01 0.22±0.01 

test 0.77±0.02 0.78±0.03 0.91±0.01 0.78±0.01 0.22±0.01 

PLSDA 

(5 PCs) 

train 0.84±0.01 0.91±0.01 0.92±0.01 0.88±0.01 0.12±0.01 

test 0.83±0.02 0.91±0.03 0.91±0.02 0.88±0.01 0.12±0.01 

 

 
Sensitivity Specificity Precision Accuracy M.E. 

Case IV : 

Weedy vs 

PL2 

SOMs 

train 0.95±0.01 0.87±0.02 0.96±0.01 0.93±0.00 0.07±0.00 

test 0.94±0.01 0.78±0.03 0.92±0.01 0.90±0.01 0.10±0.01 

EDC 
train 0.63±0.01 0.63±0.01 0.83±0.01 0.63±0.01 0.37±0.01 

test 0.63±0.02 0.62±0.04 0.83±0.01 0.63±0.02 0.37±0.02 

LDA 

(2 PCs) 

train 0.84±0.01 0.78±0.01 0.92±0.01 0.82±0.01 0.18±0.01 

test 0.84±0.02 0.78±0.03 0.92±0.01 0.82±0.01 0.18±0.02 

QDA 
train 0.81±0.02 0.81±0.01 0.93±0.01 0.81±0.01 0.19±0.01 

test 0.80±0.02 0.82±0.04 0.93±0.01 0.81±0.01 0.19±0.01 

PLSDA 

(5 comp) 

train 0.85±0.01 0.91±0.01 0.94±0.01 0.89±0.01 0.11±0.01 

test 0.85±0.02 0.91±0.01 0.93±0.01 0.89±0.01 0.11±0.01 

 

Next, the capability of the modified SOMs for multi-classification is revealed. 

The classification of case V is extended to 5 different classes involve weedy, 

KHML105, RD49, PTT1, and PL2. The average of percent correct classified of each 

class is summarized in Table 3.4. From case V, it could reveal that the supervised 

SOMs can be used to discriminate the weedy rice from the mixed cultivated rice 

directly from paddy seed with satisfactory accuracy and precision (for both 

dichotomous and multi-classification).  
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Table 3.4 Percent correctly classified over 100 iterations of training and test sets 

using the multi-classification on case V which involve 5 different classes (Weedy, 

KHML105, RD49, PTT1, PL2) 

 

Class Average % Correct Classified 

Training set Test set Random* 

Weedy 83.93 ± 2.40 80.22 ± 2.60 

100 

KHML105 50.64 ± 7.70 47.58 ± 8.20 

RD49 83.00 ± 5.17 82.55 ± 5.93 

PTT1 57.13 ± 6.81 59.80 ± 7.23 

PL2 71.52 ± 7.67 67.14 ± 6.85 

 

 

The prediction of case V (in the main manuscript) is extended to involve 5 

different classes which are weedy, KHML105, RD49, PTT1, and PL2. For unbiases 

interpretation, the prediction accuracy should be compared with the background 

prediction. The value of background prediction depends only on the number of classes 

by considering the classification when samples are randomly assigned to each class. 

In the case, there are 5 different classes, therefore, the background prediction should 

equal to 100  (1/5) = 20%. From the table, it is clear that the % correctly classified of 

the training set and test set for weedy rice is still in high predictive accuracy (83% for 

training set and 80% for test set) which is similar to dichotomous classification in 

Table 3.2 in the main manuscript (86% for training set and 82% for test set). This 

suggests that our modified SOMs provides the well-organized trained maps and 

successfully classified the weedy rice from the cultivated rice. The prediction 

accuracy of weedy rice can be still kept in the high level even using in the process of 

multi-classification. 

Furthermore, the performance of our developed SOM method was compared 

to the discrimination and classification results of the previous research methods as 

shown in Table 3.5. Please note that the classification results could not be directly 

compared as different sample types and different techniques on data acquisition have 

been used in each work. However, it shows that our developed SOMs could give the 
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satisfied results with the classification precision in the range of 91%–99% depending 

on the study cases. The modified SOM algorithm has potential to be further 

performed on the data obtained from some alternative techniques e.g., electronic nose, 

hyperspectral camera. 

 

Table 3.5 Comparison of other research methods on the quality control of rice. 

Year Sample Data Chemometric 

methods 

Accuracy Ref 

2008 Paddy seeds 

(storage period) 

Vis/NIR 

spectroscopy 

WT, PCA, 

ANN 

97.5% 122 

2016 Weedy rice grain 

seed 

RiSe-IViS 

prototype 

DFA 95.8%–96.0% 123 

 

2017 Rice mutants Hyperspectral 

camera 

SVM-PCA 90%–93% 124 

2018 Maize seed 

varieties 

NIR (reflectance) PCA, LDA 90% 125 

2019 Group of weedy 

rice 

RiSe-IViS 

prototype 

DFA 98% 126 

 

2019 Organic rice NIR PLS, PCA 87.5% 127 

2019 Grade of rice and 

geographical 

origin 

Hand-held NIR MSC-PCA- 

KNN 

90.6%–91.8% 14 

- Weedy rice 

(paddy seed) 

NIR (reflectance) SOM 91%–99% This 

work 

 

*Note:Wavelet transform (WT), Principal component analysis (PCA), Artificial neural networks (ANN), Linear 

discriminant analysis (LDA), Discriminant function analysis (DFA), Support vector machine (SVM), Partial Least 

Squares regression (PLS), Multiplicative scatter correction (MSC), k-Nearest Neighbor (kNN), Self-Organizing 

Map (SOM) 
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3.4 CONCLUSIONS 

In our study, we developed the unsupervised and supervised SOMs as a 

classification method to potentially discriminate the weedy rice from the cultivated 

rice directly from paddy seed. Their physical properties and thermal behaviors of the 

weedy and cultivated rice paddy samples were investigated. The results displayed that 

there is no significantly different in their physical appearances due to the similarity of 

their morphological features of rice husk. The thermal behaviors and thermal 

decomposition of the rice samples at temperature above 400ºC revealed the different 

amounts of lignin contents and derivative of carbohydrate between the weedy rice 

husk and cultivated rice husk. According to NIR measurement, there were five 

important overtone regions selected using the variance including 1148, 1400 nm, 

1690, 1893 and 2244 nm. The tendency of the reflection NIR spectra of the rice 

samples is consistent with the TGA results. For the classification part, supervised 

SOMs were used to discriminate the weedy rice from the mix cultivated directly from 

NIR spectra of their paddy seeds. The optimal scaling value (w) of the develop SOM 

model is well optimized to prevent the overfitting problem. The performance of SOM 

classifier was validated with 100 different training and test sets to obtain the robust 

prediction. In order to evaluate the developed classification model, the performance 

indices including sensitivity, specificity, precision, accuracy and misclassification 

error were used to access the classification performance. The classifier model gives 

very high value of precision (0.91–0.99) and accuracy (0.88–0.99) for the data contain 

weedy and a cultivated rice, where they slightly reduced to 0.80 and 0.84 for precision 

and accuracy, respectively, for the data of weedy against the mixed cultivated rice. 

This suggests that the supervised SOMs can be used to discriminate the weedy rice 

from the mixed cultivated rice. In the future, near infrared spectroscopy combined 

with supervised SOMs might become a powerful invasive, green and simple 

techniques which could be performed fast and accurate without using extra chemicals 

and process required to assess and inspect of rice seed quality.  
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CHAPTER IV 

PROJECTED PIXELS ON HYPERSPECTRAL NIR IMAGE BY 

SUPERVISED SELF-ORGANIZING MAP TO CLASSIFY WEEDY 

RICE SEED 

 

In general, the NIR spectrum was extracted from hyperspectral image (HSI) 

with two approaches which are pixel-wise and mean spectrum 128. The pixel-wise 

spectral analysis uses the spectra of each pixel in region of interest. Even it contains 

more details information but could give misleading results due to differences within 

the sample. Therefore, the mean spectrum of all pixel-wise spectra is preferably 

calculated as the representative data for the sample. The non-uniformity of pixel space 

due to various factors (e.g., lens distortion, sensor movement, rugged terrains) in the 

image have not been concerned by the methods. After obtaining the spectral data, 

there are large number of linear and non-linear classification methods such as linear 

discriminant analysis (LDA) 46, partial least squares discriminant analysis            

(PLS-DA) 47, the k-nearest neighbors (kNN) 48, support vector machine (SVM) 49, 

principal component analysis (PCA) 50, and artificial neural networks (ANNs) 38 

which can be utilized to quantify and visualize the chemical variation within the 

heterogeneous samples, such as plant seeds. Moreover, most techniques use reduction 

methods such as principal component analysis (PCA), which require re-calculating 

the number of latent variables (LVs) every time a new set of samples is added to 

maintain prediction viability, resulting in a critical limitation when the extra set of 

samples have been added. In the study, the new classification approach for the HSI 

image is proposed by using Self-Organizing Maps 58-60. The developed supervised 

SOMs was applied on the pair-wise HSI to generate the supervised global SOM map 

which visualize the unit of each class. All parameters involving scaling value and map 

size were systematically optimized. The pair-wise pixels of an unknown sample were 

projected to the global SOM map in order to determine the class of each pixel. The 

class of each pixel will be then projected to the image by simple display using color 

scale (e.g., Red, Green and Blue). Then the class of each sample image is determined 

by the ratio of the projected color on the image. This approach is more appropriate to 
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real implementations of using NIR hyperspectral imaging systems for seed quality as 

it classifies based on individual seed image using all pair-wise HSI instead of just 

using only the mean-spectrum. Moreover, the global SOM map could be updated 

anytime when there is more sample information available without the requirement of 

re-optimized parameters. The proposed classification approach using SOMs compared 

with the classical approach on HSI analysis was illustrated in Table 4.1.  

 

Table 4. 1 A survey on current publication 

Year Sample Extracted 

Features 

Sensing 

modality 

Classifiers Accuracy Ref 

2005 Identification 

of rice seed 

varieties 

Color, 

Morphology 

RGB Neural 

Network 

84.33% 129 

2013 Identification 

of rice seed 

cultivar 

Spectral HSI PLS-DA, 

K-NN, 

SIMCA, 

SVM, and 

RF models 

80-100 

 

29 

2016 Classification 

of four varieties 

of bulk rice 

grain 

Color, 

Texture, 

Wavelet 

RGB, HSI BPNN 96-100% 130 

2017 Identifying 

Paddy Seed 

Varieties 

Shape-base RGB BPNN 95.53% 131 

2017 Identification 

of rice origin 

from four 

different 

regions 

Spectral, 

morphological 

and texture 

features 

HSI SVM 91.67% 132 
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Table 4. 1 A survey on current publication (continued)  

Year Sample Extracted 

Features 

Sensing 

modality 

Classifiers Accuracy Ref 

2018 Inspecting rice 

seed species 

purity 

Morphological, 

color, and 

textural traits 

RGB DT, RF, 

Adaboost 

≥80% 133 

2019 Determination 

of rice seed 

vitality of 

different years 

Spectral HSI PCA 93.67% 43 

2020 Detection of rice 

kernels infected 

with rice false 

smut 

Spectral HSI PCA 

 

99.27% 134 

2021 Prediction of 

Anthocyanins 

Content in Black 

Rice Seeds 

Spectral HSI PLSR 85-95% 135 

 

*Note: Partial least squares-discriminant analysis (PLS-DA), K-Nearest Neighbors (K-NN), Soft independent 

modelling by class analogy (SIMCA), Support Vector Machine (SVM), Random Forest (RF), Back-Propagation  

Neural Network (BPNN), Decision Tree (DT), Principal component analysis (PCA), Partial least squares 

regression (PLSR) 

 

To the best of our knowledge, no reports on the approach using supervised 

SOMs are available. The approach was used to discriminate the weedy rice from 

cultivated rice directly from paddy seed for seed quality assessment as the case study. 

This concept method of this article is the first attempt in NIR hyperspectral imaging 

applications in seed quality monitoring by using actual HSI data for the analysis. 
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4.1 Experimental setup 

4.1.1 Sample collection and preparation 

Weedy was collected from the local fields at Phrom Phiram district, 

Phitsanulok province, Thailand. The two types of standard cultivated rice seeds, 

including Phitsanulok2 (PL2) and Kor Khor 49 (RD49), were collected from the 

Lifestyle and Spirit of Thai Farmers-Nahai Chai Learning Center Suphanburi 

province Thailand. They are certificated by the Rice Department Ministry of 

Agriculture and Cooperatives, Thailand. The collected seed samples were pre-treated 

in order to remove the contaminated particles and other impurities attached to the rice 

husk by using a cyclone vacuum machine. After that, the seed samples were safely 

kept in the vacuum boxes at room temperature before acquiring the NIR 

measurements. 

 

4.1.2 NIR-Hyperspectral acquisition 

Before the data collection, the power supply was turned on to warm up the HSI 

system for 30 minutes to eliminate the baseline drift and other errors caused by the 

system. Then, hyperspectral images of the rice samples were acquired by using one 

push broom HSI as shown in Figure 4.1. It comprises an imaging spectrograph 

(Imspector N17E; Specim, Spectral Imaging Ltd., Oulu, Finland), a CCD camera 

(Xeva 992; Xenics Infrared Solutions, Belgium), two 500 W tungsten–halogen light 

sources (Lowel Light Inc., NY, USA), and control software (Specim’s LUMO 

Software Suite; Spectral Imaging Ltd., Oulu, Finland). The HSI system was 

constructed to cover near-infrared (NIR) wavelengths for reflectance measurements. 

The information of the system in detail was described by Kim et al. 136 
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Figure 4.1 Sample presentation for NIR hyperspectral imaging in wavelength 

region: 900–1700 nm 

 

Image acquisition was carried out at room temperature. In order to facilitate 

the segmentation of rice seeds from the background, rice seeds were plated on a black 

plate with very low reflectivity. At each time, fifty seeds, including twenty weedy 

seeds (40%w/w of the total) and thirty seeds cultivated rice, were randomly plated 

without overlapping each other in five rows, and each row was divided into ten seeds 

(Figure 4.2). All images were collected by obtaining spectral/spatial data line-by-line 

as the translation table moved the sample plate under the instantaneous field of view 

(IFOV) of the HSI system. In order to obtain clear images without deformation, the 

height between the camera lens and the samples was set at 30 cm, and the camera's 

exposure time was set at 9 ms. The system scanned the samples line by line along the 

Y-axis, which used the two-dimensional image sensor in a spectral range of 1000–

2350 nm, and the samples were moved along the X-axis at a constant speed of 10 mm 

s-1. The size of the hyperspectral image determined by the camera was 267  320 with 

256 active bands.  
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Figure 4.2 Diagonal rice arrangement on seed plate. 

 

 

The raw hyperspectral images of the samples were corrected using two 

reference standards, including the white reference image and the dark reference 

image. They are obtained under the same condition as sample image acquisition. The 

white reference image was obtained using a white Teflon bar of nearly 100% 

reflectance, and the dark reference image was acquired by turning the light source off 

and completely covering the lens with its opaque cap. Then the corrected image was 

calculated by the following equation 

𝐼 =  
𝐼0  − 𝐼𝑑

𝐼𝑤  − 𝐼𝑑
 

Where I is the corrected image, I0 is the raw image, Id is the dark reference image, and 

Iw is the white reference image 

 

It’s well known that hyperspectral imaging (HSI) system integrates digital 

imaging and spectroscopic techniques into one system 40. The information recorded in 

HSI represents three-dimensional data which contains the spatial information of the 

image and the spectral data and is called a “hypercube.” as shown in Figure 4.2. 

Hyperspectral image of each sample with dimensions of x × y × n where x and y are 
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the spatial dimensions and n is the number of wavelengths was captured. In this study, 

the resolutions ratio of hyperspectral image is 256 × 320 × 256, which having active 

band on the line in spatial range of 1000–2350 nm. Furthermore, spectral information 

(X-matrix) of the imaged sample that represents its physicochemical properties could 

be extracted either directly from the segmented objects in the image as the main 

region of interest 39. It should be noted the segments usually contain pixels from the 

shadow's boundary regions rather than the seeds' pure spectra when the seeds are 

segmented only using HSI data. As a consequence, any morphological feature 

measurements relying only on spectral image segmentation may be imprecise, and 

spectra from non-rice-seed pixels will be included in the assessment 13. 

Herein, the spectra arising from one rice seed are obtained in the area of 

approximately 30 × 10 pixel. The effective spectra for global model construction were 

picked up from relatively small areas of 5 pixels × 3 pixels square almost center of the 

rice (as shown in Figure 4.3) to ensure that the spatial and spectral features are 

appropriately included in the data analysis. 

 

 
 

 

Figure 4.3 (a) Components of a hyperspectral imaging system (b) Image of the 

pixel number in a rice seed 
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4.1.3 Scanning electron microscope (SEM) 

The morphology of the rice seed samples was investigated by scanning 

electron microscopy (SEM) technique. Samples were fixed on a carbon tape and 

attached on an aluminum stub. The SEM sample was vacuum dried for 1 h before 

imaging. SEM micrographs of samples were performed using a scanning electron 

microscope (SEM, JEOL JSM-6510) operated at 2–15 kV under high vacuum mode. 

 

4.1.4 Direct analysis in real time mass spectrometry (DART-MS) 

The rice samples were analyzed by DART (SVP 100; IonSense, Inc., Saugus, 

MA, USA) (JEOL USA. Inc.) coupled with AccuTOF LC-plus (JMS-T100LP) mass 

spectrometer (JEOL Ltd., Tokyo, Japan). DART was operated in positive ion mode 

using helium (Ultra high purity: 99.999%, and 300 °C) as the discharge gas with a 

flow rate of 2.25 L/min. The mass spectra were recorded with m/z from 100 to 1000 

and processed using MS Tune Manager Software Version 1.3.0.0. 

 

4.2 Data analysis 

The global map was created from 3 sample maps which randomly contain 

weedy and cultivated rice seeds (total 50 seeds) for each map. Therefore, a total of 

150 sample seeds were obtained. After that, the random pixel from each seed 

corresponding to the relatively small areas mentioned above was selected. All 

reflectance constituents were from the effective wavelength ranged from 990 to 1640 

nm with 3 nm resolutions. The reflectance data of all samples were then arranged in a 

matrix (1800 samples × 209 wavelengths). The hyperspectral data of all sample seeds 

were further analyzed using a supervised self-organizing map. The main procedure for 

analyzing hyperspectral imaging data is depicted in Figure 4.4. They were divided 

into 4 parts: (a) data acquisition, (b) sample segmentation, (c) global SOM map, and 

(d) determination of unknow seeds. The explanation in detail was shown in the 

following section. 
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Figure 4.4 Schematic diagram for sample visualization and classification of 

weedy rice and cultivated rice from HSI spectra using supervised SOM for K 

classes and J variables with the SOM map in the dimension of M × N. There are 

4 sub-steps in total: (a) data acquisition, (b) sample segmentation, (c) global 

SOM map, and (d) determination of unknow seeds. 

 

 

4.2.1 Preprocessing method 

The data collected by the hyperspectral system is necessary to perform a series 

of processing on the original images to finally perform the suitably spectral data. The 

first step begins with the interquartile range (IQR), commonly used to detect outliers. 

It measures statistical dispersion, being equal to the difference between the 75th 

percentile and the 25th percentile. The average NIR-HSI spectrum of each sample 

class was calculated as a centroid of the class. Euclidean distance of the NIR spectrum 

of in-class samples was then computed. Samples that provide Euclidean distance 

outside the 1.5 × interquartile range (IQR) from the average in-class NIR spectrum are 

identified as outliers and subsequently eliminated 137. After that, the obtained spectra 

will be performed spectral pretreatment using Savitzky-Golay smoothing (SGS) 

coupled with standard normal variate (SNV) in order to effectively remove the signal 

variation from light scattering in the heterogenous samples 103. The other 

preprocessing is Savitzky-Golay smoothing coupled with 2nd derivatives (2D), which 

mainly used to resolve peak overlap (or enhance resolution) and eliminate constant 

and linear baseline drift between samples, resulting in improve spectral resolution, 

identify overlapping spectral peaks, and highlight spectral peaks with significant 

differences 138, 139.  

 

4.2.2 Development of self-organizing map 

A self-organizing map (SOMs) is one of the most well-known artificial neural 

networks (ANNs) 98, 104. It can be constructed without assuming any mathematical 

functions. In other words, it is a non-linear method. The main principal of SOMs is its 

ability to not only transform multi-dimensional data into visually decipherable 

clusters in a low-dimensional grids (2D grids) form, but also maintain relative 
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distances between existing data units in a multidimensional space form 99, 140. SOMs 

basically involves two processes, including vector quantization and vector projection. 

In this work, supervised SOM model was applied using the algorithm presented in 

detail in the literatures 99, 141. Therefore, only essential steps are described here. The 

first step is initialization. A trained map consisting of a grid as represented by the two-

dimensional hexagonal of units is generated in this step. The shape of the units is not 

specific, although squares and hexagons are particularly favorable because they have 

neighbors that have the same distance apart in numerous directions 142. Each map unit 

consists of the weight vector randomly generated from a uniform distribution between 

the maximum and minimum intensities in the dataset. In particular, the number of 

map layers is set to be equal number of variables J (wavelengths in the case) in the 

dataset. A map can be generated by M × N units, where M and N are the numbers of 

rows and columns of the map, respectively. It was normally set to approximately 2.5 

times compared with number of samples in the dataset 101. The next step is the 

training process. During each training step, a sample vector xs from data matrix X, 

which is randomly chosen from the training sample and newly generated for each 

iteration, is compared to each of the map unit weight vectors. The dissimilarity 

between the sample vector (xs) and weight vector (wk) on each map unit, namely 

Euclidean distance, is calculated by  

 

s(xs,wk) = √∑ (𝒙𝑠 − 𝒘𝑘𝑗)2𝐽
𝑗=1  

 

Herein, the map with the most similar weight (having the lowest dissimilarity) 

vector is declared the ‘winner’ or the best matching unit (BMU). The BMU becomes 

the center of learning for that iteration, and its neighboring units are updated to 

become more similar to the sample vector. The entire process is repeated for 10,000 

iterations until the map regions are stable. As the learning proceeds, the samples 

containing similar underlying information are gradually moved towards a map region 

and mapped onto the SOM units that are close together in the map space. Samples 

originated from the same groups are assigned into analogous regions on the SOM 

map, while samples from different groups are laid on the other regions. For 
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visualization, it is difficult to directly visualize the updated SOM map, therefore, the 

color map has been created to reveal the clusters of samples. The shading of the color 

map units is updated in each iteration of the which directly related to the updated 

SOM map. The color map will help interpretation, and so it is possible to watch in 

real-time as the training progresses.  

The strategy of SOMs can be adapted for supervised learning with an 

additional set of variables representing the class membership appended to the input 

variables for training. In supervised SOMs, the class weight vector (K), including 

class membership information, is added to the initial map. The dimension of the class 

weight vector depends on the number of classes in the data. For example, if the 

sample contains three classes involving A, B and C, then the class weight vector will 

be assigned as [ 0 0], [0  0] and [0 0 ], respectively, where ω is used to indicating 

that the sample is in that class and 0 if not. The class weight vector will also be 

trained during the iteration similar to the color and SOMs maps. The ability to 

separate between different groups of samples in supervised method is strongly 

influenced by the Optimal Scaling Value (). If the value  is too high, it may overfit 

the data. However, if it is too low, it could render the map unsupervised 59, resulting 

in moderately performing or even wrong predictive models 143. Therefore, the 

Optimal Scaling Value () is the critical parameter needed to be optimized in the 

supervised method. The other parameter which is strongly affected the performance of 

the classifier is the size of the map. Different sizes of maps trained at a specific 

number of iterations will have different resolutions. If the map size is too small, it 

might not explain the essential differences between samples that should be detected. 

Conversely, if the map size is too big, the differences are too small to be observed 144. 

Therefore, in order to ensure that our global map is completely perfect, map size 

selection is needed. The map size is usually predefined in SOMs; an appropriate map 

size can only be decided after training the samples on different sizes of map 143.  

The details of supervised SOM algorithm, including the BMU, adjusted 

learning rate, neighborhood widths, optimized optimal scaling value, etc. during the 

training process was already explained in our previous study elsewhere 59, 101.  

After optimal value ω and size map are defined, they were used to create the 

global map for further study in the next part. All calculation steps, image processing, 
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and the spectral value of all pixels were performed on MATLAB R2018b with an in-

house coding algorithm.  

However, there is one major disadvantage of SOMs, it requires necessary and 

sufficient data to develop meaningful clusters. The weight vectors must be based on 

data that can successfully group and distinguish inputs 145. Lack of data or extraneous 

data in the weight vectors will add randomness to the groupings, resulting in the 

limitation of SOMs features to classify correctly. Therefore, in the present study, the 

developed classification model (supervised SOMs) established following the step 

above as a global map was used to apply to other hyperspectral images to form 

classification maps, thereby allowing the rice seeds to be simply classified based on 

the intensity of the pixels.   

Similar to the human eye, this kind of pixel was represented by traditional 

color imaging, known as RGB imaging. It used three broadband color channels (Red, 

Blue, green) to produce a signal color value for each pixel in the image. Herein, Red, 

Blue, and Green were referred to as cultivated rice, weedy, and background, 

respectively. The essential underlying information from a global map was used to 

predict samples in other maps using Receiver Operating Characteristic (ROC) as an 

index to distinguish sample class. The prediction result was represented in an RGB 

image pixel as shown in Figure 4.4d. 

 

4.3 Results and discussions  

4.3.1 Rice seed characteristics 

In order to visualize the features of rice seed, each type of rice seed including 

cultivated rice and weedy rice was photographed by digital microscope camera as 

shown in Figure 6. Because weedy rice may instead originate from cultivated rice 

through de-domestication with adaptive mutations, so their external appearance is 

similar to cultivated rice varieties in term of shape and color 2. According to this 

result, it causes difficulty in order to discriminate weedy rice from cultivated varieties 

directly from paddy seed by human visualization, as shown in Figures 4.5 (a) and 

4.5(c). 
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Figure 4.5 Morphological features of rice seeds. The samples are presented on 

the acquisition stage, belonging to the black paper stage (background). Case I : 

PL2 and weedy (a)  3D digital image (b) 2D sample image with label 

visualization. Case II :  RD49 and weedy (c) 3D digital image (b) 2D sample 

image with label visualization. The magnified optical images. On the right-hand 

side showed the optical microscope images (100×) of the rice (e) without cyclone 

(f) with cyclone. 

 

Herein, a developed cyclone was used to remove contaminated particles on the 

rice husk surface. The morphology of rice husk with the magnification of 100× 

captured by optical microscope of paddy rice seed before and after incubating in the 

cyclone was investigated as shown in Figure 4.5(e)–4.5(f), respectively.  Observation 

of these samples revealed their native morphology have no significant differences in 

physical characteristics between with/without cyclone. In other words, it may be 

suggested that a cyclone vacuum machine is suitable for removing external 

contaminants on the rice husk and being able to maintain their chemical properties, 

which render to acquired spectra come from their intrinsic rice. 
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4.3.2 Scanning electron microscope (SEM) analysis 

To better understand the morphology of rice samples, weedy and cultivated 

rice seeds were subjected to SEM. The surface topographical features are presented in 

Figure 4.6, which revealed that the husk surface of both types of rice is equipped with 

a smooth inner surface and a systematically undulating outer surface. Although the 

morphology of the weedy samples (Figure 4.6a) was more spike observed than the 

cultivated rice (Figure 4.6b), there was no significant difference in native morphology 

between these two of rice under SEM. 

 

 
Figure 4.6 SEM images of native rice seed (a) Weedy seed (b) Cultivated rice 

seed 

 

4.3.3 Reflectance spectral characteristic 

The average NIR-HSI reflectance spectral data based on the cultivated rice 

seed (PL2) and weedy sample obtained from the hyperspectral images shown in 

Figure 4.7. The wavelength range of 1000 nm–1600 nm was chosen as the research 

focus. They showed a similar pattern which was characterized by several broad peaks 

in the same region.  It is difficult to identify the overtone which is a distinct type of 

rice samples directly from the average NIR spectra. In order to overcome this 

problem, the variance of the average NIR spectra was calculated and plotted in Figure 

4.7d. Any overtone regions which provide a high variance with two times of standard 

deviation (2SD) indicates the possible labels to discriminate type of rice samples. The 

band range from 1000–1200 nm was assigned to C–H second overtone, which may 

come from aromatic or aliphatic compounds 135. The band of 1068 nm presents first 
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overtone of O–H stretching mode, while the band of 1148 nm corresponds to second 

overtone of C–H stretching. The reflection bands at 1068 nm–1148 nm might be 

assigned to be part of either glucose 113 or lignin 114, 115. The reflection bands at     

1400 nm–1450 nm mainly represent first overtone of O–H stretching of amorphous / 

free O–H groups / weakly hydrogen bond of polysaccharides 116. The next area (1604 

nm–1690 nm) is assigned to second overtone of C–H stretching of aromatic 115 and 

phenolic hydroxyl group 116 of lignin. This similar characteristic also shows in case II 

(RD49 and weedy) in Figure 4.8.  

 

       
 

Figure 4.7 Characteristic reflectance spectra (a) raw data and after performing 

different pretreated method (b) S–G smoothing (C) SNV (D) 2nd Derivative of 

PL2 and weedy 
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Figure 4.8 Characteristic reflectance spectra (a) raw data and after performing 

different pretreated method (b) S–G smoothing (C) SNV (D) 2nd Derivative of 

RD49 and weedy 

 

 

The spectra were processed with different methods, including Savitzky-Golay 

smoothing (SGS) coupled with standard normal variate (SNV) and Savitzky-Golay 

smoothing coupled with 2nd derivatives (2D). Compared with the raw spectra, after 

preprocessing revealed that relative baseline translation between spectra were 

corrected and scattering effect were eliminated, resulting to improve spectral 

resolution, identify overlapping spectral peaks and enhance the useful spectral 

absorption information 146.  
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4.3.4 Classification of rice by SOMs 

Self-Organizing Maps (SOMs) is an unsupervised learning method. The 

principal goal of an SOMs is to transform an underlying signal pattern of arbitrary 

dimension into two-dimensional grid of connected neurons which are multi-

dimensional vectors. 143. In other words, SOM provides effective results which are 

easily visualized and interpreted from the generated component planes (CPs). Maps 

samples in the same unit will show more similarities and be represented closer on the 

map. In contrast, samples with different patterns are located far away from each other 

147. The strategy of SOMs can be adapted for supervised learning with an additional 

set of variables representing the class membership appended to the input variables for 

training 59. In the present study, supervised SOMs were used here to visualize the 

underlying relationship and classify the group of rice samples. Typically, the learning 

process in SOMs involves two main steps: selecting the best matching unit and self-

organization of the map. The map was trained by using the input samples, which are 

training set in the case. Whereas the constructed map was automatically used to 

classify group of test set samples. Supervised SOMs are frequently used to classify an 

unknown sample into a group by using the trained map as a classifier.  

The most straightforward measurement to determine the performance of the 

classifier is Percent Correctly Classified (%CC) 105. For the overall %CC, the dataset 

was divided into training and test sets several times (100 iterations in the case). The 

%CC results are dependent on the chosen scaling value (ω). Therefore, it is essential 

to carefully optimize scaling value (ꞷ) to perform a good prediction and avoid the 

overfitting problem. If the value is too high, this may overfit the data. However, if it is 

too low, it could render the map unsupervised, resulting in moderately performing or 

even wrong predictive models 143. The overall %CC of the training and test sets using 

the different scaling values (ꞷ) is shown in Figure 4.9. In all cases, the %CC of both 

training set and test set is monitored when scaling value was changed to build the 

supervised SOMs model. The result shows that %CC close to 100% in train set, 

implying that the global model is correctly classified into the appropriate group. 

Moreover, %CC in train set is also similar to test sets, it can be suggested that 

the global model is not overfitted. Considering to lower scaling value, the lower %CC 

is provided. On the other hand, when ꞷ is raised until the classification model is 
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either stabilized or slightly decreased, the optimal scaling value for each case is 

directly determined. Herein, the optimal scaling value is equal to 0.002 for both case I 

and case II. 

        
Figure 4.9 Percent Correct Classified (%CC) of the training set and test set 

(average from 100 iterations) with the different scaling value (ꞷ) used to build 

the supervised SOM model for (a) case I: PL2 vs weedy, (b) case II: RD49 vs 

weedy. 

 

Besides the scaling value that affects the model performance, size map is a 

crucial factor that needs to optimize. If the number of samples is smaller than the 

number of map units render to overfitting problem 148. On the other hand, if the 

number of samples is more extensive than the number of map units, detailed 

information might be lost in the process 147. 

Therefore, an appropriate size map will provide better knowledge on the 

clustering qualities of SOMs 143. However, there is no theoretical principle to indicate 

the suitable size map. Quantitative indicators such as quantization error (QE), 

topographic error (TE) and eigenvalues have proven to be relevant tools to facilitate 

the selection of the map size 144, 147.  
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In this study, we will examine the effect of size map on the extended SOMs. 

Comparisons at the various size of the sample will be made using the percent 

Correctly Classified (%CC) as shown in Figure 4.10. The small map size of test set 

(256 and 625) in both case I and case II produce a slight fluctuation of %CC. The map 

sizes ranging from 1296 onwards, extended SOM produced a stable of %CC. From 

the result, it might be suggested that a large map unit size probably is highly efficient 

than a small map size. Although dimensions of the data increases become more 

critical to visualize and classify samples, unfortunately, time to compute them also 

increases. Herein, the sample size = 1296 was selected to be the optimal size map.   

 

   

Figure 4.10 Percent Correct Classified (%CC) of the training set and test set 

(average from 100 iterations) with the different map size used to build the 

supervised SOM model for (a) case I : PL2 vs weedy, (b) case II : RD49 vs weedy 

 

 

In order to prove our hypothesis, optimal scaling value and size map are then 

used to establish supervised SOMs map. The SOM component planes of the input 

variables for the samples are shown in Figure 4.11. Each hexagonal unit on the map 

represents a particular location on the different component planes with the exact 

location on the unit map. The values of the various components are represented using 

different colors. From Figure 4.11, it can be seen that there is a complete separation 

between groups of rice samples on all of these maps. As a result, it emphasizes the 

importance of optimizing the scaling value and map size that affect the SOM model. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 71 

 
 

 

Figure 4.11 supervised SOMs using the optimal scaling values (ω = 0.002) and 

optimal size map (size = 1296). (a) Case (I): PL2 vs weedy (b) Case (II): RD49 vs 

weedy 

 

 

4.3.5 Image Based Classification      

Spectral information (X-matrix) of the imaged sample representing its 

physicochemical properties is extracted directly from the image segment as the main 

region of interest. Then, all of this spectral information was used to build a global 

map using supervised SOMs based on optimal scaling value and size map. The global 

map was mapped to other hyperspectral images to perform classification maps of 

weedy seed and cultivated seed by simple display being imaged using RGB (red, 

green, and blue). In other word, the color on any pixel was generated by matching 

with supervised SOM map. Different image pixel colors provide different information 

about seeds' morphological features (e.g., color, size, shape, and surface structure) 31. 

Therefore, the same class of samples will provide the same color tone. Herein, weedy 

seed, cultivated seed and background were determined as red (Rpixel), blue (Bpixel) 

and green (Gpixel), respectively. In the case, green pixel represent the background on 

the image (irrelevant pixel). Based on the global models, the final color images for the 

classification are shown in Figure 4.12. The images clearly show a few seeds in both 

the weedy and cultivated rice seeds that were misclassified.  From the result, it might 

be suggested that developed supervised SOMs have the potential to classify. 
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Figure 4.12. Classification map of rice seed based on spectra information of HSI 

imaging created using the global model of system: (a) Case I : Weedy vs PL2 and 

(b) Weedy vs RD49 

 

 

 

4.3.6 Receiver operating characteristic (ROC) curve 

Moreover, the limitations in terms of accuracy as a measure of decision 

performance require introduction concepts of "sensitivity" and "specificity" tests 149. 

The receiver operation characteristic (ROC) curve has been widely assessed the 

effectiveness of target detection, which represents the varying relationship between 

the true positive rate (TPR) and the false positive rate (FPR) 150. Qualitatively, the 

closer to the upper left corner of the plot in the ROC curves, the better the 

performance. For the area under the ROC curve (AUC), it measures the accuracy of a 

prediction test. The area under the ROC curve can assume any value between 0.0 and 

1.0. A test with an area of 1.0 is perfectly accurate, whereas a test with an area of 0.0 

is perfectly inaccurate 151. In other words, an enormous value of AUROC indicates a 

better outcome 152. Herein, ROC curve and area under the ROC curve are applied to 

evaluate the model performance.  The plot of TPR versus FPR by varying the 

threshold Tf is shown in Figure 4.13. The ROC curve of is shown in black solid line 

while the AUC is shown in bold italic letters. From Figure 13a, both the ROC curve 
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and AUC perform well. According to different thresholds (Tf), ROC curve is 

monitored. From the result, threshold (Tf) equal 0.5068 and 0.4925 of case I and case 

II, respectively, are the best threshold (Tf) that make the best performance of the 

model. Therefore, these thresholds were further used as the index to classify the 

weedy rice and cultivated rice that were calculated from the global model. 

 

 

 
 

Figure 4.13  ROC curve (a) case I : Weedy vs PL2 (b) case II : Weedy vs RD49 

 

4.3.7 Classification of weedy rice by using the number of pixels (R, G, and B) of 

an image 

According to Figure 4.12, the color on any pixel was generated by matching 

with supervised SOM map. It can be seen that every single seed consists of Rpixel 

and Bpixel. In order to classify weedy and cultivated rice, the number of pixels (R–

Red,  G–Green, and B–Blue) of each seed image was calculated, as shown in Figure 

4.14. Pixel values ratio (R/R+B) of samples that are higher than or equal to the 

threshold values 0.5068 (from ROC curve) were classified as weedy rice, and they 

were represented bar, whereas the ratio that is less than 0.5068 were classified as 

cultivated rice (blue bar). The ratio was shown in Figure 4.14b. Only one 

misclassified seed was obtained (seed number 44, S44). In other words, 49 out of 50 

seeds were able to accurately classify, resulting in a 98 percent accuracy rate. As a 
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result, it can be assumed that pixel classification by using global model matching is an 

effective alternative way to use the high performance of the HSI technique 

 

 
 

Figure 4.14 Predictive result (case I : Weedy vs. PL2) after using global map 

(supervised SOM map) matching with color on any pixel image (a) Number of 

Rpixel and Bpixel (b) Rpixel/Bpixel+Rpixel ratio, where * is a symbol indicating that the 

seed was misclassified 

 

 

To further prove the performance of the global model, it was applied in case 

II: Weedy vs. RD49. The predictive results were shown in Figure 4.15. six 

misclassified seeds were obtained (seed number: 18; S18, 21; S18, 24; S24, 28; S18, 210; 

S210, 45; S45), including two seeds and four seeds of weedy class and cultivated class, 

respectively. To be specific, 44 out of 50 seeds were able to accurately classify, 

resulting in the 88 percent accuracy rate. As a result, it can be seen that the percent 

accuracy rate is slightly less than the case I. One of the possible reasons is the similar 

variation between weedy and cultivated rice seed, resulting in the global model 

established from both variations of weedy and cultivated rice providing minor errors. 

Therefore, it could be proved that the global model coupled with hyperspectral 

imaging technique can be a potential tool for fast and accurate classification of seeds.  
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Figure 4.15 Predictive result (case II : Weedy vs RD49) after using global map 

(supervised SOM map) matching with color on any pixel image (a) Number of 

Rpixel and Bpixel (b) Rpixel/Bpixel+Rpixel ratio, where * is a symbol indicating that the 

seed was misclassified 

 

 

4.3.8 The evaluation study of bias and overfitting precision in the global model 

concept 

Concurrently, the biased testing was investigated by randomizing the class 

vector of the dataset for the entire data. Therefore, some data is not assigned to the 

correct class and some data is still assigned to the class. If the model is not overfitting, 

the prediction should be closed to background prediction (100 / N; N = number of 

classes), which equates to 50% in the case. Therefore, based on this basic concept 

idea, the virtual global map was constructed from two underlying data system: PL2 

and weedy rice. Regarding to this virtual global map, it was used to predict seed 

samples by matching color on any pixel image which the result is shown in Figure 

4.16 and 4.17. The finding showed that they produced lower percentage accuracy 

predictions. According to Figure 4.16, the virtual global map can correctly classified 

seed 13 of 50 seed, which represents a percentage accuracy of predictions at 26% with 

the same probability of misclassification occurring in weedy and cultivated rice. The 

result is consistent with Figure 4.17; the accuracy prediction percentage is 66%, 

which is still lower compared to our global map as shown in Figure 4.14. As a result 
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of this finding, it is reasonable to deduce that our global map is unlikely to be biased 

or overfitting. Furthermore, there are possibly conclusive that the genuine underlying 

chemical component of the seed sample used to construct our global map plays a 

critical part in our global map’s ability to anticipate accurately.  

 

 
 

Figure 4.16 Predictive result after using global map which was constructed from 

PL2 matching with color on any pixel image (a) Number of Rpixel and Bpixel (b) 

Rpixel/Bpixel+Rpixel ratio, where * is a symbol indicating that the seed was 

misclassified 
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Figure 4.17 Predictive result after using global map which was constructed from 

Weedy matching with color on any pixel image (a) Number of Rpixel and Bpixel (b) 

Rpixel/Bpixel+Rpixel ratio, where * is a symbol indicating that the seed was 

misclassified 

 

 

4.3.9 Application of direct analysis in real time mass spectrometry (DART-MS) 

for rice determination 

Weedy and cultivated rice (PL2) were tested directly via DART-MS without 

any sample preparations. The relatively simple mass spectra typical of the DART 

ionization method display a single [M + H]+ peak representative of the individual 

component exclusive to each formulation as sown in Figure 4.18. The peaks at m/z 

121, 159, 163, 239, and 245 were found in both rice seed samples, but with significant 

variances in the absolute intensities (Figure 4.18c).  To easily identify m/z which 

distinct type of rice samples, the variance of the average mass spectra was calculated 

and plotted in Figure 4.18d–4.18f. Any overtone regions which provide a high 

variance indicate the possible features to discriminate the type of rice samples. It can 

be seen that the peak at m/z 245 and 263, which correspond to species of linolenic 

acid and pentadecenoic acid, respectively, appeared sorely in weedy rice (Figure 

4.18a). This result is consistent with the variance of weedy and PL2 that shows a 

prominent peak at m/z 245 and 263. The characteristic MS/MS fragments of 
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protonated linolenic acid (m/z 245) and pentadecenoic acid (m/z 263) including other 

fragments are shown in Table 4.2 which were confirmed by listed in the reported 

literature 153. From the results, it can be assumed that it is likely to identify 

compounds that distinguish between weed rice and cultivated rice by DART-MS. 

 

 
 

Figure 4.18 Chemical fingerprint of rice paddy sample corresponding to mass 

spectrum acquisition in positive ion detection mode by DART-MS. (a) Weedy 

rice, (b) PL2, and (c) overlap peaks between Weedy rice and PL2. On the right-

hand side, it showed a variance of DART mass spectrum of rice seed (d) Weedy 

rice (e) Cultivated rice (PL2), and (f) Weedy and Cultivated rice 
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Table 4.2 The single grain electrospray ionization (SG-ESI)-MS/MS results of 

rice samples 

m/z Charge form Molecular formula Compound 

121 [M+H]+ C9H18O2 Nonanoic acid 

159 [M+H]
+
 C

9
H

18
O

2
 Nonanoic acid 

163 [M+H]
+
 C₁₀H₁₄N₂ Nicotine (Internal standard) 

239 [M+H]
+
 C

16
H

30
O

2
 Palmitoleic acid 

  C
18

H
32

O
2
 Linoleic acid 

245 [M+Na]
+
 C

18
H

30
O

2
 Linolenic acid 

245 [M+Na]
+
 C

18
H

30
O

2
 Linolenic acid 

263 [M+Na]
+
 C

15
H

28
O

2
 Pentadecenoic acid 

 

 

4.4 Conclusion 

In the present study, the new classification approach for the HSI image is 

proposed by using supervised SOMs. This developed supervised SOMs as a global 

map was applied on the HSI image to classify weedy from cultivated rice directly 

from paddy seed. The weedy and cultivated rice paddy samples' physical features 

were explored. Due to the similarity of their morphological characteristics of rice 

husk, the results revealed no significant differences in their physical appearances. It is 

consistent with SEM analysis; there was no significant difference in native 

morphology between these two of rice under SEM. According to NIR hyperspectral 

measurement, four important overtone regions were selected using the variance, 

including 1068, 1148, 1400, and 1690 nm. The developed supervised SOMs (global 

map) was applied on the pair-wise HSI to generate the supervised global SOM map 

that visualize the unit of each class. Two parameters, including scaling value (w) and 

map size of the global map were optimized. The optimal scaling value (w) of the 
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develop SOM model is well optimized to prevent the overfitting problem. To achieve 

the reliable prediction, the efficiency of the SOM classifier was validated using 100 

different training and test sets. In order to access the developed classification model, 

%CC was used as the performance indices to evaluate the classification performance. 

The result showed that the global model provides a high value of %CC at 88.45% and 

77.67% for the case I (weedy vs.PL2) and case II (weedy vs. RD49), respectively. 

This suggests that the global map has the potential to discriminate the weedy rice 

from cultivated rice seeds. 

Furthermore, global map can use to classified rice seed sample based on image 

classification. According to ROC curve, the result showed that the threshold (Tf) 

equal 0.5068 and 0.4925 of case I and case II, respectively, are the best threshold (Tf) 

that make the best performance of the model. In the future, a worldwide model based 

on NIR hyperspectral imaging applications may become a practical approach that can 

be carried out quickly and accurately without the need for additional chemicals or 

processes to evaluate and inspect rice seed quality. 
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CHAPTER V 

CONCLUSION 

 

Weedy rice is one of the most notorious weeds occurring in rice-growing 

areas, especially in South-East Asia. Weedy rice especially in form of paddy seed is 

difficult to manage and separate as they provide common features (morphological 

resemblance) to cultivated rice. Therefore, the quality assessment method for 

evaluation the rice paddy seed is required to prevent the wide-spreading of the weedy 

rice. This work presents a modification of self-organizing map (SOMs) for the 

classification of weedy rice from cultivated rice via in situ direct sample analysis from 

paddy seed using near-infrared (NIR) spectroscopy and hyperspectral NIR camera.  

In the study, cultivated rice were collected from Lifestyle and Spirit of Thai 

Farmers-Nahai Chai Learning Center at Supanburi province, Thailand. They are 

certificated by Rice Department Ministry of Agriculture and Cooperatives, Thailand. 

Moreover, weedy rice were collected from the local fields at Phrom Phiram district, 

Phitsanulok province, Thailand. After sample collection, to eliminate contaminated 

particles and other impurities, the rice samples were pretreated with a cyclone vacuum 

machine. Optical microscopy and thermogravimetric analysis (TGA) were used to 

evaluate rice physical features and thermal behavior, while DART-MS was used to 

monitor the volatile chemical profiles on the rice husk. Regarding direct sample 

analysis, a near-infrared with reflectance accessory was employed to acquire NIR 

spectra. The NIR spectra were then preprocessed using various methods, including the 

Savitzky-Golay polynomial, standard normal variate (SNV), mean-centered, and 

second derivative pretreatment, to convert the raw data into a meaningful and efficient 

form. Self-organizing maps were well-optimized and used to classify weedy samples 

from four different types of cultivated rice. The results were confirmed and 

accomplished with the remarkable predictive value of 91% to 99% for precision and 

88% to 99% for accuracy, respectively. By comparing with the basic statistical 

classifier, the modified SOMs demonstrates the powerful method to discriminate and 

classify the rice types directly from NIR spectra. It is reasonable to conclude that the 
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modified SOM algorithm will be able to further behave on data provided via 

specialized techniques such as electronic noses and hyperspectral cameras. 

Additionally, the experiment was further undertaken by utilizing the modified 

SOMs applied on the pair-wise hyperspectral images to generate the supervised global 

SOM map. Each hyperspectral pixel from the sample image was verified with the 

global map, then the color of the best map unit (BMU) was re-projected on the image 

pixel. The steps were repeated until all image pixels were presented in BMU color. 

Then, the image pixels were replaced by the color shades which represent each class 

sample. The classification criterion was achieved by considering the ratio of the 

projected color on the sample image. The suitable threshold in order to be used for 

classifying the object class was optimized using Receiver operating characteristic 

(ROC) curve. The accuracy of the weedy seed classification was 90%, suggesting the 

usefulness of a global model for seed quality evaluation.  

This empirical evidence may lead to assumption that NIR hyperspectral 

imaging has been successfully applied to seed quality monitoring using either actual 

HSI data or NIR spectra for the analysis. Furthermore, this present work is likely to be 

extended to quantitative approach for the determination of weedy seed proportion in 

the cultivated rice seed based on NIR hyperspectral imaging technique. A developed 

global model based on NIR hyperspectral imaging systems may become a feasible 

strategy for evaluating and inspecting agricultural plant seed quality that can be 

conducted rapidly and precisely without the use of extra chemicals or operations. 
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APPENDICES   

 

1. Cyclone vacuum machine 

 

 

Figure A1 cyclone vacuum machine 

 

2. Prediction of the mixed proportion 

It should be noted that the detection on the mixed proportion of weedy rice 

seems more significant than the classification in real application. However, the 

prediction of the mixed proportion usually could not be discovered until the 

classification of the target object (weedy rice) is completely achieved especially for 

the unknown system. In our study, to classify the weedy rice directly from paddy seed 

by using NIR technique has not been reported elsewhere so far. Therefore, to prove 

the capability of NIR technique combined with our modified SOM method in order to 

discriminate the weedy rice (the target object) from the cultivated rice is the first 

priority. However, it is worth to try now at least to reveal the possibility for our 

developed SOMs to classify the mixed proportion of weedy rice sample. The samples 

were prepared with the mixed proportion of weedy rice in the cultivated rice (RD49) 

at different %w/w (20%, 40%, 60%, 80% and 100%).  
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Figure A2 (a) and (b) show %prediction of the training set and test set (average 

from 100 iterations), respectively, which are estimated using the reference SOM 

map from the case II (in the manuscript). TP is the number of weedy correctly 

classified, and TN is the number of cultivated rice correctly classified. In the case 

of TN (red line), the rate of %CC is stable closed to 100% while the % prediction 

of TP (blue line) is directly related to the percent of weedy rice in the mixed 

sample. The higher proportion of weedy rice, the higher predictive rate 

occurred.  

 

In the present work, the modified SOMs was initially not designed to be used 

for quantitative analysis, however, the percent prediction of weedy rice (TP) are 

surprisingly related to the %w/w of weedy rice in the mixed sample. From the results, 

this suggests that it is highly possible to improve our developed SOMs for further use 

in quantitative analysis. 
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