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ABSTRACT (T HAI)  ย่ีปิง จิน : การประมวลผลภาษาธรรมชาติส าหรับการโฆษณาดิจิทลั. ( Natural 

Language Processing for Digital Advertising) อ.ที่ปรึกษาหลกั : ผศ. ดร.ฑิตยา หวาน
วารี 

  
การโฆษณานั้นไม่ไดเ้ป็นเพียงกิจกรรมการตลาดหรือการขาย แต่เป็นการส่ือสารสอง

ทางรูปแบบหน่ึง ในวิทยานิพนธ์น้ี ผูวิ้จยัน าเสนอการประยกุตง์านการประมวลผลภาษาธรรมชาติ 
(natural language processing) 2 งาน  ได้แก่  ก าร เข้ าใจภ าษ าธรรมช าติ  (natural language 
understanding) และ  การสังเคราะห์ภาษาธรรมชาติ  (natural language generation) กับงาน
โฆษณาดิจิทลั เพ่ือเพ่ิมประสิทธิผลในการโฆษณา 

ผูวิ้จยัประยกุต์ใช้การจ าแนกขอ้ความแบบมีผูส้อนเล็กนอ้ยเพื่อให้สร้างตวัแบบจ าแนก
ขอ้ความส าหรับการโฆษณาโดยอิงบริบทไดอ้ยา่งรวดเร็ว (Jin et al. 2022) วิธีน้ีตอ้งใช้การก ากบั
ค าส าคัญเพียงเล็กน้อย แทนที่จะใช้คลังข้อความขนาดใหญ่ที่มีการก ากับชนิดของเอกสาร 
นอกจากน้ี วิธีน้ียงัสามารถน าปรับไปใช้กบัโดเมนใหม่ๆ ไดง้่ายอีกดว้ย ผูวิ้จยัยงัประเมินผลตัว
แบบซ่ึงมีผูส้อนเล็กน้อยโดยใชก้ารประมาณค่าผิดพลาดแบบไม่มีผูส้อน และเลือกค าส าคญัแบบ
อตัโนมตัิ (Jin et al. 2021a) การประมาณค่าผิดพลาดแบบไม่มีผูส้อนนั้นจ าเป็น เน่ืองจากเมื่อใช้
วิธีการจ าแนกขอ้ความแบบมีผูส้อนเล็กน้อยในสถานการณ์จริงจะไม่มีชุดข้อมูลที่มีการก ากับ
ผลลพัธ์ 

ตวัแบบทรานส์ฟอร์เมอร์ (Transformer) เป็นตวัแบบบที่ดีที่สุดในการแปลงข้อความ
เป็นขอ้ความ ผูวิ้จัยใช้ตัวแบบทรานส์ฟอร์เมอร์ในการสร้างค าโฆษณาที่เก่ียวข้องและมีความ
หลากลายจากค าอธิบายส้ันๆ ของบริษัท (Jin et al., In press) ผูวิ้จัยป้องกันการใช้ข้อมูลที่ไม่
สนับสนุนบริษทัจากโดยการปิดช่ือองค์กรในการฝึกสอน และสร้างค าโฆษณาที่หลากหลาย น่า
ดึงดูด โดยใชก้ารฝึกสอนแบบมีเงื่อนไข 

 สาขาวิชา วิทยาการคอมพิวเตอร์และ
เทคโนโลยีสารสนเทศ 

ลายมือช่ือนิสิต ................................................ 
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ABSTRACT (E NGLISH) # # 6173105023 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY 

KEYWORD: Digital Advertising, Natural language processing, Natural language 
understanding, Natural language generation 

 Yiping Jin : Natural Language Processing for Digital Advertising. Advisor: Asst. 
Prof. Dr. DITTAYA WANVARIE 

  
Advertising is not only a marketing or sales activity but a particular form of two-way 

communication. In this thesis, we propose to apply the two main subtasks of natural language 
processing (NLP), namely natural language understanding (NLU) and natural language 
generation (NLG), to digital advertising to enhance the effectiveness of advertising. 

We apply weakly-supervised text classification to rapidly build text classifiers for 
contextual advertising (Jin et al. 2022). The method requires a handful of labeled keywords 
instead of a large corpus of labeled documents and can be easily transferred to new domains. 
We further evaluate the weakly-supervised models using unsupervised error estimation and 
perform automatic keyword selection (Jin et al., 2021a). Unsupervised error estimation is 
essential because no labeled development dataset is available in real-world problems where 
weakly-supervised text classification methods are applied. 

Finally, we tap on a state-of-the-art sequence-to-sequence Transformer model to 
generate cohesive and diverse advertising slogans from a short company description (Jin et al., 
In press). We prevent the model from hallucinating unsupported information using entity 
masking and generate diverse and catchy slogans using conditional training. 
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1. Introduction 

    Traditionally, brands who wish to advertise for their product or service had to contact 
publishers (e.g., newspapers, owners of billboards, television channels) and sign a deal to display 
their ads in their media. The idea of personalized and contextual advertising is not unique to the 
internet age (Langheinrich et al., 1999; Burton and Lichtenstein, 1988; Yi 1991). Advertisers may 
infer the audience’s demographic, economic, or social background from the nature of the 
publisher. E.g., the target audience of Wall Street Journal is affluent and influential readers. They 
may also deliver contextually relevant ads by specifying in the contract which section they want 
to display their ads. E.g., it is intuitive to show a Nike ad in the “Sports” section of a newspaper. 
    However, digital advertising opened new possibilities to deliver personalized and 
contextualized advertisements. With advanced artificial intelligence technologies, we can now 
deliver the right message to the right audience in the right context. In Section 1.1, we brief the 
eco-system of digital advertising, which enables real-time auction of advertising opportunities 
without any direct contract between advertisers and publishers. Section 1.2 introduces contextual 
advertising, a key component to understand the users’ browsing context. We describe the 
automatic slogan generation task in Section 1.3. Finally, we overview the dissertation in Section 
1.4.  
 
1.1 Digital Advertising 

    Traditionally, advertisers had to sign a deal with publishers directly to advertise on their media. 
It is not only time-consuming but also costly. Each publisher imposes a minimum ad spend 
requirement, usually at least thousands of dollars per month. If an advertiser wishes to advertise 
across different publishers, the monthly advertising cost will easily exceed tens of thousands of 
dollars. 
    Real-time bidding (RTB) solves this problem by providing a common marketplace for online 
advertising (Wang et al., 2017). Each ad opportunity (impression) is traded in an open auction 
without advertisers contacting the publishers directly. Figure 1 shows the real-time bidding 
process. Each time a user accesses a page, the site will send an ad request to the ad exchange if ad 
slots are available. The ad exchange will then send a bid request to selected advertisers. The bid 
request contains the URL and some other information, such as user location and time. The 
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advertisers optionally query an in-house or third-party data management platform to obtain the 
users’ attributes such as age and interest. They then decide whether to submit a bid for the ad 
impression. After receiving bids from all advertisers, the ad exchange selects the advertiser with 
the highest bid and notifies them that they won the auction. Finally, the ad exchange returns the 
ad to the page to display to the user.  
 

 

Figure 1: Real-Time Bidding Process. Adapted from Wang et al. 2017. 
 

    Real-time bidding is highly time-sensitive and large-scale. The entire process of real-time 
bidding takes place within 100 milliseconds, which is the page loading time. In addition, 
advertisers often process millions of bid requests per second. These characteristics make it an 
ideal playground for large-scale machine learning models to optimize the performance of ad 
campaigns. Understanding the user and context helps advertisers estimate the value of the ad 
impression and come up with the optimal bidding strategy. 
 
1.2 Contextual Advertising 

    Contextual advertising (or contextual targeting) is an essential advertising technology to 
display advertisements on web pages about similar content (Jin et al., 2017, Jin et al., 2022). The 
relevance between the advertisements and the web page makes the ad less intrusive, and users are 
more likely to interact with the ad because they are in the right “context” or mindset. 
    Contextual advertising is usually performed by classifying web pages into a list of relevant 
categories, either from a predefined taxonomy or custom categories. For example, the Interactive 
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Advertising Bureau (IAB) curated a categorization taxonomy for online advertising1 commonly 
used in the industry. The taxonomy consists of 23 tier-1 categories and 355 tier-2 categories. 
Additionally, there are usually thousands of active custom categories in an advertising platform 
because advertisers often want to customize the content they wish to target. The large number of 
categories and the dynamic nature makes traditional supervised text classification techniques 
unsuitable because they require a sizeable labeled dataset, which is time-consuming and 
expensive to obtain. Therefore, we focus on applying weakly-supervised text classification to 
contextual advertising without requiring any manually labeled document.  

  

1.3 Slogan Generation 

    Advertisers use slogans to catch the viewers’ attention and encourage them to perform the 
desired action, such as purchasing the item or interacting with the online ad. Early marketing 
research demonstrated that good slogans are concise (Lucas, 1934) and creative (White, 1972; 
Phillips and McQuarrie, 2009; Mieder and Mieder, 1977).  
    Until very recently, slogan writing remained the task of highly specialized human copywriters. 
Slogan writing is a particularly challenging and time-consuming task. Copywriters need to 
understand the unique selling points and apply creativity “within strict parameters.” The 
customers should easily associate the slogans with the product, i.e., the slogans should be 
coherent with the product. On the other hand, even a good slogan’s effectiveness decreases over 
time due to ad fatigue (Abrams and Vee, 2007). Therefore, copywriters have to compose multiple 
slogans for the same ad campaign and change them regularly. 
    Previous work in automatic slogan generation focused on mining and utilizing slogan skeletons 
(Özbal et al., 2013; Tomašic et al., 2014; Gatti et al., 2015; Alnajjar and Toivonen, 2021), such as 
“Think Big, Think [PRODUCT].” However, the slogan skeletons from a random company in the 
slogan database are not likely coherent with a particular product. 
    Some recent work applied sequence-to-sequence (seq2seq) models to generate new slogans 
from scratch (Misawa et al., 2020; Hughes et al., 2019). However, they did not utilize the recently 
proposed Transformers architecture (Vaswani et al., 2017), which dominates most natural 

 
1 https://www.iab.com/guidelines/iab-quality-assurance-/guidelines-qag-taxonomy/. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4 

language generation leaderboards. In this dissertation, we apply a transformers encoder-decoder 
model to slogan generation. We also use techniques to improve the truthfulness and diversity of 
generated slogans. 
 

1.4 Dissertation Preview 

    This dissertation studies the application of natural language understanding and generation to 
digital advertising. The goal is to produce more effective contextual advertising and slogan 
generation systems to optimize campaign performance and automate the campaign creation 
process.  
    We organize the rest of this dissertation as follows: Chapter 2 introduces a weakly-supervised 
text classification model that requires only a handful of labeled keywords. The keywords can be 
either automatically mined from a noisily-labeled out-of-domain corpus or curated by domain 
experts.  
    Chapter 3 presents a novel unsupervised evaluation method for weakly-supervised models 
without requiring any labeled development dataset.  We further utilize the unsupervised 
evaluation result to perform automatic keyword selection.  
    Finally, Chapter 4 introduces a sequence-to-sequence Transformer model to generate cohesive 
and diverse advertising slogans from a short company description. We prevent the model from 
hallucinating unsupported information using entity masking and generate diverse and catchy 
slogans using conditional training.  
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2. Contextual Advertising with Weak-Supervision 

    As motivated in the introduction section, contextual advertiser faces the challenge of an 
enormous number of categories. In addition, the web contains heterogeneous content. Newswire 
sites often categorize the articles. For example, Figure 2 shows a screenshot of the New York 
Times’ homepage. Each article is categorized into one of the highlighted categories. We can 
utilize the news categories by mapping them to the categories of our target IAB content taxonomy. 
It allows us to crawl a large labeled dataset from newswire sites without any manual labeling.  
 

 
Figure 2: Screenshot of The New York Times’ Homepage 

 
    However, this gives rise to two additional problems. Firstly, some of the documents are 
miscategorized. E.g., a gossip article about an athlete might be assigned to the “Sports” category, 
but its content is most relevant to “Arts & Entertainment.” The more subtle problem is that the 
news articles are homogenous in style and length and do not resemble general web content such 
as forum posts and home pages. Thus, the performance might deteriorate if we train a text 
classifier only on news articles and use it to classify out-of-domain data (as we shall demonstrate 
in Section 2.3).  
    This chapter studies how to apply weakly-supervised text classification methods to mitigate the 
noisy label and out-of-domain problem. Specifically, we mine representative keywords from the 
automatically labeled news corpus and apply weakly-supervised learning on unlabeled in-domain 
documents. We make the following three main contributions: 

• We mine keywords from a noisy corpus using a robust statistical method and use the 
keywords as a bridge between domains. 

• The proposed method significantly outperformed strong supervised learning baselines 
without using any labeled document. 
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• We analyze the working of the classifiers to explain why the proposed method yields 
superior performance, which supports future theoretical and empirical studies. 

  

2.1 Related Work 

2.1.1 Weakly-supervised text classification 

    Weakly-supervised text classification (Chang et al., 2008) induces classifiers using labeled 
keywords and an unlabelled corpus. There are various approaches for weakly-supervised 
classification, such as hand-crafted rules, constraint optimization, injecting the keywords as priors 
to the model, and semantic representation of the documents and the labels.  
    Chang et al. (2008) used Explicit Semantic Analysis (ESA) (Gabrilovich et al., 2007) to 
represent both the category and the documents in a shared semantic space, whose dimensions are 
Wikipedia concepts. During inference, they calculate the cosine similarity between the document 
and category representation and predict the nearest category to the document. They also applied 
weakly-supervised classification to domain adaptation. However, they only considered the binary 
classification between two categories, “baseball” and “hockey,” and their source and target 
dataset (20NG and Yahoo! Answers dataset) are both manually labeled and do not contain noisy 
labels.  
    Druck et al. (2008) proposed generalized expectation (GE) criteria, which trains classifiers by 
performing constraint optimization over the distribution of labeled keywords among documents 
predicted into each category. GE can extend to different tasks, including text categorization 
(Druck et al., 2008) and language identification in mixed-language documents (King and Abney, 
2013). Similarly, Charoenphakdee et al. (2019) introduced a theoretically proved risk 
minimization framework that directly optimizes the area under the receiver operating 
characteristic curve (AUC) of a weakly-supervised classification model. 
    Settles (2011) and Li and Yang (2018) both applied multinomial naïve Bayes (MNB) to 
weakly-supervised classification. Settles (2011) increased the Dirichlet prior for labeled keywords. 
His method involves three steps: estimate the initial parameters using only the priors, apply the 
initial classifier on unlabelled documents and re-estimate the model parameters using labeled and 
pseudo-labeled documents. In contrast, Li and Yang (2018) used the labeled keywords to directly 
pseudo-label documents. They then applied standard semi-supervised learning using the EM 
algorithm. 
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    Li et al. (2016) proposed Seed-Guided Topic Model (STM). STM models two types of topics: 
category-topics and general-topics. Category-topics contain content words that are specific to a 
category. General-topics involve frequent words which do not indicate a category. For example, 
the presence of the keyword “mammogram” almost certainly suggests that the document is 
related to cancer. However, although keywords like “breast” and “prostate” frequently occur in 
documents about “cancer,” they alone are not sufficient clues to label the document as “cancer.” 
STM is trained in two steps: first, initializing the category word probability and the document 
category distribution based on the co-occurrence with labeled seed words. Then, they apply joint 
Gibbs sampling to infer all the hidden parameters. STM significantly outperformed various 
baselines, including GE and a naïve Bayes model similar to Settles (2011).  
    Meng et al. (2018) proposed WeSTClass, a novel weakly-supervised neural text classification 
framework. Firstly, it generates pseudo documents using a generative mixture model, which 
repeatedly generates several terms from the background and class-specific distributions. The 
pseudo documents are used to pre-train a neural model. To adapt to real-world input documents, 
it performs self-training on unlabelled real documents and automatically adds the most confident 
predictions to the training set. The method outperformed baselines such as IR with TF-IDF, 
Chang et al. (2008), and CNN trained on pseudo-labeled documents. 
    In practice, weakly-supervised classification models can often yield performance close to a 
fully-supervised model. Because weakly-supervised classification does not require any labeled 
document, we can easily retrain the model if we notice a domain drift. However, a supervised 
model remains static once the data labeling is complete. Any further data labeling will usually 
involve a substantial cost. 
 
2.1.2 Text classification with noisy labels 

    Label noise is prevalent in real-world scenarios, and it can have a significant negative impact 
on classifier’s accuracies (Frénay and Verleysen, 2014). It is especially severe for recent over-
parameterized deep learning models with hundreds of millions of parameters. Such models can 
easily overfit any anomaly and cause low generalization performance. There are mainly three 
techniques to deal with label noise in text classification: label noise-robust models, data cleansing 
methods, and noise-tolerant methods. 
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    Label noise-robust models is the simplest method. It does not aim to remove or take into 
consideration the label noise. Dietterich (2000) demonstrated that some models are robust to label 
noise by design, such as ensembles using bagging. In contrast, although the support vector 
machine (SVM) was established as a strong baseline for many classification tasks, it is sensitive 
to label noise because it relies on a few support vectors near the decision boundary (Nettleton et 
al., 2010). In general, label noise-robust models are effective when the wrongly labeled instances 
are relatively rare (<10%). 
    Data cleansing methods aim to either remove wrongly labeled data or correct their labels 
before training the classifier. One crucial advantage of data cleansing methods is that it is a 
separate preprocessing step and can be combined with any subsequent classification algorithm. 
Standard procedures of data cleansing involve anomaly detection (Sun et al., 2007) or prediction-
based filtering using k-fold cross-validation (Gamberger et al., 1999) or voting (Brodley et al., 
1996). 
    The final and most complex method dealing with label noise is noise-tolerant models. They try 
to model the label noise explicitly within the classifier, often using Bayesian priors (Swartz et al., 
2004; Gerlach and Stamey, 2007). Similarly, Breve et al. (2010) applied a semi-supervised graph-
based algorithm to perform label propagation among similar examples to correct the labels of 
wrongly labeled examples. 
 
2.1.3 Domain adaptation 

    Classifiers are often trained once and applied in production systems for an extended period. As 
a result, data drift can still happen even if the researchers carefully consider the application and 
closely resemble the real-world data distribution in their training dataset. Domain adaptation aims 
to mitigate the negative impact of data drifts by “adapting” model M to M’, which is more robust 
to incoming data dissimilar to the original training instances. There are two distinct scenarios for 
domain adaption depending on whether in-domain labeled data are available. 
    Transfer learning (Pan and Yang, 2010) is the standard method when in-domain labeled data 
are available. It was popularized by the ImageNet challenge (Krizhevsky et al., 2012) from the 
image processing community. In transfer learning, we first pre-train a model on a large and 
general-purpose dataset, often consisting of millions of instances. We then fine-tune the model to 
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the target classification task or domain with much less data. Fine-tuning is usually performed by 
replacing only the final classification layer(s) and maintaining most pre-trained models’ 
parameters unchanged. Since 2018, transfer learning has also dominated the NLP field and 
yielded new state-of-the-art results across the board (Howard and Ruder, 2018; Peters et al., 
2018). Analogous to the ImageNet models, they pre-trained a language model on a large text 
corpus using the next-word-prediction unsupervised learning objective. The language model 
observed word and phrase usage in abundant contexts, making them an ideal starting point for 
downstream language understanding and generation tasks. Consequently, transfer learning 
drastically reduces the amount of labeled data required to train classifiers. For example, Howard 
and Ruder (2018) showed that they could achieve the same performance as the model trained 
from scratch using only 1/100 of the data (100 labeled examples). 
    When no in-domain labeled data are available, we need to either build models that are robust to 
different domains (analogous to “noise-robust” methods mentioned in the previous section) or 
apply unsupervised learning. Sachan et al. (2018) quantified various models’ reliance on the 
presence of keywords by carefully constructing training and testing datasets without key lexicon 
overlap. Modern deep learning models bragged about utilizing contextualized information instead 
of simply relying on keywords (Peters et al., 2018). However, Sachan et al. (2018) demonstrated 
that such models still rely heavily on keywords since the performance dropped on average by 10-
20% on the new test set. To this end, they proposed keyword anonymization and adaptive word 
dropout to regularize the model and make it less reliant on the presence of keywords. 
    Mudinas et al. (2018) proposed an unsupervised learning method to bootstrap domain-specific 
sentiment classifiers. They noticed that the sentiment words with opposite polarity form distinct 
clusters. Therefore, they trained a simple linear classifier to separate positive and negative 
sentiment words, resulting in a sentiment lexicon. Subsequently, they used the lexicon to pseudo-
label an unlabeled dataset, which is used to train their final classifier.  
  

2.2 Proposed Method 

    We propose a two-step approach to address noisy out-of-domain classification. First, we mine 
keywords from a noisily labeled corpus (Section 2.2.1). Second, we apply weakly-supervised text 
classification to induce classifiers from the keywords and an unlabeled in-domain corpus (Section 
2.2.2).  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 10 

 
2.2.1 Mining keywords from noisy corpus 

     Weakly-supervised learning’s effectiveness depends substantially on the quality of seed 
keywords (Li et al., 2018; Jin et al., 2022). Previous work used either manually curated keywords 
(Druck et al., 2008; Settles, 2011; Meng et al., 2018) or limited to the category name or category 
description (Chang et al., 2008; Li et al., 2016; Li et al., 2018). The former depends on domain 
knowledge, and we cannot conclude whether the reported result is due to the model’s superiority 
or the careful choice of seed keywords. The latter may lack expressive power since some category 
names are ambiguous. Instead, we propose to automatically mine seed keywords from a noisy 
corpus for weakly-supervised models in this work. We define the task formally as follows. 
    We have a corpus (D1, …, DC), where Dc=(dc,1, …, dc,k) is the set of labeled documents for 
category c.  Each document dc,i consists of a list of words (w1, …, wj). Our goal is to generate a set 
of representative keywords k1, …, kn from the vocabulary V = [w1, …, wN] for each category. This 
formulation is related to the strength of association as measured in information theory. We first 
calculate pointwise mutual information (pmi) between keyword w and category c. pmi(w;c) is 
defined as follows: 
 

𝑝𝑚𝑖(𝑤; 𝑐) ≡ 𝑙𝑜𝑔
𝑝(𝑤, 𝑐)

𝑝(𝑤)𝑝(𝑐)
= 𝑙𝑜𝑔

𝑑𝑓(𝑤, 𝑐) ∑ 𝑑𝑓(𝑐)𝑐∈𝐶

𝑑𝑓(𝑤)𝑑𝑓(𝑐)
  

(1) 
 
    Where df(w,c) is the count of documents from category c containing the word w; df(w) is the 
count of documents containing the word w; df(c) is the count of documents from category c. Our 
initial experiments indicate that pointwise mutual information favors rare words that cooccurred 
with a category by random chance. Therefore, we modified the pmi score by multiplying it with 
the logarithmic term-frequency of word w and setting a threshold to block rare words. The new 
metric pmi-freq is defined as follows. 
 

𝑝𝑚𝑖 − 𝑓𝑟𝑒𝑞(𝑤; 𝑐) ≡ {
log 𝑑𝑓(𝑤) ⋅ 𝑝𝑚𝑖(𝑤; 𝑐), 𝑖𝑓 𝑑𝑓(𝑤) ≥ 5

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

(2) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 11 

    The pmi-freq score is calculated independently for each category. However, it is also ideal to 
ensure that the keywords mined for each category have little overlap. To this end, we apply 
maximal marginal relevance (mmr) (Carbonell and Goldstein, 1998) to penalize keywords that 
rank high in multiple categories. 
 

𝑚𝑚𝑟(𝑤𝑖; 𝑐𝑚) ≡ arg max
𝑤𝑖

[𝜆 ⋅ 𝑆𝑖𝑚(𝑤𝑖 , 𝑐𝑚) − (1 − 𝜆) max
𝑚≠𝑛

𝑆𝑖𝑚(𝑤𝑖 , 𝑐𝑛)]  

(3) 
 
    The first term measures the relatedness between word wi and category cm. The second term 
indicates the maximum relatedness between wi and another category cn. Intuitively, for a word to 
be ranked high w.r.t. category c, it must have a high score for the first term and a low score for 
the second term. The parameter 𝜆 controls the weights of the two terms. We use a default 𝜆=0.5 
and pmi-freq as the similarity measure for both terms. 
    We want to study how robust each keyword mining algorithm is to the label noise since we 
intend to apply them to noisily labeled data. We generate synthesized label noise with different 
label corruption rates and conduct an intrinsic evaluation of mined keywords’ quality. 
Specifically, we experiment with the 20 newsgroups dataset (Lang, 1995) and vary the label 
corruption rate from 0% up to 70%. We randomly picked two categories (automotive, baseball) to 
manually count the number of correct keywords among the top 10 keywords mined by each 
algorithm.  
    Druck et al. (2008) proposed to mine keywords using mutual information (mi), which is 
defined as follows: 
 

𝑚𝑖(𝑤; 𝐶) = ∑ 𝑝(𝑤, 𝑐)
𝑐∈𝐶

⋅ 𝑝𝑚𝑖(𝑤, 𝑐) 

(4) 
 
    A key difference between mi and pmi is that mi is not specific to a particular category since it 
sums the weighted pmi scores for all categories. As a result, it rewards keywords that are frequent 
in multiple categories. Druck et al. (2008) assigned each keyword to the category where it occurs 
most often. 
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    We compare the aforementioned keyword mining algorithms and a naïve baseline freq, 
selecting the most frequent word appearing in each category (after removing the stop words). 
Figure 3 presents the number of correct keywords each algorithm generates at a different level of 
label noise rate. We can observe that pmi-freq and mmr almost always outperform pmi, especially 
when the label noise rate is high. On the other hand, the mi and freq baseline both performed 
poorly. Their performance also fluctuates much more than our proposed method. This intrinsic 
evaluation validates the effectiveness of our proposed approach to mine high-quality keywords, 
even when up to 50% of the document labels are corrupted. As pmi-freq and mmr perform on par 
with each other, we use pmi-freq subsequently due to its simplicity. 
 

 
Figure 3: Number of correct keywords generated by each algorithm with different levels of label 

noise. 
 
2.2.2 Training weakly-supervised text classifier 

    We use STM (Li et al., 2016) as the learning algorithm, whose workflow is depicted in Figure 4. 
STM takes labeled keywords (seed words) and unlabeled documents as input. The model 
estimates the initial document category distribution by counting labeled keywords. It also 
calculates the probability of each unlabeled word belonging to each category using their co-
occurrence with the labeled keywords. 
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Figure 4: The seed-word guided topic model’s workflow. 

    STM captures two types of topics: the general topic and the category topic. General topics 
capture global semantic information and are common to all documents. On the other hand, 
category topics are specific to a single category and contain category-indicating keywords. To 
make the distinction, STM introduces a latent binary variable xd,i, which indicates whether the 
word wd,i is generated from document d’s category topic cd or one of the general topics. The 
generative process of the Gibbs Sampling inference is detailed in Algorithm 1. 
 

 
Algorithm 1: Gibbs Sampling generative process for STM. 

 
    Two factors lead to STM’s success as a weakly-supervised classification algorithm. Firstly, the 
model utilized the co-occurrence between unlabeled and labeled keywords to initialize the 
category word probability. Although the initial probability is imperfect, it is much better than an 
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uninformative uniform probability, thus providing a better starting point for the subsequent 
inference algorithm. Secondly, the model’s separation of general and category topics allows it to 
focus on reliable category-indicating keywords while skimming through the rest of the document.  
 
 

2.3 Experiments 

2.3.1 Datasets 

     We conduct experiments on three datasets. The first one is a legacy large labeled dataset 
crawled from newswire websites (news-crawl dataset). We manually map the news categories of 
each website to IAB tier-1 categories, and we did not manually verify each document’s label 
correctness because it is costly and time-consuming. We crawled another evaluation dataset 
recently with approximately 100 documents per category using a similar method (news-crawl-v2 
dataset). The two datasets are collected during different periods: news-crawl dataset was collected 
before April 2015, while news-crawl-v2 dataset was collected in May 2019. Besides, they come 
from different sets of websites. These differences allow us to study how models perform on 
slightly different domains.  
    The last dataset is a small manually curated evaluation dataset (RTB dataset) coming from in-
domain real-time bidding (RTB) traffic. RTB contains heterogeneous content, such as blogs, 
forums, which are substantially different from news pages. All three datasets have the same 22 
categories. We release the evaluation datasets publicly for future work to compare with our 
method2. 
    While labeling the RTB dataset, we realized that some documents could belong to more than 
one category. Therefore, we allow annotators to assign multiple categories to a document. Table 1 
presents the number of documents with different numbers of assigned labels. We can observe that 
the vast majority of the documents belong to one or two categories.  
 

No. of assigned labels No. of documents 

1 892 

2 516 

3 84 

4 9 

Table 1: The number of labels assigned to documents in the RTB dataset. 
 

 
2 https://github.com/YipingNUS/nle-supplementary-dataset 

https://github.com/YipingNUS/nle-supplementary-dataset
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    We overview the number of documents in the three datasets in Table 2. The average document 
length for news-crawl, news-crawl-v2, and RTB datasets are 503, 1,470, and 350 words separately, 
suggesting a potential discrepancy between the training data and the data the model is applied to. 
 

Category News-crawl News-crawl-v2 RTB 
Business 44,343 100 50 
Society 25,460 89 71 
Technology and computing 16,466 100 178 
Health and fitness 16,171 100 132 
Law, government, and politics 14,374 97 44 
Science 11,863 100 96 
Sports 11,055 100 92 
Art and entertainment 10,746 100 207 
Education 8,321 100 80 
Personal finance 5,693 80 56 
Automotive 5,522 91 109 
Food and drinks 4,408 100 173 
Family and parenting 4,204 118 44 
Style and fashion 4,191 100 62 
Travel 3,995 100 135 
Hobby and interest 3,710 100 117 
Pets 3,246 100 22 
Religion and spirituality 2,936 95 57 
Home and garden 2,427 100 66 
Real estate 2,056 100 86 
Careers 1,685 65 49 
Shopping 1,611 92 152 
Total 204,483 2,127 1,501 

Table 2: Dataset statistics. 
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2.3.2 Experimental setup and baselines 

     We randomly split news-crawl dataset into 90%/10% training and testing datasets. Then, we 
mine the keywords from the labeled training dataset. Finally, the testing split of news-crawl 
dataset and the other two datasets are used for evaluation only. 
 
2.3.2.1 Parameter setting 

    We mine the top 15 single-word keywords for each category as ranked by pmi-freq. We 
lowercase all documents and exclude keywords shorter than four characters, contain digits, or are 
in a stopword dictionary. We train STM using the remaining keywords and the training dataset 
(with labels removed). We follow the parameters in Li et al. (2016) and perform inference for five 
epochs. 
 

2.3.2.2 Baselines 

    We compare with various fully-supervised and weakly-supervised baselines to validate the 
effectiveness of our proposed method.  
    Fully-Supervised learning baselines: 

• Multinomial naïve Bayes (MNB): a competitive baseline despite its simplicity (Wang 
and Manning, 2012). We train a supervised MNB model with Laplace smoothing prior. 
We use the MNB implementation in the scikit-learn library3.  

• SVM: a strong baseline for various text classification baselines. We train a linear SVM 
using stochastic gradient descent with the default parameters in scikit-learn. 

• K-nearest neighbors (KNN): we use a KNN model with a small k=3. Due to the large 
training data size, KNN’s prediction is extremely slow, making it infeasible for 
production use.  

• ULMFiT: a pioneer work successfully applying transfer learning to NLP (Howard and 
Ruder, 2018). The model was a previous state-of-the-art across multiple topic and 
sentiment classification tasks. We use the same parameters and training procedure 
following Howard and Ruder (2018). 

 
 

 
3 https://scikit-learn.org/ 

https://scikit-learn.org/
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    Weakly-supervised learning baselines: 
• Generalized Expectation (GE): uses labeled keywords to provide constraints that are 

optimized during training (Druck et al., 2008). We use the GE implementation in the 
MALLET library4. 

• MNB/Priors: a weakly-supervised learning baseline that increases labeled keywords’ 
prior and performs semi-supervised learning using EM algorithm (Settles, 2011). We use 
the implementation provided by the author5. 

• Doc2vec: learns the document representation using a model that aggregates word 
embeddings belonging to the document (Le and Mikolov, 2014). We concatenate the 
keywords for a category to form a pseudo document and infer its embedding. During 
classification, we assign a document to a category with the nearest embedding. We use 
the doc2vec implementation in gensim6 with an embedding dimension of 100 and train 
the model for ten epochs.  

• WeSTClass: a recent weakly-supervised neural text classification algorithm (Meng et al., 
2018). We use the author’s implementation7 and limit the supervision signal to keywords 
to compare with other weakly-supervised methods. We generate 500 pseudo documents 
for each category during pre-training and use the same unlabeled training corpus during 
self-training.  

 
2.3.2.3 Performance metrics 

    We report the standard accuracy and Macro-F1 scores for news-crawl and news-crawl-v2 
datasets. Macro-F1 is more informative than Micro-F1 because the categories are highly 
imbalanced.  
    We cannot apply standard multi-class classification metrics to RTB dataset because it is multi-
label. Therefore, we calculate accuracy+ and maF1 following Nam et al. (2017). Accuracy+ is the 
proportion of correctly predicted labels. Since all models predict only one label, we count it as 

 
4 http://mallet.cs.umass.edu/ 
5 https://github.com/burrsettles/dualist 
6 https://radimrehurek.com/gensim/ 
7 https://github.com/yumeng5/WeSTClass 

http://mallet.cs.umass.edu/
https://github.com/burrsettles/dualist
https://radimrehurek.com/gensim/
https://github.com/yumeng5/WeSTClass
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correct if the predicted label appears in the ground truth labels. maF1 is a multi-label classification 
metric calculated as: 
 

𝑚𝑎𝐹1 =
1

𝐿
∑

2𝑡𝑝𝑗

2𝑡𝑝𝑗 + 𝑓𝑝𝑗 + 𝑓𝑛𝑗

𝐿

𝑗=1

 

(5) 
 
    Where L denotes the number of labels and tp, fp, fn denotes the number of true positive, false 
positive, and true negative predictions. To achieve a perfect maF1 of 1, the model needs to predict 
all the correct labels. Therefore, the models in comparison will obtain a score strictly lower than 1. 
However, the comparison is fair because they all predict exactly one label for each document.  
 

2.3.3 Results and discussion 

2.3.3.1 Mined keywords from labeled corpus 

    Table 3 presents the mined keywords for each category, which all weakly-supervised models 
use. 
 
2.3.3.2 Text classification performance 

    Table 4 overviews various models’ performance on the three evaluation datasets. We train all 
the supervised learning baselines with the complete labeled news-crawl training set. On the other 
hand, weakly-supervised learning models use the same dataset without labels. 
    The supervised learning baselines achieved better performance than the strongest weakly-
supervised learning model on the news-crawl test set. However, their performance degraded 
drastically on out-of-domain evaluation datasets, including news-crawl-v2, which also consists of 
news articles. It underlines supervised models’ inability to generalize to unseen data from a 
different distribution. Interestingly, ULMFiT achieved superior accuracy of 0.922 on the news-
crawl test set, outperforming all other models by a large margin. Its performance is better than 
other supervised learning baselines on the other two datasets but lags behind weakly-supervised 
methods. 
    It is common for SVM to achieve better performance than MNB, as we observed on the news-
crawl test set. Nevertheless, MNB had better generalization performance on the other two 
datasets. We conjecture it is because MNB models the data distribution from a generative 
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perspective instead of focusing on specific clues as in a discriminative model like SVM. KNN’s 
performance on news-crawl dataset is inferior to other supervised baselines yet still reasonable. 
However, it failed on out-of-domain datasets, suggesting that it is most vulnerable to data drifts 
by calculating similarity scores with seen training examples. 
 
Category Mined keywords 

Business aircraft railways ridership airframe airbus commuters aviation harvesting 

railroads roofing marketers boeings 

Society skoutmatchcom okcupid friendships transgender samesex lesbian marriages 

flirt lgbt dating lesbians heterosexual 

Technology and 

computing 

android scan apps firmware samsung os leftright device smartphones keyboard 

snapdragon 64bit usb smartphone 

Health and fitness symptoms inflammation medications disease vitamin disorders diabetes diet 

chronic diagnosis nutrition infections 

Law, government, 

and politics 

immigration passport uscis embassy attorney lawyers consular citizenship 

consulate lawyer legal citizens immigrants 

Science horoscpoe astrology atoms earths jupiter planets nasa molecules electrons 

telescope particles forecast orbit 

Sports olympics medal league semifinal finalsmidfielder freestyle championship 

semifinals football stadium athletes 

Art and 

entertainment 

bollywood actress actor films film song album singer actors songs lyrics 

comedy costar drama movie hollywood 

Education colleges universities students examacademic undergraduate admissions faculty 

examination cbse campus education 

Personal finance stocks investors securities nasdaq equity dividend investor bse earnings trading 

nse volatility bluechips intraday 

Automotive torque tires honda brakes wheels v8 exhaust transmission chevrolet steering 

engine cylinder dealership mileage sedan 

Food and drinks recipe sauce bake preheat recipes flour butter delicious flavor ingredients 

vanilla baking cheese stir garlic 

Family and 

parenting 

babys babycenter pregnancy babies trimester baby uterus pregnant 

breastfeeding placenta midwife newborn 

Style and fashion calories tattoo weightloss fat waistline dieting menswear acne sneaker carbs 

cardio dresses slimming moisturising 

Travel kayak booking rentals airline hotels attractions beaches resorts reservation 

reservations couchsurfing hotel 

Hobby and 

interest 

minecraft armor gameplay quests puzzle ingame multiplayer rpg enemies 

crossword weapons pokemon monsters 

Pets puppies vet puppy breeds dogs veterinarian breed dog pups breeders kennel 

pet terrier cats canine 

Religion and 

spirituality 

christians christ jesus bible religious worship islam christianity quran muslims 

church prayer scriptures muslim 

Home and garden diy wood soil gardeners cabinets backsplash mulch planting compost plants 

fertiliser decor watering screws potting 

Real estate furnished rent condo bedrooms rental sqft apartments apartment bedroom 

spacious trulia renovated vrbo rentals 

Careers vacancies recruitment candidates interviewer resume qualification employers 

employer freshers vacancy interviewers 

Shopping coupons coupon pricepony discount scoopon cashback freebies storewide 

Table 3: Mined keywords using pmi-freq. 
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    It is noteworthy that while weakly-supervised models do not perform as well on the in-domain 
test set, they tend to perform robustly on out-of-domain datasets. It validated our motivation to 
achieve better transferability by abstracting the semantics via keywords.         
    Among the weakly-supervised methods, STM achieved the best performance on all three 
datasets, followed by GE, whose performance is consistently 1-3% lower. We note that both 
models explicitly utilize the word co-occurrence information, suggesting that it might be crucial 
for weakly-supervised models. 
 

 
Table 4: Each Model’s performance on three evaluation datasets. The best results for each metric 

are in boldface. 
 

    Surprisingly, WeSTCLass’s performance was very poor. Meng et al. (2018) experimented on 
binary sentiment classification and topic classification with few categories. However, our 
classification task contains 22 categories. A central assumption of WeSTCLass is that the 
keywords and documents related to each category lie in disjoint clusters in the embedding space. 
We conjecture that the larger number of categories caused the embeddings to overlap, thus 
decreasing the effectiveness of both the pseudo document generation and self-training steps. 
    The strong generalization performance of STM prompts us to ask the following questions: 
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1. Why STM’s performance on news-crawl test set is not competitive against supervised 
learning baselines? 

2. What caused STM to yield a more robust performance on out-of-domain datasets? 
    We first plot STM’s confusion matrix on news-crawl test set in Figure 5. The 
“misclassifications” do not seem random, but among closely related categories such as “Business” 
and “Personal finance.” Other cases such as misclassifying “Pets” to “Family and parenting” are 
worth investigating. 

 

Figure 5: STM’s prediction confusion matrix on news-crawl test set. We removed the diagonal 
entries (correct predictions) to surface misclassifications. 

 
    Table 5 shows the most frequent predictions STM predicted for documents belonging to the 
“Pets” category. Our intuition is that some of these categories are related to pets in that pets are an 
essential part of a family. In addition, some articles might also mention veterinary medicine, thus 
causing the model to predict “Health and fitness.”  
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Category No. of predictions 

Pets 194 

Family and parenting 89 

Health and fitness 16 

Law, government, and politics 5 

Travel 4 

Table 5: Five most frequent categories STM predicted for documents in the pets category. 
 
    Table 6 shows examples where STM predicts “Family and parenting” for documents belonging 
to the “Pets” category. These documents seem to relate to both categories. Because the news-
crawl dataset assigns only one label per document, there might be plausible labels related to the 
document that are not in the ground truth. 
 

 
Table 6: Sample documents with label ‘Pets’ that STM classifies as “Family and parenting.” 
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Figure 6: LIME explanations on a sample where both models predicted the correct label. 
 
    To answer the second question, we employ LIME (Ribeiro et al., 2016), a model-agnostic 
interpretation toolkit, to visualize what features STM and ULMFiT utilize while performing 
predictions. LIME perturbs the input text and trains a local linear classifier, from which it extracts 
the feature (word) importance towards the classification result. 
    Figure 6 and Figure 7 depict two sample documents and the LIME interpretation for both 
models. Both models predict correctly for the example in Figure 6. However, STM focused on 
discriminative keywords while ULMFiT attended to irrelevant words like “reddit” and “your.” On 
the other hand, STM predicted the correct category with plausible clues in Figure 7, but ULMFiT 
predicted the wrong label. Overall, ULMFiT uses “fuzzier” features, a common characteristic of 
black-box deep learning models. While these features might help the model fit the training 
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distribution perfectly, they do not generalize well to new domains and thus have a poor 
generalization performance.  
 

 

 
Figure 7: LIME explanations on a sample document where STM predicted correctly, but ULMFiT 

predicted wrongly. 
 

2.3.3.3 Impact of keyword selection strategy 

    A crucial contribution of this work is a robust keyword mining algorithm to automatically mine 
keywords for weakly-supervised models. We performed an intrinsic evaluation of the keyword 
quality in Section 2.2.1. We also wish to measure the impact of different sets of keywords on the 
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final accuracy of weakly-supervised models. Therefore, we trained various STM models with the 
keywords mined using the following algorithms8 and present the performance in Table 7: 

• label: uses only the words appearing in the category name. 
• freq: selects the most frequent words appearing in each category, excluding stopwords. 
• mi: selects keywords using mutual information. 
• pmi-freq: our proposed method. 

     

 
Table 7: STM’s performance using different sets of keywords. 

  
   Among the baselines, using only the category name resulted in the worst performance, showing 
that the category name might be ambiguous and lacks expressive power compared to 
discriminative keywords. Using freq or mi to mine keywords outperformed using the category 
name alone, but they far lagged behind our proposed pmi-freq method. Based on the result of this 
section and the previous one, we highlight that keyword selection is at least as important as the 
choice of models. However, it has not received enough attention from the research community. 
 

2.3.3.4 Domain adaptation performance 

We demonstrated in Section 2.3.3.2 that STM achieved superior generalization performance 
even without using any in-domain data. Additionally, a key advantage of weakly-supervised 
learning methods is they can utilize unlabeled in-domain datasets. Therefore, we trained another 
STM model using the same seed keywords and 280k unlabeled web pages from the RTB traffic. 
We denote the model as “STM cross-domain” and compare its performance with the original 
model in Table 8. 

 
 

8 The keyword selection methods are detailed in Section 2.2.1.  
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Table 8: Domain adaptation performance using unlabeled in-domain data. 
 
    As expected, the new model performed better on the RTB test dataset, which is from the same 
distribution as the new unlabeled training data. In addition, it also performed better on news-
crawl-v2 dataset. Thus, we hypothesize that training on the heterogeneous RTB data leads to a 
model more robust to domain variations. 
 

2.4 Conclusions 

    In this chapter, we introduced a novel framework to mitigate the problem of out-of-domain 
noisy training data in contextual targeting. We first mine keywords from the existing training data 
using a robust statistical method. We then train a weakly-supervised model using the mined 
keywords and unlabeled corpora. We demonstrated that utilizing an unlabeled in-domain dataset 
yielded a further 3% improvement in performance. Finally, we benchmarked our proposed 
method with various supervised and weakly-supervised learning methods and achieved superior 
generalization performance on two out-of-domain evaluation datasets. 
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3. Evaluating Weakly-Supervised Classifiers with Bayesian Error 

Estimation 

    While weakly-supervised classifiers can sometimes achieve comparable accuracy with fully-
supervised classifiers, they rely on high-quality seed words (Li et al., 2018; Jin et al., 2020). Most 
such methods rely on explicit keyword bootstrapping. Therefore, the final classifiers’ accuracy 
can differ drastically depending on the input seed words. Furthermore, many seed words used in 
previous work are not intuitive. For example, Meng et al. (2019) used {united, champions, cup} 
for the category “soccer” instead of obvious seed words such as “football” or “soccer.” We 
conjecture that the authors might have experimented with the obvious seed words and replaced 
them with more discriminative words based on the classifier’s performance. 
    When conducting research work, we usually have a labeled dataset a priori, with which we can 
assess the performance of text classifiers using standard metrics such as accuracy and F1 score. 
However, we do not have access to any labeled data when applying weakly-supervised 
classification methods in the real-world setting, neither for training nor for evaluation. It caused 
two significant challenges. Firstly, we cannot measure the classifier’s performance. Therefore we 
either have to conduct extensive manual testing or deploy the model blindly to production without 
knowing whether it “works.” Secondly, the absence of an evaluation or development dataset 
makes it impossible to perform hyperparameter tuning, the most crucial hyperparameter being the 
selection of seed words. 
    This chapter proposes OptimSeed, a novel framework to automatically mine and rank seed 
words directly based on their estimated accuracy. First, we mine seed words co-occurring with 
the category name using the method we proposed in Section 2.2.1. Then, we train interim  
classifiers with individual seed word pairs. Finally, we apply an unsupervised error estimation 
method to estimate the accuracy of the interim classifiers. We add the seed words that yield the 
highest estimated accuracy to the final seed word set. Figure 8 depicts our proposed framework. 
We evaluate our proposed framework on six binary classification tasks drawn from four datasets. 
OptimSeed outperforms a baseline using only the category name as the seed word and achieved 
comparable performance using expert-curated seed words reported in previous work. The main 
contributions of this work are as follows: 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 28 

1. Applying unsupervised error estimation to weakly-supervised text classification to 
improve the classification accuracy and robustness. 

2. Conducing a comprehensive study on the impact of different seed words across various 
classification tasks and models.  

 

 
Figure 8: OptimSeed, a framework to select seed words for weakly-supervised text classification 

using unsupervised error estimation. 
  
3.1 Related Work 

3.1.1 Weakly-supervised text classification 

    We present additional previous work not discussed in Section 2.1.1 in this section.  
    Mekala and Shang (2020) proposed to use contextualized word representation to disambiguate 
different word senses of the seed words. They used a BERT (Devlin et al., 2019) model to derive 
the contextualized word representation of each word occurrence. Then they clustered word 
occurrences into different word senses using the k-means algorithm. Each word sense is treated 
separately to avoid ambiguous word senses. In their motivating example, the word “penalty” can 
occur in both “sport” and “law” contexts. Their method refines the seed word list and trains 
weakly-supervised classifiers iteratively. They simultaneously improve each other using self-
training. 
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    On the other hand, Meng et al. (2020) and Wang et al. (2021) tackled the same problem as our 
work: training text classifiers using only the category name. These works utilized contextualized 
word embeddings to bootstrap more relevant keywords like Mekala and Shang (2020). 
 
3.1.2 Unsupervised error estimation 

    Traditionally, we need a dataset with gold-standard labels to measure the accuracy of classifiers. 
Unsupervised error estimation tries to estimate a list of classifiers’ error rates with unlabeled data. 
To our best knowledge, all previous work in weakly-supervised classification relied on labeled 
datasets to conduct evaluations. While they allow easy comparison, as we mentioned earlier, we 
cannot assume the availability of labeled evaluation datasets in the real-world weakly-supervised 
classification setting. 
    Most previous work in unsupervised error estimation derives the analytical error rate with some 
simplifying assumptions. For example, Donmez et al. (2010) and Jaffe et al. (2015) assumed that 
the true marginal category probability p(y) is known. Likewise, Platanios et al. (2014) assumed 
each classifier makes conditionally independent errors. These approaches provided an essential 
theoretical foundation. Unfortunately, such assumptions do not hold in the real-world scenario, 
casting doubts on whether the analytical error rates are reliable. 
    Platanios et al. (2016) introduced Bayesian error estimation. The model performs Gibbs 
sampling and jointly infers the true category and the error rates. The approach demonstrated 
superior performance compared to several baselines. The estimated error rates usually lie within a 
few percent away from the actual value. Additionally, they only make a mild assumption that 
more than half of the classifiers have an error rate lower than 50%. 
 
3.1.3 Keyword mining 

    Keyword mining algorithms take a small list of seed words and bootstrap high-quality keyword 
lexicons. It was widely employed in opinion mining (Hu and Liu, 2004; Hai et al., 2012) and 
technical term mining (Elhadad and Sutaria, 2007). Much previous work in weakly-supervised 
classification also involves keyword mining (Meng et al., 2020; Wang et al., 2021) as an internal 
step. The additional step in weakly-supervised text classification is to use the mined keywords to 
iteratively refine the classifiers. In a sense,  keyword mining and weakly-supervised text 
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classification both take a small list of seed words and an unlabeled dataset and “expand” the 
knowledge about the target category. More discriminative keywords will aid the classification 
accuracy, while an accurate classifier produces much less noise in pseudo-labeling and makes 
keyword mining much more straightforward. 
  
3.2 Proposed Method 

3.2.1 Mining candidate keywords from a single seed word 

    The upper box in Figure 8 shows the keyword mining step of OptimSeed. To ensure 
reproducibility, we purposely avoided carefully choosing the initial seed word. Instead, we use 
either the category name or trivial keywords (e.g., “good” and “bad” for sentiment classification) 
as the only input seed words. We use pmi-freq, the same method we introduced in Section 2.2.1, 
to rank all words in the vocabulary based on their association with the input seed word s.  
 

𝑝𝑚𝑖 − 𝑓𝑟𝑒𝑞(𝑤; 𝑠) ≡ {
log 𝑑𝑓(𝑤) ⋅ 𝑝𝑚𝑖(𝑤; 𝑠), 𝑖𝑓 𝑑𝑓(𝑤) ≥ 5

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(6) 
     
    Furthermore, we filter the candidate words based on their part-of-speech tag. We keep only 
adjectives for sentiment classification and nouns for topic classification. We then select the top k 
candidates for each category based on their pmi-freq score. 
     
3.2.2 Training interim classifiers 

    We utilize mined candidate keywords and an unlabeled dataset to train interim classifiers. We 
use a single seed word for each category to train interim classifiers to isolate the impact of each 
seed word. As illustrated in Figure 8 Iteration A, we combine the category name for category B 
(Television) with each candidate seed word of category A (Movie) to form seed word tuples, 
which are the input to the corresponding interim classifiers. 
    We use Generalized Expectation (GE) (Druck et al., 2008) as the underlying weakly-supervised 
classification algorithm for interim and final classifiers. As demonstrated in Section 2.3.3.2, GE 
performed consistently well, only lagging behind STM by a small margin. However, STM 
involves heavy indexing and inference computation. For the same classification task, STM 
usually takes several hours to train while GE takes only a few seconds. Because we need to train a 
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relatively large number of interim classifiers, using STM would yield unacceptable computation 
and latency.  
     Underlying, GE translates each labeled seed word to a constraint function. For example, the 
keyword tuple (filmmaker, television) translates to two constraints: filmmaker → A: 0.9, B: 0.1 
and television → A: 0.1, B: 0.9, meaning the word “filmmaker” would appear 90% in a document 
belonging to category A while 10% in a document belonging to category B, vice versa for the 
keyword “television.”  
    The constraints on each labeled keyword wk then add up to form the objective function in the 
equation below:  

𝛿 =  − ∑ 𝐿2

𝑘∈𝐾

(�̂�(𝑦|𝑤𝑘) || �̃�(𝑦|𝑤𝑘)) 

(7) 
 
    Where �̂�(𝑦|𝑤𝑘) is the reference category distribution defined by the constraint function, and 
�̃�(𝑦|𝑤𝑘) is the empirical category distribution predicted by the classifier. The model is trained by 
minimizing the L2 distance ∑ (𝑖 �̂�(𝑦𝑖|𝑤𝑘) − �̃�(𝑦𝑖|𝑤𝑘))2 between the two distributions, which 
sums over the difference in probability over each category i. 
 
3.2.3 Evaluating seed words with Bayesian error estimation 

    With a list of interim classifiers and their predictions on an unlabeled “development” dataset, 
we can apply unsupervised error estimation to estimate the accuracy of each interim classifier. 
The seed words used in the best-performing interim classifiers are then selected for the final 
classifier. As demonstrated in Figure 8 Iteration A, the three candidate words “hollywood”, 
“filmmaker”, “theaters” are chosen based on the interim classifiers’ accuracy. We repeat the 
procedure to select seed words for category B in the subsequent iteration.  
    Based on the literature survey, we chose Bayesian error estimation (BEE) (Platanios et al., 
2016) to estimate the error rates. As its name suggests, BEE employs a Bayesian perspective 
where each instance’s label li and each classifier’s error rate ej are latent variables. The model first 
infers the true label li for each instance based on the predictions of interim classifiers, then uses 
the inferred label to calculate the error rate of each interim classifier ej.  
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    BEE performs inference using Gibbs sampling, depicted in Figure 9. We provide the details of 
the conditional probabilities as follows. Firstly, we draw 𝑝 ~ Beta(𝛼𝑝, 𝛽𝑝), the prior probability 
for the true label being equal to 1 over the whole dataset S: 
 

𝑃(𝑝| ∙) = 𝐵𝑒𝑡𝑎(𝛼𝑝 +  𝜎𝒍, 𝛽𝑝 + 𝑆 −  𝜎𝒍) 

(8) 
 

    Then for each data point, we draw a label 𝑙𝑖  ~ Bernoulli(𝑝): 
 

𝑃(𝑙𝑖| ∙) =  𝑝𝑙𝑖 (1 − 𝑝)1−𝑙𝑖 𝜋𝑖  

(9) 
 

    We further assume an underlying distribution of error rates for the interim classifiers, 𝑓𝑗. We 
draw an error rate  𝑒𝑗~ Beta(𝛼𝑒, 𝛽𝑒): 

 
 

𝑃(𝑒𝑗| ∙) = 𝐵𝑒𝑡𝑎(𝛼𝑒 +  𝜎𝑗, 𝛽𝑒 + 𝑆 −  𝜎𝑗) 

(10) 
 

    Finally, for each example i and classifier j, we make a prediction by: 
 
 

𝑓𝑖𝑗 = {
 𝑙𝑖, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑒𝑗,

 1 − 𝑙𝑖, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

(11) 
    Where: 

𝜎𝒍 = ∑ 𝑙𝑖,      𝜎𝑗 = ∑ 𝕝{�̂�𝑖𝑗≠𝑙𝑖}

𝑆

𝑖

,       𝜋𝑖 =  ∏ 𝑒
𝑗

𝕝
{�̂�𝑖𝑗≠𝑙𝑖}

(1 − 𝑒𝑗)
𝕝
{�̂�𝑖𝑗=𝑙𝑖}

𝑁

𝑗=1

  

𝑆

𝑖

 

(12) 
 
    We highlight the dependency between the two variables: 𝑒𝑗→ 𝜋𝑖  → 𝑙𝑖 and 𝑙𝑖 → 𝜎𝒍 → 𝜎𝑗 → 𝑒𝑗. 
Therefore, 𝑒𝑗 and 𝑙𝑖 are interdependent. We obtain joint inference of the two variables by 
performing Gibbs sampling for multiple iterations till convergence. 
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Figure 9: Graphical model for error estimation. 

 
3.3 Experiments 

3.3.1 Experimental setup 

    We benchmark our framework using six binary classification tasks drawn from four popular 
text classification datasets. We select the evaluation tasks to ensure coverage of different domains 
and granularities. We provide the details as follows: 

• AG’s News Dataset: containing 120k documents evenly distributed into four coarse-
grained categories. The documents are short texts corresponding to the first paragraph of 
the news articles. We randomly picked two binary classification tasks: “Politics” vs. 
“Technology” and “Business” vs. “Sports”. 

• The New York Times (NYT) Dataset: containing 13k documents covering 25 fine-
grained categories. The documents are long texts of full news articles. We selected two 
binary classification tasks involving similar categories: “International Business” 
(InterBiz) vs. “Economy” and “Movies” vs. “Television”. 

• Yelp Restaurant Review Dataset: containing 38k evenly distributed reviews belonging 
to 2 categories: “Positive” vs. “Negative”. 

• IMDB Movie Review Dataset: containing 50k evenly distributed reviews belonging to 2 
categories: “Positive” vs. “Negative”. 

We compare against the following weakly-supervised classification methods: 
• Dataless (Chang et al., 2008): using Explicit Semantic Analysis (ESA) (Gabrilovich et 

al., 2007) to map categories and documents into a shared semantic space. Then perform 
classification by nearest neighbor search. 

• MNB/Priors (Settles, 2011): increasing labeled keywords’ prior and performing semi-
supervised learning with half-step of EM algorithm to induce the classifier. 
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• WeSTClass (Meng et al., 2018): first generating pseudo documents using a generative 
model, then refining the model with self-training. We employ the CNN architecture 
following Meng et al. (2018). 

• ConWea (Mekala and Shang, 2020): differentiating different senses of seed words 
using contextualized embeddings and training classifiers and expanding seed words 
iteratively. 

    Besides, we also compare with a fully-supervised logistic regression (LR) model trained using 
all labeled documents in the training dataset. 
 
Category Mined keywords Previous Work 

Politics 

Tech 

political; 

technology 

democracy religion liberal; 

scientists biological computing 

Business 

Sports 

business; 

sports 

economy industry investment; 

hockey tennis basketball 

InterBiz 

Economy 

international; 

economy  

china union euro; 

fed economists economist 

Movies 

Television 

movie; 

television 

hollywood directed oscar; 

episode viewer episodes 

Yelp & IMDB good; 

bad 

terrific great awesome; 

horrible subpar disappointing 

Table 9: Initial seed words for each classification task. 
 
    We mine sixteen candidate seed words for each category across all experiments. We select a 
seed word for the final classifier if its estimated accuracy is higher than 90% or among the top 
three seed words based on the estimated accuracy. We use a reference distribution of 90%/10% 
(signifying that a labeled seed word would occur 90% in a document of the specified category and 
10% in another category). Table 9 compares the initial seed words used in our work and previous 
work9. 
 
3.3.2 Classification performance 

    Table 10 presents the accuracy for topic classification tasks. OptimSeed achieved competitive 
and consistent performance across all models and tasks. It outperformed using the category name 

 
9 For the seed words used in previous work, NYT corpus were from Meng et al. (2019) and the rest are 
from Meng et al. (2018). IMDB corpus has not been used in previous work in weakly-supervised text 
classification. Therefore, we use the same seed words as the Yelp dataset.  
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as seed words 80% of the time (16/20) while outperforming the expert-curated seed words 65% of 
the time.  
    ConWea often fails when the input seed word quality is low (the “cate” column) despite its 
claim to disambiguate word senses. On the Biz-Sport task, its accuracy was only 39.1%. We 
manually examined the keyword sets expanded by ConWea and found them much noisier than 
our proposed framework. 
 

 
Table 10: Accuracy on topic classification tasks. cate, ours, gold represent using the category 
name, OptimSeed seed words, and human-curated seed words reported in previous work. We 

highlight the best-performing keyword set for each model. 
 

Table 11 summarizes the performance for sentiment classification tasks. Again, we can observe 

similar trends as in topic classification. However, the gap between weakly-supervised classifiers 
and LR is much more substantial, suggesting more nuance in expressing various sentiments. 

 
Table 11: Accuracy on sentiment classification tasks. We highlight the best-performing seed 

words in bold for each model-task combination. 
     
    Table 12 averages the performance over six classification tasks. OptimSeed seed words 
performed better than using the category name alone by a large margin for all models. It validates 
that keyword expansion is essential in improving the performance of weakly-supervised 
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classification methods. Furthermore, when applying the GE learning algorithm, OptimSeed’s 
average accuracy is only 0.3% lower than using human-curated seed words. It can potentially 
eliminate human experts from the loop. 
 

 
Table 12: Average accuracy scores over six classification tasks. We highlight the best performing 
seed words for each model in bold. * denotes statistical significance using double-sided paired T-

test with a p-value of 0.05 w.r.t. the same model using the “cate” seed words. 
 
3.3.3 Case study 

    We present a case study of the “International Business” vs. “Economy” classification task to 
demonstrate the working our OptimSeed. Table 13 presents seed words sets at different stages for 
the “Economy” category. 

Keyword expansion helped to improve the accuracy significantly over the initial seed word. 
However, it runs the risk of introducing noises. The Bayesian error estimation step helps the 
model to focus on reliable seed words like “economist” and “economists” while eliminating 
ambiguous seed words such as “growth” and “purchases”. The step helped to improve the 
accuracy by a further 2.4%.  

 
Stage Seed Words for “Economy” Accuracy 

Initial economy 70.7 

Keyword 

Expansion 

purchases pace index borrowing unemployment economists 

economy stimulus rates recovery economist rate fed reserve 

inflation growth 

79.3 

Final economist economists rate recovery index 81.7 

Table 13: Seed words for "Economy" at various steps within the OptimSeed framework. 
 

3.4 Conclusions 

    This chapter introduced OptimSeed, a novel framework to perform unsupervised evaluation and 
hyperparameter tuning (in terms of choosing seed words) for weakly-supervised text 
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classification. It yielded robust performance across various models and datasets and matched 
expert-curated seed words. We believe our framework will facilitate monitoring and evaluation of 
weakly-supervised models in production without needing any manually labeled data. 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 38 

4. Generating Slogans with Seq2seq Transformers  

4.1 Related Work 

4.1.1 Slogan generation 

    Slogans play an essential role in advertising and are characterized by being concise and catchy. 
Traditionally, it is human copywriters’ task to compose slogans. Copywriting demands creativity 
and in-depth knowledge about the advertised product or service. Previous work focused on 
altering existing slogans and automatically generating slogans by inserting novel keywords or 
concepts into slogan skeletons to speed up the process. 
    BrainSup (Özbal et al., 2013) is one of the first frameworks for creative sentence composition, 
allowing users to enforce specific keywords or emotion constraints. It first mines morpho-
syntactic patterns from a dependency-parsed dataset. The patterns contain several empty slots and 
are used as skeletons to compose new slogans. During the generation phase, the framework 
narrows down to a set of skeletons compatible with the user-input constraints. It then tries to fill 
in the slots and rank the candidates based on how well they satisfy the user input. 
    Inspired by Özbal et al. (2013), Tomašic et al. (2014) also utilized slogan skeletons specified 
by POS tags and dependency types. The input to their algorithm is a company or product 
description. Instead of letting the users manually specify keywords, the system extracts keywords 
and entities automatically. Additionally, they used genetic algorithm to sufficiently explore the 
search space. The genetic algorithm’s initial population is generated using random skeletons. 
Tomašic et al. (2014) created a list of ten heuristic-based scoring functions to evaluate each 
population generation and applied crossovers and mutations to produce a new generation. 
Specifically, mutation implies replacing a random word with another word with the same POS tag. 
Crossover picks a random word pair from two slogans and flips them. E.g., input: [“Drink more 
milk”, “Just do it”] → [“Do more milk”, “Just drink it”]. 
    Gatti et al. (2015) aimed to “refresh” well-known expressions by infusing novel concepts from 
news articles. They first detect keywords from news articles and expand them using knowledge 
bases. They then inject the keywords into BrainSup-style skeletons. They also introduced a word 
embedding validation. Namely, the keywords blended into a well-known expression must have a 
similar embedding as the words they replace. This validation helps to eliminate nonsense output 
like “Do more milk.” The final step involves scoring all candidates based on the word embedding 
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similarity and dependency scores, trading off relatedness and grammaticality. Gatti et al. (2017) 
also applied a similar approach to modify song lyrics in another work. 
    Iwama and Kano (2018) introduced a slogan generation system utilizing a slogan database, 
case frames, and word embeddings. The system produced slogans with impressive quality and 
was deployed to production by one of the world’s largest advertising agencies. However, the 
system requires manual selection from a pool of ten times large samples. Therefore, we cannot 
conclude whether the superior quality is due to the system or human curation. Furthermore, 
Iwama and Kano (2018) did not disclose the details of their system, making it impossible to 
reproduce their result. 
    Most recently, Alnajjar and Toivonen (2021) focused on generating nominal metaphors for 
slogan generation. A nominal metaphor involves a target concept T (e.g., car) and a property P 
describing the target concept (e.g., elegant). The system aims to generate metaphors that bind the 
target concept and the property (e.g., “The Car Of Stage”). Underlying, the system searches for 
candidate metaphorical vehicles10 v given a target concept T and a property P. It then searches for 
fillable slots for each skeleton s and the <T,v> pair. Finally, the system synthesizes candidate 
slogans by filling in the slots and optimizing with genetic algorithm following Tomašic et al. 
(2014). 
    Apart from skeleton-based approaches, recent advances in neural language models enabled 
research in generating slogans (from scratch) without any template. Munigala et al. (2018) tackled 
the problem of generating persuasive sentences in the fashion domain. They first extract domain-
specific keywords from input product specifications, then expanded them with relevant noun 
phrases and verb phrases. The system synthesizes sentences from the keywords using a large 
domain-specific neural language model (LM). Munigala et al. (2018) restricted the LM’s 
vocabulary to the extracted keywords, in-domain noun phrases, verb phrases, and frequent 
function words. The LM is trained by optimizing the overall perplexity using beam search. The 
sentences always begin with a verb to form imperative sentences because they are more assertive 
and persuasive. It is important to note that Munigala et al. (2018)’s approach does not rely on 
labeled data or parallel text. They demonstrated that their unsupervised approach outperformed a 

 
10 A metaphor has two parts: the tenor (target concept) and the vehicle. The vehicle is the object 
whose attributes are borrowed. 
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supervised LSTM encoder-decoder model. However, the encoder-decoder model was trained on a 
much smaller parallel corpus than the corpus they trained the domain-specific language model. 
    Misawa et al. (2020) addressed slogan generation using a Gated Recurrent Unit (GRU) 
encoder-decoder model. They highlighted that a good slogan should be distinctive w.r.t. the target 
product. Therefore, they introduced a reconstructions loss to improve distinctiveness and 
employed a copying mechanism to deal with out-of-vocabulary words in the input sequence (e.g., 
product names). Their final model achieved a best ROUGE-L score of 19.38, outperforming 
strong encoder-decoder baselines.   
    Our work is most related to Misawa et al. (2020) because we also apply an encoder-decoder 
model. However, we differ from Misawa et al. (2020) in two main aspects. Firstly, we use a more 
modern Transformer architecture (Vaswani et al. (2017)), the current state-of-the-art for most 
language generation tasks. The powerful Transformer model enhanced with pretraining is more 
flexible and versatile than a recurrent neural networks model. We do not face the problem of 
generating generic slogans and out-of-vocabulary words (thanks to sub-word tokenization). 
Therefore, we can use the standard encoder-decoder Transformer model and train it using a cross-
entropy loss. Secondly, we propose novel approaches to improve the coherence and diversity of 
generated slogans, validated by comprehensive automatic and human evaluation. 
 

4.1.2 Sequence-to-sequence models 

    Sequence-to-sequence (seq2seq) models, also known as encoder-decoder models, are well-
suited for conditional generation tasks where the model takes an input sequence and generates an 
output sequence. In contrast to vanilla language models, there is no one-to-one correspondence 
between the input and output tokens. Sutskever et al. (2014) presented a seminal work extending 
Long Short-Term Memory (LSTM) models to seq2seq tasks. Their method encodes the input 
sequence into a fixed-dimension hidden vector, then decodes the entire output sequence 
conditioned on the vector. Sutskever et al. (2014) applied the model to the English-French 
translation task and achieved near state-of-the-art (SOTA) performance. The result was 
astounding because a large research team developed the previous state-of-the-art (statistical) 
machine translation model over multiple decades, while a handful of researchers developed the 
new model within several months. 
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    An obvious bottleneck of Sutskever et al. (2014) is the fixed dimensionality of the hidden 
vector. Conceptually, all the information in the input sequence has to be “compressed” into the 
vector. While it is possible for shorter sequences (< 20 tokens), the performance degrades 
drastically for longer sequences. Luong et al. (2015) and Bahdanau et al. (2015) proposed the 
attention mechanism to address this issue. Instead of compressing the input sequence into a single 
hidden vector, the model stores the contextualized representation at each time step. Then, when 
performing decoding, the model aggregates the contextualized representation dynamically based 
on the previously decoded partial sequence. Seq2seq models with attention outperformed 
previous SOTA on English-German and English-French translation tasks and was soon 
popularized in almost all NLP subtasks. 
    Despite LSTM’s impressive performance, it can only compute the hidden states one step at a 
time because the hidden state of time step t depends on the previous time step t-1. Therefore, 
LSTM cannot be fully parallelized on modern GPUs and often take several weeks to train. 
Vaswani et al. (2017) introduced a new architecture, the Transformer, solely relying on multi-
head self-attention blocks. The Transformer models initially received skepticism because the 
sequential nature of recurrent neural networks appeals better to the intuition of human language. 
However, Transformers achieved strong empirical results by attaining a new SOTA with a shorter 
training time. 
    Transformer models are unidirectional in that every token only attends to the representation of 
previous tokens in the self-attention layer. It is partially due to the auto-regressive language 
model learning objective. BERT (Devlin et al., 2019) improved the Transformer model by 
allowing it to capture bidirectional context. BERT is trained using a novel masked language 
model (MLM) learning objective by randomly masking tokens in the input sequence and 
predicting it given the surrounding tokens. More importantly, Devlin et al. (2019) popularized 
transfer learning for NLP by separating training into two stages: pre-training using unsupervised 
learning objectives and task-specific fine-tuning. 
    Underlying, BERT is the encoder portion of the Transformer model. While it achieved SOTA 
results on language understanding benchmarks, it cannot perform auto-regressive generation 
naturally. To address this limitation, Lewis et al. (2020) presented BART, an encoder-decoder 
Transformer model combining a BERT-style bidirectional encoder and an auto-regressive 
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decoder. Furthermore, Lewis et al. (2020) introduced novel pre-training objectives well suited for 
seq2seq tasks, such as masking arbitrary text spans, deleting tokens, shuffling sentences, and 
rotating documents. 
    Transformer language models pre-trained on large corpora can often generate realistic-looking 
text. However, users do not have much control over the topic or style of the generation. Keskar et 
al. (2019) introduced CTRL, a conditional transformer language model that controls the style and 
content using control codes. Control codes are short tokens that encode the topic, domain, or 
sentiment. Formally, by conditioning on the control codes c during pre-training, CTRL can mix 
and match control codes and generate novel text at inference time with the conditional probability 
p(xi | x<i, c). 
    This work follows a BART model architecture due to its strength for seq2seq tasks. Inspired by 
CTRL, We also use control codes to generate syntactically-diverse slogans. 
  

4.2 Datasets 

     Modern seq2seq models require a sizeable parallel dataset to train. While large advertising 
agencies might have run hundreds of thousands of ad campaigns and possess sufficient internal 
data (Kanungo et al., 2021), such data is not available to the research community due to data 
privacy concerns. 
    Instead, we crawl (description, slogan) pairs from a large publicly-available company dataset. 
The Kaggle 7+ Million Company Dataset11 contains 7 million records of company information, 
including name, industry, size, URL, etc. Most companies include the “description” field in their 
HTML page’s <meta> tag. It constitutes the input to our model. Many companies also include 
their slogan in the HTML page title, such as “GoPro | World’s Most Versatile Cameras | Shop 
Now & Save.” We use various keywords, lexicographical, and semantic rules to filter and clean 
the HTML page title to obtain the slogans (In the previous case, the output is “World’s Most 
Versatile Cameras”). 
    Out of the 7M company records, we could crawl 1.4M companies with both the meta tag 
description and HTML title. After cleaning, we obtained 340k (description, slogan) pairs. We 
split 2% of the data for validation and test set each. We further curated a random sample of 1,467 

 
11 https://www.kaggle.com/peopledatalabssf/free-7-million-company-dataset/ 
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raw slogans from the test set because the dataset was constructed using automatic data cleaning 
and may contain noise. Our final validation set and curated test set contain 5,412 and 1,000 
(description, slogan) pairs each. 

 
Figure 10: Distribution of the number of (subword) tokens. Left: description. Right: slogan. 

 

    We use BART’s tokenizer to tokenize both the descriptions and the slogans. Figure 10 
overviews the distribution of the token length. We can observe that the slogans are usually very 
concise and have fewer than 15 tokens. On the other hand, the description length appears more 
normally distributed, with a peak at around 30 tokens. There are 149 industries in the dataset, 
covering a broad range of sectors. We count the number of unique companies for each industry 
and present the result in Figure 11. As we can see, most industries have between 102 (100) and 
103.5 (3,162) companies.   

 
Figure 11: Distribution of the number of companies in each industry (in log-10 scale). X-axis is 

the number of companies belonging to an industry in log-10 scale. Y-axis is the number of 
industries in each bucket.   

 
    We perform some further investigation to better understand the nature of the dataset: 
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1. What percentage of the slogans are contained in the description? These slogans can be 
“generated” using a purely extractive approach. 

2. What percentage of the slogan words occur in the description? 
3. What percentage of the descriptions contain a company name? 
4. What percentage of descriptions and slogans contain entities? What type of entity? 
5. What percentage of slogans contain entities not mentioned in the description? 

 

 
Table 14: The percentage of descriptions and slogans containing each type of entity. "Slog-Desc" 

refers to the percentage of entities only occur in the slogan. 
 
    First, only 11% of the slogans are contained in the corresponding input description, showing 
that around 90% of the cases require various degrees of abstraction instead of copying from the 
input. On the other hand, 62.7% and 59% of the validation and test slogan words can be found in 
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the corresponding descriptions. This word overlap is essential for a seq2seq model to learn the 
“mapping” between input and output sequences. 
    63.1% and 66.6% of the validation and test descriptions contain the company name. Company 
names are often rare words. If not dealt with, they might cause problems to the model. 
    To answer the fourth question, we use Stanza (Qi et al., 2020) to perform named-entity tagging 
on both descriptions and slogans. Table 14 shows the frequency of each type of entity. We 
observe that around 50% of entities occur only in the slogan but not in the corresponding 
description. Training a seq2seq model using the original data will likely encourage the model to 
hallucinate unsupported entities. Finally, we present some randomly sampled data from the 
validation set in Table 15 to provide a more intuitive dataset overview.   
 

 
Table 15: Sample (description, slogan) pairs from the validation set. We highlight the exact 

match words in bold. 
 

4.3 Proposed Method 

4.3.1 Model 

    We apply a Transformer seq2seq model to generate slogans conditioned on the input 
description. We choose to use BART (Lewis et al., 2020) because it benefits from a bi-directional 
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encoder and an auto-regressive decoder and is particularly competitive in conditioned generation 
tasks. 
    We use the pre-trained DistilBART12 checkpoint with 6 layers in both encoder and decoder. 
The model is a distilled version of the original BART-large model and is roughly half the size 
with 230M parameters. We use the relatively small model because it requires less RAM to deploy 
to production and its inference time is also faster. 
 
4.3.2 Generating truthful slogans with masking 

    As discussed in section 4.2, some slogans contain entities not present in the description. 
However, it does not necessarily mean the slogans are untruthful. E.g., consider the hypothetical 
(description, slogan) pair (“Knorex is a digital advertising company powered by machine 
learning.” and “Best digital advertising solution Singapore”), the entity “Singapore” does not 
appear in the company description. However, since the companies write the slogans, they are 
regarded as truthful. On the other hand, if a machine learning model inserts an entity not present 
in the input sequence, it is more likely to be hallucinated. Therefore, we apply two simple pre-
processing techniques to encourage the model to generate slogans that are more grounded by the 
input: company name and entity masking. 

Section 4.2 shows that over 60% of the company descriptions contain company names. On the 
other hand, company names often contain rare words or are ambiguous (due to creativity). 
Therefore, we hypothesize that delexicalizing the company name and replacing it with a single 
[MASK] token helps the model better focus on the critical information. 

 

 
Algorithm 2: Prefix matching algorithm to delexicalize company names. 

 
 

12 https://huggingface.co/sshleifer/distilbart-cnn-6-6 
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    The company names are present in the Kaggle company dataset. However, they often do not 
occur in the identical form in the descriptions. For example, “Google LLC” are exclusively 
referred to as only “Google” and “Prudential Assurance Company Singapore (Pte) Limited” are 
referred to as “Prudential.” Motivated by this observation, we apply a prefix matching algorithm 
to delexicalize the company name, as shown in Algorithm 2. Table 16 provides an example of the 
delexicalization process for “Atlassian Corporation Plc.” 
 

 
Table 16: Example description before and after company name delexicalization. 

 
    In the abstractive summarization literature, introducing irrelevant entities is referred to as entity 
hallucination (Nan et al., 2021). Based on a recent study (Gabriel et al., 2021), entity 
hallucination is the most common type of factual error introduced by a modern neural seq2seq 
model. We apply a similar method to mask entities appearing in the company description and 
replace them with unique identifiers. 
    We first tag all the named entities in the (description, slogan) pairs using Stanza (Qi et al., 
2020). We focus on frequent entity types13: GPE, DATE, CARDINAL, LOCATION, PERSON, 
NORP. Note that we omit the ORGANIZATION entity type because many nominal mentions are 
falsely tagged as ORGANIZATION, likely due to the title case in the text. 
    We assign a unique identifier to each entity within a (description, slogan) pair. Therefore, if the 
same entity occurs in the description and the slogan, it will be assigned the same entity ID. 
Specifically, we maintain a counter for each type of entity. The first mention of an entity type is 
assigned the ID [entity_type] while subsequent mentions are assigned the ID [entity_type count]. 
Instead of using the upper-case acronym, we use lower-cased words with the following mapping: 
{GPE: country, DATE: date, CARDINAL: number, LOCATION: location, PERSON: person, 
NORP: national}. Table 17 exemplifies the entity masking process. 

 
13 The entity type description can be found in: https://catalog.ldc.upenn.edu/docs/LDC2013T19/OntoNotes-Release-5.0.pdf. 
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Table 17: Applying entity masking to an example description and slogan pair. 

 
    As shown in Table 14, a substantial portion of entities in the slogan does not occur in the 
description. Therefore, we discard all the data where any entity in the slogan does not appear in 
the description. It accounts for 10% of the data. Although this procedure reduces the training data 
size, it encourages the model to generate only entities present in the input sequence. For both 
company name delexicalization and entity masking, we perform a dictionary look-up to replace 
the generated mask tokens with the original company name or entity mention. 
 
4.3.3 Generating diverse slogans with syntactic control 

    Generating a large variety of slogans is an effective method to combat ad fatigue. Throughout 
the lifetime of an ad campaign, if we notice a drop in users’ interest in a slogan, we can replace it 
with a new one. While our initial system often generated plausible slogans, the slogans differ 
from each other only slightly. Moreover, the output are often simple noun phrases. We apply part-
of-speech (POS) tagging on the slogans in our training dataset to investigate this problem. Table 
18 lists the most frequent POS patterns. Nine out of ten top POS tag sequences are noun phrases, 
explaining why the model often generates a noun phrase. This finding motivates us to control the 
syntactic structure of the generation explicitly. 
    Inspired by CTRL (Keskar et al., 2019), we model slogan generation as a conditional 
generation P(slogan | description, ctrl) instead of the standard probability P(slogan | description). 
We use the coarse-grained POS tag of the first word in the slogan as the control code. 
Furthermore, we merge all adjectives and adverbs and group all infrequent POS tags as the 
“OTHER” category. Table 19 presents the complete list of syntactic control codes and the 
corresponding frequency. 
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Table 18: The top 10 slogan POS tag sequences in the training data with example. 

 

 

Table 19: Full list of syntactic control codes. 
 

    We prepend the control code to the input description with a </s> token as deliminator. We use 
the control code derived from the target slogan during training. During inference, we randomly 
sample control codes to prepend to the input description to generate syntactically-diverse slogans. 
Our method differs from CTRL in that 1) CTRL utilizes control codes during pre-training while 
our method uses them only during fine-tuning; 2) we use a BART encoder-decoder model while 
CTRL uses an autoregressive model. 
    Munigala et al. (2018) applied a similar technique as ours to enforce the first word of the 
generated sentence to be a verb. In contrast, our conditional training approach allows the model to 
generate text starting with different POS tags. Moreover, we let the model learn the association 
between words and POS tags instead of relying on hard constraints. It provides more flexibility to 
the model to occasionally ignore the control codes to ensure the generation is grammatical. 
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4.4 Experiments 

    Section 4.4.1 conducts a quantitative evaluation of our model against various baselines and 
reports the ROUGE -1/-2/-L scores on both the validation and the manually-curated test set. Next, 
we separately evaluate the truthfulness and diversity aspects in Section 4.4.2 and 4.4.3. Finally, 
we conduct a human evaluation and report the results in Section 4.4.4. 
    We ran all the experiments on a cloud instance with an Nvidia Quadro P5000 GPU (16 GB 
vRAM). We use the Hugging Face (Wolf et al., 2020)’s DistilBART implementation with a 
training batch size of 64 and a cosine decay learning rate (maximum learning rate=1e-4). During 
inference, we rely on greedy decoding so that the diversity is due to the model and not the 
sampling. 
 
4.4.1 Quantitative evaluation 

    We compare our proposed method with the following baselines: 
• First sentence: predicting the first sentence in the description as the slogan. Despite its 

simplicity, the first sentence baseline yields competitive performance for document 
summarization (Katragadda et al., 2009). 

• First-k words: predicting the first k words in the description as the slogan. Slogans are 
often concise and shorter than a typical sentence. Therefore, we report the result of this 
baseline, which outputs a sequence of the expected slogan length. 

• Skeleton-based (Tomašic et al., 2014): a skeleton-based system relying on genetic 
algorithms to score the slogans in each generation. We follow Tomašic et al. (2014)’s 
implementation except for omitting the frequent grammatical relations database and the 
Corpus of Contemporary American English because these resources are not available. 

• Encoder-decoder (Bahdanau et al. 2015): a strong GRU-based encoder-decoder baseline. 
We follow the exact hyper-parameters as Misawa et al. (2020). Equivalent to Misawa et 
al. (2020) without copy mechanism and reconstruction loss. 

• Pointer-Generator (See et al. 2017): encoder-decoder model with copy mechanism. A 
strong baseline for abstractive summarization. Equivalent to Misawa et al. (2020) without 
reconstruction loss. 

• Misawa et al. (2020): A GRU model with copy mechanism to handle unknown words 
and reconstruction loss to encourage the model to generate distinct slogans.  
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    Table 20 summarizes various models’ performance. The first-k word baseline performed 
reasonably well in ROUGE scores, mainly due to the word overlap between descriptions and 
slogans. Figure 12 studies the impact of various k on the ROUGE score. We can observe that the 
model achieves the optimal ROUGE scores when k is in the range (9, 12). It also explains why the 
first-k word baseline outperformed the first sentence baseline, which often outputs longer 
sequences. 
 

 
Table 20: The ROUGE -1/-2/-L F1 scores of various models on the validation and test datasets. 

 
    The skeleton-based approach performed the worst among all baselines. Although it copies 
salient keywords from the input sequence, injecting them into slogan skeletons often results in 
non-grammatical and nonsensical results. 
 

 
Figure 12: The first-k words baseline's ROUGE scores by varying k. 
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    The comparison among the three GRU baselines revealed that the copy mechanism consistently 
improved performance. However, the contribution of reconstruction loss remains unclear. Overall 
the Pointer-Generator model’s ROUGE-1 and ROUGE-L scores are slightly better than the first-k 
words baseline but pale when compared with any BART model. 
    Comparing the BART models, we can see that both company name delexicalization and entity 
masking improved the performance. The final model achieved a ROUGE -1/-2/-L score of 
35.58/18.47/33.32 on the test dataset, outperforming the best non-Transformer baseline by an 
absolute 10%. Table 21 shows randomly sampled example generations from various systems. 
 

 
Table 21: Sample generated slogans from different models. "Gold" is the original slogan. The 

DistilBART model uses both company name delexicalization and entity masking. 
 
    While the first-k words baseline occasionally has a considerable word overlap with the gold 
slogans, its output looks like a typical sentence rather than a slogan. Pointer-Generator sometimes 
generates similar slogans as DistilBART, but it is more prone to hallucinate information and 
generate ungrammatical content or repetitions. 
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4.4.2 Truthful evaluation 

    We apply automatic truthful evaluation methods to evaluate our model. We first rely on an 
entailment model following Maynez et al. (2020). Specifically, we use a ROBERTA-LARGE 
(Liu et al., 2019) checkpoint fine-tuned on the Multi-Genre NLI dataset (Williams et al., 2018)14 
and use the entailment probability between the input description and the generated slogan to 
measure truthfulness. 
    Secondly, we use a pre-trained FactCC (Kryscinski et al., 2020) model. FactCC was trained on 
documents with various synthesized factual errors to measure the factual consistency between 
generated summaries and source documents. FactCC correlates well with human judgment on 
truthfulness based on Pagnoni et al. (2021)’s recent study. It was also frequently used as a 
truthfulness evaluation metric in subsequent works (Cao et al., 2020; Dong et al., 2020). We 
measure truthfulness using the predicted probability FactCC assigned to the category “consistent.” 
    Table 22 presents the automatic truthfulness metric scores for the baseline DistilBART model 
and our proposed method with delexicalization and entity masking. We can see that our 
performed method outperformed the baseline with a strong statistical significance. 
 

 
Table 22: The automatic truthfulness evaluation scores of the baseline DistilBART model and our 

proposed method. The p-value of a double-sided paired t-test is presented in brackets. 
 
    Compared to Table 20, our method’s improvement is more pronounced. We hypothesize that it 
is because n-gram metrics like the ROUGE score are not very sensitive to factual errors, which 
often occur within a local context. For example, if the reference slogan is “Relocation Service in 
Barcelona,” and the model predicts “Relocation Service in Belgrade,” it will nevertheless receive 
a moderately high ROUGE score. However, entailment and factuality models will detect the 
factual inconsistency and assign a low score. 

 
14 https://huggingface.co/roberta-large-mnli 
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4.4.3 Diversity evaluation 

    Because we use control codes to improve the model’s generation diversity, we first evaluate the 
control accuracy. We prepend each of the six control codes to all data in the test set and generate 
slogans. We then measure the control accuracy as the percentage of cases where the first word’s 
POS tag agrees with the specified control code. The result is presented in Table 23. 
 

 
Table 23: Different method's syntactic control accuracy and word diversity. We highlight the best 

scores in bold. All models do not use delexicalization or entity masking. 
 
    Table 19 shows that the control codes in our training data are very skewed. For example, the 
most frequent code, “NN”, has 208k examples, while the least frequent code “OTHER” has fewer 
than 8k examples. Therefore, we experimented with upsampling all control codes other than “NN” 
to 100k to make the data more label-balanced. We report the results of the model trained using the 
upsampled data in the second row of Table 23. 
    We compare with nucleus sampling (Holtzman et al., 2019) baseline with top-p=0.95, which 
matches human perplexity based on their paper. We note that nucleus sampling’s control accuracy 
should be treated as a random baseline because the model does not take the control code as input.  
   We calculate distinct-1 score (Li et al., 2016) to measure diversity, which is the total number of 
unique words in a set of slogans generated from the same input description divided by the total 
number of generated words.  
    The result indicates that our model achieved over 90% control accuracy for all control codes 
except for “JJ” and “VB”. The strong syntactic control accuracy shows that the model learned to 
associate words with their corresponding POS tags, although we did not explicitly provide the 
POS tag information. It suggests pretrained language models can capture linguistic information 
internally, as discussed in depth in Tenney et al. (2019) and Rogers et al. (2020). 
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    Upsampling yielded worse control accuracy and diversity, likely because the model overfits 
repeated training examples. Compared to our proposed method, nucleus sampling also has a much 
lower diversity. 
    Furthermore, we measure abstractiveness as the percentage of words in the generated slogans 
that are not present in the input description. Similarly, our model is more abstractive than the 
baseline. 
    Finally, we invited an annotator to assess the generated slogan’s quality manually. We 
randomly sampled 50 companies from the test set and generated slogans with each of the six 
control codes, resulting in 300 slogans. We also sampled 300 slogans using nucleus sampling and 
invited the annotator to conduct a pair-wise evaluation comparing our method with nucleus 
sampling. We randomized the order, so the annotator was unaware of which system generated the 
slogans. We summarize the pair-wise comparison result in Table 24. 
 

 
Table 24: Pair-wise human evaluation result of each control code compared with the nucleus 
sampling baseline. We calculate the p-value using double-sided Wilcoxon signed-rank test. 

“Better” indicates that our method generates better slogans than the baseline and vice versa for 
“worse”. 

 
    Except for “NN”, all control codes outperformed the nucleus sampling baseline with statistical 
significance (p=0.05). The result is expected because “NN” is the most common code in the 
dataset. Using “NN” as the control code will likely yield similar results to sampling without a 
control code. We present randomly sampled generations with different control codes in Table 25. 
We can see that the POS tag of the first word does not always match the specified control code. 
Nevertheless, the generations are diverse in both syntax and content. 
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4.4.4 Human evaluation 

    Based on previous evaluation results, we include company name delexicalization, entity 
masking, and random sampling from the control code set {JJ, VB, DT, PR, OTHER} into our 
final model. We conduct a human evaluation by letting our model and various baselines generate 
slogans from the same set of 50 company descriptions. We ask two human evaluators to rate each 
slogan in three aspects: coherence, well-formedness, and catchiness. Each aspect is rated on a 
scale of 1-3 (poor, acceptable, good). We average the scores assigned by the two annotators and 
present the result in Table 26. 
 

 
Table 25: Randomly sampled slogans generated with different control codes. 

 
    The first sentence baseline received poor well-formedness and catchiness scores. As discussed 
previously, this baseline failed to generate outputs matching the slogan style. The skeleton-based 
approach improved catchiness over the first sentence baseline. However, it is prone to generating 
non-grammatical and nonsensical outputs, thus receiving the lowest well-formedness score 
among all baselines. 
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Table 26: Human evaluation on coherence, well-formedness, and catchiness. We highlight the 

best score for each aspect in bold (excluding the “coherent” aspect for the first sentence baseline 
because it is coherent by definition). ** indicates statistical significance when compared with our 

method using a two-sided paired t-test using p-value=0.005. 
 
    The Pointer-Generator baseline outperformed the previous two baselines substantially across 
all aspects, demonstrating the strength of modern encoder-decoder models. DistilBART further 
improved over Pointer-Generator, the difference in well-formedness being most pronounced. We 
conjecture that it is because DistilBART was pre-trained on a large corpus while Pointer-
Generator was trained from scratch. Thus, DistilBART inherently has a stronger language 
generation capability. 
    Our proposed method received a similar coherence and well-formedness score as DistilBART. 
However, it outperformed DistilBART by a large margin in the catchiness aspect. It demonstrates 
that we improve the catchiness of generated slogans as a by-product by explicitly varying the 
syntactic structure. 
 
4.5 Conclusions 

    This section proposed a novel method to generate slogans from a short description using a 
seq2seq Transformer. We further improved the cohesiveness and diversity of generated slogans 
using company name delexicalization, entity masking, and conditional training with syntactic 
control codes. Our final model outperformed various baselines not only in ROUGE scores but 
automatic and human evaluation on various aspects. 
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5. Conclusions 

    This thesis studies the application of natural language processing (NLP) techniques on 
advertising. While NLP has advanced dramatically in recent years with the massive success in 
transfer learning, there was no systematic study of how NLP can be applied to digital advertising. 
    Just as communication consists of two indispensable components, understanding and 
expressing, NLP can also be divided into two subfields: natural language understanding (NLU) 
and natural language generation (NLG). We study how each subfield is directly relevant to digital 
advertising. 
    For the task of understanding, we built weakly-supervised text classifiers from keywords or 
even the category names alone. The classifiers categorize millions of web pages per day to assign 
them into either a pre-defined taxonomy or custom categories. We also introduced a novel 
technique to evaluate the weakly-supervised classifiers without any labeled validation dataset, 
making the models more robust in real-world scenarios. 
    For the generation task, we proposed a Transformer sequence-to-sequence model to generate 
ad slogans from a brief description. We also introduced novel techniques to improve the 
truthfulness and diversity of the generation. Our final model yields statistically more catchy 
slogans than a previous state-of-the-art model based on human judgment. 

    We believe our work is only a tip of the iceberg. There is enormous potential to apply NLP 
techniques to digital advertising, which can benefit both advertisers and users to improve ad 
relevancy and ensure the appropriate ad message. We hope there will be more collaboration 

between ad tech companies and the research community to keep pushing this frontier. 
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