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CHAPTER I 
Introduction 
 

1. Introduction 
Electricity has already become indispensable part of human activities around the globe. 

Burning fossil fuels to get electricity to serve our insatiable desire in turn produces a 

ridiculous amount of greenhouse gases (34 billion tonnes in the year 2000 [1]) which 

consequently contributes to global warming. Another point of concern is waste heat, a 

largely unwanted by-product of doing work, that are ubiquitously dissipated from our 

electrical appliances, be they our smartphone, the fridge in our kitchen, or high-power lines 

on a large scale. This wasted heat results from the resistance in a material due to electrons 

scattering off other atoms. However, materials that circumvent this problem by allowing 

electricity to flow efficiently through them, without generating unwanted heat, are 

superconductors.   

1.1. Superconductivity in Mg/Ca-substituted hexahydride 
The first superconductor, mercury, was discovered by K. Onnes in 1911 [2]. Amongst the 

superconductors that are based on the BCS theory [3], a non-copper-oxide MgH2 was 

discovered in the start of the 21st century to conventionally superconduct with Tc = 39 K [4], 

which was the highest in all its class then. Due to the synthetic processes being economical 

and non-toxic, MgB2 has undoubtedly offered tremendous possibilities for applications in 

superconducting technology. The Tc value evaluated based on the well-known BCS (Bardeen-

Cooper-Schrieffer) theory [3] was once thought to be limited by a material’s electron-

phonon coupling constant and maximum phonon frequency. Therefore, MgB2 had kept its 

record of Tc in the class of the BCS-based superconductors for more than a decade. 

Ever since the emergence of high-pressure physics, the limitations in the parameters of the 

BCS theory have been enhanced unprecedentedly. Very recently, significant discoveries of 

the BCS-based superconducting compounds under high pressures have been made, all of 

which involve hydrogen atoms being as a main composition. These findings include the 

theoretical prediction in 2014 of the superconducting H3S compound with Tc ~ 200 K at 200 

GPa [5] with its superconducting properties confirmed experimentally a year later [6] as well 

as the findings of a large number of hydrogen-rich metals, some of which superconduct 

under high pressures. Interestingly enough, a high Tc ~ 280 K at high pressure of LaH10 with a 

sodalite-like clathrate structure [7, 8] was calculated in 2017 and was subsequently 

confirmed by experiments two years later with a slightly deviated Tc ~ 260 K at 188 GPa [9]  

The determining factors to achieving the near-room-temperature superconductivity in 

hydrogen-rich metallic compounds are associated with two essential mechanisms that 

involve the unique properties of hydrogen. The first one implies the contribution of 

hydrogen atoms to the electronic structure, especially at the Fermi energy, and the second 

one involves strong hydrogen vibrational effects on the electron-phonon coupling. In view of 
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the role played by metals, there was also a theoretical suggestion on the increase of the 

electron density of states at the Fermi level by metal substitution. A notable example is 

nothing but the Li-substitution in the MgH16 clathrate structure which resulted in Li2MgH16 

with Tc ~ 473 K at 250 GPa [10]. This material signalled a new era of the previously proposed 

“hot” superconductors that have yet to be confirmed by experiment. 

In this thesis, a new decoration of Mg/Ca-substituted metal hexahydride is determined by 

employing a metal substitution technique based on the state-of-the-art density functional 

theory. Starting from considering recent theoretical studies on metal hexahydrides, it has 

been found that MgH6 with a sodalite-like clathrate structure becomes a conventional BCS 

superconductor with Tc ~ 260 K at 300 GPa [11] while the isostructural CaH6 superconducts 

at 150 GPa with Tc ~ 175 - 235 K [12]. It turns out that the Ca-based hexahydride has a higher 

Tc values at higher pressures, whereas the Mg/Ca-based hexahydride superconducts at 

lower pressures [13].  

1.2. A hybrid organic-inorganic perovskite and the vdW interactions 
As mentioned in the first section, ever since the industrial revolution, the increasing 

prosperity of the world and economic growth have insatiably demanded for ever more 

access to affordable, clean, and reliable sources of energy due directly to the limited energy 

sources available on Earth. Our energy use in the 21st century must inevitably be sustainable 

[13]. Amongst the promising renewable energy resources, solar energy plays a predominant 

role due to it being the cleanest, abundant, and inexhaustible (it can stay up to 5 billion 

more years [14].) of all so far. And to harvest this unlimited natural resource, photovoltaic 

technology is one of the best ways to do that [15]. Synergism between theoretical tools and 

experimental advances enables many breakthroughs and has recently suggested a trend 

towards solid-state sensitised solar cells, amongst which perovskite solar cells assert their 

dominance [16].   

The emergence of hybrid organic-inorganic perovskites (HOIPs) has attracted tremendous 

attention due particularly to their potential applications, for example, in optoelectronic and 

photovoltaic technology [17-21]. The interaction between the embedded molecular cations 

and the inorganic framework [23] observed through energy-landscape analyses [24-26] as 

well as the structural and dynamical nature of such systems and the presence of 

ferroelectric domains that reduce the rate of electron–hole pair recombination were 

suggested [22], to impact upon the photovoltaic performance of these materials. Regarded 

as the most familiar archetypal HOIPs, Methylammonium lead iodide perovskite (MAPI) and 

Formamidinium lead iodide (FAPI) photovoltaic cells are comparatively inexpensive and also 

easy to assemble [27]. MAPI solar cell has recently gained the efficiency up over 22% [28-

30], while by using a mixture of Cs and I/Br, the Cs/FA/Br/I-mixed HOIP was demonstrated 

the feasibility of achieving more than 25%-efficient tandem cells [31].  

The innovative and low-cost synthetic designs of the materials mentioned earlier deliver 

hopeful prospect for the commercialisation of the perovskite solar cells, although there are 

still many challenges that have yet to be solved, e.g. reducing non-radiative recombination 

and increasing conductivity of device layers [32]. One major problem remains that HOIPs are 

extremely unstable, i.e., they are susceptible to degradation when exposed to humidity, 

ultraviolet light, and thermal stress [20, 33-35]. The average lifespan of the most 
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investigated perovskite solar cells is found to be in the order of weeks to only several 

months [36]. Even the most stable cell reported was confirmed to last only for over a year 

under controlled conditions [37], still unfledged in a world dominated by the well-

established silicon solar cells. Regarding theoretical investigations, especially based on the 

density functional theory (DFT), the stability issues have reportedly been addressed in the 

context of dispersive interaction, for instance, it was acknowledged that the van der Waals 

(vdW) interaction between the PbI6 octahedra and the methylammonium (MA) cation plays 

a significant role in electronic property, as investigated by dispersion-corrected DFT [38], as 

well as the computational predictions of structural parameters that substantiate the vdW 

interactions among the halide atoms and hydrogen bonding [39, 40].   

Interestingly, crystal structures can straightforwardly be morphed without any chemical 

modification, whose changes in atomistic geometry and bonding characteristics are 

achieved, by pressurisation, which was observed in methylammonium lead halide 

perovskites [49-51]. When pressurised, the synthesised MAPI was demonstrated to undergo 

a series of structural phase transitions [50, 52]. Under ambient conditions, the material 

adopts a tetragonal phase II (space group of I4/mcm) structure in the temperature ranging 

from 165 K to 321 K [23] and the pressure up to 0.35 GPa, while it morphs into a cubic phase 

IV ( Im3¯), structure at pressures 0.3–2.5 GPa and isostructural cubic phase V (Im3¯) above 

2.5 GPa [52]. Also, experimental data corroborates the physical distinction between phases 

IV and V in terms of molecular volumes, Pb–I bond lengths, Pb−I−Pb bond angles, and the 

energy band gaps, which in principle exhibit disruptive jumps during structural phase 

transitions [23]. 

To this end, the effects of the organic molecular orientations on structural property of 

phases IV and V are investigated in relation to the available experimental results [53] by 

employing the first-principles calculations based on DFT with the vdW corrections. The rigid 

flips of the MA cation are applied to determine the total energy profiles that account for 

varying types of dispersion-corrected versions of exchange-correlation functionals, which 

are proposed to significantly affect our models. It is found that vdW interactions influence 

the energy barriers of the MA cation embedded in the inorganic framework of PbI6 when 

calculated by different types of functionals. Also, the series of cationic orientational 

configurations in a supercell suggest a relatively stable structure for MAPI under pressures. 

1.3. Data-driven analyses and a substituted alloy perovskite CH3NH3BiSeI2 
As mentioned earlier, HOIPs have become the centre of attention in photovoltaic research 

due to their highly potential applications. The fundamental structural and dynamics of the 

HC(NH2)2 (FA) cation in FAPbI3 perovskite have been investigated by the aid of the Eulerian 

angles. The results imply the preferable orientations for the organic molecules in a unit cell, 

which lead eventually to the Rashba effect or electronic band splitting [24] as well as the full 

energy landscape for the rigid flips and translations of CH3NH3
+ in the MAPbI3 perovskite 

[22]. One key factor, however, that facilitates the high efficiency of halide perovskites is the 

use of lead (Pb) which is toxic [54].  

The structural and electronic properties of environmentally-friendly CH3NH3BiSI2 and 

CH3NH3BiSeI2 perovskites were predicted [63] by means of the anion-splitting approach, that 

is, replacing one I atom with Se atom and Pb atom with Bi atom to satisfy the charge 
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neutrality, to yield optimal band gaps for solar absorbers in accordance with the Shockley–

Queisser detailed balance limit of efficiency [44]. 

Therefore, CH3NH3BiSeI2 perovskite, or MABiSeI hereafter, is regarded as a promising 

candidate for photovoltaic materials, and is studied to gain some insight into such an eco-

friendly solar cell. Never before has the interplay between the organic CH3NH3 (MA) 

molecule and the inorganic octahedral framework of BiSeI2 been studied by means of total 

energy analyses. Thus, the organic–inorganic linkage was thoroughly probed by an effective, 

systematic method called the Euler's rotations applied to the MA cation. The Eulerian angles 

occupy the cubo-octahedral cavity between the corner-sharing octahedra of BiSeI2, thereby 

resulting in the beyond-three-dimensional energy landscape. The high-dimensional energy 

landscape was obtained from the total energies of the cubic MABiSeI, which were evaluated 

based on DFT [64], subtracted by the relatively lowest one in all of the samples. And also due 

to the massive amount of generated data obtained from DFT, a reliable model is required to 

recognise the underlying relationships in the dataset, e.g., the total energies and the 

Eulerian angles. Being the quintessential deep learning models, deep artificial neural 

networks offer the capability to create accurate models quickly and automatically [65]. In 

this work, we use a deep neural network to develop a predictive model for the energy 

determinations of MABiSeI at various Eulerian-rotated orientations of the MA cation. This 

approach encourages a paradigm shift in the energy calculations for this class of materials 

without fully employing computationally demanding DFT calculations. 
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CHAPTER II 
Theoretical Background 
2. Theoretical Background 
In this chapter, all theoretical framework employed extensively in this thesis are discussed. 

2.1. Many-body problems 
Ever since the advent of quantum mechanics, one of the crucial goals of physics has always 

been the description of many-particle systems. Solving for analytic solutions for the 

Schrodinger equation are practicable for just a few simple systems yet still a tall order for 

other complicated solid-state systems. If one is to investigate properties of an interacting 

system consisting of n  electrons and N  nuclei with charges ,IZ  the many-body 

Schrodinger Hamiltonian (SE) in Hartree atomic units is written as, 

 2 2

1 1 1 1

1 1 1 1 1 1
.

2 2 2 | | | | 2 | |

n N n n N N
I JI

i I

i I i j i I I JI i j i I I J

Z ZZ
H

M r r r R R R= =  = = 

= −  −  + − +
− − −

      (1) 

The small and capital letters respectively denote electron and nuclei. The first two terms on 

the right-hand side of equation(1) are the kinetic energy of electrons and nuclei, 

respectively, where the nuclear mass at site I  is represented as 
IM . Due to electrically 

charged particles, the following three terms are Coulombic interactions arising from 

electron-electron, electron-nucleus, and nucleus-nucleus. The vector ir  indicates the 

electron’s position at site ,i  while IR  refers to nuclear position at site I . 

Now if the effect from nuclei in the electronic problem are omitted due to the fact that the 

nuclei are much heavier than the electrons (an electron itself is approximately 2000 times 

lighter than a proton), thereby moving relatively more slowly, this scheme is the so-called 

Born-Oppenheimer approximation [66]. To put it another way, the ions (nuclei) are 

essentially stationary as seen from the electrons. As a consequence, the kinetic and the 

nucleus-nucleus interaction terms become constants, and that the Hamiltonian is now 

expressed as,    

 2

1 1 1

1 1 1
.

2 2 | | | |

n n n N
I

i

i i j i Ii j i I

Z
H

r r r R=  = =

= −  + −
− −

    (2) 

Now it is not uncommon to consider the many-electron wave function, ( )1 2, , , Nr r r , 

where the particle coordinates and spins are denoted as ir .  

2.2. Hartree scheme 
It was Hartree [67] who introduced the approximate many-electron wave function as a 

product of single-particle functions, that is, 
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 ( ) ( ) ( ) ( )1 2 1 1 2 2, , , .N N Nr r r r r r   =  (3) 

The many-body problem now is reduced to an uncoupled problem in which each of the 

functions ( )i ir  satisfies a one-electron SE, and that the interaction of one electron with 

the remaining ones is incorporated in an averaged way into a potential felt by the electron, 

i.e., 

 ( ) ( )21
,

2
ext i i i iV r r 

 
−  + + = 
 

 (4) 

where the Coulomb potential i (also known as the Hartree potential) is defined by 

Poisson’s equation 

 
2

2 ,
n

i j

i j




  =  (5) 

and 
extV describes the interaction due to the nuclei. The SE for the Hartree scheme can be 

written as 

 
2

2

,

1 1
( ) ( ) ( ).

2

I
j i i i

i I j ii I

Z
dr r r r

r rr R
  



 
 −  − + = 

−−  
   (6) 

The Hartree potential (the integral term) is the potential resulting from a charge distribution 

caused by all other the electrons but the thi electron itself. Essentially, one can discuss the 

properties of an interacting system by solving for equation(6) self-consistently. 

2.3. Hartree-Fock approximation 
In the previously section, the many-electron wave function can be approximated as a 

product of single-particle functions, which is, obviously, incorrect. This model fails to 

describe the true nature of electronic properties since it violates the anti-symmetry of the 

wave function. To improve the circumstance, Hartree and Fock, hence Hartree-Fock theory 

[68], proposed that the many-electron wave function must be defined as a determinant of 

many single-electron wave functions, as also called the “Slater determinant”, that explicitly 

includes the anti-symmetric properties of the electrons:   

 

1 1 2 1 1

1 2 2 2 2

1 2

1 2

( ) ( ) ( )

( ) ( ) ( )1
( , , , ) .

!

( ) ( ) ( )

N

N

AS N

N N N N

x x x

x x x
x x x

N

x x x

  

  

  

 =  (7) 

Therefore, one can now evaluate the total energy of an interacting system according the HF 

approximation by solving 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 10 

 
2

2

,

*

( ) ( )

1 1
( ) ( ) ( )

2

( ) ( )
( ),

i j

i i i

I
i j i

i I j ii I

j i

j

j

F r r

Z
r dr r r

r rr R

r r
dr r

r r
 

 

  

 
 



=

 
 = −  − + 

−−  

 
−

−

 

 

 (8) 

where F is the Fock operator and the first three terms on the right-hand side of equation(8) 

are the same as in those appearing in equation(6). The last term corresponds to the 

exchange term, which implies that electrons of like-spin avoid each other. Every electron is 

now surrounded by an “exchange hole” in which other electrons having the same spin are 

hardly found. 

This approach is regarded as an indispensable benchmark in molecular physics, yet still 

complicated systems such as solids continue to be problematic, i.e., systems containing a 

large number of electrons require expensive computation costs and huge memory 

resources. Infamously, HF scheme underestimates cohesive energies in many metals, e.g. it 

yields positive cohesive energy of Li [69], which is unbelievably absurd.      

2.4. Density functional theory 
Fortunately, enough, one can tackle interacting many-particle problems by making use of a 

decent, promising tool called the density functional theory.  

2.4.1. Hohenberg-Kohn theorems 
Proposed in 1964 by Hohenberg and Kohn [64], the density functional theory (DFT) is 

regarded as one of the most reliable, successful, and seemingly most adopted approaches to 

investigating ground-state energies and electronic structures of interacting many-body 

quantum systems. The Hohenberg – Kohn theorems state that: 

• for any system of interacting particles with an external potential ( )extV r , there 

exists a one-to-one correspondence between the external potential and the 

system’s ground-state density ( )r . Moreover, the ground-state expectation value 

of any observable quantity A  is a unique function, that is: 

 ( )0
ˆ .A A r  =     (9) 

• Also, for an arbitrary external potential applied to an interacting system, it is 

possible, in principle, to exactly define a universal total energy functional of density, 

which is expressed as 

 ( ) ( ) ( ) ( ) .HK extE r E r V r r dr  = +         (10) 

The term 
HKE  is regarded as the universal constant not explicitly relating to any 

information of any types of nuclei or their spatial positions. Despite unknown, this 

arbitrarily universal constant determines the GS energy of a system by minimising 
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total energy with respect to density by means of the variational principle, which can 

be written as (the full derivation can be seen in Appendix A),  

 ( )
0

0.E r
 

 
=

=    (11) 

The exact GS energy 
0E accounting for the GS density ( )0 r is defined to be 

 ( ) ( )0 0 .E E r E r =         (12) 

2.4.2. Self-consistent Kohn-Sham equation 
As a result of the previous section, the density parameter can be employed as the main 

quantity used to calculate all observables. According to Kohn and Sham [70], the challenge 

of finding good approximations to the energy functional is considerably simplified by using  

     ( ) ( ) ( )  0

1
;

2
ext xcE T dr r V r r E   

 
= + +  + 

 
  (13) 

the non-interacting kinetic energy of a system with density   is denoted by 0T ,  is the 

classical Coulomb potential for electrons, and the 
xcE is regarded as the exchange-

correlation energy. The external potential ( )extV r  results from nuclei and the inner shells’ 

electrons. Clearly, one can use the electron density ( )r as a basic variable instead of 

laboriously solving for the many-electron Hamiltonian in equation(2). The Schrodinger-like 

Kohn-Sham equation for non-interacting particles thus becomes 

 
2 3

,

1 1
( ) [ ]( ) ( ) ( ),

2

KS KSI
xc i i i

i I i I

Z
d r r V r r r

r rr R
   

 
 −  − + + = 

−−  
   (14) 

which yields 

 ( ) ( )
2

1

.
n

KS

i

i

r r 
=

=  (15) 

The noticeable difference between the HF and KS schemes is that the Hamiltonian of the 

former depends upon the individual orbitals, whereas that of the latter is a functional of 

electron density. Now the GS energy can be evaluated by minimising ( )E r    with 

respect to the density according to equations(11) and (12). One can achieve energy 

minimisation by means of the Euler’s equation with a Lagrange multiplier. The KS orbital in 

atomic unit can now be written as 

 ( ) ( ) ( )21
,

2

KS KS

i eff i i iV r r r 
 
−  + = 
 

 (16) 

where the effective potential is defined as 
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 ( ) ( ) ( ) ( ) ,eff ext H xcV r V r V r V r = + +        (17) 

  with the Hartree potential, 

 ( )
( )

,H

r
V r dr

r r





=   −  (18) 

and the exchange-correlation potential, 

 ( )
( )

( ) .xc xcV r E r
r


 


=        (19) 

The KS equation enables one to investigate any complex quantum systems by effectively 

mapping an interacting system into a fictitious non-interacting system in which the particle is 

moving.   

 
Figure 1 Schematic diagram for solving self-consistently the Kohn-Sham equation. 

 

As illustrate in Figure 1, the KS equation is solved iteratively. First of all, the initial density is 

randomised in order to determine the effective potential, then the equation is solved for the 

total energy and the KS orbital, which are then used in the subsequent step. The self-

consistent process runs until it is stopped due to fulfilment of the convergence criterion. In 
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equation(17) all the terms but the exchange-correlation potential ( )xcV r   can be 

evaluated exactly, and that the approximations for
xcE is unavoidable. 

2.5. The local density approximation and Generalised gradient approximation 

By far the simplest, oldest, and supposedly the most important model of 
xcE is the local 

density approximation (LDA), which was proposed in their original paper by Hohenberg and 

Kohn [64]. In LDA scheme, the exchange-correlation energy is associated with a 

homogeneous electron gas of the same density. The LDA is solely dependent upon the local 

density, and the total energy can be expressed as, 

 hom[ ( )] ( ) [ ( )].LDA

xc xcE r dr r r   =   (20) 

The term xc can be decomposed into exchange and correlation energies per particle, 

 [ ] [ ] [ ],xc x c     = +  (21) 

where the exchange energy of a homogeneous electron (Thomas-Fermi-Dirac model [71]) 

gas at density  is    

 

1/3

hom 4/33 3
[ ( )] ( ) ,

4
xE r r dr 



 
= −  

 
  (22) 

whereas [ ( )]cE r is evaluated from an interpolation formula [72] that links between the 

known limiting form of hom[ ( )]xc r  in the high [73, 74] and low [75] density regimes. 

 

 

1/3

hom 1/33 3
[ ( )] ( )

4x
r r  



 
= −  

 
 (23) 

A model developed by Perdew and Zunger [76] is commonly used as the correlation formula 

that exploits data, as calculated by the quantum Monte Carlo method, of the homogeneous 

electron gas reported by Ceperly et al [77]. Despite its simplicity, although LDA succeeds in 

solid-state systems, it notoriously tends to overbind and fails to describe molecules. 

Alternatively, the model was then modified to describe more complex systems as an 

extension of LDA, which is known as the generalised gradient approximation (GGA). The GGA 

is currently regarded as the most popular exchange-correlation functional in condensed 

matter physics. Not only is the electron density, ( ) ,r included in the exchange-correlation 

term, but its gradient, ( ) ,r is also incorporated (see Appendix B for more detail), which 

can be expressed as, 

 [ ( )] ( ) [ ( ), ] ( ).GGA

xc xcE r dr r r r    =   (24) 
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2.6. Techniques of calculations in DFT 

2.6.1. Plane waves and reciprocal space 
If one considers a continuous periodic solid, invariant under translational and rotational 

symmetries, any orbital can be defined as, 

 ( ) ( ) ( ) ( )11
,

i k G r

ik ik ik
G

r c G e FT c G
+  −  = =

 
  (25) 

where the reciprocal space representation of the orbital is constituted by a set of complex 

coefficients ( ) ,ik
c G  with G being the reciprocal lattice vectors. Equation(25) is constrained 

to relations, 

 

( ) ( )

( ) ( )

*

*

1,

1.

ik

ik

ik

ik
G

dr r r

c G c G

  =

=




 (26) 

By means of Fourier transform, thus, 

  

 ( ) ( ) ( ) ( )1
.

i k G r

ik ik ik
c G FT r dr r e 

− + 
 = = 


  (27) 

 It is also useful to represent other quantities, e.g. densities, in this way. The reciprocal 

representation of the density ( )G  can be written as, 

 
( ) ( )

( ) ( )

1
,

.

iG r

G

iG r

r G e

G dr r e

 

 



− 

=


=





 (28) 

It becomes much easier to evaluate the non-interacting kinetic energy ,sT the Hartree 

energy 
HE as well as its potential. Now if we consider  

 

( ) ( ) ( )

( )( ) ( )

2 2

2

1 1 1

2 2

1
.

2

i k G r

ik ik
G

i k G r

ik
G

r c G e

c G k G e


+ 

+ 

 
−  = −   

 

= +






 (29) 

Now the non-interacting kinetic energy sT becomes, 

 

( ) ( )

( ) ( )( )

2

2
*

1

2

1
.

2

s ik ik

ik ik
Gik

T r r

c G c G k G

 = − 

= +

 (30) 
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The Hartree potential is also defined by Poisson’s equation: 

 ( ) ( )2 .H r r  − = −  (31) 

 The reciprocal space representations of the Hartree potential and the density become 

 ( ) ( )2

0 0

1 1
,iG r iG r

H

G G

G e G e  

 

 
− = 

  
   (32) 

with 0G  accounting for the subtraction of the average density in equation(31). Applying 
2 to the left-hand side of equation(32) and equate the exponential coefficients, so that the 

Hartree potential is written as, 

 ( )
( )

2
.H

G
G

G


 =  (33) 

It is worth noting that the Hartree potential with 0G =  exactly cancels the equivalent term 

from the positive nuclear charge in the neutral system. 

The Hartree energy is then expressed as, 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

*

*

0 0

*

2
,

*

1 1

2 2

1 1 1

2

1

2

1
.

2

H H H

iG r iG r

H

G G

i G G r

H

G G

H

G

E dr r r dr r r

dr G e G e

G G dre

G G

   

 

 

 

−  

 

− 



= =

  
=   

   

=


=


 

 

 



 (34) 

The last step in equation(34) is completed by making use of the Dirac delta function. Finally, 

together with equation(33), equation(34) thus becomes, 

 
( ) ( )*

2

1
.

2
H

G

G G
E

G

 
=


  (35) 

2.6.2. Energy convergence of the plane wave basis set 

In principle, the complete set of reciprocal vectors G  is expanded to infinite, meaning 

evaluating a summation overall such vectors would take eternity to complete. In practice, 

however, one can truncate the plane wave components that become negligible for large G

vectors. Those vectors with magnitudes larger than some cut-off radius cutG will be 

excluded. Thus, the kinetic cut-off energy is defined as, 

 21
.

2
cut cutE G  (36) 
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There is no set-in-stone rule for the appropriate value of cutE  in advance, as it depends upon 

the system in question. However, the general rule of thumb is that one increases it until 

stops varying. This procedure is known as a “convergence test”.   

2.6.3. Geometry optimisation 
The geometry optimisation is the process of searching for the configuration of atomic 

positions that are of minimum energies [78]. The structure in question is relaxed until the 

net interatomic force on each atom is satisfactorily close to zero. GO represents the 

structural geometry the system is expected to adopt at zero temperature. In order to avoid 

the difficulties in calculating finite differences ( 3N calculations of the total energy), one 

can use the Hellman-Feynman Theorem [79, 80] which states, 

 
ˆ

,
dE dH

dx dx

 
  =  (37) 

where Ĥ is a Hamiltonian operator depending on a continuous parameter . Equation(37) 

essentially implies that the derivative of the electronic energy with respect to some 

continuous parameter , such as an atomic position, is equivalent to the corresponding 

partially derivative in which the wave function  , implicitly depending upon , is held 

constant. Thus, the forces on the atoms can be calculated without the need to recalculate 

the electronic structure. The atoms are moved in a downhill manner closer to the local 

energy minimum with the forces known. This process’s iterations will bring about the system 

reaching a geometry at which the forces approaching zero, and the energy is minimised.  

2.6.4. Electronic band structure 

Recall that the ground-state wave function, ( )
ik

r , of a system can be solved from the 

solution to the Kohn-Sham equation, equation(16). The Kohn-Sham potential is then 

calculated from the GS density, and successively the corresponding eigenstates and 

eigenvalues that include conduction bands are obtained for the set of band structure k −

points, as given by 

 ( ) ( )ˆ .
ik ik ik kk

r H r   
 

=  (38) 

2.6.5. Density of states 
The electronic density of states (DOS) is conceptualised as the number of states available at 

each level of energy. It is interpreted mathematically as a distribution in terms of probability 

density function. The DOS for a given 
thn  energy level, ( ) ,g  is defined by, 

 ( ) ( )( )3
,

4
n n

dk
g k   


= −  (39) 

where the integration is taken all over any primitive cell, and the energy eigenvalue for the 
thn  energy level is indicated by ( ).n k  Likewise, the partial density of states (pDOS) 

corresponds to the projection of any particular orbital of the particular atom on the DOS. 
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2.7. Cluster expansion 
Amongst numerous methodologies that enable the calculation of thermodynamic properties 

from DFT, the “cluster expansion (CE)” allows one to circumvent the intractability of 

calculating energies of various atomic arrangements. Based on the knowledge of the 

energies accounting for a sufficiently small number of configurations, the CE is capable of 

predicting the energy of any atomic configuration.  

Being a method similar to the treatment of Ising model, CE is formally defined by assigning 

occupation variables ,i  taking value -1 or +1, to each site i  of the parental lattice. A 

particular configuration   contains the value of occupation variable for each site of the 

parental lattice. Essentially, the CE parametrises the energy per atom of the alloy as a 

polynomial in the occupation variables [81]: 

 ( ) ,i

i

E m J 
 

 


=   (40) 

where a is   cluster, a set of i , that are inequivalent symmetrically, with the average 

symbol taken over all clusters   that are symmetrically equivalent to   with multiplicity 

m . The effective cluster interaction (ECI), denoted by ,J  includes the information 

associated with the energetics of the alloy, and can be determined by the approach known 

as the Structure Inversion Method (SIM) or the Collony-Williams method [82], which are 

evaluated by fitting the energies of a relatively small number of configurations obtained 

directly from DFT calculations. This method’s ability to determine the predicted structures 

proves useful for predicting variations of alloy structures, as the process is achieved without 

relying on DFT calculations except the energies accounting for some known structures, 

thereby making this a time-saving technique.  

2.8. Phonons and electron-phonon coupling 
Having been discussed so far, the DFT calculations reveal the properties of a material in 

which the atoms are assumed localised at equilibrium or minimum energy position. In other 

words, the calculations are a zero-temperature approach. However, in the real world the 

materials are excited with finite temperatures, i.e. the atoms in the material will vibrate 

about their equilibrium positions provided that the material is raised to a non-zero 

temperature.  

Given a set of N atoms, the corresponding Cartesian coordinates are written as a vector 

with 3N components, ( )1 2 3, , , .Nr r r r=  If 
0r denotes atomic positions at local energy 

minimum of the atoms, then is not uncommon to define coordinates 0.x r r= −  The Taylor 

expansion to the second order of the atom’s energy about the minimum at 
0r becomes, 

 
23 3

0

1 1
0

1
,

2

N N

i j

i j i j x

E
E E x x

x x= =
=

 
= +     

  (41) 

with the first derivatives (slopes) being zero as they are evaluated at the energy minimum. 

Now, the Hessian matrix is defined as, 
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2

0

.ij

i j x

E
H

x x
=

 
=     

 (42) 

The equation of motion for the atoms associated with the thi coordinate can be written as 
2

2
.i

i i

i

d x E
F m

dt x


= = −


 Thus, the equation of motion in matrix form now becomes, 

 
2

2
,

d x
x

dt
= −  (43) 

with the mass-weighted Hessian matrix of which its elements are .ij ij iH m =  The 

eigenvectors and their eigenvalues of the mass-weighted Hessian matrix  are the vectors 

1 2 3, , , Ne e e satisfying .e e =  Therefore, the general solution of equation(43) is a linear 

combination of the normal modes: 

 ( ) ( ) ( )
3

1

cos sin ,
N

i i i

i

x t a t b t e 
=

= +    (44) 

with the frequency . = Now the main task is to calculate the elements of the Hessian 

matrix to determine the set of normal modes in DFT. Using finite-difference approximations, 

the Hessian matrix becomes, 

 
( ) ( )2

0

0

, 2 ,
.

i j i j

ij

i j i jx

E x x E E x xE
H

x x x x

   

 
=

− + − − 
=     

 (45) 

 

2.9. BCS theory and the evaluation of superconducting critical temperature 
The first discovery of superconductivity dates back to 1911 when Kamerlingh Onnes [83] 

cooled down mercury by liquid helium and found the resistance of mercury had decreased 

gradually, as expected for any particular conductors, until it suddenly plummeted to zero at 

4.2 K, instead of continually approaching a value at absolute zero. 

Electrical resistance is defined as an obstruction to the flow of electrons or electrical current 

caused by the vibrational motion of crystal lattice. When the temperature of the conducting 

material is elevated, the atoms start vibrating more rigorously thereby obstructing the flow 

of electrons. When a conductor is cooled down, on the other hand, atoms vibrate with less 

intensity and therefore have lower resistivity to current. At lower temperature the resistivity 

of a normal metal is described by ( ) 5T T  [84], as illustrated in Figure 2 (orange).  
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Figure 2 Temperature-dependent resistivity 

 

However, the temperature-dependence of the resistivity/resistance remains up to a specific 

value, after which all resistance of the metal suddenly disappears and the transition to the 

superconducting state occurs (blue line in Figure 2). The temperature at which a regular 

conductor abruptly transitions to a superconducting state is known as the critical 

temperature ( ).cT  

The world had to wait for quite some time for someone/some ones to unravel the mysteries 

of superconductors. In 1957, physicists J. Bardeen, L. Cooper, and J. R. Schrieffer came up 

with the first microscopic, yet phenomenological theory to explain the genesis of 

superconductivity, hence the BCS theory [3]. The theory states that superconductivity is a 

consequence of the formation and condensation of multiple pairs of electrons, known as the 

Cooper pairs. Electrons may repel fellow ones, yet they happen to exert an attractive force 

on the positive ions that form the crystal lattice (arrangement of atoms, ions, or molecules). 

Crystal vibrations (locally excessive positive ions) mediate the creation of pairs, thereby 

resulting in superconductivity.    

By solving for the pairing Hamiltonian on the basis of mean-field approach and variational 

method, the pair binding energy is expressed according to weak interaction by, 

 
1

2 exp ,c

F effN V


 
  −  

 

 (46) 

where 
FN  is the electron density of states at the Fermi level ( ) ,F and effV denotes the 

effective potential arising from electron-phonon interaction, which happens to be an 

intractable problem in practice. Subsequently, the critical temperature for weak coupling is 

proposed to be, 

 
1

1.13 exp ,c D

F eff

T
N V

 
  −  

 

 (47) 
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with the Debye temperature 
D being the maximum frequency with which the ions can 

vibrate.  Now, provided that the exponential term in equation(47) is kept constant, the 

critical temperature is thus inversely proportional to the square-root of mass, as given by, 

 .D
c D

B B

C
T

k k M


 = =  (48) 

Note that the ions, in this case, are seen as homogeneous harmonic oscillators of mass .M

The inverse relationship in equation(48) is in agreement with the Isotope effect, as 

previously observed experimentally [85].  

As mentioned earlier, the effective potential associated with electron-coupling interacting 

becomes impracticable especially when the material in question is a complicated, therefore, 

an alternative formalism is required. In 1968, McMillan [86] proposed an approximation of 

cT  by solving the electronic normal and pairing self-energies [87], which essentially 

describes the potential felt by an electron due to the interactions of the surrounding 

medium with it, by means of a trial function that is a constant and disrupted at the 

maximum phonon frequency.  As a result, a new parameter called “electron-phonon 

coupling constant” is introduced, and is written as, 

 ( ) ( )
0

2

0

2 ,
d

F




   


   (49) 

where   is the phonon frequency. The term 2 ,F  also called the “spectral function”, is 

related to the electron-phonon Hamiltonian explicitly depending upon the electronic matrix 

of the change in the crystal potential crysV  as one atom is moved, as can be evaluated from 

 

( )

2
2

2
0 ,

F e ph

F i crys i I

F N k q H k

N k q u V r R k

 −
 +

 +  −

 (50) 

where u  is the nuclear displacements, while r and R  refer to electron and nuclear 

coordinates, respectively. Electronic and phonon states in the momentum space are 

represented by ( ),k k   and q , respectively. Vibrational modes of crystal cause the changes 

in which in turn affects 
2F . Note also that the lattice vibrations and hence all phonon 

modes are already embedded in iu . Thus, the electron-phonon coupling [88]constant, , 

measures the average strength of the electron-phonon coupling throughout the entire 

phonon spectrum. Interestingly, equation(50) implies that the spectral function becomes 

large provided that there exists a huge equivalent set of ( ), ,k k q  states near the Fermi 

surfaces, as known as the so-called Fermi nesting [89].  

The equation for cT , as derived by McMillan [86], for weak coupling (i.e. F effN V  and 1 ) 

can be approximated to be, 
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*

1
exp ,cT

 

 
 − 

− 
 (51) 

where *  is called the Morel-Anderson Coulomb pseudopotential parameter, accounting 

for repulsive effects of Coulomb interaction between electrons [88], which in general is 

taken as a constant. Now if equation(51) is compared with equation(47), it is clear that the 

BCS-based effective interaction is replaced by the difference between the electron-phonon 

coupling and the effective Coulomb potential:
*

F effN V  → −  [90].   

Subsequently, an improvement of the cT  equation that is capable of describing the strong 

coupling ( 1  ) was made by Allen and Dynes [91]. The semi-empirical formula, derived 

based on Eliashberg theory [92] (the full derivation of which is beyond the scope of this 

thesis), can be expressed as, 

 ln
1 2 *

1.04(1 )
exp ,

1.2 (1 0.62 )
cT f f

 

  

 +
= − 

− + 
 (52) 

where now the Debye frequency is replaced by 

 
2

ln

0

2
exp ln( ) ( ) .

d
F


   

 

 
=  

 
  (53) 

Also, the strong-coupling correction factors satisfying the asymptotic behaviour of cT  are 

found to be, 

 
( )

( )

3 2

2

ln3
1 2 2*

2 *

ln

1

1 1 ,
2.46 1 3.8

1.82 1 6.3

rms

rms

f f






 
 



  
−       = +  + +      + +    

 (54) 

The logarithmic frequency, ln , measures the average frequency by the aid of distribution 

function based on the spectral function, whereas the root-mean-square frequency is defined 

as   

 2

0

2
( ) .rms d F   





=   (55) 

It is worth noting that when 1.5,   the strong-coupling correction factors approach unity, 

that is, 1 2 1.f f  Hence, the equation for cT  is now an explicit function of two crucial 

parameters, i.e.  and ln , both of which are dependent upon the spectral function 
2 .F  

Figure 3 plots the contour profile of function cT  of equation(52) for weak coupling when 

* 0.1. =  
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Figure 3 The contour plot of Tc equation. 

 

2.10. The van de Waals interactions 
Van de Waals (vdW) forces, also known as London dispersion forces [93], are the forces 

stemming from the instantaneous interaction between dipoles that are electrostatically 

induced by charge fluctuation. These interactions are derived from a model of two identical 

linear harmonic oscillators with each bearing charges ,e  where the perturbed Hamiltonian 

of which is resulted from the corresponding Coulomb interaction of the two oscillators [94]. 

These interactions are of the form, 

 ( ) 6
,

A
U R

R
= −  (56) 

where A  is a constant, or an extended version that includes the repulsive interaction and is 

known as the Lennard – Jones potential [95], which is expressed as, 

 ( ) 12 6
,

B A
U R

R R
= −  (57) 

where B  is another constant. Although these dispersive interactions are already in principle 

included in the standard exchange-correlation, these interactions are missing therein due to 

the inevitable approximations of ,xcE  namely, LDA and GGA. 

The first successful attempt was made by Rydberg et al [96, 97] that the exchange – 

correlation functional is split into two parts, 

      0 ,vdW DF nl

xc xc cE E E  − = +  (58) 

with the semi-local term,  0 ,xcE  is given within the Zhang and Yang reparameterization 

[98] of PBE of equation(92). The non-local correlation energy is expressed as, 
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 ( ) ( ) ( )
1

, .
2

nl

cE dr dr r r r r   =    (59) 

Being a current subject of research, equation(59) involves an integration over electronic 

densities in different spatial locations that interact through a response function ( ),r r  

which is some given, general function depending upon r r−  and the density  in the 

vicinity of r  and .r  However, the original vdW-DF scheme is not acceptably accurate in 

many cases, thereby leading to alternative approaches. A second version of the van de 

Waals density function, or vdW-DF2 [99], had been proposed to adopt the semi-local 

exchange functional PW86 (which was the previous version of equation(84)) before its 

exchange functional was further approximated to be (called vdW-DF2-b86r) [100, 101], 

 ( )
( )

2

4/5
2

1 ,
1

x

s
F s

s



 
= +

+
 (60) 

where   and   are fitted parameters that make equation(60) satisfy the GGA scheme (for 

a definition of ,s  see Appendix B). This can be further improved by taking into account the 

plasmon – response description for both correlation and exchange terms of vdW-DF, the 

enhancement of the consistent exchange vdW-DF (vdW-DF-cx) is interpolated to be of the 

form ( )86PW r

xF s  scaled by fractions of 6s  [102], as well as an improvement of a functional 

optimised from lattice constants, bulk moduli, and atomisation energies of various solids 

that [103] takes a formula similar to vdW-DF2-b86r. Finally, a particularly successful 

response function that has been proved to perform well in representative covalent, ionic, 

and metallic solids, takes the form [104], 

 
( )( )( )

4
10

2 2 2 2 2

3 1
,

2 1 1 2

rVV e

m qR q R qR q R
 = −

 + + + +
 (61) 

Where q  and q  are defined as ( ) ( )( ) ( )( )0 , / ,r r k r     and similarly for .r  The 

expression 

2

2

0
3

p

g


 = +   comprises the plasma frequency 

2
2 4

,p

e

m


 =  the local band 

gap 

42
2

2
0.0093g

m







= [105], and k  being a function of the Thomas – Fermi screening 

wave vector which controls the short-range damping of the 
6.R−

  

 

2.11. Spin-orbit coupling 
In a hydrogenic atom, the central potential that is suitable for the valence electron can no 

longer be defined as a pure Coulombic form. Because the electrostatic potential ( )r

presenting in 
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 ( ) ( ) ,cV r e r=  (62) 

no longer results only from the nucleus of charge ,e Z  that is, the cloud of negatively 

charged electrons residing in the inner shells must be taken into account. This is associated 

with the fact that the higher angular momentum states are prone to the repulsion due to 

the electronic cloud. As a consequence, a valence electron experiences the electric field, 

written as, 

 ( )
1

.cE V r
e

= −   (63) 

However, according to electrodynamics, a moving charge subjected to an electric field will 

feel an effective magnetic field of, 

 .eff

v
B E

c
= −   (64) 

By plugging equations(62) and (63), together with the electron’s magnetic dipole moment 

,
e

eS

m c
 =  into the Hamiltonian of the dipole, this gives rise to, 

 ( )2 2

1 1
.

2

c
SOC eff

e

dV
H B L S

m c r dr
= −  =   (65) 

A factor 2 is added because of the precession of the electronic spin moment, which is a 

relativistic effect when an external magnetic field is absent. The detailed derivations can be 

traced back to the original work proposed by L. H. Thomas [106]. The SOC Hamiltonian will 

be incorporated in equation(16) as a correction term. 

 

2.12. Artificial neural network 
Inspired by biological neurons, the building blocks of artificial neural networks are artificial 

perceptrons [107]. A single perceptron (simply called neuron), as illustrated in Figure 4, can 

be thought of as a map that takes several real inputs 
1 2, , , nx x x (also called “features”), 

e.g. physical properties of a material, and provides an output ,i i

i

y w x b
 

+ 
 
  according to 

an activation function ,A  where the adjustable weighting iw   and bias b  

parameters are tweaked during training—just another word for fitting the model. The 

output of the neuron is sometimes denoted by activation, for which different possible 

choices are available. However, in the case of non-linear regression, the linear activation 

function, having the form A cx= , must be employed.    



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 25 

 
Figure 4 A typical perceptron. 

 

Now a (feed-forward) neural network is created by arranging neurons in layers, which might 

perform different transformations on their features, and finally the outputs of which are 

determined by means of the activation of the last neuron(s) of the terminal layer [65], as 

schematically shown in Figure 5. 

 
Figure 5 Fully connected feed-forward neural network. 

 

Due to their capability to find relationships between data in high-dimensional space, neural 

networks can be employed to approximate any continuous function to an arbitrary accuracy 

given appropriate weighting parameters [108]. The model is optimised by minimising the 

error obtained from the model’s predicted answer and the true answer based on a cost 

function which happens to be the root mean square error, due to its suitability for a 

regression task.     
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CHAPTER III 
Superconducting Mg0.5Ca0.5H6 
 

3. Superconducting metal hydrides Mg0.5Ca0.5H6 

3.1. Calculational details  
The search for the energetically favourable compositions and structures of Mg0.5Ca0.5H6 is 

started off by using the Alloy-Theoretic Automated Toolkit (ATAT) to performed the cluster 

expansion, as implemented the Quantum Espresso (QE) package [109]. Structure variations 

are determined based on the corresponding formation energy obtained from the DFT 

calculations [110-112] with 4,000 k-point meshes, whereas the total energies and other 

superconducting related properties of Mg0.5Ca0.5H6 are evaluated by the QE package [109]. 

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [113] with a force/atom tolerance 

equal to 0.001 hartree/Bohr is selected to perform the geometry optimisation of the atoms 

and lattice parameters. The generalised gradient approximation (GGA) method developed 

by Perdew-Burke-Ernzerhof (PBE) [114] is employed as the exchange-correlation functional. 

The plane-wave basis set with the kinetic cut-off energy and the cut-off for the charge 

density of 80 Ry and 320 Ry, respectively, have been tested to satisfy energy convergence. 

The smearing parameter, compulsory in dealing with any metallic systems since it 

smoothens the step and delta functions, used in all calculations is chosen to be the 

approximation developed by Methfessel and Paxton [115]. By using the QE package, the 

electron-phonon coupling (EPC) calculations are carried out with a Gaussian broadening 

parameter of 0.2 Ry for the integration over the Fermi surface. 

3.2. Results and discussion 

3.2.1. Structural stability 
Equipped with the CE technique, the composition-dependent formation energies of the 

Mg0.5Ca0.5H6 alloy at 200 GPa are reported in Figure 6. Some initial known structures are 

generated by ATAT, denoted by “Known str”, when their energies are calculated by means of 

DFT. Subsequently, the energy of each composition is expanded in terms of the summation 

of the effective cluster interaction (ECI) and their corresponding physical parameters are 

successively extracted. As a consequence, a large amount of (predicted) structures of 

different compositions are determined by evaluating equation(40). These predicted 

structures denoted by blue crosses. Although CE is an approximation, it would not be wrong 

in saying that this very technique is sufficiently efficient and reliable for a massive structure 

searching. Lastly, some candidates of relatively lower energy structures are selected for 

another round of DFT calculations to confirm their ground-state energies, as indicated by 

“DFT GS”.  
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Figure 6 The formation energy in the unit of eV/atom and the corresponding convex energy hull 
of the Mg1-xCaxH6 at 200 GPa. Two end points account for the binary phases of MgH6 and CaH6 
both adopting the bcc structures, as calculated from the same computational settings for 
comparison. The “Known str” structures are denoted by orange pentagons. The crosses indicate 
structures “predicted” based on the CE technique. The ground-state “DFT GS” entities are 
represented by red circles.  
 

It is clear from the convex hull (Figure 6) that both Mg0.5Ca0.5H6 and Mg0.333Ca0.667H6 are 

structures with relatively lowest energies under the pressure of 200 GPa. Although these 

two configurations might possibly coexist in nature, the higher-symmetry Mg0.5Ca0.5H6 is in a 

minimum energy state and worthwhile to be investigated. This very structure is found to be 

adopting an 3Im m  structure, where Mg/Ca atoms crystallise into a body-centred cube with 

a lattice parameter of 3.3215 Å, while the H atoms forming a 24H cage, consisting of eight H-

hexagons and six H-squares, of which the Mg/Ca atoms are embedded at its centre, as 

illustrated in Figure 7. This structure is also known as the sodalite-like clathrate, as can be 

found in both MgH6 [11] and CaH6 [12] structures under comparable pressures. The atomic 

coordinates are provided in Appendix C. 
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Figure 7 The body-centred cubic structure of Mg0.5Ca0.5H6. H atoms are denoted by light pink 
spheres, whereas orange and blue spheres account for Mg and Ca atoms, respectively. The 
positions of metal atoms are interchangeable due to symmetry.    
 

3.2.2. Electronic stability 
As reported in the previous section, energies of compositions Mg1-xCaxH6 are determined, 

and it is noticeable that Mg0.5Ca0.5H6 compound becomes the most favourable at 200 GPa. 

Concerning MgH6 and CaH6 (where 0x =  and 1x = , respectively), both structures have 

significantly higher energies at this very pressure. Moreover, MgH6 was found to be unstable 

dynamically at 200 GPa [11]. 

To further investigate the corresponding electronic properties, Mg0.5Ca0.5H6 structure is 

subsequently optimised by fully relaxing its atoms and lattice parameters at pressures from 

200 GPa onwards, and its band structures are also calculated. The electronic band structure 

at the pressure of 200 GPa and the corresponding density of states (DOS) are shown in 

Figure 8. The band dispersion is plotted along high symmetry points defined in Figure 9. 

As expected, it is blatantly metallic since there are available states for electrons highly 

contributed from the H atoms at the Fermi level ( ).fE  The total DOS at ,fE  around 0.4 

states per eV per formula unit (red arrow), is slightly larger than that of MgH6 [11]. A large 

DOS at ,fE  according to the BCS theory, leads to a high cT  value (see equation(47)).  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 29 

 
Figure 8 The electronic band structure and pDOS of Mg0.5Ca0.5H6 at 200 GPa. 

 

 
Figure 9 Brillouin zone of body-centred cubic lattice [116] 

  
At the  -point near the Fermi level of the Mg0.5Ca0.5H6 metal alloy, the electronic states are 

predominantly occupied by the Mg – p and H bonding, similar to those of MgH6 [11]. The 

states responsible for the Ca-p and H bonding situate at lower energy below the Fermi level, 

i.e. around −4.5 eV, compared with around −1.5 eV in CaH6 [12]. The contributions from 

metal atoms are also visualised by the partial DOS (with different colours) reported in Figure 

8. Interestingly, all electronic states at the  -point of Mg0.5Ca0.5H6 are located at energies 

further down from the Fermi level, when compared with those of its parents, i.e. MgH6 [11] 

and CaH6[12]. It is fair to say that this explains the comparative electronic stability of those 

on the convex hull (Figure 6). Furthermore, some electronic states near the Fermi level at 

the P-point, also found in MgH6 [11], do not appear in CaH6 [12]. 
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Figure 10 Fermi surfaces of Mg0.5Ca0.5H6 at 200 GPa. 

 

Figure 10 reports the Fermi surfaces of this metal hydride. The topology of the surfaces 

around the P-points in all cases is of significance in such a way that several Fermi surfaces 

are parallel to each other, and consequently leads to Fermi nesting, which plays a pivotal 

role in enhancing the electron-phonon coupling and hence superconductivity.     

 
Figure 11 The calculated phonon dispersion of Mg0.5Ca0.5H6 at 200 GPa (left); the corresponding 
partial phonon DOS (middle); the EPC spectral function and its cumulative EPC parameter. 
 

3.2.3. Phonon dispersion 
Obtained also from DFT, the phonon dispersion and its resulting phonon density of states 

(PhDOS) of Mg0.5Ca0.5H6 under different pressures were calculated to ensure dynamical 

stability, as shown in Figure 11. All dispersion branches are plotted along the high-symmetry 

points (see Figure 11(left)), the lower frequency of which (acoustic modes) are associated 

with the vibrations of the heavier metal atoms, while the higher frequency of whose (optical 

modes) are predominantly responsible for the vibrations of the H atoms. Markedly, a 

number of vibrational modes of low-frequency optical phonons, between 15 – 25 THz, 

closely resemble those of CaH6 at 150 GPa [12]. These very phonon modes play a crucial role 
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in promoting the superconducting critical temperature, ,cT  as will be discussed in the next 

section. 

From 250 GPa onwards, the mentioned low-frequency optical phonons become abruptly 

hardened, as there is a gap in the dispersion separating optical modes from acoustic modes. 

This frequency gap, the absence of PhDOS, was also found in MgH6 at 300 GPa [11]. The 

variations of PhDOS of Mg0.5Ca0.5H6 under varying pressures are reported in Figure 12.  

As seen from Figure 12, it is clear that the overall phonon frequencies have a tendency to 

increase under elevating pressures, and is regarded as the pressure-induced phonon 

hardening. Specifically, the acoustic modes of Ca (blue) vibrate with relatively higher 

frequencies than those of Mg (red) at 200 and 250 GPa, whereas the latter outrun the 

former above 300 GPa. In other words, the Ca-associated phonon modes are softened, 

thereby signalling dynamical instability. Indeed, Mg0.5Ca0.5H6 becomes dynamically unstable 

at pressures above 450 GPa. 

 
Figure 12 The calculated phonon density of states under pressures ranging from 200 to 400 GPa.  
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3.2.4. Spectral function and superconductivity critical temperature 
Information obtained from electronic properties, such as the DOS at the Fermi level, 

topology of the Fermi surfaces, as well as from the phonon dispersion, e.g. Debye frequency, 

provides clues about superconductivity in Mg0.5Ca0.5H6.  

The spectral function 2 ( ),F   evaluated based on the electron-phonon coupling (EPC) 

matrix, of Mg0.5Ca0.5H6 at 200 GPa is shown in Figure 11(right), when the cumulative EPC 

constant, which measures the average strength of EPC, is calculated by solving equation(49) 

and indicated as the orange line in Figure 11(right). Markedly, the slope of cumulative  

roughly changes three times. At low frequencies (0 – 15 THz), the profile is dominated by the 

interaction between the electrons and the acoustic (lower frequencies) phonons from the 

vibrations of the metal atoms, while it results from the interaction between electrons and 

low-frequency optical phonons at frequencies 15 – 25 THz. And clearly from 25 THz onwards, 

the cumulative profile is attributable to the coupling of electrons and the optical phonons of 

the vibrations of the H atoms. Undoubtedly, the vibrations of the H cage play a major role in 

affecting the strength of the EPC. Roughly speaking,   has a linear relationship with ,cT  

although the correlation between the two is extremely complicated and debatable. Another 

crucial parameter is the logarithmic frequency ln , which is expressed in equation(53). This 

parameter measures the average EPC frequency via 2 ( ).F   According to equation(52), 

ln is proportional to .cT   

 
Figure 13 The EPC constant and the logarithmic frequency plotted along pressures. 

 

Figure 13 reports the EPC constant  and the logarithmic frequency ln  for Mg0.5Ca0.5H6 at 

varying pressures. The  profile peaks at 2.53 at 200 GPa, when it suddenly drops to 1.94 at 

250 GPa, then gradually tapers off to 1.50 at 400 GPa. On the other hand, ln begins at 

1,400 K at 200 GPa and then shoots to 1,654 K at 250 GPa, continually increases to 1,860 K 

at 400 GPa. Generally speaking, it is typical in many superconducting compounds that their
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  tends to decrease as opposed to the downtrend of ln when under increasing pressures 

[117]. 

Since both behaviours of   and ln  are closely intertwined—they are not mutually 

independent due to the fact that each of the parameters is a function of 2 ( ),F   then 

there is no guarantee that high values of both ln and   will always occur at the same time. 

Thus, there is no harm in carrying out a deeper analysis by resorting to a simple model for 

the spectral function because solving for equation(50) analytically is at least impossible. The 

approximation of 2 ( )F   assumes that the function is constant over a frequency interval 

[118] (hereafter, the bandwidth function), as defined by, 
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By plugging equation(66) into equation(49): 
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Similarly, for equation(53): 

 
2

1

ln 1 2

2
exp ln( ) .

C d





  

 

 
= = 

  
  (68) 

The constant C  is related to the average magnitude of the EPC interaction. To the best of 

our knowledge, 1  is always positive as the low-frequency vibrations of metal atoms 

contribute much less to 2 ( )F   when compared with the high-frequency vibrations arising 

from H atoms, whereas 
2 is extended to about 70 THz (equivalent to around 3,500 K). 

Recall once again Figure 11(right). If 1 10  THz and 
2 65  THz, and thus 

ln 25.5 = THz 

or equivalently 1,224 K (compared with the exact value of 1,400 K). In order to find ,  the 

constant C  needs to be specified. If C  is chosen to be 0.68, then the EPC constant becomes 

( )2 0.68ln 0.65 2.54. =  =  Although these expressions (equations(66), (67), and (68)) 

are crudely approximated,  they serve as a tool that gives some insight into the behaviours 

of the superconductivity-related parameters. The width of the bandwidth function, i.e. 

1 2 , −  has a negative relationship with   and ln : if it is large,  will be large, but ln

will always be smaller than
2 , and if it is infinitesimal, then 

ln 1 2    , but   will be 

much smaller than that of the former case. Interestingly, at the pressure of 250 GPa, there 

exists a frequency gap in the phonon dispersion, as discussed previously, and consequently 

the spectral function’s profile in this gap vanishes. Now, assume that the bandwidth function 

is segmented into two separate pieces, i.e. that of frequency range 10 – 15 THz and that 

over 25 – 65 THz. Therefore, the frequency becomes ln 10 15 25 65 52.5 =  +   THz 
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or equivalently 2,520 K, which is quite distant from the exact value of 1,654, and also the 

EPC constant ( )2 0.68 ln1.5 ln 2.6 1.85 =   +   being acceptably close to 1.94. Granted, 

this simple model seemingly overapproximates ln and slightly underapproximates ,  yet it 

clearly explains the effect of the frequency gap on and ln .  

The superconducting critical temperature cT  is then evaluated from equation(52) with 

* 0.1, =  and is plotted in Figure 14 with increasing pressures starting from 200 to 400 GPa. 

The ternary alloy Mg0.5Ca0.5H6 superconducts cT  of 288 K at 200 GPa when 2.53 =  and 

ln 1,400 = K. The cT  profile has a tendency to decline as pressure increases, except around 

250 – 300 GPa when it remains unchanged. 

 
Figure 14 Tc as a function of pressure. 

 

The behaviour of the pressure-dependent cT  poses a challenge to providing an accurate 

description based solely on   and ln . However, a few points can be discussed by invoking 

once again the bandwidth function (equation(66)). If we plot cT  as a function of both 1 and 

2 ,  that is, ( )1 2,c cT T    in Figure 15, when 1 and 
2  are chosen arbitrary based on 

Figure 17. The model suggests that if parameter C  does not vary greatly, cT  will be 

relatively largest when the bandwidth becomes the widest, that is, 2 1  (path A), which 

is line with that at 200 GPa. On the other hand, if the bandwidth is shortened (path B), cT  

clearly decreases, consistent with those from 250 GPa onwards. 
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Figure 15 A contour plot of Tc as a function of 1 and

2 . 
 

However, a special case in which the cT  profile remains constant exists in Figure 16, i.e. path 

C, which is in a good agreement with a plateau at 250 and 300 GPa. Indeed, the spectral 

function profiles at 250 and 300 GPa look somehow similar, and so the bandwidths of theirs 

are roughly equivalent (they can be thought of as a rigid shift) and that path C is taken. 

 
Figure 16 Spectral function of each pressure. 
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To this end, we discuss the role of Mg/Ca substitution. First of all, at pressure of 200 GPa the 

electronic band dispersion near the Fermi level is influenced by the Mg – H bonding, similar 

to that found in MgH6 [11], whereas the Ca – associated states close to Ef appear to be 

locating at lower energies especially at  -point (see Figure 10), causing the Ca – H bonding 

to become more relatively energetically stable compared with the Mg – H bonding and some 

identical bonds in CaH6 [12]. Additionally, the metal-part low-frequency phonons are 

situated at higher frequencies under pressures. As for CaH6, this phonon part is limited over 

the range 5 – 15 THz at 200 GPa [12], while it is elevated to around 10 – 17 THz in 

Mg0.5Ca0.5H6 at the same pressure, as can be seen in Figure 12 (left and middle). Remarkably, 
2 ( )F   is readjusted by the substitution of metals. It was previously reported that the 

strength of 2 ( )F   stems from the limited frequency range 20 – 35 THz in both MgH6 [11] 

and CaH6 [12], while it is responsible for a broader frequency range 25 – 65 THz for 

Mg0.5Ca0.5H6, as evidenced in Figure 12(right). This strength is attributable to the vibrations 

of the H24 cage. The magnitude of 2 ( )F   is slightly smaller for Mg0.5Ca0.5H6 than MgH6 

[11] and CaH6 [12], resulting in a lower   (see Table 1 for a comparison). That being said, 

ln is rather enhanced in Mg0.5Ca0.5H6, comparable to its parent (isostructural) and some 

other similar compounds in the vicinity of 200 GPa, as high as that of MgH6 at 300 GPa [11]. 

Unlike the electron-doped Li2MgH16 [10], it is fair to say that metal substitution in 

Mg0.5Ca0.5H6 boosts phonon frequencies and optimises the strength of 2 ( )F   which in 

turn results in a high cT  at lower pressures. 

Table 1 Superconducting parameters of parent metal hydrides. 
Cubic Pressure (GPa) 𝝀 𝝎𝒍𝒏 𝑻𝒄 

MgH6 [11] 300 3.29 1,450 263 

CaH6 [12] 150 2.69 - 235 

MgGeH6 [119] 200 1.16 773 66.6 

CaYH12 [120] 200 2.2 1,230 196 – 248 

Mg0.5Ca0.5H6 [13] 200 2.53 1,400 288 
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CHAPTER IV 
MAPbI3 Perovskite and vdW corrections 

 

4. CH3NH3PbI3 perovskite and the vdW corrections  

4.1. Calculational details 
Likewise, total energies and other physical properties of the cubic supercell of CH3NH3PbI3  

(MAPI) were thoroughly investigated using Quantum Espresso Package [109]. A simulation 

cell of MAPI consists of eight formula units, that is, (2×2×2 supercell of cubic phase I). The 

cut-off energy is tested to be 90 Ry (1,224.5 eV) as well as the unshifted k-point meshes 

gridded into 6×6×6 by Monkhorst–Pack scheme [121], both satisfy the convergence 

threshold of 0.021 meV/atom, thereby enabling the precise detailed examination of the 

difference between each MA molecular orientation. The generalised gradient approximation 

(GGA) developed by Perdew–Burke–Ernzerhof (PBE) [114] is used as the exchange-

correlation functional. There are still, however, a number of physical phenomena that 

require special considerations, such as relativistic effects of Pb atoms, already incorporated 

in the PBEsol functional [122], as well as van de Waals (vdW) interaction between H and I 

atoms. The vdW functionals used in the work include rVV10 [104], vdW-DF [123, 124], vdW-

DF2 [99], vdW-DF2-b86r [100], vdW-DF-cx [102], vdW-DF-ob86 [103] functionals. The cubic 

MAPI is studied as a benchmark since it is the simplest phase of which the simulation cell 

contains only one formula unit of the material.  

In regards to the dipole configurations, the organic molecules of MA are depicted as arrows 

with a head N and a tail C, as shown in Figure 22. Amongst a large number of possibilities in 

aligning the MA cations in three-dimensional space, it is worthwhile to investigate a few 

extreme cases in which (1) the MA molecular orientations give a maximum total dipole 

moment (Scheme B) and (2) two other cases in which the total dipole moment becomes zero 

(Schemes A and C). Scheme B is the configuration of which the centrosymmetric property of 

the MA orientations is turned off [125], which in turn results in the maximum dipole 

moment. The centrosymmetry is perfectly achieved in Schemes A and C as the net dipole 

moments vanish, and the noticeable between the two cases is the orientations of the MA 

molecules in the spherical voids. Scheme C prohibits the dipoles to align only long the 

simulation call basis vectors but to point along the <111> direction, as will be discussed later 

in the dipolar configurations under pressures section. 

4.2. Results and discussion  

4.2.1. Energy barriers 
As mentioned in Introduction, the interplay between the octahedral PbI6 tilts and the MA 

cationic dynamics still requires scrutiny. Suggestions have been made that the molecular 

dynamics of the organic cation CH3NH3
+

 (MA) are directly related to the rotation about the C 

– N axis that is achieved in average in the time scale of sub-picosecond [126]. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 38 

 
Figure 17 The cubic structure of MAPI with a lattice parameter of 6.317 Å. The MA cation 

consists of C (brown), N (blue), and H (pink) atoms 
 

Besides that, the effect of the MA molecular orientations has also been proposed to play a 

pivotal role in determining the structure stability, as indirectly influenced by the vdW 

interactions, and other relevant physical properties of these hybrid organic–inorganic 

materials [127]. Hence, it is of significance to carry out a careful inspection of the organic – 

inorganic interaction by adopting PBEsol and/with different methods that incorporate vdW 

dispersion, including rVV10, vdW-DF, vdW-DF2, vdW-DF2-b86r, vdW-DF-cx, vdW-DF-ob86 

functionals. 

 
Figure 18 Total energy per cation profiles at different organic molecular orientations calculated 
by various functionals, when the lowest total energy is taken as a reference; Inset illustrates an 
applied anticlockwise rotation about the a-axis for the MA cation. 
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Illustrated in Figure 17, the pseudo-cubic CH3NH3PbI3 (MAPI) of space group Im3  with an 

average lattice parameter of 6.37 Å, consisting of an inorganic octahedral framework of PbI6 

within which embeds at its centre a dipolar organic cation of CH3NH3
+ that is initially chosen 

as a starting configuration. Owing to the 
3vC  group or the threefold symmetry, the MA 

cation is then applied a series of rigid rotations through an angle   (see inset of Figure 18) 

that runs from 0  to 120 ,  as discretised into 13 steps with a 10 step size each. More 

importantly, all calculations are based on the assumption that the octahedral framework of 

PbI6 responses quickly to the cationic rotations, and hence the whole system is fully relaxed 

under rotational operations.  

The energy profiles at different organic orientations are reported in Figure 18, along the 

vertical axis of which plots the angle-dependent total energy difference per cation with the 

lowest one, denoted by 
totE (meV/MA-ion). All profiles appear to be almost symmetric 

about 60 =  due to the 3 – fold symmetry of the MA cation (see the inset). Without 

incorporating the vdW interaction, PBEsol functional, designed to enhance equilibrium 

properties of densely-packed solids [128, 129], is developed based on a fit of the exchange-

correlation energy to that of the surface jellium [130]. The functional noticeably gives a 

distinct energy profile (blue) amongst those of the vdW functionals, specifically, at 60 =  it 

resembles a highest energy barrier with 
totE = 18.6 meV/MA-ion, which is flanked by a 

couple of smaller peaks of ∼9 meV/MA-ion at 20 =  and 100 = . PBEsol explicitly 

neglects the dispersive interaction of H – I pairs that eventually entails a set of comparatively 

larger distances, as evidenced in Figure 19(left), and results in a highest peak at 60 .  With 

the incorporation of vdW interactions, however, both valleys formed at 40 =  and 

80 =  happen to be morphed into single broader, putatively Gaussian-like profiles. The 

presence of 40 =  and 80 = -valleys is presumably stemmed from the fact that the 

positions of H atoms are located conveniently in an optimal level of average H – I inter-

fragment distances. At 60 , =  the peak prominent in PBEsol, smears out in vdW-DF 

(green) and vdW-DF2 (red) profiles, whereas an erosion of the peak becomes increasingly 

noticeable when vdW-DF-cx (brown), vdW-DF2-b86r (violet), vdW-DF-ob86 (pink), and rvv10 

(orange) are performed in succession. A total energy barrier can roughly be interpreted as 

an entity that involves thermal excitation, i.e. BE k T , where E denotes the flipping 

energy barrier [26]. The highest barrier, in our case, reads 18.6 meV/MA-ion or equivalently 

T 216 K, the temperature over which the MA cation is free to randomly reorient within a 

void formed by octahedral PbI6. 
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Figure 19 Different pairs of bond-lengths calculated by PBEsol and vdW-DF-cx functionals, 
respectively. 
 

The overestimation of equilibrium separations and the underestimation of H–bond strengths 

of vdW-DF [123] which relies on the screened exchange proposed by Langreth-Vosko [131] 

that was later replaced by the large-N asymptote gradient correction [132], are significantly 

improved in vdW-DF2 [99] profile and result in a lower, unstable equilibrium peak of 21 

meV/MA-ion (vdW-DF2) in lieu of the one with 1 meV/MA-ion higher peak at 60 . However, 

vdW-DF2-b86r, developed to improve equilibrium separations and the H–bonding in 

particular [100, 101] over vdW-DF2, causes a stable equilibrium at 60  as well as the one 

evaluated by the vdW-DF-ob86, which is reportedly suitable for hard matters [103]. More 

interestingly, the clearest of all peaks chiselled at 60 is obtained from the revised version of 

a Vydrov and van Voorhis [105] named rVV10 [104], the profile shows a distinct trend while 

those of other schemes display a smooth path over this angle. Finally, the total energy 

profile calculated by vdW-DF-cx [102], being the non-empirical functional utilising the 

unified vdW-DF plasmon–response representation for both correlation and exchange 

potentials [123], exhibits a Gaussian-like profile. Though the concavity is likely to originate 

from ∼1 meV/MA-ion difference in total energy of neighbouring data points, which is 

smaller than energy convergence threshold set in this work. Thus, we opted for vdW-DF-cx 

by virtue of its pinpoint accuracy of lattice parameter predictions and H – I distances (see 

Figure 19(right)) [25, 102]. Nine pairs of H – I bond distances evaluated by two schemes, i.e., 

PBEsol and vdW-DF-cx, are plotted in Figure 19. It is well known that PBEsol explicitly 

disregards the dispersive interaction of H – I pairs that eventually entails a set of 

comparatively larger distances. Overall, the bond lengths in vdW-DF-cx scheme are 

significantly shortened as can clearly be seen, for example, at some apices at 60

corresponding to H2−I1, H2−I3, and H2−I2, these peaks are eroding. Interestingly, the H1−I3 

profiles behave differently in both schemes, that is when dispersive interaction is taken into 

consideration the profile becomes smoother especially in the vicinity of 40 80 . −  

4.2.2. Dipolar configurations under pressures 
Increasing pressure results in a series of structural phase transitions of MAPI, the enthalpies 

corresponding to the cubic phase, high-pressure phase IV, and high-pressure phase V at 
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different pressures. The starting atomic positions are taken from Szanfranski [52]. All atoms 

are allowed to be fully relaxed and readjusted to confirm the possible lowest energy. The 

system’s enthalpy as a function of pressure between 0 and 100 GPa was interpolated by the 

expression of 3rd -order Birch – Murnaghan equations of states [133] expressed as, 

 ( )

3 2
2 2 2

3 3 3
0 0 0 0 0

0 0
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 (69) 

 The plots between the calculated enthalpy difference ( )H versus pressure corresponding 

to three phases of MAPI are reported in Figure 20. The inset displays the zoomed-in version 

of the plot indicating a small region of two-phase transitions. According to our calculations, 

MAPI adopts a tetragonal structure (Phase II) at ambient pressure, consistent with 

previously experimental reports [23, 134], while it undergoes a phase transition to Phase IV 

at 0.3 GPa. Finally, Phase IV morphs into Phase V at around 1.8 GPa. Compared to the 

previous work [52], our results are, to some extent, in a good agreement with the 

experimental report, though the only discrepancy at phases IV and V transition (P = 1.8 GPa 

instead of 2.5 GPa) is due to the underestimation stemming from the GGA functional. Also, 

our result shows that at higher pressure, the inorganic cage becomes distorted. When 

pressure is applied, each octahedral unit retains its shape, while the angle between the 

octahedra and overall atomic structure deviates from Im3  symmetry. The distortion also 

increases with pressure. At 0.55 GPa, the Pb−I−Pb angle is 146.78while the same angle 

reduces to 144.04at 3.83 GPa. Thus, pressure induces Pb−I distortion but not to the degree 

that reconstructs the original framework. 

 
Figure 20 The relationship between enthalpy difference (eV) and pressure (GPa) calculated by 
vdW-DF-cx is fitted by 3rd –order Birch – Murnaghan equation of states.  
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In this section, the effect of dipolar orientational configurations under pressure is 

investigated. According to Szafranski et al [52], both phases IV and V of MAPI adopt the 

same space group symmetry Im 3,  the unit cell of which is equivalent to a 2 2 2   

supercell expansion of the cubic phase containing 8 formula units of MAPbI3. Thus, there are 

exactly eight units of PbI6 octahedra, eight MA cations, and eight voids available for the MA 

cations to occupy.  

Furthermore, the voids are categorised into two types, i.e. elongated or dumbbell-like and 

spherical voids [52], as illustrated in Figure 21, in which the MA cation reorients itself in 

accordance with the shapes of the given cavity (dumbbell-like and spherical shapes in (a) 

and (b), respectively). 

 
Figure 21 Two types of voids forming in MAPI. Sn denotes a spherical void; x-D, y-D, and z-D 
indicate dumbbell voids in their respective orientation. The MA cation in Sn (a) and x-D void (b).  
 

Here, the molecular orientational behaviours of the MA molecule under pressures are 

studied, and this work’s convention is introduced. Illustrated in Figure 22(a), an initial setting 

consists of eight cubic unit cells of MAPI, where the upper layer (top) accounts for 2n =  and 

the lower layer 1.n =  A dumbbell-like void is free to realign in three possible configurations, 

namely, along [100] ( 
n

x D− ), [010] ( 
n

y D− ), and [001] ( 
n

z D− ) directions, while 

there is an infinite possibilities in reorienting in the spherical void ( ).nS  The C – N dipole of 

the MA cation is represented by an arrow where its head corresponds to N and its tail C. 

Thus, there are at least two orientations in a dumbbell-like void available for the MA cation. 

However, there are two x-dumbbells, two y-dumbbells, two z-dumbbells and two spherical 

voids in the simulation cell. Therefore, there are in total at least 

( )
262 ’     MA s alignments in a sphere ways for the MA cation to be placed inside the voids.   
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Figure 22 Schematic orientation of the CH3NH3 (MA) molecules. The diagram plane is in xy-
plane and the lower diagrams show the bottom layer of the cell. Light red squares are the sphere 
voids (denoted by [S]n), and green squares denote the dumbbell-like voids (denoted by [(x, y, z)-
D]n, where n = 1 indicates voids in lower layer and n = 2 for the upper layer of the simulation 
cell. Arrows/symbols in the diagrams represent the orientation of the MA molecules inside each 
void. The arrow head is N and the tail C. Circle ⊙ means that the arrow is pointing outward 
from the paper and the cross ⊗ means that the arrow is pointing into the paper. 
 

 
Figure 23 Schematic orientation of MA molecules. By structural optimisation starting from 
Scheme C in (a), the MA evolved into (b) and (c) at low pressure (0.55–2.5 GPa), and (d) at 
higher pressure (2.7–3.83 GPa). Cr means relaxed SCHEME C. 
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Amongst an almost infinite number of possibilities of how the MA cation can align, it is 

worthwhile to investigate only a number of extreme cases as follows: 

➢ SCHEME A: the supercell gives zero total dipole moment. 

➢ SCHEME B: the supercell gives maximum total dipole moment. 

➢ SCHEME C: the supercell gives zero total dipole moment. 

The difference between SCHEMES A and C, however, is the MA cation’s orientations in 

spherical voids: MA cations point to  111  and 1 1 1    directions in the latter. In the 

absence of pressure, the calculated unrelaxed total energies are of the relationship 

A B C  (see also Figure 24). 

A series of structural optimisation is further performed starting with SCHEME C in which, 

although the net dipole moment is zero, the MA cations of [S]1 and [S]2 are, in fact, in an 

unstable equilibrium, as they have the potential the evolve into any lower energy 

configuration if perturbed. The configuration in SCHEME C is fully optimised by relaxing 

atoms and lattice under a discretised set of pressures according to the results obtained from 

experiments [52], i.e. 0.55, 1.84, 2.5, 2.7, and 3.83 GPa. As a result, the relaxed MA’s 

configurations are shown in Figure 23. At low pressures, 0.55 (b) and 1.84 GPa (c), the MA 

molecules in the spherical voids are found to be rearranging themselves into new 

configurations in which the net dipole is finite but not quite large compared with that of 

SCHEME B. 

At 0.55 GPa, remarkably, an MA cation in [S]1 remains unchanged directionally as well as the 

others except the one in [S]2 that reorients its dipole towards the b-axis, resulting in a finite 

dipole moment. However, at higher pressure the relaxed structure resembles that of 

SCHEME A where the net dipole almost vanishes and the MA molecules in spherical voids 

prefer to align with a crystal plane (a-axis), but when the pressure reaches 3.83 GPa, the 

relaxed SCHEME C adopts non-zero polarisation with an MA cation in [S]1 being slightly off-

centre, and that in [S]1 being slightly deviated from its original orientation. Besides, the 

system is relatively energetically stable over the pressure range 1.8–2.5 GPa, as 

demonstrated by calculations of both PBEsol and vdW-DF-cx and plotted in Figure 24. Note 

that, though the positions of any atoms in the simulation cell are not constrained, whenever 

the structure adjusts to the equilibrium configuration, the MA molecules in the dumbbell-

like voids are unlikely realign themselves whatsoever. Instead they remain at least parallel to 

the voids in the direction they are initially placed. Thus, in MAPI crystals, the Pb−I inorganic 

framework has a tendency to impose a partial constraint on the organic cations. 

Also, another structural optimisation of SCHEME B is carried out at pressures of 0.55 and 3.8 

GPa. The configuration initially remains at minimum net dipole moment, until the MA 

cations in spherical voids start to deflect slightly from their original positions at low pressure. 

The molecules tend to avoid aligning alongside their neighbouring counterparts. Despite 

resulting in a highest dipole moment configuration, the structure remains in a moderate 

energy states that is higher than that of SCHEME A but much lower than in SCHEME C, 

thereby giving rise to a couple of almost invariant energy profiles in Figure 24. At 3.8 GPa, 

where the cell is subjected to higher pressures, the MA molecules in the spherical voids and 

its c-axis neighbours deviate. Markedly, this is the only case where the MA molecules in 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 45 

dumbbell-like voids are forced to deflect away from the voids in which they situate. While 

the MA molecules in the spherical voids are likely to alter their positions according to the 

corresponding shrinkage, the MA cation in a dumbbell-like void that experiences enough 

repulsion from another MA cation also acts against the PbI6 frameworks by distorting them. 

As previously mentioned, the locking of organic molecules in HOIPs has been observed in 

both experiment and in ab initio molecular dynamics studies [135, 136]. Experimental 

studies have reported that HOIPs with large organic cations, e.g. HC(NH2)2 (FA), have longer 

lifetime when doped with smaller cations. One plausible explanation is that substituting 

smaller cations might cause the inorganic Pb−I network to distort. The distorted Pb−I 

network in turn constrains the movement of the larger organic cations, e.g. FA. In the case of 

FA molecule, the organic rotation becomes hampered due to its bent angle at the centre of 

the molecule [136]. However, as the MA molecules are smaller than FA and have stick-like 

shape with no bent angles, their rotation is less affected by the shrinkage of the void. 

 
Figure 24 Energies of all schemes under pressures. Energy of SCHEME A is selected as a 
reference. 
 

As the pressure is applied to MAPI, the embedded molecular voids contract and in turn 

inadvertently leads to stronger vdW interactions between H and I atoms. The on-axis 

rotation of MA is likely to enhance I2 formation, as shown in the previous work [25]. When 

MA is locked into its position and unable to spin freely at high pressure, it will eventually 

result in a faster degradation, since Pb–I bond strength has a tendency to scale up with 

pressure, while the vdW interaction between I and H atoms and MA has an inverse 

relationship. 
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CHAPTER IV 
MAPbI3 perovskite and energy landscape 
5. CH3NH3BiSeI2 perovskite and its energy landscape  

5.1. Calculational details 
In this work, all calculations are performed by the Vienna ab initio simulation package (VASP) 

[137]. The generalised gradient approximation (GGA) method, developed by Perdew–Burke–

Ernzerhof (PBE) [114], was selected as the exchange-correlation functional. Due to the heavy 

Pb atom, the spin–orbit coupling (SOC) becomes dominant in big atoms, and is necessary to 

be included in all calculations. This can be done by performing self-consistent-field cycles in 

the non-collinear mode [138]. Also, the vdW interactions existing between H atoms and the 

inorganic BiSeI2 cage requires a careful attention. Thus, the method of dispersion corrections 

developed by Grimme et al. (DFT-D3) [139] is used due to the presence of the organic 

molecule of CH3NH3 (MA). Nearly all data visualisations were plotted by using the Matplotlib 

library within Python [140]. 

 
Figure 25  The cubic structure of CH3NH3BiSeI2 (MABiSeI) with labelled atoms (a); the definition 
of the Euler angles (b) for the MA cation where the N–C bond is directed to the N-axis. The first 
rotation is rotated anticlockwise through angle ϕ about the c-axis (c). The second rotation is 
anticlockwise via angle θ about the a’-axis or N-axis (d). Finally, the third rotation is rotated 
anticlockwise through angle ψ about the c’axis (e). Note that all atoms of the inorganic BiSeI2 
cage were kept fixed throughout the calculations, while the organic MA cation was the only thing 
to reorient according to the Euler's rotations.  
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The 3Pm m  structure of CH3NH3BiSeI2 or MABiSeI with a lattice constant of 6.28 Å [63] is 

illustrated in Figure 25(a). The initial orientation of the MA cation is arranged such that the 

N–C direction, denoted as the N vector, points to the centre of a cubic face (a-axis). 

According to Euler’s angles, the rotated coordinate, ,

x

R y

z

 
    
  

 can be evaluated from, 

 

cos sin 0 1 0 0 cos sin 0

sin cos 0 0 cos sin sin cos 0 ,

0 0 1 0 sin cos 0 0 1

x x

y y

z z

   

     

 

      
      = − −      
      −      

 (70) 

where angles ,  and   are depicted in Figure 25(b). A series of rigid rotation is then 

applied to this starting cationic orientation in three-dimensional space. Under rotation, the 

centre of the MABiSeI’s unit cell was explicitly regarded as the origin of the body axes such 

that the displacement of the rigid body (the MA cation) involves no translation of the body 

axes. The only change is therefore in its orientations, and hence the displacements of the 

internal atoms of the MA cation are according to the rotation about the body axes. As 

illustrated in Figure 25(b-e), the Eulerian angles are performed in an anticlockwise manner 

starting from 0° to 345°. The molecular flips are discretised into 24 steps with a 15° step size 

for each angle of rotation, thereby containing 243 = 13,824 sets of orientational 

arrangements of the MA cation, which completely cover all eight octants of the simulation 

cell. 

5.2. Results and discussion 

5.2.1. Multi-dimensional energy landscape 
As previously mentioned, all other atomic positions are kept fixed except those of the MA 

cation that are transformed via the Eulerian angles. This is due to the fact that if the 

structure experiences a relaxation at every turning step, the cation can never be ensured to 

be in its specific orientation. For example, if the (10°, 10°, 10°) MABiSeI was structurally 

relaxed, then the MA cation could never point exactly along the assigned direction; it could 

potentially be electrostatically induced by the distorted inorganic framework [142] to point 

arbitrarily in the (11.345°, 9.465°, 10.78°) direction. The unrelaxed assumption is thus is 

preferable [143]. Moreover, the molecular relaxation times of both the inorganic framework 

BiSeI2 and the MA cation have yet to be observed, so it is thus hypothesised in this work that 

the MA cation resonates faster than the octahedral framework, which as a result is seen as 

stationary from the cation’s perspective [26]. 
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Figure 26 Energy population distribution accounting for various orientations of the MA cation, 
as split into 100 bins. 
 

Figure 26 shows an energy – population distribution indicating all of the MA’s orientations 

for MABiSeI. All total energies are normalised by subtracting each energy, E, with the lowest 

energy, E0, i.e. 0 .E E E−    The energy distribution is truncated at the minimum and 

maximum of 0 and 17.9 meV/atom, respectively. The mean value, accounting for about 9 

meV/atom, can be roughly thought of as an average barrier of all the MA cation’s 

orientation – dependent energies, depicted by the most populated array of the histograms. 

Moreover, the energetics can effectively be portrayed as a four-dimensional energy 

landscape, as shown in Figure 27, as a function of the Eulerian angles, ( ), ,E E       

[26]. 

 
Figure 27 Four – dimensional plot of E – E0 (meV/atom) with respect to the Eulerian angles.  
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Figure 28 Three-dimensional and contour plots of E – E0 with 45 . =  

 

A series of cross-sections visualising the three-dimensional energy landscapes are discussed 

to preserve the orthogonality of four-dimensional axes. As an example, the geometric 

features of the energy landscape responsible for the MA cation orientations are illustrated 

by the ( )45 , ,E    =  slice, shown in Figure 28. The landscape, defined as how the 

organic molecule reorients within the octahedral BiSeI2, blatantly consists of four repeating 

patterns of a single hill surrounded by a couple of deep pits and a tiny cup on the left (see 

also the contour plot). Amongst an identical set of tallest peaks of E = 17.9 meV/atom, 

these four energy barriers—slightly smaller than those of its parent compound, i.e. FAPbI3 

(with the highest peak of 24.7 meV/atom) [26] and MAPbI3 (18.6 meV/MA-cation) [142]. This 

implies that a thermal excitation energy of ∼208 K is required to realign the MA cation 

according to any paths in the configurational landscape, provided that ,BE k T  where the 

pits indicate global minima. Markedly, further along the  -axis from its origin in Figure 28, 

on the left stands a couple of the tallest mountains. By the same token, similar 

characteristics can be seen along the  -axis, but this time two global minima can be 

spotted. Due to these two 2D landscapes with a period of 180°, if the MA cation flips along 

the C–N shaft for its period, the environment remains unchanged. Also, it is worth 

mentioning that the 3D landscapes are geometrically reducible and thus the equivalent sets 

can be observed once only: 

 
( ) ( )

( ) ( )

, , ,360 ,

, , 180 , .,

,E E

E E

     

     

 =  −

 =  + 
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Figure 29 Energy landscape corresponding to 0 . =  

 

If, however, one observes the landscape of a relationship between E  and ,  a Gaussian-

like barrier with a 90° period can be seen, as shown in Figure 29, which is similar to that in 

previous reports [26, 142] with a tallest barrier of 9.6 meV/atom.  The barrier in 

Figure 29 is attributable to the fact that the cationic dipole merely azimuthally flips from I2 

to I1, and vice versa. The configurations ( )90 , ,0n  +   when 1, ,4,n =  resemble a set 

of preferred orientations according to local minima ( E = 3 – 4 meV/atom) kept apart by 

arrays of saddle reefs, and the H atoms therefore are likely to point towards the I atom. 

Also, the  -fixed schemes are reducible due to the relationship 

( ) ( ), , , , 180 .E E       =  +   

5.2.2. Neural network 
With the goal of learning the complicated trends and hidden correlations within a high-

dimensional energy landscapes, the artificial neural network (ANN), being the famous 

statistical tool based on deep learning, is designed in this work using the Keras frontend on 

top of the Tensorflow machine learning library [144]. The model is trained by inputting, for 

example, the Eulerian angles ( ), , ,    as descriptors/features and outputting E  by 

means of regression. In general, feature augmentation reportedly plays an important role in 

reducing the probability of losing significant information which might improve the 

predictions [145]. Thus, pairwise bond lengths of those from the MA cation and the BiSeI2 

framework are also included as descriptors in addition to the Eulerian angles.   

Figure 5 illustrates pictorially the optimised architect of an ANN regressor comprising an 

input layer that is fed three Euler angles together with C – Bi, C – Se, C – I1, C – I2, H1 – Bi, 

H2 – Bi, and H3 – Bi bond-lengths, and is followed by five fully connected hidden layers with 

500 neurons each. The output layer takes the output of the previous fully connected layer as 

an input and calculates the value of E  via a linear activation function. To train our model, 

13,824 samples in our dataset are randomly sorted, as reported in Figure 30, where 80% of 
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the dataset is set as the training set (11,059 samples) and 20% (2,765 samples) as the test 

set.  

 
Figure 30 Training set (80% of the total samples) and test set (the other 20%) are randomly split.  
 

The root mean square error (RMSE) between the predicted and the DFT-calculated values is 

selected as the cost function and is minimised during training using the Adam stochastic 

optimiser [146]. The dataset is normalised by subtracting the mean of each feature from 

each value and dividing by the feature range so that all values are within the range of 0 and 

1 so as to improve the training behaviour. The training process is repeated 10 times so that 

the optimised values are in good agreement with a maximum 5% error. 

 

 
Figure 31 Variation of the RMSE of the training set (green) and test set (red) with respect to the 
number of hidden layers (a), and to the number of artificial neurons for each hidden layer (b). 
 

As a result, Figure 31 report the RMSE values for varying number of hidden layers and 

number of neurons for each layer. Noticeably, the optimised ANN is improved upon an 
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increase in the number of hidden layers. Shown in Figure 31(left), the RMSEs accounting for 

both the training set (green) and test set (red) drop significantly at 5 hidden layers, 

specifically when each layer consists of 500 neurons, with which the model shows no sign of 

overtraining, i.e., RMSE = 0.39 ± 0.03 meV/atom for the test set, while they are constantly 

elevated when the number of layers grows over 6 hidden layers and begin to overfit at 9 

hidden layers onwards. Overfitting is uninvited because it means that the model is good at 

fitting the seen data but terrible at predicting unknown entities. Similarly, 500 neurons per 

layer for each of the five hidden layers evidently have the relatively lowest RMSE, as 

reported in Figure 31(right), confirming that the smallest error occurs at 500 neurons for 

each hidden layer.  

 
Figure 32 The predictions of the optimised ANN with 80% for training and 20% for testing, with  
RMSEtrain = 0.28 meV/atom and RMSEtest = 0.39 meV/atom.  
 

Figure 32 shows the results obtained from our best tweaked ANN regressor with the 

obtained RMSEs of 0.28 meV/atom for the training set and 0.39 meV/atom for the test set. It 

is clear that the proposed data-driven framework provides a reliable estimation of the DFT 

calculations using around 104 training data, together with ten descriptions of inorganic 

crystals as the input, by designing and systematically optimising a neural network regressor 

to output E  close to the DFT obtained values. 
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CHAPTER IV 
Conclusions 
6. Conclusions 
In the first article, we have found that the Mg0.5Ca0.5H6 ternary alloy with a clathrate 

structure superconducts under pressures from 200 to 400 GPa. The highest cT  of 288 K at 

200 GPa are resulted from  = 2.53 and ln = 1,400 K. More recently, the superconducting 

metal – substituted polyhydrides, for example, Mg/Ge substitution in MgGeH6 with cT  67 

K and Y/Ca substitution in YCaH12 superconducts at cT  215 K, as summarised in Table 1, 

have attracted much attention from theorists. Also, experimental studies have been 

reported to successfully synthesise the Mg/Ca – substituted polyhydrides of MgCaH3.72 and 

Mg19Ca8H54 at ambient pressure and at the pressure of 2.53 GPa, respectively [147, 148]. 

Although these mentioned alloys do not superconduct at all, they are widely used in various 

advanced applications, be they hydrogen storages or switchable mirrors. These findings, 

including ours, would urge further experiments in search of these metal – substituted 

hydride superconductors.  

In the second article, effects of the orientations and dipolar alignment configurations of 

CH3NH3 (MA) cations on MAPbI3 perovskite are studied with the aid of DFT calculations. It 

was observed that by applying rigid azimuthal flips to the MA cation, the energy barriers 

calculated based on different vdW functionals exhibit distinct energy profiles and crystal 

structures. Three dipolar configurations are suggested and calculated using vdW-DF-cx 

functional under pressures. Despite being optimised under pressures, SCHEME A remains 

the lowest energy structure. Markedly, vdW-DF-cx and PBEsol resulted in the same amount 

of energy. On the other hand, the energy profiles under pressures are shifted vertically from 

each other in SCHEME C, even if it has zero polarisations: the vdW interaction prefers the 

relatively more stable energy. However, the energy profiles of both PBEsol and vdW-DF-cx 

functionals in SCHEME B take the second place, in spite of the fact that it is the highest 

polarised configuration. 

As for the last article, the total energy profiles of the cubic MABiSeI2 are calculated based on 

the DFT calculations incorporating vdW interaction and the SOC effect. The orientational 

behaviours of the MA cations are described through a multi-dimensional total energy 

landscapes by applying the Eulerian angles to the MA cation. Several geometric slices of the 

three-dimensional energy landscapes exhibit local and global minima for the organic cation's 

orientations as well as the highest barriers of 17.9 meV per atom that protrude from the 

plateau of the average height of 9 meV per atom. An artificial neural network is also 

developed to accurately predict the total energies, with the RMSE of 0.39 meV/atom for the 

test dataset, by taking the Euler angles and seven sets of bond lengths as descriptors for the 

ANN.  
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Appendices 
Appendices 

A. Energy minimisation 
The Kohn-Sham equation enables us to investigate the full interacting system my mapping it 

with real potential onto a fictitious non-interacting system in which the electrons move 

within an effective KS single-particle potential. 

The ground-state energy of a many-electron system are obtained by minimising the total 

energy functional that is subject to the constraint that conserves the number of electrons 

,N  which can be written as, 

 ( ) ( )( ) 0,r r dr N     − − =     (71) 

which is associated with the normality constraint of each KS orbitals, 

 ( ) ( )*

1

.
N

KS KS

i i

i

r r dr N 
=

=  (72) 

 Now recall the total energy functional, 

 ( ) ( )
( ) ( )

( ) ( ) ( )0

1
,

2
ext xc

r r
E r T r drdr v r r dr E r

r r

 
   


= + + +          −   (73) 

where the first term in equation(73), the kinetic-energy of non-interacting electron gas, is 

expressed as, 

 ( ) ( ) ( )
2

*

0

1

.
2

N
KS KS

i i

i

T r r r dr  
=

 
= −    

 
  (74) 

Now equation(71) becomes, 

 
( )

( )
( )

0
,eff

T r
V r

r

 




   + =  (75) 

when the effective potential is, 

  

 ( ) ( )
( )

( ) ,eff ext xc

r
V r V r dr V r

r r


= + +

−  (76) 

with the exchange-correlation potential, 
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 ( )
( )

( )
.

xc

xc

E r
V r

r

 



  =  (77) 

Now if we rewrite equation(75) as, 

 
( )

( )

( )
( )

0

*

1
,effKS KS

i i

T r
V r

r r

 


 

   + =  (78) 

Therefore, to solve for the ground-state energy and density, all that has to be done is solve 

the one-electron equation, 

 ( ) ( ) ( )21
.

2

KS KS

i eff i iV r r E r 
 
−  + = 
 

 (79) 

Now to derive the Hartree term in equation(76), recall the Hartree energy, 

 ( )
( ) ( )1

.
2

r r
J r drdr

r r

 



=   −  (80) 

According to the variation principle, the minimisation is performed where ( )r  is an 

arbitrary function: 

 

( )

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

1

2

1 1
.

2 2

J r d
r dr J r r

r d

r r r rd
drdr

d r r

r r r r
drdr drdr

r r r r





 
  

 

   



   

=

=

     = +   
 

  + +       =  
−  

 
 = +

 − −



 

 (81) 

And since r  and r  are interchangeable, we thus have the variation of the Hartree energy 

expressed as, 

 
( )

( )

( )1
.

2

J r r
dr

r r r

  



    =
−  (82) 

B. The generalised gradient approximation 
Perdew et al [149] made vital steps by devising a cut-off procedure that sharply truncates 

the gradient expansion approximation exchange-correlation hole in real-space by means of 

delta function, for the purpose of restoring the sum rule and non-positivity hole conditions. 

As a result, one the GGA can now be written as, 

 ( ) ( ) ( ) ( ) ( )hom , .GGA

xc xc xcE r dr r r F r r     =              (83) 
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A crucial GGA functional used widely and frequently by the DFT community is that belonging 

to Perdew and Wang, also known as PW91 [150, 151]. The non-empirical PW91 are defined 

with the exchange enhancement factor having the form, 

 ( )
( ) ( )

( )

21 100 2

91

1 4

1 0.19645 sinh 7.7956 0.2743 0.15084
,

1 0.19645 sinh 7.7956 0.004

s
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x

s s e s
F s

s s s

− −

−

+ + −
=

+ +
 (84) 

with the dimensionless reduced density gradient defined as, 

 ( )
( )

( ) ( )
,

2 F

r
s r

k r r






=  (85) 

and the Fermi-wavevector, 

 ( ) ( )23 3 .Fk r r =  (86) 

The PW91 correlation can be written in terms of the Seitz radius
sr as, 

 ( ) ( ) ( )91 , , , , ,PW

c c s sE r r H t r dr        = +      (87) 

where ( ),c sr  denotes the parametrisation of the homogeneous electron gas correlation 

energy [152], and also another dimensionless gradient term 
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 indicates the degree of spin-polarisation. Now the function 0 1,H H H= + is defined as, 
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   with 3 216
0.09, (0), 3 0.004235, 0.001667.xC C    


= = = = = −  According to 

Rasolt and Geldart [153], 
xC is given by, 
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with  

 323.266, 7.389 10 , 8.723, 0.472.a b c d−= =  = =  (91) 

The role of ( ), ,sH t r  is governed by the correlation hole’s behaviour in the limit of high 

density [154, 155]. Until very recently, PW91 has been now superseded by a modified 

version by Perdew, Burke, and Ernzerhof (PBE) [114], which is defined as an extremely 

simpler exchange enhancement factor of the form: 

 ( ) 2

0.804
1.804 .

0.21 73

PBE

xF s
s

= −
+

 (92) 

C. Atomic positions 

i. Mg0.5Ca0.5H6 
 

Atoms x y z 

Mg 0.000000000 0.000000000 0.000000000 

Ca 0.500000000 0.500000000 0.500000000 

H 0.000000000 0.500000000 0.749236071 

H 0.000000000 0.500000000 0.250763895 

H 0.749236071 0.000000000 0.500000000 

H 0.250763895 0.000000000 0.500000000 

H 0.500000000 0.749236071 0.000000000 

H 0.500000000 0.250763895 0.000000000 

H 0.500000000 0.000000000 0.250763895 

H 0.500000000 0.000000000 0.749236071 

H 0.000000000 0.749236071 0.500000000 

H 0.000000000 0.250763895 0.500000000 

H 0.749236071 0.500000000 0.000000000 

H 0.250763895 0.500000000 0.000000000 

 

ii. MAPbI3 

Atoms x y z 

C 0.596942021                   0.491789987 0.499962968 

N 0.361402991 0.491789987 0.499962968 

H1 0.655720032          0.656453968          0.499962968 

H2 0.652230951          0.408840010          0.643757040   

H3 0.652379008          0.408363988          0.356516015   

H4 0.299060995          0.566852992          0.634274022   

H5 0.299211004          0.566469021          0.365063005   

H6 0.296755020          0.338210032          0.500002992   

I1 0.500000000          0.000000000 0.000000000 

I2 0.000000000 0.500000000          0.000000000 

I3 0.000000000 0.000000000 0.500000000          

Pb 0.000000000 0.000000000 0.000000000 
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iii. MABiSeI2 

Atoms x y z 

C 0.596942021                   0.491789987 0.499962968 

N 0.361402991 0.491789987 0.499962968 

H1 0.655720032          0.656453968          0.499962968 

H2 0.652230951          0.408840010          0.643757040   

H3 0.652379008          0.408363988          0.356516015   

H4 0.299060995          0.566852992          0.634274022   

H5 0.299211004          0.566469021          0.365063005   

H6 0.296755020          0.338210032          0.500002992   

Bi 0.000000000          0.000000000 0.000000000 

I1 0.500000000 0.000000000          0.000000000 

I2 0.000000000 0.500000000 0.000000000          

Se 0.000000000 0.000000000 0.500000000 
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