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The most widely used area-level model in small area estimation is the Fay-Herriot

model, proposed by Fay and Herriot. It was used first to estimate average per capita

income for small places (population less than 1,000) of the USA. In the context of the

Fay-Herriot model, the traditional method in obtaining estimation of the population mean

is the empirical best linear unbiased prediction (EBLUP) estimator. The estimate can

be expressed as a weighted sum of the direct survey estimator and regression estimator.

One problem that has received attention is the estimation of variance of the area ran-

dom effects in the weight of EBLUP. However, in some cases, the weight of the direct

survey estimator is zero and the EBLUP reduces to regression estimator, which is un-

desirable estimates because it ignores the sample from survey data. Later on, Li and

Lahiri proposed adjusted maximum likelihood consistent variance estimators with posi-

tive estimates. These adjustments prevent zero weight of the direct estimator. In this

study, we extend their methods to adjust the adjusted maximum likelihood method for

the multivariate Fay-Herriot model.
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CHAPTER I

INTRODUCTION

This chapter introduces the concept of small area estimation, multivariate small

area estimation, problem in small area estimation and outline of this thesis.

1.1 Small Area Estimation

Survey data are now widely used in practice, which does not only provide the es-

timation for the total population but also for subpopulations (also known as domains).

Domains can be defined by geographic areas or socio-demographic groups or other sub-

populations. For example, a geographic domain (area) includes a state or province, school

district, municipality, metropolitan area and country, and socio-demographic domain may

be defined by an age-sex-race group within a large geographic area [34]. In the context

of sample surveys, we refer to domain or area estimators that are obtained based only

on the domain-specific sample data as “direct”. A direct (domain) estimator maybe use

the known auxiliary information related to the variable of interest. A direct estimator

is effective when the domain-specific sample sizes are large. However, in practice, when

the domain-specific sample sizes are not large enough (known as small area) to provide

a sufficiently precise direct estimator. In such situations, small area estimation (SAE)

methods can be used to get precise estimates of the parameter of interest from related

areas. It is necessary to use “indirect” (domain) estimators that “borrow strength” from

the sample of other areas through appropriate linking models. For example, synthetic es-

timators are indirect estimators that are used under the assumption that small areas have

the same characteristics as larger areas, and composite estimators are weighted averages

of direct estimators and synthetic estimators. Indirect estimators provide better precision

than direct estimators. However, both of these estimators suffer from design-bias, which

does not necessarily decrease as the sample size increases.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

Some SAE techniques make use of mixed models by incorporating random effects.

There are two main kinds of mixed models which are used in small area estimation.

The first type is the unit level model that can be used when the information at the

unit level is available. The second type is the area-level model. The area-level models

are developed using direct area-specific estimates available from a survey dataset and

area-level covariates available from a census or administrative dataset. In 1979, Fay and

Herriot [15] introduced a basic area-level model to obtain estimates for mean per capita

income for small areas (with a population less than 1,000) in the USA. In the Fay-Herriot

model, the direct survey estimates of a single response variable in each area are linear

regression on area-specific covariates obtained from census data. The Fay-Herriot model is

one of the most popular methods used in Small area estimation because of its flexibility in

combining and explaining different sources of information. Moreover, it does not require

unit-level data. Various extensions of the basic area-level model have been proposed to

handle correlated sampling errors, the spatial dependence of the model errors, time series

and cross-sectional data [34].

1.2 Multivarite Small Area Estimation

Statisticians use the Fay-Herriot model for one variable or separately for each vari-

able. However, in some surveys, it may be desirable to consider two or more correlated

response variables together. In such cases, the multivariate Fay-Herriot model (see [9]

and [14]) can be used to incorporate the correlation among the response variables. When

multiple dependent variables are correlated, multivariate Fay-Herriot models may pro-

duce better results than univariate Fay-Herriot models, but these models have not been

received much attention.

Several applications of multivariate Fay-Herriot models have been introduced in the

literature. For example, Datta et al. [10] applied a multivariate Fay-Herriot model to

obtain hierarchical Bayes estimates of median income of four-person families for the US

states; González and Manteiga et al. [16] studied a class of multivariate Fay-Herriot model

with a common random effect for all the components of the target vector; Benavent and



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

Morales [1] studied a class of multivariate Fay-Herriot model with one random effect per

components of the target vector and allowing for different covariance patterns between

the components of the vector of random effects; Nesa [30] used a multivariate Fay-Herriot

model to get improved estimates of health indicator; and Ubaidillah et al. [40] used a mul-

tivariate Fay-Herriot model to estimated household consumption per capita expenditure

(HCPE) on food and HCPE of non-food in Indonesia.

1.3 Adjusted Method for Estimation of Variance Components

An important problem in the analysis of Fay-Herriot models is the estimation of the

variance components. The standard methods for estimation of variance components have

been considered in the literature. The methods include the Prasad-Rao simple method-of-

moments [32], the Fay-Herriot method-of-moments [15], the profile maximum likelihood

method [17] and the residual maximum likelihood method [31]. The estimators are all

consistent, under certain regularity conditions. However, in some cases, all of the methods

could produce zero estimates of variance components. Li and Lahiri [27] and Morris and

Tang [29] proposed the adjusted maximum likelihood methods. These methods produce

a strictly positive estimates of variance components. Later on, Yoshimiri and Lahiri [41]

developed the adjusted maximum likelihood methods to obtain new adjusted maximum

likelihood methods. In this thesis, we consider the variance components estimation meth-

ods for the multivariate Fay-Herriot model, such as the profile maximum likelihood and

the residual maximum likelihood methods. These methods could produce zero estimates

of variance components for some components. Then we propose the adjusted maximum

likelihood method for the multivariate Fay-Herriot model.

1.4 Outline of the Thesis

In Chapter 2, we list all fundamental concepts of matrix algebra, matrix analysis,

random vectors and matrices, mathematical statistics, mathematical analysis, and the

concept of small area estimation. The concept of small area estimation include the Fay-

Herriot model, empirical best linear unbiased prediction (EBLUP), variance components

estimation and uncertainty of EBLUP.
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In Chapter 3, we first review the multivariate Fay-Herriot model and variance com-

ponents estimation for multivariate Fay-Herriot model, including the profile maximum

likelihood (PML) method, residual maximum likelihood (REML) method and adjusted

maximum likelihood method of Li and Lahiri (AML.LL) [27]. In this chapter, we pro-

pose an extension of the adjusted maximum likelihood (AML) method for multivariate

Fay-Herriot model. Moreover, we derive the properties, including biases and consistency

of the obtained estimators and compare the obtained estimators in simulation.

In Chapter 4, we present the uncertainty of EBLUP and prediction interval. The

uncertainty of EBLUP follow Benavent and Morales [1], Datta et al. [8], and Datta and

Lahiri [11]. We compare the uncertainty of EBLUP based on the PML, REML, and two

AML estimators both in theory and simulation. The prediction interval include the Cox’s

empirical Bayes prediction interval in [5], traditional prediction interval, and parametric

bootstrap prediction interval in [4]. We compare the prediction interval using EBLUP

based on the PML, REML, and two AML estimators in terms of simulation.

In Chapter 5, we present a data analysis for the average household income and

average household expenditure in Thailand data set. We apply the AML.LL and AML

methods for this data set. The positiveness of the AML.LL and AML estimators play

a vital role since, for this data set, the PML and REML methods could be zero. We

observe that AML methods produce EBLUP’s which generally put more weight on the

direct survey estimates than the corresponding EBLUP’s that use the PML and REML

methods.

Finally, we give conclusions and future work of this thesis in Chapter 6.
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Figure 1.1: The diagram of thesis



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

PRELIMINARIES

In this chapter, we provide definitions and some theorems associated with matrix

algebra, matrix analysis, random vector and matrices, mathematical statistic, mathemat-

ical analysis, and small area estimation which will be used in Chapter 3.

2.1 Matrix Algebra and Analysis

Since any linear model can be represented by a matrix form, knowledge in matrix

algebra is needed in studying a linear model. In this section, we review some well-known

definitions and theorems of matrix algebra and analysis needed in this study. More

intensive reviews of these topics are provided in [2], [19], [35] and [37].

In this thesis, an n × n identity matrix, n zero vector and n × n zero matrix are

denoted by In, 0n and 0n×n, respectively.

2.1.1 Transpose

Definition 2.1. The transpose of a matrix A = (aij) is obtained by interchanging the

rows and columns of A, denoted by A′, that is A′ = (aij)
′ = (aji).

Theorem 2.2. If A and B are both m× n matrices and C is an n× p matrix, then

(i) (A′)′ = A,

(ii) (A + B)′ = A′ + B′,

(iii) (AC)′ = C′A′.

Definition 2.3. A square matrix A is called symmetric if A′ = A, or equivalently

(aij) = (aji).
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2.1.2 Rank

Definition 2.4. A set of vectors x1,x2, . . . ,xn is said to be linearly independent if

c1x1 + c2x2 + · · ·+ cnxn = 0

implies that ci = 0 for all i. Conversely, if x1,x2, . . . ,xn are not linearly independent,

they are said to be linearly dependent.

Definition 2.5. Let A be an m× n matrix, the rank of A is defined as

rank(A) = number of linearly independent columns of A

= number of linearly independent rows of A.

It is clear that

rank(A) ≤ min(m,n).

If rank(A) = n, where n < m, then A is said to be a full rank matrix.

2.1.3 Inverse

Definition 2.6. If A is a full-rank square matrix, then A is nonsingular. A nonsingular

matrix A has a unique inverse, denoted by A−1, such that

AA−1 = A−1A = I.

Theorem 2.7. If A and B are nonsingular, then

(i) (A−1)−1 = A,

(ii) A′ is nonsingular and its inverse can be found as (A′)−1 = (A−1)′,

(iii) (AB)−1 = B−1A−1.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

2.1.4 Determinant

Definition 2.8. The determinant of an n×n matrix A is a scalar function of A defined

as the sum of all n! possible products of n elements such that

(i) each product contains one element from every row and every column of A.

(ii) the factors in each product are written so that the column subscripts appear in

order of magnitude and each product is then preceded by a plus or minus sign

according to whether the number of inversions in the row subscripts is even or odd.

(An inversion occurs whenever a larger number precedes a smaller one.)

The determinant of A is denoted by |A| or det(A).

Theorem 2.9. (i) If D = diag(d1, d2, . . . , dn), |D| =
∏n

i=1 di.

(ii) The determinant of a triangular matrix is the product of the diagonal elements.

(iii) If A is singular matrix, |A| = 0.

(iv) If A is nonsingular matrix, |A| ̸= 0.

(v) If A is positive definite matrix, |A| > 0.

(vi) |A′| = |A|.

(vii) If A is nonsingular matrix, |A−1| = 1

|A|
.

Theorem 2.10. If A and B are both n×n matrices, then the determinant of the product

is the product of the determinants:

(i) |AB| = |A||B|,

(ii) |AB| = |BA|,

(iii) |A2| = |A|2.
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Definition 2.11. Let A be an n × n matrix. The minor, Mij , i, j = 1, . . . , n of the

element aij , is the determinant of the matrix obtained by deleting the ith row vector and

jth column vector of A.

Definition 2.12. Let A be an n × n matrix. The cofactor, Cij , i, j = 1, . . . , n of the

element aij , is defined by

Cij = (−1)i+jMij ,

where Mij is the minor of aij .

Theorem 2.13. Let A be an n× n matrix. If we multiply the elements in any row (or

column) of A by their cofactors, then the sum of the resulting products is |A|. That is,

(i) If we expand along row i,

|A| = ai1Ci1 + ai2Ci2 + · · ·+ ainCin =

n∑
k=1

aikCik.

(ii) If we expand along column j,

|A| = a1jC1j + a2jC2j + · · ·+ anjCnj =

n∑
k=1

akjCkj .

Corollary 2.14. If the elements in the ith row (or column) of an n × n matrix A are

multiplied by the cofactors of a different row (or column), then the sum of the resulting

products is zero. That is,

(i) If we use the elements of row i and the cofactors of row j,

n∑
k=1

aikCjk = 0, i ̸= j.

(ii) If we use the elements of column i and the cofactors of column j,

n∑
k=1

akiCkj = 0, i ̸= j.
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Definition 2.15. If every element in an n× n matrix A is replaced by its cofactor, the

resulting matrix is called the matrix of cofactors and is denoted MC . The transpose

of the matrix of cofactors, M′
C , is called the adjoint of A and is denoted adj(A). Thus,

the elements of adj(A) are

adj(A)ij = Cji.

Theorem 2.16. If |A| ̸= 0, then

A−1 =
1

|A|
adj(A).

2.1.5 Trace

Definition 2.17. The trace of an n×n matrix A = (aij) is a scalar defined as the sum

of the diagonal elements of A:

tr(A) =

n∑
i=1

aii.

Theorem 2.18. If A and B are both n× n matrices, C is an n× p matrix, and D is a

p× n matrix, then

(i) tr(A ± B) = tr(A)± tr(B),

(ii) tr(cA) = c tr(A), if c is scalar,

(iii) tr(A′) = tr(A),

(iv) tr(CD) = tr(DC).

2.1.6 Positive Definite Matrices

Definition 2.19. The symmetric matrix A is said to be positive definite matrix if for

all possible y except y = 0,

y′Ay > 0.
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Similarly, A is said to be positive semidefinite matrix if for all y,

y′Ay ≥ 0

and there is at least one y ̸= 0 such that y′Ay = 0.

Definition 2.20. The symmetric matrix A is said to be negative definite matrix if for

all possible y except y = 0,

y′Ay < 0.

Similarly, A is said to be negative semidefinite matrix if for all y,

y′Ay ≤ 0

and there is at least one y ̸= 0 such that y′Ay = 0.

Theorem 2.21. Let P be a nonsingular matrix.

(i) If A is positive definite, then P′AP is positive definite.

(ii) If A is positive semidefinite, then P′AP is positive semidefinite.

Corollary 2.22. Let A be an n×n positive definite matrix and let B be an m×n matrix

of rank m ≤ n. Then BAB′ is positive definite.

Corollary 2.23. Let A be an n × n positive definite matrix and let B be an m × n

matrix of rank m > n or if rank(B) = r, where r < m and r < n. Then BAB′ is positive

semidefinite.

Theorem 2.24. A symmetric matrix A is positive definite if and only if there exists a

nonsingular matrix P such that

A = PP′.

Corollary 2.25. Any positive definite matrix is nonsingular.
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Theorem 2.26. Let A be an m× n matrix.

(i) If rank(A) = n, then A′A is positive definite.

(ii) If rank(A) < n, then A′A is positive semidefinite.

Theorem 2.27. If A is positive definite matrix, then A−1 is positive definite matrix.

Theorem 2.28. If A is positive definite matrix, then there exists a unique A1/2 is positive

definite matrix such that (A1/2)2 = A.

2.1.7 Eigenvalues and Eigenvectors

Definition 2.29. For every square matrix A, a scalar λ and a nonzero vector x can be

found such that

Ax = λx,

where λ is an eigenvalue of A and x is an eigenvector of A.

Theorem 2.30. If A is symmetric matrix, then the eigenvalues λ1, λ2, . . . , λn of A are

real.

Notation 2.31. If the eigenvalues of A are real, then we index them from largest to

smallest as follows:

λn ≤ · · · ≤ λ2 ≤ λ1.

In this case, we sometimes use the notation λmax and λmin to denote λ1 and λn, respec-

tively.

Theorem 2.32. If λ is an eigenvalue of n× n matrix A with corresponding eigenvector

x, then

(i) cλ is an eigenvalue of cA and x is the corresponding eigenvector,

(ii) λk is an eigenvalue of Ak and x is the corresponding eigenvector,

(iii) 1/λ is an eigenvalue of A−1 and x is the corresponding eigenvector.
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Corollary 2.33. If A is an n× n positive definite matrix, then

λmin(A−1) = λ−1
max(A)

and

λmax(A−1) = λ−1
min(A).

Theorem 2.34. Let A be an n× n matrix with eigenvalues λ1, λ2, . . . , λn.

(i) If A is positive definite, then λi > 0 for i = 1, 2, . . . , n.

(ii) If A is positive semidefinite, then λi ≥ 0 for i = 1, 2, . . . , n. The number of

eigenvalues λi for which λi > 0 is the rank of A.

Theorem 2.35. If A is an n× n matrix with eigenvalues λ1, λ2, . . . , λn, then

(i) |A| =
n∏

i=1

λi,

(ii) tr(A) =

n∑
i=1

λi.

Corollary 2.36. If A is an n× n matrix, then

λmin(A) tr(I) ≤ tr(A) ≤ λmax(A) tr(I).

Theorem 2.37. If A and B are both n× n symmetric matrices, then

λmin(A) + λmin(B) ≤ λmin(A + B) ≤ λmax(A + B) ≤ λmax(A) + λmax(B).

Theorem 2.38. If A and B are both n × n matrices or if A is n × p matrix and B is

p× n matrix, then the non-zero eigenvalues of AB are the same as those of BA. If x is

an eigenvector of AB, then Bx is an eigenvector of BA.

Theorem 2.39. Let A and B be n× n matrices. If A and B are positive semidefinite,

then

λmin(A) tr(B) ≤ tr(AB) ≤ λmax(A) tr(B).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14

Theorem 2.40. Let A and B be n× n matrices. If A and B are positive semidefinite,

then

λmin(A)λmin(B) ≤ λmin(AB) ≤ λmax(AB) ≤ λmax(A)λmax(B).

2.1.8 Idempotent

Definition 2.41. A square matrix A is said to be idempotent if

A2 = A.

Theorem 2.42. If A is singular, symmetric, and idempotent matrix, then A is positive

semidefinite.

Theorem 2.43. If A is an n × n symmetric idempotent matrix of rank r ≤ n, then A

has r eigenvalues equal to 1 and n− r eigenvalues equal to 0.

Theorem 2.44. If A is an n× n symmetric idempotent matrix of rank r ≤ n, then

tr(A) = rank(A) = r.

Theorem 2.45. If A is an n × n idempotent matrix and P is an n × n nonsingular

matrix, then

(i) I − A is idempotent,

(ii) A(I − A) = O and (I − A)A = O,

(iii) P−1AP is idempotent.
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2.1.9 Kronecker Product

Definition 2.46. Let A and B be m×n and p× q matrices. The Kronecker product

of A with B, denoted by A ⊗ B, is defined as

A ⊗ B =



a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

... . . . ...

am1B am2B · · · amnB


,

where A = [aij ]i=1,...,m,j=1,...,n.

Theorem 2.47. Let A and B be both m× n matrices, C be a p× q matrix and α be a

real number. Then

(i) A ⊗ (αB) = (αA)⊗ B = α(A ⊗ B),

(ii) (A ⊗ C)′ = A′ ⊗ C′,

(iii) (A + B)⊗ C = A ⊗ C + B ⊗ C,

(iv) C ⊗ (A + B) = C ⊗ A + C ⊗ B.

Theorem 2.48. Let A be an m× n matrix, B be a p× k matrix, C be an n× k matrix

and D be a k × q matrix. Then

(A ⊗ B)(C ⊗ D) = (AC ⊗ BD).
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2.1.10 Derivatives of Function of Vectors and Matrices

Definition 2.49. Let y = f(x) be a function of n variables of the vector x = (x1, x2, . . . , xn)
′.

The vector of the derivatives of the functions f is defined as

∂y

∂x =



∂y
∂x1

∂y
∂x2

...
∂y
∂xn


.

Theorem 2.50. Let y = a′x = x′a, where a′ = (a1, a2, . . . , an) is a vector of constants.

Then
∂y

∂x =
∂(a′x)
∂x =

∂(x′a)
∂x = a.

Theorem 2.51. Let y = x′Ax, where A is a symmetric matrix of constants. Then

∂y

∂x =
∂(x′Ax)

∂x = 2Ax.

Theorem 2.52. Let x, y and z be vectors of length m, n and r, respectively, such that

z is a function of y, which is in turn a function of x. Then the chain rule for vectors is

∂z
∂x =

∂z
∂y

∂y
∂x .

Definition 2.53. Let y = f(X) be a function of n × n variables of the matrix X. The

matrix of the derivatives of the function f is defined as

∂y

∂X =



∂y
∂x11

∂y
∂x12

· · · ∂y
∂x1n

∂y
∂x21

∂y
∂x22

· · · ∂y
∂x2n

...
...

...
∂y

∂xn1

∂y
∂xn2

· · · ∂y
∂xnn


.
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Theorem 2.54. Let X be an n× n positive definite matrix and A is an n× n matrix of

constants. Then
∂

∂X tr(XA) = A + A′ − diag(A).

Theorem 2.55. Let X be an n× n positive definite matrix. Then

∂

∂X log |X| = 2X−1 − diag(X−1).

Theorem 2.56. Let X be an n × n positive definite matrix. Let A be a p × n matrix

and B be an n×m matrix such that AXB is nonsingular. Then

∂

∂X log |AXB| = B(AXB)−1A.

Theorem 2.57. Let X be an n× n nonsingular matrix that are functions of a scalar x.

Then
∂

∂x
X−1 = −X−1∂X

∂x
X−1.

Theorem 2.58. Let X be an n×n positive definite matrix that are functions of a scalar

x. Then
∂

∂x
log |X| = tr

(
X−1∂X

∂x

)
.

Definition 2.59. Let x = (x1, x2, . . . , xm)′ and y = (y1, y2, . . . , yn)
′ be vectors of length

m and n, respectively, where each element yi is a function of x, saying that y is a function

of x. The derivative of the vector y with respect to vector x is the m× n matrix defined

as

∂y
∂x =



∂y1

∂x1

∂y2

∂x1
· · · ∂yn

∂x1

∂y1

∂x2

∂y2

∂x2
· · · ∂yn

∂x2

...
...

...
∂y1

∂xm

∂y2

∂xm
· · · ∂yn

∂xm


.
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2.1.11 Matrix Analysis

Definition 2.60. A vector norm on Rn is a function ∥ · ∥ : Rn → R that satisfies the

following properties:

(i) ∥x∥ ≥ 0 for x ∈ Rn,

(ii) ∥x + y∥ ≤ ∥x∥+ ∥y∥ for x,y ∈ Rn,

(iii) ∥αx∥ = |α|∥x∥ for α ∈ R,x ∈ Rn.

For example, a useful class of vector norms are the p−norms defined by

∥x∥p =
(

n∑
i=1

|xi|p
)1/p

, p ≥ 1.

The 1−norm, 2−norm and ∞−norm are the most important:

∥x∥1 = |x1|+ |x2|+ · · ·+ |xn|,

∥x∥2 =
(
|x1|2 + |x2|2 + · · ·+ |xn|2

)1/2
= (x′x)1/2,

∥x∥∞ = max
1≤i≤n

|xi|.

Definition 2.61. A matrix norm on Rm×n is a function ∥ · ∥ : Rm×n → R that satisfies

the following properties:

(i) ∥A∥ ≥ 0 for all A ∈ Rm×n,

(ii) ∥A∥ = 0 if and only if ∥A∥ = 0,

(iii) ∥αA∥ = |α|∥A∥ for all α ∈ R,A ∈ Rm×n,

(iv) ∥A + B∥ ≤ ∥A∥+ ∥B∥ for all A,B ∈ Rm×n,

(v) ∥AB∥ ≤ ∥A∥∥B∥ for all A,B ∈ Rm×n.
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For example, the 1−matrix norm, 2−matrix norm, ∞−matrix norm and F−matrix

norm are the most important:

∥A∥1 = max
1≤j≤n

n∑
i=1

|aij |,

∥A∥2 = [λmax(A′A)]1/2,

∥A∥∞ = max
1≤i≤n

n∑
j=1

|aij |,

∥A∥F =
[
tr(A′A)

]1/2
.

Theorem 2.62. Each norm ∥·∥ on Rn is a continuous function with respect to the metric

ρ(x,y) = max
1≤ i≤n

|xi − yi| on Rn.

Theorem 2.63. ([13]) Let f is scalar function. Let A and E be n × n matrices. The

Taylor series expansion of matrix function is

f(A + E) =

∞∑
j=0

1

j!
D

[j]
f (A,E),

where

D
[j]
f (A,E) =

dj

dtj

∣∣∣∣∣
t=0

f(A + tE).

2.2 Random Vectors and Matrices

In this section, we will review briefly those statistical concepts and properties of

random vector and matrices needed in this study. More intensive reviews of these topics

are provided in [28], [35] and [37].
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Definition 2.64. Let y1, y2, . . . , yn be the random variables. Then the vector

y =



y1

y2
...

yn


is called a random vector of length n.

Definition 2.65. The expected value of an n × 1 random vector y, denoted by µ, is

defined as the vector of expected values of the n random variables y1, y2, . . . , yn in y:

E[y] = E





y1

y2
...

yn




=



E[y1]

E[y2]
...

E[yn]


=



µ1

µ2

...

µn


= µ,

where E(yi) = µi for all i = 1, 2, . . . , n.

Definition 2.66. Let y = (y1, y2, . . . , yn)
′ be a random vector of the n random variables

y1, y2, . . . , yn be such that

Var[yi] = σ2
i

and

Cov[yi, yj ] = σij for i ̸= j.

Then the covariance matrix, denoted by Cov[y], is defined as

Cov[y] = Σ =



σ2
1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

...
...

...

σn1 σn2 · · · σ2
n


.

The covariance matrix Σ is symmetric because σij = σji.
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Definition 2.67. Let x = (x1, x2, . . . , xm)′ and y = (y1, y2, . . . , yn)
′ be random vectors.

We define their covariance matrix as

Cov[x,y] =



Cov[x1, y1] Cov[x1, y2] · · · Cov[x1, yn]

Cov[x2, y1] Cov[x2, y2] · · · Cov[x2, yn]
...

...
...

Cov[xm, y1] Cov[xm, y2] · · · Cov[xm, yn]


.

Definition 2.68. The linear combination of the variables y1, y2, . . . , yn from a random

vector y using the a1, a2, . . . , an terms as coefficients is defined as

a1y1 + a2y2 + · · ·+ anyn = a′y.

Theorem 2.69. If a is an n × 1 vector of constants and y is an n × 1 random vector

with mean vector µ, then

E[a′y] = a′ E[y] = a′µ.

Theorem 2.70. If A is an m× n matrix of constants and y is an n× 1 random vector

with mean vector µ, then

E[Ay] = A E[y] = Aµ.

Corollary 2.71. If A is an m×n matrix of constants, b is an m× 1 vector of constants

and y is an n× 1 random vector with mean vector µ, then

E[Ay + b] = Aµ+ b.

Definition 2.72. An n× 1 random vector y having density function given by

f(y) =
1

(
√
2π)n|Σ|1/2

exp
(
−1

2
(y − µ)′|Σ|−1(y − µ)

)

which is the multivariate normal density function with mean vector µ and covariance
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matrix Σ, equivalently, we say that y is distributed as Nn(µ,Σ) or

y ∼ Nn(µ,Σ).

The subscript n is the dimension of the n-variate normal distribution and indicates the

number of variables.

Theorem 2.73. If y ∼ Nn(µ,Σ) and A is an n×n symmetric matrix of constants, then

E[y′Ay] = tr(AΣ) + µ′Aµ

and

Var[y′Ay] = 2 tr(AΣ)2 + 4µ′AΣAµ.

Theorem 2.74. ([38]) Let y ∼ Nn(µ,Σ), A and B be an n × n symmetric matrix of

constants. Then

E[(y′Ay)(y′By)] = 2 tr(AΣBΣ) + tr(AΣ) tr(BΣ) + 4µ′AΣBµ

+ tr(AΣ)µ′Bµ+ µ′Aµ tr(BΣ) + (µ′Aµ)(µ′Bµ).

Theorem 2.75. ([38]) Let y ∼ Nn(0,Σ), A, B and C be an n× n symmetric matrix of

constants. Then

E[(y′Ay)(y′By)(y′Cy)] = 4 tr(AΣBΣCΣ) + 4 tr(AΣCΣBΣ)

+ 2 tr(AΣ) tr(BΣCΣ) + 2 tr(BΣ) tr(AΣCΣ)

+ 2 tr(CΣ) tr(AΣBΣ) + tr(AΣ) tr(BΣ) tr(CΣ).

2.3 Mathematical Statistics

In this section, we will introduce some important theories in statistics needed in

this study. More intensive reviews of these topics are provided in [3] and [20].
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Definition 2.76. Let X1, X2, . . . , Xn be a random sample of size n from the population

and T (x1, x2, . . . , xn) be a real-valued function, then the random variable or random

vector Y = T (X1, X2, . . . , Xn) is called a statistic.

Definition 2.77. Any function of a sample used to approximate a parameter is called a

point estimator, that is, any statistic is a point estimator.

Definition 2.78. The bias of an estimator θ̂ of a parameter θ is the expectation of the

difference between θ̂ and θ, that is E(θ̂ − θ). An estimator whose bias is equal to zero is

called an unbiased estimator.

Definition 2.79. A sequence of random variables X1, X2, . . . converges in probability

to a random variable X, written as Xn
p−−→ X, if

lim
n→∞

P (|Xn −X| > ϵ) = 0,

for all ϵ > 0.

Theorem 2.80. Assume that {Xn, n ≥ 1} are random variables and c is a constant such

that

E[Xn] → c and Var[Xn] → 0,

then

Xn
p−−→ c.

Definition 2.81. A sequence of estimators, θ̂n, is a consistent sequence of estimators

of the parameter θ if for every ϵ > 0,

lim
n→∞

P (|θ̂n − θ| > ϵ) = 0,

or equivalently, (θ̂n) is said to be a consistent sequence of estimators of parameter θ if

θ̂n
p−−→ θ.
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Theorem 2.82. If (θ̂n) is a sequence of estimators of parameter θ satisfying

(i) lim
n→∞

Var[θ̂n] = 0,

(ii) lim
n→∞

E[θ̂n − θ] = 0.

Then, (θ̂n) is a consistent sequence of estimators of θ.

Definition 2.83. Let X be a random vector and X has probability function f(X|θ) with

parameter θ. Then

I(θ) = Eθ

[(
∂

∂θ
log f(X|θ)

)2
]

is called the information (or the Fisher information).

Lemma 2.84. If f(X|θ) is twice differentiable with respect to θ and satisfies

d

dθ
Eθ

[
∂

∂θ
log f(X|θ)

]
=

∫ [(
∂

∂θ
log f(x|θ)

)
f(x|θ)

]
dx,

then

Eθ

[(
∂

∂θ
log f(X|θ)

)2
]
= −Eθ

[
∂2

∂θ2 log f(X|θ)
]
.

Theorem 2.85 (Cauchy-Schwarz inequality). For any random variables X and Y , if

X and Y have finite variances then

E |XY | ≤
√

E[X2]E[Y 2].

Theorem 2.86 (Hölder inequality). For any random variables X and Y , then

E |XY | ≤ (E[|X|p])1/p (E[|Y |q])1/q ,

where p, q ∈ (1,∞) with 1
p + 1

q = 1.

Corollary 2.87. For any random variable X,

E |X| ≤
(
E[X2]

)1/2
.
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2.4 Mathematical Analysis

In this section, we will introduce some important theories in the mathematical

analysis needed in this study. More intensive reviews of these topics are provided in [6]

and [24].

Theorem 2.88 (Sequential Criterion for Continuity). A function f : D → R is

continuous at the point c ∈ D, where D ⊆ R if and only if for every sequence (xn) in D

that converges to c, the sequence (f(xn)) converges to f(c).

Theorem 2.89 (Extreme Value Theorem). If f is a continuous function defined on

a closed interval [a, b], then the function attains its maximum value at some point c

contained in the interval.

Theorem 2.90 (Weierstrass Extreme Value Theorem). Let X ⊂ Rn be a close and

bounded set and f be a continuous real-valued function on X. Then f attains a minimum

and maximum on X.

Definition 2.91. Suppose f and g are two functions defined on some subsets of the real

numbers, we write

f(x) = O(g(x)) as x → ∞,

if and only if there exist a positive constant M and a real number N such that

∣∣∣∣f(x)g(x)

∣∣∣∣ ≤ M for all x ≥ N.

Definition 2.92. Suppose f and g are two functions defined on some subsets of the real

numbers, we write

f(x) = o(g(x)) as x → ∞,

if and only if for every positive constant M there exists a real number N such that

∣∣∣∣f(x)g(x)

∣∣∣∣ ≤ M for all x ≥ N.
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Notation 2.93. Note that F (x) = [O(f(x))]n×n for matrix-valued functions F and real

function f such that F (x)/f(x) is element-wise uniformly bounded n × n matrix, as

x → ∞.

Notation 2.94. Note that F (x) = [o(f(x))]n×n for matrix-valued functions F and real

function f such that F (x)/f(x) is converge to an n× n zero matrix, as x → ∞.

Theorem 2.95 (Triangle inequality). For any real numbers x and y, then

|x+ y| ≤ |x|+ |y|.

Theorem 2.96. For any real numbers x1, x2, . . . , xn, for 0 < p ≤ 1, then

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣
p

≤
n∑

i=1

|xi|p,

and for p > 1

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣
p

≤ np−1

(
n∑

i=1

|xi|p
)
.

That is,

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣
p

≤ max(1, np−1)

(
n∑

i=1

|xi|p
)

for p ∈ (0,∞).

2.5 Small Area Estimation: Univariate Fay-Herriot Models

In this section, we will review briefly the concepts of small area estimation. More

intensive reviews of these topics are provided in [26] and [34].

2.5.1 Small Area Estimation

Small area estimation (SAE) is one of well-known statistical methods to estimate

parameters when sample size is not large enough to provide reliable direct estimates. The
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concept of the small area estimation is to borrow strength from available information, such

as administrative records and census data, through models, called model-based approach.

Model-based methods can be conducted either area-level model or unit-level model based

on data availability. When unit-level data are available, the unit level model can be used.

However, most unit-level data is often inaccessible due to the security of the informant.

Therefore, in this section, we will consider the area-level model.

2.5.2 Fay-Herriot Model

The most widely used area-level model in small area estimation is the Fay-Herriot

model, proposed by Fay and Herriot in 1979 [15]. It was used first to estimate mean per

capita income for small places in the USA. The Fay-Herriot model is a linear random

effects model which links the small area mean θi in area i on the auxiliary variables

xi = (xi1, . . . , xip)
′ through the linking model:

θi = x′
iβ + ui, i = 1, 2, . . . ,m,

where β is a p × 1 vector of regression coefficients and ui are identically, independently

and normally distributed area-specific random effects (also called the model error) with

E[ui] = 0 and Var[ui] = A.

The sampling model:

yi = θi + ei, i = 1, 2, . . . ,m,

where yi is a direct survey estimator of θi and ei are independent and normally distributed

sampling errors with E[ei] = 0 and Var[ei] = Di. The sampling model indicates that the

sample estimates are related to the unknown small area means and sampling errors ei.

Combining the linking and sampling model, the form of the Fay-Herriot model is

yi = θi + ei = x′
iβ + ui + ei, i = 1, . . . ,m, (2.1)
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where ui and ei are mutually independent. The sampling variances Di are assumed to be

known. In practice, the parameters β and A of the linking model are generally unknown

and are estimated from the available data.

We define y = (y1, . . . , ym)′, X = (x1, . . . ,xm)′, u = (u1, . . . , um)′, and e =

(e1, . . . , em)′. The Fay-Herriot model can be rewritten as

y = Xβ + u + e (2.2)

which is a special case of the general linear mixed model with block diagonal covariance

structure. The covariance matrix of y is V = diag
1≤i≤m

(A+Di).

2.5.3 Empirical Best Linear Unbiased Prediction

We are interested in estimating the ith small area means θi. It is well known that,

among all linear unbiased predictors θ̂i of θi, the best linear unbiased predictor (BLUP)

yields the minimum mean squared prediction error (MSE), which is defined as E[(θ̂i−θi)
2].

For known variance A, under model (2.1), the BLUP for θi is defined as

θ̃i = (1−Bi)yi +Bix′
iβ̃,

where

Bi =
Di

A+Di

and

β̃ = (X′V−1X)−1X′V−1y

=

(
m∑
i=1

(A+Di)
−1xix′

i

)−1( m∑
i=1

(A+Di)
−1xiyi

)
.

In the most realistic case when A is unknown. We can estimate A from the marginal

distribution of y. An empirical BLUP or EBLUP estimator of θi is obtained by replacing
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A in BLUP by an estimator Â of A. The EBLUP estimator θ̂i is a weighted sum of a

direct estimator yi and a regression synthetic estimator xiβ̂:

θ̂i = (1− B̂i)yi + B̂ix′
iβ̂,

where

B̂i =
Di

Â+Di

and β̂ is β̃ with A is replaced by Â. Hereafter, the estimator Â also denotes an even

translation invariant estimator for all β and y that achieve unbiasedness in the EBLUP,

Â(−y) = Â(y) and Â(y−x′β) = Â(y), as in [22]. The weight B̂i depends on the estimate

of the ratio between sampling variance Di and model variance A.

2.5.4 Variance Component Estimation

In the small area estimation with the Fay-Herriot model, accurate estimation of A

is necessary in order to obtain an efficient EBLUP for the small area means θi. Jiang

and Lahiri [21] and Rao and Molina [34] list several estimators of A satisfies the con-

ditions. They include the Prasad-Rao simple method-of-moments estimator, the Fay-

Herriot method-of-moments estimator, the profile maximum likelihood estimator and the

residual maximum likelihood estimator. These estimators are all consistent for large m,

under certain regularity conditions (i) and (ii), below:

(i) Di are uniformly bounded;

(ii) sup
1≤i≤m

x′
i

(
m∑
i=1

xix′
i

)−1

xi = O(m−1).

However, a well-known problem associated with all of the above four variance component

estimation methods is that all could yield a zero estimate, especially when the number of

small areas is small. The zero estimate of A yields B̂i = 0 and consequently the EBLUP

estimator of θi reduces to the regression estimator.
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In this section, we first briefly review the four commonly used estimators of A.

Then, we review the several adjusted method in [34], which produces strictly positive

estimator of A. Thus, the resulting EBLUP of θi is never regression estimator and is

always a weighted combination of the direct estimator and the regression estimator.

2.5.4.1 The Four Commonly Used Estimators of A

1. Prasad-Rao Method-of-Moments Estimator (PR)

In 1990, Prasad and Rao [32] proposed a simple method-of-moments to estimate A. The

estimator is given by

ÃPR =
1

m− p
[(y − Xβ̃)′(y − Xβ̃)−

m∑
i=1

Dix′
i(X′X)−1xi],

where β̃ = (X′X)−1X′y. Note that the last equation could yield a negative estimate.

In order to avoid the problem, they proposed the following estimator of A: ÂPR =

max(ÃPR, 0).

2. Fay-Herriot Method-of-Moments Estimator (FH)

The Fay-Herriot [15] estimator of A is based on the weighted least squares residual sum of

squares. Using the best linear unbiased estimator of β, β̃ = (X′V−1X)−1X′V−1y. The

estimator of A is obtained by solving the following equation iteratively:

m∑
i=1

(yi − x′
iβ̃)

2

ÃFH +Di

= m− p.

The left side of the last equation is the weighted residual sum of squares whose expectation,

under the Fay-Herriot model, is identical to the right hand side. This is motivation for

the Fay-Herriot estimator. Again the solution could be negative and so the following

estimator is used in practice: ÂFH = max(ÃFH, 0).
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3. Profile Maximum Likelihood Estimator (PML)

In 1967, Hartley and Rao [17] proposed the maximum likelihood (ML) approach. The

maximum log-likelihood under the Fay-Herriot model has the form

ℓM(β, A) = c− 1

2
(log |V|+ (y − Xβ)′V−1(y − Xβ), (2.3)

where c is a constant and |V| is the determinant of V. By differentiating (2.3) with

respect to β and A, we have

∂

∂β
ℓM(β, A) = X′V−1y − X′V−1Xβ,

∂

∂A
ℓM(β, A) =

1

2
((y − Xβ)′V−2(y − Xβ)− tr(V−1)).

From, letting (∂/∂β)ℓM(β, A) = 0, we obtain β̃ = (X′V−1X)−1X′V−1y. Replacing β

by β̃(A) in (2.3), we obtain the following profile log-likelihood:

ℓP(A) = c− 1

2
(log |V|+ y′Py),

where P = V−1 − V−1X(X′V−1X)−1X′V−1. The first derivative of the last equation is

given as
∂

∂A
ℓP(A) =

1

2
(y′P2y − tr(V−1)).

The profile maximum likelihood or PML estimator of A is obtained as ÂP = max(ÃP, 0)

where ÃP is a solution to (∂/∂A)ℓP(A) = 0.

4. Residual Maximum Likelihood Estimator (REML)

In 1971, Patterson and Thompson [31] proposed the restricted or residual maximum like-

lihood (REML) approach. The approach uses transformed data which do not include the

inferences about the nuisance parameters β. Under the Fay-Herriot model, the restricted

log-likelihood has the form

ℓR(A) = c− 1

2
(log |K′VK|+ y′Py),
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where c is a constant, K is an m× (m− p) matrix such that rank(K) = m− p, K′X = 0,

and K(K′VK)−1K′ = V−1−V−1X(X′V−1X)−1X′V−1 = P. The first derivative of the

last equation is given as
∂

∂A
ℓR(A) =

1

2
(y′P2y − tr(P)).

The residual maximum likelihood or REML estimator of A is obtained as ÂR = max(ÃR, 0)

where ÃR is a solution to (∂/∂A)ℓR(A) = 0.

2.5.4.2 Adjusted Maximum Likelihood Methods

Section 2.5.4.1 considered the estimation of A, the variance of the model error ui,

and presented two methods of moment, PML and REML estimators. All these methods

can lead to negative estimates Ã, especially for small sample size m, which are then trun-

cated to zero: Â = max(Ã, 0). A drawback of this truncation is that the resulting EBLUP

estimates, θ̂i, will attach zero weight to all the direct survey estimates yi regardless of

the sample sizes when Â = 0. Then the EBLUP with zero weight of survey estimates is

undesirable because it ignores the sample from survey data.

Several methods have been proposed to avoid a zero value for A. For example, in

2010, Lahiri and Li [25] defined the adjusted likelihood as

LAdj(A) ∝ h(A)L(A),

where L(A) is either LP(A) or LR(A).

For Fay-Herriot model (2.2), the profile likelihood and the residual likelihood under

normality are given by

LP(A) ∝ |V|−1/2 exp
{
−1

2
y′Py

}
and

LR(A) ∝ |X′V−1X|−1/2|V|−1/2 exp
{
−1

2
y′Py

}
,

respectively.
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The adjustment factor h(A) is chosen to ensure that the estimate maximizing

LAdj(A) with respect to A over [0,∞) This feature prevents zero weight of the EBLUP

even for small m. A simple choice of h(A) is h(A) = A (see [27] and [29]). This choice

gives a strictly positive estimate ÂLL. Then, in 2014, Yoshimori and Lahiri [41] proposed

alternative choices of h(A). This choice lead to LAdj(A) closer to LR(A) or LP(A). The

choice

h(A) =

(
arctan

(
m∑
i=1

A

A+Di

))1/m

satisfies these conditions, and we denote the resulting estimator of A as ÂY L.

2.5.5 Uncertainty of EBLUP

The MSE of the BLUP under the Fay-Herriot model can be derived as follows:

MSE[θ̃i] ≡ E[(θ̃i − θi)
2] = g1i(A) + g2i(A),

where

g1i(A) =
ADi

A+Di
,

and

g2i(A) =
D2

i

(A+Di)2
x′
i

(
m∑
i=1

(A+Di)
−1xix′

i

)−1

xi.

Under the regularity conditions (i) and (ii), the first term of the MSE of the BLUP,

g1i(A) is O(1), whereas the second term, g2i(A), due to estimating β, is O(m−1) for large

m. From the MSE of the BLUP, it is obvious that when the variance of the model error,

A, is small relative to the total variance, θ̃i is much more efficient than yi which has

variance Di.

An important matter of SAE is to determine the accuracy of the predictors. A naive

measure of uncertainty of an EBLUP is the MSE of the corresponding BLUP. However,

in 1984, Kackar and Haville [23] showed that the MSE of BLUP is smaller than that of

EBLUP and their difference depends on the variability of the estimator Â, which is of the
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order of O(m−1) for large m. It is not accurate enough to be ignored for most small-area

applications. In 1990, Prasad and Rao [32] provide an approximation of MSE of EBLUP

under the Fay-Herriot model as

MSE[θ̂i] ≡ E[(θ̂i − θi)
2] = g1i(A) + g2i(A) + g3i(A),

where

g3i(A) =
D2

i

(A+Di)3
Var(Â).

A second-order unbiased estimator of MSE[θ̂i] is

mse[θ̂i] = g1i(Â
PR) + g2i(Â

PR) + 2g3i(Â
PR),

where

Var[ÂPR] =
2

m2

m∑
i=1

(A+Di)
2.

In 2000, Datta and Lahiri [11] extended this to the case where the variance components

are estimated by the profile maximum likelihood or residual maximum likelihood method.

They obtained the second-order unbiased MSE estimator

mse[θ̂i] = g1i(Â) + g2i(Â) + 2g3i(Â)− bias(Â)▽g1i(Â),

with

Var[ÂML] = Var[ÂRE] = 2

(
m∑
i=1

1

(A+Di)2

)−1

,

where bias(Â) is second-order unbiased estimator of Bias(Â) and

▽g1i(A) =
(

A

A+Di

)2

.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

ADJUSTED MAXIMUM LIKELIHOOD

METHODS

In this chapter, we extend an adjusted maximum likelihood method to obtain a

method for multivariate Fay-Herriot model. In Section 3.1, we give a review of the multi-

variate Fay-Herriot model. In Section 3.2, we discuss the variance components estimation

for multivariate Fay-Herriot model (see [34] and [36]). Then, we propose a new adjusted

maximum likelihood method for multivariate Fay-Herriot model and derive the properties

of the obtained estimator in Section 3.3. Finally, we present results from a Monte Carlo

simulation in Section 3.4.

3.1 Small Area Estimation: Multivariate Fay-Herriot Models

The multivariate Fay-Herriot (MFH) model is an extension of the Fay-Herriot model

defined in (2.1) when we have multiple variables of interest, say R variables. Similar to the

univariate Fay-Herriot model, the multivariate Fay-Herriot model contains of two models:

sampling model and linking model. For the sampling model, let µd = (µd1, . . . , µdR)
′ be

an R× 1 vector of R characteristics of interest in the domain d, and yd = (yd1, . . . , ydR)
′

be an R× 1 vector of direct survey estimators of µd. Then

yd = µd + ed, d = 1, 2, . . . , D,

where the ed = (ed1, . . . , edR)
′ is the vector of sampling errors which are independent and

normally distributed with E[ed] = 0R and known covariance matrix Cov[ed] = Ved, with

dimension R × R. For the linking model, the population mean µd is the linked to the
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auxiliary variables Xd,

µd = Xdβ + ud, d = 1, 2, . . . , D,

where ud = (ud1, . . . , udR)
′ is the vector of area specific random effects (also called the

model errors) which are independent and normally distributed with mean E[ud] = 0R and

covariance matrix Cov[ud] = Vud, Xd is an R×pR matrix of auxiliary variables with rth

row given by (0′
p, . . . ,0′

p,x′
dr,0′

p, . . . ,0′
p) with p < D, and β = (β′

1, . . . ,β
′
R) is a pR × 1

vector of regression coefficients. Here, x′
dr occurs in the rth position of the row vector

(rth row).

Combining the sampling model and the linking model, we obtain a multivariate

Fay-Herriot model

yd = Xdβ + ud + ed, d = 1, . . . , D, (3.1)

where ud and ed are mutually independent.

Let y = (y1, . . . ,yD)
′ be the vector of direct survey estimators of µ = (µ1, . . . ,µD)

′,

X = col1≤ d≤D(Xd), and define

u = col
1≤ d≤D

(ud), ud = col
1≤ r≤R

(udr), Vu = diag
1≤ d≤D

(Vud),

e = col
1≤ d≤D

(ed), ed = col
1≤ r≤R

(edr), Ve = diag
1≤ d≤D

(Ved),

where col is the matrix operator stacking columns of a matrix.

In the vector form, the multivariate Fay-Herriot model is

y = Xβ + u + e, (3.2)

= Xβ + w,

where u and e are independent random variables such that u ∼ N(0,Vu), e ∼ N(0,Ve),

and w = y − Xβ = u + v ∼ N(0,V) with V = Vu + Ve.
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In this work, we consider Model 1 in [1] where the covariance matrix of model error

and sampling error are

Vud = Σ(θ) = diag
1≤ r≤R

(θr) and positive definite matrix Ved, (3.3)

respectively, for d = 1, . . . , D. For notation simplicity, we denote Σ for Σ(θ) for the

rest of this thesis book. The covariance matrix Σ depends on the vector of R unknown

parameters θ = (θ1, . . . , θR)
′.

The BLUP estimator of µ is given by

µ̃ = Vu(Vu + Ve)
−1y + Ve(Vu + Ve)

−1Xβ̃, (3.4)

where β̃ = (X′V−1X)−1X′V−1y. The BLUP estimator depends on the unknown param-

eters θ. Substituting an estimator θ̂ for θ, we obtain the empirical BLUP or EBLUP

estimator µ̂ of µ

µ̂ = V̂u(V̂u + Ve)
−1y + Ve(V̂u + Ve)

−1Xβ̂, (3.5)

where β̂ = β̃(θ̂) = (X′V̂−1X)−1X′V̂−1y and V̂ = V̂u + Ve with V̂u = Vu(θ̂).

Following Benavent and Morales [1] and González-Menteiga et al. [16], we assume

the following regularity conditions throughout the thesis:

1. 0 < p < D, 0 < R < D;

2. Σ and Ved, d = 1, . . . , D, are positive definite matrices with uniformly bounded

elements. This implies that V = Vu +Ve = diag
1≤ d≤D

(Σ) + diag
1≤ d≤D

(Ved) is positive

definite matrix;

3. The elements of the covariate matrix X, |xdrk| ≤ x < ∞, for some positive real

number x, for all d, r, and k, X′X = [O(D)]pR×pR;

4. X′V−1
e X = [O(D)]pR×pR,

∑D
d=1 1′

RVed1R = O(D);

5. (X′V−1X)−1 = [O(D−1)]pR×pR;
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6.
([

−1
2 tr

(
V−1 ∂V

∂θi
V−1 ∂V

∂θj

)]
i,j=1,...,R

)−1

=
[
O(D−1)

]
R×R

;

7. θ̂i = k + y′Ciy is an unbiased, consistent and translation invariant estimator of

θi, where k = O(1) is constant and Ci = diag([O(D−1)]R×R, . . . , [O(D−1)]R×R) +

[O(D−2)]DR×DR, for all i = 1, . . . , R;

8. lim sup
D→∞

max
1≤d≤D

λmax(Ved) < ∞.

3.2 Variance Component Estimation for Multivariate Fay-Herriot Model

For the unknown parameters θ in covariance matrix Σ in model (3.2), we consider

two standard methods for the estimation of variance components θ: the profile maximum

likelihood (PML) and the residual maximum likelihood (REML) methods.

3.2.1 Profile Maximum Likelihood Estimator (PML)

The profile log-likelihood function [17] is defined as

ℓP(θ) = c− 1

2

(
log |V|+ y′Py

)
, (3.6)

where P = V−1 − V−1X(X′V−1X)−1X′V−1. The first partial derivative of (3.6), for

i = 1, . . . , R, is given as

∂ℓP(θ)

∂θi
=

1

2

(
y′P∂V

∂θi
Py − tr

(
V−1∂V

∂θi

))
=

1

2

(
w′P∂V

∂θi
Pw − tr

(
V−1∂V

∂θi

))
, (3.7)

where w = y−Xβ and we use the fact that PX = 0 to obtain (3.7). The profile maximum

likelihood or PML estimator of θ is denoted as θ̂
P
= [θ̂P

i ]i=1,...,R, where θ̂P
i = max(θ̃P

i , 0)

such that θ̃P
i is the solution to (∂/∂θi)ℓP(θ) = 0.
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3.2.2 Residual Maximum Likelihood Estimator (REML)

The residual log-likelihood function [31] is defined as

ℓR(θ) = c− 1

2

(
log |K′VK|+ y′Py

)
, (3.8)

where c is a constant, K is a DR × (DR − pR) matrix such that rank(K) = DR − pR,

K′X = 0, and K(K′VK)−1K′ = V−1−V−1X(X′V−1X)−1X′V−1 = P. The first partial

derivative of (3.8), for i = 1, . . . , R, is given as

∂ℓR(θ)

∂θi
=

1

2

(
y′P∂V

∂θi
Py − tr

(
K(K′VK)−1K′∂V

∂θi

))
=

1

2

(
y′P∂V

∂θi
Py − tr

(
P∂V
∂θi

))
=

1

2

(
w′P∂V

∂θi
Pw − tr

(
P∂V
∂θi

))
, (3.9)

where w = y − Xβ and we use the fact that PX = 0 to obtain (3.9). The residual

maximum likelihood or REML estimator of θ is denoted as θ̂
R

= [θ̂R
i ]i=1,...,R, where

θ̂R
i = max(θ̃R

i , 0) such that θ̃R
i is a solution to (∂/∂θi)ℓR(θ) = 0.

3.2.3 Adjusted Maximum Likelihood Estimator of Li and Lahiri (AML.LL)

In this section, we consider a special case, where θi = θ for all i = 1, . . . , R. For this

case, we apply the adjusted maximum likelihood method of Li and Lahiri, called AML.LL

[27] to obtain the variance parameter θ. The adjusted likelihood function of θ is defined

as

LAdj(θ) = θ × L(θ),

where L(θ) is the likelihood function of the parameter θ. The likelihood functions con-

sidered are either profile likelihood or residual likelihood.
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The corresponding adjusted profile and residual log-likelihood function are respec-

tively defined as

ℓAP.LL(θ) = c− 1

2

(
log |V|+ y′Py

)
+ log(θ),

and

ℓAR.LL(θ) = c− 1

2

(
log |K′VK|+ y′Py

)
+ log(θ).

The adjusted profile maximum likelihood (APML.LL) and adjusted residual maximum

likelihood (AREML.LL) estimators of θ are denoted as θ̂AP.LL and θ̂AR.LL, where θ̂AP.LL

is the solution to (∂/∂θ)ℓAP.LL(θ) = 0 and θ̂AR.LL is the solution to (∂/∂θ)ℓAR.LL(θ) = 0,

respectively.

Under the regularity conditions given in [27], we have

E[θ̂ − θ] =


tr(P − V−1) + 2/θ

tr(V−2)
+ o(D−1) if θ̂ = θ̂AP.LL

2/θ

tr(V−2)
+ o(D−1) if θ̂ = θ̂AR.LL

and

E[θ̂ − θ]2 =
2

tr(V−2)
+ o(D−1).

In this section, we have discussed the estimation of parameters θ in the covariance

matrix Σ, of the vector of random effects ud, d = 1, . . . , D. The PML and REML methods

of estimation of θ can lead to negative estimates of variance for some cases of random

effects udr, for d = 1, . . . , D, r = 1, . . . , R, which are then truncated at zero. For AML.LL

methods, these methods can prevent the zero estimate of θ. However, the method is only

applicable for the case where θi = θ for all i = 1, . . . , R.
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3.3 Adjusted Maximum Likelihood Method (AML)

In this section, for covariance matrix Σ defined in Section 3.1, we propose the

adjusted maximum likelihood method to obtain the strictly positive estimate of θ. The

adjusted likelihood function of θ is defined as

LAdj(θ) = |Σ|1/D × L(θ),

where L(θ) is a standard likelihood function (profile and residual likelihood function).

From (3.6) and (3.8), the adjusted log-likelihood functions corresponding to profile

and residual likelihood function are given by

ℓAP(θ) = c− 1

2
(log |V|+ y′Py) + 1

D
log |Σ|,

and

ℓAR(θ) = c− 1

2
(log |K′VK|+ y′Py) + 1

D
log |Σ|.

By solving (∂/∂θ)ℓAP(θ) = 0 and (∂/∂θ)ℓAR(θ) = 0, we obtain an adjusted profile

maximum likelihood (APML) estimator, θ̂AP, and adjusted residual maximum likelihood

(AREML) estimator, θ̂AR, respectively.

Both θ̂
AP and θ̂

AR are even translation invariant estimators of θ. That is adjusted

maximum likelihood estimators satisfy the following two conditions: (1) θ̂(−y) = θ̂(y)

and (2) θ̂(y − XB) = θ̂(y) for all y and B. This property follows from (3.7) and (3.9).

In the next sections, we consider positiveness and asymptotic properties of the

adjusted maximum likelihood estimate θ̂ in Section 3.3.1 and Section 3.3.2, respectively.

3.3.1 Positiveness of the AML Estimators

In this section, we will show that both θ̂
AP and θ̂

AR are strictly positive.
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Lemma 3.1. Let f(·, ·, . . . , ·) be a continuous and positive-valued function of x =

(x1, x2, . . . , xn) where xi ≥ 0, for all i = 1, . . . , n and

lim
xj→∞

n∏
i=1

xαi f(x1, x2, . . . , xn) = lim
xi→∞

g(x1, x2, . . . , xn) = 0, for all j = 1, . . . , n

such that α > 0. Then there exist x01, x02, . . . , x0n such that

g(x01, x02, . . . , x0n) = max
x1,x2,...,xn

g(x1, x2, . . . , xn)

and x0i > 0 for all i = 1, 2, . . . , n.

Proof. Since f(x1, x2, . . . , xn) > 0, we have g(x1, x2, . . . , xn) ≥ 0 when
n∏

i=1

xi ≥ 0.

Since lim
x1→∞

n∏
i=1

xαi f(x1, x2, . . . , xn) = 0 for any fixed x2, x3, . . . , xn, there exists N1 ∈ N,

n∏
i=1

xαi f(x1, x2, . . . , xn) < ϵ1

for all x1 > N1, where

ϵ1 =

n∏
i=2

xαi f(1, x2, x3, . . . , xn) > 0.

Since lim
x2→∞

n∏
i=2

xαi f(1, x2, . . . , xn) = 0 for any fixed x3, x4, . . . , xn, there exists N2 ∈ N,

n∏
i=2

xαi f(1, x2, . . . , xn) < ϵ2

for all x2 > N2, where

ϵ2 =

n∏
i=3

xαi f(1, 1, x3, x4, . . . , xn) > 0.
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Continue process. Since lim
xn→∞

n∏
i=n−1

xαi f(1, 1, . . . , 1, xn) = 0, there exists Nn ∈ N,

n∏
i=n−1

xαi f(1, 1, . . . , 1, xn) < ϵn

for all xn > Nn, where

ϵn = f(1, 1, . . . , 1) > 0.

Let N = max(N1, N2, . . . , Nn). For (x1, x2, . . . , xn) ∈ (N,∞)n,

n∏
i=1

xαi f(x1, x2, . . . , xn) < f(1, 1, . . . , 1).

By the Extreme Value Weierstrass Theorem, there exist x01, x02, . . . , x0n ∈ [0, N ]n such

that

g(x01, x02, . . . , x0n) = max
x1,x2,...,xn∈[0,N ]n

g(x1, x2, . . . , xn).

If g(x01, x02, . . . , x0n) ≥ f(1, 1, . . . , 1), then

g(x01, x02, . . . , x0n) = max
x1,x2,...,xn

g(x1, x2, . . . , xn).

If g(x01, x02, . . . , x0n) < f(1, 1, . . . , 1), then

g(x01, x02, . . . , x0n) = max
x1,x2,...,xn

g(x1, x2, . . . , xn)

and x01, x02, . . . , x0n = 1.

Since g(x01, x02, . . . , x0,i−1, 0, x0,i+1, . . . , xn) = 0, g does not attain maximum at

(x01, x02, . . . , x0n) with x0i = 0 for some i = 1, . . . , n. Hence g has maximum at

(x01, x02, . . . , x0n) where x0i > 0 for all i = 1, . . . , n.
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Theorem 3.2. The adjusted profile maximum likelihood (APML) and the adjusted resid-

ual maximum likelihood (AREML) estimators are strictly positive.

Proof. The positiveness of the APML and AREML estimator can be easily derived from

Lemma 3.1. We first consider the APML estimator, the adjusted profile likelihood function

is

LAP(θ) = |Σ|1/DLP(θ)

= c|Σ|1/D|V|−1/2 exp
{
−1

2
y′Py

}
,

where P = V−1 −V−1X(X′V−1X)−1X′V−1. It is clearly, the profile likelihood function

LP(θ) is a continuous and positive function of θ. Then, for i = 1, . . . , R, we consider

lim
θi→∞

c|Σ|1/D|V|−1/2 exp
{
−1

2
y′Py

}
= lim

θi→∞

c
∏R

r=1 θ
1/D
r exp

{
−1

2y′Py
}

|V|1/2

= lim
θi→∞

c
∏R

r=1 θ
1/D
r exp

{
−1

2y′Py
}∏D

d=1 |Vd|1/2

= lim
θi→∞

c
∏R

r=1 θ
1/D
r exp

{
−1

2y′Py
}∏D

d=1 |Σ+ Ved|1/2

= lim
θi→∞

c
∏R

r=1 θ
1/D
r∏D

d=1 |Σ+ Ved|1/2
exp

{
−1

2
y′Py

}

=

(
lim

θi→∞

c
∏R

r=1 θ
1/D
r∏D

d=1 |Σ+ Ved|1/2

)(
lim

θi→∞
exp

{
−1

2
y′Py

})
= 0,

where we use the fact that lim
θi→∞

exp
{
−1

2
y′Py

}
= 1 for i = 1, . . . , R.

By Lemma 3.1, there exist θ̂ = (θ01, . . . , θ0R)
′ such that LAP(θ) attain maximum

at (θ01, . . . , θ0R) where θ0i > 0 for all i = 1, . . . , R. The same technique can be applied

to show that the AREML estimator is strictly positive.
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3.3.2 Asymptotic Properties of the AML Estimators

In this section, we will prove the asymptotic properties of the APML and AREML

estimators. First, we obtain the asymptotic representations of θ̂AP − θ and θ̂
AR − θ for

the multivariate Fay-Herriot model. To prove this asymptotic representations of θ̂AP − θ

and θ̂
AR −θ, we need the following lemmas and corollaries. The letter c appeared in this

section stands for a constant which vary among difference places.

Lemma 3.3. ([7]) Let Q be a symmetric matrix, and ξ ∼ N(0, I). Then, for any m ≥ 2,

there is a constant c that only depends on m such that

E
∣∣ξ′Qξ − E

[
ξ′Qξ

]∣∣m ≤ c ||Q||mF ,

where ||Q||F is defined as (tr(Q′Q))1/2.

Lemma 3.4. ([7]) Let ℓ(θ) be the likelihood function of θ. For any θ̂ which is obtained

as a solution to a “score” equation of the form ∂ℓ(θ)/∂θ = 0, suppose that

1. ℓ(θ) = ℓ(θ,y) is three times continuously differentiable with respect to θ =

(θ1, . . . , θs)
′, where y = (y1, . . . , yn)

′,

2. θ ∈ Θ0, the interior of Θ,

3. −∞ < lim sup
n→∞

λmax(G−1AG−1) < 0, where λmax means the largest eigenvalue,

A = E[∂2ℓ(θ)/∂θ2], and G = diag(g1, . . . , gs) with gi, 1 ≤ i ≤ s such that

g∗ = min
1≤i≤s

gi → ∞ as n → ∞,

4. the mth moments of the following are bounded (m > 0):

(a) 1

gi

∣∣∣∣∂ℓ(θ)∂θi

∣∣∣∣ , 1 ≤ i ≤ s,

(b) 1
√
gigj

∣∣∣∣∂2ℓ(θ)

∂θi∂θj
− E

[
∂2ℓ(θ)

∂θi∂θj

]∣∣∣∣ , 1 ≤ i, j ≤ s,

(c) g∗
gigjgk

supθ̃∈Sδ(θ)

∣∣∣∣∣ ∂3ℓ(θ̃)

∂θi∂θj∂θk

∣∣∣∣∣ , 1 ≤ i, j, k ≤ s,

where Sδ(θ) = {θ̃ :
∣∣∣θ̃i − θi

∣∣∣ ≤ δg∗/gi, 1 ≤ i ≤ s} for some δ > 0.
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Then there exists θ̂ such that for any 0 < ρ < 1, there is a set B satisfying for large n

and on B, θ̂ ∈ Θ, ∂ℓ(θ̂)/∂θ = 0, |G(θ̂ − θ)| < g1−ρ
∗ , and

θ̂ − θ = −A−1a + r,

where a = ∂ℓ(θ)/∂θ, and |r| ≤ g−2ρ
∗ η with E(ηm) is bounded; and P (Bc) ≤ cg−τm

∗ , where

τ = (1/4) ∧ (1− ρ) and c is constant.

We now define an estimator η̂ of η(θ) having the following property:

E(η̂) = η(θ) + o(g−2
∗ ). (3.10)

It follows from (3.10) that the bias of η̂ is o(g−2
∗ ). Let a = ∂ℓ(θ)/∂θ, A = E[∂2ℓ(θ)/∂θ2],

b = ∂η(θ)/∂θ = (bi), B = ∂2η(θ)/∂θ2 = (Bij), F = ∂2ℓ(θ)/∂θ2, Hi = ∂3ℓ(θ)/∂θi∂θ
2,

and C = (a′A−1Hi)i=1,...,s, where s is the dimension of θ. Also, let Q = G−1AG−1, and

W = Q−1 = (wij). Let G−1a = (λi),G−1/2(F−A)G−1/2 = (λij),G−1HiG−1 = (λijk).

Then, we define the following vector, matrix and arrays: U0 = (ui),U1 = (uil),U2 =

(ujkl) and U3 = (ujklmn), where ui = E[λi], uil = E[λiλl], ujkl = E[λjkλl], and ujklmn =

E[λjkmλlλn]. Note that all of these are functions of θ. For example, A = A(θ). The

norm of a r-way array (r ≥ 3) U, denoted by ||U||, is defined as the maximum of

the absolute values of its elements. Recall that the norm of a matrix M is defined as

∥M∥ = [λmax(M′M)]1/2. Define

∆0(θ) = −2b′A−1 E[a],

∆1(θ) = b′A−1 E[FA−1a],

∆2(θ) =
1

2
E[a′A−1BA−1a],

∆3(θ) = −1

2
b′A−1 E[CA−1a].
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Finally, we define

η̂ = η(θ̂)−
3∑

j=0

∆j(θ̂),

provided that |η̂| ≤ c0g
λ
∗ ; otherwise, let η̂ = η(θ∗), where c0 and λ are known positive

constants, and θ∗ is a given point in Θ.

Lemma 3.5. ([7]) The estimator η̂ of η(θ) given above satisfies the property (3.10)

provide that

1. η(θ) is three times continuously differentiable and the following are bounded: η(θ),

|b|, ||B|| and

sup
θ̃∈Sδ(θ0)

∣∣∣∣∣ ∂3η(θ̃)

∂θi∂θj∂θk

∣∣∣∣∣ , 1 ≤ i, j, k ≤ s,

where δ is positive number and Sδ(θ) = {θ̃ : |θ̃i − θi| ≤ δg∗/gi, 1 ≤ i ≤ s}.

2. The conditions of Lemma 3.4 hold with m > 8+4λ and ℓ(θ) four times continuously

differentiable with respect to θ.

3. The mth moments of the following are bounded:

(a) 1
√
gjgk

∣∣∣∣ ∂3ℓ(θ)

∂θi∂θj∂θk
− E

[
∂3ℓ(θ)

∂θi∂θj∂θk

]∣∣∣∣ , 1 ≤ i, j, k ≤ s,

(b) 1

gjgk

∣∣∣∣ ∂3ℓ(θ)

∂θi∂θj∂θk

∣∣∣∣ , 1 ≤ i, j, k ≤ s,

(c) g2∗
gigjgkgl

sup
θ̃∈Sδ(θ)

∣∣∣∣∣ ∂4ℓ(θ̃)

∂θi∂θj∂θk∂θl

∣∣∣∣∣ , 1 ≤ i, j, k, l ≤ s.

4. sup
θ̃∈Sδ(θ)

||Q(θ̃)−Q(θ)|| → 0, and sup
θ̃∈Sδ(θ)

||Uj(θ̃)−Uj(θ)|| → 0, j = 1, 2, 3, as δ → 0

uniformly in n.

5. |E[a]| is bounded and sup
θ̃∈Sδ(θ)

∣∣E[a]|θ=θ̃ − E[a]
∣∣→ 0, as δ → 0 uniformly in n.
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Lemma 3.6. Let V = I⊗Σ+Ve be the covariance matrix of y in multivariate Fay-Herriot

model (3.2). We have the following properties:

(1) ∂V
∂θi

= ID ⊗ Ei, where Ei is the diagonal matrix of an R× 1 identity vector ei,

(2) ∂V
∂θi

is symmetric,

(3) ∂V
∂θi

is idempotent,

(4) ∂V
∂θi

has D eigenvalues equal to 1 and D(R− 1) eigenvalues equal to 0,

(5) ∂V
∂θi

is positive semidefinite,

(6)
(
∂V
∂θi

)(
∂V
∂θj

)
= 0DR×DR for i ̸= j.

Proof. For (1), note that

∂V
∂θi

=
∂

∂θi
(I ⊗Σ+ Ve)

=
∂

∂θi
(I ⊗Σ) +

∂Ve
∂θi

=
∂I
∂θi

⊗Σ+ I ⊗ ∂Σ

∂θi
+ 0DR×DR

= I ⊗ Ei,

where we use the fact that Σ = diag1≤r≤R(θr) to obtain last equation and Ei = diag(ei)

is the diagonal matrix of an R× 1 identity vector ei.

For (2), note that

(
∂V
∂θi

)′
= (ID ⊗ Ei)

′

= I′D ⊗ E′
i

= ID ⊗ Ei,
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where we use the fact that E′
i = (diag(ei))′ = diag(ei) = Ei to obtain the last equation.

Hence ∂V
∂θi

is symmetric.

For (3), note that, using theorem 2.48,

(
∂V
∂θi

)(
∂V
∂θi

)
= (ID ⊗ Ei) (ID ⊗ Ei)

= (IDID ⊗ EiEi)

= (ID ⊗ Ei) (3.11)

=
∂V
∂θi

,

where we use the fact that EiEi = (diag(ei))(diag(ei)) = diag(ei) = Ei to obtain (3.11).

Hence ∂V
∂θi

is idempotent.

For (4), Since ∂V
∂θi

is a symmetric and idempotent matrix of rank D, by Theorem

2.43, ∂V
∂θi

has D eigenvalues equal to 1 and D(R− 1) eigenvalues equal to 0.

For (5), since ∂V
∂θi

has the zero eigenvalue, it is singular. Since ∂V
∂θi

is singular,

symmetric, and idempotent matrix, from Theorem 2.42, ∂V
∂θi

is positive semidefinite.

For (6), note that

(
∂V
∂θi

)(
∂V
∂θj

)
= (ID ⊗ Ei) (ID ⊗ Ej)

= (IDID ⊗ EiEj)

= (ID ⊗ 0R×R)

= 0DR×DR.

Hence
(
∂V
∂θi

)(
∂V
∂θj

)
= 0DR×DR for i ̸= j.
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Lemma 3.7. Under the multivariate Fay-Herriot model (3.2), for i = 1, . . . , R,

(1) 0 ≤ tr
(

V−1∂V
∂θi

)
≤ DR

λmin(V)
,

and

(2) 0 ≤ tr
(

P∂V
∂θi

)
≤ DR− pR

λmin(V)
,

where V = ID ⊗Σ+ Ve, P = V−1 − V−1X(X′V−1X)−1X′V−1.

Proof. For (1), since V is positive definite, from Theorem 2.27, V−1 is positive definite.

From Theorem 2.39, Lemma 3.6(5), and Corollary 2.36, we have

tr
(

V−1∂V
∂θi

)
= tr

(
∂V
∂θi

V−1

)
≤ λmax

(
∂V
∂θi

)
tr(V−1)

= tr(V−1)

≤ λmax(V−1) tr(IDR)

=
DR

λmin(V)
,

where we use Corollary 2.33 to obtain the last equation.

Then, from Theorem 2.39, Lemma 3.6(5) and Lemma 3.6(4), we have

tr
(

V−1∂V
∂θi

)
= tr

(
∂V
∂θi

V−1

)
≥ λmin

(
∂V
∂θi

)
tr(V−1)

= 0.
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Hence,

0 ≤ tr
(

V−1∂V
∂θi

)
≤ DR

λmin(V)
,

for i = 1, . . . , R.

For (2), let B = IDR − V−1/2X(X′V−1X)−1X′V−1/2. Then B is symmetric and

idempotent. Therefore, the eigenvalues of B are either 0 or 1. Since B is symmetric and

has non-negative eigenvalues, B is positive semidefinite. From Theorem 2.26(ii), we have

P = (V−1/2B)(V−1/2B)′ is positive semidefinite. From Theorem 2.39, we have

tr
(

P∂V
∂θi

)
= tr

(
∂V
∂θi

(V−1/2B)(V−1/2B)′
)

≤ λmax

(
∂V
∂θi

)
tr
(
(V−1/2B)(V−1/2B)′

)
= tr(V−1B)

≤ λmax(V−1) tr(B)

= λmax(V−1) tr(IDR − V−1/2X(X′V−1X)−1X′V−1/2)

= λmax(V−1)
[
tr(IDR)− tr(X′V−1X(X′V−1X)−1)

]
=

DR− pR

λmin(V)
,

where we use Corollary 2.33 to obtain the last equation.

Then, from Theorem 2.39, Lemma 3.6(5) and Lemma 3.6(4), we have

tr
(

P∂V
∂θi

)
= tr

(
∂V
∂θi

(V−1/2B)(V−1/2B)′
)

≥ λmin

(
∂V
∂θi

)
tr
(
(V−1/2B)(V−1/2B)′

)
= 0.
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Hence

0 ≤ tr
(

P∂V
∂θi

)
≤ DR− pR

λmin(V)
,

for i = 1, . . . , R.

Lemma 3.8. Under the multivariate Fay-Herriot model (3.2), for i, j = 1, . . . , R,

(1) 0 ≤ tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

)
≤ DR

λ2
min(V)

,

and

(2) 0 ≤ tr
(

P∂V
∂θi

P∂V
∂θj

)
≤ DR− pR

λ2
min(V)

,

where V = ID ⊗Σ+ Ve, P = V−1 − V−1X(X′V−1X)−1X′V−1.

Proof. For (1), from the property that (∂V/∂θi) is idempotent, Theorem 2.26(ii) and

Theorem 2.39, we have

tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

)
= tr

(
∂V
∂θj

(
V−1∂V

∂θi

)(
V−1∂V

∂θi

)′)
≤ λmax

(
∂V
∂θj

)
tr
((

V−1∂V
∂θi

)(
V−1∂V

∂θi

)′)
= tr

(
V−1

(
V−1/2∂V

∂θi

)(
V−1/2∂V

∂θi

)′)
≤ λmax

(
V−1

)
tr
((

V−1/2∂V
∂θi

)(
V−1/2∂V

∂θi

)′)
= λmax

(
V−1

)
tr
(

V−1∂V
∂θi

)
≤ DR

λ2
min(V)

,

where we use Corollary 2.33 and Lemma 3.7(1) to obtain the last inequality.
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Using Theorem 2.39 and the property that λmin(∂V/∂θj) = 0, we have

tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

)
= tr

(
∂V
∂θj

V−1∂V
∂θi

V−1

)
= tr

(
∂V
∂θj

(
V∂V

∂θi

)(
V∂V

∂θi

)′)
≥ λmin

(
∂V
∂θj

)
tr
((

V∂V
∂θi

)(
V∂V

∂θi

)′)
= 0. (3.12)

Hence

0 ≤ tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

)
≤ DR

λ2
min(V)

,

for i, j = 1, . . . , R.

For (2), from the proof of Lemma 3.7, we know that P = V−1/2BV−1/2 is positive

semidefinite and B is positive semidefinite and idempotent. Then, from the property that

(∂V/∂θi) is idempotent, Theorem 2.26(ii) and Theorem 2.39, we have

tr
(

P∂V
∂θi

P∂V
∂θj

)
= tr

(
∂V
∂θj

P∂V
∂θi

P
)

= tr
(
∂V
∂θj

(
V−1/2BV−1/2∂V

∂θi

)(
V−1/2BV−1/2∂V

∂θi

)′)
≤ λmax

(
∂V
∂θj

)
tr
((

V−1/2BV−1/2∂V
∂θi

)(
V−1/2BV−1/2∂V

∂θi

)′)
= tr

(
V−1

(
BV−1/2∂V

∂θi

)(
BV−1/2∂V

∂θi

)′)
≤ λmax

(
V−1

)
tr
((

BV−1/2∂V
∂θi

)(
BV−1/2∂V

∂θi

)′)
= λmax

(
V−1

)
tr
(

P∂V
∂θi

)
≤ DR− pR

λ2
min(V)

,

where we use Corollary 2.33 and Lemma 3.7(2) to obtain the last inequality.
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Using Theorem 2.39 and the property that λmin(∂V/∂θj) = 0, we have

tr
(

P∂V
∂θi

P∂V
∂θj

)
= tr

(
∂V
∂θj

P∂V
∂θi

P
)

= tr
(
∂V
∂θj

(
V−1/2BV−1/2∂V

∂θi

)(
V−1/2BV−1/2∂V

∂θi

)′)
≥ λmin

(
∂V
∂θj

)
tr
((

V−1/2BV−1/2∂V
∂θi

)(
V−1/2BV−1/2∂V

∂θi

)′)
= 0. (3.13)

Hence

0 ≤ tr
(

P∂V
∂θi

P∂V
∂θj

)
≤ DR− pR

λ2
min(V)

,

for i, j = 1, . . . , R.

Lemma 3.9. Under the multivariate Fay-Herriot model (3.2), for i, j, k = 1, . . . , R,

(1) − 2DR

λ3
min(V)

≤ tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

)
+ tr

(
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1 ∂V

∂θk

)
≤ 4DR

λ3
min(V)

,

and

(2) −2(DR− pR)

λ3
min(V)

≤ tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

)
+ tr

(
P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)
≤ 4(DR− pR)

λ3
min(V)

,

where V = ID ⊗Σ+ Ve, P = V−1 − V−1X(X′V−1X)−1X′V−1.
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Proof. For (1), from Theorem 2.26(ii) and Theorem 2.39, we have

tr
(

V−1∂V
∂θi

V−1∂V
∂θi

V−1 ∂V
∂θj

)
= tr

(
∂V
∂θj

(
V−1∂V

∂θi
V−1/2

)(
V−1∂V

∂θi
V−1/2

)′)
≤ λmax

(
∂V
∂θj

)
tr
((

V−1∂V
∂θi

V−1/2

)(
V−1∂V

∂θi
V−1/2

)′)
= tr

(
V−1

(
V−1/2∂V

∂θi
V−1/2

)(
V−1/2∂V

∂θi
V−1/2

)′)
≤ λmax(V−1) tr

((
V−1/2∂V

∂θi
V−1/2

)(
V−1/2∂V

∂θi
V−1/2

)′)
= λmax(V−1) tr

(
V−1∂V

∂θi
V−1∂V

∂θi

)
≤ DR

λ3
min(V)

, (3.14)

where we use Corollary 2.33 and Lemma 3.8(1) to obtain the last inequality.

Using Theorem 2.39 and the property that λmin(∂V/∂θj) = 0, we have

tr
(

V−1∂V
∂θi

V−1∂V
∂θi

V−1 ∂V
∂θj

)
= tr

(
∂V
∂θj

(
V−1∂V

∂θi
V−1/2

)(
V−1∂V

∂θi
V−1/2

)′)
≥ λmin

(
∂V
∂θj

)
tr
((

V−1∂V
∂θi

V−1/2

)(
V−1∂V

∂θi
V−1/2

)′)
= 0. (3.15)

Thus, from (3.14) and (3.15),

0 ≤ tr
(

V−1∂V
∂θi

V−1∂V
∂θi

V−1 ∂V
∂θj

)
≤ DR

λ3
min(V)

, (3.16)

for i, j = 1, . . . , R.
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From Theorem 2.26(ii) and Theorem 2.39, we have

tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

)
+ tr

(
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1 ∂V

∂θk

)
+ tr

(
V−1∂V

∂θi
V−1∂V

∂θi
V−1 ∂V

∂θk

)
+ tr

(
V−1 ∂V

∂θj
V−1 ∂V

∂θj
V−1 ∂V

∂θk

)
= tr

(
∂V
∂θk

(
V−1∂V

∂θi
V−1/2 + V−1 ∂V

∂θj
V−1/2

)(
V−1∂V

∂θi
V−1/2 + V−1 ∂V

∂θj
V−1/2

)′)
≤ λmax

(
∂V
∂θk

)
tr
((

V−1∂V
∂θi

V−1/2 + V−1 ∂V
∂θj

V−1/2

)
(

V−1∂V
∂θi

V−1/2 + V−1 ∂V
∂θj

V−1/2

)′)
= tr

(
V−1

(
V−1/2∂V

∂θi
V−1/2 + V−1/2 ∂V

∂θj
V−1/2

)
(

V−1/2∂V
∂θi

V−1/2 + V−1/2 ∂V
∂θj

V−1/2

)′)
≤ λmax(V−1) tr

((
V−1/2∂V

∂θi
V−1/2 + V−1/2 ∂V

∂θj
V−1/2

)
(

V−1/2∂V
∂θi

V−1/2 + V−1/2 ∂V
∂θj

V−1/2

)′)
= λmax(V−1) tr

(
V−1∂V

∂θi
V−1 ∂V

∂θj
+ V−1 ∂V

∂θj
V−1∂V

∂θi
+ V−1∂V

∂θi
V−1∂V

∂θi

+ V−1 ∂V
∂θj

V−1 ∂V
∂θj

)
≤ 4DR

λ3
min(V)

, (3.17)

where we use Corollary 2.33 and Lemma 3.8(1) to obtain the last inequality.

By using the same technique as (3.15) and property that λmin(∂V/∂θk) = 0, we

have

0 ≤ tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

)
+ tr

(
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1 ∂V

∂θk

)
(3.18)

+ tr
(

V−1∂V
∂θi

V−1∂V
∂θi

V−1 ∂V
∂θk

)
+ tr

(
V−1 ∂V

∂θj
V−1 ∂V

∂θj
V−1 ∂V

∂θk

)
.

From (3.16), (3.17) and (3.18), we have

tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

)
+ tr

(
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1 ∂V

∂θk

)
≤ 4DR

λ3
min(V)

,
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and

− 2DR

λ3
min(V)

≤ tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

)
+ tr

(
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1 ∂V

∂θk

)
.

Hence,

− 2DR

λ3
min(V)

≤ tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

)
+ tr

(
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1 ∂V

∂θk

)
≤ 4DR

λ3
min(V)

,

for i, j, k = 1, . . . , R.

For (2), from Theorem 2.26(ii) and Theorem 2.39, we have

tr
(

P∂V
∂θi

P∂V
∂θi

P∂V
∂θj

)
= tr

(
V−1/2BV−1/2∂V

∂θi
V−1/2BV−1/2∂V

∂θi
V−1/2BV−1/2 ∂V

∂θj

)
= tr

(
∂V
∂θj

(
V−1/2BV−1/2∂V

∂θi
V−1/2B

)(
V−1/2BV−1/2∂V

∂θi
V−1/2B

)′)
≤ λmax

(
∂V
∂θj

)
tr
((

V−1/2BV−1/2∂V
∂θi

V−1/2B
)(

V−1/2BV−1/2∂V
∂θi

V−1/2B
)′)

= tr
(

V−1

(
BV−1/2∂V

∂θi
V−1/2B

)(
BV−1/2∂V

∂θi
V−1/2B

)′)
≤ λmax(V−1) tr

((
BV−1/2∂V

∂θi
V−1/2B

)(
BV−1/2∂V

∂θi
V−1/2B

)′)
= λmax(V−1) tr

(
P∂V
∂θi

P∂V
∂θi

)
≤ DR− pR

λ3
min(V)

,

where we use Corollary 2.33 and Lemma 3.8(2) to obtain the last inequality.

By using the same technique as (3.15) and the property that λmin(∂V/∂θj) = 0,

we have

0 ≤ tr
(

P∂V
∂θi

P∂V
∂θi

P∂V
∂θj

)
.
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Thus,

0 ≤ tr
(

P∂V
∂θi

P∂V
∂θi

P∂V
∂θj

)
≤ DR− pR

λ3
min(V)

, (3.19)

for i, j = 1, . . . , R.

From Theorem 2.26(ii) and Theorem 2.39, we have

tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

+ P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

+ P∂V
∂θi

P∂V
∂θi

P∂V
∂θk

+ P∂V
∂θj

P∂V
∂θj

P∂V
∂θk

)
= tr

(
V−1/2BV−1/2∂V

∂θi
V−1/2BV−1/2 ∂V

∂θj
V−1/2BV−1/2 ∂V

∂θk

+ V−1/2BV−1/2 ∂V
∂θj

V−1/2BV−1/2∂V
∂θi

V−1/2BV−1/2 ∂V
∂θk

+ V−1/2BV−1/2∂V
∂θi

V−1/2BV−1/2∂V
∂θi

V−1/2BV−1/2 ∂V
∂θk

+ V−1/2BV−1/2 ∂V
∂θj

V−1/2BV−1/2 ∂V
∂θj

V−1/2BV−1/2 ∂V
∂θk

)
= tr

(
∂V
∂θk

(
V−1/2BV−1/2∂V

∂θi
V−1/2B + V−1/2BV−1/2 ∂V

∂θj
V−1/2B

)
(

V−1/2BV−1/2∂V
∂θi

V−1/2B + V−1/2BV−1/2 ∂V
∂θj

V−1/2B
)′)

≤ λmax

(
∂V
∂θk

)
tr
((

V−1/2BV−1/2∂V
∂θi

V−1/2B + V−1/2BV−1/2 ∂V
∂θj

V−1/2B
)

(
V−1/2BV−1/2∂V

∂θi
V−1/2B + V−1/2BV−1/2 ∂V

∂θj
V−1/2B

)′)
= tr

(
V−1

(
BV−1/2∂V

∂θi
V−1/2B + BV−1/2 ∂V

∂θj
V−1/2B

)
(

BV−1/2∂V
∂θi

V−1/2B + BV−1/2 ∂V
∂θj

V−1/2B
)′)

≤ λmax(V−1) tr
((

BV−1/2∂V
∂θi

V−1/2B + BV−1/2 ∂V
∂θj

V−1/2B
)

(
BV−1/2∂V

∂θi
V−1/2B + BV−1/2 ∂V

∂θj
V−1/2B

)′)
= λmax(V−1) tr

(
P∂V
∂θi

P∂V
∂θj

+ P∂V
∂θj

P∂V
∂θi

+ P∂V
∂θi

P∂V
∂θi

+ P∂V
∂θj

P∂V
∂θj

)
≤ 4(DR− pR)

λ3
min(V)

, (3.20)

where we use Corollary 2.33 and Lemma 3.8(2) to obtain the last inequality.
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By using the same technique as (3.15) and the property that λmin(∂V/∂θk) = 0,

we have

0 ≤ tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

)
+ tr

(
P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)
(3.21)

+ tr
(

P∂V
∂θi

P∂V
∂θi

P∂V
∂θk

)
+ tr

(
P∂V
∂θj

P∂V
∂θj

P∂V
∂θk

)
.

From (3.19), (3.20) and (3.21), we have

tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

)
+ tr

(
P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)
≤ 4(DR− pR)

λ3
min(V)

,

and

−2(DR− pR)

λ3
min(V)

≤ tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

)
+ tr

(
P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)
,

Hence,

−2(DR− pR)

λ3
min(V)

≤ tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

)
+ tr

(
P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)
≤ 4(DR− pR)

λ3
min(V)

,

for i, j, k = 1, . . . , R.

Lemma 3.10. Under the multivariate Fay-Herriot model (3.2), for i, j, k, l = 1, . . . , R,

(1) − 2DR

λ4
min(V)

≤ tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θl

)
+ tr

(
V−1 ∂V

∂θk
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1∂V

∂θl

)
≤ 4DR

λ4
min(V)

,

and

(2) −2(DR− pR)

λ4
min(V)

≤ tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

P∂V
∂θl

)
+ tr

(
P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P∂V
∂θl

)
≤ 4(DR− pR)

λ4
min(V)

,

where V = ID ⊗Σ+ Ve, P = V−1 − V−1X(X′V−1X)−1X′V−1.
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Proof. For (1), from Theorem 2.26(ii) and Theorem 2.39, we have

tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1∂V
∂θi

V−1∂V
∂θl

)
= tr

(
∂V
∂θl

(
V−1∂V

∂θi
V−1 ∂V

∂θj

)(
V−1∂V

∂θi
V−1 ∂V

∂θj

)′)
≤ λmax

(
∂V
∂θl

)
tr
((

V−1∂V
∂θi

V−1 ∂V
∂θj

)(
V−1∂V

∂θi
V−1 ∂V

∂θj

)′)
= tr

(
V−1

(
V−1/2∂V

∂θi
V−1 ∂V

∂θj

)(
V−1/2∂V

∂θi
V−1 ∂V

∂θj

)′)
≤ λmax

(
V−1

)
tr
((

V−1/2∂V
∂θi

V−1 ∂V
∂θj

)(
V−1/2∂V

∂θi
V−1 ∂V

∂θj

)′)
= λmax

(
V−1

)
tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1∂V
∂θi

)
≤ DR

λ4
min (V)

, (3.22)

where we use Corollary 2.33 and (3.16) to obtain last inequality.

Using Theorem 2.39 and the property that λmin(∂V/∂θl) = 0, we have

tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1∂V
∂θi

V−1∂V
∂θl

)
= tr

(
∂V
∂θl

(
V−1∂V

∂θi
V−1 ∂V

∂θj

)(
V−1∂V

∂θi
V−1 ∂V

∂θj

)′)
≥ λmin

(
∂V
∂θl

)
tr
((

V−1∂V
∂θi

V−1 ∂V
∂θj

)(
V−1∂V

∂θi
V−1 ∂V

∂θj

)′)
= 0. (3.23)

Thus, from (3.22) and (3.23),

0 ≤ tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1∂V
∂θi

V−1∂V
∂θl

)
≤ DR

λ4
min (V)

, (3.24)

for i, j, l = 1, . . . , R.
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From Theorem 2.26(ii) and Theorem 2.39, we have

tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θl

)
+ tr

(
V−1 ∂V

∂θk
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1∂V

∂θl

)
+ tr

(
V−1∂V

∂θi
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1∂V

∂θl

)
+ tr

(
V−1 ∂V

∂θk
V−1 ∂V

∂θj
V−1 ∂V

∂θk
V−1∂V

∂θl

)
= tr

(
∂V
∂θl

(
V−1∂V

∂θi
V−1 ∂V

∂θj
+ V−1 ∂V

∂θk
V−1 ∂V

∂θj

)
(

V−1∂V
∂θi

V−1 ∂V
∂θj

+ V−1 ∂V
∂θk

V−1 ∂V
∂θj

)′)
≤ λmax

(
∂V
∂θl

)
tr
((

V−1∂V
∂θi

V−1 ∂V
∂θj

+ V−1 ∂V
∂θk

V−1 ∂V
∂θj

)
(

V−1∂V
∂θi

V−1 ∂V
∂θj

+ V−1 ∂V
∂θk

V−1 ∂V
∂θj

)′)
= tr

(
V−1

(
V−1/2∂V

∂θi
V−1 ∂V

∂θj
+ V−1/2 ∂V

∂θk
V−1 ∂V

∂θj

)
(

V−1/2∂V
∂θi

V−1 ∂V
∂θj

+ V−1/2 ∂V
∂θk

V−1 ∂V
∂θj

)′)
≤ λmax

(
V−1

)
tr
((

V−1/2∂V
∂θi

V−1 ∂V
∂θj

+ V−1/2 ∂V
∂θk

V−1 ∂V
∂θj

)
(

V−1/2∂V
∂θi

V−1 ∂V
∂θj

+ V−1/2 ∂V
∂θk

V−1 ∂V
∂θj

)′)
= λmax

(
V−1

)
tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

+ V−1 ∂V
∂θk

V−1 ∂V
∂θj

V−1∂V
∂θi

+ V−1∂V
∂θi

V−1 ∂V
∂θj

V−1∂V
∂θi

+ V−1 ∂V
∂θk

V−1 ∂V
∂θj

V−1 ∂V
∂θk

)
≤ 4DR

λ4
min(V)

, (3.25)

where we use Corollary 2.33 and Lemma 3.9(1) to obtain the last inequality.

By using the same technique as (3.23) and the property that λmin(∂V/∂θl) = 0, we

have

0 ≤ tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θl

)
+ tr

(
V−1 ∂V

∂θk
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1∂V

∂θl

)
+ tr

(
V−1∂V

∂θi
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1∂V

∂θl

)
+ tr

(
V−1 ∂V

∂θk
V−1 ∂V

∂θj
V−1 ∂V

∂θk
V−1∂V

∂θl

)
.

(3.26)
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From (3.24), (3.25) and (3.26), we have

tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θl

)
+ tr

(
V−1 ∂V

∂θk
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1∂V

∂θl

)
≤ 4DR

λ4
min(V)

,

and

− 2DR

λ4
min(V)

≤ tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θl

)
+ tr

(
V−1 ∂V

∂θk
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1∂V

∂θl

)
.

Hence, for i, j, k, l = 1, . . . , R,

− 2DR

λ4
min(V)

≤ tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θl

)
+ tr

(
V−1 ∂V

∂θk
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1∂V

∂θl

)
≤ 4DR

λ4
min(V)

.

For (2), by using the same technique as (3.25) and (3.26), we have

tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

P∂V
∂θl

)
+ tr

(
P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P∂V
∂θl

)
≤ 4(DR− pR)

λ4
min(V)

,

and

−2(DR− pR)

λ4
min(V)

≤ tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

P∂V
∂θl

)
+ tr

(
P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P∂V
∂θl

)
.

Hence, for i, j, k, l = 1, . . . , R,

−2(DR− pR)

λ4
min(V)

≤ tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

P∂V
∂θl

)
+ tr

(
P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P∂V
∂θl

)
≤ 4(DR− pR)

λ4
min(V)

.
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Lemma 3.11. Under the multivariate Fay-Herriot model (3.2), for i, j, k, l,m = 1, . . . , R,

(1) − 2DR

λ5
min(V)

≤ tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θl

V−1 ∂V
∂θm

)
+ tr

(
V−1∂V

∂θl
V−1 ∂V

∂θk
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1 ∂V

∂θm

)
≤ 4DR

λ5
min(V)

,

and

(2) −2(DR− pR)

λ5
min(V)

≤ tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

P∂V
∂θl

P ∂V
∂θm

)
+ tr

(
P∂V
∂θl

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P ∂V
∂θm

)
≤ 4(DR− pR)

λ5
min(V)

,

where V = ID ⊗Σ+ Ve, P = V−1 − V−1X(X′V−1X)−1X′V−1.

Proof. For (1), from Theorem 2.26(ii) and Theorem 2.39, we have

tr
(

V−1∂V
∂θi

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θj

)
= tr

(
V−1

(
∂V
∂θj

V−1∂V
∂θi

V−1/2

)(
∂V
∂θj

V−1∂V
∂θi

V−1/2

)′)
≤ λmax(V−1) tr

((
∂V
∂θj

V−1∂V
∂θi

V−1/2

)(
∂V
∂θj

V−1∂V
∂θi

V−1/2

)′)
= λmax(V−1) tr

(
V−1∂V

∂θi
V−1∂V

∂θi
V−1 ∂V

∂θj

)
≤ DR

λ4
min(V)

, (3.27)

where we use Corollary 2.33 and (3.16) to obtain the last inequality.
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Using Theorem 2.39, we have

tr
(

V−1∂V
∂θi

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θj

)
= tr

(
V−1

(
∂V
∂θj

V−1∂V
∂θi

V−1/2

)(
∂V
∂θj

V−1∂V
∂θi

V−1/2

)′)
≥ λmin(V−1) tr

((
∂V
∂θj

V−1∂V
∂θi

V−1/2

)(
∂V
∂θj

V−1∂V
∂θi

V−1/2

)′)
= λmin(V−1) tr

(
V−1∂V

∂θi
V−1∂V

∂θi
V−1 ∂V

∂θj

)
≥ 0, (3.28)

where we use (3.14) to obtain the last inequality.

Thus, from (3.27) and (3.28),

0 ≤ tr
(

V−1∂V
∂θi

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θj

)
≤ DR

λ4
min(V)

, (3.29)

for i, j = 1, . . . , R.

From Theorem 2.26(ii) and Theorem 2.39, we have

tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θj

V−1∂V
∂θi

V−1 ∂V
∂θm

)
= tr

(
∂V
∂θm

(
V−1∂V

∂θi
V−1 ∂V

∂θj
V−1/2

)(
V−1∂V

∂θi
V−1 ∂V

∂θj
V−1/2

)′)
≤ λmax

(
∂V
∂θm

)
tr
((

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1/2

)(
V−1∂V

∂θi
V−1 ∂V

∂θj
V−1/2

)′)
= tr

(
V−1

(
V−1/2∂V

∂θi
V−1 ∂V

∂θj
V−1/2

)(
V−1/2∂V

∂θi
V−1 ∂V

∂θj
V−1/2

)′)
≤ λmax(V−1) tr

((
V−1/2∂V

∂θi
V−1 ∂V

∂θj
V−1/2

)(
V−1/2∂V

∂θi
V−1 ∂V

∂θj
V−1/2

)′)
= λmax(V−1) tr

(
V−1∂V

∂θi
V−1 ∂V

∂θj
V−1 ∂V

∂θj
V−1∂V

∂θi

)
≤ DR

λ5
min(V)

, (3.30)

where we use Corollary 2.33 and (3.27) to obtain last inequality.
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Using Theorem 2.39 and the property that λmin(∂V/∂θm) = 0, we have

tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θj

V−1∂V
∂θi

V−1 ∂V
∂θm

)
= tr

(
∂V
∂θm

(
V−1∂V

∂θi
V−1 ∂V

∂θj
V−1/2

)(
V−1∂V

∂θi
V−1 ∂V

∂θj
V−1/2

)′)
≥ λmin

(
∂V
∂θm

)
tr
((

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1/2

)(
V−1∂V

∂θi
V−1 ∂V

∂θj
V−1/2

)′)
= 0. (3.31)

Thus, from (3.30) and (3.31),

0 ≤ tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θj

V−1∂V
∂θi

V−1 ∂V
∂θm

)
≤ DR

λ5
min (V)

, (3.32)

for i, j,m = 1, . . . , R.

From Theorem 2.26(ii) and Theorem 2.39, we have

tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θl

V−1 ∂V
∂θm

)
+ tr

(
V−1∂V

∂θl
V−1 ∂V

∂θk
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1 ∂V

∂θm

)
+ tr

(
V−1∂V

∂θi
V−1 ∂V

∂θj
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1 ∂V

∂θm

)
+ tr

(
V−1∂V

∂θl
V−1 ∂V

∂θk
V−1 ∂V

∂θk
V−1∂V

∂θl
V−1 ∂V

∂θm

)
= tr

(
∂V
∂θm

(
V−1∂V

∂θi
V−1 ∂V

∂θj
V−1/2 + V−1∂V

∂θl
V−1 ∂V

∂θk
V−1/2

)
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1/2 + V−1∂V
∂θl

V−1 ∂V
∂θk

V−1/2

)′)
≤ λmax

(
∂V
∂θm

)
tr
((

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1/2 + V−1∂V
∂θl

V−1 ∂V
∂θk

V−1/2

)
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1/2 + V−1∂V
∂θl

V−1 ∂V
∂θk

V−1/2

)′)
= tr

(
V−1

(
V−1/2∂V

∂θi
V−1 ∂V

∂θj
V−1/2 + V−1/2∂V

∂θl
V−1 ∂V

∂θk
V−1/2

)
(

V−1/2∂V
∂θi

V−1 ∂V
∂θj

V−1/2 + V−1/2∂V
∂θl

V−1 ∂V
∂θk

V−1/2

)′)
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≤ λmax(V−1) tr
((

V−1/2∂V
∂θi

V−1 ∂V
∂θj

V−1/2 + V−1/2∂V
∂θl

V−1 ∂V
∂θk

V−1/2

)
(

V−1/2∂V
∂θi

V−1 ∂V
∂θj

V−1/2 + V−1/2∂V
∂θl

V−1 ∂V
∂θk

V−1/2

)′)
= λmax(V−1) tr

(
V−1∂V

∂θi
V−1 ∂V

∂θj
V−1 ∂V

∂θj
V−1∂V

∂θi

+ V−1∂V
∂θl

V−1 ∂V
∂θk

V−1 ∂V
∂θj

V−1∂V
∂θi

+ V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θl

+ V−1∂V
∂θl

V−1 ∂V
∂θk

V−1 ∂V
∂θk

V−1∂V
∂θl

)
≤ 4DR

λ5
min(V)

, (3.33)

where we use Corollary 2.33, Lemma 3.10(1) and (3.29) to obtain the last inequality.

By using the same technique as (3.31) and property that λmin(∂V/∂θm) = 0, we

have

0 ≤ tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θl

V−1 ∂V
∂θm

)
(3.34)

+ tr
(

V−1∂V
∂θl

V−1 ∂V
∂θk

V−1 ∂V
∂θj

V−1∂V
∂θi

V−1 ∂V
∂θm

)
+ tr

(
V−1∂V

∂θi
V−1 ∂V

∂θj
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1 ∂V

∂θm

)
+ tr

(
V−1∂V

∂θl
V−1 ∂V

∂θk
V−1 ∂V

∂θk
V−1∂V

∂θl
V−1 ∂V

∂θm

)
.

From (3.32), (3.33) and (3.34), we have

tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θl

V−1 ∂V
∂θm

)
+ tr

(
V−1∂V

∂θl
V−1 ∂V

∂θk
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1 ∂V

∂θm

)
≤ 4DR

λ5
min(V)

,
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and

− 2DR

λ5
min(V)

≤ tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θl

V−1 ∂V
∂θm

)
+ tr

(
V−1∂V

∂θl
V−1 ∂V

∂θk
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1 ∂V

∂θm

)
.

Hence,

− 2DR

λ5
min(V)

≤ tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θl

V−1 ∂V
∂θm

)
+ tr

(
V−1∂V

∂θl
V−1 ∂V

∂θk
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1 ∂V

∂θm

)
≤ 4DR

λ5
min(V)

,

for i, j, k, l,m = 1, . . . , R.

For (2), by using the same technique as (3.30) and (3.31),

tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

P∂V
∂θl

P ∂V
∂θm

)
+ tr

(
P∂V
∂θl

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P ∂V
∂θm

)
≤ 4(DR− pR)

λ5
min(V)

,

and

−2(DR− pR)

λ5
min(V)

≤ tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

P∂V
∂θl

P ∂V
∂θm

)
+ tr

(
P∂V
∂θl

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P ∂V
∂θm

)
.

Hence,

−2(DR− pR)

λ5
min(V)

≤ tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

P∂V
∂θl

P ∂V
∂θm

)
+ tr

(
P∂V
∂θl

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P ∂V
∂θm

)
≤ 4(DR− pR)

λ5
min(V)

,

for i, j, k, l,m = 1, . . . , R.
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Lemma 3.12. Under the multivariate Fay-Herriot model (3.2), for i, j = 1, . . . , R,

(1) 0 ≤ tr
(

P∂V
∂θi

P∂V
∂θi

P∂V
∂θj

P∂V
∂θj

)
≤ DR− pR

λ4
min(V)

and

(2) 0 ≤ tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θi

P∂V
∂θj

)
≤ DR− pR

λ4
min(V)

,

where V = ID ⊗Σ+ Ve, P = V−1 − V−1X(X′V−1X)−1X′V−1.

Proof. For (1), from the proof of Lemma 3.7, we know that P = V−1/2BV−1/2 is positive

semidefinite and B is positive semidefinite and idempotent. From Theorem 2.26(ii) and

Theorem 2.39, we have

tr
(

P∂V
∂θi

P∂V
∂θi

P∂V
∂θj

P∂V
∂θj

)
= tr

(
B
(

V−1/2 ∂V
∂θj

P∂V
∂θi

V−1/2B
)(

V−1/2 ∂V
∂θj

P∂V
∂θi

V−1/2B
)′)

≤ λmax(B) tr
((

V−1/2 ∂V
∂θj

P∂V
∂θi

V−1/2B
)(

V−1/2 ∂V
∂θj

P∂V
∂θi

V−1/2B
)′)

= tr
(

V−1

(
∂V
∂θj

P∂V
∂θi

V−1/2B
)(

∂V
∂θj

P∂V
∂θi

V−1/2B
)′)

≤ λmax(V−1) tr
((

∂V
∂θj

P∂V
∂θi

V−1/2B
)(

∂V
∂θj

P∂V
∂θi

V−1/2B
)′)

= λmax(V−1) tr
(

P∂V
∂θi

P∂V
∂θi

P∂V
∂θj

)
≤ DR− pR

λ4
min(V)

,

where we use Corollary 2.33 and (3.19) to obtain the last inequality.
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Using Theorem 2.39 and the property that λmin(B) = 0, we have

tr
(

P∂V
∂θi

P∂V
∂θi

P∂V
∂θj

P∂V
∂θj

)
= tr

(
B
(

V−1/2 ∂V
∂θj

P∂V
∂θi

V−1/2B
)(

V−1/2 ∂V
∂θj

P∂V
∂θi

V−1/2B
)′)

≥ λmin(B) tr
((

V−1/2 ∂V
∂θj

P∂V
∂θi

V−1/2B
)(

V−1/2 ∂V
∂θj

P∂V
∂θi

V−1/2B
)′)

≥ 0.

Hence,

0 ≤ tr
(

P∂V
∂θi

P∂V
∂θi

P∂V
∂θj

P∂V
∂θj

)
≤ DR− pR

λ4
min(V)

,

for i, j = 1, . . . , R.

For (2), from Theorem 2.26(ii) and Theorem 2.39, we have

tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θi

P∂V
∂θj

)
= tr

(
∂V
∂θj

(
P∂V
∂θi

P∂V
∂θj

)(
P∂V
∂θi

P∂V
∂θj

)′)
≤ λmax

(
∂V
∂θj

)
tr
((

P∂V
∂θi

P∂V
∂θj

)(
P∂V
∂θi

P∂V
∂θj

)′)
= tr

(
V−1

(
BV−1/2∂V

∂θi
P∂V
∂θj

)(
BV−1/2∂V

∂θi
P∂V
∂θj

)′)
≤ λmax(V−1) tr

((
BV−1/2∂V

∂θi
P∂V
∂θj

)(
BV−1/2∂V

∂θi
P∂V
∂θj

)′)
= λmax(V−1) tr

(
P∂V
∂θi

P∂V
∂θj

P∂V
∂θi

)
≤ DR− pR

λ4
min(V)

,

where we use Corollary 2.33 and (3.19) to obtain the last inequality.
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Using Theorem 2.39 and the property that λmin(∂V/∂θj) = 0, we have

tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θi

P∂V
∂θj

)
= tr

(
∂V
∂θj

(
P∂V
∂θi

P∂V
∂θj

)(
P∂V
∂θi

P∂V
∂θj

)′)
≥ λmin

(
∂V
∂θj

)
tr
((

P∂V
∂θi

P∂V
∂θj

)(
P∂V
∂θi

P∂V
∂θj

)′)
= 0.

Hence,

0 ≤ tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θi

P∂V
∂θj

)
≤ DR− pR

λ4
min(V)

,

for i, j = 1, . . . , R.

Lemma 3.13. Under the multivariate Fay-Herriot model (3.2), for i, j, k = 1, . . . , R,

(1) 0 ≤ tr
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

)
≤ DR− pR

λ6
min(V)

and

(2) 0 ≤ tr
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P∂V
∂θi

P∂V
∂θj

)
≤ DR− pR

λ6
min(V)

,

where V = ID ⊗Σ+ Ve, P = V−1 − V−1X(X′V−1X)−1X′V−1.

Proof. For(1), from the proof of Lemma 3.7, we know that P = V−1/2BV−1/2 is positive

semidefinite and B is positive semidefinite and idempotent. From Theorem 2.26(ii) and

Theorem 2.39, we have
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tr
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

)
= tr

(
B
(

V−1/2 ∂V
∂θk

P∂V
∂θj

P∂V
∂θi

V−1/2B
)(

V−1/2 ∂V
∂θk

P∂V
∂θj

P∂V
∂θi

V−1/2B
)′)

≤ λmax(B) tr
((

V−1/2 ∂V
∂θk

P∂V
∂θj

P∂V
∂θi

V−1/2B
)(

V−1/2 ∂V
∂θk

P∂V
∂θj

P∂V
∂θi

V−1/2B
)′)

= tr
(

V−1

(
∂V
∂θk

P∂V
∂θj

P∂V
∂θi

V−1/2B
)(

∂V
∂θk

P∂V
∂θj

P∂V
∂θi

V−1/2B
)′)

≤ λmax(V−1) tr
((

∂V
∂θk

P∂V
∂θj

P∂V
∂θi

V−1/2B
)(

∂V
∂θk

P∂V
∂θj

P∂V
∂θi

V−1/2B
)′)

= λmax(V−1) tr
(
∂V
∂θk

(
P∂V
∂θj

P∂V
∂θi

V−1/2B
)(

P∂V
∂θj

P∂V
∂θi

V−1/2B
)′)

≤ λmax(V−1)λmax

(
∂V
∂θk

)
tr
((

P∂V
∂θj

P∂V
∂θi

V−1/2B
)(

P∂V
∂θj

P∂V
∂θi

V−1/2B
)′)

= λmax(V−1) tr
(

V−1

(
BV−1/2 ∂V

∂θj
P∂V
∂θi

V−1/2B
)(

BV−1/2 ∂V
∂θj

P∂V
∂θi

V−1/2B
)′)

≤ λmax(V−1)λmax(V−1) tr
((

BV−1/2 ∂V
∂θj

P∂V
∂θi

V−1/2B
)

(
BV−1/2 ∂V

∂θj
P∂V
∂θi

V−1/2B
)′)

= λ2
max(V−1) tr

(
P∂V
∂θj

P∂V
∂θi

P∂V
∂θi

P∂V
∂θj

)
≤ DR− pR

λ6
min(V)

,

where we use Corollary 2.33 and Lemma 3.12(1) to obtain the last inequality.

Using Theorem 2.39 and the property that λmin(B) = 0, we have

tr
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

)
= tr

(
B
(

V−1/2 ∂V
∂θk

P∂V
∂θj

P∂V
∂θi

V−1/2B
)(

V−1/2 ∂V
∂θk

P∂V
∂θj

P∂V
∂θi

V−1/2B
)′)

≥ λmin(B) tr
((

V−1/2 ∂V
∂θk

P∂V
∂θj

P∂V
∂θi

V−1/2B
)(

V−1/2 ∂V
∂θk

P∂V
∂θj

P∂V
∂θi

V−1/2B
)′)

= 0.
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Hence,

0 ≤ tr
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

)
≤ DR− pR

λ6
min(V)

,

for i, j, k = 1, . . . , R.

For (2), from Theorem 2.26(ii) and Theorem 2.39, we have

tr
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P∂V
∂θi

P∂V
∂θj

)
= tr

(
∂V
∂θk

(
P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)(
P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)′)
≤ λmax

(
∂V
∂θk

)
tr
((

P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)(
P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)′)
= tr

(
V−1

(
BV−1/2 ∂V

∂θj
P∂V
∂θi

P∂V
∂θk

)(
BV−1/2 ∂V

∂θj
P∂V
∂θi

P∂V
∂θk

)′)
≤ λmax

(
V−1

)
tr
((

BV−1/2 ∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)(
BV−1/2 ∂V

∂θj
P∂V
∂θi

P∂V
∂θk

)′)
= λmax

(
V−1

)
tr
(

B
(

V−1/2 ∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)(
V−1/2 ∂V

∂θj
P∂V
∂θi

P∂V
∂θk

)′)
≤ λmax

(
V−1

)
λmax (B) tr

((
V−1/2 ∂V

∂θj
P∂V
∂θi

P∂V
∂θk

)(
V−1/2 ∂V

∂θj
P∂V
∂θi

P∂V
∂θk

)′)
= λmax

(
V−1

)
tr
(

V−1

(
∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)(
∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)′)
≤ λmax

(
V−1

)
λmax

(
V−1

)
tr
((

∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)(
∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)′)
= λ2

max
(
V−1

)
tr
(
∂V
∂θj

(
P∂V
∂θi

P∂V
∂θk

)(
P∂V
∂θi

P∂V
∂θk

)′)
≤ λ2

max
(
V−1

)
λmax

(
∂V
∂θj

)
tr
((

P∂V
∂θi

P∂V
∂θk

)(
P∂V
∂θi

P∂V
∂θk

)′)
= λ2

max
(
V−1

)
tr
(

V−1

(
BV−1/2∂V

∂θi
P∂V
∂θk

)(
BV−1/2∂V

∂θi
P∂V
∂θk

)′)
≤ λ2

max
(
V−1

)
λmax

(
V−1

)
tr
((

BV−1/2∂V
∂θi

P∂V
∂θk

)(
BV−1/2∂V

∂θi
P∂V
∂θk

)′)
= λ3

max(V−1) tr
(

P∂V
∂θi

P∂V
∂θk

P∂V
∂θi

)
≤ DR− pR

λ6
min(V)

,

where we use Corollary 2.33 and (3.19) to obtain the last inequality.
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Using Theorem 2.39 and the property that λmin(∂V/∂θk) = 0, we have

tr
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P∂V
∂θi

P∂V
∂θj

)
= tr

(
∂V
∂θk

(
P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)(
P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)′)
≥ λmin

(
∂V
∂θk

)
tr
((

P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)(
P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)′)
= 0.

Hence,

0 ≤ tr
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P∂V
∂θi

P∂V
∂θj

)
≤ DR− pR

λ6
min(V)

,

for i, j, k = 1, . . . , R.

Remark 3.14. Under the multivariate Fay-Herriot model (3.2), for fixed p and R, for

i, j, k, l,m = 1, . . . , R, from Lemma 3.7 – Lemma 3.11

(1) tr
(

V−1∂V
∂θi

)
= O(D),

(2) tr
(

P∂V
∂θi

)
= O(D),

(3) tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

)
= O(D),

(4) tr
(

P∂V
∂θi

P∂V
∂θj

)
= O(D),

(5) tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

+ V−1 ∂V
∂θj

V−1∂V
∂θi

V−1 ∂V
∂θk

)
= O(D),

(6) tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

+ P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)
= O(D),

(7) tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θl

)
+ tr

(
V−1 ∂V

∂θk
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1∂V

∂θl

)
= O(D),

(8) tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

P∂V
∂θl

)
+ tr

(
P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P∂V
∂θl

)
= O(D),
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(9) tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θl

V−1 ∂V
∂θm

)
+ tr

(
V−1∂V

∂θl
V−1 ∂V

∂θk
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1 ∂V

∂θm

)
= O(D),

(10) tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

P∂V
∂θl

P ∂V
∂θm

)
+ tr

(
P∂V
∂θl

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P ∂V
∂θm

)
= O(D).

Lemma 3.15. Under the multivariate Fay-Herriot model (3.2), for fixed p and R, for

i, j, k, l = 1, . . . , R,

(1)
∣∣∣∣tr(P∂V

∂θi

)
− tr

(
V−1∂V

∂θi

)∣∣∣∣ = O(1),

(2)
∣∣∣∣tr(P∂V

∂θi
P∂V
∂θj

)
− tr

(
V−1∂V

∂θi
V−1 ∂V

∂θj

)∣∣∣∣ = O(1),

(3)
∣∣∣∣tr(P∂V

∂θi
P∂V
∂θj

P∂V
∂θk

+ P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)
− tr

(
V−1∂V

∂θi
V−1 ∂V

∂θj
V−1 ∂V

∂θk
+ V−1 ∂V

∂θj
V−1∂V

∂θi
V−1 ∂V

∂θk

)∣∣∣∣ = O(1),

(4)
∣∣∣∣tr(P∂V

∂θi
P∂V
∂θj

P∂V
∂θk

P∂V
∂θl

+ P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P∂V
∂θl

)
− tr

(
V−1∂V

∂θi
V−1 ∂V

∂θj
V−1 ∂V

∂θk
V−1∂V

∂θl
+ V−1 ∂V

∂θk
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1∂V

∂θl

)∣∣∣∣
= O(1).

Proof. For (1), let C = V−1/2X(X′V−1X)−1X′V−1/2. Since V−1 is positive definite

and X is full rank matrix, by Corollary 2.22 and Theorem 2.27, (X′V−1X)−1 is positive

definite. By applying Corollary 2.23, C is positive semidefinite. Therefore, from Theorem

2.39,

tr
(

V−1/2CV−1/2
)
= tr

(
V−1C

)
≤ λmax(V−1) tr(C)

= λmax(V−1) tr(V−1/2X(X′V−1X)−1X′V−1/2)

= λmax(V−1) tr(X′V−1X(X′V−1X)−1)

=
pR

λmin(V)
, (3.35)

where we use Corollary 2.33 to obtain the last inequality.
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Since V−1/2 is nonsingular, from Theorem 2.21(2), V−1/2CV−1/2 is positive semidef-

inite. Moreover, from the definition of C and P can be alternatively written as P =

V−1 − V−1/2CV−1/2. From Theorem 2.26(ii) and Theorem 2.39, we have

∣∣∣∣tr(P∂V
∂θi

)
− tr

(
V−1∂V

∂θi

)∣∣∣∣ = ∣∣∣∣tr(P∂V
∂θi

− V−1∂V
∂θi

)∣∣∣∣
=

∣∣∣∣tr(−V−1/2CV−1/2∂V
∂θi

)∣∣∣∣
=

∣∣∣∣tr((∂V
∂θi

V−1/2C
)(

∂V
∂θi

V−1/2C
)′)∣∣∣∣

= tr
((

∂V
∂θi

V−1/2C
)(

∂V
∂θi

V−1/2C
)′)

= tr
(
∂V
∂θi

V−1/2CV−1/2

)
≤ λmax

(
∂V
∂θi

)
tr
(

V−1/2CV−1/2
)

≤ pR

λmin(V)
,

where we use (3.35) to obtain the last inequality.

Hence, for p and R are fixed,

∣∣∣∣tr(P∂V
∂θi

)
− tr

(
V−1∂V

∂θi

)∣∣∣∣ = O(1),

for i = 1, . . . , R.

For (2), using the triangle inequality, we have

∣∣∣∣tr(P∂V
∂θi

P∂V
∂θj

)
− tr

(
V−1∂V

∂θi
V−1 ∂V

∂θj

)∣∣∣∣
=

∣∣∣∣tr(P∂V
∂θi

P∂V
∂θj

− V−1∂V
∂θi

V−1 ∂V
∂θj

)∣∣∣∣
=

∣∣∣∣tr(V−1∂V
∂θi

V−1 ∂V
∂θj

− V−1∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

− V−1/2CV−1/2∂V
∂θi

V−1 ∂V
∂θj

+V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

− V−1∂V
∂θi

V−1 ∂V
∂θj

)∣∣∣∣
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=

∣∣∣∣− tr
(

V−1∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

)
− tr

(
V−1/2CV−1/2∂V

∂θi
V−1 ∂V

∂θj

)
+ tr

(
V−1/2CV−1/2∂V

∂θi
V−1/2CV−1/2 ∂V

∂θj

)∣∣∣∣
≤
∣∣∣∣tr(V−1∂V

∂θi
V−1/2CV−1/2 ∂V

∂θj

)
+ tr

(
V−1/2CV−1/2∂V

∂θi
V−1 ∂V

∂θj

)∣∣∣∣
+

∣∣∣∣tr(V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

)∣∣∣∣
=

∣∣∣∣tr((∂V
∂θj

V−1∂V
∂θi

+
∂V
∂θi

V−1 ∂V
∂θj

)
V−1/2CV−1/2

)∣∣∣∣
+

∣∣∣∣tr(∂V
∂θj

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2

)∣∣∣∣
=

∣∣∣∣tr((∂V
∂θj

V−1∂V
∂θi

+
∂V
∂θi

V−1 ∂V
∂θj

+
∂V
∂θi

V−1∂V
∂θi

+
∂V
∂θj

V−1 ∂V
∂θj

)
V−1/2CV−1/2

)
− tr

((
∂V
∂θi

V−1∂V
∂θi

+
∂V
∂θj

V−1 ∂V
∂θj

)
V−1/2CV−1/2

)∣∣∣∣
+

∣∣∣∣tr(∂V
∂θj

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2

)∣∣∣∣
≤
∣∣∣∣tr((∂V

∂θj
V−1∂V

∂θi
+

∂V
∂θi

V−1 ∂V
∂θj

+
∂V
∂θi

V−1∂V
∂θi

+
∂V
∂θj

V−1 ∂V
∂θj

)
V−1/2CV−1/2

)∣∣∣∣
+

∣∣∣∣tr((∂V
∂θi

V−1∂V
∂θi

)
V−1/2CV−1/2

)∣∣∣∣+ ∣∣∣∣tr((∂V
∂θj

V−1 ∂V
∂θj

)
V−1/2CV−1/2

)∣∣∣∣
+

∣∣∣∣tr(∂V
∂θj

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2

)∣∣∣∣ . (3.36)

For the first term of (3.36), from Theorem 2.26(ii), Theorem 2.39, we have

∣∣∣∣tr((∂V
∂θj

V−1∂V
∂θi

+
∂V
∂θi

V−1 ∂V
∂θj

+
∂V
∂θi

V−1∂V
∂θi

+
∂V
∂θj

V−1 ∂V
∂θj

)
V−1/2CV−1/2

)∣∣∣∣
=

∣∣∣∣tr((V−1/2 ∂V
∂θj

V−1/2C + V−1/2∂V
∂θi

V−1/2C
)

(
V−1/2 ∂V

∂θj
V−1/2C + V−1/2∂V

∂θi
V−1/2C

)′)∣∣∣∣
= tr

(
V−1

(
∂V
∂θj

V−1/2C +
∂V
∂θi

V−1/2C
)(

∂V
∂θj

V−1/2C +
∂V
∂θi

V−1/2C
)′)

≤ λmax(V−1) tr
((

∂V
∂θj

V−1/2C +
∂V
∂θi

V−1/2C
)(

∂V
∂θj

V−1/2C +
∂V
∂θi

V−1/2C
)′)

= λmax(V−1) tr
(
∂V
∂θj

V−1/2CV−1/2 ∂V
∂θj

+
∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

+
∂V
∂θj

V−1/2CV−1/2∂V
∂θi

+
∂V
∂θi

V−1/2CV−1/2∂V
∂θi

)
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= λmax(V−1) tr
(
∂V
∂θj

V−1/2CV−1/2 +
∂V
∂θi

V−1/2CV−1/2

)
≤ λmax(V−1)

(
λmax

(
∂V
∂θj

)
tr
(

V−1/2CV−1/2
)
+ λmax

(
∂V
∂θj

)
tr
(

V−1/2CV−1/2
))

≤ 2pR

λ2
min(V)

, (3.37)

where we use Corollary 2.33 and (3.35) to obtain the last inequality.

For the second and third terms of (3.36), from Theorem 2.26(ii) and Theorem 2.39,

we have

∣∣∣∣tr(∂V
∂θi

V−1∂V
∂θi

V−1/2CV−1/2

)∣∣∣∣
=

∣∣∣∣tr((V−1/2∂V
∂θi

V−1/2C
)(

V−1/2∂V
∂θi

V−1/2C
)′)∣∣∣∣

= tr
(

V−1

(
∂V
∂θi

V−1/2C
)(

∂V
∂θi

V−1/2C
)′)

≤ λmax(V−1) tr
((

∂V
∂θi

V−1/2C
)(

∂V
∂θi

V−1/2C
)′)

= λmax(V−1) tr
(
∂V
∂θi

V−1/2CV−1/2

)
≤ λmax(V−1)λmax

(
∂V
∂θi

)
tr
(

V−1/2CV−1/2
)

≤ pR

λ2
min(V)

, (3.38)

where we use Corollary 2.33 and (3.35) to obtain the last inequality.

For the fourth term of (3.36), from Theorem 2.26(ii) and Theorem 2.39, we have

∣∣∣∣tr(∂V
∂θj

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2

)∣∣∣∣
=

∣∣∣∣tr((∂V
∂θj

V−1/2CV−1/2∂V
∂θi

)(
∂V
∂θj

V−1/2CV−1/2∂V
∂θi

)′)∣∣∣∣
= tr

(
∂V
∂θj

(
V−1/2CV−1/2∂V

∂θi

)(
V−1/2CV−1/2∂V

∂θi

)′)
≤ λmax

(
∂V
∂θj

)
tr
((

V−1/2CV−1/2∂V
∂θi

)(
V−1/2CV−1/2∂V

∂θi

)′)
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= tr
(

V−1

(
CV−1/2∂V

∂θi

)(
CV−1/2∂V

∂θi

)′)
≤ λmax

(
V−1

)
tr
((

CV−1/2∂V
∂θi

)(
CV−1/2∂V

∂θi

)′)
= λmax

(
V−1

)
tr
(
∂V
∂θi

V−1/2CV−1/2

)
≤ λmax

(
V−1

)
λmax

(
∂V
∂θi

)
tr
(

V−1/2CV−1/2
)

≤ pR

λ2
min(V)

, (3.39)

where we use Corollary 2.33 and (3.35) to obtain the last inequality.

Thus, from (3.37) – (3.39),

∣∣∣∣tr(P∂V
∂θi

P∂V
∂θj

)
− tr

(
V−1∂V

∂θi
V−1 ∂V

∂θj

)∣∣∣∣ ≤ 2pR

λ2
min(V)

+
2pR

λ2
min(V)

+
pR

λ2
min(V)

=
5pR

λ2
min(V)

.

Hence, for p and R are fixed,

∣∣∣∣tr(P∂V
∂θi

P∂V
∂θj

)
− tr

(
V−1∂V

∂θi
V−1 ∂V

∂θj

)∣∣∣∣ = O(1),

for i, j = 1, . . . , R.

For (3), we consider

tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

)
− tr

(
V−1∂V

∂θi
V−1 ∂V

∂θj
V−1 ∂V

∂θk

)
= tr

(
P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

− V−1∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

)
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= tr
(
−V−1∂V

∂θi
V−1/2CV−1/2 ∂V

∂θj
V−1 ∂V

∂θk
− V−1/2CV−1/2∂V

∂θi
V−1 ∂V

∂θj
V−1 ∂V

∂θk

+ V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

V−1 ∂V
∂θk

− V−1∂V
∂θi

V−1 ∂V
∂θj

V−1/2CV−1/2 ∂V
∂θk

+ V−1∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2 ∂V
∂θk

+ V−1/2CV−1/2∂V
∂θi

V−1 ∂V
∂θj

V−1/2CV−1/2 ∂V
∂θk

− V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2 ∂V
∂θk

)
= − tr

(
∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θi

V−1/2CV−1/2

)
− tr

(
∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

V−1/2CV−1/2

)
− tr

(
∂V
∂θk

V−1∂V
∂θi

V−1 ∂V
∂θj

V−1/2CV−1/2

)
+ tr

(
V−1 ∂V

∂θk
V−1/2CV−1/2∂V

∂θi
V−1/2CV−1/2 ∂V

∂θj

)
+ tr

(
V−1∂V

∂θi
V−1/2CV−1/2 ∂V

∂θj
V−1/2CV−1/2 ∂V

∂θk

)
+ tr

(
V−1 ∂V

∂θj
V−1/2CV−1/2 ∂V

∂θk
V−1/2CV−1/2∂V

∂θi

)
− tr

(
V−1/2CV−1/2∂V

∂θi
V−1/2CV−1/2 ∂V

∂θj
V−1/2CV−1/2 ∂V

∂θk

)
. (3.40)

Similarly, we have

tr
(

P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)
− tr

(
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1 ∂V

∂θk

)
= − tr

(
∂V
∂θi

V−1 ∂V
∂θk

V−1 ∂V
∂θj

V−1/2CV−1/2

)
− tr

(
∂V
∂θj

V−1∂V
∂θi

V−1 ∂V
∂θk

V−1/2CV−1/2

)
− tr

(
∂V
∂θk

V−1 ∂V
∂θj

V−1∂V
∂θi

V−1/2CV−1/2

)
+ tr

(
V−1 ∂V

∂θk
V−1/2CV−1/2 ∂V

∂θj
V−1/2CV−1/2∂V

∂θi

)
+ tr

(
V−1 ∂V

∂θj
V−1/2CV−1/2∂V

∂θi
V−1/2CV−1/2 ∂V

∂θk

)
+ tr

(
V−1∂V

∂θi
V−1/2CV−1/2 ∂V

∂θk
V−1/2CV−1/2 ∂V

∂θj

)
− tr

(
V−1/2CV−1/2 ∂V

∂θj
V−1/2CV−1/2∂V

∂θi
V−1/2CV−1/2 ∂V

∂θk

)
. (3.41)
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Apply the triangle inequality to the sum of (3.40) and (3.41), we obtain

∣∣∣∣tr(P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

)
+ tr

(
P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)
− tr

(
V−1∂V

∂θi
V−1 ∂V

∂θj
V−1 ∂V

∂θk

)
− tr

(
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1 ∂V

∂θk

)∣∣∣∣
=

∣∣∣∣− tr
((

∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θi

+
∂V
∂θi

V−1 ∂V
∂θk

V−1 ∂V
∂θj

)
V−1/2CV−1/2

)
− tr

((
∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

+
∂V
∂θk

V−1 ∂V
∂θj

V−1∂V
∂θi

)
V−1/2CV−1/2

)
− tr

((
∂V
∂θk

V−1∂V
∂θi

V−1 ∂V
∂θj

+
∂V
∂θj

V−1∂V
∂θi

V−1 ∂V
∂θk

)
V−1/2CV−1/2

)
+ tr

(
V−1

(
∂V
∂θk

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

+
∂V
∂θj

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θk

))
+ tr

(
V−1

(
∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2 ∂V
∂θk

+
∂V
∂θk

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2∂V
∂θi

))
+ tr

(
V−1

(
∂V
∂θj

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θk

+
∂V
∂θk

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

))
− tr

(
V−1/2CV−1/2∂V

∂θi
V−1/2CV−1/2 ∂V

∂θj
V−1/2CV−1/2 ∂V

∂θk

− V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θk

)∣∣∣∣
≤
∣∣∣∣tr((∂V

∂θj
V−1 ∂V

∂θk
V−1∂V

∂θi
+

∂V
∂θi

V−1 ∂V
∂θk

V−1 ∂V
∂θj

)
V−1/2CV−1/2

)∣∣∣∣
+

∣∣∣∣tr((∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

+
∂V
∂θk

V−1 ∂V
∂θj

V−1∂V
∂θi

)
V−1/2CV−1/2

)∣∣∣∣
+

∣∣∣∣tr((∂V
∂θk

V−1∂V
∂θi

V−1 ∂V
∂θj

+
∂V
∂θj

V−1∂V
∂θi

V−1 ∂V
∂θk

)
V−1/2CV−1/2

)∣∣∣∣
+

∣∣∣∣tr(V−1

(
∂V
∂θk

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

+
∂V
∂θj

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θk

))∣∣∣∣
+

∣∣∣∣tr(V−1

(
∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2 ∂V
∂θk

+
∂V
∂θk

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2∂V
∂θi

))∣∣∣∣
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+

∣∣∣∣tr(V−1

(
∂V
∂θj

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θk

+
∂V
∂θk

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

))∣∣∣∣
+

∣∣∣∣tr(V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2 ∂V
∂θk

+ V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θk

)∣∣∣∣ . (3.42)

For the first three terms of (3.42), from Theorem 2.26(ii) and Theorem 2.39,

∣∣∣∣tr((∂V
∂θi

V−1 ∂V
∂θk

V−1∂V
∂θi

)
V−1/2CV−1/2

)∣∣∣∣
=

∣∣∣∣tr((∂V
∂θk

V−1∂V
∂θi

V−1/2C
)(

∂V
∂θk

V−1∂V
∂θi

V−1/2C
)′)∣∣∣∣

= tr
((

∂V
∂θk

V−1∂V
∂θi

V−1/2C
)(

∂V
∂θk

V−1∂V
∂θi

V−1/2C
)′)

= tr
(
∂V
∂θk

(
V−1∂V

∂θi
V−1/2C

)(
V−1∂V

∂θi
V−1/2C

)′)
≤ λmax

(
∂V
∂θk

)
tr
((

V−1∂V
∂θi

V−1/2C
)(

V−1∂V
∂θi

V−1/2C
)′)

= tr
(

V−1

(
V−1/2∂V

∂θi
V−1/2C

)(
V−1/2∂V

∂θi
V−1/2C

)′)
≤ λmax(V−1) tr

((
V−1/2∂V

∂θi
V−1/2C

)(
V−1/2∂V

∂θi
V−1/2C

)′)
= λmax(V−1) tr

(
∂V
∂θi

V−1∂V
∂θi

V−1/2CV−1/2

)
≤ pR

λ3
min(V)

, (3.43)

where we use Corollary 2.33 and (3.38) to obtain the last inequality.
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From Theorem 2.26(2), Theorem 2.39, we have

∣∣∣∣tr((∂V
∂θk

V−1 ∂V
∂θj

V−1/2C +
∂V
∂θk

V−1∂V
∂θi

V−1/2C
)

(
∂V
∂θk

V−1 ∂V
∂θj

V−1/2C +
∂V
∂θk

V−1∂V
∂θi

V−1/2C
)′)∣∣∣∣

= tr
((

∂V
∂θk

V−1 ∂V
∂θj

V−1/2C +
∂V
∂θk

V−1∂V
∂θi

V−1/2C
)

(
∂V
∂θk

V−1 ∂V
∂θj

V−1/2C +
∂V
∂θk

V−1∂V
∂θi

V−1/2C
)′)

= tr
(
∂V
∂θk

(
V−1 ∂V

∂θj
V−1/2C + V−1∂V

∂θi
V−1/2C

)
(

V−1 ∂V
∂θj

V−1/2C + V−1∂V
∂θi

V−1/2C
)′)

≤ λmax

(
∂V
∂θk

)
tr
((

V−1 ∂V
∂θj

V−1/2C + V−1∂V
∂θi

V−1/2C
)

(
V−1 ∂V

∂θj
V−1/2C + V−1∂V

∂θi
V−1/2C

)′)
= tr

(
V−2

(
∂V
∂θj

V−1/2C +
∂V
∂θi

V−1/2C
)(

∂V
∂θj

V−1/2C +
∂V
∂θi

V−1/2C
)′)

≤ λmax(V−2) tr
((

∂V
∂θj

V−1/2C +
∂V
∂θi

V−1/2C
)(

∂V
∂θj

V−1/2C +
∂V
∂θi

V−1/2C
)′)

= λ2
max(V−1) tr

(
∂V
∂θj

V−1/2CV−1/2 ∂V
∂θj

+
∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

+
∂V
∂θj

V−1/2CV−1/2∂V
∂θi

+
∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

)
= λ2

max(V−1) tr
(
∂V
∂θj

V−1/2CV−1/2 +
∂V
∂θi

V−1/2CV−1/2

)
≤ λ2

max(V−1)

(
λmax

(
∂V
∂θj

)
tr
(

V−1/2CV−1/2
)
+ λmax

(
∂V
∂θi

)
tr
(

V−1/2CV−1/2
))

≤ 2pR

λ3
min(V)

, (3.44)

where we use Corollary 2.33 and (3.35) to obtain the last inequality.
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From (3.43) and (3.44), we have

∣∣∣∣tr((∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θi

+
∂V
∂θi

V−1 ∂V
∂θk

V−1 ∂V
∂θj

)
V−1/2CV−1/2

)∣∣∣∣
=

∣∣∣∣tr((∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θi

+
∂V
∂θi

V−1 ∂V
∂θk

V−1 ∂V
∂θj

+
∂V
∂θj

V−1 ∂V
∂θk

V−1 ∂V
∂θj

+
∂V
∂θi

V−1 ∂V
∂θk

V−1∂V
∂θi

)
V−1/2CV−1/2

)
− tr

((
∂V
∂θj

V−1 ∂V
∂θk

V−1 ∂V
∂θj

+
∂V
∂θi

V−1 ∂V
∂θk

V−1∂V
∂θi

)
V−1/2CV−1/2

)∣∣∣∣
≤
∣∣∣∣tr((∂V

∂θj
V−1 ∂V

∂θk
V−1∂V

∂θi
+

∂V
∂θi

V−1 ∂V
∂θk

V−1 ∂V
∂θj

+
∂V
∂θj

V−1 ∂V
∂θk

V−1 ∂V
∂θj

+
∂V
∂θi

V−1 ∂V
∂θk

V−1∂V
∂θi

)
V−1/2CV−1/2

)∣∣∣∣
+

∣∣∣∣tr((∂V
∂θj

V−1 ∂V
∂θk

V−1 ∂V
∂θj

+
∂V
∂θi

V−1 ∂V
∂θk

V−1∂V
∂θi

)
V−1/2CV−1/2

)∣∣∣∣
≤
∣∣∣∣tr((∂V

∂θk
V−1 ∂V

∂θj
V−1/2C +

∂V
∂θk

V−1∂V
∂θi

V−1/2C
)

(
∂V
∂θk

V−1 ∂V
∂θj

V−1/2C +
∂V
∂θk

V−1∂V
∂θi

V−1/2C
)′)∣∣∣∣

+

∣∣∣∣tr((∂V
∂θj

V−1 ∂V
∂θk

V−1 ∂V
∂θj

)
V−1/2CV−1/2

)∣∣∣∣
+

∣∣∣∣tr((∂V
∂θi

V−1 ∂V
∂θk

V−1∂V
∂θi

)
V−1/2CV−1/2

)∣∣∣∣
≤ 2pR

λ3
min(V)

+
pR

λ3
min(V)

+
pR

λ3
min(V)

=
4pR

λ3
min(V)

. (3.45)

Similarly, we have

∣∣∣∣tr((∂V
∂θi

V−1 ∂V
∂θj

V−1 ∂V
∂θk

+
∂V
∂θk

V−1 ∂V
∂θj

V−1∂V
∂θi

)
V−1/2CV−1/2

)∣∣∣∣ ≤ 4pR

λ3
min(V)

,

(3.46)

and

∣∣∣∣tr((∂V
∂θk

V−1∂V
∂θi

V−1 ∂V
∂θj

+
∂V
∂θj

V−1∂V
∂θi

V−1 ∂V
∂θk

)
V−1/2CV−1/2

)∣∣∣∣ ≤ 4pR

λ3
min(V)

.

(3.47)
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For the second three terms of (3.42), from Theorem 2.26(ii) and Theorem 2.39, we

consider

∣∣∣∣tr(V−1 ∂V
∂θk

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θk

)∣∣∣∣
=

∣∣∣∣tr((V−1/2 ∂V
∂θk

V−1/2CV−1/2∂V
∂θi

)(
V−1/2 ∂V

∂θk
V−1/2CV−1/2∂V

∂θi

)′)∣∣∣∣
= tr

((
V−1/2 ∂V

∂θk
V−1/2CV−1/2∂V

∂θi

)(
V−1/2 ∂V

∂θk
V−1/2CV−1/2∂V

∂θi

)′)
= tr

(
V−1

(
∂V
∂θk

V−1/2CV−1/2∂V
∂θi

)(
∂V
∂θk

V−1/2CV−1/2∂V
∂θi

)′)
≤ λmax(V−1) tr

((
∂V
∂θk

V−1/2CV−1/2∂V
∂θi

)(
∂V
∂θk

V−1/2CV−1/2∂V
∂θi

)′)
= λmax(V−1) tr

(
∂V
∂θk

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2

)
≤ pR

λ3
min(V)

, (3.48)

where we use Corollary 2.33 and (3.39) to obtain the last inequality.

From Theorem 2.26(ii) and Theorem 2.39 and triangle inequality, we have

∣∣∣∣tr((V−1/2 ∂V
∂θk

V−1/2CV−1/2∂V
∂θi

+ V−1/2 ∂V
∂θj

V−1/2CV−1/2∂V
∂θi

)
(

V−1/2 ∂V
∂θk

V−1/2CV−1/2∂V
∂θi

+ V−1/2 ∂V
∂θj

V−1/2CV−1/2∂V
∂θi

)′)∣∣∣∣
= tr

((
V−1/2 ∂V

∂θk
V−1/2CV−1/2∂V

∂θi
+ V−1/2 ∂V

∂θj
V−1/2CV−1/2∂V

∂θi

)
(

V−1/2 ∂V
∂θk

V−1/2CV−1/2∂V
∂θi

+ V−1/2 ∂V
∂θj

V−1/2CV−1/2∂V
∂θi

)′)
= tr

(
V−1

(
∂V
∂θk

V−1/2CV−1/2∂V
∂θi

+
∂V
∂θj

V−1/2CV−1/2∂V
∂θi

)
(
∂V
∂θk

V−1/2CV−1/2∂V
∂θi

+
∂V
∂θj

V−1/2CV−1/2∂V
∂θi

)′)
≤ λmax

(
V−1

)
tr
((

∂V
∂θk

V−1/2CV−1/2∂V
∂θi

+
∂V
∂θj

V−1/2CV−1/2∂V
∂θi

)
(
∂V
∂θk

V−1/2CV−1/2∂V
∂θi

+
∂V
∂θj

V−1/2CV−1/2∂V
∂θi

)′)
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= λmax
(
V−1

)
tr
(
∂V
∂θk

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θk

+
∂V
∂θk

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

+
∂V
∂θj

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θk

+
∂V
∂θj

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

)
= λmax

(
V−1

)(
tr
(
∂V
∂θk

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2

)
+ tr

(
∂V
∂θj

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2

))
≤ 2pR

λ3
min(V)

, (3.49)

where we use Corollary 2.33 and (3.39) to obtain the last inequality.

Apply the triangle inequality, from (3.48) and (3.49), we have

∣∣∣∣tr(V−1

(
∂V
∂θk

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

+
∂V
∂θj

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θk

))∣∣∣∣
=

∣∣∣∣tr(V−1

(
∂V
∂θk

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

+
∂V
∂θj

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θk

+
∂V
∂θk

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θk

+
∂V
∂θj

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

))
− tr

(
V−1

(
∂V
∂θk

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θk

+
∂V
∂θj

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

))∣∣∣∣
≤
∣∣∣∣tr((V−1/2 ∂V

∂θk
V−1/2CV−1/2∂V

∂θi
+ V−1/2 ∂V

∂θj
V−1/2CV−1/2∂V

∂θi

)
(

V−1/2 ∂V
∂θk

V−1/2CV−1/2∂V
∂θi

+ V−1/2 ∂V
∂θj

V−1/2CV−1/2∂V
∂θi

)′)∣∣∣∣
+

∣∣∣∣tr(V−1 ∂V
∂θk

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θk

+ V−1 ∂V
∂θj

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

)∣∣∣∣
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≤
∣∣∣∣tr((V−1/2 ∂V

∂θk
V−1/2CV−1/2∂V

∂θi
+ V−1/2 ∂V

∂θj
V−1/2CV−1/2∂V

∂θi

)
(

V−1/2 ∂V
∂θk

V−1/2CV−1/2∂V
∂θi

+ V−1/2 ∂V
∂θj

V−1/2CV−1/2∂V
∂θi

)′)∣∣∣∣
+

∣∣∣∣tr(V−1 ∂V
∂θk

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θk

)∣∣∣∣
+

∣∣∣∣tr(V−1 ∂V
∂θj

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

)∣∣∣∣
≤ 2pR

λ3
min(V)

+
pR

λ3
min(V)

+
pR

λ3
min(V)

≤ 4pR

λ3
min(V)

. (3.50)

Similarly, we have

∣∣∣∣tr(V−1

(
∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2 ∂V
∂θk

+
∂V
∂θk

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2∂V
∂θi

))∣∣∣∣ ≤ 4pR

λmin (V)
, (3.51)

and

∣∣∣∣tr(V−1

(
∂V
∂θj

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θk

+
∂V
∂θk

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

))∣∣∣∣ ≤ 4pR

λmin (V)
. (3.52)

For the last term of (3.42), from Theorem 2.26(ii) and Theorem 2.39, we consider

∣∣∣∣tr(V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2∂V
∂θi

)∣∣∣∣
=

∣∣∣∣tr((CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

)(
CV−1/2∂V

∂θi
V−1/2CV−1/2 ∂V

∂θj

)′)∣∣∣∣
= tr

(
C
(

V−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

)(
V−1/2∂V

∂θi
V−1/2CV−1/2 ∂V

∂θj

)′)
≤ λmax(C) tr

((
V−1/2∂V

∂θi
V−1/2CV−1/2 ∂V

∂θj

)(
V−1/2∂V

∂θi
V−1/2CV−1/2 ∂V

∂θj

)′)
= tr

(
V−1

(
∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

)(
∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

)′)
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≤ λmax(V−1) tr
((

∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

)(
∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

)′)
= λmax(V−1) tr

(
∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2

)
≤ pR

λ3
min(V)

, (3.53)

where we use Corollary 2.33 and (3.39) to obtain the last inequality.

From Theorem 2.26(ii), Theorem 2.39 and the triangle inequality, we have

∣∣∣∣tr((CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

+ CV−1/2 ∂V
∂θk

V−1/2CV−1/2 ∂V
∂θj

)
(

CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

+ CV−1/2 ∂V
∂θk

V−1/2CV−1/2 ∂V
∂θj

)′)∣∣∣∣
= tr

(
C
(

V−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

+ V−1/2 ∂V
∂θk

V−1/2CV−1/2 ∂V
∂θj

)
(

V−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

+ V−1/2 ∂V
∂θk

V−1/2CV−1/2 ∂V
∂θj

)′)
≤ λmax (C) tr

((
V−1/2∂V

∂θi
V−1/2CV−1/2 ∂V

∂θj
+ V−1/2 ∂V

∂θk
V−1/2CV−1/2 ∂V

∂θj

)
(

V−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

+ V−1/2 ∂V
∂θk

V−1/2CV−1/2 ∂V
∂θj

)′)
= tr

(
V−1

(
∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

+
∂V
∂θk

V−1/2CV−1/2 ∂V
∂θj

)
(
∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

+
∂V
∂θk

V−1/2CV−1/2 ∂V
∂θj

)′)
≤ λmax

(
V−1

)
tr
((

∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

+
∂V
∂θk

V−1/2CV−1/2 ∂V
∂θj

)
(
∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

+
∂V
∂θk

V−1/2CV−1/2 ∂V
∂θj

)′)
= λmax

(
V−1

)(
tr
(
∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2∂V
∂θi

)
+ tr

(
∂V
∂θk

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2∂V
∂θi

)
+ tr

(
∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2 ∂V
∂θk

)
+ tr

(
∂V
∂θk

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2 ∂V
∂θk

))
≤ 2pR

λ3
min(V)

, (3.54)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

88

where we use Corollary 2.33 and (3.39) to obtain the last inequality.

From (3.53) and (3.54), we have

∣∣∣∣− tr
(

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2 ∂V
∂θk

+ V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θk

)∣∣∣∣
=

∣∣∣∣− tr
(

V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2 ∂V
∂θk

+ V−1/2CV−1/2 ∂V
∂θk

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2∂V
∂θi

+ V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2∂V
∂θi

+ V−1/2CV−1/2 ∂V
∂θk

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2 ∂V
∂θk

)
+ tr

(
V−1/2CV−1/2∂V

∂θi
V−1/2CV−1/2 ∂V

∂θj
V−1/2CV−1/2∂V

∂θi

+ V−1/2CV−1/2 ∂V
∂θk

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2 ∂V
∂θk

)∣∣∣∣
≤
∣∣∣∣tr((CV−1/2∂V

∂θi
V−1/2CV−1/2 ∂V

∂θj
+ CV−1/2 ∂V

∂θk
V−1/2CV−1/2 ∂V

∂θj

)
(

CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

+ CV−1/2 ∂V
∂θk

V−1/2CV−1/2 ∂V
∂θj

)′)∣∣∣∣
+

∣∣∣∣tr(V−1/2CV−1/2∂V
∂θi

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2∂V
∂θi

)∣∣∣∣
+

∣∣∣∣tr(V−1/2CV−1/2 ∂V
∂θk

V−1/2CV−1/2 ∂V
∂θj

V−1/2CV−1/2 ∂V
∂θk

)∣∣∣∣
≤ 4pR

λ3
min(V)

. (3.55)

Thus, from (3.45), (3.46), (3.47), (3.50), (3.51), (3.52) and (3.55), we have

∣∣∣∣tr(P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

)
+ tr

(
P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)
− tr

(
V−1∂V

∂θi
V−1 ∂V

∂θj
V−1 ∂V

∂θk

)
− tr

(
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1 ∂V

∂θk

)∣∣∣∣
≤ 4pR

λ3
min (V)

+
4pR

λ3
min (V)

+
4pR

λ3
min (V)

+
4pR

λ3
min (V)

+
4pR

λ3
min (V)

+
4pR

λ3
min (V)

+
4pR

λ3
min (V)

≤ 28pR

λ3
min (V)

.
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Hence, for p and R are fixed,

∣∣∣∣tr(P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

)
+ tr

(
P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)
− tr

(
V−1∂V

∂θi
V−1 ∂V

∂θj
V−1 ∂V

∂θk

)
− tr

(
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1 ∂V

∂θk

)∣∣∣∣
= O(1),

for i, j, k = 1, . . . , R.

For (4), by the same technique, we can show that, for p and R are fixed,

∣∣∣∣tr(P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

P∂V
∂θl

)
+ tr

(
P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P∂V
∂θl

)
− tr

(
V−1∂V

∂θi
V−1 ∂V

∂θj
V−1 ∂V

∂θk
V−1∂V

∂θl

)
− tr

(
V−1 ∂V

∂θk
V−1 ∂V

∂θj
V−1∂V

∂θi
V−1∂V

∂θl

)∣∣∣∣
= O(1),

for i, j, k, l = 1, . . . , R.

Corollary 3.16. Under the multivariate Fay-Herriot model (3.2), for any positive integer

m and i = 1, . . . , R,

E
[∣∣∣∣y′P∂V

∂θi
Py − tr

(
P∂V
∂θi

)∣∣∣∣m] ≤ c

(
DR− pR

λ2
min(V)

)m/2

,

where c is a constant.

Proof. Since Vu and Ve are positive definite matrices, there exist nonsingular matrices

Lu and Le such that Vu = LuL′
u and Ve = LeL′

e, respectively. Let W = [Lu,Le]. Thus,

w = u + e = Wξ, where ξ ∼ N(0, I2DR). Since PX = 0, we have

y′P∂V
∂θi

Py = (y − Xβ)′P∂V
∂θi

P(y − Xβ) = w′P∂V
∂θi

Pw = ξ′W′P∂V
∂θi

PWξ. (3.56)
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Using Theorem 2.73, and the fact that PVP = P and PX = 0, we have

E
[
y′P∂V

∂θi
Py
]
= tr

(
P∂V
∂θi

PV
)

= tr
(

P∂V
∂θi

)
. (3.57)

For any m ≥ 2, using (3.56), (3.57), Lemma 3.3 and the fact that WW′ = V and

PVP = P, we have

E
[∣∣∣∣y′P∂V

∂θi
Py − tr

(
P∂V
∂θi

)∣∣∣∣m]
= E

[∣∣∣∣y′P∂V
∂θi

Py − E
[
y′P∂V

∂θi
Py
]∣∣∣∣m]

= E
[∣∣∣∣ξ′W′P∂V

∂θi
PWξ − E

[
ξ′W′P∂V

∂θi
PWξ

]∣∣∣∣m]
≤ c

∣∣∣∣∣∣∣∣W′P∂V
∂θi

PW
∣∣∣∣∣∣∣∣m

F

= c

(
tr
(

W′P∂V
∂θi

PWW′P∂V
∂θi

PW
))m/2

= c

(
tr
(

P∂V
∂θi

P∂V
∂θi

))m/2

≤ c

(
DR− pR

λ2
min(V)

)m/2

, (3.58)

where we use Lemma 3.8(2) to obtain the last inequality.

For m = 1, using Corollary 2.87, we have

E
[∣∣∣∣y′P∂V

∂θi
Py − tr

(
P∂V
∂θi

)∣∣∣∣] ≤
(

E
[∣∣∣∣y′P∂V

∂θi
Py − tr

(
P∂V
∂θi

)∣∣∣∣2
])1/2

≤

(
c

(
DR− pR

λ2
min(V)

)2/2
)1/2

(3.59)

= c

(
DR− pR

λ2
min(V)

)1/2

,

where we use (3.58) with m = 2 to obtain (3.59).
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Corollary 3.17. Under the multivariate Fay-Herriot model (3.2), for any positive integer

m, and i, j = 1, . . . , R,

E
[∣∣∣∣y′

(
P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θi

P∂V
∂θj

P
)

y − 2 tr
(

P∂V
∂θj

P∂V
∂θi

)∣∣∣∣m] ≤ c

(
DR− pR

λ4
min(V)

)m/2

,

where c is a constant.

Proof. Since Vu and Ve are positive definite matrices, there exist nonsingular matrices

Lu and Le such that Vu = LuL′
u and Ve = LeL′

e, respectively. Let W = [Lu,Le]. Thus,

w = u + e = Wξ, where ξ ∼ N(0, I2DR). Since PX = 0, we have

y′P∂V
∂θj

P∂V
∂θi

Py = w′P∂V
∂θj

P∂V
∂θi

Pw = ξ′W′P∂V
∂θj

P∂V
∂θi

PWξ. (3.60)

Using Theorem 2.73, and the fact that PVP = P and PX = 0, we have

E
[
y′P∂V

∂θj
P∂V
∂θi

Py
]
= tr

(
P∂V
∂θj

P∂V
∂θi

PV
)

= tr
(

P∂V
∂θj

P∂V
∂θi

)
. (3.61)

For any m ≥ 2, using (3.60), (3.61), Lemma 3.3 and the fact that WW′ = V and

PVP = P, we have

E
[∣∣∣∣y′

(
P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θi

P∂V
∂θj

P
)

y − 2 tr
(

P∂V
∂θj

P∂V
∂θi

)∣∣∣∣m]
= E

[∣∣∣∣y′
(

P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θi

P∂V
∂θj

P
)

y

− E
[
y′
(

P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θi

P∂V
∂θj

P
)

y
]∣∣∣∣m]

= E
[∣∣∣∣ξ′W′

(
P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θi

P∂V
∂θj

P
)

Wξ

− E
[
ξ′W′

(
P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θi

P∂V
∂θj

P
)

Wξ

]∣∣∣∣m]
≤ c

∣∣∣∣∣∣∣∣W′
(

P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θi

P∂V
∂θj

P
)

W
∣∣∣∣∣∣∣∣m

F

= c

(
tr
(

W′
(

P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θi

P∂V
∂θj

P
)

W

W′
(

P∂V
∂θi

P∂V
∂θj

P + P∂V
∂θj

P∂V
∂θi

P
)

W
))m/2
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= c

(
tr
(

P∂V
∂θj

P∂V
∂θi

P∂V
∂θi

P∂V
∂θj

)
+ tr

(
P∂V
∂θj

P∂V
∂θi

P∂V
∂θj

P∂V
∂θi

)
+ tr

(
P∂V
∂θi

P∂V
∂θj

P∂V
∂θi

P∂V
∂θj

)
+ tr

(
P∂V
∂θi

P∂V
∂θj

P∂V
∂θj

P∂V
∂θi

))m/2

≤ c

(
DR− pR

λ4
min(V)

)m/2

, (3.62)

where we use Lemma 3.12 to obtain the last inequality.

For m = 1, using Corollary 2.87, we have

E
[∣∣∣∣y′

(
P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θi

P∂V
∂θj

P
)

y − 2 tr
(

P∂V
∂θj

P∂V
∂θi

)∣∣∣∣]

≤

(
E
[∣∣∣∣y′

(
P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θi

P∂V
∂θj

P
)

y − 2 tr
(

P∂V
∂θj

P∂V
∂θi

)∣∣∣∣2
])1/2

≤

(
c

(
DR− pR

λ4
min(V)

)2/2
)1/2

(3.63)

= c

(
DR− pR

λ4
min(V)

)1/2

,

where we use (3.62) with m = 2 to obtain (3.63).

Corollary 3.18. Under the multivariate Fay-Herriot model (3.2), for any positive integer

m, and i, j, k = 1, . . . , R,

E
[∣∣∣∣y′

(
P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P + P∂V
∂θi

P∂V
∂θk

P∂V
∂θj

P
)

y

− 3 tr
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

)∣∣∣∣m] ≤ c

(
DR− pR

λ6
min(V)

)m/2

,

where c is a constant.

Proof. Since Vu and Ve are positive definite matrices, there exist nonsingular matrices

Lu and Le such that Vu = LuL′
u and Ve = LeL′

e, respectively. Let W = [Lu,Le]. Thus,

w = u + e = Wξ, where ξ ∼ N(0, I2DR). Since PX = 0, we have

y′P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

Py = ξ′W′P∂V
∂θj

P∂V
∂θi

PWξ. (3.64)
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Using Theorem 2.73, and the fact that PVP = P and PX = 0, we have

E
[
y′P∂V

∂θk
P∂V
∂θj

P∂V
∂θi

Py
]
= tr

(
P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

)
. (3.65)

For any m ≥ 2, using (3.64), (3.65), Lemma 3.3 and the fact that WW′ = V and

PVP = P, we have

E
[∣∣∣∣y′

(
P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P + P∂V
∂θi

P∂V
∂θk

P∂V
∂θj

P
)

y

− 3 tr
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

)∣∣∣∣m]
= E

[∣∣∣∣y′
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P + P∂V
∂θi

P∂V
∂θk

P∂V
∂θj

P
)

y

− E
[
y′
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P + P∂V
∂θi

P∂V
∂θk

P∂V
∂θj

P
)

y
]∣∣∣∣m]

= E
[∣∣∣∣ξ′W′

(
P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P + P∂V
∂θi

P∂V
∂θk

P∂V
∂θj

P
)

Wξ

− E
[
ξ′W′

(
P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P + P∂V
∂θi

P∂V
∂θk

P∂V
∂θj

P
)

Wξ

]∣∣∣∣m]
≤ c

∣∣∣∣∣∣∣∣W′
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P + P∂V
∂θi

P∂V
∂θk

P∂V
∂θj

P
)

W
∣∣∣∣∣∣∣∣m

F

= c

(
tr
(

W′
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P + P∂V
∂θi

P∂V
∂θk

P∂V
∂θj

P
)

V(
P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

P + P∂V
∂θk

P∂V
∂θi

P∂V
∂θj

P + P∂V
∂θj

P∂V
∂θk

P∂V
∂θi

P
)

W
))m/2

= c

(
tr
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

)
+ tr

(
P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P∂V
∂θi

P∂V
∂θj

)
+ tr

(
P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

P∂V
∂θi

)
+ tr

(
P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

)
+ tr

(
P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P∂V
∂θk

P∂V
∂θi

P∂V
∂θj

)
+ tr

(
P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P∂V
∂θj

P∂V
∂θk

P∂V
∂θi

)
+ tr

(
P∂V
∂θi

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

)
+ tr

(
P∂V
∂θi

P∂V
∂θk

P∂V
∂θk

P∂V
∂θi

P∂V
∂θj

P∂V
∂θi

)
+ tr

(
P∂V
∂θi

P∂V
∂θk

P∂V
∂θj

P∂V
∂θj

P∂V
∂θk

P∂V
∂θi

))m/2

≤ c

(
DR− pR

λ6
min(V)

)m/2

, (3.66)

where we use Lemma 3.13 to obtain the last inequality.
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For m = 1, using Corollary 2.87, we have

E
[∣∣∣∣y′

(
P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P + P∂V
∂θi

P∂V
∂θk

P∂V
∂θj

P
)

y

− 3 tr
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

)∣∣∣∣]
≤
(

E
[∣∣∣∣y′

(
P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P + P∂V
∂θi

P∂V
∂θk

P∂V
∂θj

P
)

y

− 3 tr
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

)∣∣∣∣2
])1/2

≤

(
c

(
DR− pR

λ6
min(V)

)2/2
)1/2

(3.67)

= c

(
DR− pR

λ6
min(V)

)1/2

,

where we use (3.66) with m = 2 to obtain (3.67).

Theorem 3.19. Under the multivariate Fay-Herriot model (3.2), we have

(1) θ̂
AP − θ = −

([
1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)
− tr

(
P∂V
∂θj

P∂V
∂θi

)

− 1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)]
i, j=1,...,R

)−1

[
−1

2
tr
(

V−1∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

)]
i=1,...,R

+ rAP,

(2) θ̂
AR − θ = −

([
−1

2
tr
(

P∂V
∂θj

P∂V
∂θi

)
− 1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)]
i, j=1,...,R

)−1

[
−1

2
tr
(

P∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

)]
i=1,...,R

+ rAR,

where |rAP| ≤ D−ρη and |rAR| ≤ D−ρη with E(ηm) bounded for any fixed 0 < ρ < 1 and

m > 0.
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Proof. We prove this theorem by verifying the four conditions of Lemma 3.4.

First, consider (1), the adjusted profile maximum likelihood estimate θ̂
AP. For

condition 1, note that θ̂
AP is the solution of ∂ℓAP(θ)/∂θ = 0, where

ℓAP(θ) = c− 1

2
log |V| − 1

2
y′Py +

1

D
log |Σ|.

Then, by differentiating ℓAP(θ) with respect to θ three times, we have

∂ℓAP(θ)

∂θ
=

[
∂ℓAP(θ)

∂θi

]
i=1,...,R

=

[
−1

2
tr
(

V−1∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

)]
i=1,...,R

, (3.68)

∂2ℓAP(θ)

∂θ2 =

[
∂2ℓAP(θ)

∂θj∂θi

]
i,j=1,...,R

=

[
1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)
− 1

2
y′P∂V

∂θj
P∂V
∂θi

Py

− 1

2
y′P∂V

∂θi
P∂V
∂θj

Py − 1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)]
i,j=1,...,R

, (3.69)

∂3ℓAP(θ)

∂θ3 =

[
∂3ℓAP(θ)

∂θk∂θj∂θi

]
i,j,k=1,...,R

=

[
−1

2
tr
(

V−1 ∂V
∂θk

V−1 ∂V
∂θj

V−1∂V
∂θi

)
− 1

2
tr
(

V−1 ∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θi

)
+

1

2
y′P∂V

∂θk
P∂V
∂θj

P∂V
∂θi

Py +
1

2
y′P∂V

∂θj
P∂V
∂θk

P∂V
∂θi

Py

+
1

2
y′P∂V

∂θj
P∂V
∂θi

P∂V
∂θk

Py +
1

2
y′P∂V

∂θk
P∂V
∂θi

P∂V
∂θj

Py

+
1

2
y′P∂V

∂θi
P∂V
∂θk

P∂V
∂θj

Py +
1

2
y′P∂V

∂θi
P∂V
∂θj

P∂V
∂θk

Py

+
1

D
tr
(
Σ−1 ∂Σ

∂θk
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)
+

1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1 ∂Σ

∂θk
Σ−1∂Σ

∂θi

)]
i,j,k=1,...,R

. (3.70)

Since the third derivative of adjusted profile log-likelihood function is continuous in term

of θ, the first conditions holds.
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For conditon 3, from (3.69), Theorem 2.73 and the fact that PX = 0, we have

E
[
∂2ℓAP(θ)

∂θ2

]
=

[
1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)
− tr

(
P∂V
∂θj

P∂V
∂θi

)
− 1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)]
i,j=1,...,R

. (3.71)

If we take gi =
√
D, for i = 1, . . . , R and G = diag1≤i≤R(gi), then

G−1 E
[
∂2ℓAP(θ)

∂θ2

]
G−1 =

1

D
E
[
∂2ℓAP(θ)

∂θ2

]
.

Note that −E
[
∂2ℓAP(θ)/∂θ

2
]

is the Fisher information matrix. From the property that

any Fisher information matrix is positive semidefinite, we have G−1 E
[
∂2ℓAP(θ)/∂θ

2
]

G−1

is negative semidefinite. Since E
[
∂2ℓAP(θ)/∂θ

2
]

is invertible, G−1 E
[
∂2ℓAP(θ)/∂θ

2
]

G−1

is invertible. Then every eigenvalues of G−1 E
[
∂2ℓAP(θ)/∂θ

2
]

G−1 is nonzero. Thus, the

third condition holds: that is,

−∞ < lim sup
D→∞

λmax

(
G−1 E

[
∂2ℓAP(θ)

∂θ2

]
G−1

)
< 0.

For condition 4 (a), from (3.68), Lemma 3.15, Theorem 2.96 and Corollary 3.16, we

have

E
[(

1

gi

∣∣∣∣∂ℓ(θ)∂θi

∣∣∣∣)m]
= E

[(
1√
D

∣∣∣∣∂ℓAP(θ)

∂θi

∣∣∣∣)m]
=

1

Dm/2
E
[∣∣∣∣−1

2
tr
(

V−1∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

)∣∣∣∣m]
=

1

(4D)m/2
E
[∣∣∣∣y′P∂V

∂θi
Py − tr

(
P∂V
∂θi

)
+O(1) +O(D−1)

∣∣∣∣m]
≤ max(1, 2m−1)

(4D)m/2
E
[∣∣∣∣y′P∂V

∂θi
Py − tr

(
P∂V
∂θi

)∣∣∣∣m]+ max(1, 2m−1)

(4D)m/2
O(1)
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≤ max(1, 2m−1)

(4D)m/2

(
c

(
DR− pR

λ2
min(V)

)m/2
)

+O(D−m/2)

= c

(
R

λ2
min(V)

)m/2 (
1− p

D

)m/2
+O(D−m/2).

Thus, E
[(

1

gi

∣∣∣∣∂ℓ(θ)∂θi

∣∣∣∣)m]
is bounded for any m > 0, for i = 1, . . . , R.

For condition 4 (b), from (3.69), we have

E
[
∂2ℓAP(θ)

∂θj∂θi

]
=

1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)
− tr

(
P∂V
∂θj

P∂V
∂θi

)
− 1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)
. (3.72)

From (3.69), (3.72) and Corollary 3.17, we have

E
[(

1
√
gjgi

∣∣∣∣∂2ℓ(θ)

∂θj∂θi
− E

[
∂2ℓ(θ)

∂θj∂θi

]∣∣∣∣)m]
= E

[(
1√
D

∣∣∣∣∂2ℓAP(θ)

∂θj∂θi
− E

[
∂2ℓAP(θ)

∂θj∂θi

]∣∣∣∣)m]
=

1

Dm/2
E
[∣∣∣∣−1

2
y′P∂V

∂θj
P∂V
∂θi

Py − 1

2
y′P∂V

∂θi
P∂V
∂θj

Py + tr
(

P∂V
∂θj

P∂V
∂θi

)∣∣∣∣m]
=

1

(4D)m/2
E
[∣∣∣∣y′

(
P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θi

P∂V
∂θj

P
)

y − 2 tr
(

P∂V
∂θj

P∂V
∂θi

)∣∣∣∣m]
≤ 1

(4D)m/2

(
c

(
DR− pR

λ4
min(V)

)m/2
)

= c

(
R

λ4
min(V)

)m/2 (
1− p

D

)m/2
.

Thus, E
[(

1
√
gjgi

∣∣∣∣∂2ℓ(θ)

∂θj∂θi
− E

[
∂2ℓ(θ)

∂θj∂θi

]∣∣∣∣)m]
is bounded for any m > 0, for i, j =

1, . . . , R.

For condition 4 (c), when δ = min(θ)/2, let θ̃ such that

−min(θ)
2

+ θi ≤ θ̃i ≤
min(θ)

2
+ θi, for all i = 1, . . . , R.
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For i, j, k = 1, . . . , R, from the fact that P̃X = 0, the same idea of the proof of Lemma

3.10 with the rank one positive semidefinite matrix ww′, we have

y′P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃y + y′P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃y

= w′P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃w + w′P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃w

= tr
(

w′P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃w + w′P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃w
)

≤ 4 tr(w′w)

λ4
min(Ṽ)

=
4w′w

λ4
min(Ṽ)

and

− 2w′w
λ4

max(Ṽ)
≤ y′P̃ ∂̃V

∂θk
P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃y + y′P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃y,

where P̃, Ṽ and ∂̃V/∂θi are obtained when θ is replaced by θ̃ in P, V and ∂V/∂θi,

respectively. From the last inequality, the fact that w ∼ N(0,V), Theorem 2.73 and

Corollary 2.36, we have

E
[∣∣∣∣∣y′P̃ ∂̃V

∂θk
P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃y + y′P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃y
∣∣∣∣∣
]m

≤ c

(
4E [w′w]

λ4
min(Ṽ)

)m

= c

(
4 tr (V)

λ4
min(Ṽ)

)m

≤ c

(
4λmax(V) tr(IDR)

λ4
min(Ṽ)

)m

= c

((
4DRλmax(V)

λ4
min(Ṽ)

))m

.

(3.73)
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Then, from (3.70), Lemma 3.15, Theorem 2.96, Lemma 3.9 and (3.73), we have

E
[(

g∗
gkgjgi

sup
θ̃∈Sδ(θ)

∣∣∣∣∣ ∂3ℓ(θ̃)

∂θk∂θj∂θi

∣∣∣∣∣
)m]

= E
[(

1

D
sup

θ̃∈Sδ(θ)

∣∣∣∣∣ ∂3ℓAP(θ̃)

∂θk∂θj∂θi

∣∣∣∣∣
)m]

=
1

Dm
E
[

sup
θ̃∈Sδ(θ)

∣∣∣∣∣−1

2
tr
(

Ṽ−1 ∂̃V
∂θk

Ṽ−1 ∂̃V
∂θj

Ṽ−1 ∂̃V
∂θi

)
− 1

2
tr
(

Ṽ−1 ∂̃V
∂θj

Ṽ−1 ∂̃V
∂θk

Ṽ−1 ∂̃V
∂θi

)

+
1

2
y′P̃ ∂̃V

∂θk
P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃y +
1

2
y′P̃ ∂̃V

∂θj
P̃∂V
∂θk

P̃ ∂̃V
∂θi

P̃y

+
1

2
y′P̃ ∂̃V

∂θj
P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θk

P̃y +
1

2
y′P̃ ∂̃V

∂θk
P̃∂V
∂θi

P̃ ∂̃V
∂θj

P̃y

+
1

2
y′P̃ ∂̃V

∂θi
P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃y +
1

2
y′P̃ ∂̃V

∂θi
P̃∂V
∂θj

P̃ ∂̃V
∂θk

P̃y

+
1

D
tr
(
Σ−1 ∂Σ

∂θk
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)
+

1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1 ∂Σ

∂θk
Σ−1∂Σ

∂θi

)∣∣∣∣m]
=

1

(2D)m
E
[

sup
θ̃∈Sδ(θ)

∣∣∣∣∣− tr
(

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

)
− tr

(
P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θi

)

+ y′P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃y + y′P̃ ∂̃V
∂θj

P̃∂V
∂θk

P̃ ∂̃V
∂θi

P̃y

+ y′P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θk

P̃y + y′P̃ ∂̃V
∂θk

P̃∂V
∂θi

P̃ ∂̃V
∂θj

P̃y

+y′P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃y + y′P̃ ∂̃V
∂θi

P̃∂V
∂θj

P̃ ∂̃V
∂θk

P̃y +O(1)

∣∣∣∣∣
m]

≤ max(1, 5m−1)

(2D)m(
E
[

sup
θ̃∈Sδ(θ)

(∣∣∣∣∣tr
(

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

)
+ tr

(
P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θi

)∣∣∣∣∣
m

+

∣∣∣∣∣y′P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃y + y′P̃ ∂̃V
∂θi

P̃∂V
∂θj

P̃ ∂̃V
∂θk

P̃y
∣∣∣∣∣
m

+

∣∣∣∣∣y′P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θk

P̃y + y′P̃ ∂̃V
∂θk

P̃∂V
∂θi

P̃ ∂̃V
∂θj

P̃y
∣∣∣∣∣
m

+

∣∣∣∣∣y′P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃y + y′P̃ ∂̃V
∂θj

P̃∂V
∂θk

P̃ ∂̃V
∂θi

P̃y
∣∣∣∣∣
m

+O(1)

)])
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≤ max(1, 5m−1)

(2D)m

(∣∣∣∣∣4(DR− pR)

λ3
min(Ṽ)

∣∣∣∣∣
m

+ 6

[
c

(
4DRλmax(V)

λ4
min(Ṽ)

)m])
+O(D−m)

= c

((
R

λ3
min(Ṽ)

)(
1− p

D

))m

+ c

((
Rλmax(V)

λ4
min(Ṽ)

))m

+O(D−m),

where Sδ(θ) = {θ̃ :
∣∣∣θ̃i − θi

∣∣∣ ≤ min(θ)/2, 1 ≤ i ≤ R}, is bounded for any m > 0.

Since all the four conditions of Lemma 3.4 are satisfied, from (3.71), we have

θ̂
AP − θ = −

(
E
[
∂2lAP(θ)

∂θ2

])−1
∂ℓAP(θ)

∂θ
+ rAP

= −
([

1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)
− tr

(
P∂V
∂θj

P∂V
∂θi

)

− 1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)]
i,j=1,...,R

)−1

[
−1

2
tr
(

V−1∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

)]
i=1,...,R

+ rAP

where |rAP| ≤ D−ρη with E(ηm) bounded for any fixed 0 < ρ < 1 and m > 0.

For (2), we consider the adjusted residual maximum likelihood estimation. Note

that θ̂
AR is the solution of ∂ℓAR(θ)/∂θ = 0, where

ℓAR(θ) = c− 1

2
log |K′VK| − 1

2
y′Py +

1

D
log |Σ|.

Then, by differentiating with respect to θ three times, we have

∂ℓAR(θ)

∂θ
=

[
∂ℓAR(θ)

∂θi

]
i=1,...,R

=

[
−1

2
tr
(

P∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

)]
i=1,...,R

, (3.74)

∂2ℓAR(θ)

∂θ2 =

[
∂2ℓAR(θ)

∂θj∂θi

]
i,j=1,...,R

=

[
1

2
tr
(

P∂V
∂θj

P∂V
∂θi

)
− 1

2
y′P∂V

∂θj
P∂V
∂θi

Py

− 1

2
y′P∂V

∂θi
P∂V
∂θj

Py − 1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)]
i,j=1,...,R

, (3.75)
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∂3ℓAR(θ)

∂θ3 =

[
∂3ℓAR(θ)

∂θk∂θj∂θi

]
i,j,k=1,...,R

=

[
−1

2
tr
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

)
− 1

2
tr
(

P∂V
∂θj

P∂V
∂θk

P∂V
∂θi

)
+

1

2
y′P∂V

∂θk
P∂V
∂θj

P∂V
∂θi

Py +
1

2
y′P∂V

∂θj
P∂V
∂θk

P∂V
∂θi

Py

+
1

2
y′P∂V

∂θj
P∂V
∂θi

P∂V
∂θk

Py +
1

2
y′P∂V

∂θk
P∂V
∂θi

P∂V
∂θj

Py

+
1

2
y′P∂V

∂θi
P∂V
∂θk

P∂V
∂θj

Py +
1

2
y′P∂V

∂θi
P∂V
∂θj

P∂V
∂θk

Py

+
1

D
tr
(
Σ−1 ∂Σ

∂θk
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)
+

1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1 ∂Σ

∂θk
Σ−1∂Σ

∂θi

)]
i,j,k=1,...,R

.

So, the first condition holds: ℓAR is three times continuously differentiable.

As for the last two conditions, comparing the derivatives of ℓAP with ℓAR, we can

see that the differences are only

tr
(

P ∂V
∂θk1

P ∂V
∂θk2

· · ·P ∂V
∂θkn

)
− tr

(
V−1 ∂V

∂θk1

V−1 ∂V
∂θk2

· · ·V−1 ∂V
∂θkn

)
,

for k1, . . . , kn = 1, . . . , R and n = 1, 2, 3. By Lemma 3.15, these differences are bounded

when p and R are fixed. Thus, following the previous proof for ℓAP, we can show that

ℓAR also satisfies the conditions of Lemma 3.4. From (3.75), Theorem 2.73 and the fact

that PX = 0, we have

E
[
∂2ℓAR(θ)

∂θ2

]
=

[
1

2
tr
(

P∂V
∂θj

P∂V
∂θi

)
− tr

(
P∂V
∂θj

P∂V
∂θi

)
− 1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)]
i,j=1,...,R

=

[
−1

2
tr
(

P∂V
∂θj

P∂V
∂θi

)
− 1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)]
i,j=1,...,R

. (3.76)
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Thus, from (3.74) and (3.76), we have

θ̂
AR − θ = −

(
E
[
∂2lAR(θ)

∂θ2

])−1
∂ℓAR(θ)

∂θ
+ rAR

= −

([
−1

2
tr
(

P∂V
∂θj

P∂V
∂θi

)
− 1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)]
i,j=1,...,R

)−1

[
−1

2
tr
(

P∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

)]
i=1,...,R

+ rAR

where |rAR| ≤ D−ρη with E(ηm) bounded for any fixed 0 < ρ < 1 and m > 0.

Next, we will prove the asymptotic properties of the APML and AREML estimators.

To prove this asymptotic properties, we need the following lemma.

Lemma 3.20. Under the multivariate Fay-Herriot model (3.2), for i, j = 1, . . . , R, for

large D,

([
−1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)
+O(1)

]
i,j=1,...,R

)−1

=

([
−1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1

+
[
o(D−1)

]
R×R

.

Proof. Note that −E
[
∂2ℓP
∂θ2

]
=
[
1
2 tr

(
V−1 ∂V

∂θj
V−1 ∂V

∂θi

)]
i,j=1,...,R

is Fisher information

matrix, which is invertible. Then
[
−1

2 tr
(

V−1 ∂V
∂θj

V−1 ∂V
∂θi

)]
i,j=1,...,R

is invertible.

From Theorem 2.63, the first-order Taylor Series approximation of matrix function

with f(X) = X−1 is

(A + E)−1 = A−1 +
d

dt

∣∣∣∣∣
t=0

(A + tE)−1

= A−1 − (A + tE)−1(E)(A + tE)−1

∣∣∣∣∣
t=0

= A−1 − A−1EA−1. (3.77)
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Applying (3.77) with A =
[
−1

2 tr
(

V−1 ∂V
∂θj

V−1 ∂V
∂θi

)]
i,j=1,...,R

and E =
[
O(1)

]
R×R

,

([
−1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)
+O(1)

]
i,j=1,...,R

)−1

=

([
−1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1

−

([−1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1 [
O(1)

]
R×R([

−1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1


=

([
−1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1

+
[
O(D−1)

]
R×R

[
O(1)

]
R×R

[
O(D−1)

]
R×R

=

([
−1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1

+
[
o(D−1)

]
R×R

.

Theorem 3.21. Under the multivariate Fay-Herriot model (3.2), both adjusted profile

maximum likelihood estimator, θ̂AP, and adjusted residual maximum likelihood estimator,

θ̂
AR, are consistent estimators of θ. In addition, we have

E
[(

θ̂ − θ
)(

θ̂ − θ
)′]

= 2

([
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1

+
[
o(D−1)

]
R×R

.
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Proof. From Theorem 3.19, we have

E
[(

θ̂
AP − θ

)(
θ̂

AP − θ
)′]

= E
[(

−
([

1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)
− tr

(
P∂V
∂θj

P∂V
∂θi

)

− 1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)]
i,j=1,...,R

)−1

[
−1

2
tr
(

V−1∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

)]
i=1,...,R

+ rAP

)
(

r′AP −
[
−1

2
tr
(

V−1∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

)]′
i=1,...,R([

1

2
tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

)
− tr

(
P∂V
∂θi

P∂V
∂θj

)

− 1

D
tr
(
Σ−1∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)]
i,j=1,...,R

)−1


= E
[
rAPr′AP

]
+

([
1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)
− tr

(
P∂V
∂θj

P∂V
∂θi

)
− 1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)]
i,j=1,...,R

)−1

E
[[

−1

2
tr
(

V−1∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

)]
i=1,...,R[

−1

2
tr
(

V−1∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

)]′
i=1,...,R

]
([

1

2
tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

)
− tr

(
P∂V
∂θi

P∂V
∂θj

)
− 1

D
tr
(
Σ−1∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)]
i,j=1,...,R

)−1

−

([
1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)
− tr

(
P∂V
∂θj

P∂V
∂θi

)
− 1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)]
i,j=1,...,R

)−1

E
[[

−1

2
tr
(

V−1∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

)]
i=1,...,R

r′AP

]

− E
[

rAP

[
−1

2
tr
(

V−1∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

)]′
i=1,...,R

]
([

1

2
tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

)
− tr

(
P∂V
∂θi

P∂V
∂θj

)
− 1

D
tr
(
Σ−1∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)]
i,j=1,...,R

)−1

.

(3.78)
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We have four terms of E[(θ̂AP − θ)(θ̂
AP − θ)′]. For the first term of (3.78), from the

condition in Theorem 3.23 with ρ = 3/4, we have

E[rAPr′AP] = E[[rirj ]i,j=1,...,R]

=
[
o(D)−1

]
R×R

, (3.79)

where rAP = [ri]i=1,...,R.

For the second term of (3.78), from Lemma 3.15(2), we have

[
1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)
− tr

(
P∂V
∂θj

P∂V
∂θi

)
− 1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)]
i,j=1,...,R

=

[
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)
− tr

(
P∂V
∂θj

P∂V
∂θi

)
− 1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)
− 1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)]
i,j=1,...,R

=

[
−1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)
+O(1) +O(D−1)

]
i,j=1,...,R

=

[
−1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)
+O(1)

]
i,j=1,...,R

. (3.80)

From (3.80), we have

([
1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)
− tr

(
P∂V
∂θj

P∂V
∂θi

)
− 1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)]
i,j=1,...,R

)−1

=

([
−1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)
+O(1)

]
i,j=1,...,R

)−1

=

([
−1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1

+
[
o(D−1)

]
R×R

, (3.81)

where we use Lemma 3.20 to obtain the last equation.
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Using Theorem 2.73 and the fact that PX = 0,

E
[
y′P∂V

∂θi
Py
]
= tr

(
P∂V
∂θi

)
. (3.82)

Using Theorem 2.74 and the fact that PX = 0,

E
[(

y′P∂V
∂θi

Py
)(

y′P∂V
∂θj

Py
)]

= 2 tr
(

P∂V
∂θi

P∂V
∂θj

)
+ tr

(
P∂V
∂θi

)
tr
(

P∂V
∂θj

)
.

(3.83)

From (3.82) and (3.83), we have

E
[[

−1

2
tr
(

V−1∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

)]
i=1,...,R[

−1

2
tr
(

V−1∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

)]′
i=1,...,R

]

= E
[[

1

4
tr
(

V−1∂V
∂θi

)
tr
(

V−1 ∂V
∂θj

)
− 1

4
tr
(

V−1∂V
∂θi

)(
y′P∂V

∂θj
Py
)

− 1

2D
tr
(

V−1∂V
∂θi

)
tr
(
Σ−1 ∂Σ

∂θj

)
− 1

4

(
y′P∂V

∂θi
Py
)

tr
(

V−1 ∂V
∂θj

)
+

1

4

(
y′P∂V

∂θi
Py
)(

y′P∂V
∂θj

Py
)
+

1

2D

(
y′P∂V

∂θi
Py
)

tr
(
Σ−1 ∂Σ

∂θj

)
− 1

2D
tr
(
Σ−1∂Σ

∂θi

)
tr
(

V−1 ∂V
∂θj

)
+

1

2D
tr
(
Σ−1∂Σ

∂θi

)(
y′P∂V

∂θj
Py
)

+
1

D2
tr
(
Σ−1∂Σ

∂θi

)
tr
(
Σ−1 ∂Σ

∂θj

)]
i,j=1,...,R

]

=

[
1

4
tr
(

V−1∂V
∂θi

)
tr
(

V−1 ∂V
∂θj

)
− 1

4
tr
(

V−1∂V
∂θi

)
tr
(

P∂V
∂θj

)
− 1

2D
tr
(

V−1∂V
∂θi

)
tr
(
Σ−1 ∂Σ

∂θj

)
− 1

4
tr
(

P∂V
∂θi

)
tr
(

V−1 ∂V
∂θj

)
+

1

2
tr
(

P∂V
∂θi

P∂V
∂θj

)
+

1

4
tr
(

P∂V
∂θi

)
tr
(

P∂V
∂θj

)
+

1

2D
tr
(

P∂V
∂θi

)
tr
(
Σ−1 ∂Σ

∂θj

)
− 1

2D
tr
(
Σ−1∂Σ

∂θi

)
tr
(

V−1 ∂V
∂θj

)
+

1

2D
tr
(
Σ−1∂Σ

∂θi

)
tr
(

P∂V
∂θj

)
+

1

D2
tr
(
Σ−1∂Σ

∂θi

)
tr
(
Σ−1 ∂Σ

∂θj

)]
i,j=1,...,R
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=

[
1

4

(
tr
(

V−1∂V
∂θi

)
− tr

(
P∂V
∂θi

))(
tr
(

V−1 ∂V
∂θj

)
− tr

(
P∂V
∂θj

))
+

1

2
tr
(

P∂V
∂θi

P∂V
∂θj

)
− 1

2D

(
tr
(

V−1∂V
∂θi

)
− tr

(
P∂V
∂θi

))
tr
(
Σ−1 ∂Σ

∂θj

)
− 1

2D
tr
(
Σ−1∂Σ

∂θi

)(
tr
(

V−1∂V
∂θi

)
− tr

(
P∂V
∂θj

))
+

1

D2
tr
(
Σ−1∂Σ

∂θi

)
tr
(
Σ−1 ∂Σ

∂θj

)]
i,j=1,...,R

=

[
O(1) +

1

2
tr
(

P∂V
∂θi

P∂V
∂θj

)
+O(D−1) +O(D−1) +O(D−2)

]
i,j=1,...,R

=

[
1

2
tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

)
+O(1)

]
i,j=1,...,R

, (3.84)

where we use Lemma 3.15 to obtain the last two equations.

Thus, from (3.81) and (3.84),

([
1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)
− tr

(
P∂V
∂θj

P∂V
∂θi

)
− 1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)]
i,j=1,...,R

)−1

E
[[

−1

2
tr
(

V−1∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

)]
i=1,...,R[

−1

2
tr
(

V−1∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

)]′
i=1,...,R

]
([

1

2
tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

)
− tr

(
P∂V
∂θi

P∂V
∂θj

)
− 1

D
tr
(
Σ−1∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)]
i,j=1,...,R

)−1

=

([−1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1

+
[
o(D−1)

]
R×R


[
1

2
tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

)
+O(1)

]
i,j=1,...,R([−1

2
tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

)]
i,j=1,...,R

)−1

+
[
o(D−1)

]
R×R


= 2

([
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1

+
[
o(D−1)

]
R×R

. (3.85)
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For the third term of (3.78), by the Cauchy-Schwartz inequality for vector, (3.79)

and (3.84), we have

E
[(

−1

2
tr
(

V−1∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

))
rj

]
≤
(

E
[(

−1

2
tr
(

V−1∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

))
(
−1

2
tr
(

V−1∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

))])1/2

(E [rjrj ])
1/2

=

(
1

2
tr
(

V−1∂V
∂θi

V−1∂V
∂θi

)
+O(1)

)1/2 (
o(D)−1

)1/2
= (O(D))1/2

(
o(D)−1

)1/2 (3.86)

= o(1), (3.87)

where we use Remark 3.14 to obtain (3.86).

From (3.81) and (3.87) and Remark 3.14, we have

([
1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)
− tr

(
P∂V
∂θj

P∂V
∂θi

)
− 1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)]
i,j=1,...,R

)−1

E
[[

−1

2
tr
(

V−1∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

)]
i=1,...,R

r′AP

]

=

([−1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1

+
[
o(D−1)

]
R×R


[
E
[(

−1

2
tr
(

V−1∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

))
rj

]]
i,j=1,...,R

=
[
o(1)

]
R×R

[
O(D−1)

]
R×R

+
[
o(1)

]
R×R

[
o(D−1)

]
R×R

=
[
o(D)−1

]
R×R

. (3.88)
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For the fourth term of (3.78), by the Cauchy-Schwartz inequality for vector, similar

(3.87), we have

E
[
ri

(
−1

2
tr
(

V−1 ∂V
∂θj

)
+

1

2
y′P∂V

∂θj
Py +

1

D
tr
(
Σ−1 ∂Σ

∂θj

))]
≤ (E [riri])

1/2

(
E
[(

−1

2
tr
(

V−1 ∂V
∂θj

)
+

1

2
y′P∂V

∂θj
Py +

1

D
tr
(
Σ−1 ∂Σ

∂θj

))
(
−1

2
tr
(

V−1 ∂V
∂θj

)
+

1

2
y′P∂V

∂θj
Py +

1

D
tr
(
Σ−1 ∂Σ

∂θj

))])1/2

=
(
o(D)−1

)1/2(1

2
tr
(

V−1 ∂V
∂θj

V−1 ∂V
∂θj

)
+O(1)

)1/2

=
(
o(D)−1

)1/2
(O(D))1/2

= o(1). (3.89)

From (3.81) and (3.89), we have

E
[

rAP

[
−1

2
tr
(

V−1∂V
∂θi

)
+

1

2
y′P∂V

∂θi
Py +

1

D
tr
(
Σ−1∂Σ

∂θi

)]′
i=1,...,R

]
([

1

2
tr
(

V−1∂V
∂θi

V−1 ∂V
∂θj

)
− tr

(
P∂V
∂θi

P∂V
∂θj

)
− 1

D
tr
(
Σ−1∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)]
i,j=1,...,R

)−1

=

[
E
[
ri

(
−1

2
tr
(

V−1 ∂V
∂θj

)
+

1

2
y′P∂V

∂θj
Py +

1

D
tr
(
Σ−1 ∂Σ

∂θj

))]]
i,j=1,...,R([−1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1

+
[
o(D−1)

]
R×R


=
[
o(1)

]
R×R

[
O(D−1)

]
R×R

+
[
o(1)

]
R×R

[
o(D−1)

]
R×R

=
[
o(D)−1

]
R×R

. (3.90)

Thus, from (3.79), (3.85), (3.88) and (3.90),

E
[(

θ̂
AP − θ

)(
θ̂

AP − θ
)′]

= 2

([
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1

+
[
o(D−1)

]
R×R
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Similarly, by the same technique, we can show that

E
[(

θ̂
AR − θ

)(
θ̂

AR − θ
)′]

= 2

([
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1

+
[
o(D−1)

]
R×R

.

Remark 3.22. From Theorem 3.21, we can notice that APML and AREML estimators

have the same asymptotic variances as the PML and REML estimators.

Theorem 3.23. Under the multivariate Fay-Herriot model (3.2), we have

Bias(θ̂AP
) =

([
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1

[
− tr

(
V−1∂V

∂θi

)
+ tr

(
P∂V
∂θi

)]
i=1,...,R

+
[
o(D−1)

]
R×1

,

Bias(θ̂AR
) =

[
o(D−1)

]
R×1

.

Proof. We prove this theorem by verifying the five conditions of Lemma 3.5. We first

consider the η function. Define ηr(θ) = θr for r = 1, . . . , R. Then, by differentiating with

respect to θ three times, we have, for i, j, k = 1, . . . , R,

∂ηr(θ)

∂θj
=


1 if j = r,

0 otherwise
,

∂2ηr(θ)

∂θj∂θi
= 0,

∂3ηr(θ)

∂θk∂θj∂θi
= 0.

It is clearly, ηr(θ), |∂ηr(θ)/∂θ|, ||∂2ηr(θ)/∂θ
2||, supθ̃∈Sδ(θ)

∣∣∂3ηr(θ)/∂θk∂θj∂θi
∣∣, for all

i, j, k = 1, . . . , R, for r = 1, . . . , R, are bounded. So the first condition of Lemma 3.19

holds.

Since the condition of prove of Lemma 3.19 hold for any m > 0, the conditions of

Theorem 3.5 hold with m > 8 + 4λ. The first-third order derivatives of ℓ(θ) are given

respectively in (3.68) – (3.70). The fourth order derivative is given as follows
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∂4ℓAP(θ)

∂θ4 =

[
∂4ℓAP(θ)

∂θl∂θk∂θj∂θi

]
i,j,k,l=1,...,R

=

[
1

2
tr
(

V−1∂V
∂θl

V−1 ∂V
∂θk

V−1 ∂V
∂θj

V−1∂V
∂θi

)
+

1

2
tr
(

V−1 ∂V
∂θk

V−1∂V
∂θl

V−1 ∂V
∂θj

V−1∂V
∂θi

)
+

1

2
tr
(

V−1 ∂V
∂θk

V−1 ∂V
∂θj

V−1∂V
∂θl

V−1∂V
∂θi

)
+

1

2
tr
(

V−1∂V
∂θl

V−1 ∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θi

)
+

1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θl

V−1 ∂V
∂θk

V−1∂V
∂θi

)
+

1

2
tr
(

V−1 ∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θl

V−1∂V
∂θi

)
− 1

2
y′P∂V

∂θl
P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

Py − 1

2
y′P∂V

∂θk
P∂V
∂θl

P∂V
∂θj

P∂V
∂θi

Py

− 1

2
y′P∂V

∂θk
P∂V
∂θj

P∂V
∂θl

P∂V
∂θi

Py − 1

2
y′P∂V

∂θk
P∂V
∂θj

P∂V
∂θi

P∂V
∂θl

Py

− 1

2
y′P∂V

∂θl
P∂V
∂θj

P∂V
∂θk

P∂V
∂θi

Py − 1

2
y′P∂V

∂θj
P∂V
∂θl

P∂V
∂θk

P∂V
∂θi

Py

− 1

2
y′P∂V

∂θj
P∂V
∂θk

P∂V
∂θl

P∂V
∂θi

Py − 1

2
y′P∂V

∂θj
P∂V
∂θk

P∂V
∂θi

P∂V
∂θl

Py

− 1

2
y′P∂V

∂θl
P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

Py − 1

2
y′P∂V

∂θj
P∂V
∂θl

P∂V
∂θi

P∂V
∂θk

Py

− 1

2
y′P∂V

∂θj
P∂V
∂θi

P∂V
∂θl

P∂V
∂θk

Py − 1

2
y′P∂V

∂θj
P∂V
∂θi

P∂V
∂θk

P∂V
∂θl

Py

− 1

2
y′P∂V

∂θl
P∂V
∂θk

P∂V
∂θi

P∂V
∂θj

Py − 1

2
y′P∂V

∂θk
P∂V
∂θl

P∂V
∂θi

P∂V
∂θj

Py

− 1

2
y′P∂V

∂θk
P∂V
∂θi

P∂V
∂θl

P∂V
∂θj

Py − 1

2
y′P∂V

∂θk
P∂V
∂θi

P∂V
∂θj

P∂V
∂θl

Py

− 1

2
y′P∂V

∂θl
P∂V
∂θi

P∂V
∂θk

P∂V
∂θj

Py − 1

2
y′P∂V

∂θi
P∂V
∂θl

P∂V
∂θk

P∂V
∂θj

Py

− 1

2
y′P∂V

∂θi
P∂V
∂θk

P∂V
∂θl

P∂V
∂θj

Py − 1

2
y′P∂V

∂θi
P∂V
∂θk

P∂V
∂θj

P∂V
∂θl

Py

− 1

2
y′P∂V

∂θl
P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

Py − 1

2
y′P∂V

∂θi
P∂V
∂θl

P∂V
∂θj

P∂V
∂θk

Py

− 1

2
y′P∂V

∂θi
P∂V
∂θj

P∂V
∂θl

P∂V
∂θk

Py − 1

2
y′P∂V

∂θi
P∂V
∂θj

P∂V
∂θk

P∂V
∂θl

Py
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− 1

D
tr
(
Σ−1∂Σ

∂θl
Σ−1 ∂Σ

∂θk
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)
− 1

D
tr
(
Σ−1 ∂Σ

∂θk
Σ−1∂Σ

∂θl
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)
− 1

D
tr
(
Σ−1 ∂Σ

∂θk
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θl
Σ−1∂Σ

∂θi

)
− 1

D
tr
(
Σ−1∂Σ

∂θl
Σ−1 ∂Σ

∂θj
Σ−1 ∂Σ

∂θk
Σ−1∂Σ

∂θi

)
− 1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θl
Σ−1 ∂Σ

∂θk
Σ−1∂Σ

∂θi

)
− 1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1 ∂Σ

∂θk
Σ−1∂Σ

∂θl
Σ−1∂Σ

∂θi

)]
i,j,k,l=1,...,R

. (3.91)

Since the fourth derivative of adjusted profile log-likelihood function is continuous in term

of θ, the second condition holds.

Next, we verify condition 3 of Lemma 3.5. To show that the mth moments of those

three terms are bounded. If we take gi =
√
D for i = 1, . . . , R, for condition 3 (a), from

(3.65), we have

E
[
∂3ℓAP(θ)

∂θk∂θj∂θi

]
= −1

2
tr
(

V−1 ∂V
∂θk

V−1 ∂V
∂θj

V−1∂V
∂θi

)
− 1

2
tr
(

V−1 ∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θi

)
+

1

2
tr
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

)
+

1

2
tr
(

P∂V
∂θj

P∂V
∂θk

P∂V
∂θi

)
+

1

2
tr
(

P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

)
+

1

2
tr
(

P∂V
∂θk

P∂V
∂θi

P∂V
∂θj

)
+

1

2
tr
(

P∂V
∂θi

P∂V
∂θk

P∂V
∂θj

)
+

1

2
tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

)
+

1

D
tr
(
Σ−1 ∂Σ

∂θk
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)
+

1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1 ∂Σ

∂θk
Σ−1∂Σ

∂θi

)
. (3.92)
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From (3.70), (3.92), Theorem 2.96 and Corollary 3.18, we have

E
[(

1
√
gjgi

∣∣∣∣ ∂3ℓ(θ)

∂θk∂θj∂θi
− E

(
∂3ℓ(θ)

∂θk∂θj∂θi

)∣∣∣∣)m]
= E

[(
1√
D

∣∣∣∣ ∂3ℓAP(θ)

∂θk∂θj∂θi
− E

[
∂3ℓAP(θ)

∂θk∂θj∂θi

]∣∣∣∣)m]
=

1

Dm/2
E
[∣∣∣∣12y′

(
P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P + P∂V
∂θi

P∂V
∂θk

P∂V
∂θj

P
)

y

+
1

2
y′
(

P∂V
∂θj

P∂V
∂θk

P∂V
∂θi

P + P∂V
∂θk

P∂V
∂θi

P∂V
∂θj

P + P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

P
)

y

− 3

2
tr
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

)
− 3

2
tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

)∣∣∣∣m]
≤ max(1, 2m−1)

(4D)m/2

E
[∣∣∣∣y′

(
P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P + P∂V
∂θi

P∂V
∂θk

P∂V
∂θj

P
)

y

−3 tr
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

)∣∣∣∣m]
+

max(1, 2m−1)

(4D)m/2

E
[∣∣∣∣y′

(
P∂V
∂θj

P∂V
∂θk

P∂V
∂θi

P + P∂V
∂θk

P∂V
∂θi

P∂V
∂θj

P + P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

P
)

y

−3 tr
(

P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

)∣∣∣∣m]
≤ 2max(1, 2m−1)

(4D)m/2

(
c

(
DR− pR

λ6
min(V)

)m/2
)

= c

((
R

λ6
min(V)

)(
1− p

D

))m/2

.

Thus, E
[(

1
√
gjgi

∣∣∣∣ ∂3ℓ(θ)

∂θk∂θj∂θi
− E

(
∂3ℓ(θ)

∂θk∂θj∂θi

)∣∣∣∣)m]
is bounded for any m > 0, for

i, j, k = 1, . . . , R.
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For condition 3 (b), from (3.70), Lemma 3.15, Theorem 2.96, Corollary 3.18 and

Lemma 3.9, we have

E
[(

1

gjgi

∣∣∣∣ ∂3ℓ(θ)

∂θk∂θj∂θi

∣∣∣∣)m]
= E

[(
1

D

∣∣∣∣ ∂3ℓAP(θ)

∂θk∂θj∂θi

∣∣∣∣)m]
=

1

Dm
E
[∣∣∣∣−1

2
tr
(

V−1 ∂V
∂θk

V−1 ∂V
∂θj

V−1∂V
∂θi

)
− 1

2
tr
(

V−1 ∂V
∂θj

V−1 ∂V
∂θk

V−1∂V
∂θi

)
+

1

2
y′
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P + P∂V
∂θi

P∂V
∂θk

P∂V
∂θj

P
)

y

+
1

2
y′
(

P∂V
∂θj

P∂V
∂θk

P∂V
∂θi

P + P∂V
∂θk

P∂V
∂θi

P∂V
∂θj

P + P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

P
)

y

+
1

D
tr
(
Σ−1 ∂Σ

∂θk
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)
+

1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1 ∂Σ

∂θk
Σ−1∂Σ

∂θi

)∣∣∣∣m] .
=

1

(2D)m
E
[∣∣∣∣y′

(
P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P + P∂V
∂θi

P∂V
∂θk

P∂V
∂θj

P
)

y

+ y′
(

P∂V
∂θj

P∂V
∂θk

P∂V
∂θi

P + P∂V
∂θk

P∂V
∂θi

P∂V
∂θj

P + P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

P
)

y

− 3 tr
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

)
+ 2 tr

(
P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

)
−3 tr

(
P∂V
∂θj

P∂V
∂θk

P∂V
∂θi

)
+ 2 tr

(
P∂V
∂θj

P∂V
∂θk

P∂V
∂θi

)
+O(1)

∣∣∣∣m] .
≤ max(1, 4m−1)

(2D)m(
E
[∣∣∣∣y′

(
P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

P + P∂V
∂θj

P∂V
∂θi

P∂V
∂θk

P + P∂V
∂θi

P∂V
∂θk

P∂V
∂θj

P
)

y

− 3 tr
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

)∣∣∣∣m]
+ E

[∣∣∣∣y′
(

P∂V
∂θj

P∂V
∂θk

P∂V
∂θi

P + P∂V
∂θk

P∂V
∂θi

P∂V
∂θj

P + P∂V
∂θi

P∂V
∂θj

P∂V
∂θk

P
)

y

− 3 tr
(

P∂V
∂θj

P∂V
∂θk

P∂V
∂θi

)∣∣∣∣m]
+ E

[∣∣∣∣2 tr
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

)
+ 2 tr

(
P∂V
∂θj

P∂V
∂θk

P∂V
∂θi

)∣∣∣∣m]+O(1)

)
≤ max(1, 2m−1)

(2D)m

(
2c

(
DR− pR

λ6
min(V)

)m/2

+ 2

∣∣∣∣4(DR− pR)

λ3
min(V)

∣∣∣∣m
)

+O(D−m)

= c

(
R1/2

λ3
min(V)

)m(
1

D
− p

D2

)m/2

+ c

(
R

λ3
min(V)

)m (
1− p

D

)m
+O(D−m).

Thus, E
[(

1

gjgi

∣∣∣∣ ∂3ℓ(θ)

∂θk∂θj∂θi

∣∣∣∣)m]
is bounded for any m > 0, for i, j, k = 1, . . . , R.
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For condition 3 (c), when δ = min(θ)/2, let θ̃ such that

−min(θ)
2

+ θi ≤ θ̃i ≤
min(θ)

2
+ θi, for all i = 1, . . . , R.

For i, j, k, l = 1, . . . , R, from the fact that P̃X = 0, the same idea of the proof of Lemma

3.11 with the rank one positive semidefinite matrix ww′, we have

y′P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃y + y′P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃y

= w′P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃w + w′P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃w

= tr
(

w′P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃w + w′P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃w
)

≤ 4 tr(w′w)

λ5
min(Ṽ)

=
4w′w

λ5
min(Ṽ)

,

and

− 2w′w
λ5

max(Ṽ)
≤ y′P̃ ∂̃V

∂θl
P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃y + y′P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃y,

where P̃, Ṽ and ∂̃V/∂θi are obtained when θ is replaced by θ̃ in P, V and ∂V/∂θi,

respectively.

From the last inequality, the fact that w ∼ N(0,V), Theorem 2.73 and Corollary

2.36, we have

E
[∣∣∣∣∣y′P̃ ∂̃V

∂θl
P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃y + y′P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃y
∣∣∣∣∣
]m

≤ c

(
4E [w′w]

λ5
min(Ṽ)

)m
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= c

(
4 tr (V)

λ5
min(Ṽ)

)m

≤ c

(
4λmax(V) tr(IDR)

λ5
min(Ṽ)

)m

= c

(
4DRλmax(V)

λ5
min(Ṽ)

)m

. (3.93)

Then, from (3.91), Lemma 3.15, Theorem 2.96, Lemma 3.10 and (3.93), we have

E
[(

g2∗
glgkgjgi

sup
θ̃∈Sδ(θ)

∣∣∣∣∣ ∂4ℓ(θ̃)

∂θl∂θk∂θj∂θi

∣∣∣∣∣
)m]

= E
[(

1

D
sup

θ̃∈Sδ(θ)

∣∣∣∣∣ ∂4ℓAP(θ̃)

∂θl∂θk∂θj∂θi

∣∣∣∣∣
)m]

=
1

Dm
E
[

sup
θ̃∈Sδ(θ)

∣∣∣∣∣12 tr
(

Ṽ−1 ∂̃V
∂θl

Ṽ−1 ∂̃V
∂θk

Ṽ−1 ∂̃V
∂θj

Ṽ−1 ∂̃V
∂θi

)

+
1

2
tr
(

Ṽ−1 ∂̃V
∂θk

Ṽ−1 ∂̃V
∂θl

Ṽ−1 ∂̃V
∂θj

Ṽ−1 ∂̃V
∂θi

)

+
1

2
tr
(

Ṽ−1 ∂̃V
∂θk

Ṽ−1 ∂̃V
∂θj

Ṽ−1 ∂̃V
∂θl

Ṽ−1 ∂̃V
∂θi

)

+
1

2
tr
(

Ṽ−1 ∂̃V
∂θl

Ṽ−1 ∂̃V
∂θj

Ṽ−1 ∂̃V
∂θk

Ṽ−1 ∂̃V
∂θi

)

+
1

2
tr
(

Ṽ−1 ∂̃V
∂θj

Ṽ−1 ∂̃V
∂θl

Ṽ−1 ∂̃V
∂θk

Ṽ−1 ∂̃V
∂θi

)

+
1

2
tr
(

Ṽ−1 ∂̃V
∂θj

Ṽ−1 ∂̃V
∂θk

Ṽ−1 ∂̃V
∂θl

Ṽ−1 ∂̃V
∂θi

)

− 1

2
y′P̃ ∂̃V

∂θl
P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃y − 1

2
y′P̃ ∂̃V

∂θk
P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃y

− 1

2
y′P̃ ∂̃V

∂θk
P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θi

P̃y − 1

2
y′P̃ ∂̃V

∂θk
P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θl

P̃y

− 1

2
y′P̃ ∂̃V

∂θl
P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θi

P̃y − 1

2
y′P̃ ∂̃V

∂θj
P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θi

P̃y

− 1

2
y′P̃ ∂̃V

∂θj
P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θi

P̃y − 1

2
y′P̃ ∂̃V

∂θj
P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θl

P̃y
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− 1

2
y′P̃ ∂̃V

∂θl
P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θk

P̃y − 1

2
y′P̃ ∂̃V

∂θj
P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θk

P̃y

− 1

2
y′P̃ ∂̃V

∂θj
P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θk

P̃y − 1

2
y′P̃ ∂̃V

∂θj
P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃y

− 1

2
y′P̃ ∂̃V

∂θl
P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃y − 1

2
y′P̃ ∂̃V

∂θk
P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃y

− 1

2
y′P̃ ∂̃V

∂θk
P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θj

P̃y − 1

2
y′P̃ ∂̃V

∂θk
P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θl

P̃y

− 1

2
y′P̃ ∂̃V

∂θl
P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃y − 1

2
y′P̃ ∂̃V

∂θi
P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃y

− 1

2
y′P̃ ∂̃V

∂θi
P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θj

P̃y − 1

2
y′P̃ ∂̃V

∂θi
P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θl

P̃y

− 1

2
y′P̃ ∂̃V

∂θl
P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃y − 1

2
y′P̃ ∂̃V

∂θi
P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃y

− 1

2
y′P̃ ∂̃V

∂θi
P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θk

P̃y − 1

2
y′P̃ ∂̃V

∂θi
P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃y

− 1

D
tr
(
Σ̃

−1∂Σ̃

∂θl
Σ̃

−1 ∂Σ̃

∂θk
Σ̃

−1 ∂Σ̃

∂θj
Σ̃

−1∂Σ̃

∂θi

)

− 1

D
tr
(
Σ̃

−1 ∂Σ̃

∂θk
Σ̃

−1∂Σ̃

∂θl
Σ̃

−1 ∂Σ̃

∂θj
Σ̃

−1∂Σ̃

∂θi

)

− 1

D
tr
(
Σ̃

−1 ∂Σ̃

∂θk
Σ̃

−1 ∂Σ̃

∂θj
Σ̃

−1∂Σ̃

∂θl
Σ̃

−1∂Σ̃

∂θi

)

− 1

D
tr
(
Σ̃

−1∂Σ̃

∂θl
Σ̃

−1 ∂Σ̃

∂θj
Σ̃

−1 ∂Σ̃

∂θk
Σ̃

−1∂Σ̃

∂θi

)

− 1

D
tr
(
Σ̃

−1 ∂Σ̃

∂θj
Σ̃

−1∂Σ̃

∂θl
Σ̃

−1 ∂Σ̃

∂θk
Σ̃

−1∂Σ̃

∂θi

)

− 1

D
tr
(
Σ̃

−1 ∂Σ̃

∂θj
Σ̃

−1 ∂Σ̃

∂θk
Σ̃

−1∂Σ̃

∂θl
Σ̃

−1∂Σ̃

∂θi

)∣∣∣∣∣
m]
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=
1

Dm
E
[

sup
θ̃∈Sδ(θ)

∣∣∣∣∣12 tr
(

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

)
+

1

2
tr
(

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

)

+
1

2
tr
(

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θi

)
+

1

2
tr
(

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θi

)

+
1

2
tr
(

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θi

)
+

1

2
tr
(

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θi

)

− 1

2
y′P̃ ∂̃V

∂θl
P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃y − 1

2
y′P̃ ∂̃V

∂θk
P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃y

− 1

2
y′P̃ ∂̃V

∂θk
P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θi

P̃y − 1

2
y′P̃ ∂̃V

∂θk
P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θl

P̃y

− 1

2
y′P̃ ∂̃V

∂θl
P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θi

P̃y − 1

2
y′P̃ ∂̃V

∂θj
P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θi

P̃y

− 1

2
y′P̃ ∂̃V

∂θj
P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θi

P̃y − 1

2
y′P̃ ∂̃V

∂θj
P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θl

P̃y

− 1

2
y′P̃ ∂̃V

∂θl
P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θk

P̃y − 1

2
y′P̃ ∂̃V

∂θj
P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θk

P̃y

− 1

2
y′P̃ ∂̃V

∂θj
P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θk

P̃y − 1

2
y′P̃ ∂̃V

∂θj
P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃y

− 1

2
y′P̃ ∂̃V

∂θl
P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃y − 1

2
y′P̃ ∂̃V

∂θk
P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃y

− 1

2
y′P̃ ∂̃V

∂θk
P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θj

P̃y − 1

2
y′P̃ ∂̃V

∂θk
P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θl

P̃y

− 1

2
y′P̃ ∂̃V

∂θl
P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃y − 1

2
y′P̃ ∂̃V

∂θi
P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃y

− 1

2
y′P̃ ∂̃V

∂θi
P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θj

P̃y − 1

2
y′P̃ ∂̃V

∂θi
P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θl

P̃y

− 1

2
y′P̃ ∂̃V

∂θl
P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃y − 1

2
y′P̃ ∂̃V

∂θi
P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃y

− 1

2
y′P̃ ∂̃V

∂θi
P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θk

P̃y − 1

2
y′P̃ ∂̃V

∂θi
P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃y

+O(1)
∣∣∣m]
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≤ max(1, 16m−1)

(2D)m(
E
[

sup
θ̃∈Sδ(θ)

(∣∣∣∣∣tr
(

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

)
+ tr

(
P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θi

)∣∣∣∣∣
m

+

∣∣∣∣∣tr
(

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

)
+ tr

(
P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θi

)∣∣∣∣∣
m

+

∣∣∣∣∣tr
(

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θi

)
+ tr

(
P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θi

)∣∣∣∣∣
m

+

∣∣∣∣∣y′P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃y + y′P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃y
∣∣∣∣∣
m

+

∣∣∣∣∣y′P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃y + y′P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θk

P̃y
∣∣∣∣∣
m

+

∣∣∣∣∣y′P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θi

P̃y + y′P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃y
∣∣∣∣∣
m

+

∣∣∣∣∣y′P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θl

P̃y + y′P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃y
∣∣∣∣∣
m

+

∣∣∣∣∣y′P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θi

P̃y + y′P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θl

P̃y
∣∣∣∣∣
m

+

∣∣∣∣∣y′P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θi

P̃y + y′P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θj

P̃y
∣∣∣∣∣
m

+

∣∣∣∣∣y′P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θi

P̃y + y′P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃y
∣∣∣∣∣
m

+

∣∣∣∣∣y′P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θl

P̃y + y′P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θj

P̃y
∣∣∣∣∣
m

+

∣∣∣∣∣y′P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θk

P̃y + y′P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θl

P̃y
∣∣∣∣∣
m

+

∣∣∣∣∣y′P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θk

P̃y + y′P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θj

P̃y
∣∣∣∣∣
m

+

∣∣∣∣∣y′P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θk

P̃y + y′P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃y
∣∣∣∣∣
m

+

∣∣∣∣∣y′P̃ ∂̃V
∂θj

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θl

P̃y + y′P̃ ∂̃V
∂θl

P̃ ∂̃V
∂θk

P̃ ∂̃V
∂θi

P̃ ∂̃V
∂θj

P̃y
∣∣∣∣∣
m

+ |O(1)|m
)])

≤ max(1, 16m−1)

(2D)m

(
3

∣∣∣∣∣4(DR− pR)

λ4
min(Ṽ)

∣∣∣∣∣
m

+ 12

[
c

(
4DRλmax(V)

λ5
min(Ṽ)

)m])
+O(D−m)
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≤ c

((
R

λ4
min(Ṽ)

)(
1− p

D

))m

+ c

(
Rλmax(V)

λ5
min(Ṽ)

)m

+O(D−m),

where Sδ(θ) = {θ̃ :
∣∣∣θ̃i − θi

∣∣∣ ≤ min(θ)/2, 1 ≤ i ≤ R}, is bounded for any m > 0.

For condition 4 of Lemma 3.5, we consider

Q = G−1AG−1,

U0 = (ui) = (E[λi]),

U1 = (uil) = (E[λiλl]),

U2 = (ujkl) = (E[λjkλl]),

U3 = (ujklmn) = (E[λjkmλlλn]),

where A = E[∂2ℓ(θ)/∂θ2], G = diag(g1, . . . , gR) with gi =
√
D, for all i = 1, . . . , R,

G−1a = (λi), G−1/2(F − A)G−1/2 = (λij), and G−1HiG−1 = (λijk).

Note that θ̃ ∈ Sδ(θ) = {θ̃ :
∣∣∣θ̃i − θi

∣∣∣ ≤ δ, 1 ≤ i ≤ R}, then θ̃ → θ as δ → 0, we

have

Q(θ̃) → Q(θ) and Uj(θ̃) → Uj(θ), for j = 1, 2, 3

as δ → 0.

Since matrix norm is a continuous function, we have

sup
θ̃∈Sδ(θ0)

||Q(θ̃)− Q(θ0)|| → 0,

and

sup
θ̃∈Sδ(θ0)

||Uj(θ̃)− Uj(θ0)|| → 0 j = 1, 2, 3,

as δ → 0.
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Finally, we need to verify the last condition. From (3.68) and Lemma 3.15(1),

E
[
∂ℓ(θ)

∂θ

]
= E

[
∂ℓAP(θ)

∂θ

]
=

[
−1

2
tr
(

V−1∂V
∂θi

)
+

1

2
tr
(

P∂V
∂θi

)
+

1

D
tr
(
Σ−1∂Σ

∂θi

)]
i=1,...,R

=
[
O(1) +O(D−1)

]
R×1

= [O(1)]R×1 .

Thus, |E [a] | is bounded.

Next, since θ̃ → θ as δ → 0, we have E [a] |θ=θ̃ → E [a] as δ → 0. Since matrix

norm is a continuous function, we get

sup
θ̃∈Sδ(θ)

∣∣E[a]|θ=θ̃ − E[a]
∣∣→ 0, as δ → 0.

Remark 3.24. Note that

tvi = tr
(

V−1∂V
∂θi

)
,

tvij = tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)
,

tvijk = tr
(

V−1 ∂V
∂θk

V−1 ∂V
∂θj

V−1∂V
∂θi

)
.

Remark 3.25. Note that

tpi = tr
(

P∂V
∂θi

)
,

tpij = tr
(

P∂V
∂θj

P∂V
∂θi

)
,

tpijk = tr
(

P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

)
.
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Remark 3.26. Note that

Yi = y′P∂V
∂θi

Py,

Yij = y′P∂V
∂θj

P∂V
∂θi

Py,

Yijk = y′P∂V
∂θk

P∂V
∂θj

P∂V
∂θi

Py.

Remark 3.27. Note that

tsi =
1

D
tr
(
Σ−1∂Σ

∂θi

)
,

tsij =
1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)
,

tsijk =
1

D
tr
(
Σ−1 ∂Σ

∂θk
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)
.

From Remark 3.24 – Remark 3.27, we have

bi =
∂ηi(θ)

∂θ
= ei, where ei is the identity vector , (3.94)

a =
∂ℓAP(θ)

∂θ
=

[
−1

2
tvi +

1

2
Yi + tsi

]
i=1...,R

, (3.95)

E[a] = E
[
∂ℓAP(θ)

∂θ

]
=

[
−1

2
tvi +

1

2
tpi + tsi

]
i=1...,R

, (3.96)

Bi =
∂2ηi(θ)

∂θ2 = 0R×R, (3.97)

F =
∂2ℓAP(θ)

∂θ2 =

[
1

2
tvij −

1

2
Yij −

1

2
Yji − tsij

]
i,j=1,...,R

, (3.98)

A = E
[
∂2ℓAP(θ)

∂θ2

]
=

[
1

2
tvij − tpij − tsij

]
i,j=1,...,R

(3.99)

=

[
−1

2
tvij +O(1)

]
i,j=1...,R

, (3.100)

Hi =
∂3ℓAP(θ)

∂θi∂θ
2 =

[
−1

2
tvjki −

1

2
tvjik +

1

2
Yjki +

1

2
Yjik +

1

2
Yijk +

1

2
Ykji

+
1

2
Ykij +

1

2
Yikj + tsjki + tsjik

]
i,j=1,...,R

. (3.101)
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Then, from (3.95), (3.99) and (3.101),

C = [a′A−1Hi]i=1,...,R

=

[
a′A−1

[
−1

2
tvjki −

1

2
tvjik +

1

2
Yjki +

1

2
Yjik +

1

2
Yijk +

1

2
Ykji

+
1

2
Ykij +

1

2
Yikj + tsjki + tsjik

]
j,k=1,...,R

]
i=1,...,R

=

[[
−1

2
tvi +

1

2
Yi + tsi

]′
i=1...,R[

R∑
l=1

(A−1)jl

(
−1

2
tvlki −

1

2
tvlik +

1

2
Ylki +

1

2
Ylik +

1

2
Yilk +

1

2
Ykli

+
1

2
Ykil +

1

2
Yikl + tslki + tslik

)]
j,k=1,...,R

]
i=1,...,R

=

 R∑
j=1

R∑
l=1

(
−1

2
tvj +

1

2
Yj + tsj

)
(A−1)jl(

−1

2
tvlki −

1

2
tvlik +

1

2
Ylki +

1

2
Ylik +

1

2
Yilk +

1

2
Ykli

+
1

2
Ykil +

1

2
Yikl + tslki + tslik

)]
i,k=1,...,R

. (3.102)

From the proof of Theorem 3.21, we have

([
1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)
− tr

(
P∂V
∂θj

P∂V
∂θi

)
− 1

D
tr
(
Σ−1 ∂Σ

∂θj
Σ−1∂Σ

∂θi

)]
i,j=1,...,R

)−1

=

([
−1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1

+
[
o(D−1)

]
R×R

.

That is,

A−1 =

([
−1

2
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1

+
[
o(D−1)

]
R×R

=

([
−1

2
tvij

]
i,j=1,...,R

)−1

+
[
o(D−1)

]
R×R

(3.103)

=
[
O(D−1)

]
R×R

+
[
o(D−1)

]
R×R

=
[
O(D−1)

]
R×R

. (3.104)
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Since all the five conditions of Lemma 3.5 are satisfied, we have

E(θ̂AP
i )− θi =

3∑
j=0

E[∆ij(θ̂
AP

)] + o(g−2
∗ )

=

3∑
j=0

∆ij(θ) + o(D−1),

where

∆i0(θ) = −2b′
iA−1 E[a],

∆i1(θ) = b′
iA−1 E[FA−1a],

∆i2(θ) =
1

2
E[a′A−1BiA−1a],

∆i3(θ) = −1

2
b′
iA−1 E[CA−1a].

For the first term, from (3.94) and (3.96), we have

∆i0(θ) = −2biA−1 E[a]

= −2biA−1

[
−1

2
tvi +

1

2
tpi + tsi

]
i=1...,R

= −2bi

 R∑
j=1

(A−1)ij

(
−1

2
tvj +

1

2
tpj + tsj

)
i=1,...,R

=

R∑
j=1

(A−1)ij (tvj − tpj − 2tsj) . (3.105)
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For the second term, from (3.95), (3.98), Theorem 2.73 and Theorem 2.74, we have

E[FA−1a]

= E
[[

1

2
tvij −

1

2
Yij −

1

2
Yji + tsij

]
i,j=1...,R

A−1

[
−1

2
tvi +

1

2
Yi + tsi

]
i=1...,R

]

= E

[ R∑
k=1

(
1

2
tvik −

1

2
Yik −

1

2
Yki + tsik

)
(A−1)kj

]
i,j=1,...,R

[
−1

2
tvi +

1

2
Yi + tsi

]
i=1...,R


= E

 R∑
j=1

(
R∑

k=1

(
1

2
tvik −

1

2
Yik −

1

2
Yki + tsik

)
(A−1)kj

)(
−1

2
tvj +

1

2
Yj + tsj

)
i=1...,R


= E

 R∑
j=1

R∑
k=1

(A−1)kj

(
−1

4
tviktvj +

1

4
Yiktvj +

1

4
Ykitvj +−1

2
tsiktvj +

1

4
tvikYj −

1

4
YikYj

−1

4
YkiYj +

1

2
tsikYj +

1

2
tviktsj −

1

2
Yiktsj −

1

2
Ykitsj + tsiktsj

)]
i=1...,R

]

=

 R∑
j=1

R∑
k=1

(A−1)kj

(
−1

4
tviktvj +

1

4
tpiktvj +

1

4
tpkitvj −

1

2
tsiktvj +

1

4
tviktpj

− 1

4
(2tpjik + tpiktpj)−

1

4
(2tpjki + tpkitpj) +

1

2
tsiktpj

+
1

2
tviktsj −

1

2
tpiktsj −

1

2
tpkitsj + tsiktsj

)]
i=1...,R

=

 R∑
j=1

R∑
k=1

(A−1)kj

(
−1

4
tvik (tvj − tpj) +

1

2
tpik (tvj − tpj)−

1

2
tpjik −

1

2
tpjki

−1

2
tsik (tvj − tpj) +

1

2
(tvik − tpik) tsj −

1

2
tviktsj + tsiktsj

)]
i=1...,R

=

 R∑
j=1

R∑
k=1

(A−1)kj

(
−1

2
(tvik − tpik) (tvj − tpj) +

1

4
tvik (tvj − tpj)−

1

2
tpjik −

1

2
tpjki

− O(D−1)O(1)−O(D−1)O(1)− 1

2
tviktsj +O(D−1)O(D−1)

)]
i=1...,R

=

 R∑
j=1

R∑
k=1

(A−1)kj

(
1

4
tvik (tvj − tpj − 2tsj)−

1

2
tpjik −

1

2
tpjki +O(1)

)
i=1...,R

,

(3.106)

where we use Lemma 3.15 to obtain the last two equations.
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Thus, from (3.94), (3.103) and (3.106), we have

∆i1(θ)

= biA−1 E[FA−1a]

= biA−1

 R∑
j=1

R∑
k=1

(A−1)kj

(
1

4
tvik (tvj − tpj − 2tsj)−

1

2
tpjik −

1

2
tpjki +O(1)

)
i=1...,R

= bi

 R∑
l=1

R∑
j=1

R∑
k=1

(A−1)il(A
−1)kj

(
1

4
tvlk (tvj − tpj − 2tsj)−

1

2
tpjlk −

1

2
tpjkl +O(1)

)
i=1...,R

=

R∑
l=1

R∑
j=1

R∑
k=1

(A−1)il(A
−1)kj

(
1

4
tvlk (tvj − tpj − 2tsj)−

1

2
tpjlk −

1

2
tpjkl +O(1)

)

= −1

2

R∑
l=1

R∑
j=1

R∑
k=1

(A−1)il(A
−1)kj (tpjlk + tpjkl)

+
1

4

R∑
l=1

R∑
j=1

R∑
k=1

(A−1)il(A
−1)kjtvlk (tvj − tpj − 2tsj) + o(D−1)

= −1

2

R∑
l=1

R∑
j=1

R∑
k=1

(A−1)il(A
−1)kj (tpjlk + tpjkl)

+
1

4

R∑
l=1

R∑
j=1

R∑
k=1

(A−1)il|A|−1Cjktvlk (tvj − tpj − 2tsj) + o(D−1) (3.107)

= −1

2

R∑
l=1

R∑
j=1

R∑
k=1

(A−1)il(A
−1)kj (tpjlk + tpjkl)

− 1

2

R∑
k=1

R∑
j=1

R∑
l=1

(A−1)il|A|−1CjkAlk (tvj − tpj − 2tsj) + o(D−1) (3.108)

= −1

2

R∑
l=1

R∑
j=1

R∑
k=1

(A−1)il(A
−1)kj (tpjlk + tpjkl)

− 1

2

R∑
k=1

R∑
l=1

(A−1)il|A|−1ClkAlk (tvl − tpl + 2tsl)

− 1

2

R∑
k=1

R∑
j ̸=l

(A−1)il|A|−1CjkAlk (tvj − tpj − 2tsj) + o(D−1)

= −1

2

R∑
l=1

R∑
j=1

R∑
k=1

(A−1)il(A
−1)kj (tpjlk + tpjkl)

− 1

2

R∑
l=1

(A−1)il (tvl − tpl − 2tsl) + o(D−1) (3.109)
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= −1

2

R∑
l=1

R∑
j=1

R∑
k=1

(A−1)il(A
−1)kj (tpjlk + tpjkl)−

1

2
∆i0 + o(D−1), (3.110)

where we use Theorem 2.16 to obtain (3.107), use (3.100) to obtain (3.108) and use

Theorem 2.13 and Corollary 2.14 to obtain (3.109).

For the third term, from (3.95), (3.99) and (3.97), we have

∆i2(θ) =
1

2
E[a′A−1BiA−1a]

=
1

2
E
[[

−1

2
tvi +

1

2
Yi + tsi

]′
i=1...,R

A−10R×RA−1

[
−1

2
tvi +

1

2
Yi + tsi

]
i=1...,R

]

= 0. (3.111)

For the fourth term, from (3.95), (3.102), Theorem 2.73, Theorem 2.74 and Theorem 2.75,

we have

E[CA−1a]

= E

 R∑
j=1

R∑
l=1

(
−1

2
tvj +

1

2
Yj + tsj

)
(A−1)jl(

−1

2
tvlki −

1

2
tvlik +

1

2
Ylki +

1

2
Ylik +

1

2
Yilk +

1

2
Ykli

+
1

2
Ykil +

1

2
Yikj + tslki + tslik

)]
i,k=1,...,R

A−1

[
−1

2
tvi +

1

2
Yi + tsi

]
i=1...,R

]

= E

 R∑
j=1

R∑
l=1

(
−1

2
tvj +

1

2
Yj + tsj

)
(A−1)jl(

−1

2
tvlki −

1

2
tvlik +

1

2
Ylki +

1

2
Ylik +

1

2
Yilk +

1

2
Ykli

+
1

2
Ykil +

1

2
Yikl + tslki + tslik

)]
i,k=1,...,R[

R∑
m=1

(A−1)ij

(
−1

2
tvm +

1

2
Ym + tsm

)]
i=1...,R
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= E

 R∑
k=1

R∑
j=1

R∑
l=1

R∑
m=1

(A−1)jl(A
−1)km

(
−1

2
tvj +

1

2
Yj + tsj

)
(
−1

2
tvlki −

1

2
tvlik +

1

2
Ylki +

1

2
Ylik +

1

2
Yilk +

1

2
Ykli

+
1

2
Ykil +

1

2
Yikl + tslki + tslik

)
(
−1

2
tvm +

1

2
Ym + tsm

)]
i=1,...,R

]

=
1

8
E

 R∑
k=1

R∑
j=1

R∑
l=1

R∑
m=1

(A−1)jl(A
−1)km

(− tvjtvlkitvm + Yjtvlkitvm + 2tsjtvlkitvm − tvjtvliktvm + Yjtvliktvm + 2tsjtvliktvm

+ tvjYlkitvm − YjYlkitvm − 2tsjYlkitvm + tvjYliktvm − YjYliktvm − 2tsjYliktvm

+ tvjYilktvm − YjYilktvm − 2tsjYilktvm + tvjYklitvm − YjYklitvm − 2tsjYklitvm

+ tvjYkiltvm − YjYkiltvm − 2tsjYkiltvm + tvjYikltvm − YjYikltvm − 2tsjYikltvm

+ 2tvjtslkitvm − 2Yjtslkitvm − 4tsjtslkitvm

+ 2tvjtsliktvm − 2Yjtsliktvm − 4tsjtsliktvm

+ tvjtvlkiYm − YjtvlkiYm − 2tsjtvlkiYm + tvjtvlikYm − YjtvlikYm − 2tsjtvlikYm

− tvjYlkiYm + YjYlkiYm + 2tsjYlkiYm − tvjYlikYm + YjYlikYm + 2tsjYlikYm

− tvjYilkYm + YjYilkYm + 2tsjYilkYm − tvjYkliYm + YjYkliYm + 2tsjYkliYm

− tvjYkilYm + YjYkilYm + 2tsjYkilYm − tvjYiklYm + YjYiklYm + 2tsjYiklYm

− 2tvjtslkiYm + 2YjtslkiYm + 4tsjtslkiYm − 2tvjtslikYm + 2YjtslikYm + 4tsjtslikYm

+ 2tvjtvlkitsm − 2Yjtvlkitsm − 4tsjtvlkitsm + 2tvjtvliktsm − 2Yjtvliktsm − 4tsjtvliktsm

− 2tvjYlkitsm + 2YjYlkitsm + 4tsjYlkitsm − 2tvjYliktsm + 2YjYliktsm + 4tsjYliktsm

− 2tvjYilktsm + 2YjYilktsm + 4tsjYilktsm − 2tvjYklitsm + 2YjYklitsm + 4tsjYklitsm

− 2tvjYkiltsm + 2YjYkiltsm + 4tsjYkiltsm − 2tvjYikltsm + 2YjYikltsm + 4tsjYikltsm

− 4tvjtslkitsm + 4Yjtslkitsm + 8tsjtslkitsm

−4tvjtsliktsm + 4Yjtsliktsm + 8tsjtsliktsm)]i=1,...,R

]
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=
1

8

 R∑
k=1

R∑
j=1

R∑
l=1

R∑
m=1

(A−1)jl(A
−1)km

(− tvjtvlkitvm + tpjtvlkitvm

+ 2tsjtvlkitvm − tvjtvliktvm + tpjtvliktvm + 2tsjtvliktvm

+ tvjtplkitvm − (2tplkij + tpjtplki)tvm − 2tsjtplkitvm

+ tvjtpliktvm − (2tplikj + tpjtplik)tvm − 2tsjtpliktvm

+ tvjtpilktvm − (2tpilkj + tpjtpilk)tvm − 2tsjtpilktvm

+ tvjtpklitvm − (2tpklij + tpjtpkli)tvm − 2tsjtpklitvm

+ tvjtpkiltvm − (2tpkilj + tpjtpkil)tvm − 2tsjtpkiltvm

+ tvjtpikltvm − (2tpiklj + tpjtpikl)tvm − 2tsjtpikltvm

+ 2tvjtslkitvm − 2tpjtslkitvm − 4tsjtslkitvm

+ 2tvjtsliktvm − 2tpjtsliktvm − 4tsjtsliktvm

+ tvjtvlkitpm − tvlki(2tpmj + tpjtpm)− 2tsjtvlkitpm

+ tvjtvliktpm − tvlik(2tpmj + tpjtpm)− 2tsjtvliktpm

− tvj(2tpmlki + tplkitpm) + 2tsj(2tpmlki + tplkitpm)

+ (4tpmlkij + 4tplkimj + 2tpjtpmlki + 2tplkitpmj + 2tpmtplkij + tpjtplkitpm)

− tvj(2tpmlik + tpliktpm) + 2tsj(2tpmlik + tpliktpm)

+ (4tpmlikj + 4tplikmj + 2tpjtpmlik + 2tpliktpmj + 2tpmtplikj + tpjtpliktpm)

− tvj(2tpmilk + tpilktpm) + 2tsj(2tpmilk + tpilktpm)

+ (4tpmilkj + 4tpilkmj + 2tpjtpmilk + 2tpilktpmj + 2tpmtpilkj + tpjtpilktpm)

− tvj(2tpmkli + tpklitpm) + 2tsj(2tpmkli + tpklitpm)

+ (4tpmklij + 4tpklimj + 2tpjtpmkli + 2tpklitpmj + 2tpmtpklij + tpjtpklitpm)

− tvj(2tpmkil + tpkiltpm) + 2tsj(2tpmkil + tpkiltpm)

+ (4tpmkilj + 4tpkilmj + 2tpjtpmkil + 2tpkiltpmj + 2tpmtpkilj + tpjtpkiltpm)
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− tvj(2tpmikl + tpikltpm) + 2tsj(2tpmikl + tpikltpm)

+ (4tpmiklj + 4tpiklmj + 2tpjtpmikl + 2tpikltpmj + 2tpmtpiklj + tpjtpikltpm)

− 2tvjtslkitpm + 2tslki(2tpmj + tpjtpm) + 4tsjtslkitpm

− 2tvjtsliktpm + 2tslik(2tpmj + tpjtpm) + 4tsjtsliktpm

+ 2tvjtvlkitsm − 2tpjtvlkitsm − 4tsjtvlkitsm

+ 2tvjtvliktsm − 2tpjtvliktsm − 4tsjtvliktsm

− 2tvjtplkitsm + 2(2tplkij + tpjtplki)tsm + 4tsjtplkitsm

− 2tvjtpliktsm + 2(2tplikj + tpjtplik)tsm + 4tsjtpliktsm

− 2tvjtpilktsm + 2(2tpilkj + tpjtpilk)tsm + 4tsjtpilktsm

− 2tvjtpklitsm + 2(2tpklij + tpjtpkli)tsm + 4tsjtpklitsm

− 2tvjtpkiltsm + 2(2tpkilj + tpjtpkil)tsm + 4tsjtpkiltsm

− 2tvjtpikltsm + 2(2tpiklj + tpjtpikl)tsm + 4tsjtpikltsm

− 4tvjtslkitsm + 4tpjtslkitsm + 8tsjtslkitsm

−4tvjtsliktsm + 4tpjtsliktsm + 8tsjtsliktsm)]i=1,...,R
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=
1

8

 R∑
k=1

R∑
j=1

R∑
l=1

R∑
m=1

(A−1)jl(A
−1)km

(− tvjtvlkitvm + tpjtvlkitvm + 2tsjtvlkitvm

− tvjtvliktvm + tpjtvliktvm + 2tsjtvliktvm

+ 3tvjtplkitvm − 3tpjtplkitvm − 6tsjtplkitvm

+ 3tvjtpliktvm − 3tpjtpliktvm − 6tsjtpliktvm

− 2(tplkij + tplikj + tpilkj + tpklij + tpkilj + tpiklj)tvm

+ 2tvjtslkitvm − 2tpjtslkitvm − 4tsjtslkitvm

+ 2tvjtsliktvm − 2tpjtsliktvm − 4tsjtsliktvm

+ tvjtvlkitpm − 2tvlkitpmj − tvlkitpjtpm − 2tsjtvlkitpm

+ tvjtvliktpm − 2tvliktpmj − tvliktpjtpm − 2tsjtvliktpm

− 3tvjtplkitpm + 6tsjtplkitpm + 3tpjtplkitpm + 6tplkitpmj

− 3tvjtpliktpm + 6tsjtpliktpm + 3tpjtpliktpm + 6tpliktpmj

− 2tvj(tpmlki + tpmlik + tpmilk + tpmkli + tpmkil + tpmikl)

+ 4tsj(tpmlki + tpmlik + tpmilk + tpmkli + tpmkil + tpmikl)

+ 4(tpmlkij + tpmlikj + tpmilkj + tpmklij + tpmkilj + tpmiklj)

+ 4(tplkimj + tplikmj + tpilkmj + tpklimj + tpkilmj + tpiklmj)

+ 2tpj(tpmlki + tpmlik + tpmilk + tpmkli + tpmkil + tpmikl)

+ 2tpm(tplkij + tplikj + tpilkj + tpklij + tpkilj + tpiklj)

− 2tvjtslkitpm + 4tslkitpmj + 2tslkitpjtpm + 4tsjtslkitpm

− 2tvjtsliktpm + 4tsliktpmj + 2tsliktpjtpm + 4tsjtsliktpm

+ 2tvjtvlkitsm − 2tpjtvlkitsm − 4tsjtvlkitsm

+ 2tvjtvliktsm − 2tpjtvliktsm − 4tsjtvliktsm

− 6tvjtplkitsm + 6tpjtplkitsm + 12tsjtplkitsm

− 6tvjtpliktsm + 6tpjtpliktsm + 12tsjtpliktsm

+ 4(tplkij + tplikj + tpilkj + tpklij + tpkilj + tpiklj)

− 4tvjtslkitsm + 4tpjtslkitsm + 8tsjtslkitsm

− 4tvjtsliktsm + 4tpjtsliktsm + 8tsjtsliktsm)]i=1,...,R
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=
1

8

 R∑
k=1

R∑
j=1

R∑
l=1

R∑
m=1

(A−1)jl(A
−1)km

(−(tpj − tvj)(tpm − tvm)tvlki − 2(tpm − tvm)tsjtvlki

− (tpj − tvj)(tpm − tvm)tvlik − 2(tpm − tvm)tsjtvlik

+ 3(tpj − tvj)(tpm − tvm)tplki + 6(tpm − tvm)tsjtplki

+ 3(tpj − tvj)(tpm − tvm)tplik + 6(tpm − tvm)tsjtplik

+ 2(tpm − tvm)(tplkij + tplikj + tpilkj + tpklij + tpkilj + tpiklj)

− 2(tpj − tvj)tslkitvm + 4(tpm − tvm)tsjtslki

− 2(tpj − tvj)tsliktvm + 4(tpm − tvm)tsjtslik

+ 2(tplki − tvlki)tpmj + 4tplkitpmj + 2(tplik − tvlik)tpmj + 4tpliktpmj

+ 2(tpj − tvj)(tpmlki + tpmlik + tpmilk + tpmkli + tpmkil + tpmikl)

+ 4tsj(tpmlki + tpmlik + tpmilk + tpmkli + tpmkil + tpmikl)

+ 4(tpmlkij + tpmlikj + tpmilkj + tpmklij + tpmkilj + tpmiklj)

+ 4(tplkimj + tplikmj + tpilkmj + tpklimj + tpkilmj + tpiklmj)

+ 2(tpj − 2tvj)tslkitpm + 4tslkitpmj + 2(tpj − 2tvj)tsliktpm + 4tsliktpmj

− 2(tpj − 2tvj)tvlkitsm − 4tsjtvlkitsm − 2(tpj − 2tvj)tvliktsm − 4tsjtvliktsm

+ 6(tpj − tvj)tplkitsm + 12tsjtplkitsm + 6(tpj − tvj)tpliktsm + 12tsjtpliktsm

+ 4(tplkij + tplikj + tpilkj + tpklij + tpkilj + tpiklj)

+ 4(tpj − tvj)tslkitsm + 8tsjtslkitsm + 4(tpj − tvj)tsliktsm

+ 8tsjtsliktsm)]i=1,...,R

=
1

8

 R∑
k=1

R∑
j=1

R∑
l=1

R∑
m=1

(A−1)jl(A
−1)km (4tplkitpmj + 4tpliktpmj +O(D) +O(1)

+ O(D−1) +O(D−2) +O(D−3)
)]

i=1,...,R
(3.112)

=
1

8

 R∑
k=1

R∑
j=1

R∑
l=1

R∑
m=1

(A−1)jl(A
−1)km (4tplkitpmj + 4tpliktpmj +O(D))


i=1,...,R

,

(3.113)

where we use Lemma 3.15 and Remark 3.14 to obtain (3.112).
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Thus, from (3.94), (3.103) and (3.113), we have

∆i3(θ) = −1

2
biA−1 E[CA−1a]

= − 1

16
biA−1

 R∑
k=1

R∑
j=1

R∑
l=1

R∑
m=1

(A−1)jl(A
−1)km

(4tplkitpmj + 4tpliktpmj +O(D))]i=1,...,R

= −1

4
bi

 R∑
n=1

R∑
k=1

R∑
j=1

R∑
l=1

R∑
m=1

(A−1)in(A
−1)jl(A

−1)km

(tplkntpmj + tplnktpmj +O(D))]i=1,...,R

= −1

4

R∑
n=1

R∑
k=1

R∑
j=1

R∑
l=1

R∑
m=1

(A−1)in(A
−1)jl(A

−1)km

(tplkntpmj + tplnktpmj +O(D))

= −1

4

R∑
n=1

R∑
l=1

R∑
m=1

R∑
k=1

R∑
j=1

(A−1)in(A
−1)jl

(
(A−1)kmtvlkntvmj + (A−1)kmtvlnktvmj

)
+ o(D−1)

= −1

4

R∑
n=1

R∑
l=1

R∑
m=1

R∑
k=1

R∑
j=1

(A−1)in(A
−1)jl (3.114)

(
|A|−1Cmktvlkntvmj + |A|−1Cmktvlnktvmj

)
+ o(D−1)

=
1

2

R∑
n=1

R∑
l=1

R∑
m=1

(A−1)in

R∑
k=1

R∑
j=1

(A−1)jl (3.115)

(
|A|−1CmktvlknAmj + |A|−1CmktvlnkAmj

)
+ o(D−1)

=
1

2

R∑
n=1

R∑
l=1

R∑
m=1

(A−1)in

 R∑
k=1

R∑
j=1

(A−1)jl|A|−1CmktvlknAmj

+

R∑
k=1

R∑
j=1

(A−1)jl|A|−1CmktvlnkAmj

+ o(D−1)

=
1

2

R∑
n=1

R∑
l=1

R∑
m=1

(A−1)in R∑
j=1

(A−1)jl|A|−1CmjtvljnAmj +

R∑
k ̸=j

(A−1)jl|A|−1CmktvlknAmj


+

 R∑
j=1

(A−1)jl|A|−1CmjtvlnjAmj +

R∑
k ̸=j

(A−1)jl|A|−1CmktvlnkAmj

+ o(D−1)
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=
1

2

R∑
n=1

R∑
l=1

(A−1)in R∑
j=1

(A−1)jltvljn|A|−1
R∑

m=1

CmjAmj +

R∑
k ̸=j

(A−1)jltvlkn|A|−1
R∑

m=1

CmkAmj


+

 R∑
j=1

(A−1)jltvlnj |A|−1
R∑

m=1

CmjAmj +

R∑
k ̸=j

(A−1)jltvlnk|A|−1
R∑

m=1

CmkAmj


+ o(D−1)

=
1

2

R∑
n=1

R∑
l=1

(A−1)in

 R∑
j=1

(A−1)jltvljn +

R∑
j=1

(A−1)jltvlnj

+ o(D−1) (3.116)

=
1

2

R∑
n=1

R∑
l=1

R∑
j=1

(A−1)in(A
−1)lj (tvljn + tvlnj) + o(D−1)

=
1

2

R∑
n=1

R∑
l=1

R∑
j=1

(A−1)in(A
−1)lj (tpljn + tplnj) + o(D−1) (3.117)

= −∆i1(θ)−
1

2
∆i0(θ), (3.118)

where we use Theorem 2.16 to obtain (3.114), use (3.100) to obtain (3.115), use Theorem

2.13 and Corollary 2.14 to obtain (3.116) and use Lemma 3.15 to obtain (3.117).

Then, from (3.105), (3.110), (3.111) and (3.118),

E[θ̂AP
i ]− θi =

3∑
j=0

∆ij(θ) + o(D−1),

= ∆i0(θ) + ∆i1(θ) + ∆i2(θ) + ∆i3(θ) + o(D−1)

= ∆i0(θ) + ∆i1(θ) + 0−∆i1(θ)−
1

2
∆i0(θ) + o(D−1)

=
1

2
∆i0(θ) + o(D−1)

=
1

2

R∑
j=1

(A−1)ij (tvj − tpj − 2tsj) + o(D−1).

Thus,

Bias[θ̂AP
] = E[θ̂AP

]− θ
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=

1
2

R∑
j=1

(A−1)ij (tvj − tpj − 2tsj) + o(D−1)


i=1,...,R

=
1

2

([
−1

2
tvij

]
i,j=1,...,R

+
[
O(1)

]
R×R

)−1

[tvi − tpi − 2tsi]i=1,...,R + [o(D−1)]R×1

=

(
[tvij ]i,j=1,...,R +

[
O(1)

]
R×R

)−1

[−tvi + tpi + 2tsi]i=1,...,R + [o(D−1)]R×1

=

([tr(V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1

+
[
o(D−1)

]
R×R


[
− tr

(
V−1∂V

∂θi

)
+ tr

(
P∂V
∂θi

)
+

2

D
tr
(
Σ−1∂Σ

∂θi

)]
i=1,...,R

+ [o(D−1)]R×1

=

([
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1

[
− tr

(
V−1∂V

∂θi

)
+ tr

(
P∂V
∂θi

)]
i=1,...,R

+ [o(D−1)]R×1.

Next we consider the adjusted residual maximum likelihood estimation. As for the

conditions of Lemma 3.5, comparing the derivatives of ℓAP with ℓAR, we can see that the

differences are only

tr
(

P ∂V
∂θk1

P ∂V
∂θk2

· · ·P ∂V
∂θkn

)
− tr

(
V−1 ∂V

∂θk1

V−1 ∂V
∂θk2

· · ·V−1 ∂V
∂θkn

)
,

for k1, . . . , kn = 1, . . . , R and n = 1, 2, 3, 4. By Lemma 3.15, these differences are bounded

when p and R are fixed. Thus, following the previous proof for ℓAP, we can show that

ℓAR also satisfies the conditions of Lemma 3.5. Then we have

Bias[θ̂AR
] =

([
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1 [
2

D
tr
(
Σ−1∂Σ

∂θi

)]
i=1,...,R

+
[
o(D−1)

]
R×1

=
[
O(D−1)

]
R×R

[
O(D−1)

]
R×1

=
[
o(D−1)

]
R×1

.
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3.4 Monte Carlo Simulation Study

In this section, using a Monte Carlo simulation, we investigate the performances

of the various variance component estimators. First, we consider the special case of

covariance matrix Σ and apply the AML.LL method for multivariate Fay-Herriot model

with R = 2 or bivariate Fay-Herriot model. Second, we use the AML method for bivariate

Fay-Herriot model for the covariance matrix Σ.

First, for the special case of covariance matrix Σ when θi = θ for all i = 1, . . . , R.

We apply the AML.LL method to obtain the APML.LL and AREML.LL estimators. The

settings of simulation follow González-Menteiga et al. [16] and Li and Lahiri [27]. From

the multivariate Fay-Herriot model defined in (3.1),

yd = Xdβ + ud + ed, d = 1, . . . , D.

We simulate the matrix of covariates Xd = (xd1,xd2)
′, where the two covariates xd1 and

xd2 are generated from a bivariate normal distribution with means µx1 = µx2 = 10,

variances σ2
x1 = 1 and σ2

x2 = 2, and correlation ρx = 0.5. The vectors of regression

coefficients are β1 = β2 = (1, 1)′. We generate the random effects ud ∼ N2 (02,Σ) where

Σ = diag(θ1, θ2) with θ1 = θ2 = θ = 2 and the sampling errors ed ∼ N2 (02,Ved).

To study different situations of sampling errors, we let Ved = (vdij)ij=1,2, where vdij =

rij
√
wd and wd are the heteroscedasticity weights. We assume r11 = 1, r22 = 2 and r12 =

r21 = ρe
√
r11r22 with ρe = 0.5. We consider five scenarios based on heteroscedasticity

and relation between model variance and sampling variance.

Scenario (a): wd = 1 representing homoscedastic model when sampling variances

are smaller than model variance [16].

Scenario (b): wd = 4 representing homoscedastic model when sampling variances

are the same as model variance.

Scenario (c): wd = max1≤i≤d

(√
x2i1 + x2i2

)
representing homoscedastic model

when sampling variances are larger than model variance.
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Scenario (d): wd =
√

x2d1 + x2d2 representing heteroscedastic model when sam-

pling variances vary according to regressors [16].

Scenario (e): Ved = LdL′
d, where Ld = (Ldij)i,j=1,2 with Ld11 = Ld22 =

√
ℓn,

Ld12 = 0 and Ld21 = 0.5
√
ℓn. There are five groups, specifically, ℓn = 8.0 if n in

first group; ℓn = 4.0 if n in second group; ℓn = 2.0 if n in third group; ℓn = 1.0 if

n in fourth group; ℓn = 0.5 if n in fifth group. This case represents heteroscedastic

model with different relations between sampling variances and model variance [27].

The different estimators are compared using absolute bias and mean squared error. The

steps of the simulation are as follows.

1. For each case of sampling covariave matrix, repeat K = 10000 times. That is, for

k = 1, . . . ,K,

(a) Generate {e(k)dr , u
(k)
dr , y

(k)
dr ,xdr}, d = 1, . . . , D, r = 1, 2. We take D = 15, 30;

(b) Calculate the variance estimator, θ̂(k) and EBLUP, µ̂(k) based on PML,

APML.LL, REML and AREML.LL methods.

2. Calculate the absolute bias and mean squared error of θ̂,

AbBias = 1

K

K∑
k=1

|θ̂(k) − θ|, MSE =
1

K

K∑
k=1

(θ̂(k) − θ)2.

3. Calculate the average of absolute relative error (ARE) and average of mean squared

error (MSE) of µ̂dr,

AREr =
1

D

D∑
d=1

1

K

K∑
k=1

∣∣∣∣∣ µ̂
(k)
dr − µ

(k)
dr

µ
(k)
dr

∣∣∣∣∣ , MSEr =
1

D

D∑
d=1

1

K

K∑
k=1

(
µ̂
(k)
dr − µ

(k)
dr

)2
,

for r = 1, 2.

Note that, in the Tables 3.1 - 3.3, the names of APML.LL and AREML.LL methods

are denoted by APML and AREML, respectively.
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Table 3.1: The percentages of zero estimates of θ for different estimation methods

Scernario D PML APML REML AREML
(a) 15 0.37 0 0.14 0
(b) 15 3.88 0 1.83 0
(c) 15 18.06 0 9.14 0
(d) 15 15.10 0 7.64 0
(e) 15 2.49 0 0.60 0
(a) 30 0.01 0 0.01 0
(b) 30 0.12 0 0.06 0
(c) 30 4.49 0 2.43 0
(d) 30 3.28 0 1.67 0
(e) 30 0.08 0 0 0

Table 3.2: The absolute biases and mean squared errors of different estimators of θ

Scenario D PML APML REML AREML

Absolute Bias

(a) 15 0.7168 0.6485 0.7092 0.8098
(b) 15 0.9125 0.7912 0.9214 1.0865
(c) 15 1.2274 1.0660 1.2992 1.6902
(d) 15 1.1709 1.0066 1.2267 1.5576
(e) 15 0.8486 0.7482 0.8267 0.9829
(a) 30 0.4865 0.4613 0.4799 0.5079
(b) 30 0.6305 0.5828 0.6274 0.6699
(c) 30 0.8990 0.7952 0.9080 0.9876
(d) 30 0.8513 0.7567 0.8571 0.9268
(e) 30 0.5737 0.5352 0.5580 0.5992

Mean Squared Error

(a) 15 0.7502 0.6658 0.8125 1.1374
(b) 15 1.2036 1.0408 1.3738 2.1109
(c) 15 2.0997 2.1575 2.7311 5.2049
(d) 15 1.9240 1.8773 2.4301 4.4271
(e) 15 1.0330 0.8946 1.1116 1.7174
(a) 30 0.3567 0.3325 0.3633 0.4214
(b) 30 0.5979 0.5378 0.6205 0.7435
(c) 30 1.1902 1.0555 1.2894 1.6751
(d) 30 1.0733 0.9435 1.1509 1.4662
(e) 30 0.4898 0.4458 0.4899 0.5942
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Table 3.3: The averages of absolute relative errors and mean squared errors for EBLUPs
based on different methods

Parameter θ1 θ2

Scenario D PML APML REML AREML PML APML REML AREML

Average of Absolute Relative Errors

(a) 15 0.0355 0.0351 0.0352 0.0351 0.0454 0.0450 0.0452 0.0451
(b) 15 0.0455 0.0444 0.0449 0.0447 0.0557 0.0550 0.0554 0.0554
(c) 15 0.0568 0.0554 0.0563 0.0564 0.0676 0.0669 0.0675 0.0681
(d) 15 0.0550 0.0535 0.0544 0.0544 0.0656 0.0649 0.0655 0.0659
(e) 15 0.0444 0.0436 0.0438 0.0438 0.0472 0.0465 0.0467 0.0467
(a) 30 0.0335 0.0334 0.0334 0.0334 0.0426 0.0425 0.0426 0.0425
(b) 30 0.0420 0.0417 0.0419 0.0417 0.0509 0.0507 0.0508 0.0508
(c) 30 0.0514 0.0507 0.0512 0.0509 0.0596 0.0593 0.0596 0.0596
(d) 30 0.0500 0.0493 0.0498 0.0496 0.0583 0.0580 0.0582 0.0582
(e) 30 0.0413 0.0411 0.0411 0.0411 0.0438 0.0436 0.0436 0.0436

Average of Mean Squared Errors

(a) 15 0.7009 0.6844 0.6888 0.6849 1.1485 1.1282 1.1353 1.1346
(b) 15 1.1502 1.0999 1.1237 1.1134 1.7273 1.6859 1.7112 1.7162
(c) 15 1.7988 1.7158 1.7722 1.7807 2.5624 2.5182 2.5618 2.6089
(d) 15 1.6898 1.6075 1.6600 1.6602 2.4187 2.3709 2.4134 2.4486
(e) 15 1.2095 1.1726 1.1847 1.1850 1.3513 1.3149 1.3269 1.3297
(a) 30 0.6486 0.6450 0.6457 0.6447 1.0495 1.0446 1.0459 1.0454
(b) 30 1.0207 1.0062 1.0127 1.0082 1.4964 1.4841 1.4910 1.4903
(c) 30 1.5285 1.4842 1.5135 1.5014 2.0582 2.0333 2.0535 2.0562
(d) 30 1.4505 1.4108 1.4360 1.4243 1.9717 1.9481 1.9664 1.9676
(e) 30 1.0586 1.0507 1.0525 1.0522 1.1743 1.1661 1.1679 1.1678

From Tables 3.1 – 3.3, we conclude the following:

1. Table 3.1 reports the percentages of zero estimates for the four variance component

estimation methods. We can see that the percentages of zero estimates decrease

when sample size increases. For example, in scenario (a), the percentages of zero

estimates of PML method in cases D = 15 and D = 30 are 0.37 and 0.01, re-

spectively. In scenarios (a), (b) and (c), we can see that the percentages of zero

estimates of PML and REML increase when sampling variances increase. For het-

eroscedastic models in scenarios (d) and (e), we can see that percentages of zero

estimates are high for small sample sizes D = 15. For all scenarios, the APML.LL
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and AREML.LL methods can prevent the zero estimate of θ, because their posi-

tiveness is guaranteed in theory [27].

2. Table 3.2 reports the absolute bias and mean squared error of four estimators of

θ. We can see that absolute bias and mean squared error decrease when sample

size increases, or equivalently when sampling variance decreases. For example, in

scenario (a), the absolute biases of PML estimator in cases D = 15 and D = 30 are

consecutively 0.7168 and 0.4865. Another example, in case D = 15, the absolute

biases of PML estimator in scenarios (a) and (c) are 0.7168 and 1.2274, respectively.

The absolute bias and mean squared error of the APML.LL method are less than

that PML method for all scenarios and all sample sizes (D = 15, 30), except the

mean squared error the case when D = 15 in scenarios (c). However, the absolute

bias and mean squared error of the AREML.LL method are greater than that

REML method for all scenarios and all sample sizes (D = 15, 30). For example, in

scenario (a) and case D = 15, the absolute biases of APML.LL and PML estimators

are 0.6485 and 0.7168, respectively.

3. Table 3.3 reports the average of absolute relative errors and mean squared errors of

four methods of EBLUPs µ̂. We can see that the average of absolute relative errors

and mean squared errors decrease when sample size increases, or equivalently when

sampling variance decreases. For example, for the first parameter θ1, in scenario

(a), the averages of absolute relative errors of PML estimator in cases D = 15

and D = 30 are consecutively 0.0355 and 0.0335. Another example, for the first

parameter θ1, in case D = 15, the averages of absolute relative errors of PML

estimator in scenarios (a) and (c) are 0.0355 and 0.0568, respectively. The average

of absolute relative errors and mean squared errors of the APML.LL method are

less than or equal to PML method for all parameters, all scenarios and all sample

sizes (D = 15, 30). The average of absolute relative errors of the AREML.LL

method are less than or equal to REML method for all parameters, all scenarios

and all sample sizes (D = 15, 30), except the case D = 15 in scenario (c) for first

parameter and scenarios (c) and (d) for second parameter. The average of mean

squared errors of the AREML.LL method are less than or equal to REML method
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for all parameters, all scenarios and all sample sizes (D = 15, 30), except the case

D = 15 in scenario (c) and (d) for first parameter and scenarios (c), (d) and (e)

for second parameter, and the case D = 30 in scenarios (c) and (d) for second

parameter.

Second, we use the AML method for bivariate Fay-Herriot model with covariance

matrix Σ defined in (3.3). The settings of simulation follow Li and Lahiri [27]. From the

multivariate Fay-Herriot model defined in (3.1),

yd = Xdβ + ud + ed, d = 1, . . . , D.

The setting of simulation is same the previous simulation. We simulate the random effects

ud ∼ N2 (02,Σ), where Σ = diag{θ1, θ2} with θ1 = 2 and θ2 = 4 and the sampling errors

ed ∼ N2 (02,Ved). Let Ved = LdL′

d, where Ld = (Ldij)i,j=1,2 with Ld11 = Ld22 =
√
ℓn,

Ld12 = 0, Ld21 = 0.5
√
ℓn.

We consider the unbalanced case that adjust to the sampling variance pattern of [12]

for D = 15, 30. For D = 15, we consider three groups of small areas say G = (G1, G2, G3),

specifically, ℓn = G1 if n in first group; ℓn = G2 if n in second group; ℓn = G3 if n in

third group. Each groups are five small area, such that sampling variances Ved are the

same within a given group. For D = 30, we simply add five more small areas in each

group. We consider the following four scenarios of the sampling variances:

Scenario (a): G = (0.4, 0.6, 0.8), representing the case where all small area sam-

pling variances less than the model variance.

Scenario (b): G = (6, 0.6, 0.8), representing the case where sampling variances of

one out of three small area is greater than the model variance.

Scenario (c): G = (6, 6, 0.8), representing the case where sampling variances of

two out of three small areas are greater than the model variance.

Scenario (d): G = (6, 6, 6), representing the case where sampling variances of all
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small areas are greater than the model variance.

Next, we compare following estimators of θ: (1) profile maximum likelihood (PML) esti-

mator, (2) adjusted profile maximum likelihood (APML) estimator, (3) residual maximum

likelihood (REML) estimator and (4) adjusted residual maximum likelihood (AREML)

estimator.

The steps of simulation are as follows.

1. For each case of sampling covariave matrix, repeat K = 10000 times. That is, for

k = 1, . . . ,K,

(a) Generate {(e(k)dr , u
(k)
dr , y

(k)
dr ,xdr) : d = 1, . . . , D, r = 1, 2};

(b) Calculate {θ(k)r : r = 1, 2} and {mse(k)dr : d = 1, . . . , D, r = 1, . . . , R};

(c) Calculate EBLUP, µ̂(k)
d based on PML, APML.LL, REML and AREML.LL

methods.

2. Calculate the absolute bias and mean squared error of θ̂r,

AbBias(θ̂r) =
1

K

K∑
k=1

|θ̂r
(k) − θr|, MSE(θ̂r) =

1

K

K∑
k=1

(θ̂r
(k) − θr)

2

for r = 1, 2.

3. Calculate the average of absolute relative error (ARE) and average of mean squared

error (MSE) of µ̂dr,

AREr =
1

D

D∑
d=1

AREdr, where AREdr =
1

K

K∑
k=1

∣∣∣∣∣ µ̂
(k)
dr − µ

(k)
dr

µ
(k)
dr

∣∣∣∣∣ ,
MSEr =

1

D

D∑
d=1

MSEdr, where MSEdr =
1

K

K∑
k=1

(µ̂
(k)
dr − µ

(k)
dr )

2,

for r = 1, 2.
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We present the percentages of the situations where either zero estimates of θ1 or

θ2 and the absolute biases and mean squared errors of different estimators of θ1 and θ2

for the four variance component estimation methods in Tables 3.4 and 3.5, respectively.

The averages of absolute relative errors and mean squared errors for EBLUPs based on

different methods are presented in Table 3.6.

Table 3.4: The percentages of the situations where either zero estimates of θ1 or θ2 for
different estimation methods

Scenario D PML APML REML AREML
(a) 15 3.80 0 2.05 0
(b) 15 18.92 0 11.75 0
(c) 15 23.33 0 12.79 0
(d) 15 40.46 0 28.06 0
(a) 30 3.65 0 1.73 0
(b) 30 7.43 0 4.86 0
(c) 30 15.41 0 9.78 0
(d) 30 24.12 0 17.29 0
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Table 3.5: The absolute biases and mean squared errors of different estimators for θ1
and θ2

Parameter θ1 θ2

Scenario D PML APML REML AREML PML APML REML AREML

Absolute Bias

(a) 15 0.7974 0.7636 0.8068 0.7935 1.4870 1.4271 1.4885 1.4859
(b) 15 1.1078 0.9504 1.0872 0.9946 1.9235 1.7027 1.9133 1.7873
(c) 15 1.2952 1.2271 1.3750 1.3183 2.2424 2.1931 2.3267 2.2982
(d) 15 1.7501 1.5581 1.9869 1.8108 2.8987 2.6685 3.1694 2.9497
(a) 30 0.5744 0.5397 0.5628 0.5477 1.0279 0.9854 1.0098 1.0005
(b) 30 0.7457 0.6747 0.7335 0.6889 1.3053 1.1843 1.2754 1.2020
(c) 30 1.0252 0.9047 1.0052 0.9246 1.6969 1.5231 1.6686 1.5483
(d) 30 1.3985 1.3262 1.4743 1.4046 2.1332 2.0606 2.2139 2.1413

Mean Squared Error

(a) 15 0.9534 0.8637 1.0543 1.0255 3.3762 3.0007 3.6049 3.5883
(b) 15 1.8936 1.3235 1.9586 1.6467 6.1279 4.3048 6.5104 5.2617
(c) 15 2.3665 2.1821 3.0699 2.9884 7.2697 6.9354 8.8123 8.6786
(d) 15 4.2731 3.6783 6.3219 5.9592 11.8134 10.2517 15.6958 14.4103
(a) 30 0.5454 0.4441 0.5247 0.4799 1.6397 1.4700 1.6256 1.5834
(b) 30 0.8895 0.6883 0.8849 0.7592 2.8407 2.1173 2.8149 2.3053
(c) 30 1.6423 1.2415 1.6562 1.4050 4.8865 3.5073 4.9277 3.8307
(d) 30 2.8161 2.5928 3.3523 3.1559 6.7940 6.3066 7.6489 7.1764



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

145

Table 3.6: The averages of absolute relative errors and mean squared errors for EBLUPs
based on different methods

Parameter θ1 θ2

Scenario D PML APML REML AREML PML APML REML AREML

Average of Absolute Relative Errors

(a) 15 0.0287 0.0281 0.0282 0.0278 0.0326 0.0324 0.0323 0.0322
(b) 15 0.0410 0.0392 0.0399 0.0388 0.0482 0.0475 0.0475 0.0471
(c) 15 0.0502 0.0495 0.0497 0.0492 0.0625 0.0619 0.0617 0.0611
(d) 15 0.0609 0.0600 0.0613 0.0605 0.0766 0.0755 0.0764 0.0753
(a) 30 0.0283 0.0276 0.0279 0.0275 0.0323 0.0321 0.0321 0.0321
(b) 30 0.0385 0.0375 0.0380 0.0374 0.0463 0.0460 0.0461 0.0459
(c) 30 0.0478 0.0468 0.0472 0.0466 0.0593 0.0589 0.0590 0.0586
(d) 30 0.0569 0.0565 0.0569 0.0565 0.0722 0.0718 0.0720 0.0716

Average of Mean Squared Errors

(a) 15 0.5220 0.4940 0.5002 0.4855 0.6599 0.6522 0.6477 0.6436
(b) 15 1.1447 1.0470 1.0917 1.0335 1.6114 1.5688 1.5717 1.5459
(c) 15 1.6757 1.6366 1.6500 1.6181 2.6119 2.5615 2.5498 2.5062
(d) 15 2.3262 2.2574 2.3544 2.2963 3.6067 3.4976 3.5942 3.4898
(a) 30 0.4975 0.4657 0.4775 0.4636 0.6287 0.6216 0.6229 0.6198
(b) 30 0.9616 0.9100 0.9371 0.9059 1.4149 1.3968 1.4034 1.3922
(c) 30 1.4466 1.3838 1.4141 1.3740 2.2306 2.1957 2.2044 2.1798
(d) 30 1.9531 1.9248 1.9531 1.9274 3.0888 3.0532 3.0722 3.0365

From Tables 3.4 – 3.6, we conclude the following:

1. From Table 3.4, we can see that the percentages of zero estimates of PML and

REML decrease when sample size increases, or equivalently when sampling variance

decreases. For example, in scenario (a), the percentages of zero estimates of PML

method in case D = 15 and D = 30 are consecutively 3.80 and 3.65. Another

example, in case D = 15, the percentages of zero estimates of PML method in

scenarios (a) and (d) are 3.42 and 40.46, respectively. For all cases, the APML

and AREML methods can prevent the zero estimates of θ1 and θ2, The simulation

results agree to Theorem 3.1.

2. From Table 3.5, we can see that absolute bias and mean squared error decrease

when sample size increases, or equivalently when sampling variance decreases. For
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example, for the first parameter θ1, in scenario (a), the absolute biases of PML

estimator in cases D = 15 and D = 30 are consecutively 0.7974 and 0.5744. An-

other example, for the first parameter θ1, in case D = 15, the absolute biases of

PML estimator in scenarios (a) and (d), are 0.7974 and 1.7501, respectively. The

absolute bias and mean squared error of the APML and AREML methods are less

than that PML and REML methods for all parameters, all scenarios and all sample

sizes (D = 15, 30). For example, for the first parameter θ1, in scenario (a) and case

D = 15, the absolute biases of APML and PML estimators are 0.7636 and 0.7974,

respectively.

3. From Table 3.6, we can see that the average of absolute relative errors and mean

squared errors decrease when sample size increases, or equivalently when sampling

variance decreases. For example, for the first parameter θ1, in scenario (a), the

averages of absolute relative errors of PML estimator in cases D = 15 and D = 30

are consecutively 0.0287 and 0.0281. Another example, for the first parameter θ1, in

case D = 15, the averages of absolute relative errors of PML estimators in scenarios

(a) and (d) are 0.0287 and 0.0609, respectively. The average of absolute relative

errors and mean squared errors of the APML and AREML methods method are less

than or equal to the PML and REML methods for all parameters, all scenarios and

all sample sizes (D = 15, 30). For example, for the first parameter θ1, in scenario

(a) and case D = 15, the averages of absolute relative errors of APML and PML

estimators are 0.0281 and 0.0287, respectively.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

UNCERTAINTY OF EBLUP AND

PREDICTION INTERVAL

In this chapter, we will discuss the mean squared error approximation of the

EBLUP and mean squared error estimator of the EBLUP in Section 4.1. Then we review

the prediction interval in Section 4.2.

4.1 Uncertainty of EBLUP

In this section, under the regularity conditions defined in Section 3.1, we can

measure the uncertainty of the EBLUP by its mean squared error (MSE), defined as

MSE[µ̂] = E[µ̂− µ]2. Note that,

MSE[µ̂] = E[µ̂− µ]2 + E[µ̂− µ̃]2 + 2E[µ̂− µ][µ̂− µ̃]

where µ̃ is the BLUP of µ and µ̂ is the EBLUP of µ defined in (3.4) and (3.5), respectively.

In 1984, Kackar and Harville [23] showed that the cross-product term of last equation

vanishes, under the normality of u and e, and provided that the variance estimator θ̂ is

a translation invariant and even function. We have already seen in Chapter 3 that the

PML, REML, APML, and AREML estimators of θ are all translation invariant and even

functions follow from (3.7) and (3.9). Therefore, the MSE of EBLUP is

MSE[µ̂] = E[µ̂− µ]2 + E[µ̂− µ̃]2

= MSE[µ̃] + E[µ̂− µ̃]2. (4.1)
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The first term of (4.1) is the MSE of the BLUP estimator given as (see [18] and

[34])

MSE[µ̃] = G1(θ) +G2(θ),

where

G1(θ) = (V−1
u + V−1

e )−1

and

G2(θ) = (V−1
u + V−1

e )−1 + (V−1
u + V−1

e )−1V−1
u X(X′V−1X)−1X′V−1

u (V−1
u + V−1

e )−1.

The second term of (4.1) is the uncertainty due to the estimation of θ. This term

has no closed-form. Following Benavent and Morales [1], we obtain the approximation of

the second term,

E[µ̂− µ̃]2 =

R∑
i=1

R∑
j=1

cov[θ̂i, θ̂j ]L(i)VL(j)′ + [o(D−1)]DR×DR

= G3(θ) + [o(D−1)]DR×DR,

where L(i) = (I − VuV−1)∂V
∂θi

V−1.

Thus, the MSE of EBLUP is

MSE[µ̂] = G1(θ) +G2(θ) +G3(θ) + [o(D−1)]DR×DR.

Therefore, the second-order approximation of MSE of EBLUP is

MSE[µ̂] = G1(θ) +G2(θ) +G3(θ).
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4.1.1 Estimation of Mean Squared Error

Note that the second-order approximation of MSE of EBLUP involves the unknown

variance components θ. It cannot directly applied to assess the uncertainty of EBLUP

for a given data set. We follow Datta et al. [8] and Datta and Lahiri [11] to obtain the

second-order unbiased estimator of MSE of EBLUP, defined as

mse[µ̂] = G1(θ̂) +G2(θ̂) + 2G3(θ̂)− B̂ias(θ̂)′▽G1(θ̂),

where B̂ias(θ̂) is the second-order unbiased estimator of Bias(θ̂) and

▽G1(θ) =

[
∂G1(θ)

∂θi

]′

i=1,...,R

is the vector of the first-order derivatives of G1(θ̂) with respect to θ, defined as

∂G1(θ)

∂θi
= (V − Vu)L(i)′ ,

for i = 1, . . . , R.

In order to obtain the second-order unbiased estimator of MSE of EBLUP, we will

approximate the covariance of variance components cov[θ̂i, θ̂j ], i, j = 1, . . . , R for the

adjusted profile maximum likelihood (APML) estimator and adjusted residual maximum

likelihood (AREML) estimator.

Theorem 4.1. Under the multivariate Fay-Herriot model (3.2), the covariance matrices

of the adjusted profile maximum likelihood estimator, θ̂
AP, and the adjusted residual

maximum likelihood estimator, θ̂AR, satisfy the following approximation:

cov[θ̂] = 2

([
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1

+
[
o(D−1)

]
R×R

.
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Proof. From Theorem 3.23,

E[θ̂AP
]− θ =

([
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1

[
− tr

(
V−1∂V

∂θi

)
+ tr

(
P∂V
∂θi

)]
i=1,...,R

+
[
o(D−1)

]
R×1

.

=

([
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1 [
O(1)

]
R×1

+
[
o(D−1)

]
R×1

=
[
O(D)−1

]
R×R

[
O(1)

]
R×1

+
[
o(D−1)

]
R×1

=
[
O(D)−1

]
R×1

.

Thus,

cov[θ̂AP
] = E

[(
θ̂

AP − E[θ̂AP
]
)(

θ̂
AP − E[θ̂AP

]
)′]

= E
[(

θ̂
AP − θ

)(
θ̂

AP − θ
)′]

− E
[(

θ̂
AP − θ

)(
E[θ̂AP

]− θ
)′]

− E
[(

E[θ̂AP
]− θ

)(
θ̂

AP − θ
)′]

+ E
[(

E[θ̂AP
]− θ

)(
E[θ̂AP

]− θ
)′]

= E
[(

θ̂
AP − θ

)(
θ̂

AP − θ
)′]

−
(

E[θ̂AP
]− θ

)(
E[θ̂AP

]− θ
)′

= E
[(

θ̂
AP − θ

)(
θ̂

AP − θ
)′]

+
[
O(D−1)

]
R×R

[
O(D−1)

]
R×R

= 2

([
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1

+
[
o(D−1)

]
R×R

.

Similarly, we can show that

cov[θ̂AR
] = 2

([
tr
(

V−1 ∂V
∂θj

V−1∂V
∂θi

)]
i,j=1,...,R

)−1

+
[
o(D−1)

]
R×R

.
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4.1.2 Monte Carlo Simulation Study

In this section, the setting of simulation is the same as the simulation in Chapter

3. In 2010, Li and Lahiri [27] proposed second-order unbiased estimators of MSE of

EBLUP based on AML.LL estimators of θ. However, these estimators are not guaranteed

to be positive. Therefore, in this section, we study only the performances of estimators of

MSE of EBLUP based on the APML and AREML methods in term of relative bias (RB)

and relative empirical root mean squared error (RERMSE) of the second-order unbiased

estimators of MSE of EBLUP: (see [1]).

RBr =

1

D

D∑
d=1

1

K

K∑
k=1

(mse(k)dr −MSEdr)

1

D

D∑
d=1

1

K

K∑
k=1

(MSEdr)

,

RERMSEr =

√√√√ 1

D

D∑
d=1

1

K

K∑
k=1

(mse(k)dr −MSEdr)
2

1

D

D∑
d=1

1

K

K∑
k=1

(MSEdr)

,

where mse(k)dr is the rth element of diag
1≤d≤D

(mse(k)d ), for r = 1, 2.

We present the relative biases and relative empirical root mean squared errors of

the second-order unbiased estimators of MSE of EBLUP based on different methods in

Table 4.1.
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Table 4.1: The relative biases and relative empirical root mean squared errors of
different methods of the second-order unbiased estimators of MSE of EBLUPs

Parameter θ1 θ2

Scenario D PML APML REML AREML PML APML REML AREML

Relative Biases

(a) 15 -0.0687 -0.0015 -0.0402 0.0005 -0.0235 -0.0084 -0.0156 -0.0058
(b) 15 -0.1633 -0.0327 -0.1091 -0.0123 -0.0599 -0.0416 -0.0410 -0.0202
(c) 15 -0.0774 -0.0173 -0.0491 0.0160 -0.1132 -0.0749 -0.0793 -0.0369
(d) 15 0.3853 0.4757 0.2391 0.3369 0.1742 0.2415 0.0925 0.1687
(a) 30 -0.0836 0.0005 -0.0388 0.0014 -0.0152 -0.0007 -0.0073 -0.0003
(b) 30 -0.1004 -0.0113 -0.0632 -0.0036 -0.0231 -0.0149 -0.0163 -0.0092
(c) 30 -0.1155 -0.0248 -0.0746 -0.0075 -0.0348 -0.0325 -0.0266 -0.0186
(d) 30 0.1265 0.1722 0.0808 0.1287 0.0327 0.0583 0.0146 0.0437

Relative Empirical Root Mean Squared Errors

(a) 15 0.1314 0.0889 0.1243 0.0946 0.0657 0.0631 0.0675 0.0656
(b) 15 0.3425 0.2641 0.3255 0.2665 0.2385 0.2232 0.2290 0.2200
(c) 15 0.4191 0.3965 0.4081 0.3836 0.3554 0.3325 0.3375 0.3122
(d) 15 0.4449 0.5182 0.3762 0.4249 0.2659 0.3042 0.2693 0.2822
(a) 30 0.1632 0.0722 0.1257 0.0731 0.0518 0.0490 0.0508 0.0495
(b) 30 0.2888 0.2113 0.2706 0.2128 0.1718 0.1640 0.1671 0.1634
(c) 30 0.3848 0.3208 0.3726 0.3217 0.2616 0.2474 0.2540 0.2433
(d) 30 0.3562 0.3599 0.3788 0.3705 0.2725 0.2629 0.2924 0.2770

From Table 4.1, we can see that the relative biases of second-order unbiased esti-

mator of MSE of EBLUPs are close to zero and the relative root mean squared errors of

second-order unbiased estimator of MSE of EBLUPs decrease when sample size increases,

or equivalently when sampling variance decreases. Unless the scenario (d), the relative bi-

ases of second-order unbiased estimator of MSE of EBLUPs from the APML and AREML

methods are closer to zero than that from the PML and REML methods for all param-

eters, all scenarios and all sample sizes (D = 15, 30). The root mean squared errors

of second-order unbiased estimators of MSE of EBLUPs from the APML and AREML

methods are less than that from PML and REML methods for all parameters, all scenar-

ios and all sample sizes (D = 15, 30), except the case in scenario (d). For example, for

the first parameter θ1, in case D = 15 and scenario (a), the relative biases of second-order

unbiased estimator of MSE of EBLUPs from APML and PML methods are consecutively

-0.0015 and -0.0687. Another example, for the first parameter θ1, in case D = 15 and
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scenario (a), the root mean squared errors of second-order unbiased estimator of MSE of

EBLUPs from APML and PML methods are 0.0889 and 0.1314.

4.2 Prediction interval

In this section, we review the prediction interval of Li and Lahiri [27]. In the

small area context, prediction intervals are often produced using the standard rule, which

is EBLUP ±zα/2
√

mse, where zα/2 is the upper 100(1 − α/2)% point of the standard

normal distribution. These prediction intervals are asymptotically correct when sample

size is large. However, when sample size is small, it is not efficient prediction interval and

depends on the choice of mse. In this section, we consider the three prediction intervals:

(1) Cox’s empirical Bayes prediction interval, using G1(θ̂) as the mse; (2) Traditional

prediction interval, using the second-order unbiased estimator of MSE of EBLUP mse[µ̂]

as the mse; (3) Parametric bootstrap prediction interval presenting in the next section.

4.2.1 Parametric Bootstrap Prediction Interval

In 2008, Chatterjee et al. [4] proposed a parametric bootstrap method to obtain a

prediction interval directly from the bootstrap histogram of the pivot

mse−1/2(true mean−EBLUP).

Their methods using ordinary least square estimators of β and PML or REML estima-

tors of the variance components. In 2010, Li and Lahiri [27] extended the method using

weighted least squares estimator of β and APL.LL or AREML.LL estimators of the vari-

ance components. They showed that the coverage accuracy of this prediction interval is

in the order of O(D−3/2).
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Follow Li and Lahiri [27], a prediction interval of µdr can be constructed based

on Ldr, the distribution of (G1dr(θ̂))
−1/2(µdr − µ̂dr). They approximate Ldr using a

parametric bootstrap method. Let

y∗
d = Xdβ̂ + u∗

d + e∗d,

where u∗
d

iid∼ N(0,Σ(θ̂)) and e∗d
ind∼ N(0,Ved), for d = 1, . . . , D. Let β̂

∗, Σ∗(θ̂), µ∗
d and

G∗
1(θ̂) be computed from y∗

d and µ∗
d = Xdβ̂

∗
+u∗

d. The distribution of (G∗
1dr(θ̂))

−1/2(µ∗
dr−

µ̂∗
dr), conditional on the data µ, is the parametric bootstrap approximation L∗

dr of Ldr.

The parametric bootstrap prediction interval is given in the following theorem.

Theorem 4.2. ([27]) With β̂ and θ̂, for a preassigned α ∈ (0, 1) and arbitrary d =

1, . . . , D and r = 1, . . . , R, let q1 and q2 be real numbers such that

L∗
dr(q2)− L∗

dr(q1) = 1− α.

Then, under the regularity conditions given in [27], we have

Prob
[
µ̂dr − q1G1dr(θ̂) ≤ µdr ≤ µ̂dr − q2G1dr(θ̂)

]
= 1− α+O(D−3/2).

4.2.2 Monte Carlo Simulation Study

In order to study the performances of prediction interval, we compare twelve predic-

tion intervals of µdr using coverage probabilities (with a nominal coverage of 0.95) and av-

erage lengths. Different twelve prediction intervals include the four Cox’s empirical Bayes

prediction intervals, four traditional prediction intervals of the form µ̂dr ± zα/2
√msedr

and four prediction intervals based on the parameter bootstrap methods. All the results

are based on 10000 simulation runs. For each parameter bootstrap method, we consider

200 bootstrap samples and the shortest length prediction intervals.
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Table 4.2: Average coverages of twelve prediction intervals

Parameter θ1 θ2

Scenario D PML APML REML AREML PML APML REML AREML

Cox’s Empirical Bayes Prediction Interval

(a) 15 0.8801 0.9120 0.9084 0.9269 0.9235 0.9264 0.9330 0.9348
(b) 15 0.7288 0.8521 0.8047 0.8891 0.8690 0.8860 0.8977 0.9090
(c) 15 0.6650 0.7555 0.7549 0.8309 0.7485 0.8010 0.8102 0.8582
(d) 15 0.4823 0.7142 0.5761 0.7895 0.5893 0.7402 0.6611 0.8070
(a) 30 0.9039 0.9366 0.9251 0.9408 0.9385 0.9408 0.9424 0.9435
(b) 30 0.8525 0.9130 0.8847 0.9248 0.9243 0.9273 0.9322 0.9341
(c) 30 0.7596 0.8552 0.8191 0.8855 0.8838 0.8930 0.9036 0.9112
(d) 30 0.6517 0.7556 0.7117 0.8047 0.7696 0.8192 0.8073 0.8542

Traditional Prediction Interval

(a) 15 0.9373 0.9476 0.9408 0.9479 0.9463 0.9484 0.9473 0.9485
(b) 15 0.9047 0.9371 0.9130 0.9399 0.9349 0.9405 0.9382 0.9430
(c) 15 0.9102 0.9262 0.9114 0.9309 0.9115 0.9233 0.9156 0.9303
(d) 15 0.9759 0.9811 0.9648 0.9738 0.9608 0.9674 0.9500 0.9609
(a) 30 0.9328 0.9493 0.9407 0.9493 0.9474 0.9493 0.9484 0.9493
(b) 30 0.9159 0.9426 0.9234 0.9435 0.9437 0.9457 0.9450 0.9464
(c) 30 0.8952 0.9277 0.9027 0.9308 0.9326 0.9360 0.9350 0.9387
(d) 30 0.9492 0.9562 0.9391 0.9492 0.9397 0.9455 0.9347 0.9425

Parametric Bootstrap Prediction Interval

(a) 15 0.9541 0.9816 0.9464 0.9585 0.9906 0.9834 0.9766 0.9706
(b) 15 0.8297 0.9828 0.8879 0.9499 0.9770 0.9867 0.9857 0.9808
(c) 15 0.8076 0.9588 0.8645 0.9399 0.8892 0.9746 0.9242 0.9810
(d) 15 0.5827 0.9324 0.6660 0.9325 0.7092 0.9588 0.7632 0.9648
(a) 30 0.9361 0.9693 0.9470 0.9623 0.9744 0.9727 0.9657 0.9653
(b) 30 0.9220 0.9790 0.9247 0.9576 0.9914 0.9822 0.9776 0.9690
(c) 30 0.8551 0.9820 0.8898 0.9433 0.9817 0.9881 0.9854 0.9834
(d) 30 0.7676 0.9437 0.8037 0.9165 0.8879 0.9727 0.9084 0.9791

From Table 4.2, we can see that the average coverages of prediction interval is close

to a nominal coverage of 0.95 when sample size increases, or equivalently when sampling

variance decreases. Cox’s prediction interval methods give average coverage below 0.95.

Therefore it is undercoverage. The traditional prediction intervals give average coverage

below 0.95, except in case D = 15 in scenario (d). It is higher than the average coverage

of Cox’s prediction intervals. Therefore, it is undercoverage. The parametric bootstrap

prediction interval from PML and REML methods give average coverage below 0.95 for
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θ1 and above 0.95 for θ2. However, the average coverage of the parametric bootstrap

prediction intervals from APML and AREML are close to 0.95 similar the average coverage

of the traditional prediction intervals. For all cases, the average coverages of prediction

intervals from the APML and AREML methods are close to 0.95 than that based on PML

and REML method.

Table 4.3: Average lengths of twelve prediction intervals

Parameter θ1 θ2

Scenario D PML APML REML AREML PML APML REML AREML

Cox’s Empirical Bayes Prediction Interval

(a) 15 2.3597 2.4432 2.4718 2.5222 2.8862 2.8970 2.9496 2.9586
(b) 15 2.5927 2.9852 2.9487 3.2279 3.7798 3.8133 3.9861 4.0283
(c) 15 2.8999 3.2387 3.4401 3.7548 4.0600 4.3015 4.5575 4.7942
(d) 15 2.6631 3.6801 3.3260 4.3307 3.9624 4.7820 4.6329 5.4706
(a) 30 2.4482 2.5328 2.5242 2.5648 2.9594 2.9660 2.9876 2.9915
(b) 30 3.0262 3.2251 3.1982 3.3321 4.0344 4.0333 4.1258 4.1289
(c) 30 3.2875 3.6449 3.6360 3.8931 4.8204 4.8147 5.0158 5.0312
(d) 30 3.3874 3.8169 3.8151 4.2118 4.9985 5.2557 5.3773 5.6335

Traditional Prediction Interval

(a) 15 2.7112 2.7337 2.6930 2.7120 3.1237 3.1291 3.1066 3.1121
(b) 15 3.6292 3.7532 3.6331 3.7487 4.5125 4.5096 4.4923 4.5104
(c) 15 4.6636 4.7758 4.6619 4.8032 5.6843 5.7698 5.6971 5.8068
(d) 15 7.0033 7.1276 6.6367 6.8257 8.0268 8.1365 7.7014 7.8688
(a) 30 2.6195 2.6579 2.6317 2.6530 3.0624 3.0674 3.0603 3.0635
(b) 30 3.4621 3.5597 3.4857 3.5610 4.3455 4.3419 4.3420 4.3436
(c) 30 4.2200 4.3859 4.2621 4.4026 5.5138 5.4916 5.5050 5.5080
(d) 30 5.7441 5.8291 5.5992 5.7042 6.9305 6.9867 6.8328 6.9073

Parametric Bootstrap Prediction Interval

(a) 15 4.5627 3.6217 3.2005 3.0202 6.9642 4.8019 3.9438 3.5999
(b) 15 19.4376 6.7437 14.6885 4.7906 26.8797 10.4030 20.9599 6.1641
(c) 15 27.1996 11.4028 21.6528 7.8520 41.3225 17.0033 32.2858 10.3392
(d) 15 35.5610 10.3064 35.1631 9.0612 53.4344 14.6791 57.0920 12.1327
(a) 30 2.9633 3.0447 2.8822 2.9119 3.7379 3.6521 3.4305 3.4131
(b) 30 7.7219 4.6489 4.3831 4.0118 10.6830 6.6309 5.9016 5.0618
(c) 30 22.3324 8.5641 12.7904 5.7790 35.0799 14.9128 18.2328 7.7692
(d) 30 31.5128 11.4712 24.9931 9.0046 51.5909 18.1979 39.2564 12.5033
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From Table 4.3, we can see that the average lengths of Cox’s empirical Bayes pre-

diction intervals increase when sample size increases or equivalently when sampling vari-

ance increases. The average lengths of Traditional and parametric bootstrap prediction

intervals decrease when sample size increases, or equivalently when sampling variance

decreases. The average lengths of Cox’s empirical Bayes and traditional prediction in-

tervals from APML and AREML methods are higher than that from PML and REML

methods. The average lengths of parametric bootstrap prediction intervals from APML

and AREML methods are less than the average lengths of parametric bootstrap predic-

tion intervals from PML and REML methods. However, the average lengths of Cox’s

empirical Bayes prediction intervals are shorter than average lengths of traditional pre-

diction intervals. The parametric bootstrap prediction interval gives the longest average

lengths. Due to the approximated pivots (G∗
1dr(θ̂))

−1/2(µ∗
dr − µ̂∗

dr) are undefined when

the estimators of θr are zero, we replaced 0.01 in those zero estimates. Thus, the pivot

are large, which provide the large lengths and overcoverages of the prediction intervals.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

APPLICATION

In this chapter, we apply the adjusted maximum likelihood (AML) method in Chap-

ter 3 to study the average household income and average household expenditure data in

Thailand. Then we apply the adjusted maximum likelihood method of Li and Lahiri

(AML.LL) [27]. In Section 5.1, we describe the data used in this thesis. Then, we pro-

vide the estimators of variance components from the PML, REML, APML and AREML

methods and EBLUP from the APML and AREML methods for this data in Section 5.2.

5.1 Data Description

In this section, we consider the average household income and average household

expenditure data in Thailand. We use this data set in 2017 from the Household Socio-

Economic Survey (SES) 2017, which is designed with stratified two-stage sampling (see

[39]). Next, we present the details of this data set in Table 5.1.

Table 5.1: Sample size, mean and standard deviation of the average household income
and average household expenditure of SES 2017

SES 2017 Region Size
Municipal area Non-municipal area
Mean SD Mean SD

average household income Central 18 3.1229 0.6693 2.7230 0.6699
(Unit: 10,000 Baht) East 7 2.9715 0.3799 2.4834 0.2609

North 17 2.3638 0.4822 1.7062 0.2673
Northeast 20 2.3727 0.3414 1.8042 0.3550
South 14 2.9824 0.7153 2.4504 0.8221
Total 76 2.7158 0.6321 2.1815 0.6731

average household expenditure Central 18 2.3147 0.5168 2.1496 0.5613
(Unit: 10,000 Baht) East 7 2.2101 0.1766 2.0382 0.2323

North 17 1.7734 0.3014 1.4013 0.2293
Northeast 20 1.8855 0.2631 1.5568 0.2566
South 14 2.3561 0.4689 1.9602 0.5073
Total 76 2.0787 0.4455 1.7811 0.4890
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In Table 5.1, the data from SES 2017 consist of 5 regions, including Central (C),

East (E), North (N), Northeast (NE), and South (S). Each province (except Bangkok)

is divided into two parts: municipal area and non-municipal area. From the table, the

means of the average household income are higher than the means of the average house-

hold expenditure. The means of the average household income and average household

expenditure of municipal area are higher than those of non-municipal area. However, the

standard deviations of the average household income and average household expenditure

different of both municipal area and non-municipal area are not significantly.
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Figure 5.1: The correlation of the average household income and average household
expenditure

From Figure 5.1, we can see that the sample correlations of the average household

income and average household expenditure in both areas are close to 1. Therefore, a

bivariate model is more appropriate than a univariate model for this data set.

For explanatory variables, we select four explanatory variables, including propor-

tion of households that cement or brick dwellings, proportion of households that own

land, proportion of households using gas for cooking, and average population per private

household. These four variables are collected from the Population and Housing Census

2010.
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5.2 AML Method of Average Household Income and Average Household Ex-

penditure

In this section, we first consider the special case of the covariance matrix. That

is when θi = θ for all i = 1, . . . , R by applying the AML.LL method defined in Section

3.2.3. Next, we consider a more general situation, where the covariance matrix is defined

in (3.3).

First, for the special case of covariance matrix, where θi = θ for all i = 1, . . . , R,

we follow the multivariate Fay-Herriot model with R = 2, or bivariate Fay-Herriot model,

with the average household income and average household expenditure as response vari-

ables and four explanatory variables. The variance component θ are estimated by the

PML, REML, APML.LL and AREML.LL methods using optim function in R [33].

Table 5.2: The value of estimate of θ for standard methods and adjusted methods of
Li and Lahiri

Region D
Municipal area Non-municipal area

PML APML REML AREML PML APML REML AREML

C 18 0.0076 0.0123 0.0182 0.0276 0 0.0042 0.0062 0.0180
E 7 0 0.0028 0 0.0309 0 0.0015 0 0.0140
N 17 0.0258 0.0343 0.0550 0.0702 0.0056 0.0079 0.0122 0.0176

NE 20 0.0124 0.0161 0.0230 0.0298 0.0145 0.0166 0.0205 0.0239
S 14 0.0083 0.0164 0.0468 0.0894 0 0.0230 0.0543 0.0800

Table 5.2 presents the PML, APML.LL, REML, and AREML.LL estimates of θ.

From the table, we can see that the PML and REML estimates of θ are zeros in some

cases. For example, the REML estimates are zeros for both municipal area and non-

municipal area in the east region. For all cases, the APML.LL and AREML.LL methods

prevent the zero estimates of θ.

Next, we apply the AML.LL estimates to produce EBLUP estimates of the average

household income and average household expenditure and present in Table 5.3.
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Table 5.3: Mean and standard deviation of EBLUP based on AML.LL methods of the
average household income and average household expenditure

Region D

Municipal area Non-municipal area
APML.LL AREML.LL APML.LL AREML.LL

Mean SD Mean SD Mean SD Mean SD

average household income

C 18 2.7665 0.4774 2.8171 0.4608 2.5160 0.5112 2.5479 0.5210
E 7 2.8493 0.2042 2.8642 0.2056 2.4534 0.2279 2.4649 0.2338
N 17 2.2072 0.3337 2.2443 0.3494 1.6450 0.2037 1.6603 0.2076

NE 20 2.2570 0.2820 2.2791 0.2788 1.7297 0.2602 1.7381 0.2658
S 14 2.7241 0.4238 2.8139 0.4766 2.1259 0.3766 2.1913 0.4445

Total 76 2.5071 0.4505 2.5511 0.4655 2.0366 0.4967 2.0629 0.5164

average household expenditure

C 18 2.2053 0.4130 2.2219 0.4167 2.0534 0.4590 2.0695 0.4679
E 7 2.1980 0.1926 2.1998 0.1912 2.0385 0.2432 2.0379 0.2382
N 17 1.7096 0.2126 1.7292 0.2346 1.3541 0.1829 1.3668 0.1909

NE 20 1.8378 0.2395 1.8480 0.2410 1.5236 0.2242 1.5289 0.2295
S 14 2.2567 0.3477 2.2978 0.3811 1.8548 0.3547 1.8975 0.4140

Total 76 2.0065 0.3727 2.0252 0.3849 1.7196 0.4175 1.7355 0.4329

From Table 5.3, we can see that the means of average household income is higher

than the means of average household expenditure. For example, in municipal area of the

central region, the means of average household income and expenditure are 27,665 and

22,053 Bahts, respectively. The means of the average household income and means of

the average household expenditure of municipal area are higher than that non-municipal

area. The standard deviations of the average household income and average household

expenditures have similar values for both municipal area and non-municipal area.

We apply the AML method defined in Section 3.3 to the model with the covariance

matrix defined in Section 3.1. Similar to the previous study, we follow the bivariate Fay-

Herriot model, with the average household income and average household expenditure as

response variables and four explanatory variables. The variance components θ = (θ1, θ2)

are estimated by PML, REML, APML and AREML methods using optim function in R

[33].
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Table 5.4: The value of estimate of θ1 and θ2 for standard methods and adjusted
methods

Region D
Municipal area Non-municipal area

PML APML REML AREML PML APML REML AREML

C 18 θ1 0.0986 0.0010 0 0.0060 0 0.0004 0.0072 0.0090
θ2 0 0.0116 0.0197 0.0219 0.0127 0.0003 0.0061 0.0070

E 7 θ1 0.0004 0.0006 0.0004 0.0037 0.0004 0.0004 0.0088 0.0033
θ2 0 0.0004 0 0.0036 0 0.0002 0 0.0014

N 17 θ1 0.1853 0.0406 0.0818 0.0842 0.0036 0.0041 0.0137 0.0146
θ2 0 0.0219 0.0405 0.0415 0.0057 0.0059 0.0119 0.0124

NE 20 θ1 0.0067 0.0075 0.0237 0.0248 0.0044 0.0048 0.0105 0.0110
θ2 0.0127 0.0130 0.0229 0.0234 0.0172 0.0174 0.0237 0.0240

S 14 θ1 0.1299 0.0231 0.0774 0.0889 0.3099 0.0007 0.3578 0.0766
θ2 0 0.0006 0.0167 0.0210 0 0.0046 0 0.0522

From Table 5.4, we can see that the PML and REML estimates of θ1 or θ2 are

zeros in some cases. For example, the REML estimates are zeros in municipal area of

the central region, non-municipal area of the south region, and both municipal area and

non-municipal area of the east region. For all cases, the APML and AREML methods

prevent the zero estimates of θ1 and θ2.

Next, we apply the AML estimates to produce EBLUP estimates of the average

household income and average household expenditure and present in Table 5.5.
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Table 5.5: Mean and standard deviation of EBLUP based on AML methods of the
average household income and average household expenditure

Region D

Municipal area Non-municipal area
APML. AREML APML AREML

Mean SD Mean SD Mean SD Mean SD

average household income

C 18 2.7385 0.4804 2.7780 0.4650 2.4957 0.5097 2.5276 0.5133
E 7 2.8488 0.2018 2.8497 0.2048 2.4512 0.2264 2.4553 0.2299
N 17 2.2041 0.3326 2.2414 0.3482 1.6370 0.2034 1.6552 0.2060

NE 20 2.2405 0.2884 2.2715 0.2793 1.7101 0.2419 1.7235 0.2509
S 14 2.7318 0.4268 2.8042 0.4685 2.0765 0.3358 2.1845 0.4324

Total 76 2.4969 0.4524 2.5361 0.4594 2.0156 0.4871 2.0510 0.5085

average household expenditure

C 18 2.1993 0.4124 2.2124 0.4152 2.0425 0.4576 2.0588 0.4608
E 7 2.1972 0.1928 2.1982 0.1925 2.0385 0.2446 2.0388 0.2434
N 17 1.7048 0.2045 1.7242 0.2256 1.3478 0.1806 1.3623 0.1872

NE 20 1.8314 0.2437 1.8443 0.2397 1.5155 0.2221 1.5228 0.2272
S 14 2.2448 0.3388 2.2791 0.3601 1.8104 0.3093 1.8894 0.4005

Total 76 2.0001 0.3702 2.0173 0.3773 1.7053 0.4081 1.7289 0.4277

From Table 5.5, we can see that the means of average household income is higher

than the means of average household expenditures. For example, in municipal area of

the central region, the means of average household income and expenditure are 27,385

and 21,993 Bahts, respectively. The means of the average household income and means

of average household expenditure of municipal area are higher than that non-municipal

area. The standard deviations of the average household income and standard deviation

of the average household expenditures have similar values both both municipal area and

non-municipal area.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In this thesis, we have extended the adjusted maximum likelihood method proposed

of Li and Lahiri [27] to multivariate Fay-Herriot models. We proposed a new adjusted

maximum likelihood method, as an alternative method to produced the positive estima-

tor. From our work, under the regularity conditions, the adjusted maximum likelihood

estimators of θ are consistent. Furthermore, under the same asymptotic setting the biases

and mean squared errors of the adjusted and original maximum likelihood estimator of θ

are all equivalent. In terms of EBLUP and mean squared error estimator of EBLUP, the

simulation support the usage of new adjusted maximum likelihood estimator of θ. For

the application, the zero estimates of θ is available for the average household income and

average household expenditure data. Then the adjusted maximum likelihood method can

prevent that zero estimates and produce the EBLUP with nonzero weight.

For interesting work in the future, we expect that our proposed method can be

applied to obtain the adjusted maximum likelihood method for other models, for instance

AR(1) and HAR(1) Fay-Herriot models, which are found in [1].
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