การกำกับกลเอสของกราฟสามส่วนบริบูรณ์บางประเภท

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2564
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

A Thesis Submitted in Partial Fulfillment of the Requirements for the Master Degree Program in Mathematics

Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2021
Copyright of Chulalongkorn University

Thesis Title	S-MAGIC LABELINGS OF SOME COMPLETE
	TRIPARTITE GRAPHS
By	Ms. Sararat Numai
Field of Study	Mathematics
Thesis Advisor	Assistant Professor Kirati Sriamorn, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master Degree

Dean of the Faculty of Science
(Professor Polkit Sangvanich, Ph.D.)
THESIS COMMITTEE

(Assistant Professor Tanawat Wichianpaisarn, Ph.D.)

ศรารัตน์ นุใหม่ : การกำกับกลเอสของกราฟสามส่วนบริบูรณ์บางประเภท (S-MAGIC
LABELINGS OF SOME COMPLETE TRIPARTITE GRAPHS)
อ.ที่ปรึกษาวิทยานิพนธ์หลัก : ผศ.ดร. กีรติ ศรีอมร 38 หน้า
ในวิทยานิพนธ์นี้ เรากล่าวถึงนิยามของกราฟซิกมา การกำกับกลซิกมาและดัชนีระยะทาง ใน การศึกษานี้เราจะเรียกกราฟ $G=(V, E)$ ว่าเป็นกราฟกลเอสก็ต่อเมื่อมีเซตของจำนวนเต็มบวก T มีฟังก์ชันหนึ่งต่อหนึ่งทั่วถึง $f: V \rightarrow T$ และมีจำนวนเต็มบวก k ที่ทำให้ $\sum_{u \in N(v)} f(u)=k$ สำหรับทุกจุด $v \in V(G)$ เมื่อ $N(v)$ คือย่านใกล้เคียงของ v โดยเราจะเรียก T ว่าเซตกำกับ กลเอสของกราฟ G และเรียก k ว่าค่าคงที่กล นอกจากนี้กำหนดให้ $i(G)=\min _{T \in \mathcal{S}} \alpha(T)$ โดยที่ $\alpha(T)=\max (T)$ และ $\mathcal{S}=\{T \subset \mathbb{N}: T$ เป็นเซตกำกับกลเอสของ $G\}$ เราศึกษาฟังก์ชัน $i(G)$ สำหรับ G ที่สอดคล้องกับเงื่อนไขต่อไปนี้

1. $G=K_{m_{1}, m_{2}, \ldots, m_{r}}$ เป็นกราฟ r ส่วนบริบูรณ์ที่ทุกส่วนมีจำนวนจุดเท่ากัน
2. $G=K_{1, m_{2}, m_{3}}$ เป็นกราฟสามส่วนบริบูรณ์และ $2 \leq m_{2} \leq m_{3}$
3. $G=K_{2, m_{2}, m_{3}}$ เป็นกราฟสามส่วนบริบูรณ์และ $2 \leq m_{2} \leq m_{3}$.
 สาขาวิชา คณิตศาสตร์ ลายมือชื่อ อ.ที่ปรึกษาหลัก
ปีการศึกษา 2564

\# \# 6270103423: MAJOR MATHEMATICS

KEYWORDS : S-magic graph, S-magic labeling, S-magic constant, Distance magic index

SARARAT NUMAI : S-MAGIC LABELINGS OF SOME COMPLETE TRIPARTITE GRAPHS
ADVISOR : ASSIST. PROF. KIRATI SRIAMORN, Ph.D., 38 pp.
In this thesis, we recall the definitions of Σ-graph, Σ-labeling Σ-constant and distance magic index of graph. A graph $G=(V, E)$ is said to be an S-magic graph if there exist a set T of positive integers with $|T|=|V|$, a bijection $\phi: V \rightarrow T$, and a positive integer k such that $\sum_{u \in N(v)} \phi(u)=k$ for all $v \in V$. We call k an S-magic constant, ϕ an S-magic labeling, and T an S-magic labeling set. Define $i(G)=\min _{T \in \mathcal{S}} \alpha(T)$ where $\mathcal{S}=\{T \subset \mathbb{N}: T$ is an S-magic labeling set of $G\}$ and $\alpha(T)=\max (T)$.

In this study, we determine $i(G)$ for G that satisfies the following conditions:

1. $G=K_{m_{1}, m_{2}, \ldots, m_{r}}$ is a complete r-partite graph and $m_{1}=m_{2}=\ldots=m_{r} \geq 2$
2. $G=K_{1, m_{2}, m_{3}}$ is a complete tripartite graph and $2 \leq m_{2} \leq m_{3}$
3. $G=K_{2, m_{2}, m_{3}}$ is a complete tripartite graph and $2 \leq m_{2} \leq m_{3}$.

Department: Mathematics and Computer Science Student's Signature \qquad
Field of Study : \qquad Advisor's Signature \qquad
Academic Year : \qquad

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my thesis advisors: Assistant Professor Kirati Sriamorn, Ph.D. for his invaluable help, suggestions and encouragement throughout doing this thesis. The time I spent studying it, while not very long, is extremely valuable and full of the happiness. I am most grateful for his teaching and advice, not only the Mathematics methodologies but also many other methodologies in life.

Furthermore, I would like to thank my thesis committee for their suggestions and valuable comments to improve my work, and to my teachers and lecturers at Chulalongkorn university who have taught me various knowledge in mathematics. Their guidances and questions were very helpful and insightful, that is partial for making the plenary work.

I take this opportunity to express gratitude to the Development and Promotion of Science and Technology Project for the scholarship.

In particular, I thank to my parents for the eternal encouragement and attention throughout my life. For that reason I am forever grateful.

Last but not least, I would like to thank all my friends for helpful suggestions and valuable support. It is full of fun, happiness and beautiful memory throughout the period of the master's course.

จุฬาลงกรณ์มหาวิทยาลัย
Chillai nngkorn \|nniversity

CONTENTS

ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH V
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF FIGURES ix
INTRODUCTION 1
II PRELIMINARIES 2
2.1 S-magic graph 2
2.2 Distance magic index 4
III MAIN RESULTS 12
IV CONCLUSION AND SCOPE 35
REFERENCES 37
VITA 38

LIST OF FIGURES

2.1 A labeling of P_{3} where S-magic constant is $a+b$. 3
2.2 An S-magic labeling $T=\{1,2, i, i+1\}$ of C_{4} where S-magic con- stant is $i+2$. 3
2.3 A labeling of $K_{m_{1}, m_{2}}$ where m_{1} and m_{2} satisfy $n(n+1) \geq 2 m_{2}\left(m_{2}+\right.$ 1) and $n \equiv 1$ or $2(\bmod 4)$ for $r=0$. 7
2.4 A labeling of $K_{m_{1}, m_{2}}$ where m_{1} and m_{2} satisfy $n(n+1) \geq 2 m_{2}\left(m_{2}+\right.$ 1) and $n \equiv 1$ or $2(\bmod 4)$ for $r>0$. 8
2.5 A labeling of $K_{m_{1}, m_{2}}$ where m_{1} and m_{2} satisfy $n(n+1)<2 m_{2}\left(m_{2}+\right.$ 1) for $r=0$. 9
2.6 A labeling of $K_{m_{1}, m_{2}}$ where m_{1} and m_{2} satisfy $n(n+1)<2 m_{2}\left(m_{2}+\right.$ 1) for $r>0$. 9
2.7 A labeling of $K_{3,5}$ and $\theta\left(K_{3,5}\right)=0$. 10
2.8 A labeling of $K_{3,6}$ and $\theta\left(K_{3,6}\right)=1$. 10
$2.9 \quad$ A labeling of $K_{3,10}$ and $\theta\left(K_{3,10}\right)=7$. 11
3.1 A Labeling of G with a label set $S_{1}=\{1,2, \ldots, r m\}$ 12
3.2 The partition of $S=\{r m-3 r+1, r m-3 r+2, \ldots, r m\}$ 14
3.3 Subsets A, B and C of S. 14
3.4 Subsets D, E and F of S. 14
3.5 A labeling $m-3$ rows of G with label set $\{1,2, \ldots, r m-3 r\}$ 16
3.6 A labeling of $K_{2, m_{2}, m_{3}}$ where m_{2} and m_{3} satisfy case I and $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$is even. 21
3.7 A labeling of $K_{2, m_{2}, m_{3}}$ where m_{2} and m_{3} satisfy case I and $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$ is odd. 22
3.8 A labeling of $K_{2, m_{2}, m_{3}}$ where m_{2} and m_{3} satisfy case $I I$ and $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$ is even. 23
3.9 A labeling of $K_{2, m_{2}, m_{3}}$ where m_{2} and m_{3} satisfy case $I I$ and $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$ is odd. 24
3.10 A Labeling of $K_{2,2,2}$. 25
3.11 A Labeling of $K_{2,2,4}$. 25
3.12 A Labeling of $K_{2,3,3}$. 25
3.13 A Labeling of $K_{2,2,5}$. 25
3.14 A Labeling of $K_{2,3,4}$. 26
3.15 A Labeling of $K_{2,2,3}$. 26
3.16 A Labeling of $K_{2,3,5}$. 26
3.17 A Labeling of $K_{2,4,4}$. 26
3.18 Label V_{2} and V_{3} with label sets $L_{2}=\left\{m_{3}+1, \ldots, m_{3}+m_{2}\right\}$ and
$L_{3}=\left\{1,2, \ldots, m_{3}\right\}$, respectively. 28
3.19 Replace the label set L_{2} by L_{2}^{\prime} for $r=0$ 28
3.20 Replace the label set L_{2} by L_{2}^{\prime} for $r>0$. 29
3.21 Label V_{1} with a label set $L_{1}=\left\{\frac{m_{3}\left(m_{3}+1\right)}{4}-1, \frac{m_{3}\left(m_{3}+1\right)}{4}+1\right\}$ for $r=0$. 29
3.22 Label V_{1} with a label set $L_{1}=\left\{\frac{m_{3}\left(m_{3}+1\right)}{4}-1, \frac{m_{3}\left(m_{3}+1\right)}{4}+1\right\}$ for $r>0$. 30
3.23 Label V_{1} with label set $L_{1}=\left\{\frac{m_{3}\left(m_{3}+1\right)+2}{4}-1, \frac{m_{3}\left(m_{3}+1\right)+2}{4}\right\}$ for $r=0$. 32
3.24 Label V_{1} with label set $L_{1}=\left\{\frac{m_{3}\left(m_{3}+1\right)+2}{4}-1, \frac{m_{3}\left(m_{3}+1\right)+2}{4}\right\}$ For $r>0$. 32
3.25 A labeling of $K_{2,2, m_{3}}$ with m_{3} satisfies case $I I I$ and $\frac{m_{3}\left(m_{3}+1\right)}{2}$ is even
with $i(G)=\frac{m_{3}\left(m_{3}+1\right)}{2}+2$. 33
3.26 A labeling of $K_{2,2, m_{3}}$ with m_{3} satisfies case $I I I$ and $\frac{m_{3}\left(m_{3}+1\right)}{2}$ is odd with $i(G)=\frac{m_{3}\left(m_{3}+1\right)+2}{2}+1$. 34

CHAPTER I INTRODUCTION

By a graph $G=(V, E)$, we mean a finite undirected graph containing no loops or multiple edges. Furthermore, we assume that G has no isolated vertices.

In 1994, Vilfred [2] introduced the concept of Σ-labeling: A Σ-labeling of a graph $G=(V, E)$ of order n is a bijection $f: V \rightarrow\{1,2, \ldots, n\}$ such that $\sum_{u \in N(v)} f(u)=k$ for all $v \in V$, where $N(v)$ is the neighborhood of v. The constant k is called the magic constant of the labeling f. A graph which admits a Σ labeling is called a Σ-graph. The Σ-labeling is also known as the 1 -vertex-magic vertex labeling [3] and the distance magic labeling [4].

In 2015, Godinho and Singh 1 introduced the concept of S-magic graph. A graph $G=(V, E)$ is said to be an S-magic graph if there exist a set T of positive integers with $|T|=|V|$, a bijection $\phi: V \rightarrow T$, and a positive integer k such that $\sum_{u \in N(v)} \phi(u)=k$ for all $v \in V$. We call k an S-magic constant, ϕ an S-magic labeling, and T an S-magic labeling set. It follows that a Σ-graph is an S magic graph. Moreover, if G is an S-magic graph, then each S-magic labeling set T has a unique corresponding S-magic constant, i.e., for any two S-magic labelings $\phi_{1}: V \rightarrow T$ and $\phi_{2}: V \rightarrow T$, we have $\sum_{u \in N(v)} \phi_{1}(u)=\sum_{u \in N(v)} \phi_{2}(u)$ for all $v \in V$. We denote the set of all S-magic constants that can be obtained through different S-magic labelings of G by $M(G)$. Moreover, they observed that the complete r partite graph $G=K_{m_{1}, m_{2}, \ldots, m_{r}}$, where $m_{1} \leq m_{2} \leq \cdots \leq m_{r}$ is an S-magic graph if and only if $m_{2} \geq 2$.

In 2018, Godinho and Singh [4] studied the function $i(G)=\min _{T \in \mathcal{S}} \alpha(T)$, where $\mathcal{S}=\{T \subset \mathbb{N}: T$ is an S-magic labeling set of $G\}$ and $\alpha(T)=\max (T)$. The distance magic index of G is defined by $i(G)-n$ and is denoted by $\theta(G)$.

In this thesis, we determine $i(G)$ for G which satisfies the conditions:

1. $G=K_{m_{1}, m_{2}, \ldots, m_{r}}$ is a complete r-partite graph and $m_{1}=m_{2}=\ldots=m_{r} \geq 2$
2. $G=K_{1, m_{2}, m_{3}}$ is a complete tripartite graph and $2 \leq m_{2} \leq m_{3}$
3. $G=K_{2, m_{2}, m_{3}}$ is a complete tripartite graph and $2 \leq m_{2} \leq m_{3}$.

CHAPTER II
 PRELIMINARIES

In this chapter, we review some definitions, theorems, lemmas, corollaries, and examples used in this work. For more details, see in [1], [4] and [5].

$2.1 \quad S$-magic graph

Definition 2.1. [1] A Σ-labeling of a graph $G=(V, E)$ of order n is a bijection $f: V \rightarrow\{1,2, \ldots, n\}$ such that $\sum_{u \in N(v)} f(u)=k$ for all $v \in V$, where $N(v)$ is the neighborhood of v and where $k \in \mathbb{N}$. The constant k is called the magic constant of the labeling f. A graph G is called a Σ-graph.

Definition 2.2. [1] Let $G=(V, E)$ be an undirected graph with neither loops nor multiple edges. A graph $G=(V, E)$ is said to be an S-magic graph if there exist a set T of positive integers with $|T|=|V|$, a bijection $\phi: V \rightarrow T$, and a positive integer k such that $\sum_{u \in N(v)} \phi(u)=k$ for all $v \in V$. We call k an S-magic constant, ϕ an S-magic labeling, and T an S-magic labeling set.

Definition 2.3. [1] If a graph G is S-magic then magic spectrum of G is defined to be the set of all magic constants that can be obtained through different S-magic labeling of G and is denoted by $M(G)$.

Example 2.4. [1] A path P_{3} has 3 vertices x, y and z. Let $\operatorname{deg}(x)=1, \operatorname{deg}(y)=2$ and $\operatorname{deg}(z)=1$. We will show that an S-magic labeling set T of P_{3} must be in the form $T=\{a, a+b, b\}$ where a, b are distinct positive integers. It is obvious that if we define $f: V \rightarrow T$ by $f(x)=a, f(y)=a+b$ and $f(z)=b$, then f is an S-magic labeling. Therefore $T=\{a, a+b, b\}$ is an S-magic labeling set of P_{3}. Now we assume that $T=\{a, b, c\}$ is an S-magic labeling set of P_{3}, and let $f: V \rightarrow T$ by $f(x)=a, f(y)=c$ and $f(z)=b$. Then c must be equal to $a+b$. It follow that the S-magic constant of P_{3} is $a+b$. Since a and b are distinct positive integers, $a+b \geq 1+2=3$. Hence, the path P_{3} is an S-magic graph where $M\left(P_{3}\right)=\{3,4,5,6, \ldots\}$.

Figure 2.1: A labeling of P_{3} where S-magic constant is $a+b$.
Example 2.5. [1] For a cycle C_{4}, if we label a pair of the opposite vertices with the same summation, we get that C_{4} is an S-magic graph. It is not hard to see that $T=\{1,2, i, i+1\}$ is an S-magic labeling set of C_{4} where $i=3,4,5, \ldots$ with $5,6,7, \ldots$ as magic constants. Since C_{4} has 4 vertices, there is one vertex such that the labeling assigned to its neighborhoods are at least 4 and another number. Thus the magic constant of C_{4} greater than 4 . Hence C_{4} is an S-magic graph where $M\left(C_{4}\right)=\{5,6, \ldots\}$.

Figure 2.2: An S-magic labeling $T=\{1,2, i, i+1\}$ of C_{4} where S-magic constant is $i+2$.

Definition 2.6. (1] A vertex of degree 1 is a leaf, and a vertex that adjacient to a leaf is called a support vertex.

Remark 2.7. [1] If G contains two distinct support vertices u and v, then G is not an S-magic graph.

Proof. Suppose G is an S-magic graph, and G has two distinct support vertices u and v. There are a leaf a adjacent to u and a leaf b adjacent to v, it implies the numbers that label to u and v are equal. This is a contradiction.

Theorem 2.8. [1] A tree T is an S-magic graph if and only if $T=K_{1, r}$ where $r \geq 2$.

Theorem 2.9. [1] If there exist two vertices u and v in G such that $\mid(N(u) \backslash N(v)) \cup$ $(N(v) \backslash N(u)) \mid=2$, then G is not an S-magic graph.
Corollary 2.10. [1] The complete graph K_{n} is not S-magic for $n \geq 2$.
Lemma 2.11. [1] The complete r-partite graph $G=K_{m_{1}, m_{2}, \ldots, m_{r}}$ is S-magic if and only if the sum of the labels of all vertices in any two partite sets are equal.
Theorem 2.12. [1] The complete r-partite graph $G=K_{m_{1}, m_{2}, \ldots, m_{r}}, m_{1} \leq m_{2} \leq$ $\cdots \leq m_{r}$ is S-magic if and only if $m_{2} \geq 2$.

Lemma 2.13. [1] If G is S-magic, then the smallest S-magic constant corresponds to the S-magic labeling set T for which $\sum_{i \in T} i$ is minimum.

2.2 Distance magic index

Definition 2.14. [4] Let $i\left(\overline{(G)}=\min _{T \in \mathcal{S}} \alpha(T)\right.$, where $\mathcal{S}=\{T \subset \mathbb{N}: T$ is an S-magic labeling set of $G\}$ and $\alpha(T)=\max (T)$. The distance magic index of G, denoted by $\theta(G)$ is defined by $i(G)-n$.
Theorem 2.15. (4) A tree T is S-magic if and only if $T=K_{1, r}$, where $r \geq 2$. Furthermore, $\theta\left(K_{1, r}\right)$ is $\frac{r(r-1)}{2}-1$.
Lemma 2.16. If G is an S-magic graph of order n with distance magic index θ, then

$$
\frac{\delta(2(n+\theta)-\delta+1)-\Delta(\Delta+1)}{2} \geq 0
$$

Proof. Since the distance magic of G is θ, there is a set $T \subset\{1,2, \ldots, n+\theta\}$ with $|T|=n$ and an S-magic labeling $f: V \rightarrow T$ with a magic constant k. Let $v_{1}, v_{2} \in V(G), \operatorname{deg}\left(v_{1}\right)=\delta$ and $\operatorname{deg}\left(v_{2}\right)=\Delta$. Thus

$$
\sum_{u \in N\left(v_{1}\right)} f(u) \geq 1+2+\cdots+\Delta=\frac{\Delta(\Delta+1)}{2}
$$

and

$$
\sum_{u \in N\left(v_{2}\right)} f(u) \leq(n+\theta)+(n+\theta-1)+\cdots+(n+\theta-\delta+1)=\frac{\delta(2(n+\theta)-\delta+1)}{2}
$$

. Since $\sum_{u \in N\left(v_{1}\right)} f(u)=\sum_{u \in N\left(v_{2}\right)} f(u)=k$, we get

$$
\frac{\delta(2(n+\theta)-\delta+1)}{2} \geq \frac{\Delta(\Delta+1)}{2}
$$

Therefore

$$
\frac{\delta(2(n+\theta)-\delta+1)-\Delta(\Delta+1)}{2} \geq 0 .
$$

Let

$$
g(x)=\frac{\delta(2(n+x)-\delta+1)-\Delta(\Delta+1)}{2} .
$$

then $g(x)$ is a strictly increasing function of x. If there exist a non-negative integer a satisfying

$$
\frac{\delta(2(n+\theta)-\delta+1)-\Delta(\Delta+1)}{2}<0
$$

it implies $\theta(G)>a$. Also that if a is a smallest integer such that $g(a) \geq 0$, then $\theta(G) \geq a$. So,

$$
\begin{equation*}
g(0)=\frac{\delta(2 n-\delta+1)-\Delta(\Delta+1)}{2} . \tag{2.1}
\end{equation*}
$$

Lemma 2.17. Let G be a graph of order n such that $g(0)<0$. Then $\theta(G) \geq$ $\left\lceil\frac{|g(0)|}{\delta}\right\rceil$.

Proof. Let $|g(0)|=q \delta+r, 0 \leq r<\delta$. Since $g(0)<0$, we have

$$
g(0)=\frac{\delta(2 n-\delta+1)-\Delta(\Delta+1)}{2}=-q \delta-r .
$$

Then

$$
\begin{gathered}
\frac{\delta(2 n-\delta+1)-\Delta(\Delta+1)}{2}+q \delta=-r \\
\frac{\delta(2 n-\delta+1)-\Delta(\Delta+1)+2 q \delta}{2}=-r . \\
\frac{\delta(2(n+q)-\delta+1)-\Delta(\Delta+1)}{2}=-r .
\end{gathered}
$$

It implies that if $r=0, q$ is a smallest value of x that $g(x) \geq 0$. Then $\theta(G) \geq q$. If $r>0$, then $\theta(G)>q$ and

$$
\frac{\delta(2(n+q)-\delta+1)-\Delta(\Delta+1)+2 r}{2}=0 .
$$

Since $r<\delta$,

$$
\frac{\delta(2(n+q)-\delta+1)-\Delta(\Delta+1)+2 r}{2}<\frac{\delta(2(n+q)-\delta+1)-\Delta(\Delta+1)+2 \delta}{2} .
$$

Hence

$$
\frac{\delta(2(n+(q+1))-\delta+1)-\Delta(\Delta+1)}{2}>0 .
$$

Therefore, $q+1$ is the smallest value of x that $g(x) \geq 0$. Thus $\theta(G) \geq q+1$. Observation that if $G=K_{m_{1}, m_{2}}$ is a complete bipartite graph where $2 \leq m_{1} \leq m_{2}$. We apply $\delta=m_{1}, \Delta=m_{2}$ and $n=m_{1}+m_{2}$. By (2.1), we get

$$
\begin{align*}
g(0) & =\frac{m_{1}\left(2 n-m_{1}+1\right)-m_{2}\left(m_{2}+1\right)}{2} \\
& =\frac{m_{1}\left(2\left(m_{1}+m_{2}\right)-m_{1}+1\right)-m_{2}\left(m_{2}+1\right)}{2} \\
& =\frac{m_{1}^{2}+2 m_{1} m_{2}+m_{1}-\left(m_{2}^{2}+m_{2}\right)}{2} \\
& =\frac{n(n+1)}{2}-m_{2}\left(m_{2}+1\right) . \tag{2.2}
\end{align*}
$$

Theorem 2.18. [4] Let G be a complete bipartite graph $K_{m_{1}, m_{2}}$ where $2 \leq m_{1} \leq m_{2}$ and $n=m_{1}+m_{2}$. Let $g(0)=\frac{n(n+1)}{2}-m_{2}\left(m_{2}+1\right)$. Then
$\theta(G)= \begin{cases}0, & n(n+1) \geq 2 m_{2}\left(m_{2}+1\right) \text { and } n \equiv 0 \text { or } 3(\bmod 4) \\ 1, & n(n+1) \geq 2 m_{2}\left(m_{2}+1\right) \text { and } n \equiv 1 \text { or } 2(\bmod 4) \\ \left\lceil\frac{|g(0)|}{m_{1}}\right\rceil, & n(n+1)<2 m_{2}\left(m_{2}+1\right) .\end{cases}$
Proof. Case $n(n+1) \geq 2 m_{2}\left(m_{2}+1\right)$ and $n \equiv 0$ or $3(\bmod 4)$. It is completed by Theorem 1.6 in 44 .

Case $n(n+1) \geq 2 m_{2}\left(m_{2}+1\right)$ and $n \equiv 1$ or $2(\bmod 4)$. Since a sum of elements in a set $\left\{1,2, \ldots, m_{1}+m_{2}\right\}$ is equal to $\frac{\left(m_{1}+m 2\right)\left(m_{1}+m_{2}+1\right)}{2}$ and $m_{1}+m_{2} \equiv$ 1 or $2(\bmod 4)$, this sum is not divided by 2 . Then $\theta(G)>0$. Let $S\left(L_{1}\right)$ and $S\left(L_{2}\right)$ be the sums of the labelings assigned to V_{1} and V_{2}, repectively. We label $L_{1}=\left\{m_{2}+1, m_{2}+2, \ldots, m_{2}+m_{1}\right\}$ to V_{1} and $L_{2}=\left\{1,2, \ldots, m_{2}\right\}$ to V_{2}. Then $S\left(L_{1}\right)=m_{1} m_{2}+\frac{m_{1}\left(m_{1}+1\right)}{2}$ and $S\left(L_{2}\right)=\frac{m_{2}\left(m_{2}+1\right)}{2}$. Thus

$$
S\left(L_{1}\right)-S\left(L_{2}\right)=\frac{n(n+1)}{2}-m_{2}\left(m_{2}+1\right)
$$

Since $n \equiv 1$ or $2(\bmod 4)$, it follows that $\frac{n(n+1)}{2} \equiv 1(\bmod 2)$. Furthermore, $m_{2}\left(m_{2}+1\right) \equiv 0(\bmod 2)$, and then

$$
\frac{n(n+1)}{2}-m_{2}\left(m_{2}+1\right) \equiv 1 \quad(\bmod 2)
$$

Let $S\left(L_{1}\right)-S\left(L_{2}\right)=2 p-1$ where $p=\left(m_{1}-1\right) q+r>0$ and $r \geq 0$. So,

$$
\begin{equation*}
S\left(L_{1}\right)-p+1=S\left(L_{2}\right)+p . \tag{2.3}
\end{equation*}
$$

Now, we proceed to attain equality in the sum of the labelings for the two partite set. We divide into 2 cases.

For $r=0$: we label the vertices in V_{1} and V_{2} with the labeling sets $L_{1}^{\prime}=$ $\left\{m_{2}+1-q, m_{2}+2-q, \ldots, m_{2}+m_{1}-1-q, m_{2}+m_{1}+1\right\}$ and $L_{2}^{\prime}=\left\{1,2, \ldots, m_{2}-\right.$ $\left.q, m_{2}-q+1+\left(m_{1}-1\right), m_{2}-q+2+\left(m_{1}-1\right), \ldots, m_{2}+\left(m_{1}-1\right)\right\}$, respectively. Thus $S\left(L_{1}^{\prime}\right)=S\left(L_{2}^{\prime}\right)$ by using the relation in (2.3). See the labeling in Figure 2.3.

Figure 2.3: A labeling of $K_{m_{1}, m_{2}}$ where m_{1} and m_{2} satisfy $n(n+1) \geq 2 m_{2}\left(m_{2}+\right.$ $1)$ and $n \equiv 1$ or $2(\bmod 4)$ for $r=0$.

To see that all elements in L_{1}^{\prime} except $m_{2}+m_{1}+1$ are the numbers between $m_{2}-q$ and $m_{2}-q+1+\left(m_{1}-1\right)$ in L_{2}^{\prime}. Moreover, it obvious that $m_{2}+m_{1}+1$ greater than all elements in L_{2}^{\prime}. Hence all elements in L_{1}^{\prime} and L_{2}^{\prime} are distinct.

For $r>0$: we label the vertices in V_{1} and V_{2} with the labeling sets $L_{1}^{\prime}=$ $\left\{m_{2}-q, m_{2}-q+1, \ldots, m_{2}-q+(r-1), m_{2}-q+(r+1), m_{2}-q+(r+2), \ldots, m_{2}-\right.$ $\left.q+\left(m_{1}-1\right) \cdot m_{2}+m_{1}+1\right\}$ and $L_{2}^{\prime}=\left\{1,2, \ldots, m_{2}-q, m_{2}-q+1+\left(m_{1}-1\right), m_{2}-\right.$ $\left.q+2+\left(m_{1}-1\right), \ldots, m_{2}+\left(m_{1}-1\right)\right\}$. Thus $S\left(L_{1}^{\prime}\right)=S\left(L_{2}^{\prime}\right)$ by using the relation in (2.3). See the labeling in Figure 2.4

Figure 2.4: A labeling of $K_{m_{1}, m_{2}}$ where m_{1} and m_{2} satisfy $n(n+1) \geq 2 m_{2}\left(m_{2}+\right.$ $1)$ and $n \equiv 1$ or $2(\bmod 4)$ for $r>0$.

To see that all elements in L_{1}^{\prime} except $m_{2}+m_{1}+1$ are the numbers between $m_{2}-q$ and $m_{2}+2-q+\left(m_{1}-1\right)$ in L_{2}^{\prime}. Moreover, it obvious that $m_{2}+m_{1}+1$ greater than all elements in L_{2}^{\prime}. Hence all elements in L_{1}^{\prime} and L_{2}^{\prime} are distinct. Therefore, the set $\left\{1,2, \ldots, m_{1}+m_{2}-1, m_{1}+m_{2}+1\right\}$ is an S-magic labeling set of G, this implies $\theta(G)=1$.

Case $n(n+1)<2 m_{2}\left(m_{2}+1\right)$. We have

$$
\begin{align*}
\left(m_{1}+m_{2}\right)\left(m_{1}+m_{2}+1\right) & <2\left(m_{2}+1\right) \\
m_{1}^{2}+m_{2}^{2}+2 m_{1} m_{2}+m_{1}+m_{2} & <2 m_{2}^{2}+2 m_{2} \\
\text { קุ } 2 m_{1} m_{2}+m_{1}\left(m_{1}+1\right) & <m_{2}^{2}+m_{2} \\
\text { CHUL } m_{1} m_{2}+\frac{m_{1}\left(m_{1}+1\right)}{2} & <\frac{m_{2}^{2}+m_{2}}{2} . \tag{2.4}
\end{align*}
$$

By Lemma 2.17 and (2.2), $\theta(G) \geq\left\lceil\frac{|g(0)|}{m_{1}}\right\rceil$. We claim that $\theta(G)=\left\lceil\frac{|g(0)|}{m_{1}}\right\rceil$. Let $S\left(L_{1}\right)$ and $S\left(L_{2}\right)$ be the sums of the labelings assigned to V_{1} and V_{2}, repectively. We label the sets $L_{1}=\left\{m_{2}+1, m_{2}+2, \ldots, m_{2}+m_{1}\right\}$ to V_{1} and $L_{2}=\left\{1,2, \ldots, m_{2}\right\}$ to V_{2}. Then $S\left(L_{1}\right)=m_{1} m_{2}+\frac{m_{1}\left(m_{1}+1\right)}{2}$ and $S\left(L_{2}\right)=\frac{m_{2}\left(m_{2}+1\right)}{2}$. By (2.4), we get $S\left(L_{1}\right)<S\left(L_{2}\right)$. Let $K=S\left(L_{2}\right)-S\left(L_{1}\right)=m_{1} q+r$ where $r \geq 0$ and $q<m_{1}$. So

$$
\begin{equation*}
S\left(L_{2}\right)-\left(S\left(L_{1}\right)+m_{1} q+r\right)=0 . \tag{2.5}
\end{equation*}
$$

For $r=0$: we label the vertices in V_{1} and V_{2} with the labeling sets $L_{1}^{\prime}=$ $\left\{m_{2}+1+q, m_{2}+2+q, \ldots, m_{2}+m_{1}-1+q, m_{2}+m_{1}+q\right\}$ and $L_{2}^{\prime}=L_{2}=\left\{1,2, \ldots, m_{2}\right\}$, respectively, see in Figure 2.5.

Figure 2.5: A labeling of $K_{m_{1}, m_{2}}$ where m_{1} and m_{2} satisfy $n(n+1)<2 m_{2}\left(m_{2}+1\right)$ for $r=0$.

Thus $S\left(L_{1}^{\prime}\right)=S\left(L_{2}^{\prime}\right)$ by using the relation in (2.5). Therefore, $\theta(G)=q=$ $\left\lceil\frac{|g(0)|}{m_{1}}\right\rceil$.
For $r>0$: we label the vertices in V_{1} and V_{2} with the labeling sets $L_{1}^{\prime}=\left\{m_{2}+1+\right.$ $\left.q, m_{2}+2+q, \ldots, m_{2}+m_{1}-r+q, m_{2}+m_{1}-r+2+q, \ldots, m_{2}+m_{1}+q, m_{2}+m_{1}+q+1\right\}$ and $L_{2}^{\prime}=L_{2}=\left\{1,2, \ldots, m_{2}\right\}$, respectively, see in Figure 2.6.

Figure 2.6: A labeling of $K_{m_{1}, m_{2}}$ where m_{1} and m_{2} satisfy $n(n+1)<2 m_{2}\left(m_{2}+1\right)$ for $r>0$.

Thus $S\left(L_{1}^{\prime}\right)=S\left(L_{2}^{\prime}\right)$ by using the relation in (2.5). Therefore, we get $\theta(G)=$ $q+1=\left\lceil\frac{|g(0)|}{m_{1}}\right\rceil$.

Example 2.19. Let $G=K_{m_{1}, m_{2}}$ where $m_{1}=3$ and $m_{2}=5$. Then m_{1}, m_{2} satisfies the condition $n(n+1) \geq 2 m_{2}\left(m_{2}+1\right)$ and $n \equiv 0 \operatorname{or} 3(\bmod 4)$. Then $G=K_{3,5}$ is an S-magic graph with an S-magic labeling set $T=\{1,2,3,4,5,6,7,8\}$. See the labeling in Figure 2.7. Then $\theta(G)=0$.

Figure 2.7: A labeling of $K_{3,5}$ and $\theta\left(K_{3,5}\right)=0$.

Example 2.20. Let $G=K_{m_{1}, m_{2}}$ where $m_{1}=3$ and $m_{2}=6$. Then m_{1}, m_{2} satisfies the condition $n(n+1) \geq 2 m_{2}\left(m_{2}+1\right)$ and $n \equiv 1$ or $2(\bmod 4)$. By Theorem 2.18, $\theta(G)=1$. Then $G=K_{3,6}$ is an S-magic graph with an S-magic labeling set $T=\{1,2,3,4,5,6,7,8,10\}$. See the labeling in Figure 2.8.

Figure 2.8: A labeling of $K_{3,6}$ and $\theta\left(K_{3,6}\right)=1$.

Example 2.21. Let $G=K_{m_{1}, m_{2}}$ where $m_{1}=3$ and $m_{2}=10$. Then m_{1}, m_{2} satisfies the condition $n(n+1)<2 m_{2}\left(m_{2}+1\right)$. By Theorem 2.18, $\theta(G)=7$. Then $G=$
$K_{3,6}$ is an S-magic graph with an S-magic labeling set $T=\{1,2, \ldots, 10,17,18,20\}$ that can see in Figure 2.9.

Figure 2.9: A labeling of $K_{3,10}$ and $\theta\left(K_{3,10}\right)=7$.

In the next chapter, we determine $i(G)$ for $G=K_{m_{1}, m_{2}, m_{3}}$ is a complete tripartite graph and satisfies the condition $m_{1}=m_{2}=m_{3} \geq 2$ and determine $i(G)$ for $G=K_{m_{1}, m_{2}, m_{3}}$ satisfies the following conditions:

1. $G=K_{m_{1}, m_{2}, \ldots, m_{r}}$ is a complete r-partite graph and $m_{1}=m_{2}=\ldots=m_{r} \geq 2$
2. $G=K_{1, m_{2}, m_{3}}$ is a complete tripartite graph and $2 \leq m_{2} \leq m_{3}$
3. $G=K_{2, m_{2}, m_{3}}$ is a complete tripartite graph and $2 \leq m_{2} \leq m_{3}$.

CHAPTER III
 MAIN RESULTS

Theorem 3.1. Let $m_{1}, m_{2}, \ldots, m_{r}$ be positive integers where $2 \leq m_{1}=m_{2}=$ $\cdots=m_{r}$, and let $G=K_{m_{1}, m_{2}, \ldots, m_{r}}$ be a complete r-partite graph. If m is even, then G is an S-magic graph and $\theta(G)=0$.

Proof. Let $m_{1}, m_{2}, \ldots, m_{r}$ be positive integers where $2 \leq m_{1}=m_{2}=\cdots=m_{r}=m$, and let $G=K_{m_{1}, m_{2}, \ldots, m_{r}}$ be a complete r-partite graph. Let $V_{1}, V_{2}, \ldots, V_{r}$ be the partite sets of G. For $i \in S_{1, i} i \in V_{k}$ where $k=1,2, \ldots, r$ if and only if $i \equiv k$ or $(1-k)(\bmod 2 r)$. Figure 3.1 shows the labeling $f_{1}: V(G) \rightarrow S_{1}$ with a labeling set $S_{1}=\{1,2, \ldots, r m\}$.

Figure 3.1: A Labeling of G with a label set $S_{1}=\{1,2, \ldots, r m\}$

Consider the sum of the labelings assigned to each partite V_{k}. Then the sum is equal to

$$
\begin{aligned}
\sum_{n=0}^{\frac{m-2}{2}}(2 r n+k)+\sum_{n=1}^{\frac{m}{2}}(2 r n+1-k) & =k+(2 r+k)+(4 r+k)+\cdots+(r(m-2)+k) \\
& +(2 r+1-k)+(4 r+1-k)+\cdots+(r m+1-k) \\
& =(k+r m+1-k)+(2 r+k+r(m-2)+1-k) \\
+\cdots & +(r(m-2)+k+2 r+1-k) \\
& =\frac{m}{2}(r m+1) .
\end{aligned}
$$

This show that the sum of the labelings assigned to each partite is equal to $\frac{m(r m+1)}{2}$. Then $i(G)=r m$. Hence $\theta(G)=0$.

Lemma 3.2. Let $S=\{r m-3 r+1, r m-3 r+2, \ldots, r m\}$ where m and r are odd. Then
$A=\{r m-3 r+1, r m-3 r+3, \ldots, r m-2 r\}$,
$B=\left\{r m-\left(\frac{3 r-1}{2}\right), r m-\left(\frac{3 r-1}{2}\right)-1, \ldots, r m-2 r+1\right\}$,
$C=\left\{r m, r m-1, \ldots, r m-\left(\frac{r-1}{2}\right)\right\}$,
$D=\{r m-3 r+2, r m-3 r+4, \ldots, r m-2 r-1\}$,
$E=\left\{r m-r, r m-r-1, \ldots, r m-\frac{3}{2}(r-1)\right\}$,
$F=\left\{r m-\left(\frac{r-1}{2}\right)-1, r m-\left(\frac{r-1}{2}\right)-2, \ldots, r m-r+1\right\}$ partition S.
Proof. Let $S=\{r m-3 r+1, r m-3 r+2, \ldots, r m\}$ where m and r are odd. We divide all elements in S into 6 sets: $A=\{r m-3 r+1, r m-3 r+3, \ldots, r m-2 r\}$, $B=\left\{r m-\frac{3 r-1}{2}, r m-\frac{3 r-1}{2}-1, \ldots, r m-2 r+1\right\}$, $C=\left\{r m, r m-1, \ldots, r m-\frac{r-1}{2}\right\}$,
$D=\{r m-3 r+2, r m-3 r+4, \ldots, r m-2 r-1\}$,
$E=\left\{r m-r, r m-r-1, \ldots, r m-\frac{3}{2}(r-1)\right\}$,
$F=\left\{r m-\left(\frac{r-1}{2}\right)-1, r m-\left(\frac{r-1}{2}\right)-2, \ldots, r m-r+1\right\}$.
We will show that A, B, C, D, E and F are 6 partitions of S. Note that A and D contain an increasing sequence. The others contain a decreasing sequence. Then $\max A<\min B, \min C>\max F$ and $\max F>\max E$. Moreover, $C \cap F \cap E \cap D=$ \varnothing and $A \cap B=\varnothing$. We only need to show that $A \cap D=\varnothing$. Since A contains only odd positive integers and D contains only even positive integers, then $A \cap D=\varnothing$. In the last, we will show $|A|+|B|+|C|+|D|+|E|+|F|=|S|=3 r$. Consider

$$
\begin{aligned}
& |A|=\frac{r m-2 r-(r m-3 r+1)+2}{2}=\frac{r+1}{2} \\
& |B|=r m-\frac{3 r-1}{2}-(r m-2 r+1)+1=\frac{r+1}{2} \\
& |C|=r m-\left(r m-\frac{r-1}{2}\right)+1=\frac{r+1}{2} \\
& |D|=\frac{r m-2 r-1-(r m-3 r+2)+2}{2}=\frac{r-1}{2} \\
& |E|=r m-r-\left(r m-\frac{3}{2}(r-1)\right)+1=\frac{r-1}{2} \\
& |F|=r m-\left(\frac{r-1}{2}\right)-1-(r m-r+1)+1=\frac{r-1}{2} .
\end{aligned}
$$

Therefore $|A|+|B|+|C|+|D|+|E|+|F|=3\left(\frac{r+1}{2}\right)+3\left(\frac{r-1}{2}\right)=3 r$. Hence, A, B, C, D, E and F are the partitions of S.

Figure 3.2: The partition of $S=\{r m-3 r+1, r m-3 r+2, \ldots, r m\}$.

Lemma 3.3. Let $S=\left\{r m-3 r+1, r m-3 r+2, r m-\frac{r}{2}, r m-\frac{r}{2}+2, r m-\frac{r}{2}+\right.$ $3, \ldots, r m+1\}$ where m is odd, and r is even. Then
$A=\{r m-3 r+1, r m-3 r+3, \ldots, r m-2 r-1\}$
$B=\left\{r m-\frac{3 r}{2}, r m-\frac{3 r}{2}-1, \ldots, r m-2 r+1\right\}$
$C=\left\{r m+1, r m, \ldots, r m-\frac{r}{2}+2\right\}$
$D=\{r m-3 r+2, r m-3 r+4, \ldots, r m-2 r\}$
$E=\left\{r m-r, r m-r-1, \ldots, r m-\frac{3 r}{2}+1\right\}$
$F=\left\{r m-\left(\frac{r}{2}\right), r m-\left(\frac{r}{2}\right)-1, \ldots, r m-r+1\right\}$ partition S.
Proof. Let $S=\left\{r m-3 r+1, r m-3 r+2, r m-\frac{r}{2}, r m-\frac{r}{2}+2, r m-\frac{r}{2}+3, \ldots, r m+1\right\}$ where m is odd and r is even. Figure 3.3 shows how we put elements in S into 3 sets; A, B and C.

Figure 3.3: Subsets A, B and C of S.

We will divide $S \backslash(A \cup B \cup C)$ into 3 sets. Figure 3.4 shows how we put elements in $S \backslash(A \cup B \cup C)$ into 3 sets; D, E and F.

Figure 3.4: Subsets D, E and F of S.

Now, we divide all elements in S into 6 sets: $A=\{r m-3 r+1, r m-3 r+$ $3, \ldots, r m-2 r-1\}$,
$B=\left\{r m-\frac{3 r}{2}, r m-\frac{3 r}{2}-1, \ldots, r m-2 r+1\right\}$,
$C=\left\{r m+1, r m, \ldots, r m-\frac{r}{2}+2\right\}$,
$D=\{r m-3 r+2, r m-3 r+4, \ldots, r m-2 r\}$,
$E=\left\{r m-r, r m-r-1, \ldots, r m-\frac{3 r}{2}+1\right\}$,
$F=\left\{r m-\left(\frac{r}{2}\right), r m-\left(\frac{r}{2}\right)-1, \ldots, r m-r+1\right\}$.
We will shows that A, B, C, D, E and F are 6 partitions of S. Note that A and D contain an increasing sequence. The others contain a decreasing sequence. Then $\max A<\min B, \min C>\max F$ and $\max F>\max E$. Furthermore, all partition not contain $r m-\frac{r}{2}+1$. Thus, $C \cap F \cap E \cap D=\varnothing$ and $A \cap B=\varnothing$. We only need to show that $A \cap D=\varnothing$. Since A is a sequence of odd integers and D is a sequence of even integers, then $A \cap D=\varnothing$. In the last, we will show that $|A|+|B|+|C|+|D|+|E|+|F|=|S|=3 r$. Consider

$$
\begin{aligned}
& |A|=\frac{r m-2 r-1-(r m-3 r+1)+2}{2}=\frac{r}{2} \\
& |B|=r m-\frac{3 r}{2}-(r m-2 r+1)+1=\frac{r}{2} \\
& |C|=r m+1-\left(r m-\frac{r}{2}+2\right)+1=\frac{r}{2} \\
& |D|=\frac{r m-2 r-(r m-3 r+2)+2}{2}=\frac{r}{2} \\
& |E|=r m-r-\left(r m-\frac{3 r}{2}+1\right)+1=\frac{r}{2} \\
& |F|=r m-\left(\frac{r}{2}\right)-(r m-r+1)+1=\frac{r}{2} .
\end{aligned}
$$

Therefore $|A|+|B|+|C|+|D|+|E|+|F|=6\left(\frac{r}{2}\right)=3 r$. Hence, A, B, C, D, E and F are the partitions of S.

Theorem 3.4. Let $m_{1}, m_{2}, \ldots, m_{r}$ be positive integers where $2 \leq m_{1}=m_{2}=$ $\cdots=m_{r}=m$, and let $G=K_{m_{1}, m_{2}, \ldots, m_{r}}$ be a complete r-partite graph. If m is odd, then G is an S-magic graph and $\theta(G)= \begin{cases}0, & \text { if } r \text { is odd } \\ 1, & \text { if } r \text { is even. }\end{cases}$

Proof. Let $V_{1}, V_{2}, \ldots, V_{r}$ be partite sets of G. In the beginning, we use the label set $\{1,2, \ldots, r m-3 r\}$ to label $m-3$ rows of G, as shown in Figure 3.5.

Figure 3.5: A labeling $m-3$ rows of G with label set $\{1,2, \ldots, r m-3 r\}$

Case I: r is odd.

Firstly, we demonstrate how to divide $A=\{r m-3 r+1, r m-3 r+2, \ldots, r m-1, r m\}$ into r sets with three elements and the same sum, which is $3 r m+\frac{3-9 r}{2}$.
Let $a_{n}=(r m-3 r+1)+2(n-1), b_{n}=r m-\left(\frac{3 r-1}{2}\right)-(n-1), c_{n}=r m-(n-1)$ and $P_{n}=\left\{a_{n}, b_{n}, c_{n}\right\}$. Observation that b_{n}, c_{n} are decreasing and a_{n} is increasing. We consider carefully about the largest value of n satisfies $a_{n}<b_{n}$. Consider if $a_{n}<b_{n}$, then

$$
\begin{aligned}
&(r m-3 r+1)+2(n-1)<r m-\left(\frac{3 r-1}{2}\right)-(n-1) \\
& 3(n-1)<3 r-\left(\frac{3 r-1}{2}\right)-1 \\
& \text { จุาลงกรณั่ }<\frac{3 r-1}{2} \text { าลัย }
\end{aligned}
$$

$$
n-1<\frac{3 r-1}{6}
$$

$$
n<\frac{3 r+5}{6}
$$

$$
n \leq \frac{r+1}{2}
$$

As a result, we get $\frac{r+1}{2}$ sets from A which are $P_{1}, P_{2}, \ldots, P_{\frac{r+1}{2}}$. By Lemma 3.2, it easy to see that $a_{n} \in A, b_{n} \in B$ and $c_{n} \in C$ where $n=1,2, \ldots, \frac{r+1}{2}$. Thus we get all elements in $\bigcup_{n=1}^{\frac{r+1}{2}} P_{n}$ are distinct. Next, consider a set $A \backslash\left(P_{1} \cup \cdots \cup P_{\frac{r+1}{2}}\right)$; $\left\{r m-3 r+2, r m-3 r+4, r m-3 r+6, \ldots, r m-2 r-1, r m-\left(\frac{3 r-1}{2}\right)+1, r m-\right.$ $\left.\left(\frac{3 r-1}{2}\right)+2, \ldots, r m-\left(\frac{r-1}{2}\right)-1\right\}$.

Let $d_{n}=r m-r-(n-1)$. Then d_{n} is decreasing. Choose

$$
Q_{n}=\left\{a_{n}+1, d_{n}, c_{\frac{r+1}{2}+n}\right\} \text { for } n=1,2, \ldots, \frac{r-1}{2}
$$

By Lemma 3.2, it easy to see that $a_{n}+1 \in D, d_{n} \in E$ and $c_{\frac{r+1}{2}+n} \in F$ where $n=$ $1,2, \ldots, \frac{r-1}{2}$. Thus we get that all elements in $\bigcup_{n=1}^{\frac{r-1}{2}} Q_{n}$ are distinct. Finally, we get r sets with three elements and the same sum, which is $3 r m+\frac{3-9 r}{2}$ to labels in each V_{i} of G. Hence $\theta(G)=0$, and we complete the proof.

Case II: r is even.
Let $m=2 p+1, r=2 q$ where p, q are positive integers.
Let $B=\{1,2, \ldots, r m\}$. Consider

$$
\sum_{b \in B} b=\frac{r m(r m+1)}{2}=8 p^{2} q^{2}+8 p q^{2}+2 q^{2}+2 p q+q
$$

By lemma 2.11, B can be an S-magic labeling set of G under the condition the summation of all elements in B is divided by r. We have

$$
\frac{\sum_{b \in B} b}{r}=\frac{r m(r m+1)}{2 r}=4 p^{2} q+4 p q+q+p+\frac{1}{2}
$$

is not an integer. It implies that B is not an S-magic labeling set of G, i.e. $\theta(G)>0$. Moreover, we get $\frac{r m(r m+1)}{2}+\frac{r}{2} \equiv 0(\bmod r)$.
We claim that $\left\{1,2, \ldots, r m-\frac{r}{2}, r m-\frac{r}{2}+2, \ldots, r m, r m+1\right\}$ is an S-magic labeling set of G. In the begining, we use the label set $\{1,2, \ldots, r m-3 r\}$ to labels $n-3$ rows of G, as shown in Figure 3.5. Next, we demonstrate how to divide $C=\left\{r m-3 r+1, r m-3 r+2, \ldots, r m-\frac{r}{2}, r m-\frac{r}{2}+2, \cdots, r m, r m+1\right\}$ into r sets with three elements and the same sum, which is $3 r m+2-\frac{9 r}{2}$. Let $x_{n}=$ $(r m-3 r+1)+2(n-1), y_{n}=r m-\left(\frac{3 r}{2}\right)-(n-1), z_{n}=r m+1-(n-1)$, and $P_{n}=\left\{x_{n}, y_{n}, z_{n}\right\}$. Observation that y_{n}, z_{n} are decreasing and x_{n} is increasing.
We be careful about the largest value of n that satisfies $x_{n}<y_{n}$. Consider if $x_{n}<y_{n}$, then

$$
\begin{aligned}
(r m-3 r+1)+2(n-1) & <r m-\left(\frac{3 r}{2}\right)-(n-1) \\
3(n-1) & <\frac{3 r}{2}-1 \\
& <\frac{3 r-2}{2} \\
n-1 & <\frac{3 r-2}{6}
\end{aligned}
$$

$$
\begin{aligned}
& n<\frac{3 r+4}{6} \\
& n \leq \frac{r}{2} .
\end{aligned}
$$

As a result, we get $\frac{r}{2}$ sets from C which are $P_{1}, P_{2}, \ldots, P_{\frac{r}{2}}$. By Lemma 3.3, it easy to see that $x_{n} \in A, y_{n} \in B$ and $z_{n} \in C$ where $n=1,2, \ldots, \frac{r}{2}$. Thus we get that all elements in $\bigcup_{n=1}^{\frac{r}{2}} P_{n}$ are distinct. Consider a set $C \backslash\left(P_{1} \cup \cdots \cup P_{\frac{r}{2}}\right)$; $\left\{r m-3 r+2, r m-3 r+4, \ldots, r m-2 r, r m-\frac{3 r}{2}+1, r m-\frac{3 r}{2}+2, \cdots, r m-\frac{r}{2}\right\}$. Let $w_{n}=r m-r-(n-1)$. Then w_{n} is decreasing. Choose

$$
Q_{n}=\left\{x_{n}+1, w_{n}, z_{\frac{r}{2}+(n+1)}\right\} \text { for } n=1,2, \ldots, \frac{r}{2} .
$$

By Lemma 3.3, it easy to see that $x_{n}+1 \in \mathcal{D}, w_{n} \in E$ and $z_{\frac{r}{2}+n+1} \in F$ where $n=$ $1,2, \ldots, \frac{r}{2}$. Thus we get that all elements in $\bigcup_{n=1}^{2} Q_{n}$ are distinct. Hence $\{1,2, \ldots$, $\left.r m-\frac{r}{2}, r m-\frac{r}{2}+2, \ldots, r m, r m+1\right\}$ is an S-magic labeling set of G, and then $i(G)=r m+1$. It implies $\theta(G)=1$. This completes the proof.

Definition 3.5. A minimal S-magic labeling set T of G is an S-magic labeling set of G such that $\sum_{i \in T} i$ is minimum.

Lemma 3.6. Let m_{1} and m_{2} be two positive integers where $m_{1} \leq m_{2}$. Suppose $G=K_{m_{1}, m_{2}}$ is an S-magic graph with a labeling set $T=\left\{t_{1}, t_{2}, \ldots, t_{m_{1}+m_{2}}\right\}$ and $n=m_{1}+m_{2}$. Then we have the following results.
(I) If m_{1}, m_{2} and n satisfy $n(n+1) \geq 2 m_{2}\left(1+m_{2}\right)$ and $n \equiv 0$ or $3(\bmod 4)$, then

$$
\sum_{i=1}^{m_{1}+m_{2}} t_{i} \geq 1+2+3+\cdots+\left(m_{1}+m_{2}\right)
$$

(II) If m_{1}, m_{2} and n satisfy $n(n+1) \geq 2 m_{2}\left(1+m_{2}\right)$ and $n \equiv 1$ or $2(\bmod 4)$, then

$$
\sum_{i=1}^{m_{1}+m_{2}} t_{i} \geq\left(1+2+3+\cdots+m_{1}+m_{2}\right)+1
$$

(III) If m_{1}, m_{2} and n satisfy $n(n+1)<2 m_{2}\left(1+m_{2}\right)$, then

$$
\sum_{i=1}^{m_{1}+m_{2}} t_{i} \geq 2\left(1+2+3+\cdots+m_{2}\right)
$$

Proof. Let $G=K_{m_{1}, m_{2}}$ be an S-magic graph. Let V_{1} and V_{2} be partite sets of G. Let $T=\left\{t_{1}, t_{2}, \ldots, t_{m_{1}+m_{2}}\right\}$ and a labeling $f: V(G) \rightarrow T$ which $\sum_{x_{i} \in V_{1}} f\left(x_{i}\right)=$ $\sum_{y_{j} \in V_{2}} f\left(y_{j}\right)$.

For case (I) : By the proof of Theorem 2.18 and $\theta(G)=0$ implies $\left\{1,2, \ldots, m_{1}+\right.$ $\left.m_{2}\right\}$ is an S-magic labeling set of G. Thus

$$
\sum_{t_{i} \in T} t_{i} \geq 1+2+3+\cdots+\left(m_{1}+m_{2}\right)
$$

For case (II): By the proof of Theorem 2.18 and $\theta(G)=1$ implies $\left\{1,2, \ldots, m_{1}+\right.$ $\left.m_{2}-1, m_{1}+m_{2}+1\right\}$ is a minimal labeling set of G. Thus

$$
\sum_{t_{i} \in T} t_{i} \geq 1+2+3+\cdots+\left(m_{1}+m_{2}\right)+1
$$

For case $(I I I)$: In this case, the minimal labeling set for V_{2} is $\left\{1,2, \ldots, m_{2}\right\}$. Then

$$
\sum_{y_{j} \in V_{2}} f\left(y_{j}\right) \geq 1+2+3+\cdots+m_{2}
$$

By Lemma 2.11, the sum of the labelings assigned to each partite is equal implies

$$
\begin{aligned}
\sum_{t_{i} \in T} t_{i} & =\sum_{x_{i} \in V_{1}} f\left(x_{i}\right)+\sum_{y_{j} \in V_{2}} f\left(y_{j}\right) \\
& \geq\left(1+2+3+\cdots+m_{2}\right)+\left(1+2+3+\cdots+m_{2}\right) \\
& =2\left(1+2+3+\cdots+m_{2}\right) .
\end{aligned}
$$

This completes the proof.
Lemma 3.7. Let m_{2} and m_{3} be two positive integers. Let $G=K_{2, m_{2}, m_{3}}$ be an S-magic graph, and T be a minimal labeling set of G. Then $i(G) \geq\left\lceil\frac{S(L)+1}{2}\right\rceil$ where $S(L)$ is the sum of the labelings assigned to each partite of G by a labeling set T.

Proof. Let m_{2} and m_{3} be two positive integers, and let $G=K_{2, m_{2}, m_{3}}$ be an S magic graph. Let V_{1}, V_{2} and V_{3} be partite sets of G, and $S\left(L_{i}\right)$ be the sum of the labelings assigned to each V_{i} for $i=1,2,3$. Let T^{\prime} be any S-magic labeling set of G, and let $f: V(G) \rightarrow T^{\prime}$ be an S-magic labeling with $|V(G)|=\left|T^{\prime}\right|$. Let $V_{1}(G)=\left\{x_{1}, x_{2}\right\}$ and $f\left(x_{1}\right)=a, f\left(x_{2}\right)=b$ with $a<b$. Then $S\left(L_{1}\right)=a+b$. Since G is an S-magic graph, by Lemma 2.11, $S\left(L_{1}\right)=S\left(L_{2}\right)=S\left(L_{3}\right)=a+b$.

Since $a<b$ and $a+b<2 b, b>\frac{S\left(L_{1}\right)}{2} \geq \frac{S(L)}{2}$. Then $\max \left(T^{\prime}\right) \geq b>\frac{S(L)}{2}$. Hence $i(G)>\frac{S(L)}{2}$, it follows that $i(G) \geq\left\lceil\frac{S(L)+1}{2}\right\rceil$.

Notation: We divide the relation between m_{2} and m_{3} into 3 cases:
Case $I:\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right) \geq 2 m_{3}\left(m_{3}+1\right)$ and $m_{2}+m_{3} \equiv 0$ or $3(\bmod 4)$
Case II: $\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right) \geq 2 m_{3}\left(m_{3}+1\right)$ and $m_{2}+m_{3} \equiv 1$ or $2(\bmod 4)$
Case III: $\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)<2 m_{3}\left(m_{3}+1\right)$.
Theorem 3.8. For two positive integers m_{2} and m_{3} where $2 \leq m_{2} \leq m_{3}$, let $G=K_{1, m_{2}, m_{3}}$ be an S-magic graph.
If G satisfies case I, then $i(G)=\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$.
If G satisfies case II, then $i(G)=\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$.
If G satisfies case III, then $i(G)=\frac{m_{3}\left(m_{3}+1\right)}{2}$.
Proof. Let V_{1}, V_{2} and V_{3} be the partite sets of G. Since $\left|V_{1}(G)\right|=1, V_{1}$ contains the maximum number in a labeling set of G. Since $G=K_{1, m_{1}, m_{2}}$ is an S-magic graph, the sum of the labelings assigned to V_{1}, V_{2} and V_{3} are equal.

For case I : By the proof of Theorem 2.18 [4], $\left\{1,2, \ldots, m_{2}+m_{3}\right\}$ is a labeling set for V_{2}, V_{3}, and the sum of the labelings of each partite is $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$. Then label V_{1} with a labeling set $\left\{\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}\right\}$. This labeling is S-magic. If $i(G)<\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$, then the sum of the labelings assigned to each partite less than $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$, but it is impossible. Hence, $i(G)=\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$.

For case $I I$: By the proof of Theorem 2.18 $[4],\left\{1,2, \ldots, m_{2}+m_{3}-1, m_{2}+m_{3}+1\right\}$ is a labeling set for V_{2} and V_{3}, and the sum of each partite is $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$. Then label V_{1} with a label set $\left\{\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}\right\}$. This labeling is S-magic. If $i(G)<\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$, then the sum of the labelings assigned to each partite less than $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$, but it is impossible. Hence, $i(G)=\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$.

For case III: By the proof of Theorem 2.18 [4], we label the vertices in V_{3} by the elements in $\left\{1,2, \ldots, m_{3}\right\}$, and there exists a labeling set for V_{2}. Since G is an S-magic graph, the sum of the labelings assigned to V_{1} is equal to the sum of the labelings assigned to V_{3}. Then we label V_{1} with a labeling set $\left\{\frac{m_{3}\left(m_{3}+1\right)}{2}\right\}$. By Lemma 3.6, $i(G)=\frac{m_{3}\left(m_{3}+1\right)}{2}$. This completes the proof.

Theorem 3.9. Let m_{2} and m_{3} be two positive integers with $2 \leq m_{2} \leq m_{3}$. If m_{2} and m_{3} satisfy case I or case II and $m_{2}+m_{3}>8$, then $G=K_{2, m_{2}, m_{3}}$ is an S-magic graph and
$i(G)= \begin{cases}\left\lceil\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+4}{8}\right\rceil, & \text { for case I } \\ \left\lceil\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+6}{8}\right\rceil, & \text { for case II. }\end{cases}$

Proof. If $m_{2}=2$ and $m_{2}+m_{3}>8$, then $m_{3}>6$. It implies that m_{2} and m_{3} satisfy case $I I I$. We omit this case. Let $G=K_{2, m_{2}, m_{3}}$ with $3 \leq m_{2} \leq m_{3}$ and $m_{2}+m_{3}>8$. Let $S\left(L_{i}\right)$ be the sum of the labelings assigned to V_{i} where $i=1,2,3$.

For case I :
By the proof of Theorem 2.18, $\left\{1,2, \ldots, m_{2}+m_{3}\right\}$ is a labeling set for V_{2} and V_{3} with $S\left(L_{2}\right)=S\left(L_{3}\right)$. It implies $S\left(L_{2}\right)=S\left(L_{3}\right)=\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$, i.e. $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$ is an integer. We divide into 2 cases;

Case 1: $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$ is even.
We claim that $T_{1}=\left\{1,2, \ldots, m_{2}+m_{3}, \frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{8}-1, \frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{8}+1\right\}$ is an S-magic labeling set of G. Since $m_{2}+m_{3}>8, \frac{m_{2}+m_{3}}{8}>1$. Then $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{8}$ $>m_{2}+m_{3}+1$. It implies $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{8}-1>m_{2}+m_{3}$. It implies all elements in T_{1} are distinct. Furthermore, Figure 3.6 shows the labeling of G with the label set $T_{1}=\left\{1,2, \ldots, m_{2}+m_{3}, \frac{\left(m 2+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{8}-1, \frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{8}+1\right\}$, and the sum of the labelings assigned to each partite is equal to $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$.

Figure 3.6: A labeling of $K_{2, m_{2}, m_{3}}$ where m_{2} and m_{3} satisfy case I and $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$ is even.

Therefore $G=K_{2, m_{2}, m_{3}}$ is an S-magic graph. Since the sum of each partite is $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$, and this is a minimum sum, then T_{1} is a minimal S-magic labeling set for this case. We have $S(L)=\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$. By Lemma 3.7, $i(G) \geq \frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{8}+1$, and Figure 3.6 shows the labeling with $i(G)=$ $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{8}+1$. Moreover, if $i(G)<\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{8}+1$ it implies the sum of
the labelings assigned to V_{2} and V_{3} less than $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$, but it is impossible. In conclusion, if $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$ is even, then $i(G)=\left\lceil\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{8}+1\right\rceil$.

Case 2: $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$ is odd.
We claim that $T_{2}=\left\{1,2, \ldots, m_{2}+m_{3}, \frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+4}{8}-1, \frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+4}{8}\right\}$ is an S-magic labeling set of G. By the proof of case $1, \frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{8}>m_{2}+$ $m_{3}+1$ implies $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+4}{8}>m_{2}+m_{3}+1$. Furthermore, Figure 3.7 shows the labeling of G with the label set $T_{2}=\left\{1,2, \ldots, m_{2}+m_{3}, \frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+4}{8}-\right.$ $\left.1, \frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+4}{8}\right\}$, and the sum of the labelings assigned to each partite is equal to $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$.

Figure 3.7: A labeling of $K_{2, m_{2}, m_{3}}$ where m_{2} and m_{3} satisfy case I and $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$ is odd.

Therefore G is S-magic. Since the sum of each partite is $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$, and this is a minimum sum, then T_{2} is a minimal S-magic labeling set for this case. We have $S(L)=\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$. By Lemma 3.7, $i(G) \geq \frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+4}{8}$, and Figure 3.9 shows the labeling with $i(G)=\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+4}{8}$. Moreover, if $i(G)<\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+4}{8}$ it implies the sum of the labelings assigned to V_{2} and V_{3} less than $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$, but it is impossible. In conclusion, if $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$ is odd, then $i(G)=\left\lceil\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+4}{8}\right\rceil$. Hence $i(G)=\left\lceil\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+4}{8}\right\rceil$ for case I.

For case II:
By the proof of Theorem 2.18, $\left\{1,2, \ldots, m_{2}+m_{3}-1, m_{2}+m_{3}+1\right\}$ is a labeling set
for V_{2} and V_{3} with $S\left(L_{2}\right)=\left(S L_{3}\right)$. It implies $S\left(L_{2}\right)=S\left(L_{3}\right)=\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$, i.e. $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$ is an integer. We divide into 2 cases;

Case 1: $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$ is even.
We claim that $T_{3}=\left\{1,2, \ldots, m_{2}+m_{3}-1, m_{2}+m_{3}+1, \frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{8}-\right.$ $\left.1, \frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{8}+1\right\}$ is an S-magic labeling set of G. Consider

$$
\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{8}-1>m_{2}+m_{3}+1-\frac{6}{8} \geq m_{2}+m_{3}+1
$$

If $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{8}-1=m_{2}+m_{3}+1$, then

$$
\left(\left(m_{2}+m_{3}\right)-8\right)\left(\left(m_{2}+m_{3}\right)+1\right)=6 .
$$

It implies $m_{2}+m_{3}$ is not an integer. Thus $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{8}-1>m_{2}+m_{3}+1$. Furthermore, Figure 3.8 shows the labeling of G with $T_{3}=\left\{1,2, \ldots, m_{2}+m_{3}-\right.$ $\left.1, m_{2}+m_{3}+1, \frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{8}-1, \frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{8}+1\right\}$, and the sum of the labelings assigned to each partite is $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$.

Figure 3.8: A labeling of $K_{2, m_{2}, m_{3}}$ where m_{2} and m_{3} satisfy case $I I$ and $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$ is even.

Therefore G is S-magic. Since the sum of each partite is $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+2\right)}{4}$, and this is a minimum sum, then T_{3} is a minimal S-magic labeling set for this case. We have $S(L)=\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$. By Lemma 3.7, $i(G) \geq \frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{8}+1$. Moreover, if $i(G)<\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{8}+1$ it implies the sum of the labelings
assigned to V_{2} and V_{3} less than $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$, but it is impossible. In conclusion, if $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$ is even, then $i(G)=\left\lceil\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{8}+1\right\rceil$.

Case 2: $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$ is odd.
We will prove that $T_{4}=\left\{1,2, \ldots, m_{2}+m_{3}-1, m_{2}+m_{3}+1, \frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)-2}{8}\right.$, $\left.\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+6}{8}\right\}$ is an S-magic labeling set of G.
From the above, we found that

$$
\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{8}>m_{2}+m_{3}+1 .
$$

Furthermore, Figure 3.9 shows the labeling of G with $T_{4}=\left\{1,2, \ldots, m_{2}+m_{3}-\right.$ $\left.1, m_{2}+m_{3}+1, \frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)-2}{8}, \frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+6}{8}\right\}$, and the sum of the labelings assigned to each partite is $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$.

$\left\{1,2,3, \ldots, m_{2}+m_{3}-1, m_{2}+m_{3}+1\right\}$
Figure 3.9: A labeling of $K_{2, m_{2}, m_{3}}$ where m_{2} and m_{3} satisfy case $I I$ and $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$ is odd.

Therefore G is S-magic. Since the sum of each partite is $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$, and this is a minimum sum, then T_{4} is a minimal S-magic labeling set for this case. We have $S(L)=\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$. By Lemma 3.7, $i(G) \geq \frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+6}{8}$. Moreover, if $i(G)<\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+6}{8}$ it implies the sum of the labelings assigned to V_{2} and V_{3} less than $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$, but it is impossible. In conclusion, if $\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$ is odd, then $i(G)=\left\lceil\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+6}{8}\right\rceil$. Hence $i(G)=$ $\left\lceil\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+6}{8}\right\rceil$ for case $I I$. The proof is completed.

Theorem 3.10. Let m_{2} and m_{3} be two positive integers with $2 \leq m_{2} \leq m_{3}$. Suppose $G=K_{2, m_{2}, m_{3}}$ is an S-magic graph where m_{2} and m_{3} satisfy case I or case $I I$, and $m_{2}+m_{3} \leq 8$.
(I.) $\quad m_{2}+m_{3}=4$
$\{1,2,3,4,5,6\}$ is an S-magic labeling set of $K_{2,2,2}$ and $i(G)=6$.
(II.) $\quad m_{2}+m_{3}=5$
$\{1,2,3,4,5,7,8\}$ is an S-magic labeling set of $K_{2,2,3}$ and $i(G)=8$.
(III.) $\quad m_{2}+m_{3}=6$
$\{1,2,3,4,5,6,7,8\}$ is an S-magic labeling set of $K_{2,2,4}, K_{2,3,3}$, and $i(G)=8$.
(IV.) $\quad m_{2}+m_{3}=7$
$\{1,2,3,4,5,6,7,8,9\}$ is an S-magic labeling set of $K_{2,2,5}, K_{2,3,4}$, and $i(G)=9$.
(V.) $\quad m_{2}+m_{3}=8$
$\{1,2,3,4,5,6,7,8,10,11\}$ is an S-magiclabeling set of $K_{2,3,5}, K_{2,4,4}$, and $i(G)=$ 11.

Proof. For $(I),(I I I),(I V)$, it is clear by the proof of Theorem 2.18, see in Figure 3.10. Figure 3.11, Figure 3.12, Figure 3.13 and Figure 3.14, as shown below.

-
Figure 3.10: A Labeling of $K_{2,2,2}$.

Figure 3.11: A Labeling of $K_{2,2,4}$.

Figure 3.12: A Labeling of $K_{2,3,3}$.

Figure 3.13: A Labeling of $K_{2,2,5}$.

Figure 3.14: A Labeling of $K_{2,3,4}$.

For $(I I)$: Note that $1+2+3+4+5+6+7=28$. Since $28 \equiv 1(\bmod 3)$, $\{1,2,3,4,5,6,7\}$ is not an S-labeling set of G. Then $i(G) \geq 8$. Figure 3.15 shows the labeling of $f: V\left(K_{2,2,3}\right) \rightarrow\{1,2,3,4,5,7,8\}$. Hence $i(G)=8$.

Figure 3.15: A Labeling of $K_{2,2,3}$.

For (V) : Note that $1+2+3+4+5+6+7+8+9+10=55$. Since $55 \equiv 1$ $(\bmod 3),\{1,2,3,4,5,6,7,8,9,10\}$ is not an S-labeling set of G. Then $i(G) \geq 11$. Figure 3.16 and Figure 3.17 show the labelings of $K_{2,3,5}$ and $K_{2,4,4}$ with a labeling set $\{1,2,3,4,5,6,7,8,10,11\}$, respectively. Hence $i(G)=11$.

Figure 3.16: A Labeling of $K_{2,3,5}$.

Figure 3.17: A Labeling of $K_{2,4,4}$.

By using an elemantary calculation, we obtain the following lemma that will be useful in the proof of Theorem 3.12 .

Lemma 3.11. Let m_{2} and m_{3} be positive integers. If $m_{3}>-\frac{1}{2}+\frac{\sqrt{8 m_{2}^{3}+9 m_{2}^{2}-52 m_{2}+4}}{2\left(m_{2}-2\right)}$, then $\frac{m_{3}\left(m_{3}+1\right)}{4}-1>\frac{m_{2}^{2}+m_{3}^{2}+m_{2}+m_{3}}{2 m_{2}}$.

Proof. Suppose $m_{3}>-\frac{1}{2}+\frac{\sqrt{8 m_{3}^{3}+9 m_{2}^{2}-52 m_{2}+4}}{2\left(m_{2}-2\right)}$. Then

$$
m_{3}>\frac{-\left(m_{2}+2\right)+\sqrt{\left(m_{2}-2\right)^{2}-4\left(m_{2}-2\right)\left(-\left(2 m_{2}^{2}+6 m_{2}\right)\right)}}{2\left(m_{2}-2\right)}
$$

Hence,

$$
\left(m_{2}-2\right) m_{3}^{2}+\left(m_{2}-2\right) m_{3}-\left(2 m_{2}^{2}+6 m_{2}\right)>0 .
$$

Therefore,

$$
\begin{gathered}
m_{2} m_{3}^{2}+m_{2} m_{3}-4 m_{2}>2 m_{2}^{2}+2 m_{3}^{2}+2 m_{2}+2 m_{3} \\
\frac{\left(m_{3}^{2}+m_{3}\right) m_{2}}{4 m_{2}}-\frac{4 m_{2}}{4 m_{2}}>\frac{2 m_{2}^{2}+2 m_{3}^{2}+2 m_{2}+2 m_{3}}{4 m_{2}} \\
\frac{m_{3}\left(m_{3}+1\right)}{4}-1>\frac{m_{2}^{2}+m_{3}^{2}+m_{2}+m_{3}}{2 m_{2}} .
\end{gathered}
$$

Theorem 3.12. Let m_{2} and m_{3} be two positive integers and $3 \leq m_{2} \leq m_{3}$. If m_{2} and m_{3} satisfy case III, then $G=K_{2, m_{2}, m_{3}}$ is an S-magic graph and $i(G)=\left\lceil\frac{m_{3}\left(m_{3}+1\right)+2}{4}\right\rceil$.
Proof. Suppose $S\left(L_{i}\right)$ is the sum of the labelings assigned to V_{i} for $i=1,2,3$. Because m_{2} and m_{3} satisfy case $I I I$, by Lemma 3.6, and Lemma 3.7, we get that $S\left(L_{1}\right)=S\left(L_{2}\right)=S\left(L_{3}\right) \geq \frac{m_{3}\left(m_{3}+1\right)}{2}$ and $i(G) \geq\left\lceil\frac{m_{3}\left(m_{3}+1\right)+2}{4}\right\rceil$. Now, we demonstrate a labeling of G with $S\left(L_{1}\right)=S\left(L_{2}\right)=S\left(L_{3}\right)=\frac{m_{3}\left(m_{3}+1\right)}{2}$ and $i(G)=$ $\left\lceil\frac{m_{3}\left(m_{3}+1\right)+2}{4}\right\rceil$. First, label V_{2} and V_{3} with labeling sets $L_{2}=\left\{m_{3}+1, m_{3}+2, \ldots, m_{3}+\right.$ $\left.m_{2}\right\}$ and $L_{3}=\left\{1,2, \ldots, m_{3}\right\}$, respectively as in Figure 3.18.

Figure 3.18: Label V_{2} and V_{3} with label sets $L_{2}=\left\{m_{3}+1, \ldots, m_{3}+m_{2}\right\}$ and $L_{3}=\left\{1,2, \ldots, m_{3}\right\}$, respectively.

By the proof of Case $n(n+1)<2 m_{2}\left(m_{2}+1\right)$ of theorem 2.18, $K=S\left(L_{3}\right)-$ $S\left(L_{2}\right)=m_{2} q+r$, for $q, r \geq 0$ and $r<m_{2}$.

For $r=0: K=m_{2} q$, we now replace the label set L_{2} by $L_{2}^{\prime}=\left\{m_{3}+1+q, m_{3}+\right.$ $\left.2+q, \ldots, m_{3}+m_{2}+q\right\}$ and leave L_{3} unchanged as in Figure 3.19.

Figure 3.19: Replace the label set L_{2} by L_{2}^{\prime} for $r=0$

For $r>0: K=m_{2} q+r$, we now replace the label set L_{2} by $L_{2}^{\prime}=\left\{m_{3}+q+\right.$ $\left.1, m_{3}+q+2, \ldots, m_{3}+m_{2}+q-r, m_{3}+m_{2}+q-r+2, \ldots, m_{3}+m_{2}+q, m_{3}+m_{2}+q+1\right\}$ and leave L_{3} unchanged as in Figure 3.20.

Figure 3.20: Replace the label set L_{2} by L_{2}^{\prime} for $r>0$.

By the proof of theorem 2.18, $S\left(L_{2}\right)=S\left(L_{3}\right)=\frac{m_{3}\left(m_{3}+1\right)}{2}$. Next, we will show that $i(G)=\left\lceil\frac{m_{3}\left(m_{3}+1\right)+2}{4}\right\rceil$ by labeling V_{1} so that $S\left(L_{1}\right)=\frac{m_{3}\left(m_{3}+1\right)}{2}$. Consider the following situations.

Case 1: $\frac{m_{3}\left(m_{3}+1\right)}{2}$ is even. Label V_{1} with label set $L_{1}=\left\{\frac{m_{3}\left(m_{3}+1\right)}{4}-1, \frac{m_{3}\left(m_{3}+1\right)}{4}+\right.$ $1\}$, see Figure 3.21 and Figure 3.22 for $r=0$ and $r>0$, respectively.

Figure 3.21: Label V_{1} with a label set $L_{1}=\left\{\frac{m_{3}\left(m_{3}+1\right)}{4}-1, \frac{m_{3}\left(m_{3}+1\right)}{4}+1\right\}$ for $r=0$.

Figure 3.22: Label V_{1} with a label set $L_{1}=\left\{\frac{m_{3}\left(m_{3}+1\right)}{4}-1, \frac{m_{3}\left(m_{3}+1\right)}{4}+1\right\}$ for $r>0$.

Denote the labelings in Figure 3.21 and Figure 3.22 by f_{1} and f_{2}, respectively. We will show that f_{1} and f_{2} are S-magic labelings of G for $r=0$ and $r>0$, respectively by showing

$$
\begin{equation*}
\frac{m_{3}\left(m_{3}+1\right)}{4}-1>m_{2}+m_{3}+q+1 . \tag{3.1}
\end{equation*}
$$

Note that

$$
\begin{aligned}
q & =\frac{S\left(L_{3}\right)-S\left(L_{3}\right)-r}{m_{2}} \\
q & =\frac{\frac{m_{3}\left(m_{3}+1\right)}{2}-\left(m_{2} m_{3}+\frac{m_{2}\left(m_{2}+1\right)}{2}\right)-r}{m_{2}} \\
q & =\frac{m_{3}^{2}+m_{3}}{2 m_{2}}-\left(\frac{2 m_{2} m_{3}+m_{2}^{2}+m_{2}}{2 m_{2}}\right)-\frac{r}{m_{2}} \\
m_{2}+m_{3}+q+1 & =m_{2}+m_{3}+\frac{m_{3}^{2}+m_{3}}{2 m_{2}}-\left(\frac{2 m_{2} m_{3}+m_{2}^{2}+m_{2}}{2 m_{2}}\right)-\frac{r}{m_{2}}+1 \\
& =\frac{2 m_{2} m_{3}+2 m_{2}^{2}+m_{3}^{2}+m_{3}-2 m_{2} m_{3}-m_{2}^{2}+m_{2}-2 r}{2 m_{2}} \\
& \leq \frac{m_{2}^{2}+m_{3}^{2}+m_{2}+m_{3}}{2 m_{2}}
\end{aligned}
$$

Then we will show that

$$
\begin{equation*}
\frac{m_{3}\left(m_{3}+1\right)}{4}-1>\frac{m_{2}^{2}+m_{3}^{2}+m_{2}+m_{3}}{2 m_{2}} . \tag{3.2}
\end{equation*}
$$

Since m_{2} and m_{3} satisfy case $I I I,\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)<2 m_{3}\left(m_{3}+1\right)$. So

$$
\begin{aligned}
m_{3}^{2}-m_{2}^{2}-2 m_{2} m_{3}+m_{3}-m_{2}^{2}-m_{2} & >0 \\
m_{3}^{2}-\left(2 m_{2}-1\right)-\left(m_{2}^{2}+m_{2}\right) & >0
\end{aligned}
$$

Thus

$$
\begin{equation*}
m_{3}>-\frac{1}{2}+\frac{2 m_{2}+\sqrt{8 m_{2}^{2}+1}}{2} \tag{3.3}
\end{equation*}
$$

Then, if we can show that $\frac{\sqrt{8 m_{2}^{3}+9 m_{2}^{2}-52 m_{2}+4}}{2\left(m_{2}-2\right)}<\frac{2 m_{2}+\sqrt{8 m_{2}^{2}+1}}{2}$, by Lemma 3.11, we complete this case. Consider

$$
\begin{align*}
& 12 m_{2}^{2}+24 \sqrt{2} m_{2}+1> \\
& \begin{aligned}
12 m_{2}^{2}+24 \sqrt{2} m_{2}+1 & \frac{8 m_{2}^{2}+25 m_{2}-2}{m_{2}^{2}+25 m_{2}-2} \\
\left(2 m_{2}+\sqrt{8 m_{2}^{2}+1}\right)^{2} & >\left(\sqrt{\frac{8 m_{2}^{2}+25 m_{2}-2}{m_{2}-2}}\right)^{2}
\end{aligned} \\
& 2 k+\sqrt{8 m_{2}^{2}+1}>\sqrt{\frac{\left(m_{2}-2\right)\left(8 m_{2}^{2}+25 m_{2}-2\right)}{\left(m_{2}-2\right)^{2}}} \\
&=\sqrt{\frac{8 m_{2}^{3}+9 m_{2}^{2}-52 m_{2}+4}{\left(m_{2}-2\right)^{2}}} \\
&=\frac{\sqrt{8 m_{2}^{3}+9 m_{2}^{2}-52 m_{2}+4}}{\left(m_{2}-2\right)} \\
& \frac{2 m_{2}+\sqrt{8 m_{2}^{2}+1}}{2}>\frac{\sqrt{8 m_{2}^{3}+9 m_{2}^{2}-52 m_{2}+4}}{2\left(m_{2}-2\right)}
\end{align*}
$$

By Lemma 3.11 and (3.4), (3.1) holds. Then f_{1} and f_{2} are S-magic. Hence G is an S-magic graph, and $i(G)=\frac{m_{3}\left(m_{3}+1\right)}{4}+1=\left\lceil\frac{m_{3}\left(m_{3}+1\right)+2}{4}\right\rceil$ when $\frac{m_{3}\left(m_{3}+1\right)}{2}$ is even.

Case 2: $\frac{m_{3}\left(m_{3}+1\right)}{2}$ is odd. Label V_{1} with label set $L_{1}=\left\{\frac{m_{3}\left(m_{3}+1\right)+2}{4}-1, \frac{m_{3}\left(m_{3}+1\right)+2}{4}\right\}$, see in Figure 3.23 and Figure 3.24 for $r=0$ and $r>0$, respectively.

Figure 3.23: Label V_{1} with label set $L_{1}=\left\{\frac{m_{3}\left(m_{3}+1\right)+2}{4}-1, \frac{m_{3}\left(m_{3}+1\right)+2}{4}\right\}$ for $r=0$.

Figure 3.24: Label V_{1} with label set $L_{1}=\left\{\frac{m_{3}\left(m_{3}+1\right)+2}{4}-1, \frac{m_{3}\left(m_{3}+1\right)+2}{4}\right\}$ For $r>0$.
Denote the labelings in Figure 3.23 and Figure 3.24 by f_{3} and f_{4}, respectively. We will show that f_{3} and f_{4} are S-magic labelings of G for $r=0$, and $r>$ 0 , respectively by showing $\frac{m_{3}\left(m_{3}+1\right)+2}{4}-1>\frac{m_{2}^{2}+m_{3}^{2}+m_{2}+m_{3}}{2 m_{2}}$. It is completed in case 1. Hence f_{3} and f_{4} are S-magic. Therefore, G is an S-magic graph, and $i(G)=\frac{m_{3}\left(m_{3}+1\right)+2}{4}=\left\lceil\frac{m_{3}\left(m_{3}+1\right)+2}{4}\right\rceil$ when $\frac{m_{3}\left(m_{3}+1\right)}{2}$ is odd. In conclusion, $i(G)=$ $\left\lceil\frac{m_{3}\left(m_{3}+1\right)+2}{4}\right\rceil$.

Theorem 3.13. Let m_{2} and m_{3} be two positive integers and $3 \leq m_{3}$. If m_{3} satisfies case III, then $G=K_{2,2, m_{3}}$ is an S-magic graph and $i(G)=\left\lceil\frac{m_{3}\left(m_{3}+1\right)+2}{4}\right\rceil+1$.

Proof. Let m_{3} be a positive integer with $2 \leq m_{3}$. Suppose $S\left(L_{i}\right)$ is the sum of the labelings assigned to $V_{i}, i=1,2,3$. Now, we divide into 2 cases;

Case 1: $\frac{m_{3}\left(m_{3}+1\right)}{2}$ is even.
We claim that a labeling $f: V \rightarrow\left\{1,2, \ldots, m_{3}, \frac{m_{3}\left(m_{3}+1\right)}{2}-2, \frac{m_{3}\left(m_{3}+1\right)}{2}-1, \frac{m_{3}\left(m_{3}+1\right)}{2}+\right.$ $\left.1, \frac{m_{3}\left(m_{3}+1\right)}{2}+2\right\}$ is an S-magic labeling of G with $S\left(L_{1}\right)=S\left(L_{2}\right)=S\left(L_{3}\right)=$ $\frac{m_{3}\left(m_{3}+1\right)}{2}$. Since m_{2} and m_{3} satisfy case $I I I, m_{3} \geq 5$. If $m_{3} \geq 6, m_{3}^{2}+m_{3}-8 \geq$ $m_{3}^{2}-2>4 m_{3}$, and if $m_{3}=5$, it is obvious that $\frac{5(6)}{4}-2>5$. So, $\frac{m_{3}\left(m_{3}+1\right)}{4}-2>m_{3}$. Figure 3.25 shows the labeling of G with $T=\left\{1,2, \ldots, m_{3}, \frac{m_{3}\left(m_{3}+1\right)}{2}-2, \frac{m_{3}\left(m_{3}+1\right)}{2}-\right.$ $\left.1, \frac{m_{3}\left(m_{3}+1\right)}{2}+1, \frac{m_{3}\left(m_{3}+1\right)}{2}+2\right\}$, and the sum the the labelings assigned to each partite is equal to $\frac{m_{3}\left(m_{3}+1\right)}{2}$.

Figure 3.25: A labeling of $K_{2,2, m_{3}}$ with m_{3} satisfies case $I I I$ and $\frac{m_{3}\left(m_{3}+1\right)}{2}$ is even with $i(G)=\frac{m_{3}\left(m_{3}+1\right)}{2}+2$.

Then G is an S-magic graph. By Lemma 3.6, T has a minimum sum of elements. Then T is a minimal S-magic labeling set. By lemma $3.7, i(G) \geq \frac{m_{3}\left(m_{3}+1\right)}{4}+1$. Suppose $i(G)=\frac{m_{3}\left(m_{3}+1\right)}{4}+1$, there is a labeling set T_{1} with $\max \left(T_{1}\right)=\frac{m_{3}\left(m_{3}+1\right)}{4}+$ 1. Then 4 maximum elements that can be in T_{1} are $\frac{m_{3}\left(m_{3}+1\right)}{4}-2, \frac{m_{3}\left(m_{3}+1\right)}{4}-$ $1, \frac{m_{3}\left(m_{3}+1\right)}{4}$ and $\frac{m_{3}\left(m_{3}+1\right)}{4}+1$. Since the sum of the labelings assigned to each partite are equal, the only possible labeling sets for V_{1} and V_{2} are $L_{1}^{\prime}=\left\{\frac{m_{3}\left(m_{3}+1\right)}{4}+\right.$ $\left.1, \frac{m_{3}\left(m_{3}+1\right)}{4}-2\right\}$ and $L_{2}^{\prime}=\left\{\frac{m_{3}\left(m_{3}+1\right)}{4}, \frac{m_{3}\left(m_{3}+1\right)}{4}-1\right\}$, respectively. Then $S\left(L_{1}^{\prime}\right)=$ $S\left(L_{2}^{\prime}\right) \leq \frac{m_{3}\left(m_{3}+1\right)}{2}-1$. By Lemma 3.6, $S\left(L_{3}\right) \geq \frac{m_{3}\left(m_{3}+1\right)}{2}$. This is a contradiction. Hence $i(G) \geq \frac{m_{3}\left(m_{3}+1\right)}{4}+2$, and then $i(G)=\left\lceil\frac{m_{3}\left(m_{3}+1\right)}{4}+2\right\rceil$ for this case.

Case 2: $\frac{m_{3}\left(m_{3}+1\right)}{2}$ is odd.

We claim that a labeling $f: V \rightarrow\left\{1,2, \ldots, m_{3}, \frac{m_{3}\left(m_{3}+1\right)+2}{2}-2, \frac{m_{3}\left(m_{3}+1\right)+2}{2}-1\right.$, $\left.\frac{m_{3}\left(m_{3}+1\right)+2}{2}, \frac{m_{3}\left(m_{3}+1\right)+2}{2}+1\right\}$ is an S-magic labeling of G with $S\left(L_{1}\right)=S\left(L_{2}\right)=$ $S\left(L_{3}\right)=\frac{m_{3}\left(m_{3}+1\right)}{2}$. Since m_{2} and m_{3} satisfy case $I I I, m_{3} \geq 5$. Then $m_{3}^{2}+m_{3}-6 \geq$ $m_{3}^{2}-1>4 m_{3}$. So, $\frac{m_{3}\left(m_{3}+1\right)+2}{4}-2>m_{3}$. Figure 3.26 shows the labeling of G with $T=\left\{1,2, \ldots, m_{3}, \frac{m_{3}\left(m_{3}+1\right)+2}{2}-2, \frac{m_{3}\left(m_{3}+1\right)+2}{2}-1, \frac{m_{3}\left(m_{3}+1\right)+2}{2}, \frac{m_{3}\left(m_{3}+1\right)+2}{2}+1\right\}$, and the sum the the labelings assigned to each partite is equal to $\frac{m_{3}\left(m_{3}+1\right)}{2}$.

Figure 3.26: A labeling of $K_{2,2, m_{3}}$ with m_{3} satisfies case $I I I$ and $\frac{m_{3}\left(m_{3}+1\right)}{2}$ is odd with $i(G)=\frac{m_{3}\left(m_{3}+1\right)+2}{2}+1$.

Then G is an S-magic graph. By Lemma 3.6, T has a minimum sum of elements. Then T is a minimal S-magic labeling set. By Lemma 3.7, $i(G) \geq \frac{m_{3}\left(m_{3}+1\right)+2}{4}$.
Suppose $i(G)=\frac{m_{3}\left(m_{3}+1\right)+2}{4}$. There is a labeling set T_{2} with $\max \left(T_{2}\right)=\frac{m_{3}\left(m_{3}+1\right)+2}{4}$. Then 4 maximum elements that can be in T_{2} are $\frac{m_{3}\left(m_{3}+1\right)+2}{4}-3, \frac{m_{3}\left(m_{3}+1\right)+2}{4}-$ $2, \frac{m_{3}\left(m_{3}+1\right)+2}{4}-1$ and $\frac{m_{3}\left(m_{3}+1\right)+2}{4}$. Since the sum of the labelings assigned to each partite are equal, the only possible labeling sets for V_{1} and V_{2} are $L_{1}^{\prime \prime}=$ $\left\{\frac{m_{3}\left(m_{3}+1\right)+2}{4}-3, \frac{m_{3}\left(m_{3}+1\right)+2}{4}-1\right\}$ and $L_{2}^{\prime \prime}=\left\{\frac{m_{3}\left(m_{3}+1\right)+2}{4}-2, \frac{m_{3}\left(m_{3}+1\right)+2}{4}\right\}$, respectively. Then $S\left(L_{1}^{\prime \prime}\right)=S\left(L_{2}^{\prime \prime}\right) \leq \frac{m_{3}\left(m_{3}+1\right)}{2}-2$. By Lemma 3.6, $S\left(L_{3}\right) \geq \frac{m_{3}\left(m_{3}+1\right)}{2}$. This is a contradiction. Hence $i(G) \geq \frac{m_{3}\left(m_{3}+1\right)+2}{4}+1$, and then $i(G)=\frac{m_{3}\left(m_{3}+1\right)+2}{4}+$ $1=\left\lceil\frac{m_{3}\left(m_{3}+1\right)+2}{4}\right\rceil+1$ for this case.

CHAPTER IV CONCLUSION AND SCOPE

In this thesis, we recall the concept of S-magic graph and distance magic indices of graphs. We obtain $i(G)$ for the complete r-partite graph $K_{m_{1}, m_{2}, \ldots, m_{r}}$ with all m_{i} are equal where $i=1,2, \ldots, r$ as follows:
Theorem 3.1. Let $m_{1}, m_{2}, \ldots, m_{r}$ be positive integers where $2 \leq m_{1}=m_{2}=$ $\cdots=m_{r}$, and let $G=K_{m_{1}, m_{2}, \ldots, m_{r}}$ be a complete r-partite graph. If m is even, then G is an S-magic graph and $\theta(G)=0$.
Theorem 3.4. Let $m_{1}, m_{2}, \ldots, m_{r}$ be positive integers where $2 \leq m_{1}=m_{2}=$ $\cdots=m_{r}=m$, and let $G=K_{m_{1}, m_{2}, \ldots, m_{r}}$ be a complete r-partite graph. If m is odd, then G is an S-magic graph and $\theta(G)= \begin{cases}0, & \text { if } \mathrm{r} \text { is odd } \\ 1, & \text { if } \mathrm{r} \text { is even. }\end{cases}$

Moreover, we obtain $i(G)$ for the complete tripartite graph $K_{m_{1}, m_{2}, m_{3}}$ that satisfies $m_{1}=1,2$ and $2 \leq m_{2} \leq m_{3}$ as follows:
Theorem 3.8. For two positive integers m_{2} and m_{3} where $2 \leq m_{2} \leq m_{3}$, let $G=K_{1, m_{2}, m_{3}}$ be an S-magic graph.
If G satisfies case I, then $i(G)=\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)}{4}$.
If G satisfies case $I I$, then $i(G)=\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+2}{4}$.
If G satisfies case $I I I$, then $i(G)=\frac{m_{3}\left(m_{3}+1\right)}{2}$.
Theorem 3.9. Let m_{2} and m_{3} be two positive integers with $2 \leq m_{2} \leq m_{3}$. If m_{2} and m_{3} satisfy case I or case $I I$ and $m_{2}+m_{3}>8$, then $G=K_{2, m_{2}, m_{3}}$ is an S-magic graph and
$i(G)= \begin{cases}\left\lceil\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+4}{8}\right\rceil, & \text { for case I } \\ \left\lceil\frac{\left(m_{2}+m_{3}\right)\left(m_{2}+m_{3}+1\right)+6}{8}\right\rceil, & \text { for case II. }\end{cases}$
Theorem 3.10. Let m_{2} and m_{3} be two positive integers with $2 \leq m_{2} \leq m_{3}$. Suppose $G=K_{2, m_{2}, m_{3}}$ is an S-magic graph where m_{2} and m_{3} satisfy case I or case $I I$, and $m_{2}+m_{3} \leq 8$.
(I.) $\quad m_{2}+m_{3}=4$
$\{1,2,3,4,5,6\}$ is an S-magic labeling set $K_{2,2,2}$ and $i(G)=6$.
(II.) $\quad m_{2}+m_{3}=5$
$\{1,2,3,4,5,7,8\}$ is an S-magic labeling set of $K_{2,2,3}$ and $i(G)=8$.
(III.) $\quad m_{2}+m_{3}=6$
$\{1,2,3,4,5,6,7,8\}$ is an S-magic labeling set of $K_{2,2,4}, K_{2,3,3}$ and $i(G)=8$. (IV.) $\quad m_{2}+m_{3}=7$
$\{1,2,3,4,5,6,7,8,9\}$ is an S-magic labeling set of $K_{2,2,5}, K_{2,3,4}$ and $i(G)=9$.
(V.) $\quad m_{2}+m_{3}=8$
$\{1,2,3,4,5,6,7,8,10,11\}$ is an S-magic labeling set of $K_{2,3,5}, K_{2,4,4}$ and $i(G)=$ 11.

Theorem 3.12. Let m_{2} and m_{3} be two positive integers and $3 \leq m_{2} \leq m_{3}$. If m_{2} and m_{3} satisfy case $I I I$, then $G=K_{2, m_{2}, m_{3}}$ is an S-magic graph and $i(G)=\left\lceil\frac{m_{3}\left(m_{3}+1\right)+2}{4}\right\rceil$.
Theorem 3.13. Let m_{2} and m_{3} be two positive integers and $3 \leq m_{3}$. If m_{3} satisfies case $I I I$, then $G=K_{2,2, m_{3}}$ is an S-magic graph and $i(G)=\left\lceil\frac{m_{3}\left(m_{3}+1\right)+2}{4}\right\rceil+1$. The following problems naturally arise.
Problem 4.1 For complete tripartite graph $K_{m_{1}, m_{2}, m_{3}}$ with $m_{1} \geq 3$, determine $i(G)$.
Problem 4.2 For a complete tripartite $G=K_{2, m_{2}, m_{2}}$ with $2 \leq m_{2} \leq m_{3}$, dertermine $M(G)$.

REFERENCES

[1] A. Godinho and T. Singh, On S-magic graphs, Electronic Notes in Discrete Mathematics, 48, (2015) 267-273.
[2] M. Miller, C. Rodger and R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Combin., 28, (2003), 305-315.
[3] K.A. Sugeng, D. Froncek, M. Miller, J. Ryan and J. Walker, On distance magic labeling of graphs, J. Combin. Math. Combin. Comput., 71, (2009), 39-48. Electron. Notes Discrete Mathematics , 48, (2015), 267-273.
[4] A. Godinho, T. Singh and S. Arumugam, The distance magic index of a graph,Discussiones Mathematicae Graph Theorey , 38, (2018), 135-142.
[5] S. Arumugam, N. Kamatchi and G.R. Vijayakumar, On the uniqueness of Dvertex magic constant, Discussions Mathematicae Graph Theorey, 34, (2014), 279-286.
[6] G. Chartrand and L. Lesniak, Graph and Digraphs, (4th ed.), Chapman and hall,CRC, 2005.
[7] V. Vilfred, Σ-labelled graph and circulant Graphs, Ph.D. Thesis, University of Kerala, Trivandrum, India, 1994.

VITA

Name	$:$ Ms. Sararat Numai
Date of Birth	$: 18$ April 1997
Place of Birth	$:$ Nan, Thailand
Education	$:$B.Sc. (Mathematics), (First Class Honors), Chiang Mai University, 2019
Scholarship	$:$Development and Promotion of Science and Technology Talents Project (DPST)

