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ในวิทยานิพนธนี้ เรากลาวถึงนิยามของกราฟซิกมา การกำกับกลซิกมาและดัชนีระยะทาง ใน
การศึกษานี้เราจะเรียกกราฟ G = (V,E) วาเปนกราฟกลเอสก็ตอเมื่อมีเซตของจำนวนเต็มบวก
T มีฟงกชันหนึ่งตอหนึ่งทั่วถึง f : V → T และมีจำนวนเต็มบวก k ที่ทำให

∑
u∈N(v)

f(u) = k

สำหรับทุกจุด v ∈ V (G) เมื่อ N(v) คือยานใกลเคียงของ v โดยเราจะเรียก T วาเซตกำกับ
กลเอสของกราฟ G และเรียก k วาคาคงที่กล นอกจากนี้กำหนดให i(G) = min

T∈S
α(T ) โดยที่

α(T ) = max(T ) และ S = {T ⊂ N : T เปนเซตกำกับกลเอสของ G} เราศึกษาฟงกชัน i(G)

สำหรับ G ที่สอดคลองกับเงื่อนไขตอไปนี้

1. G = Km1,m2,...,mr เปนกราฟ r สวนบริบูรณที่ทุกสวนมีจำนวนจุดเทากัน

2. G = K1,m2,m3 เปนกราฟสามสวนบริบูรณและ 2 ≤ m2 ≤ m3

3. G = K2,m2,m3 เปนกราฟสามสวนบริบูรณและ 2 ≤ m2 ≤ m3.
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CHAPTER I
INTRODUCTION

By a graph G = (V,E), we mean a finite undirected graph containing no loops
or multiple edges. Furthermore, we assume that G has no isolated vertices.

In 1994, Vilfred [2] introduced the concept of Σ-labeling: A Σ-labeling of
a graph G = (V,E) of order n is a bijection f : V → {1, 2,…, n} such that∑
u∈N(v)

f(u) = k for all v ∈ V , where N(v) is the neighborhood of v. The constant

k is called the magic constant of the labeling f . A graph which admits a Σ-
labeling is called a Σ-graph. The Σ-labeling is also known as the 1-vertex-magic
vertex labeling [3] and the distance magic labeling [4].

In 2015, Godinho and Singh [1] introduced the concept of S-magic graph. A
graph G = (V,E) is said to be an S-magic graph if there exist a set T of positive
integers with |T | = |V |, a bijection ϕ : V → T , and a positive integer k such that∑
u∈N(v)

ϕ(u) = k for all v ∈ V . We call k an S-magic constant, ϕ an S-magic

labeling, and T an S-magic labeling set. It follows that a Σ-graph is an S-
magic graph. Moreover, if G is an S-magic graph, then each S-magic labeling set
T has a unique corresponding S-magic constant, i.e., for any two S-magic labelings
ϕ1 : V → T and ϕ2 : V → T , we have

∑
u∈N(v)

ϕ1(u) =
∑

u∈N(v)

ϕ2(u) for all v ∈ V .

We denote the set of all S-magic constants that can be obtained through different
S-magic labelings of G by M(G). Moreover, they observed that the complete r-
partite graph G = Km1,m2,...,mr , where m1 ≤ m2 ≤ · · · ≤ mr is an S-magic graph
if and only if m2 ≥ 2 .

In 2018, Godinho and Singh [4] studied the function i(G) = min
T∈S

α(T ), where
S = {T ⊂ N : T is an S-magic labeling set of G} and α(T ) = max(T ). The
distance magic index of G is defined by i(G)− n and is denoted by θ(G).

In this thesis, we determine i(G) for G which satisfies the conditions:
1. G = Km1,m2,...,mr is a complete r-partite graph and m1 = m2 = ... = mr ≥ 2

2. G = K1,m2,m3 is a complete tripartite graph and 2 ≤ m2 ≤ m3

3. G = K2,m2,m3 is a complete tripartite graph and 2 ≤ m2 ≤ m3.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II
PRELIMINARIES

In this chapter, we review some definitions, theorems, lemmas, corollaries, and
examples used in this work. For more details, see in [1], [4] and [5].

2.1 S-magic graph

Definition 2.1. [1] A Σ-labeling of a graph G = (V,E) of order n is a bijection
f : V → {1, 2, ..., n} such that

∑
u∈N(v)

f(u) = k for all v ∈ V , where N(v) is the

neighborhood of v and where k ∈ N . The constant k is called the magic constant
of the labeling f . A graph G is called a Σ-graph.

Definition 2.2. [1] Let G = (V,E) be an undirected graph with neither loops nor
multiple edges. A graph G = (V,E) is said to be an S-magic graph if there exist
a set T of positive integers with |T | = |V |, a bijection ϕ : V → T , and a positive
integer k such that

∑
u∈N(v)

ϕ(u) = k for all v ∈ V . We call k an S-magic constant,

ϕ an S-magic labeling, and T an S-magic labeling set.

Definition 2.3. [1] If a graph G is S-magic then magic spectrum of G is defined
to be the set of all magic constants that can be obtained through different S-magic
labeling of G and is denoted by M(G).

Example 2.4. [1] A path P3 has 3 vertices x, y and z. Let deg(x) = 1, deg(y) = 2

and deg(z) = 1. We will show that an S-magic labeling set T of P3 must be in
the form T = {a, a + b, b} where a, b are distinct positive integers. It is obvious
that if we define f : V → T by f(x) = a, f(y) = a + b and f(z) = b, then f

is an S-magic labeling. Therefore T = {a, a + b, b} is an S-magic labeling set
of P3. Now we assume that T = {a, b, c} is an S-magic labeling set of P3, and
let f : V → T by f(x) = a, f(y) = c and f(z) = b. Then c must be equal to
a+ b. It follow that the S-magic constant of P3 is a+ b. Since a and b are distinct
positive integers, a+ b ≥ 1+2 = 3. Hence, the path P3 is an S-magic graph where
M(P3) = {3, 4, 5, 6, . . .}.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

Figure 2.1: A labeling of P3 where S-magic constant is a+ b.

Example 2.5. [1] For a cycle C4, if we label a pair of the opposite vertices with
the same summation, we get that C4 is an S-magic graph. It is not hard to see
that T = {1, 2, i, i+ 1} is an S-magic labeling set of C4 where i = 3, 4, 5, . . . with
5, 6, 7, . . . as magic constants. Since C4 has 4 vertices, there is one vertex such
that the labeling assigned to its neighborhoods are at least 4 and another number.
Thus the magic constant of C4 greater than 4. Hence C4 is an S-magic graph
where M(C4) = {5, 6, . . .}.

Figure 2.2: An S-magic labeling T = {1, 2, i, i+ 1} of C4 where S-magic constant
is i+ 2.

Definition 2.6. [1] A vertex of degree 1 is a leaf, and a vertex that adjacient to
a leaf is called a support vertex.

Remark 2.7. [1] If G contains two distinct support vertices u and v, then G is
not an S-magic graph.

Proof. Suppose G is an S-magic graph, and G has two distinct support vertices u

and v. There are a leaf a adjacent to u and a leaf b adjacent to v, it implies the
numbers that label to u and v are equal. This is a contradiction.

Theorem 2.8. [1] A tree T is an S-magic graph if and only if T = K1,r where
r ≥ 2.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

Theorem 2.9. [1] If there exist two vertices u and v in G such that | (N(u)∖N(v))∪
(N(v)∖N(u)) | = 2, then G is not an S-magic graph.

Corollary 2.10. [1] The complete graph Kn is not S-magic for n ≥ 2.

Lemma 2.11. [1] The complete r-partite graph G = Km1,m2,...,mr is S-magic if and
only if the sum of the labels of all vertices in any two partite sets are equal.

Theorem 2.12. [1] The complete r-partite graph G = Km1,m2,...,mr , m1 ≤ m2 ≤
· · · ≤ mr is S-magic if and only if m2 ≥ 2.

Lemma 2.13. [1] If G is S-magic, then the smallest S-magic constant corresponds
to the S-magic labeling set T for which

∑
i∈T

i is minimum.

2.2 Distance magic index

Definition 2.14. [4] Let i(G) = min
T∈S

α(T ), where S = {T ⊂ N : T is an S-magic
labeling set of G} and α(T ) = max(T ). The distance magic index of G, denoted
by θ(G) is defined by i(G)− n.

Theorem 2.15. [4] A tree T is S-magic if and only if T = K1,r, where r ≥ 2.

Furthermore, θ(K1,r) is r(r − 1)

2
− 1.

Lemma 2.16. If G is an S-magic graph of order n with distance magic index θ,
then

δ(2(n+ θ)− δ + 1)−∆(∆ + 1)

2
≥ 0.

Proof. Since the distance magic of G is θ, there is a set T ⊂ {1, 2, ..., n + θ}
with |T | = n and an S-magic labeling f : V → T with a magic constant k. Let
v1, v2 ∈ V (G), deg(v1) = δ and deg(v2) = ∆. Thus∑

u∈N(v1)

f(u) ≥ 1 + 2 + · · ·+∆ =
∆(∆ + 1)

2

and∑
u∈N(v2)

f(u) ≤ (n+ θ) + (n+ θ − 1) + · · ·+ (n+ θ − δ + 1) =
δ(2(n+ θ)− δ + 1)

2

. Since
∑

u∈N(v1)

f(u) =
∑

u∈N(v2)

f(u) = k, we get

δ(2(n+ θ)− δ + 1)

2
≥ ∆(∆ + 1)

2
.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

Therefore
δ(2(n+ θ)− δ + 1)−∆(∆ + 1)

2
≥ 0.

Let
g(x) =

δ(2(n+ x)− δ + 1)−∆(∆ + 1)

2
.

then g(x) is a strictly increasing function of x. If there exist a non-negative integer
a satisfying

δ(2(n+ θ)− δ + 1)−∆(∆ + 1)

2
< 0,

it implies θ(G) > a. Also that if a is a smallest integer such that g(a) ≥ 0, then
θ(G) ≥ a. So,

g(0) =
δ(2n− δ + 1)−∆(∆ + 1)

2
. (2.1)

Lemma 2.17. Let G be a graph of order n such that g(0) < 0. Then θ(G) ≥⌈
|g(0)|
δ

⌉
.

Proof. Let |g(0)| = qδ + r, 0 ≤ r < δ. Since g(0) < 0, we have

g(0) =
δ(2n− δ + 1)−∆(∆ + 1)

2
= −qδ − r.

Then

δ(2n− δ + 1)−∆(∆ + 1)

2
+ qδ = −r

δ(2n− δ + 1)−∆(∆ + 1) + 2qδ

2
= −r.

δ(2(n+ q)− δ + 1)−∆(∆ + 1)

2
= −r.

It implies that if r = 0, q is a smallest value of x that g(x) ≥ 0. Then θ(G) ≥ q.
If r > 0, then θ(G) > q and

δ(2(n+ q)− δ + 1)−∆(∆ + 1) + 2r

2
= 0.

Since r < δ,

δ(2(n+ q)− δ + 1)−∆(∆ + 1) + 2r

2
<

δ(2(n+ q)− δ + 1)−∆(∆ + 1) + 2δ

2
.

Hence
δ(2(n+ (q + 1))− δ + 1)−∆(∆ + 1)

2
> 0.
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Therefore, q + 1 is the smallest value of x that g(x) ≥ 0. Thus θ(G) ≥ q + 1.

Observation that if G = Km1,m2 is a complete bipartite graph where 2 ≤ m1 ≤ m2.
We apply δ = m1,∆ = m2 and n = m1 +m2. By (2.1), we get

g(0) =
m1(2n−m1 + 1)−m2(m2 + 1)

2

=
m1(2(m1 +m2)−m1 + 1)−m2(m2 + 1)

2

=
m2

1 + 2m1m2 +m1 − (m2
2 +m2)

2

=
n(n+ 1)

2
−m2(m2 + 1). (2.2)

Theorem 2.18. [4] Let G be a complete bipartite graph Km1,m2 where 2 ≤ m1 ≤ m2

and n = m1 +m2. Let g(0) = n(n+1)
2

−m2(m2 + 1). Then

θ(G) =


0, n(n+ 1) ≥ 2m2(m2 + 1) and n ≡ 0 or 3 (mod 4)

1, n(n+ 1) ≥ 2m2(m2 + 1) and n ≡ 1 or 2 (mod 4)⌈
|g(0)|
m1

⌉
, n(n+ 1) < 2m2(m2 + 1).

Proof. Case n(n + 1) ≥ 2m2(m2 + 1) and n ≡ 0 or 3 (mod 4). It is completed
by Theorem 1.6 in [4].

Case n(n + 1) ≥ 2m2(m2 + 1) and n ≡ 1 or 2 (mod 4). Since a sum of
elements in a set {1, 2, . . . ,m1 +m2} is equal to (m1+m2)(m1+m2+1)

2
and m1 +m2 ≡

1 or 2 (mod 4), this sum is not divided by 2. Then θ(G) > 0. Let S(L1) and
S(L2) be the sums of the labelings assigned to V1 and V2, repectively. We label
L1 = {m2 + 1,m2 + 2, . . . ,m2 + m1} to V1 and L2 = {1, 2, . . . ,m2} to V2. Then
S(L1) = m1m2 +

m1(m1+1)
2

and S(L2) =
m2(m2+1)

2
. Thus

S(L1)− S(L2) =
n(n+ 1)

2
−m2(m2 + 1).

Since n ≡ 1 or 2 (mod 4), it follows that n(n+1)
2

≡ 1 (mod 2). Furthermore,
m2(m2 + 1) ≡ 0 (mod 2), and then

n(n+ 1)

2
−m2(m2 + 1) ≡ 1 (mod 2).

Let S(L1)− S(L2) = 2p− 1 where p = (m1 − 1)q + r > 0 and r ≥ 0. So,

S(L1)− p+ 1 = S(L2) + p. (2.3)
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Now, we proceed to attain equality in the sum of the labelings for the two partite
set. We divide into 2 cases.

For r = 0: we label the vertices in V1 and V2 with the labeling sets L
′
1 =

{m2+1−q,m2+2−q, . . . ,m2+m1−1−q,m2+m1+1} and L
′
2 = {1, 2, . . . ,m2−

q,m2 − q + 1 + (m1 − 1),m2 − q + 2 + (m1 − 1), . . . ,m2 + (m1 − 1)}, respectively.
Thus S(L′

1) = S(L
′
2) by using the relation in (2.3). See the labeling in Figure 2.3 .

Figure 2.3: A labeling of Km1,m2 where m1 and m2 satisfy n(n + 1) ≥ 2m2(m2 +

1) and n ≡ 1 or 2 (mod 4) for r = 0.

To see that all elements in L
′
1 except m2 + m1 + 1 are the numbers between

m2 − q and m2 − q + 1 + (m1 − 1) in L
′
2. Moreover, it obvious that m2 +m1 + 1

greater than all elements in L
′
2. Hence all elements in L

′
1 and L

′
2 are distinct.

For r > 0: we label the vertices in V1 and V2 with the labeling sets L
′
1 =

{m2−q,m2−q+1, . . . ,m2−q+(r−1),m2−q+(r+1),m2−q+(r+2), . . . ,m2−
q+(m1 − 1).m2 +m1 +1} and L

′
2 = {1, 2, . . . ,m2 − q,m2 − q+1+ (m1 − 1),m2 −

q + 2 + (m1 − 1), . . . ,m2 + (m1 − 1)}. Thus S(L
′
1) = S(L

′
2) by using the relation

in (2.3). See the labeling in Figure 2.4
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Figure 2.4: A labeling of Km1,m2 where m1 and m2 satisfy n(n + 1) ≥ 2m2(m2 +

1) and n ≡ 1 or 2 (mod 4) for r > 0.

To see that all elements in L
′
1 except m2 + m1 + 1 are the numbers between

m2 − q and m2 + 2− q + (m1 − 1) in L
′
2. Moreover, it obvious that m2 +m1 + 1

greater than all elements in L
′
2. Hence all elements in L

′
1 and L

′
2 are distinct.

Therefore, the set {1, 2, . . . ,m1 +m2 − 1,m1 +m2 + 1} is an S-magic labeling set
of G, this implies θ(G) = 1.

Case n(n+ 1) < 2m2(m2 + 1). We have

(m1 +m2)(m1 +m2 + 1) < 2(m2 + 1)

m2
1 +m2

2 + 2m1m2 +m1 +m2 < 2m2
2 + 2m2

2m1m2 +m1(m1 + 1) < m2
2 +m2

m1m2 +
m1(m1 + 1)

2
<

m2
2 +m2

2
. (2.4)

By Lemma 2.17 and (2.2), θ(G) ≥
⌈
|g(0)|
m1

⌉
. We claim that θ(G) =

⌈
|g(0)|
m1

⌉
. Let

S(L1) and S(L2) be the sums of the labelings assigned to V1 and V2, repectively.
We label the sets L1 = {m2+1,m2+2, . . . ,m2+m1} to V1 and L2 = {1, 2, . . . ,m2}
to V2. Then S(L1) = m1m2 +

m1(m1+1)
2

and S(L2) =
m2(m2+1)

2
. By (2.4), we get

S(L1) < S(L2). Let K = S(L2)− S(L1) = m1q + r where r ≥ 0 and q < m1. So

S(L2)− (S(L1) +m1q + r) = 0. (2.5)

For r = 0: we label the vertices in V1 and V2 with the labeling sets L
′
1 =

{m2+1+q,m2+2+q, . . . ,m2+m1−1+q,m2+m1+q} and L
′
2 = L2 = {1, 2, . . . ,m2},

respectively, see in Figure 2.5.
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Figure 2.5: A labeling of Km1,m2 where m1 and m2 satisfy n(n+1) < 2m2(m2+1)

for r = 0.

Thus S(L
′
1) = S(L

′
2) by using the relation in (2.5). Therefore, θ(G) = q =⌈

|g(0)|
m1

⌉
.

For r > 0: we label the vertices in V1 and V2 with the labeling sets L′
1 = {m2+1+

q,m2+2+q, . . . ,m2+m1−r+q,m2+m1−r+2+q, . . . ,m2+m1+q,m2+m1+q+1}
and L

′
2 = L2 = {1, 2, . . . ,m2}, respectively, see in Figure 2.6.

Figure 2.6: A labeling of Km1,m2 where m1 and m2 satisfy n(n+1) < 2m2(m2+1)

for r > 0.

Thus S(L
′
1) = S(L

′
2) by using the relation in (2.5). Therefore, we get θ(G) =

q + 1 =
⌈
|g(0)|
m1

⌉
.
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Example 2.19. Let G = Km1,m2 where m1 = 3 and m2 = 5. Then m1,m2 satisfies
the condition n(n + 1) ≥ 2m2(m2 + 1) and n ≡ 0 or 3 (mod 4). Then G = K3,5

is an S-magic graph with an S-magic labeling set T = {1, 2, 3, 4, 5, 6, 7, 8}. See the
labeling in Figure 2.7. Then θ(G) = 0.

Figure 2.7: A labeling of K3,5 and θ(K3,5) = 0.

Example 2.20. Let G = Km1,m2 where m1 = 3 and m2 = 6. Then m1,m2 satisfies
the condition n(n+1) ≥ 2m2(m2+1) and n ≡ 1 or 2 (mod 4). By Theorem 2.18,
θ(G) = 1. Then G = K3,6 is an S-magic graph with an S-magic labeling set
T = {1, 2, 3, 4, 5, 6, 7, 8, 10}. See the labeling in Figure 2.8.

Figure 2.8: A labeling of K3,6 and θ(K3,6) = 1.

Example 2.21. Let G = Km1,m2 where m1 = 3 and m2 = 10. Then m1,m2 satis-
fies the condition n(n+1) < 2m2(m2+1). By Theorem 2.18, θ(G) = 7. Then G =
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K3,6 is an S-magic graph with an S-magic labeling set T = {1, 2, . . . , 10, 17, 18, 20}
that can see in Figure 2.9.

Figure 2.9: A labeling of K3,10 and θ(K3,10) = 7.

In the next chapter, we determine i(G) for G = Km1,m2,m3 is a complete tripar-
tite graph and satisfies the condition m1 = m2 = m3 ≥ 2 and determine i(G) for
G = Km1,m2,m3 satisfies the following conditions:
1. G = Km1,m2,...,mr is a complete r-partite graph and m1 = m2 = ... = mr ≥ 2

2. G = K1,m2,m3 is a complete tripartite graph and 2 ≤ m2 ≤ m3

3. G = K2,m2,m3 is a complete tripartite graph and 2 ≤ m2 ≤ m3.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III
MAIN RESULTS

Theorem 3.1. Let m1,m2, . . . ,mr be positive integers where 2 ≤ m1 = m2 =

· · · = mr, and let G = Km1,m2,...,mr be a complete r-partite graph. If m is even,
then G is an S-magic graph and θ(G) = 0.

Proof. Let m1,m2, ...,mr be positive integers where 2 ≤ m1 = m2 = · · · = mr = m,
and let G = Km1,m2,...,mr be a complete r-partite graph. Let V1, V2, . . . , Vr be
the partite sets of G. For i ∈ S1, i ∈ Vk where k = 1, 2, . . . , r if and only if
i ≡ k or (1 − k) (mod 2r). Figure 3.1 shows the labeling f1 : V (G) → S1 with a
labeling set S1 = {1, 2, . . . , rm}.

Figure 3.1: A Labeling of G with a label set S1 = {1, 2, . . . , rm}

Consider the sum of the labelings assigned to each partite Vk. Then the sum
is equal to
m−2

2∑
n=0

(2rn+ k) +

m
2∑

n=1

(2rn+ 1− k) = k + (2r + k) + (4r + k) + · · ·+ (r(m− 2) + k)

+ (2r + 1− k) + (4r + 1− k) + · · ·+ (rm+ 1− k)

= (k + rm+ 1− k) + (2r + k + r(m− 2) + 1− k)

+ · · ·+ (r(m− 2) + k + 2r + 1− k)

=
m

2
(rm+ 1).
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This show that the sum of the labelings assigned to each partite is equal to m(rm+1)
2

.
Then i(G) = rm. Hence θ(G) = 0.

Lemma 3.2. Let S = {rm− 3r + 1, rm− 3r + 2, ..., rm} where m and r are odd.
Then
A = {rm− 3r + 1, rm− 3r + 3, ..., rm− 2r},
B = {rm− (3r−1

2
), rm− (3r−1

2
)− 1, ..., rm− 2r + 1},

C = {rm, rm− 1, ..., rm− ( r−1
2
)},

D = {rm− 3r + 2, rm− 3r + 4, ..., rm− 2r − 1},
E = {rm− r, rm− r − 1, ..., rm− 3

2
(r − 1)},

F = {rm− ( r−1
2
)− 1, rm− ( r−1

2
)− 2, ..., rm− r + 1} partition S.

Proof. Let S = {rm − 3r + 1, rm − 3r + 2, ..., rm} where m and r are odd. We
divide all elements in S into 6 sets: A = {rm− 3r + 1, rm− 3r + 3, ..., rm− 2r},
B = {rm− 3r−1

2
, rm− 3r−1

2
− 1, ..., rm− 2r + 1},

C = {rm, rm− 1, ..., rm− r−1
2
},

D = {rm− 3r + 2, rm− 3r + 4, ..., rm− 2r − 1},
E = {rm− r, rm− r − 1, ..., rm− 3

2
(r − 1)},

F = {rm− ( r−1
2
)− 1, rm− ( r−1

2
)− 2, ..., rm− r + 1}.

We will show that A,B,C,D,E and F are 6 partitions of S. Note that A and D

contain an increasing sequence. The others contain a decreasing sequence. Then
maxA < minB, minC > maxF and maxF > maxE. Moreover, C∩F ∩E∩D =

∅ and A ∩B = ∅. We only need to show that A ∩D = ∅. Since A contains only
odd positive integers and D contains only even positive integers, then A∩D = ∅.

In the last, we will show |A|+ |B|+ |C|+ |D|+ |E|+ |F | = |S| = 3r. Consider

|A| = rm− 2r − (rm− 3r + 1) + 2

2
=

r + 1

2

|B| = rm− 3r − 1

2
− (rm− 2r + 1) + 1 =

r + 1

2

|C| = rm− (rm− r − 1

2
) + 1 =

r + 1

2

|D| = rm− 2r − 1− (rm− 3r + 2) + 2

2
=

r − 1

2

|E| = rm− r − (rm− 3

2
(r − 1)) + 1 =

r − 1

2

|F | = rm− (
r − 1

2
)− 1− (rm− r + 1) + 1 =

r − 1

2
.

Therefore |A| + |B| + |C| + |D| + |E| + |F | = 3( r+1
2
) + 3( r−1

2
) = 3r. Hence,

A,B,C,D,E and F are the partitions of S.
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Figure 3.2: The partition of S = {rm− 3r + 1, rm− 3r + 2, ..., rm}.

Lemma 3.3. Let S = {rm − 3r + 1, rm − 3r + 2, rm − r
2
, rm − r

2
+ 2, rm − r

2
+

3, ..., rm+ 1} where m is odd, and r is even. Then
A = {rm− 3r + 1, rm− 3r + 3, ..., rm− 2r − 1}
B = {rm− 3r

2
, rm− 3r

2
− 1, ..., rm− 2r + 1}

C = {rm+ 1, rm, ..., rm− r
2
+ 2}

D = {rm− 3r + 2, rm− 3r + 4, ..., rm− 2r}
E = {rm− r, rm− r − 1, ..., rm− 3r

2
+ 1}

F = {rm− ( r
2
), rm− ( r

2
)− 1, ..., rm− r + 1} partition S.

Proof. Let S = {rm−3r+1, rm−3r+2, rm− r
2
, rm− r

2
+2, rm− r

2
+3, ..., rm+1}

where m is odd and r is even. Figure 3.3 shows how we put elements in S into 3

sets; A,B and C.

Figure 3.3: Subsets A,B and C of S.

We will divide S ∖ (A ∪ B ∪ C) into 3 sets. Figure 3.4 shows how we put
elements in S ∖ (A ∪B ∪ C) into 3 sets; D,E and F .

Figure 3.4: Subsets D,E and F of S.
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Now, we divide all elements in S into 6 sets: A = {rm − 3r + 1, rm − 3r +

3, ..., rm− 2r − 1},
B = {rm− 3r

2
, rm− 3r

2
− 1, ..., rm− 2r + 1},

C = {rm+ 1, rm, ..., rm− r
2
+ 2},

D = {rm− 3r + 2, rm− 3r + 4, ..., rm− 2r},
E = {rm− r, rm− r − 1, ..., rm− 3r

2
+ 1},

F = {rm− ( r
2
), rm− ( r

2
)− 1, ..., rm− r + 1}.

We will shows that A,B,C,D,E and F are 6 partitions of S. Note that A and D

contain an increasing sequence. The others contain a decreasing sequence. Then
maxA < minB, minC > maxF and maxF > maxE. Furthermore, all partition
not contain rm − r

2
+ 1. Thus, C ∩ F ∩ E ∩ D = ∅ and A ∩ B = ∅. We only

need to show that A ∩ D = ∅. Since A is a sequence of odd integers and D

is a sequence of even integers, then A ∩ D = ∅. In the last, we will show that
|A|+ |B|+ |C|+ |D|+ |E|+ |F | = |S| = 3r. Consider

|A| = rm− 2r − 1− (rm− 3r + 1) + 2

2
=

r

2

|B| = rm− 3r

2
− (rm− 2r + 1) + 1 =

r

2

|C| = rm+ 1− (rm− r

2
+ 2) + 1 =

r

2

|D| = rm− 2r − (rm− 3r + 2) + 2

2
=

r

2

|E| = rm− r − (rm− 3r

2
+ 1) + 1 =

r

2

|F | = rm− (
r

2
)− (rm− r + 1) + 1 =

r

2
.

Therefore |A|+ |B|+ |C|+ |D|+ |E|+ |F | = 6( r
2
) = 3r. Hence, A,B,C,D,E and

F are the partitions of S.

Theorem 3.4. Let m1,m2, . . . ,mr be positive integers where 2 ≤ m1 = m2 =

· · · = mr = m, and let G = Km1,m2,...,mr be a complete r-partite graph. If m is odd,

then G is an S-magic graph and θ(G) =

0, if r is odd
1, if r is even.

Proof. Let V1, V2, . . . , Vr be partite sets of G. In the beginning, we use the label
set {1, 2, . . . , rm− 3r} to label m− 3 rows of G, as shown in Figure 3.5.
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Figure 3.5: A labeling m− 3 rows of G with label set {1, 2, . . . , rm− 3r}

Case I: r is odd.
Firstly, we demonstrate how to divide A = {rm−3r+1, rm−3r+2, . . . , rm−1, rm}
into r sets with three elements and the same sum, which is 3rm+ 3−9r

2
.

Let an = (rm− 3r+ 1) + 2(n− 1), bn = rm− (3r−1
2

)− (n− 1), cn = rm− (n− 1)

and Pn = {an, bn, cn}. Observation that bn, cn are decreasing and an is increasing.
We consider carefully about the largest value of n satisfies an < bn. Consider if
an < bn, then

(rm− 3r + 1) + 2(n− 1) < rm− (
3r − 1

2
)− (n− 1)

3(n− 1) < 3r − (
3r − 1

2
)− 1

<
3r − 1

2

n− 1 <
3r − 1

6

n <
3r + 5

6

n ≤ r + 1

2
.

As a result, we get r+1
2

sets from A which are P1, P2, . . . , P r+1
2
. By Lemma 3.2, it

easy to see that an ∈ A, bn ∈ B and cn ∈ C where n = 1, 2, . . . , r+1
2

. Thus we get

all elements in
r+1
2∪

n=1

Pn are distinct. Next, consider a set A∖
(
P1 ∪ · · · ∪ P r+1

2

)
;

{rm − 3r + 2, rm − 3r + 4, rm − 3r + 6, ..., rm − 2r − 1, rm − (3r−1
2

) + 1, rm −
(3r−1

2
) + 2, ..., rm− ( r−1

2
)− 1}.
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Let dn = rm− r − (n− 1). Then dn is decreasing. Choose

Qn = {an + 1, dn, c r+1
2

+n} for n = 1, 2, . . . ,
r − 1

2
.

By Lemma 3.2, it easy to see that an + 1 ∈ D, dn ∈ E and c r+1
2

+n ∈ F where n =

1, 2, . . . , r−1
2

. Thus we get that all elements in
r−1
2∪

n=1

Qn are distinct. Finally, we get

r sets with three elements and the same sum, which is 3rm+ 3−9r
2

to labels in each
Vi of G. Hence θ(G) = 0, and we complete the proof.

Case II: r is even.
Let m = 2p+ 1, r = 2q where p, q are positive integers.
Let B = {1, 2, ..., rm}. Consider∑

b∈B

b =
rm(rm+ 1)

2
= 8p2q2 + 8pq2 + 2q2 + 2pq + q.

By lemma 2.11, B can be an S-magic labeling set of G under the condition the
summation of all elements in B is divided by r. We have∑

b∈B

b

r
=

rm(rm+ 1)

2r
= 4p2q + 4pq + q + p+

1

2

is not an integer. It implies that B is not an S-magic labeling set of G, i.e.
θ(G) > 0. Moreover, we get rm(rm+1)

2
+ r

2
≡ 0 (mod r).

We claim that {1, 2, . . . , rm− r
2
, rm− r

2
+2, . . . , rm, rm+1} is an S-magic labeling

set of G. In the begining, we use the label set {1, 2, . . . , rm− 3r} to labels n− 3

rows of G, as shown in Figure 3.5. Next, we demonstrate how to divide
C = {rm − 3r + 1, rm − 3r + 2, . . . , rm − r

2
, rm − r

2
+ 2, · · · , rm, rm + 1} into

r sets with three elements and the same sum, which is 3rm + 2 − 9r
2

. Let xn =

(rm − 3r + 1) + 2(n − 1), yn = rm − (3r
2
) − (n − 1), zn = rm + 1 − (n − 1), and

Pn = {xn, yn, zn}. Observation that yn, zn are decreasing and xn is increasing.
We be careful about the largest value of n that satisfies xn < yn. Consider if
xn < yn, then

(rm− 3r + 1) + 2(n− 1) < rm− (
3r

2
)− (n− 1)

3(n− 1) <
3r

2
− 1

<
3r − 2

2

n− 1 <
3r − 2

6
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n <
3r + 4

6

n ≤ r

2
.

As a result, we get r
2

sets from C which are P1, P2, . . . , P r
2
. By Lemma 3.3, it easy

to see that xn ∈ A, yn ∈ B and zn ∈ C where n = 1, 2, . . . , r
2
. Thus we get that all

elements in
r
2∪

n=1

Pn are distinct. Consider a set C ∖
(
P1 ∪ · · · ∪ P r

2

)
;

{rm− 3r + 2, rm− 3r + 4, . . . , rm− 2r, rm− 3r
2
+ 1, rm− 3r

2
+ 2, · · · , rm− r

2
}.

Let wn = rm− r − (n− 1). Then wn is decreasing. Choose

Qn = {xn + 1, wn, z r
2
+(n+1)} for n = 1, 2, . . . ,

r

2
.

By Lemma 3.3, it easy to see that xn +1 ∈ D,wn ∈ E and z r
2
+n+1 ∈ F where n =

1, 2, . . . , r
2
. Thus we get that all elements in

r
2∪

n=1

Qn are distinct. Hence {1, 2, . . . ,

rm − r
2
, rm − r

2
+ 2, . . . , rm, rm + 1} is an S-magic labeling set of G, and then

i(G) = rm+ 1. It implies θ(G) = 1. This completes the proof.

Definition 3.5. A minimal S-magic labeling set T of G is an S-magic labeling
set of G such that

∑
i∈T

i is minimum.

Lemma 3.6. Let m1 and m2 be two positive integers where m1 ≤ m2. Suppose
G = Km1,m2 is an S-magic graph with a labeling set T = {t1, t2, . . . , tm1+m2} and
n = m1 +m2. Then we have the following results.
(I) If m1,m2 and n satisfy n(n+1) ≥ 2m2(1+m2) and n ≡ 0 or 3 (mod 4), then

m1+m2∑
i=1

ti ≥ 1 + 2 + 3 + · · ·+ (m1 +m2).

(II) If m1,m2 and n satisfy n(n+1) ≥ 2m2(1+m2) and n ≡ 1 or 2 (mod 4), then

m1+m2∑
i=1

ti ≥ (1 + 2 + 3 + · · ·+m1 +m2) + 1.

(III) If m1,m2 and n satisfy n(n+ 1) < 2m2(1 +m2), then

m1+m2∑
i=1

ti ≥ 2(1 + 2 + 3 + · · ·+m2).
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Proof. Let G = Km1,m2 be an S-magic graph. Let V1 and V2 be partite sets of
G. Let T = {t1, t2, . . . , tm1+m2} and a labeling f : V (G) → T which

∑
xi∈V1

f(xi) =∑
yj∈V2

f(yj).

For case (I): By the proof of Theorem 2.18 and θ(G) = 0 implies {1, 2, . . . ,m1+

m2} is an S-magic labeling set of G. Thus

∑
ti∈T

ti ≥ 1 + 2 + 3 + · · ·+ (m1 +m2).

For case (II): By the proof of Theorem 2.18 and θ(G) = 1 implies {1, 2, . . . ,m1+

m2 − 1,m1 +m2 + 1} is a minimal labeling set of G. Thus

∑
ti∈T

ti ≥ 1 + 2 + 3 + · · ·+ (m1 +m2) + 1.

For case (III): In this case, the minimal labeling set for V2 is {1, 2, . . . ,m2}.
Then

∑
yj∈V2

f(yj) ≥ 1 + 2 + 3 + · · ·+m2.

By Lemma 2.11, the sum of the labelings assigned to each partite is equal implies∑
ti∈T

ti =
∑
xi∈V1

f(xi) +
∑
yj∈V2

f(yj)

≥ (1 + 2 + 3 + · · ·+m2) + (1 + 2 + 3 + · · ·+m2)

= 2(1 + 2 + 3 + · · ·+m2).

This completes the proof.

Lemma 3.7. Let m2 and m3 be two positive integers. Let G = K2,m2,m3 be an
S-magic graph, and T be a minimal labeling set of G. Then i(G) ≥ ⌈S(L)+1

2
⌉ where

S(L) is the sum of the labelings assigned to each partite of G by a labeling set T .

Proof. Let m2 and m3 be two positive integers, and let G = K2,m2,m3 be an S-
magic graph. Let V1, V2 and V3 be partite sets of G, and S(Li) be the sum of
the labelings assigned to each Vi for i = 1, 2, 3. Let T

′ be any S-magic labeling
set of G, and let f : V (G) → T

′ be an S-magic labeling with |V (G)| = |T ′|. Let
V1(G) = {x1, x2} and f(x1) = a, f(x2) = b with a < b. Then S(L1) = a + b.
Since G is an S-magic graph, by Lemma 2.11, S(L1) = S(L2) = S(L3) = a + b.
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Since a < b and a + b < 2b, b > S(L1)
2

≥ S(L)
2

. Then max(T ′
) ≥ b > S(L)

2
. Hence

i(G) > S(L)
2

, it follows that i(G) ≥ ⌈S(L)+1
2

⌉.

Notation: We divide the relation between m2 and m3 into 3 cases:
Case I: (m2 +m3)(m2 +m3 + 1) ≥ 2m3(m3 + 1) and m2 +m3 ≡ 0 or 3 (mod 4)

Case II: (m2 +m3)(m2 +m3 + 1) ≥ 2m3(m3 + 1) and m2 +m3 ≡ 1 or 2 (mod 4)

Case III: (m2 +m3)(m2 +m3 + 1) < 2m3(m3 + 1).

Theorem 3.8. For two positive integers m2 and m3 where 2 ≤ m2 ≤ m3, let
G = K1,m2,m3 be an S-magic graph.
If G satisfies case I, then i(G) = (m2+m3)(m2+m3+1)

4
.

If G satisfies case II, then i(G) = (m2+m3)(m2+m3+1)+2
4

.
If G satisfies case III, then i(G) = m3(m3+1)

2
.

Proof. Let V1, V2 and V3 be the partite sets of G. Since |V1(G)| = 1, V1 contains
the maximum number in a labeling set of G. Since G = K1,m1,m2 is an S-magic
graph, the sum of the labelings assigned to V1, V2 and V3 are equal.

For case I: By the proof of Theorem 2.18 [4], {1, 2, . . . ,m2 +m3} is a labeling
set for V2, V3, and the sum of the labelings of each partite is (m2+m3)(m2+m3+1)

4
.

Then label V1 with a labeling set { (m2+m3)(m2+m3+1)
4

}. This labeling is S-magic. If
i(G) < (m2+m3)(m2+m3+1)

4
, then the sum of the labelings assigned to each partite

less than (m2+m3)(m2+m3+1)
4

, but it is impossible. Hence, i(G) = (m2+m3)(m2+m3+1)
4

.

For case II: By the proof of Theorem 2.18 [4], {1, 2, . . . ,m2+m3−1,m2+m3+1}
is a labeling set for V2 and V3, and the sum of each partite is (m2+m3)(m2+m3+1)+2

4
.

Then label V1 with a label set { (m2+m3)(m2+m3+1)+2
4

}. This labeling is S-magic. If
i(G) < (m2+m3)(m2+m3+1)+2

4
, then the sum of the labelings assigned to each partite

less than (m2+m3)(m2+m3+1)+2
4

, but it is impossible. Hence, i(G) = (m2+m3)(m2+m3+1)+2
4

.

For case III: By the proof of Theorem 2.18 [4], we label
the vertices in V3 by the elements in {1, 2, ...,m3}, and there exists a labeling set
for V2. Since G is an S-magic graph, the sum of the labelings assigned to V1 is
equal to the sum of the labelings assigned to V3. Then we label V1 with a labeling
set {m3(m3+1)

2
}. By Lemma 3.6, i(G) = m3(m3+1)

2
. This completes the proof.

Theorem 3.9. Let m2 and m3 be two positive integers with 2 ≤ m2 ≤ m3.
If m2 and m3 satisfy case I or case II and m2 +m3 > 8, then G = K2,m2,m3 is an
S-magic graph and

i(G) =


⌈
(m2+m3)(m2+m3+1)+4

8

⌉
, for case I⌈

(m2+m3)(m2+m3+1)+6
8

⌉
, for case II.
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Proof. If m2 = 2 and m2 + m3 > 8, then m3 > 6. It implies that m2 and m3

satisfy case III. We omit this case. Let G = K2,m2,m3 with 3 ≤ m2 ≤ m3 and
m2+m3 > 8. Let S(Li) be the sum of the labelings assigned to Vi where i = 1, 2, 3.

For case I:

By the proof of Theorem 2.18, {1, 2, . . . ,m2+m3} is a labeling set for V2 and V3 with
S(L2) = S(L3). It implies S(L2) = S(L3) =

(m2+m3)(m2+m3+1)
4

, i.e. (m2+m3)(m2+m3+1)
4

is an integer. We divide into 2 cases;

Case 1: (m2+m3)(m2+m3+1)
4

is even.
We claim that T1 = {1, 2, . . . ,m2+m3,

(m2+m3)(m2+m3+1)
8

−1, (m2+m3)(m2+m3+1)
8

+1}
is an S-magic labeling set of G. Since m2+m3 > 8, m2+m3

8
> 1. Then (m2+m3)(m2+m3+1)

8

> m2 +m3 +1. It implies (m2+m3)(m2+m3+1)
8

− 1 > m2 +m3. It implies all elements
in T1 are distinct. Furthermore, Figure 3.6 shows the labeling of G with the label
set T1 = {1, 2, . . . ,m2 +m3,

(m2+m3)(m2+m3+1)
8

− 1, (m2+m3)(m2+m3+1)
8

+ 1}, and the
sum of the labelings assigned to each partite is equal to (m2+m3)(m2+m3+1)

4
.

Figure 3.6: A labeling of K2,m2,m3 where m2 and m3 satisfy case I and
(m2+m3)(m2+m3+1)

4
is even.

Therefore G = K2,m2,m3 is an S-magic graph. Since the sum of each partite
is (m2+m3)(m2+m3+1)

4
, and this is a minimum sum, then T1 is a minimal S-magic

labeling set for this case. We have S(L) = (m2+m3)(m2+m3+1)
4

. By Lemma 3.7,
i(G) ≥ (m2+m3)(m2+m3+1)

8
+ 1, and Figure 3.6 shows the labeling with i(G) =

(m2+m3)(m2+m3+1)
8

+1. Moreover, if i(G) < (m2+m3)(m2+m3+1)
8

+1 it implies the sum of
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the labelings assigned to V2 and V3 less than (m2+m3)(m2+m3+1)
4

, but it is impossible.
In conclusion, if (m2+m3)(m2+m3+1)

4
is even, then i(G) =

⌈
(m2+m3)(m2+m3+1)

8
+ 1

⌉
.

Case 2: (m2+m3)(m2+m3+1)
4

is odd.
We claim that T2 = {1, 2, . . . ,m2+m3,

(m2+m3)(m2+m3+1)+4
8

−1, (m2+m3)(m2+m3+1)+4
8

}
is an S-magic labeling set of G. By the proof of case 1, (m2+m3)(m2+m3+1)

8
> m2 +

m3 + 1 implies (m2+m3)(m2+m3+1)+4
8

> m2 +m3 + 1. Furthermore, Figure 3.7 shows
the labeling of G with the label set T2 = {1, 2, . . . ,m2 +m3,

(m2+m3)(m2+m3+1)+4
8

−
1, (m2+m3)(m2+m3+1)+4

8
}, and the sum of the labelings assigned to each partite is

equal to (m2+m3)(m2+m3+1)
4

.

Figure 3.7: A labeling of K2,m2,m3 where m2 and m3 satisfy case I and
(m2+m3)(m2+m3+1)

4
is odd.

Therefore G is S-magic. Since the sum of each partite is (m2+m3)(m2+m3+1)
4

, and
this is a minimum sum, then T2 is a minimal S-magic labeling set for this case.
We have S(L) = (m2+m3)(m2+m3+1)

4
. By Lemma 3.7, i(G) ≥ (m2+m3)(m2+m3+1)+4

8
,

and Figure 3.9 shows the labeling with i(G) = (m2+m3)(m2+m3+1)+4
8

. Moreover, if
i(G) < (m2+m3)(m2+m3+1)+4

8
it implies the sum of the labelings assigned to V2 and V3

less than (m2+m3)(m2+m3+1)
4

, but it is impossible. In conclusion, if (m2+m3)(m2+m3+1)
4

is odd, then i(G) =
⌈
(m2+m3)(m2+m3+1)+4

8

⌉
. Hence i(G) =

⌈
(m2+m3)(m2+m3+1)+4

8

⌉
for

case I.

For case II:

By the proof of Theorem 2.18, {1, 2, . . . ,m2+m3−1,m2+m3+1} is a labeling set
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for V2 and V3 with S(L2) = (SL3). It implies S(L2) = S(L3) =
(m2+m3)(m2+m3+1)+2

4
,

i.e. (m2+m3)(m2+m3+1)+2
4

is an integer. We divide into 2 cases;

Case 1: (m2+m3)(m2+m3+1)+2
4

is even.
We claim that T3 = {1, 2, . . . ,m2 + m3 − 1,m2 + m3 + 1, (m2+m3)(m2+m3+1)+2

8
−

1, (m2+m3)(m2+m3+1)+2
8

+ 1} is an S-magic labeling set of G. Consider

(m2 +m3)(m2 +m3 + 1) + 2

8
− 1 > m2 +m3 + 1− 6

8
≥ m2 +m3 + 1.

If (m2+m3)(m2+m3+1)+2
8

− 1 = m2 +m3 + 1, then

((m2 +m3)− 8)((m2 +m3) + 1) = 6.

It implies m2 +m3 is not an integer. Thus (m2+m3)(m2+m3+1)+2
8

− 1 > m2 +m3 +1.

Furthermore, Figure 3.8 shows the labeling of G with T3 = {1, 2, . . . ,m2 +m3 −
1,m2 + m3 + 1, (m2+m3)(m2+m3+1)+2

8
− 1, (m2+m3)(m2+m3+1)+2

8
+ 1}, and the sum of

the labelings assigned to each partite is (m2+m3)(m2+m3+1)+2
4

.

Figure 3.8: A labeling of K2,m2,m3 where m2 and m3 satisfy case II and
(m2+m3)(m2+m3+1)+2

4
is even.

Therefore G is S-magic. Since the sum of each partite is (m2+m3)(m2+m3+2)
4

, and
this is a minimum sum, then T3 is a minimal S-magic labeling set for this case. We
have S(L) = (m2+m3)(m2+m3+1)+2

4
. By Lemma 3.7, i(G) ≥ (m2+m3)(m2+m3+1)+2

8
+ 1.

Moreover, if i(G) < (m2+m3)(m2+m3+1)+2
8

+ 1 it implies the sum of the labelings
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assigned to V2 and V3 less than (m2+m3)(m2+m3+1)+2
4

, but it is impossible. In con-
clusion, if (m2+m3)(m2+m3+1)+2

4
is even, then i(G) =

⌈
(m2+m3)(m2+m3+1)+2

8
+ 1

⌉
.

Case 2: (m2+m3)(m2+m3+1)+2
4

is odd.
We will prove that T4 = {1, 2, . . . ,m2 +m3 − 1,m2 +m3 + 1, (m2+m3)(m2+m3+1)−2

8
,

(m2+m3)(m2+m3+1)+6
8

} is an S-magic labeling set of G.
From the above, we found that

(m2 +m3)(m2 +m3 + 1) + 2

8
> m2 +m3 + 1.

Furthermore, Figure 3.9 shows the labeling of G with T4 = {1, 2, . . . ,m2 +m3 −
1,m2+m3+1, (m2+m3)(m2+m3+1)−2

8
, (m2+m3)(m2+m3+1)+6

8
}, and the sum of the label-

ings assigned to each partite is (m2+m3)(m2+m3+1)+2
4

.

Figure 3.9: A labeling of K2,m2,m3 where m2 and m3 satisfy case II and
(m2+m3)(m2+m3+1)+2

4
is odd.

Therefore G is S-magic. Since the sum of each partite is (m2+m3)(m2+m3+1)+2
4

,
and this is a minimum sum, then T4 is a minimal S-magic labeling set for this case.
We have S(L) = (m2+m3)(m2+m3+1)+2

4
. By Lemma 3.7, i(G) ≥ (m2+m3)(m2+m3+1)+6

8
.

Moreover, if i(G) < (m2+m3)(m2+m3+1)+6
8

it implies the sum of the labelings assigned
to V2 and V3 less than (m2+m3)(m2+m3+1)+2

4
, but it is impossible. In conclusion,

if (m2+m3)(m2+m3+1)+2
4

is odd, then i(G) = ⌈ (m2+m3)(m2+m3+1)+6
8

⌉. Hence i(G) =

⌈ (m2+m3)(m2+m3+1)+6
8

⌉ for case II. The proof is completed.
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Theorem 3.10. Let m2 and m3 be two positive integers with 2 ≤ m2 ≤ m3.
Suppose G = K2,m2,m3 is an S-magic graph where m2 and m3 satisfy case I or case
II, and m2 +m3 ≤ 8.
(I.) m2 +m3 = 4

{1, 2, 3, 4, 5, 6} is an S-magic labeling set of K2,2,2 and i(G) = 6.

(II.) m2 +m3 = 5

{1, 2, 3, 4, 5, 7, 8} is an S-magic labeling set of K2,2,3 and i(G) = 8.

(III.) m2 +m3 = 6

{1, 2, 3, 4, 5, 6, 7, 8} is an S-magic labeling set of K2,2,4, K2,3,3, and i(G) = 8.

(IV.) m2 +m3 = 7

{1, 2, 3, 4, 5, 6, 7, 8, 9} is an S-magic labeling set of K2,2,5, K2,3,4, and i(G) = 9.

(V.) m2 +m3 = 8

{1, 2, 3, 4, 5, 6, 7, 8, 10, 11} is an S-magic labeling set of K2,3,5, K2,4,4, and i(G) =

11.

Proof. For (I), (III), (IV ), it is clear by the proof of Theorem 2.18 , see in Figure
3.10, Figure 3.11, Figure 3.12, Figure 3.13 and Figure 3.14, as shown below.

Figure 3.10: A Labeling of K2,2,2. Figure 3.11: A Labeling of K2,2,4.

Figure 3.12: A Labeling of K2,3,3. Figure 3.13: A Labeling of K2,2,5.
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Figure 3.14: A Labeling of K2,3,4.

For (II): Note that 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. Since 28 ≡ 1 (mod 3),
{1, 2, 3, 4, 5, 6, 7} is not an S-labeling set of G. Then i(G) ≥ 8. Figure 3.15 shows
the labeling of f : V (K2,2,3) → {1, 2, 3, 4, 5, 7, 8}. Hence i(G) = 8.

Figure 3.15: A Labeling of K2,2,3.

For (V ): Note that 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55. Since 55 ≡ 1

(mod 3), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} is not an S-labeling set of G. Then i(G) ≥ 11.

Figure 3.16 and Figure 3.17 show the labelings of K2,3,5 and K2,4,4 with a labeling
set {1, 2, 3, 4, 5, 6, 7, 8, 10, 11}, respectively. Hence i(G) = 11.

Figure 3.16: A Labeling of K2,3,5. Figure 3.17: A Labeling of K2,4,4.
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By using an elemantary calculation, we obtain the following lemma that will
be useful in the proof of Theorem 3.12.

Lemma 3.11. Let m2 and m3 be positive integers. If m3 > −1
2
+

√
8m3

2+9m2
2−52m2+4

2(m2−2)
,

then m3(m3+1)
4

− 1 >
m2

2+m2
3+m2+m3

2m2
.

Proof. Suppose m3 > −1
2
+

√
8m3

3+9m2
2−52m2+4

2(m2−2)
. Then

m3 >
−(m2 + 2) +

√
(m2 − 2)2 − 4(m2 − 2)(−(2m2

2 + 6m2))

2(m2 − 2)
.

Hence,
(m2 − 2)m2

3 + (m2 − 2)m3 − (2m2
2 + 6m2) > 0.

Therefore,

m2m
2
3 +m2m3 − 4m2 > 2m2

2 + 2m2
3 + 2m2 + 2m3

(m2
3 +m3)m2

4m2

− 4m2

4m2

>
2m2

2 + 2m2
3 + 2m2 + 2m3

4m2

m3(m3 + 1)

4
− 1 >

m2
2 +m2

3 +m2 +m3

2m2

.

Theorem 3.12. Let m2 and m3 be two positive integers and 3 ≤ m2 ≤ m3.
If m2 and m3 satisfy case III, then G = K2,m2,m3 is an S-magic graph and
i(G) =

⌈
m3(m3+1)+2

4

⌉
.

Proof. Suppose S(Li) is the sum of the labelings assigned to Vi for i = 1, 2, 3.

Because m2 and m3 satisfy case III, by Lemma 3.6, and Lemma 3.7, we get
that S(L1) = S(L2) = S(L3) ≥ m3(m3+1)

2
and i(G) ≥ ⌈m3(m3+1)+2

4
⌉. Now, we

demonstrate a labeling of G with S(L1) = S(L2) = S(L3) =
m3(m3+1)

2
and i(G) =

⌈m3(m3+1)+2
4

⌉. First, label V2 and V3 with labeling sets L2 = {m3+1,m3+2, . . . ,m3+

m2} and L3 = {1, 2, . . . ,m3}, respectively as in Figure 3.18.
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Figure 3.18: Label V2 and V3 with label sets L2 = {m3 + 1, . . . ,m3 + m2} and
L3 = {1, 2, . . . ,m3}, respectively.

By the proof of Case n(n + 1) < 2m2(m2 + 1) of theorem 2.18, K = S(L3) −
S(L2) = m2q + r, for q, r ≥ 0 and r < m2.

For r = 0: K = m2q, we now replace the label set L2 by L
′
2 = {m3 + 1 + q,m3 +

2 + q, . . . ,m3 +m2 + q} and leave L3 unchanged as in Figure 3.19.

Figure 3.19: Replace the label set L2 by L
′
2 for r = 0

For r > 0: K = m2q + r, we now replace the label set L2 by L
′
2 = {m3 + q +

1,m3+q+2, . . . ,m3+m2+q−r,m3+m2+q−r+2, . . . ,m3+m2+q,m3+m2+q+1}
and leave L3 unchanged as in Figure 3.20.
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Figure 3.20: Replace the label set L2 by L
′
2 for r > 0.

By the proof of theorem 2.18, S(L2) = S(L3) =
m3(m3+1)

2
. Next, we will show

that i(G) =
⌈
m3(m3+1)+2

4

⌉
by labeling V1 so that S(L1) =

m3(m3+1)
2

. Consider the
following situations.

Case 1: m3(m3+1)
2

is even. Label V1 with label set L1 = {m3(m3+1)
4

−1, m3(m3+1)
4

+

1}, see Figure 3.21 and Figure 3.22 for r = 0 and r > 0, respectively.

Figure 3.21: Label V1 with a label set L1 = {m3(m3+1)
4

− 1, m3(m3+1)
4

+1} for r = 0.
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Figure 3.22: Label V1 with a label set L1 = {m3(m3+1)
4

− 1, m3(m3+1)
4

+ 1}
for r > 0.

Denote the labelings in Figure 3.21 and Figure 3.22 by f1 and f2, respectively.
We will show that f1 and f2 are S-magic labelings of G for r = 0 and r > 0,
respectively by showing

m3(m3 + 1)

4
− 1 > m2 +m3 + q + 1. (3.1)

Note that

q =
S(L3)− S(L3)− r

m2

q =
m3(m3+1)

2
− (m2m3 +

m2(m2+1)
2

)− r

m2

q =
m2

3 +m3

2m2

−
(
2m2m3 +m2

2 +m2

2m2

)
− r

m2

m2 +m3 + q + 1 = m2 +m3 +
m2

3 +m3

2m2

−
(
2m2m3 +m2

2 +m2

2m2

)
− r

m2

+ 1

=
2m2m3 + 2m2

2 +m2
3 +m3 − 2m2m3 −m2

2 +m2 − 2r

2m2

≤ m2
2 +m2

3 +m2 +m3

2m2

.

Then we will show that

m3(m3 + 1)

4
− 1 >

m2
2 +m2

3 +m2 +m3

2m2

. (3.2)
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Since m2 and m3 satisfy case III, (m2 +m3)(m2 +m3 + 1) < 2m3(m3 + 1).
So

m2
3 −m2

2 − 2m2m3 +m3 −m2
2 −m2 > 0

m2
3 − (2m2 − 1)− (m2

2 +m2) > 0.

Thus
m3 > −1

2
+

2m2 +
√
8m2

2 + 1

2
. (3.3)

Then, if we can show that
√

8m3
2+9m2

2−52m2+4

2(m2−2)
<

2m2+
√

8m2
2+1

2
, by Lemma 3.11, we

complete this case. Consider

12m2
2 + 24

√
2m2 + 1 > 8m2

2 + 25m2 − 2

12m2
2 + 24

√
2m2 + 1 >

8m2
2 + 25m2 − 2

m2 − 2

(2m2 +
√

8m2
2 + 1)2 >

√
8m2

2 + 25m2 − 2

m2 − 2

2

2k +
√
8m2

2 + 1 >

√
(m2 − 2)(8m2

2 + 25m2 − 2)

(m2 − 2)2

=

√
8m3

2 + 9m2
2 − 52m2 + 4

(m2 − 2)2

=

√
8m3

2 + 9m2
2 − 52m2 + 4

(m2 − 2)

2m2 +
√

8m2
2 + 1

2
>

√
8m3

2 + 9m2
2 − 52m2 + 4

2(m2 − 2)
. (3.4)

By Lemma 3.11 and (3.4), (3.1) holds. Then f1 and f2 are S-magic. Hence G is
an S-magic graph, and i(G) = m3(m3+1)

4
+1 =

⌈
m3(m3+1)+2

4

⌉
when m3(m3+1)

2
is even.

Case 2: m3(m3+1)
2

is odd. Label V1 with label set L1 = {m3(m3+1)+2
4

−1, m3(m3+1)+2
4

},
see in Figure 3.23 and Figure 3.24 for r = 0 and r > 0, respectively.
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Figure 3.23: Label V1 with label set L1 = {m3(m3+1)+2
4

− 1, m3(m3+1)+2
4

} for r = 0.

Figure 3.24: Label V1 with label set L1 = {m3(m3+1)+2
4

− 1, m3(m3+1)+2
4

} For r > 0.

Denote the labelings in Figure 3.23 and Figure 3.24 by f3 and f4, respectively.
We will show that f3 and f4 are S-magic labelings of G for r = 0, and r >

0, respectively by showing m3(m3+1)+2
4

− 1 >
m2

2+m2
3+m2+m3

2m2
. It is completed in

case 1. Hence f3 and f4 are S-magic. Therefore, G is an S-magic graph, and
i(G) = m3(m3+1)+2

4
=

⌈
m3(m3+1)+2

4

⌉
when m3(m3+1)

2
is odd. In conclusion, i(G) =⌈

m3(m3+1)+2
4

⌉
.

Theorem 3.13. Let m2 and m3 be two positive integers and 3 ≤ m3. If m3 satisfies
case III, then G = K2,2,m3 is an S-magic graph and i(G) =

⌈
m3(m3+1)+2

4

⌉
+ 1.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33

Proof. Let m3 be a positive integer with 2 ≤ m3. Suppose S(Li) is the sum of the
labelings assigned to Vi, i = 1, 2, 3. Now, we divide into 2 cases;

Case 1: m3(m3+1)
2

is even.
We claim that a labeling f : V → {1, 2, . . . ,m3,

m3(m3+1)
2

−2, m3(m3+1)
2

−1, m3(m3+1)
2

+

1, m3(m3+1)
2

+ 2} is an S-magic labeling of G with S(L1) = S(L2) = S(L3) =
m3(m3+1)

2
. Since m2 and m3 satisfy case III, m3 ≥ 5. If m3 ≥ 6, m2

3 +m3 − 8 ≥
m2

3−2 > 4m3, and if m3 = 5, it is obvious that 5(6)
4

−2 > 5. So, m3(m3+1)
4

−2 > m3.

Figure 3.25 shows the labeling of G with T = {1, 2, . . . ,m3,
m3(m3+1)

2
−2, m3(m3+1)

2
−

1, m3(m3+1)
2

+1, m3(m3+1)
2

+2}, and the sum the the labelings assigned to each partite
is equal to m3(m3+1)

2
.

Figure 3.25: A labeling of K2,2,m3 with m3 satisfies case III and m3(m3+1)
2

is even
with i(G) = m3(m3+1)

2
+ 2.

Then G is an S-magic graph. By Lemma 3.6, T has a minimum sum of elements.
Then T is a minimal S-magic labeling set. By lemma 3.7, i(G) ≥ m3(m3+1)

4
+ 1.

Suppose i(G) = m3(m3+1)
4

+1, there is a labeling set T1 with max(T1) =
m3(m3+1)

4
+

1. Then 4 maximum elements that can be in T1 are m3(m3+1)
4

− 2, m3(m3+1)
4

−
1, m3(m3+1)

4
and m3(m3+1)

4
+ 1. Since the sum of the labelings assigned to each par-

tite are equal, the only possible labeling sets for V1 and V2 are L
′
1 = {m3(m3+1)

4
+

1, m3(m3+1)
4

− 2} and L
′
2 = {m3(m3+1)

4
, m3(m3+1)

4
− 1}, respectively. Then S(L

′
1) =

S(L
′
2) ≤

m3(m3+1)
2

− 1. By Lemma 3.6, S(L3) ≥ m3(m3+1)
2

. This is a contradiction.
Hence i(G) ≥ m3(m3+1)

4
+ 2, and then i(G) =

⌈
m3(m3+1)

4
+ 2

⌉
for this case.

Case 2: m3(m3+1)
2

is odd.
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We claim that a labeling f : V → {1, 2, . . . ,m3,
m3(m3+1)+2

2
− 2, m3(m3+1)+2

2
− 1,

m3(m3+1)+2
2

, m3(m3+1)+2
2

+ 1} is an S-magic labeling of G with S(L1) = S(L2) =

S(L3) =
m3(m3+1)

2
. Since m2 and m3 satisfy case III, m3 ≥ 5. Then m2

3+m3−6 ≥
m2

3 − 1 > 4m3. So, m3(m3+1)+2
4

− 2 > m3. Figure 3.26 shows the labeling of G with
T = {1, 2, . . . ,m3,

m3(m3+1)+2
2

− 2, m3(m3+1)+2
2

− 1, m3(m3+1)+2
2

, m3(m3+1)+2
2

+ 1}, and
the sum the the labelings assigned to each partite is equal to m3(m3+1)

2
.

Figure 3.26: A labeling of K2,2,m3 with m3 satisfies case III and m3(m3+1)
2

is odd
with i(G) = m3(m3+1)+2

2
+ 1.

Then G is an S-magic graph. By Lemma 3.6, T has a minimum sum of elements.
Then T is a minimal S-magic labeling set. By Lemma 3.7, i(G) ≥ m3(m3+1)+2

4
.

Suppose i(G) = m3(m3+1)+2
4

. There is a labeling set T2 with max(T2) =
m3(m3+1)+2

4
.

Then 4 maximum elements that can be in T2 are m3(m3+1)+2
4

− 3, m3(m3+1)+2
4

−
2, m3(m3+1)+2

4
− 1 and m3(m3+1)+2

4
. Since the sum of the labelings assigned to

each partite are equal, the only possible labeling sets for V1 and V2 are L
′′
1 =

{m3(m3+1)+2
4

− 3, m3(m3+1)+2
4

− 1} and L
′′
2 = {m3(m3+1)+2

4
− 2, m3(m3+1)+2

4
}, respec-

tively. Then S(L
′′
1) = S(L

′′
2) ≤ m3(m3+1)

2
− 2. By Lemma 3.6, S(L3) ≥ m3(m3+1)

2
.

This is a contradiction. Hence i(G) ≥ m3(m3+1)+2
4

+1, and then i(G) = m3(m3+1)+2
4

+

1 =
⌈
m3(m3+1)+2

4

⌉
+ 1 for this case.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV
CONCLUSION AND SCOPE

In this thesis, we recall the concept of S-magic graph and distance magic
indices of graphs. We obtain i(G) for the complete r-partite graph Km1,m2,...,mr

with all mi are equal where i = 1, 2, ..., r as follows:
Theorem 3.1. Let m1,m2, . . . ,mr be positive integers where 2 ≤ m1 = m2 =

· · · = mr, and let G = Km1,m2,...,mr be a complete r-partite graph. If m is even,
then G is an S-magic graph and θ(G) = 0.

Theorem 3.4.Let m1,m2, . . . ,mr be positive integers where 2 ≤ m1 = m2 =

· · · = mr = m, and let G = Km1,m2,...,mr be a complete r-partite graph. If m is

odd, then G is an S-magic graph and θ(G) =

0, if r is odd
1, if r is even.

Moreover, we obtain i(G) for the complete tripartite graph Km1,m2,m3 that
satisfies m1 = 1, 2 and 2 ≤ m2 ≤ m3 as follows:
Theorem 3.8.For two positive integers m2 and m3 where 2 ≤ m2 ≤ m3, let
G = K1,m2,m3 be an S-magic graph.
If G satisfies case I, then i(G) = (m2+m3)(m2+m3+1)

4
.

If G satisfies case II, then i(G) = (m2+m3)(m2+m3+1)+2
4

.
If G satisfies case III, then i(G) = m3(m3+1)

2
.

Theorem 3.9. Let m2 and m3 be two positive integers with 2 ≤ m2 ≤ m3. If
m2 and m3 satisfy case I or case II and m2 + m3 > 8, then G = K2,m2,m3 is an
S-magic graph and

i(G) =

⌈ (m2+m3)(m2+m3+1)+4
8

⌉, for case I
⌈ (m2+m3)(m2+m3+1)+6

8
⌉, for case II.

Theorem 3.10. Let m2 and m3 be two positive integers with 2 ≤ m2 ≤ m3.
Suppose G = K2,m2,m3 is an S-magic graph where m2 and m3 satisfy case I or case
II, and m2 +m3 ≤ 8.
(I.) m2 +m3 = 4

{1, 2, 3, 4, 5, 6} is an S-magic labeling set K2,2,2 and i(G) = 6.

(II.) m2 +m3 = 5

{1, 2, 3, 4, 5, 7, 8} is an S-magic labeling set of K2,2,3 and i(G) = 8.

(III.) m2 +m3 = 6
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{1, 2, 3, 4, 5, 6, 7, 8} is an S-magic labeling set of K2,2,4, K2,3,3 and i(G) = 8.

(IV.) m2 +m3 = 7

{1, 2, 3, 4, 5, 6, 7, 8, 9} is an S-magic labeling set of K2,2,5, K2,3,4 and i(G) = 9.

(V.) m2 +m3 = 8

{1, 2, 3, 4, 5, 6, 7, 8, 10, 11} is an S-magic labeling set of K2,3,5, K2,4,4 and i(G) =

11.

Theorem 3.12. Let m2 and m3 be two positive integers and 3 ≤ m2 ≤ m3.
If m2 and m3 satisfy case III, then G = K2,m2,m3 is an S-magic graph and
i(G) =

⌈
m3(m3+1)+2

4

⌉
.

Theorem 3.13. Let m2 and m3 be two positive integers and 3 ≤ m3. If m3 satis-
fies case III, then G = K2,2,m3 is an S-magic graph and i(G) =

⌈
m3(m3+1)+2

4

⌉
+ 1.

The following problems naturally arise.
Problem 4.1 For complete tripartite graph Km1,m2,m3 with m1 ≥ 3, determine
i(G).
Problem 4.2 For a complete tripartite G = K2,m2,m2 with 2 ≤ m2 ≤ m3, derter-
mine M(G).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES

[1] A. Godinho and T. Singh, On S-magic graphs, Electronic Notes in Discrete
Mathematics, 48, (2015) 267–273.

[2] M. Miller, C. Rodger and R. Simanjuntak, Distance magic labelings of graphs,
Australas. J. Combin., 28, (2003), 305–315.

[3] K.A. Sugeng, D. Froncek, M. Miller, J. Ryan and J. Walker, On distance
magic labeling of graphs, J. Combin. Math. Combin. Comput., 71, (2009),
39–48. Electron. Notes Discrete Mathematics , 48, (2015), 267–273.

[4] A. Godinho, T. Singh and S. Arumugam, The distance magic index of a
graph,Discussiones Mathematicae Graph Theorey , 38, (2018), 135–142.

[5] S. Arumugam, N. Kamatchi and G.R. Vijayakumar, On the uniqueness of D-
vertex magic constant, Discussions Mathematicae Graph Theorey, 34, (2014),
279–286.

[6] G. Chartrand and L. Lesniak, Graph and Digraphs, (4th ed.), Chapman and
hall,CRC, 2005.

[7] V. Vilfred, Σ-labelled graph and circulant Graphs, Ph.D. Thesis, University of
Kerala, Trivandrum, India, 1994.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

38

VITA

Name : Ms. Sararat Numai
Date of Birth : 18 April 1997
Place of Birth : Nan, Thailand
Education : B.Sc. (Mathematics), (First Class Honors),

Chiang Mai University, 2019
Scholarship : Development and Promotion of Science and Technology

Talents Project (DPST)


	Abstract in Thai
	Abstract in English
	Acknowledgements
	Contents
	LIST OF FIGURES
	INTRODUCTION
	PRELIMINARIES
	S-magic graph
	Distance magic index

	MAIN RESULTS
	CONCLUSION AND SCOPE
	REFERENCES 
	VITA

