

PARAMETER-FREE OUTLIER SCORING USING MASS RATIO VARIANCE FOR STATIC
AND STREAMING DATA

Mr. Phichapop Changsakul

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Computer Science and Information Technology

Department of Mathematics and Computer Science
FACULTY OF SCIENCE
Chulalongkorn University

Academic Year 2021
Copyright of Chulalongkorn University

การใหค้ะแนนจุดผิดปกติไร้พารามิเตอร์โดยใชค้วามแปรปรวนของอตัราส่วนมวลส าหรับขอ้มูล
สถิตและสตรีมม่ิง

นายพิชาภพ แจง้สกุล

วิทยานิพนธ์น้ีเป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวิทยาศาสตรมหาบณัฑิต
สาขาวิชาวิทยาการคอมพิวเตอร์และเทคโนโลยสีารสนเทศ ภาควิชาคณิตศาสตร์และวิทยาการ

คอมพิวเตอร์
คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลยั

ปีการศึกษา 2564
ลิขสิทธ์ิของจุฬาลงกรณ์มหาวิทยาลยั

Thesis Title PARAMETER-FREE OUTLIER SCORING USING MASS RATIO

VARIANCE FOR STATIC AND STREAMING DATA
By Mr. Phichapop Changsakul
Field of Study Computer Science and Information Technology
Thesis Advisor Assistant Professor SOMJAI BOONSIRI, Ph.D.
Thesis Co Advisor Associate Professor KRUNG SINAPIROMSARAN, Ph.D.

Accepted by the FACULTY OF SCIENCE, Chulalongkorn University in Partial Fulfillment of the
Requirement for the Master of Science

Dean of the FACULTY OF SCIENCE

 (Professor POLKIT SANGVANICH, Ph.D.)

THESIS COMMITTEE

Chairman

 (Assistant Professor ARTHORN LUANGSODSAI, Ph.D.)

Thesis Advisor

 (Assistant Professor SOMJAI BOONSIRI, Ph.D.)

Thesis Co-Advisor

 (Associate Professor KRUNG SINAPIROMSARAN, Ph.D.)

External Examiner

 (Assistant Professor Chumphol Bunkhumpornpat, Ph.D.)

iii

ABSTRACT (THAI) พิชาภพ แจง้สกุล : การให้คะแนนจุดผิดปกติไร้พารามิเตอร์โดยใชค้วามแปรปรวนของอตัราส่วน

มวลส าหรับขอ้มูลสถิตและสตรีมม่ิง. (PARAMETER-FREE OUTLIER SCORING USING
MASS RATIO VARIANCE FOR STATIC AND STREAMING DATA) อ.ท่ีปรึกษาหลกั : ผศ.
ดร.สมใจ บุญศิริ, อ.ท่ีปรึกษาร่วม : รศ.ดร.กรุง สินอภิรมยส์ราญ

การตรวจจับจุดข้อมูลผิดปกติเป็นปัญหาส าคัญท่ีได้รับการศึกษาวิจัยและการประยกุต์จริงกับข้อมูล

อย่างไรกต็ามมีการวิจัยเพียงเลก็น้อยเกี่ยวกับการให้คะแนนค่าความผิดปกติท่ีปราศจากพารามิเตอร์แบบไม่มี
ผู้สอน วิทยานิพนธ์นีเ้สนอค่าปัจจัยความผิดปกติของความแปรปรวนอัตราส่วนมวลหรือเอม็โอเอฟ ซ่ึงเป็นการ
ให้คะแนนค่าความผิดปกติท่ีปราศจากพารามิเตอร์แบบไม่มีผู้สอนกับข้อมูลสถิต ขั้นตอนวิธีนีค้ านวณคะแนน
ความผิดปกติตามความแปรปรวนของอัตราส่วนของมวล จุดข้อมูลท่ีมีคะแนนผิดปกติสูงจะสัมพันธ์กับจุด
ผิดปกติ ในขณะท่ีจุดข้อมูลท่ีมีคะแนนผิดปกติต า่จะสัมพันธ์กับจุดปกติ วิทยานิพนธ์นีย้ังเสนอขั้นตอนวิธีปัจจัย
ความผิดปกติของความแปรปรวนอัตราส่วนมวลในข้อมูลสตรีมม่ิงหรือเอสเอ็มโอเอฟ ขั้นตอนวิธีนีจ้ะค านวณ
คะแนนความผิดปกติอิงตามเอ็มโอเอฟและแบบจ าลองหน้าต่างบานเล่ือนท่ีไม่ทับซ้อนกัน ซ่ึงเก็บกลุ่มข้อมูล
หนาแน่นโดยวิธีการสุ่มตัวอย่างตามน า้หนัก ท าให้วิธีการจัดเกบ็ข้อมูลมีประสิทธิภาพสูง วิทยานิพนธ์นีไ้ด้ท า
การทดลองท่ีครอบคลมุ หลากหลายกรณีเพ่ือประเมินประสิทธิภาพของเอม็โอเอฟและเอสเอม็โอเอฟโดยใช้ชุด
ข้อมูลท่ีสังเคราะห์และใช้งานจริง ผลการทดลองแสดงให้เห็นว่าวิธีดังกล่าวมีความแม่นย ามากกว่าเทคนิคการ
ตรวจจับจุดข้อมูลผิดปกติท่ีล า้สมัย

สาขาวิชา วิทยาการคอมพิวเตอร์และ
เทคโนโลยีสารสนเทศ

ลายมือช่ือนิสิต ..

ปีการศึกษา 2564 ลายมือช่ือ อ.ท่ีปรึกษาหลกั
 ลายมือช่ือ อ.ท่ีปรึกษาร่วม

iv

ABSTRACT (ENGLISH) # # 6278507823 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

KEYWORD: Outlier scoring algorithm, Parameter-free outlier scoring algorithm, Mass-ratio variance,
Anomaly in static and streaming data

 Phichapop Changsakul : PARAMETER-FREE OUTLIER SCORING USING MASS RATIO
VARIANCE FOR STATIC AND STREAMING DATA. Advisor: Asst. Prof. SOMJAI
BOONSIRI, Ph.D. Co-advisor: Assoc. Prof. KRUNG SINAPIROMSARAN, Ph.D.

Outlier detection is a significant problem that has been studied in a variety of research and real-

world applications. However, little research has been conducted on unsupervised parameter-free outlier
scoring. This thesis proposes Mass ratio variance-based Outlier Factor, or MOF, which is unsupervised
parameter-free outlier scoring for static data. This algorithm calculates outlier scores based on the variance
of mass ratio. The data points with high outlier scores are associated with outliers while the data points with
low outlier scores are associated with normal data points. This thesis also proposes Streaming Mass ratio
variance-based Outlier Factor or SMOF. This algorithm calculates outlier scores based on MOF and the non-
overlapping sliding window model which keeps the dense data points by weighted random sampling making
highly efficient storage. Extensive experiments have been conducted to evaluate the performance of MOF
and SMOF using synthesized and real-world data sets. The experimental results show that they have better
accuracy than the state-of-the-art outlier detection techniques.

Field of Study: Computer Science and Information
Technology

Student's Signature

Academic Year: 2021 Advisor's Signature
 Co-advisor's Signature

v

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor, Assistant Professor Somjai Boonsiri, who helped
complete my research paper and also corrected the grammar of my thesis and suggestions. I would also like to
thank Associate Professor Kung Sinapiromsarn for his advice, comments, and invaluable suggestions. Finally, I
would like to sincerely thank my parents for their funds and mental support in my study for this master’s degree.

Phichapop Changsakul

TABLE OF CONTENTS

 Page
 ... iii

ABSTRACT (THAI)... iii

 ... iv

ABSTRACT (ENGLISH) ... iv

ACKNOWLEDGEMENTS .. v

TABLE OF CONTENTS .. vi

LIST OF TABLES .. x

LIST OF FIGURES .. xi

Chapter 1 Introduction .. 1

1.1 The basic outlier detection ... 1

1.2 The proximity-based outlier detection ... 4

1.3 The parameter-free outlier detection .. 6

1.4 The basic outlier detection in streaming data ... 6

1.5 Aims and objectives ... 8

Chapter 2 Background .. 11

2.1 Input Data ... 11

2.1.1 Static data ... 11

2.1.2 Streaming data .. 12

2.2 Proximity-based outlier detection methods .. 12

2.2.1 Distance function ... 12

2.2.2 Scaling and normalization .. 15

vii

2.3 Window models .. 16

2.3.1 The landmark window model .. 16

2.3.2 The non-overlapping sliding window model ... 16

2.3.3 The overlapping sliding window model... 17

2.4 Weighted Random Sampling (WRS) ... 17

Chapter 3 Literature Surveys .. 19

3.1 Outlier detection algorithms in static data.. 19

3.1.1 Local Outlier Factor (LOF) .. 19

3.1.2 k-Nearest Neighbors (kNN) ... 20

3.1.3 Ordered difference distance Outlier Factor (OOF) .. 21

3.1.4 Acute angle order difference distance Outlier Factor (AOF) 22

3.1.5 Angle-Based Outlier Detection (ABOD) ... 22

3.2 Outlier detection algorithm in streaming data .. 24

3.2.1 Streaming Half-Space-Trees (HS-Trees) ... 24

3.3 Examples of calculating outlier detection in static data ... 26

3.3.1 Examples of calculating outlier scores .. 26

3.3.2 LOF algorithm.. 27

3.3.3 OOF algorithm ... 28

3.3.4 kNN algorithm ... 29

Chapter 4 Research Methodology ... 30

4.1 Mass ratio variance-based Outlier Factor (MOF) .. 30

4.1.1 The motivation of the MOF algorithm ... 30

4.1.2 The overview of the MOF algorithm ... 34

4.1.3 The procedure of the MOF algorithm .. 37

viii

4.1.4 The complexity analysis for the MOF algorithm ... 39

4.2 Streaming Mass ratio variance-based Outlier Factor (SMOF) ... 40

4.2.1 The motivation of the SMOF algorithm .. 40

4.2.2 The overview of the SMOF algorithm ... 43

4.2.3 The procedure of the SMOF algorithm .. 45

4.2.4 The complexity analysis for the SMOF algorithm... 47

Chapter 5 Experimental Results .. 49

5.1 Performance metrics ... 49

5.1.1 Precision ... 50

5.1.2 Recall ... 50

5.1.3 ROC AUC (AUC) .. 50

5.1.4 Average Precision (AP) ... 51

5.1.5 A paired t-test ... 52

5.2 Details and Parallel coordinates plots of benchmark data sets... 53

5.2.1 Satimage-2 data .. 53

5.2.2 MNIST data .. 54

5.2.3 Ionosphere data .. 55

5.2.4 Musk data ... 56

5.2.5 Satellite data ... 57

5.2.6 Glass data ... 58

5.2.7 HTTP and SMTP data .. 58

5.2.8 Shuttle data ... 59

5.2.9 Mulcross data ... 60

5.3 Simulation Model ... 60

ix

5.4 Competitive algorithms .. 61

5.5 Experiments and results of the MOF algorithm ... 61

5.5.1 Visualization of outlier scores .. 61

5.5.2 Comparison of detection patterns by paired t-test ... 63

5.5.3 Experiments on real-world data sets .. 64

5.5.4 The top-10 outliers ... 67

5.5.5 Conclusions on Experimental Results for the MOF algorithm 69

5.6 Experiments and results of the SMOF algorithm ... 69

5.6.1 Visualization of comparison sampling data sets .. 70

5.6.2 Outlier scoring on 3d synthesized data .. 71

5.6.3 Experiments on benchmark data sets ... 74

5.6.4 Impact of the window size ... 75

5.6.5 Conclusions on experimental results for the SMOF algorithm 80

Chapter 6 Conclusions and Future works ... 82

6.1 Conclusions of the MOF algorithm .. 82

6.2 Conclusions of the SMOF algorithm ... 83

6.3 Future works ... 84

REFERENCES ... 85

VITA ... 91

LIST OF TABLES

 Page
Table 3.1 Notation of the HS-Trees algorithm ... 25

Table 3.2 All pairwise distances of data points in D .. 27

Table 3.3 The value of Diff (pr, pi) .. 28

Table 4.1 List of symbols ... 44

Table 5.1 The confusion matrix .. 49

Table 5.2 Data properties .. 53

Table 5.3 p-value for each cluster pattern and algorithm ... 64

Table 5.4 AUC scores for static data .. 66

Table 5.5 AP scores for static data .. 66

Table 5.6 Execution time for static data ... 66

Table 5.7 Three real-world data sets ... 67

Table 5.8 The outlier scores of each algorithm for three real-world data sets 68

Table 5.9 Parameters setting ... 75

Table 5.10 Average AUC scores for streaming data .. 75

Table 5.11 Average AP scores for streaming data .. 75

LIST OF FIGURES

 Page
Figure 1.1 An example of a point outlier in a 2d synthesized data set ... 2

Figure 1.2 Temperature record by month ... 2

Figure 1.3 An example of a patient’s electrocardiogram .. 3

Figure 1.4 An example of a 2d synthesized data set ... 5

Figure 2.1 The landmark window model .. 16

Figure 2.2 The non-overlapping sliding window model ... 17

Figure 2.3 The overlapping sliding window model .. 17

Figure 2.4 The pseudo code of the WRS algorithm .. 18

Figure 3.1 2d synthesized data set for calculating outlier scores .. 26

Figure 4.1 Range of LOF values for different data points in an example data set 30

Figure 4.2 a) AOF scores and b) OOF scores in the example data set ... 31

Figure 4.3 The mass ratio of p with respect to q ... 32

Figure 4.4 Mass ratio of other data points w.r.t. an outlier ... 32

Figure 4.5 The mass ratio of other data points w.r.t a normal data point 33

Figure 4.6 Mass and neighborhoods of other data points with respect to P3 35

Figure 4.7 Mass ratio of data points with respect to data points p .. 36

Figure 4.8 a) The boxplots of the mass ratio of data points q with respect to data points p and b)
MOF scores of data points in D .. 37

Figure 4.9 The MOF flowchart ... 38

Figure 4.10 The MOF algorithm procedure .. 39

Figure 4.11 2d synthesized streaming data timestamp from 1- 3000 ... 41

xii

Figure 4.12 Detect outliers on time-series graph of a) MOF and b) SMOF scores 42

Figure 4.13 The behavior of WRS sampling from batch 1-4.. 43

Figure 4.14 The process of the SMOF algorithm ... 43

Figure 4.15 The SMOF flowchart ... 46

Figure 4.16 The pseudo code of the SMOF algorithm ... 47

Figure 5.1 Receiver operating characteristic curve ... 51

Figure 5.2 Precision-Recall curves ... 52

Figure 5.3 Parallel coordinates plot for Satimage-2 data .. 54

Figure 5.4 Parallel coordinates plot for MNIST data in 0-34th dimensions 54

Figure 5.5 Parallel coordinates plot for MNIST data in 35-69th dimensions 55

Figure 5.6 Parallel coordinates plot for MNIST data in 70-99th dimensions 55

Figure 5.7 Parallel coordinates plot for the Ionosphere data .. 56

Figure 5.8 Parallel coordinates plot for Musk data in 0-41th dimensions 56

Figure 5.9 Parallel coordinates plot for Musk data in 42-83th dimensions 57

Figure 5.10 Parallel coordinates plot for Musk data in 84-125th dimensions 57

Figure 5.11 Parallel coordinates plot for Musk data in 126-165th dimensions 57

Figure 5.12 Parallel coordinates plot for Satellite data ... 58

Figure 5.13 Parallel coordinates plot for Glass data ... 58

Figure 5.14 Parallel coordinates plot for HTTP data .. 59

Figure 5.15 Parallel coordinates plot for SMTP data ... 59

Figure 5.16 Parallel coordinates plot for the Shuttle data ... 60

Figure 5.17 Parallel coordinates plot for the Mulcross data ... 60

Figure 5.18 Assigning the log-scale on MOF (a – f), OOF (A-F), and (I-VI) scores to the six 2d
synthesized data sets (1-6) .. 62

xiii

Figure 5.19 One, two, and three clusters pattern of 2d synthesized data sets 63

Figure 5.20 Original six synthesized normal data sets (a-f), half sampling results of them by
weighted random sampling (A-F) and random sampling (I-VI) ... 70

Figure 5.21 Original six synthetized-noisy data set data sets (a-f), half sampling results of them by
Weighted random Sampling (A-F) and Random Sampling (I-VI) ... 71

Figure 5.22 3d synthesized data .. 72

Figure 5.23 Timestamp (t) 0 to 4000 for a 3d synthesized data ... 72

Figure 5.24 The impact of window size on 3d synthesized data set ... 73

Figure 5.25 a) SMOF and b) HS-Trees scores of each data point in 3d synthesized data set 73

Figure 5.26 The impact of window size on SMTP data .. 76

Figure 5.27 The impact of window size on HTTP data .. 77

Figure 5.28 The outlier scores of sequence outliers (the orange data points) by a) the SMOF and
b) the HS-Trees algorithms (window size is 1000)... 78

Figure 5.29 The impact of window size on SMTP+HTTP data ... 78

Figure 5.30 The impact of the window size on Mulcross data ... 79

Figure 5.31 The impact of the window size on Shuttle data ... 79

Figure 5.32 The impact of the window size on benchmark data .. 80

1

Chapter 1
Introduction

 This chapter covers the basic outlier detection for both static and streaming

data. In section 1.1, the basic outlier detection is presented. In section 1.2, the

proximity-based outlier detection is stated. The parameter-free outlier detection is

introduced in section 1.3. Section 1.4 discusses the basic outlier detection in

streaming data. Section 1.5 states the aims and objectives of this thesis.

1.1 The basic outlier detection

 An outlier is a data point that differs significantly from the rest of the data

points in a data set [1]. It is sometimes called an abnormal or an anomaly. Generally,

a normal data point is generated by a normal process, while an outlier is generated

from a different process that rarely occurs. The outlier pattern provides valuable

insight into an unusual event of a problem [2] as demonstrated by the following

examples.

• In an intrusion detection system, data gathered from network logs may record

unusual behavior due to malicious activities [3]. These patterns of logs will

constitute an intrusion of the system.

• In credit card fraud, an unauthorized credit card use may exhibit an interesting

pattern that can be classified as outliers among credit card transaction data [4].

• In a sensor-related event, sensors are often used to detect a change in an

environment. Sudden changes in an underlying pattern may represent an anomaly,

which is an interesting event [5].

• In a medical diagnosis, Magnetic Resonance Imaging scans (MRI) [6] recording

anomaly patterns often reflect the disease state of a patient.

 Other applications of outliers can arise for a variety of causes, such as an

instrumental error, a setup error, a human error, or a catastrophe. Regardless of the

reason behind outliers, they may be interesting to users because they carry some

different information from normal data points. Some analysts define outliers as

problems, and some analysts define them as interesting items, but they are

unavoidable [7]. In brief, outliers are interesting and take different forms in different

types of applications. V. Hodge and J. Austin [8] classified outliers into three major

types as follows:

1. A point outlier (type I) is a data point that is placed very far from a region of

normal data points, assuming all data points are mapped into an 𝑛-dimensional

Euclidean space. This is the simplest type of outlier and very easy to identify on a

static data set based on the distance metric. Intuitively, each attribute from a data

2

set will be mapped to a single dimension in the Euclidean space. For example,

Figure 1.1 shows data points in 2-dimensional Euclidean space. Data point 𝑂1 is

far from cluster 𝐶1, so it will be treated as a point outlier.

Figure 1.1 An example of a point outlier in a 2d synthesized data set

2. A contextual outlier (type II) is isolated from other data points with respect to the

context. They can be considered as the context outlier. This type of outlier

requires a contextual attribute such as time. An outlier differs from the

surrounding data points according to the contextual attribute. Note that a point

outlier is a contextual outlier, but a contextual outlier may not be a point outlier

even if the contextual attribute is dropped. For example, Figure 1.2 shows an

area's monthly temperature time series over the last few years. The contextual

attribute is the time dimension. Note that 𝑡1 and 𝑡2 are both low temperatures.

However, 𝑡2 is the temperature during the winter season, so it is treated as a

normal data point while 𝑡1 is the low temperature during the summer season.

Hence, it is treated as a contextual outlier.

Figure 1.2 Temperature record by month

3. A collective outlier (type III) is a subset of data points treated as a single

collection that deviates significantly from the rest of the data points in a data set.
An individual data point may not be defined as a collective outlier by itself, but a

collection of adjacent data points can be grouped as a collective outlier. In the

time-series data, where the entire data set forms a sequence of data points, a

3

particular subsequence is a collective outlier if they exhibit different patterns with

respect to the entire sequence. For example, Figure 1.3 shows an example of a

patient’s electrocardiogram [9] with a collective outlier highlighted with the red

color due to consecutive low values corresponding to an Atrial Premature

Contraction.

Figure 1.3 An example of a patient’s electrocardiogram

Definitions of an anomaly and an outlier are different in the view of Aggarwal

et al. [2]. He described an outlier as a data point that can be regarded as an irregular

point, a noise, or an abnormal data point. In contrast, an anomaly is considered a

particular type of outlier that needs attention from a specialist. Nevertheless, this

thesis will concentrate on detection, so both keywords will not be treated differently.

 Outlier identification is a challenging problem for a static data set. Because the

notion of outliers is ambiguous and application-specific, no formal definition of

outliers has been defined. Despite this fact, numerous publications perform outlier

detection based on a user-specific criterion. They may be classified into supervised,

semi-supervised, or unsupervised methodologies depending on the learning method.

1. A supervised methodology assumes the availability of class labels from a training

data set for both normal data points and outliers. Researchers built a predictive

model for the anomaly class against the normal type. Then, an outlier is predicted

as a data point in the anomaly class.

2. A semi-supervised methodology assumes that the training data set contains only

the normal data points. Since the label is not provided for outliers, this method is

widely applicable to more general problems. Many unsupervised techniques can

be adapted to operate in a semi-supervised mode using only normal data points as

training. Such adaptation assumes that the test data contains outliers that cannot be

captured by the unsupervised model during training. This method is sometimes

called novelty detection [9].

4

3. An unsupervised methodology does not require a training label. The techniques in

this category make an implicit assumption that a group of normal data points

forms a cluster, while an outlier will not belong to any cluster of normal data

points. If this assumption is not true, then such techniques suffer from a high false

alarm rate.

 Additionally, the output characteristic of outlier detection can be used to

categorize the outlier detection method into one of the following two method types.

1. Outlier scoring: an outlier detection method generates a score of each data point as

the degree of being an outlier. This score can also be used to rank data points

based on their outlier tendency.

2. Outlier labeling: an output of an outlier detection method is a binary label that is

true for an outlier and is false otherwise. This output can be generated from the

outlier scoring algorithm by setting up a threshold.

 Normally, an outlier detection constructs a model of the normal patterns and

then computes outlier scores or labels of data points that deviate from these patterns.

Examples of these models are generative models such as a Gaussian-mixture model, a

regression-based model, or a proximity-based model. They use different assumptions

for the “normal” behavior of data. This thesis will focus only on the proximity-based

model.

1.2 The proximity-based outlier detection

The idea of outliers in the proximity-based outlier detection is that data points

are isolated from the remaining data points based on similarity or distance functions

such as Makowski distance (L𝑝-norm distance), Euclidean distance, Manhattan

distance, Jaccard similarity, or Cosine similarity. A proximity-based method is among

the most popular methods used in an outlier analysis. It may be applied in one of three

methods which are a clustering-based method, a distance-based method, or a density-

based method.

 A clustering-based method is a method that groups data points having similar

characteristics of a data set as a cluster. There are three main approaches in this

direction. First, any normal data point must belong to a cluster, while outliers do not

belong to any cluster such as DBSCAN [10] and SNN clustering [11]. Their

algorithms concentrate on grouping data in a cluster, but they did not focus on

identifying outliers. Second, a normal data point belongs to the cluster centroid, while

anomalies are far from all cluster centroids. It consists of two steps. The first step is to

find 𝑘-centroids via a clustering algorithm, and then the second step is to calculate the

distance of each data point to its nearest centroid as the score. These types of

algorithms are Self-Organizing Maps (SOM) [12], 𝑘-means Clustering [13], and

Expectation-Maximization (EM) [14], which are studied by Smith et al. [15]. Third, a

normal data point belongs to large and dense clusters, while outliers belong to small

or sparse clusters. Techniques based on this assumption classify data points belonging

5

to a cluster by a cluster size or cluster density. If the size or the density of a cluster is

less than a certain threshold, then this cluster contains anomalies. An algorithm of this

type is the Cluster-Based Local Outlier Factor (CBLOF) [16]. The CBLOF score

captures the size of the cluster to which a data point belongs, as well as the distance

from the cluster centroid.

A distance-based method defines outlier scores based on the basis of the

distance from other data points. The simplest example is the case in which the 𝑘

nearest neighbors distance of a point is used as its outlier score. It is the so-called 𝑘

Nearest Neighbors outlier detection (kNN) [17-19]. This algorithm uses mean, max,

or median of 𝑡ℎ𝑒 𝑘-nearest neighbors distance as the outlier scores. kNN has been

used to detect credit fraud by peer group analysis [20]. However, it did not work well

if a data set contained clusters of various densities.

A density-based method defines an outlier score based on the number of data

points within a specific region to estimate the density of the neighborhood of each

data point. A data point that lies in a neighborhood of low density is declared to be an

outlier, while a data point that lies in a dense neighborhood is declared to be normal.

Considering the example data set in Figure 1.4 from [21], it shows that the data set

contains two outliers (𝑂1 and 𝑂2), and two clusters, one of which is much sparser than

the other. Data point 𝑂2 cannot be detected as an outlier by a distance-based algorithm

unless a smaller distance threshold is used. LOF [21] can identify 𝑂2 in a locally

adjusted manner.

Figure 1.4 An example of a 2d synthesized data set

A proximity-based method is naturally designed to detect both noise and

anomalies, although different methods are suitable for different kinds of outliers. For

example, some clustering methods are designed to detect noise that does not belong to

a cluster, whereas some methods detect large levels of deviation or sparsity in terms

of density-based or distance-based as outliers or anomalies.

 These methods are extremely popular because of their intuitive simplicity and

interpretability. In fact, several methods for intuitive exploration and explanation of

outliers [20] are based on proximity. Because of the simplicity of the underlying

6

methods, they can be easily generalized to any data type, such as time-series data,

sequence data, or graph data.

1.3 The parameter-free outlier detection

Outlier detection of the proximity-based method depends on one or more user-
defined parameters. For example, kNN is based on its 𝑘-distance, where 𝑘 is a user-
defined parameter. It is common to vary a user-defined parameter of the algorithm in

order to search for the best parameter of the current data set via AUC metric. There

are two problematic issues with this search. First, suitable parameters cannot be

identified if there is no outlier label for any data point. Second, even if there are some

outlier labels, such evaluation will favor normal data points [2] over other outliers.

Therefore, it is necessary to develop parameter-free algorithms or algorithms that

have a small number of parameters for better predictive performance across diverse

data sets [21].

Various outlier scoring algorithms have been proposed in the literature [22-24]

based on different metrics. An improved parameter-free outlier scoring algorithm

based on the distance metric and angle is proposed [25] that avoids the weakness from

[22-24]. However, using only the distance metric will give low scores to outliers

forming a small clump. The density concept is more appropriate.

1.4 The basic outlier detection in streaming data

In the new information era, the data assimilation process has changed

significantly from humans to devices such as the sensor network, web-click

monitoring, and network traffic monitoring into the form of streaming data. Streaming

data is a continuous, unbounded sequence of data records accompanied and ordered

by implicit or explicit timestamps. The arrival interval is usually very short, and the

data distribution often changes over time. The streaming data concept started to gain

popularity in the early 2000s; since then, numerous efforts have been put forward to

study them from different perspectives, such as query processing, resource

management, storage management, outlier detection, clustering, and novel detection.

 Outlier detection for streaming data is a new area of research compared to a

long history of outlier detection in static data [26]. In the static data, an outlier

detection technique extracts a pattern from a data set and then compares every data

point to the pattern to detect outliers (store-and-process paradigm). However, the

store-and-process paradigm is not applicable for streaming data because an entire data

set is never available due to its unbounded nature; learning any trend without store-

and-process is a challenging issue and requires new research. In addition, due to the

characteristics specific to streaming data, such as short interarrival rates, timelines,

7

and change of data distribution (or concept drift), they introduce new issues for outlier

detection techniques. The issues related to streaming data characteristics are [27]:

1. Transient: any data point in streaming data is transient in nature. After a data point

has been introduced from a long past, it will lose its importance. For streaming

data, an outlier detection technique should detect the outlier score of data points

immediately as it arrives [30].

2. Infinite: streaming data is an infinite sequence of data points as they are generated

from a data source indefinitely. Therefore, at any specific time, the entire data set

will not be available, so many static outlier detection techniques requiring access

to the whole data set cannot be used. An outlier detection method for streaming

data normally stores a summary of a data set that performs computation

incrementally. The data point is compared to the summary instead of all previous

data points. Thus, an outlier detection model must be incremental and cannot

assume the availability of the entire data set.

3. Arrival rate: the arrival rate may be fixed or varied. An outlier detection technique

for streaming data must process the current data point before the next available

data point arrives. The set of data points or the summary of the data points to

which the current data point is compared to detect outliers should be adjusted

based on the available processing time. [27]

4. Concept drift: the distribution of data may change over time in streaming data,

which is defined as concept drift. A data point that has been detected as an outlier

for one data distribution may change its outliers for different data distributions.

Therefore, the outlier detection technique for streaming data cannot assume any

fixed distribution of data. [28]

 Streaming data has a single temporal context for data points, so the outlier

should be a contextual outlier. The streaming data is considered as infinite sequences

of numbers, and the processing process must be online; therefore, at any moment,

only a subset of the entire data set is presented [27].

 To address the growing need for outlier detection for streaming data,

researchers mostly used distance-based outlier detection in streaming environments

[29-32]; the literature normally ignores the findings of local outliers in streaming data

[32]. The local outlier factor (LOF) detection technique [7] and many of its varieties

have been proposed for solving static data sets [33-35]. In terms of detecting local

outliers in streaming data, researchers in [36] proposed incremental LOF (iLOF).

However, this technique needs all previous data points to detect outliers precisely. In

the case of streaming data, where the number of data points is unbounded and can

arrive at a high rate, keeping all data points is impossible. Hence, such an approach

has limited use in practice.

 MiLOF [37] was proposed to solve the memory limitation by clustering past

data points and storing only a small number of data points in memory. Due to the use

of the 𝑘-mean algorithm, which does not preserve data density, this approach

8

invariably leads to a significant reduction in outlier detection accuracy. Another issue

with existing LOF-based algorithms is that they are incapable of detecting outlier

sequences in streaming data. The DiLOF [38] algorithm was proposed to address the

limitations of the iLOF and MiLOF algorithms. The DiLOF algorithm is divided into

two steps: the detection and the summarization steps. When new data points are

inserted, the detection step is used to detect outliers and update the data points in the

window. In this step, the iLOF algorithm is used to detect outliers, and a skipping

scheme is used to detect a sequence of outliers, as in DoS attacks. In the

summarization step, data points in a window are summarized to half (NDS).

However, all of these are based on the LOF algorithm, which requires a sensitive

parameter setting.

 To avoid distance measure, the Streaming HS-Trees [38] algorithm, is a one-

class outlier detection algorithm, which uses a mass profile or the number of data

points in a full binary tree to measure an outlier score. The system processes two

windows at any time which are the reference window and the current window. During

the initial outlier detection stage, the algorithm extracts the mass profile of data in the

reference window to measure outlier scores of new data points. A new data point that

falls in the high-mass area is assigned as a normal data point, whereas a data point

that falls in the low-mass or empty area is interpreted as an outlier; after that, a new

data point is added to the current window and changes the mass profile. When the

current window is full, the newly recorded profile takes precedence over the previous

profile in the reference window, ensuring that the reference window always contains

the most recent profile, which can be used to score the next batch of newly arriving

data. The current window will then delete its previously saved profile and prepare to

capture the profile of the next batch of newly arrived data. This process will continue

for the next streaming data. However, this algorithm does not collect any normal data

points to measure outlier scores. It assigns an outlier score to data points in the next

batch and uses data points in the next batch to measure outlier scores after this batch.

1.5 Aims and objectives

Outliers in data need to be detected automatically in real-time. The popular

learning algorithms for outlier detection use unsupervised learning and generate

scores instead of outlier labels. This will give control to the user to set the threshold

for detecting outliers. With intuitive simplicity and interpretability, a proximity-based

model is normally applied to detect anomalies in a static data set. However, most of

these algorithms need to set the number of nearest neighbors. To avoid setting this

parameter, different distance-based methods are used. Nevertheless, current results

were reported with lower performance than the one with the best parameter. Another

approach is to apply the angle concept to this problem. Due to its high complexity, it

is hardly used in real-world data sets.

 Outlier detection in streaming data differs from one in static data due to

streaming data characteristics which are transient, infinite, high arrival rate, and

9

concept drift. The outlier detection in static data that stores all data points before

processing cannot be used. A batch of new data points should be evaluated before the

next batch of data points appears. An algorithm should construct a model of normal

data points to help detect future outlier patterns.

This thesis proposed two outlier scoring algorithms for static data and

streaming data. The first algorithm is called the Mass ratio variance-based Outlier

Factor (MOF) algorithm to generate outlier scores of data points in a static data set.

The second algorithm is called the Streaming Mass ratio variance-based Outlier

Factor (SMOF) algorithm to generate outlier scores in the next batch of streaming

data.

The MOF algorithm is a parameter-free unsupervised outlier score that

employs the proximity concept. The MOF algorithm assigns MOF scores to each data

point in a data set, indicating its degree of outlier-ness. The MOF algorithm in this

thesis assumes all data points lie in the Euclidean space, having low density points

surrounding them compared to the rest of the data points, so the MOF algorithm

collects a ratio of density surrounding a pair of data points with the sphere having the

radius equal to the distance between a pair of data points. These ratios give the density

of the current data point with the rest of the data points. An outlier will have a large

variance from this collection.

This thesis also proposed an outlier scoring algorithm for streaming data

called the SMOF algorithm. It addresses the special characteristics of streaming data

to be applied to the MOF algorithm via the sliding window concept and weighted

random sampling. The SMOF algorithm assigns SMOF scores to each data point in

streaming data, indicating its degree of outlier-ness. The SMOF algorithm manages

two streaming data windows which are the reference window and the current window.

The reference window or synopsis window contains a summary of previous data

points, capturing changes in streaming data. Initially, the MOF algorithm will be

performed on this initial window to give outlier scores to all data points. The current

window or a non-overlapping sliding window contains data points that currently

arrive from streaming data. Each new data point will be assigned an outlier score, and

these scores will be combined with data points in the reference window to generate a

new synopsis window of the same size. Unlike other proximity-based outlier

detections such as MiLOF, DiLOF, and HS-Trees, the SMOF algorithm does not

construct a summary or synopsis via clusters or trees that requires multiple

parameters. Instead, the SMOF algorithm uses weighted random sampling based on

MOF scores to maintain outliers with low probability and keep normal data points

with high probability.

 This thesis tries to answer these questions: Is it possible to construct a density-

based outlier scoring algorithm without any user-defined parameter? Could this

method be extended to score data points in a data stream environment? In order to

achieve these aims, the following objectives have been set.

10

1. Design a parameter-free scoring algorithm based on the density concept in

static data.

2. Extend this algorithm to work with streaming data.

3. Synthesize various data sets to assess the performance of both algorithms based on

known outliers in static data sets and streaming data sets.

4. Compare the performance of the MOF and the SMOF algorithms with known

scoring algorithms using their best parameters.

 To be able to assess the performance of the proposed methods compared with

other methods, labeled data sets have been synthesized with different anomaly data

patterns.

11

Chapter 2
Background

 This chapter is organized as follows. In section 2.1, static and streaming data

are defined. In section 2.2, machine learning algorithms using proximity-based are

introduced. The window model is introduced in section 2.3. Section 2.4 discusses the

Weighted Random Sampling (WRS).

2.1 Input Data

The nature of the input data is generally a collection of data points known as

objects, records, vectors, events, cases, samples, observations, or entities. A set of

attributes which is also referred to as a dimension or a feature can be used to describe

each data point. In this thesis, the attributes are numerical, and each data point

contains multiple attributes. Furthermore, input data can be classified as static and

streaming data. The operational distinction between them lies in when the data is

stored and analyzed. Before it is processed, static data is loaded into the main

memory. On the other hand, streaming data is processed by loading one or two

windows at a time.

2.1.1 Static data

Static data is defined as a fixed-size collection of data points forming a single

data set. It normally assumes that the current computer memory can hold all data

points during processing, and any data point can be recalled at any time. Static data is

normally organized as a matrix of numeric numbers that will fit in the memory during

the scoring process. Common static data refers to multidimensional data which is

defined as follows:

Definition 2.1 (Multidimensional data)

Multidimensional data, 𝐷 = {𝑋1, … , 𝑋𝑛}, is a set of 𝑛 data points, where 𝑋𝑖 is the

𝑖𝑡ℎ data point having 𝑑 numeric features denoted by 𝑋𝑖 = (𝑥𝑖
1, … , 𝑥𝑖

𝑑).

 In static data, all data points are assumed to be collected independently at

random. In practice, various data values may be related to one another in terms of

time or explicit connections between data points. This can be defined as time-series

data.

 A time series is a collection of values that are typically generated over time by

continuous measurement having equally spaced time intervals. Values at successive

timestamps typically do not change abruptly. An abnormal event can be defined as a

sudden change in consecutive values. As a result, finding outliers in time series is

12

closely linked to detecting anomalous events such as contextual or collective

anomalies across related timestamps.

Definition 2.2 (Multidimensional time-series data)

The time-series length 𝑛 containing 𝑑 numeric features is {𝑌1, . . . , 𝑌𝑛}. Each

timestamp contains a component having values of d attributes. So, the set of values

received at the timestamp 𝑖 is 𝑌𝑖 = (𝑦𝑖
1, . . . , 𝑦𝑖

𝑑). The value of the 𝑗𝑡ℎ attribute at

the time stamp 𝑖 is 𝑦𝑖
𝑗
.

2.1.2 Streaming data

Streaming data is a potentially infinite sequence of data points arriving at a

high rate on a regular basis which differs from time-series data. In the case of time

series data, an individual data point shows a high correlation of temporal continuity,

but multidimensional streaming data may not have this property. For example, in

streaming data of texts, the current text record cannot be reliably predicted from its

immediately preceding records. Because of the differences in the expected level of

temporal continuity in this scenario, outlier analysis in multidimensional data

streaming data differs significantly from outlier analysis in time-series data.

Definition 2.3 (Multidimensional streaming data)

Multidimensional streaming data, 𝑆 = {𝑋𝑡}𝑡=1
𝑛 , is a stream of data points arrived

at a timestamp t which is potentially unbound (𝑛→∞). Each data point 𝑋𝑡 having

𝑑 features is denoted by 𝑋𝑡 = (𝑥𝑡
1, … , 𝑥𝑡

𝑑).

2.2 Proximity-based outlier detection methods

Proximity-based outlier detection is simple to implement and makes no prior

assumptions about the data distribution with the assumption that outliers are isolated

from other data points. It uses the distance function to compute for each attribute and

then combines them as a degree of isolation or an outlier score. In practice, different

types of attributes are often encountered in the same data. A significant issue is that

the range of the attributes may differ significantly. Scaling and normalization make

each attribute equally important and make it easier to process with outlier detection.

The details of distance function, scaling, and normalization are as follows:

2.2.1 Distance function

Most proximity-based outlier detection methods require a distance metric

defined between two data points. The general distance metric for quantitative data is

the L𝑝-norm or Minkowski distance.

13

Definition 2.4 (L𝑝 - norm between data points 𝑋 and 𝑌)

Let data point 𝑋 = (𝑥1, . . . , 𝑥𝑑), data point 𝑌 = (𝑦1, . . . 𝑦𝑑), and 𝑝 be a positive

integer. L𝑝 - norm between two data points is defined as

𝑑(𝑋, 𝑌) = (∑|𝑥𝑖 − 𝑦𝑖|
𝑝

𝑑

𝑖=1

)

1
𝑝

The Euclidean (p = 2) and the Manhattan (p = 1) distance metrics are two

specific examples of the L𝑝 -norm. The sources for these metrics come from spatial

applications with physical interpretability. The shortest straight-line distance between

two data points is known as the Euclidean distance. The Manhattan distance is the

"city block" driving distance with a rectangular grid of streets, such as New York

City's Manhattan Island. Because the straight-line distance between two data points

does not change with the orientation of the axis system, the Euclidean distance has the

advantage of being rotation-invariant. It's worth noting that the data distribution,

dimensionality, and data type are all highly sensitive to distance functions.

When calculating the distance between all pairs in a data set 𝐷, all distances

are kept in a matrix form, which is a square matrix (two-dimensional array)

containing the distances between row index 𝑖 corresponding to data point 𝑖 and

column index 𝑗 corresponding to data point 𝑗 having the size [𝑛 × 𝑛].

Definition 2.5 (Distance matrix of 𝐷)

Given data set 𝐷 = {𝑝1, … , 𝑝𝑛}. For row 𝑖𝑡ℎ, 𝐴𝑑𝑖 is defined as an array of a

pairwise distance of data point 𝑝𝑖 to other data points in 𝐷. 𝐷𝑀 is a distance matrix

between pairs of data points defined as

𝐴𝑑𝑖 = (𝑑𝑖,𝑗)
1×𝑛

= (𝑑(𝑝𝑖, 𝑝𝑗))
1×𝑛

𝐷𝑀 = [
𝐴𝑑𝑖

⋮
𝐴𝑑𝑛

]

𝑛×𝑛

𝑓𝑜𝑟 𝑖 ∈ {1, … , 𝑛} 𝑎𝑛𝑑 𝑗 ∈ {1, … , 𝑛}

Proximity-based methods use 𝐷𝑀 for ordering and determining the neighbors

of any data point. It is converted and stored in the sorted distance matrix and sorted

distance index matrix. Both definitions are defined as follows:

14

Definition 2.6 (Sorted distance matrix of 𝐷)

Given data set 𝐷 = {𝑝1, … , 𝑝𝑛} and the distance of 𝐷𝑀 defines 𝑑
(𝑖,𝑐𝑘

𝑖)
 as the

pairwise distance from a data point 𝑝𝑖 to its 𝑘 nearest neighbors (for 𝑘 =
{1,2, … , 𝑛}), and 𝐴𝑠𝑑𝑖 is an array of a sorted pairwise distance of data point 𝑝𝑖 to

its 𝑘 nearest neighbors. 𝑆𝐷𝑀 is a sorted distance matrix of 𝐷. It is defined as

follows:

𝐴𝑠𝑑𝑖 = 𝑠𝑜𝑟𝑡𝑒𝑑(𝐴𝑑𝑖) = (𝑑
𝑖,𝑐𝑘

𝑖)
1×𝑛

𝑆𝐷𝑀 = [
𝐴𝑠𝑑𝑖

⋮
𝐴𝑠𝑑𝑛

]

𝑛×𝑛

Definition 2.7 (Sorted distance index matrix of 𝐷)

Given data set 𝐷 = {𝑝1, … , 𝑝𝑛} and 𝑆𝐷𝑀 defines 𝑎𝑖,𝑘 as the index data point from a

data point 𝑝𝑖 to its 𝑘 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 Where {𝑐1
𝑖 , … , 𝑐𝑛

𝑖 } is the permutation of

{1, … , 𝑛} that 𝑑(𝑖,𝑐1
𝑖) ≤ 𝑑

(𝑖,𝑐𝑘2
𝑖)

≤ ⋯ ≤ 𝑑(𝑖,𝑐𝑛
𝑖), 𝐴𝑖𝑑𝑖 is an array of an index of data

point 𝑝𝑖 to its 𝑘 nearest neighbors. 𝐼𝑆𝑀 is the sorted distance index matrix of 𝑆𝐷𝑀. It

is defined as follows:

𝑎𝑖,𝑘 = 𝑐𝑘
𝑖

𝐴𝑖𝑑𝑖 = 𝑎𝑟𝑔𝑠𝑜𝑟𝑡(𝐴𝑑𝑖) = (𝑎𝑖,𝑘)
1×𝑛

𝑆𝐼𝑀 = [
𝐴𝑖𝑑𝑖

⋮
𝐴𝑖𝑑𝑛

]

𝑛×𝑛

 In a proximity-based method, most outlier detections require a distance

function that will be used as an outlier factor. The following definitions will define

the 𝑘-distance of data point 𝑝, 𝑘-distance neighborhood of a data point 𝑝, the

following definitions are their notations.

Definition 2.8 (𝑘-distance of a data point 𝑝)

For any positive integer 𝑘, the 𝑘-𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of data point 𝑝, denoted as 𝑘-

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝), is defined as the distance 𝑑(𝑝, 𝑜) between data points 𝑝 and 𝑜 ∈ 𝐷

such that:

𝑘𝐸𝑜 = {𝑜′ ∈ 𝐷\{𝑝}|𝑑(𝑝, 𝑜′) ≤ 𝑑(𝑝, 𝑜)} 𝑤ℎ𝑒𝑟𝑒 |𝑘𝐸𝑜| ≥ 𝑘

𝑘𝐿𝑜 = {𝑜′ ∈ 𝐷\{𝑝}|𝑑(𝑝, 𝑜′) < 𝑑(𝑝, 𝑜)} 𝑤ℎ𝑒𝑟𝑒 |𝑘𝐿𝑜| < 𝑘

15

Definition 2.9 (𝑘-distance neighborhood of data point 𝑝)

Given the 𝑘-distance of 𝑝, the 𝑘-distance neighborhood of 𝑝 contains every data

point whose distance from 𝑝 is not greater than the 𝑘-𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒. The data point 𝑞

in 𝒩𝑘(𝑝) is called the 𝑘-nearest neighbors of 𝑝. It is defined by

𝒩𝑘(𝑝) = { 𝑞 ∈ 𝐷\{𝑝} | 𝑑(𝑝, 𝑞) ≤ 𝑘-𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝) }.

2.2.2 Scaling and normalization

In many scenarios, various features represent different scales of references,

and they may not be comparable. For example, an age attribute is measured on a

different scale than a salary attribute. The latter characteristic is usually several orders

of magnitude greater than the former. As a result, any aggregate function based on

various features (e.g., Euclidean distances) will be dominated by the attribute with a

larger magnitude. Standardization or Z-score normalization are commonly used to

solve this issue. Typically, standardization entails rescaling data to have a zero mean

and a standard deviation of 1 (a unit variance) according to definition 2.12.

Definition 2.10 (Mean)

Mean is defined as

�̅� =
1

𝑛
(∑ 𝑋𝑖

𝑛

𝑖=1

)

Definition 2.11 (Standard deviation)

Standard deviation is defined as

𝑆𝐷 = √
∑ (𝑋𝑖 − �̅�)2𝑛

𝑖=1

𝑛

Definition 2.12 (Standardization)

A data point is converted to a z-score via the following formula

�́�𝑖 =
𝑋𝑖 − �̅�

𝑆𝐷

𝑤ℎ𝑒𝑟𝑒 �́�𝑖 is the standardized value.

A second approach uses min-max scaling to map all values in numeric

attributes to be in the range of [0, 1] according to definition 2.13. This approach is not

effective when the maximum and minimum values are extreme values or outliers. For

example, if the data set has a single data point mistakenly recorded as 900 instead of

90. In this case, most normal age records will be in the range of [0, 0.1]. As a result,

this attribute may be de-emphasized. Standardization is needed in such scenario.

16

Definition 2.13 (Min-max scale)

Let 𝑚𝑖𝑛(𝑋) and 𝑚𝑎𝑥(𝑋) represent the minimum and maximum values of

attributes 𝑋𝑖 in D.

�́�𝑖 =
𝑋𝑖 − 𝑚𝑖𝑛 (𝑋)

𝑚𝑎𝑥(𝑋) − 𝑚𝑖𝑛 (𝑋)

𝑤ℎ𝑒𝑟𝑒 �́�𝑖 is the min-max scale value.

2.3 Window models

When the streaming data is processed, it is more efficient to process recent

data instead of the whole data. It is not possible to store the whole input data because

streaming data is infinite, and all existing processing systems have main memory

constraints. Different window models are developed for this purpose. There are three

different window models, which are the landmark window model, the non-

overlapping sliding window model, and the overlapping sliding window model [39].

2.3.1 The landmark window model

The landmark window model encompasses all data from a specific point in

time up to the current moment. In the landmark window, the model is initialized in a

fixed time point, the so-called landmark that marks the beginning of the window. In

successive snapshots, the window size grows to consider all the data seen so far after

the landmark. According to this definition, data points belonging to a window shown

in Figure 2.1 are calculated using 𝑊𝑇 = (𝑋1, … , 𝑋(𝑇−1)𝐴+𝑤) where 𝑤 is initialized

window size, 𝑋𝑖 is 𝑖𝑡ℎ data point, and 𝑊𝑇 is 𝑇𝑡ℎ window which indexes 𝑇 starting

with one and add 𝑂 data points to a window at each step.

Figure 2.1 The landmark window model

2.3.2 The non-overlapping sliding window model

In the non-overlapping sliding window model, any data point belongs to a

single window. The number of data points that belong to a single-window is called the

window size and is usually indicated by 𝑤. The window size can be defined as a data

point count or elapsed time. Consecutive windows do not intersect, and the new

17

window just begins from the data point the previous window ends. According to this

definition, data points belonging to a window are shown in Figure 2.2 and denoted

on 𝑊𝑇 = (𝑋(𝑇−1)𝑤, … , 𝑋𝑇𝑤) where w is the window size, 𝑋𝑖 is 𝑖𝑡ℎ data point, and 𝑊𝑇

is 𝑇𝑡ℎ window which indexes 𝑇 start with one.

 Figure 2.2 The non-overlapping sliding window model

2.3.3 The overlapping sliding window model

In the overlapping sliding window model, the window swaps data points at

each step. The older data points move out of the window, and the most recent data

points move into the window by the FIFO style. All data points in the window have

equal weight, and consecutive windows mostly overlap. The window size is a user-

parameter and should be decided according to the input data. Figure 2.3 shows that

this window model and data points belonging to a window are calculated using 𝑊𝑇 =

(𝑋(𝑇−1)𝐴+1, … , 𝑋(𝑇−1)𝐴+𝑤) where 𝑤 is a window size, 𝑋𝑖 is 𝑖𝑡ℎ data point, and 𝑊𝑇 is

𝑇𝑡ℎ window which indexes 𝑇 start with one and add 𝑂 data points to a window at

each step.

Figure 2.3 The overlapping sliding window model

2.4 Weighted Random Sampling (WRS)

Random sampling without replacement (RS) problem requires selecting m

unique random data points from a data size n. All data points have the same

probability of being chosen. In contrast, the data points are weighted in weighted

random sampling (WRS) [40], and the probability of each data point being chosen is

determined by its relative weight.

18

The size of a data set 𝐷 is n, the size of the random sample is 𝑚, and the

weight of 𝑋𝑖 is 𝑣𝑖. The random function (𝐿,  𝐻) generates a uniform random number

in (0, 1). All sampling problems are without replacement. Depending on the context,

WRS is used to denote a weighted random sample. The pseudo code of the WRS

algorithm is given as follows:

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝑊𝑅𝑆 (𝐷, 𝑉, 𝑚)

Inputs:

𝐷 - data set, 𝑋𝑖 𝜖 𝐷
𝑉 – the weight of a data set, 𝑣𝑖 𝜖 𝑉

𝑚 - sample sizes
Outputs:

𝑊𝑅𝑆 - sample data set, 𝑊𝑅𝑆 ⊆ 𝐷

Line:

1. For 𝑖 𝜖 {1, 2, 3, … 𝑛 }

2. Generate: 𝑈 = { 𝑢𝑖 | 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) }

3. Calculate: 𝐾 = {𝑘𝑖| 𝑢𝑖

1

𝑣𝑖}

4. Rank data points based on 𝐾 as 𝑊𝑅𝑆 and select the top m data points

5. Return 𝑊𝑅𝑆

Figure 2.4 The pseudo code of the WRS algorithm

19

Chapter 3
Literature Surveys

 This chapter presents existing outlier scoring techniques, which can be

classified into two categories: algorithms for static data in section 3.1 and algorithms

for streaming data in section 3.2. In addition, examples of calculating outlier detection

in static data are illustrated in section 3.3.

3.1 Outlier detection algorithms in static data

To detect outliers in static data, the user inputs the entire data points in the

data set 𝐷 and user-defined parameters to the model, it processes the entire data points

in main memory and assigns outlier scores to the entire data points. Note that some

algorithms don’t need any user-defined parameters.

3.1.1 Local Outlier Factor (LOF)

 The local outlier factor (LOF) [41] algorithm measures the local density of

data points according to its k nearest neighbor. If the region of a measured data point

has a lower density than its neighbor by comparing the local density of itself to its

neighbors, it could be considered an outlier. This LOF shares the concept of

reachability distance and core distance similar to DBSCAN and OPTICS. The LOF

algorithm consists of the following steps:

Step 1: Calculate the 𝑘-distance between each data point in 𝐷 and its 𝑘-nearest

neighbors.

Step 2: Calculate the reachability distance of all data points in 𝐷 according to

definition 3.1.

Definition 3.1 (Reachability distance of a data point 𝑝 w.r.t. a data point 𝑜)

The reachability distance is the maximum of 𝑑(𝑝, 𝑜) and 𝑘-𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑜). In other

words, the reachability distance of data point p from o is the true distance of these

two data points, but at least 𝑘-distance of o. It is mainly introduced for smoothing

local density, which is defined as

𝑟𝑒𝑎𝑐ℎ-𝑑𝑖𝑠𝑡𝑘 (𝑝, 𝑜) = 𝑚𝑎𝑥 {𝑘-𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑜), 𝑑 (𝑝, 𝑜)}

Step 3: Calculate the local reachability density of each data point 𝑝 in D according to

definition 3.2.

20

Definition 3.2 (Local reachability density of a data point 𝑝)

The local reachability density of a data point 𝑝 relative to 𝒩𝑘(𝑝)is the inverse of

the average reachability distance over 𝒩𝑘(𝑝). It is defined as

𝑙𝑟𝑑(𝑝) =
|𝒩𝑘(𝑝)|

∑ 𝑟𝑒𝑎𝑐ℎ-𝑑𝑖𝑠𝑡𝑘(𝑝, 𝑜)𝑜∈𝒩𝑘(𝑝)

Step 4: Calculate the local outlier factor of each data point 𝑝 in 𝐷 according to

definition 3.3.

Definition 3.3 (Local outlier factor of a data point 𝑝)

The local outlier factor is the ratio between the average local reachability density

of the neighborhood to that of the data point 𝑝. It is defined as

𝐿𝑂𝐹(𝑝) =
∑ 𝑙𝑟𝑑(𝑜)𝑜∈𝒩𝑘(𝑝)

|𝒩𝑘(𝑝)| ∙ 𝑙𝑟𝑑(𝑝)

The LOF score is very sensitive to the number of nearest neighbors. The

author of LOF provided a suggestion for 𝑘-nearest neighbors to smooth statistical

fluctuations. The lower bound should be about 9, and the upper bound should be

approximately 20.

The expectation of the LOF score for a normal data point is close to 1, while

the LOF score of an outlier will be greater than 1. If a data set is sufficiently large, the

criterion of an outlier can be that the 𝐿𝑂𝐹 score is larger than 1.

3.1.2 k-Nearest Neighbors (kNN)

 The k Nearest Neighbors (kNN) [42] algorithm is a simple algorithm to

measure an outlier score of a data point in 𝐷. This algorithm uses the average or the

median or the maximum of 𝑘-nearest neighbors. In this thesis, the average will be

used for the KNN algorithm since most papers report with the average. The kNN

algorithm consists of the following steps:

Step 1: Calculate the 𝑘-distance between each data point in 𝐷 and its 𝑘-nearest

neighbors.

Step 2: Calculate the kNN score of each data point 𝑝 in D according to definition

3.4.

21

Definition 3.4 (𝑘-nearest neighbors score of a data point 𝑝)

𝑘𝑁𝑁 score, the average distance of 𝑘-nearest neighbors of data point 𝑝, is defined

as

𝑘𝑁𝑁(𝑝) =
∑ 𝑑(𝑝, 𝑜)𝑜∈𝒩𝑘(𝑝)

|𝒩𝑘(𝑝)|

3.1.3 Ordered difference distance Outlier Factor (OOF)

The ordered difference distance outlier factor (OOF) [22] algorithm is a

parameter-free outlier score that does not require any parameter. It uses the

contribution of other points to the computed point using the difference distance by

projecting other data points in 𝐷 along the line from the computed point to the

reference point.

 The input of the OOF algorithm is a data set 𝐷. The output is the OOF scores

of all data points in 𝐷. Given 𝑝𝑟 , 𝑝𝑖, 𝑝𝑗 ∈ D where 𝑝𝑟 is the reference data point, 𝑝𝑖 is

the computed data point, and 𝑝𝑗 is the contributed data point. The OOF algorithm

consists of the following steps:

Step 1: Calculate all pairwise distances of each data point 𝑝 in D.

Step 2: Create a line from each data point to its farthest data point, then project other

data points to this line, calculating the order difference distances of data points 𝑝𝑟 and

𝑝𝑖 according to definition 3.5.

Definition 3.5 (Order difference distances between data points 𝑝𝑟 and 𝑝𝑖)

𝐷𝑖𝑓𝑓(𝑝𝑟 , 𝑝𝑖) = 𝑚𝑖𝑛{𝑑(𝑝𝑟 , 𝑝𝑖) − 𝑑(𝑝𝑟 , 𝑝𝑗)|𝑑(𝑝𝑟 , 𝑝𝑖) > 𝑑(𝑝𝑟 , 𝑝𝑗) 𝑎𝑛𝑑 𝑝𝑖 ≠ 𝑝𝑟}

Step 3: Calculate OOF scores of each data point 𝑝 in D according to definition 3.6.

Definition 3.6 (OOF of a data point 𝑝𝑖)

OOF score is the average minimum between the different distances, and its 1-

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑖). It is defined by

𝑂𝑂𝐹(𝑝𝑖) =
∑ 𝑚𝑖𝑛 (𝐷𝑖𝑓𝑓(𝑝𝑟 , 𝑝𝑖), 1-𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑖)) 𝑛

𝑟=1

𝑛 − 1

OOF shares the idea of the nearest distance as an outlier score. So, the 𝑂𝑂𝐹

score should not be greater than 1-𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑖) which may cause some problems in a

normal region. If 1-𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑖) is not used, it may lead to a problem that the outlier

in the micro-outlier cluster may have the same OOF scores or have a lower value

similar to data points in the normal region. This algorithm has time complexity

𝑂(𝑛2𝑙𝑜𝑔𝑛).

22

3.1.4 Acute angle order difference distance Outlier Factor (AOF)

Acute angle order difference distance outlier factor (AOF) [24] algorithm

measures outlier scores similar to the unblocked different distance of OOF but adds a

condition that the acute angle of reference data point 𝑝𝑟 to a pair of cover data point

𝑝𝑖 and measured data point 𝑝𝑗. The AOF algorithm does not use the order different

distance method for all data points. The details of the AOF algorithm are discussed

step-by-step here:

Step 1: Calculate all pairwise distances of each data point 𝑝𝑖 in D.

Step 2: Create a distance vector of each data point to its farthest data point, then

project other data points to it by calculating the order distance of each reference data

point 𝑝𝑟 to other data point 𝑝𝑖 in 𝐷.

Step 3: Calculate the order of different distances of all data points 𝑝𝑟 and 𝑝𝑖 by

adding the acute angle condition according to definition 3.7.

Definition 3.7 (Acute angle different distances of data points 𝑝𝑟 and 𝑝𝑖)

𝑎𝐷𝑖𝑓𝑓(𝑝𝑟, 𝑝𝑖) = 𝑚𝑖𝑛 {𝑑(𝑝𝑟, 𝑝𝑖) − 𝑑(𝑝𝑟, 𝑝𝑗)|

𝑑(𝑝𝑟, 𝑝𝑖) > 𝑑(𝑝𝑟, 𝑝𝑗),

 𝑑(𝑝𝑖, 𝑝𝑗)
2

< 𝑑(𝑝𝑟, 𝑝𝑖)
2 + 𝑑(𝑝𝑟 , 𝑝𝑗)

2

𝑝𝑖 ≠ 𝑝𝑟

}

Step 4: Calculate AOF scores of each data point 𝑝𝑖 in D according to definition 3.8.

Definition 3.8 (AOF of a data point 𝑝𝑖)

𝐴𝑂𝐹(𝑝𝑖) =
∑ 𝑎𝐷𝑖𝑓𝑓(𝑝𝑟 , 𝑝𝑖) 𝑛

𝑟=1

𝑛 − 1

This algorithm is based on OOF, but it includes a condition with an acute

angle condition. As a result, unlike the OOF algorithm, this algorithm does not require

a minimum first nearest neighbor. The performance of this algorithm was slightly

better than that of OOF. Due to the additional angle condition, this algorithm has a

high time complexity 𝑂(𝑛3).

3.1.5 Angle-Based Outlier Detection (ABOD)

Angle-based outlier detection (ABOD) [25] algorithm measures outlier score

as a variance of the angle between data points in D weighted by distance, rather than

using a distance of neighborhoods as proximity-based concepts. This algorithm is

parameter-free and detects outliers in high dimensions.

 In practice, the outlier scores relative to not only the angle but also the

distance between the points are weighted by division in order to account for distance.

So, the low outlier score led to an outlier, while the high outlier score led to a normal

23

data point. the ABOD algorithm consists of 𝐴 as a measured data point, 𝐵 and 𝐶 are a

pair of data points w.r.t 𝐴.

Step 1: Calculate all pairwise distances of each data point 𝐴 in 𝐷.

Step 2: Find a set of all pairs of data points in 𝐷 with respect to data point A.

Step 3: Calculate variance over the angles between the difference 𝐴 to its all pairs of

data points in 𝐷, weighted by the distance of its pair of data points according to

definition 3.9.

Definition 3.9 (Angle-based outlier factor of a data point 𝐴)

For two data points 𝐵, 𝐶 ∈ 𝐷, BC denotes the difference vector 𝐶 − 𝐵. The

angle-based outlier factor 𝐴𝐵𝑂𝐹(𝐴) is the variance over the angles between the

difference vector of 𝐴 to all pairs of points in 𝐷 weighted by the distance of a pair

of data points

𝐴𝐵𝑂𝐹(𝐴) = 𝑉𝐴𝑅𝐵,𝐶∈𝐷 (
𝐴𝐵 ∙ 𝐴𝐶

||𝐴𝐵||2 ∙ ||𝐴𝐶||2
)

The basic approach of the ABOD algorithm has an obvious flaw. Since all

pairs of points must be considered for each data point that has a time complexity of

𝑂(𝑛3). This is not appealing when compared to the OOF or the LOF algorithm.

 To reduce the time complexity, the Fast Angle-Based Outlier Detection

(FastABOD) [25] algorithm is an approximation algorithm that approximates ABOF

using a sample of data points from 𝑘-nearest neighbors instead of the entire data set

𝐷. Because data points that are far from the measured data point are less important

due to being weighted by distance. As a result, employing the nearest neighbors may

yield a more accurate approximation, particularly in low-dimensional data sets where

the distance is more significant. FastABOD consists of the following steps:

Step 1: Calculate the distance between each data point in 𝐷 and its 𝑘-nearest

neighbors.

Step 2: Find all pairs of data points in 𝐷 with respect to each data point and its 𝑘 -

nearest neighbors.

Step 3: Calculate variance over the angles between the differences between each data

point to its all pairs of data points in its 𝑘-nearest neighbors, weighted by the distance

of the data point according to definition 3.10.

24

Definition 3.10 (Fast angle-based outlier factor of a data point 𝐴)

For two points 𝐵, 𝐶 ∈ 𝐷, 𝐵𝐶 denotes the difference vector 𝐶 − 𝐵. 𝑁𝑘(𝐴) is

denoted as the set of 𝑘-nearest neighbors of A. The approximate angle-based

outlier factor 𝐹𝑎𝑠𝑡𝐴𝐵𝑂(𝐴) is the variance over the angles between the difference

vector of 𝐴 to all pairs of data points in 𝑁𝑘(𝐴) weighted by the distance:

𝐹𝑎𝑠𝑡𝐴𝐵𝑂𝐹(𝐴) = 𝑉𝐴𝑅𝐵,𝐶∈𝑁𝑘(𝐴) (
𝐴𝐵 ∙ 𝐴𝐶

||𝐴𝐵||
2

 ∙ ||𝐴𝐶||
2)

Although the FastABOD algorithm has a time complexity lower than ABOD,

FastABOD has accuracy lower than ABOD. To use this algorithm to detect outliers,

FASTABOF and ABOF scores need to be used oppositely because the high score

leads to a normal data point, while the low score leads to an outlier.

3.2 Outlier detection algorithm in streaming data

 To detect outliers in streaming data, the user inputs the streaming data 𝑆 and

user-defined parameters to the model. Model processes each data point or chunk of

data points that are sent from streaming data 𝑆 and assigns outlier scores. This

processing continues until it stops generating streaming data.

3.2.1 Streaming Half-Space-Trees (HS-Trees)

The Streaming Half-Space-Trees or HS-Trees [37] algorithm is one class

classification anomaly detection that can measure outlier scores. The model of the

HS-Trees algorithm, which is tree-based, updates new data points and measures its

outlier score. To measure outliers, the HS-Trees algorithm uses mass (then the

number of data points) as the outlier score. It consists of nodes in binary trees which

can consist of the number of data points and the depth of the tree, which is used for

measuring outlier scores that make the HS-Trees algorithm calculate faster than

distance and density-based. The HS-Trees algorithm uses two windows, a reference

window and a current window. At the start of detection, the HS-Trees algorithm

learns the mass profile in the reference window to measure outlier scores in the

current window. A data point in a high-density area is a normal data point, while a

data point in a low-density area is an outlier. A new data point is added in the current

window until full. The mass profile in the reference window is discarded instead of

the mass profile in the current window for measuring the next batch of data points.

The streaming process continually without reconstructing the group of the binary

trees. The notation in the HS-Trees algorithm is defined in Table 3.1.

25

Table 3.1 Notation of the HS-Trees algorithm

𝑋 A streaming data point

𝑛 The number of streaming data points

𝒯 𝒯𝑡ℎ full binary tree

𝑁𝑜𝑑𝑒 A node in a full binary tree

𝒦 The current depth of a node or 𝑁𝑜𝑑𝑒∗𝒦

𝑤 A window size

ℰ The number of HS-Trees in an ensemble

ℎ The maximum depth (level) of a tree

𝑟 A mass of a node in the reference window

𝑙 A mass of a node in the latest window

𝑆𝑐𝑜𝑟𝑒(𝑋, 𝒯) A score from 𝒯𝑡ℎ full binary tree
𝐻𝑆-𝑡𝑟𝑒𝑒𝑠(𝑋) An HS-trees score

The HS-Trees algorithm uses a full binary tree consisting of 2ℎ+1 − 1 nodes,

in which all leaves are at the same depth, ℎ.

The idea of the HS-Trees algorithm is to create a full binary tree in which each

node is along q dimensions. After that, the midpoint is used to bisect the workspace

into two half-spaces and creates the left child and right child of the node until the

binary tree is full.

 Each node contains the following information: (1) an array of minimum and

maximum values of each dimension; (2) variables 𝑟 and 𝑙, which consist of a mass

profile of the reference and the current windows, respectively; (3) variable 𝒦, which

is the current depth of the binary tree; (4) the current node's left and right children,

each associated with half-space after the split.

Creating the diverse full binary tree is achieved by using the following

procedure. Initialize workspace, before constructing the binary tree, and normalize

attributes’ ranges to [0, 1]. Let 𝑠𝑞 be the uniform random [0,1)of dimension 𝑞𝑡ℎ,

so 𝑚𝑎𝑥𝑞 is (𝑠𝑞 + 2 · max (𝑠𝑞 , 1 − 𝑠𝑞)) and 𝑚𝑖𝑛𝑞 is (𝑠𝑞 − 2 · 𝑚𝑎𝑥(𝑠𝑞 , 1 − 𝑠𝑞))

which is defined by every 𝑞 dimension. Each node is randomly selected dimension

𝑞𝑡ℎ to form two half-spaces; the split point is the midpoint of the current range of 𝑞.

Initially, all mass profiles are set to zero.

After building full binary trees, a mass profile of data points must be updated

in the tree to measure the outlier score. The data point, 𝑥, traverses through node and

updates mass 𝑟 and 𝑙. The reference window variable is boolean. If it is true, update

the reference window; otherwise, the current window.

To measure an outlier score, the properties of the depth and the mass profile of

each full binary tree are used to measure the outlier score. Let 𝑆𝑐𝑜𝑟𝑒(𝑋, 𝒯) be a

function that traverses a test data point 𝑋 from the root of an 𝐻𝑆-𝑇𝑟𝑒𝑒 (𝒯) until

26

reaching a terminal node. This function then returns the outlier score of a data point 𝑋

by evaluating 𝑁𝑜𝑑𝑒∗𝑟 × 2𝑁𝑜𝑑𝑒∗𝒦, where 𝑁𝑜𝑑𝑒∗𝒦 is the depth level of the terminal

node containing 𝑁𝑜𝑑𝑒∗𝑟 data points. Here, a 𝑁𝑜𝑑𝑒∗ is a node that has reached the

maximum depth or a node that contains size-limit data points. The final score for 𝑋 is

the sum of scores obtained from each full binary tree. The 𝑠𝑖𝑧𝑒𝐿𝑖𝑚𝑖𝑡 is not a critical

parameter, and a good default setting is 0.1𝑤, where 𝑤 is the window size.

The operational procedure for the HS-Trees algorithm, including two stages, is

as follows:

1) Initialization stage:

Step 1: Build the full binary trees according to user-parameter ℰ.

Step 2: Add the first 𝑤 data points of the stream to record its initial reference mass

profile in full binary trees. Since these data points come from the initial reference

window, only the mass 𝑟 of each traversed node is updated.

2) Incremental stage:

Step 1: Calculate a HS-trees score of a new data point 𝑋.

Step 2: Update the mass profile in full binary trees. At the end of each window, the

model is updated. any mass 𝑟 in the nodes is discarded and replaced by mass 𝑙 in the

same nodes. Initially, mass 𝑙 of all nodes are set to zeros.

3.3 Examples of calculating outlier detection in static

data

This section will show an example of how to calculate state-of-the-art outlier

detection techniques in section 3.1. with only static data.

3.3.1 Examples of calculating outlier scores

 The data set 𝐷 is {[0,0], [0,1], [1,1], [4,4]} in two-dimensional space and these

4 data points in Figure 3.1. All pairwise distances of data points in 𝐷 are shown in

Table 3.2. To better understand the computation, this section uses the Manhattan

distance instead of the Euclidean distance.

Figure 3.1 2d synthesized data set for calculating outlier scores

27

 Table 3.2 All pairwise distances of data points in D

𝒅(𝒑𝟏, 𝒑𝟐) 𝒑𝟏 𝒑𝟐 𝒑𝟑 𝒑𝟒

𝒑𝟏 0 1 1 7

𝒑𝟐 1 0 2 6

𝒑𝟑 1 2 0 8

𝒑𝟒 7 6 8 0

3.3.2 LOF algorithm

 The procedure for calculating the LOF algorithm with the data set from

section 3.3.1 is shown as follows:

Step 1: Calculate the 𝑘-distance between each data point in 𝐷 and its 𝑘-nearest

neighbors.

2-𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝1) = 1, 2-𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝2) = 2,

2-𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝3) = 2, 2-𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝4) = 7,

𝒩2(𝑝1) = {𝑝2, 𝑝3}, 𝒩2(𝑝2) = {𝑝1, 𝑝3},

𝒩2(𝑝3) = {𝑝1, 𝑝2}, 𝒩2(𝑝4) = {𝑝2, 𝑝1},

Step 2: Calculate the reachability distance of all data points in 𝐷.

𝑟𝑒𝑎𝑐ℎ-𝑑𝑖𝑠𝑡2(𝑝1, 𝑝2) = 2, 𝑟𝑒𝑎𝑐ℎ-𝑑𝑖𝑠𝑡2 (𝑝1, 𝑝3) = 2,

𝑟𝑒𝑎𝑐ℎ-𝑑𝑖𝑠𝑡2 (𝑝2, 𝑝1) = 1, 𝑟𝑒𝑎𝑐ℎ-𝑑𝑖𝑠𝑡2 (𝑝2, 𝑝3) = 2,

𝑟𝑒𝑎𝑐ℎ-𝑑𝑖𝑠𝑡2 (𝑝3, 𝑝1) = 1, 𝑟𝑒𝑎𝑐ℎ-𝑑𝑖𝑠𝑡2 (𝑝3, 𝑝2) = 2,

𝑟𝑒𝑎𝑐ℎ-𝑑𝑖𝑠𝑡2 (𝑝4, 𝑝2) = 6, 𝑟𝑒𝑎𝑐ℎ-𝑑𝑖𝑠𝑡2 (𝑝4, 𝑝1) = 7,

Step 3: Calculate the local reachability density of data points in 𝐷.

𝑙𝑟𝑑(𝑝1) =
|𝒩2(𝑝1)|

(𝑟𝑒𝑎𝑐ℎ-𝑑𝑖𝑠𝑡2(𝑝1, 𝑝2) + 𝑟𝑒𝑎𝑐ℎ-𝑑𝑖𝑠𝑡2(𝑝1, 𝑝3))
 = 0.5

𝑙𝑟𝑑(𝑝2) =
|𝒩2(𝑝2)|

(𝑟𝑒𝑎𝑐ℎ-𝑑𝑖𝑠𝑡2(𝑝2, 𝑝1) + 𝑟𝑒𝑎𝑐ℎ-𝑑𝑖𝑠𝑡2(𝑝2, 𝑝3))
 = 0.667

𝑙𝑟𝑑(𝑝3) =
|𝒩2(𝑝3)|

 (𝑟𝑒𝑎𝑐ℎ-𝑑𝑖𝑠𝑡2(𝑝3, 𝑝1) + 𝑟𝑒𝑎𝑐ℎ-𝑑𝑖𝑠𝑡2 (𝑝3, 𝑝2))
 = 0.667

𝑙𝑟𝑑(𝑝4) =
|𝒩2(𝑝4)|

(𝑟𝑒𝑎𝑐ℎ-𝑑𝑖𝑠𝑡2(𝑝4, 𝑝2) + 𝑟𝑒𝑎𝑐ℎ-𝑑𝑖𝑠𝑡2((𝑝4, 𝑝1)
= 0.154

28

Step 4: Calculate the local outlier factor of all data points in 𝐷.

𝐿𝑂𝐹(𝑝1) = (𝑙𝑟𝑑(𝑝2) + 𝑙𝑟𝑑(𝑝3))/𝑙𝑟𝑑(𝑝1)/ |𝒩2(𝑝1)| = 1.333

𝐿𝑂𝐹(𝑝2) = (𝑙𝑟𝑑(𝑝1) + 𝑙𝑟𝑑(𝑝3))/𝑙𝑟𝑑(𝑝2)/|𝒩2(𝑝2)| = 0.875

𝐿𝑂𝐹(𝑝3) = (𝑙𝑟𝑑(𝑝1) + 𝑙𝑟𝑑(𝑝2))/𝑙𝑟𝑑(𝑝3)/|𝒩2(𝑝3)| = 0.875

𝐿𝑂𝐹(𝑝4) = (𝑙𝑟𝑑(𝑝2) + 𝑙𝑟𝑑(𝑝1))/𝑙𝑟𝑑(𝑝4)/|𝒩2(𝑝4)| = 3.792

3.3.3 OOF algorithm

 The procedure for calculating the OOF of the data set from section 3.3.1 is

shown as follows:

Step 1: Calculate all pairwise distances of data points in D. This step is already

calculated in Table 3.2.

Step 2: Create a distance vector of each data point to its farthest data point then,

project other data points to it then calculate the different distances of data point 𝑝𝑟 and

𝑝𝑖 Calculate the different distances of data point 𝑝𝑟 and 𝑝𝑖. The result of 𝐷𝑖𝑓𝑓(𝑝𝑟 , 𝑝𝑖)

is as follows in Table 3.3.

 Table 3.3 The value of Diff (pr, pi)

𝐷𝑖𝑓𝑓(𝑝𝑟 , 𝑝𝑗) 𝑝𝑗

𝑝𝑟 𝑝1 𝑝2 𝑝3 𝑝4

𝑝1 0 1 1 1

𝑝2 1 0 1 1

𝑝𝑟 0 1 0 1

𝑝𝑟 6 4 6 0

Step 3: Calculate OOF scores of the data point 𝑝𝑖.

1-𝑑𝑖𝑠𝑡𝑛𝑎𝑐𝑒(𝑝1) = 1, 1-𝑑𝑖𝑠𝑡𝑛𝑎𝑐𝑒(𝑝1) = 1,

 1-𝑑𝑖𝑠𝑡𝑛𝑎𝑐𝑒(𝑝3) = 1, 1-𝑑𝑖𝑠𝑡𝑛𝑎𝑐𝑒(𝑝4) = 6,

𝑂𝑂𝐹(𝑝1) = ∑
𝑚𝑖𝑛(𝑎𝐷𝑖𝑓𝑓(𝑝𝑟 , 𝑝1), 1)

3
= 1

𝑛

𝑟=1

𝑂𝑂𝐹(𝑝2) = ∑
𝑚𝑖𝑛(𝑎𝐷𝑖𝑓𝑓(𝑝𝑟 , 𝑝2), 1)

3
= 1

𝑛

𝑟=1

𝑂𝑂𝐹(𝑝3) = ∑
𝑚𝑖𝑛(𝑎𝐷𝑖𝑓𝑓(𝑃𝑟 , 𝑝3), 1)

3
= 0.667

𝑛

𝑟=1

29

𝑂𝑂𝐹(𝑝4) = ∑
𝑚𝑖𝑛(𝑎𝐷𝑖𝑓𝑓(𝑝𝑟 , 𝑝4), 6)

3
= 5.333

𝑛

𝑟=1

3.3.4 kNN algorithm

 The procedure for calculating the kNN algorithm with the data set from

section 3.3.1 is shown as follows:

Step 1: Calculate the 𝑘-distance between each data point in 𝐷 and its 𝑘-nearest

neighbors.

𝒩2(𝑝1) = {𝑝2, 𝑝3}, 𝒩2(𝑝2) = {𝑝1, 𝑝3},

𝒩2(𝑝3) = {𝑝1, 𝑝2}, 𝒩2(𝑝4) = {𝑝2, 𝑝1},

Step 2: Calculate the kNN score of each data point in D.

𝑘𝑁𝑁(𝑝1) =
𝑑(𝑝1, 𝑝2) + 𝑑(𝑝1, 𝑝3)

|𝒩2(𝑃1)|
= 2.333

𝑘𝑁𝑁(𝑝2) =
𝑑(𝑝2, 𝑝1) + 𝑑(𝑝2, 𝑝3)

|𝒩2(𝑃1)|
= 2.219

𝑘𝑁𝑁(𝑝3) =
𝑑(𝑝3, 𝑝1) + 𝑑(𝑝3, 𝑝2)

|𝒩2(𝑝1)|
= 2.69

𝑘𝑁𝑁(𝑝4) =
𝑑(𝑝4, 𝑝2) + 𝑑(𝑝4, 𝑝1)

|𝒩2(𝑝1)|
= 4.966

30

Chapter 4
Research Methodology

 This chapter presents the Mass ratio variance-based Outlier Factor and the

Streaming Mass ratio variance-based Outlier Factor.

4.1 Mass ratio variance-based Outlier Factor (MOF)

 This section explains the motivation of the MOF algorithm, the overview of

the MOF algorithm, the procedure of the MOF algorithm, and the complexity analysis

for the MOF algorithm.

4.1.1 The motivation of the MOF algorithm

In the literature surveys, chapter 3, most proximity-based outlier detection

measures outlier scores related to the 𝑘-nearest neighbors (parameter). For example,

Figure 4.1 from [41] shows the average LOF scores for each data point in clusters 𝑆1,

𝑆2, and 𝑆3 by grid search 𝑚𝑖𝑛𝑃𝑡𝑠 or 𝑘-nearest neighbors value from 10 to 50. The

data points in clusters 𝑆2 and 𝑆3 are normal data points, while data points in the

cluster 𝑆1 is an outlier. The 𝑚𝑖𝑛𝑃𝑡𝑠 value between 10 and 35 leads to data points in a

cluster 𝑆1 being an outlier, the 𝑚𝑖𝑛𝑃𝑡𝑠 value between 36 and 45 leads to all clusters

being a normal data point, and the 𝑚𝑖𝑛𝑃𝑡𝑠 value between 46 to 50 concludes that

each data point in clusters 𝑆1 and 𝑆2 is an outlier. This illustrates that its parameter is

sensitive and biased to detect outliers. The user must know the distribution of data

sets or use the grid search technique for the best tune parameters. However, the grid

search technique cannot be used for unsupervised learning.

Figure 4.1 Range of LOF values for different data points in an example data set

To avoid using user-defined parameters, the methodology of measuring outlier

scores by the order difference distance is proposed to be AOF [24], OOF [22], and

WOF [23]. However, they fail to measure outlier scores correctly because these

31

algorithms are based on the first nearest neighbor (𝑘 = 1 in the kNN algorithm)

which is distance-based. They cannot detect small clusters of outliers and also fail to

detect the edge of normal regions as outliers, according to Figure 4.2 from [24]. The

radius of the red circle is the outlier score. The AOF and the OOF algorithms assign a

low outlier score on outlier micro-cluster around [−2, 9] that should be high. While

kNN can detect them correctly with the appropriate setting of parameter 𝑘.

The other methodology is angle-based outlier detection (ABOD) [25]. ABOD

can assign scores correctly. However, ABOD needs to calculate the entire angle

between two vectors in the data set, leading to a very high time complexity 𝑂(𝑛3). To

reduce the time complexity, FastABOD [25] uses only 𝑘 data points instead of the

entire data set. However, its accuracy drops significantly.

Figure 4.2 a) AOF scores and b) OOF scores in the example data set

This thesis proposes the novel unsupervised outlier score without parameters

and uses the density concept. It is referred to as the mass ratio variance outlier factor

(MOF). Since the scoring degree of an outlier, which is the so-call the MOF score,

uses the whole contributed data points in the data set.

Give 𝜌, 𝜌1, 𝜌2 as density, 𝑀, 𝑀1, 𝑀2 as mass, and 𝑉 as volume. According to

the formula, the ratio of mass is equal to the ratio of density, if the volumes are the

same.

𝜌 =
𝑀

𝑉
 ,

𝜌1

𝜌2
=

𝑀1 × 𝑉

𝑀2 × 𝑉
=

𝑀1

𝑀2

According to the formula, MOF defines volume (𝑉) as the space of the

hypersphere of the same radius and mass as the number of data points inside the

hypersphere, according to Figure 4.3. It shows that the mass ratio of a contributed

data point 𝑞 (green line) with respect to a measured data point 𝑝 (red line) is the ratio

of the number of data points inside the green and red hypersphere. It can be explained

that the isolated data point 𝑝 has a mass less than an engulfed data point 𝑞 (2 < 5).

32

Figure 4.3 The mass ratio of p with respect to q

 The measured data point 𝑝 must be contributed by all other data points in a

data set. The following figures show the differences between the mass of a normal

data point and an outlier. The following Figure 4.4 and Figure 4.5 show the

differences between the mass of all contributed data points with respect to an outlier a

normal data point and. It shows that the data set includes normal data points

(𝑃1, 𝑃2, 𝑃3, and 𝑃4) and an outlier (𝑃5) . The details are as follows:

Figure 4.4 Mass ratio of other data points w.r.t. an outlier

33

Figure 4.5 The mass ratio of other data points w.r.t a normal data point

• Figure 4.4 shows the mass ratio of 𝑃1, 𝑃2, 𝑃3, and 𝑃4 (green circle) with respect to

𝑃5 (red circle) is equal to 5/5, 5/4, 5/3, and 5/2. The variance of them is 0.32

• Figure 4.5 shows the mass ratio of 𝑃1, 𝑃2, 𝑃4, and 𝑃5with respect to 𝑃3 is equal to

3/4, 3/3, 2/3, and 3/5. The variance of them is 0.023

• In conclusion, a MOF score of 𝑃5 is around 10 times larger than a MOF score of

𝑃3. This is because the number of outliers in data sets is always less than the

normal data points in data sets. Therefore, the outlier is contributed by normal

data points rather than outliers resulting in high mass ratio variance, while normal

data points are supported by the same normal data points, resulting in the low

mass ratio variance.

 So, the first advantage of MOF is to calculate the variance of mass ratio that

can measure outlier scores of outliers and normal data points in a data set. The second

advantage of MOF is that the outlier score is based on density-based, which can detect

local outliers, which distance-based cannot do. The third advantage is MOF avoids

using a parameter to measure density around data points. The details of MOF are

presented in the next section.

34

4.1.2 The overview of the MOF algorithm

The MOF algorithm measured the MOF scores of data points in the entire data

set. Its input is a data set 𝐷 with 𝑛 data points and 𝑑 dimensions, and its output is the

MOF scores of each data point in 𝐷. Given 𝑝 is a measured data point which 𝑝 ∈ 𝐷,

and 𝑞 is a contributed data point which 𝑞 ∈ 𝐷 − {𝑝}.

The notation of this section is the neighborhood of a data point 𝑞 with respect

to a data point 𝑝, the mass ratio of a data point 𝑞 with respect to a data point 𝑝, and

the mass ratio variance outlier factor of data point 𝑝. Note that all of these are

sequentially consistent.

Definition 4.1 (Neighborhoods of a data point 𝑞 w.r.t. a data point 𝑝)

To calculate the mass of data points, MOF uses the idea of neighborhoods of data

point q with respect to data point 𝑞 or 𝑁𝑝(𝑞) is defined as the set of data points that

lies within the hypersphere centered at data point q with the radius 𝑑(𝑝, 𝑞) or the

mass of a data point q with respect to a data point 𝑝. 𝑁𝑝(𝑞) is defined as follows:

𝑁𝑝(𝑞) = {𝑜 ∈ 𝐷|𝑑(𝑞, 𝑜) ≤ 𝑑(𝑝, 𝑞)}

However, MOF does not need to find the members of 𝑁𝑝(𝑞), but it needs to

find the cardinality of 𝑁𝑝(𝑞) or |𝑁𝑝(𝑞)| for calculating a mass ratio. In addition,

MOF needs to find 𝑁𝑝(𝑞) with all 𝑝 and all 𝑞 in a data set 𝐷. Therefore, the

cardinality of a neighborhood of all contributed data points with respect to other data

points is calculated by expanding the radius to reach from the farthest data points for

themselves to create hyperspheres. For example, Figure 4.6 shows that a data point

𝑃3 expands the radius to reach all data points in a space to create hyperspheres. Data

point 𝑃5 is the fifth farthest, 𝑃1 is the fourth farthest, 𝑃2 and 𝑃4 are the third farthest

(co-rank), and 𝑃3 is the first farthest. The rank distance can be used as the mass of

data points inside a hypersphere. Therefore, |𝑁𝑃3
(𝑃5)| is equal to 5, |𝑁𝑃3

(𝑃1)| is equal

to 4, |𝑁𝑃3
(𝑃2)| and |𝑁𝑃3

(𝑃4)| equal to 3, and |𝑁𝑃3
(𝑃3)| is equal to 1. However, it must

add a condition in case of any redundant outliers entering the data set.

35

 Figure 4.6 Mass and neighborhoods of other data points with respect to P3

Definition 4.2 (Mass ratio of data point 𝑞 with respect to data point 𝑝)

The ratio of the number of data points lies within the hypersphere centered at data

point 𝑞 to lies within the hypersphere centered at data point 𝑝:

𝑚𝑎𝑠𝑠𝑅𝑝(𝑞) =
|𝑁𝑝(𝑞)|

|𝑁𝑞(𝑝)|

To explain how to compute the 𝑚𝑎𝑠𝑠𝑅𝑝(𝑞), consider a sample data set with

13 data points, as shown in Figure 4.7. 𝑃1, 𝑃4, 𝑃9, and 𝑃12 are the corner points. 𝑃6 and

𝑃7 are the inner points.

To calculate the 𝑚𝑎𝑠𝑠𝑅𝑃13
(𝑃4) and 𝑚𝑎𝑠𝑠𝑅𝑃4

(𝑃13). Note that two points

(𝑝12 𝑎𝑛𝑑 𝑝3) are inside the red hypersphere centered on 𝑃12, therefore |𝑁𝑃13
(𝑃4)| is

equal to 13. Also, 13 data points (all points) are inside the green hypersphere centered

on 𝑝3, therefore |𝑁𝑃4
(𝑃13)| is equal to 2. Thus, 𝑚𝑎𝑠𝑠𝑅𝑃13

(𝑃4) is equal to 13/2 and

𝑚𝑎𝑠𝑠𝑅𝑃3
(𝑃13) is equal to 2/13.

36

Figure 4.7 Mass ratio of data points with respect to data points p

Intuitively, the minimum of |𝑁𝑃(𝑞)| is 2 (data points p and q), and the

maximum of |𝑁𝑃(𝑞)| is 𝑛 (all data points in the data set). So, an interval of

𝑚𝑎𝑠𝑠𝑅𝑝(𝑞) is in [2/𝑛, 𝑛/2]. The strength of this mass ratio effect is that outliers are

distributed from normal data points with a wider range of values than normal data

points leading to high variance.

So far, only one mass ratio of a contribution with respect to a measured data

point is calculated. The notation of calculations is defined as mass ratio variance-

based outlier score of data point 𝑝 or MOF scores of data point 𝑝.

Definition 4.3 (Mass ratio variance outlier factor of a data point 𝑝)

 𝜇𝑝 is defined as the average mass ratio of other data points with respect to the data

point p or MOF score of data point 𝑝. 𝑀𝑂𝐹(𝑝) is defined as the variance of the

mass-ratio distribution of other data points with respect to a data point 𝑝:

𝜇𝑝 =
∑ 𝑚𝑎𝑠𝑠𝑅𝑝(𝑞)𝑞∈𝐷 − {𝑝}

𝑛 − 1

𝑀𝑂𝐹(𝑝) =
∑ (𝑚𝑎𝑠𝑠𝑅𝑝(𝑞) − 𝜇𝑝)

2
𝑞∈𝐷 − {𝑝}

𝑛 − 1

The outlier score of data point 𝑝 is equal to 𝑀𝑂𝐹(𝑝). It is the variance of the

mass ratio of data points in a data set except for data point 𝑝 with respect to data point

𝑝.

Continually calculating, the boxplots of the mass ratio of other data points

with respect to data points in the data set is calculated and shown in

37

Figure 4.8a). After the box plot of all data points is summarized by variance

resulting in the bar chart in

Figure 4.8b) in which the height of a bar is a MOF score. It shows that

𝑀𝑂𝐹(𝑃13) is higher than other data points exhibiting as an outlier. Another

interesting, the corner data points (𝑃1, 𝑃2, 𝑃4, and 𝑃12) also have higher MOF scores

than the data points inside a cluster.

Figure 4.8 a) The boxplots of the mass ratio of data points q with respect to data

points p and b) MOF scores of data points in D

4.1.3 The procedure of the MOF algorithm

 The flowchart of the MOF algorithm workflow is provided in Figure 4.9 and

the pseudo code of the MOF algorithm is in Figure 4.10. The steps are as follows:

Step 1: Input a data set (𝐷).

Step 2: Calculated distance matrix (𝐷𝑀) in line 1.

Step 3: Calculated sorted distance matrix (𝑆𝐷𝑀) and sorted distance index matrix

(𝑆𝐼𝑀) in line 2-3.

Step 4: Calculate the mass ratio matrix (𝑀𝑎𝑠𝑠𝑅𝑎𝑡𝑖𝑜) in line 4-20. It also adds

conditions in line 8-9 to transform sorted and index distance to rank distance and

condition of duplicated data points in line 14-16.

Step 5: The MOF score of each data point (𝑀𝑂𝐹) is calculated in line 21-25 and

returned as an array that is ordered according to data points in the data set.

38

Figure 4.9 The MOF flowchart

39

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑀𝑂𝐹(𝐷)

𝐈𝐧𝐩𝐮𝐭 ∶ 𝐷 − a 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡

𝐎𝐮𝐭𝐩𝐮𝐭 ∶ 𝑀𝑂𝐹 − 𝑀𝑂𝐹 𝑠𝑐𝑜𝑟𝑒𝑠

𝐋𝐢𝐧𝐞:
1. 𝐷𝑀 ← 𝐷𝑀
2. 𝑆𝐷𝑀 ← 𝑆𝐷𝑀
3. 𝑆𝐼𝑀 ← 𝑆𝐼𝑀
4. 𝑀𝑎𝑠𝑠𝑅𝑎𝑡𝑖𝑜 ← [1]𝑛𝑥𝑛
5. 𝒇𝒐𝒓 𝑖 ← 1 ; 𝑖 ≤ 𝑛 ; 𝑖 + + 𝑑𝑜:
6. 𝑟𝑚 ← 𝑆𝐷𝑀[𝑖, 𝑛]
7. 𝑁𝑝𝑞 ← 𝑛
8. 𝒇𝒐𝒓 𝑘 ← 𝑛 ; 𝑘 > 0 ; 𝑘 − − 𝑑𝑜:
9. 𝒊𝒇 𝑆𝐷𝑀[𝑖, 𝑘] ! ← 𝑟𝑚
10. 𝑟𝑚 ← 𝑆𝐷𝑀[𝑖, 𝑘]
11. 𝑁𝑝𝑞 ← 𝑘
12. 𝒆𝒏𝒅 𝒊𝒇
13. 𝑗 ← 𝑆𝐼𝑀[𝑖 , 𝑘]
14. 𝒊𝒇 𝑆𝐷𝑀[𝑖, 1] == 0 and 𝑘 == 1 do
15. 𝑁𝑝𝑞 ← 1
16. 𝒆𝒏𝒅 𝒊𝒇
17. 𝑀𝑎𝑠𝑠𝑅𝑎𝑡𝑖𝑜[𝑖, 𝑗] ← 𝑀𝑎𝑠𝑠𝑅𝑎𝑡𝑖𝑜[𝑖, j] × 𝑁𝑝𝑞

18. 𝑀𝑎𝑠𝑠𝑅𝑎𝑡𝑖𝑜[𝑗, 𝑖] ← 𝑀𝑎𝑠𝑠𝑅𝑎𝑡𝑖𝑜[𝑗, i] ×
1

𝑁𝑝𝑞

19. 𝒆𝒏𝒅 𝒇𝒐𝒓
20. 𝒆𝒏𝒅 𝒇𝒐𝒓
21. 𝑀𝑂𝐹 ← [1]𝑛𝑥1
22. 𝒇𝒐𝒓 𝑖 ← 1 ; 𝑖 ≤ 𝑛 ; 𝑖 + + 𝑑𝑜:

23. 𝜇 ←
∑ 𝑀𝑎𝑠𝑠𝑅𝑎𝑡𝑖𝑜[𝑖,𝑗]𝑛

𝑗=1, 𝑖≠𝑗

𝑛−1

24. 𝑀𝑂𝐹[𝑖] ←
∑ (𝑀𝑎𝑠𝑠𝑅𝑎𝑡𝑖𝑜[𝑖,𝑗]−𝜇2)𝑛

𝑗=1, 𝑖≠𝑗

𝑛−1

25. 𝒆𝒏𝒅 𝒇𝒐𝒓
26. 𝒓𝒆𝒕𝒖𝒓𝒏 𝑀𝑂𝐹

Figure 4.10 The MOF algorithm procedure

4.1.4 The complexity analysis for the MOF algorithm

 To calculate MOF scores for 𝑛 data points in a data set 𝐷, the MOF algorithm

implements a two-step algorithm. In the first step, a set of the nearest neighborhood of

all contributed data points with respect to all measured data points is calculated. In the

second step, the MOF scores are calculated. In the first step, all pairwise distances of

each data point in a data set are calculated. The result of them is used to calculate a set

of the nearest neighborhoods of all contributed data points with respect to outlier

measured data points based on a sorted algorithm resulting in time complexity

𝑂(𝑛2𝑙𝑜𝑔𝑛). After that, a set of the mass ratio of all contributed data points with

40

respect to outlier measured data points are calculated by the ratio of pairwise of

nearest neighborhoods resulting in run time complexity 𝑂(𝑛). The result of this step

is time complexity 𝑂(𝑛2𝑙𝑜𝑔𝑛) and space complexity is 𝑂(𝑛2) from containing all

pairwise distances, nearest neighborhoods, and mass ratios in a data set. In the second

step, the MOF scores are calculated by the variance of the mass ratio of each data

point with respect to its contributed data points which has time complexity 𝑂(𝑛) and

space complexity 𝑂(𝑛). In summary, the MOF algorithm has time complexity

𝑂(𝑛2𝑙𝑜𝑔𝑛) and space complexity 𝑂(𝑛2).

4.2 Streaming Mass ratio variance-based Outlier Factor

(SMOF)

 This section explains the motivation of the SMOF algorithm, the overview of

the SMOF algorithm, The procedure of the SMOF algorithm, and the complexity

analysis for the SMOF algorithm.

4.2.1 The motivation of the SMOF algorithm

 The MOF algorithm is designed to detect outliers in static data. If this

algorithm detects outlier in streaming data, it has several limitations as follows:

1. The MOF algorithm can only work with data that is both bound and limited. It

cannot detect outliers across the entire streaming data, which is infinite and

unconstrained in terms of the arrival of future data points. Furthermore, the

memory storage cannot store the entire streaming data according to space

complexity 𝑂(𝑛2). In addition, MOF processes the entire data set. It cannot detect

outlier type I and type II.

2. The landmark, non-overlapping sliding, and overlapping sliding window models

[39] are used to process data on streaming data in limited storage space. However,

these techniques do not work well. They keep new data points and drop old data

points by the FIFO method which cannot preserve the normal behavior of data.

 To solve this limitation, this section proposed the Streaming Mass ratio

variance Outlier Factor or SMOF algorithm processes in the non-overlapping sliding

window for measuring outlier scores which are the so-called the SMOF scores based

on the MOF algorithm. To facilitate learning of SMOF scores in evolving streaming

data, the SMOF algorithm works on two consecutive windows, the reference window,

followed by the current window based on the Streaming HS-Trees algorithm. Both

windows have the same window size, which contains 𝑤 data points and is also equal

to the batch from streaming data. During the initial stage of the outlier detection stage,

the SMOF algorithm calculates MOF scores of each data point in both windows —the

data points that fall in high-mass of both windows are normal data points, while

current data points in low-mass of both windows are an outlier. —as new data points

41

arrive at the current window, which is the so-called current data point, and the old

data points are in the reference window, which is the so-called reference data point.

 One straightforward solution for detecting outliers would be to measure MOF

scores in the current window and return them as outlier scores of data points, the same

as the MOF algorithm. However, the MOF score cannot be distinguished between

outliers and normal data points well because outliers in streaming data rarely occur.

The percentage of outliers in a batch is not constant, while at some period, there is no

outlier mixed in them. Therefore, SMOF uses the average MOF score of both

windows dotted by the MOF score in its window, resulting in the SMOF score of each

data point. The batch, which contains a large percentage of outliers, has a high

average MOF score, while the batch, which contains a low percentage of outliers, has

a low average MOF score. With this feature, the SMOF scores of outliers are higher

than the normal data point. Note: SMOF scores of current data points are based on

both current and reference data points, while outlier scores of the HS-Trees algorithm

are based only on reference data points.

 To better understand the differences between MOF and SMOF scores assigned

by the SMOF algorithm. Figure 4.11 shows synthesized data which contains blue

normal data points and red outliers generated by gaussian distribution and uniform

random, respectively. It is divided into 3 periods (timestamps from 1-1000, 1001-

2000, and 2001-3000). The first and the third periods contain only normal data points,

while the second period is contaminated by outliers. Figure 4.12 shows the time-series

graph of MOF scores and SMOF scores on a synthesized data set with a setting cut-

off threshold (red line). The data points above the red line are outliers, while the data

points below the red line are normal data points. Figure 4.12 also shows the detection

outliers by the MOF scores cause false positive (𝐹𝑃: detect a normal data point as an

outlier) greater than the detected outliers by the SMOF scores in the same true

negative (𝑇𝑁: detect an outlier as an outlier) and false negative (𝐹𝑁: detect an outlier

as a normal data point). Note that this example sets the window size to 250.

Figure 4.11 2d synthesized streaming data timestamp from 1- 3000

42

Figure 4.12 Detect outliers on time-series graph of a) MOF and b) SMOF scores

After the current data points in the current window are assigned SMOF scores,

they must be removed from the current window and overridden to the reference

window. Instead of the SMOF algorithm simply removing and overriding data points

by the FIFO method similar to the Streaming HS-Trees algorithm, which does not

preserve normal regions in the reference window. To solve this problem, the SMOF

algorithm uses WRS to sample half data points from the reference and the current

windows which are weighted by MOF scores. The larger MOF scores data points

have, the less probability they are selected by WRS. In addition, streaming data treats

the current data points as more important than the reference data points according to a

characteristic of streaming data (transient). Therefore, the weight of reference data

points is increased by their average MOF score. Since the SMOF algorithm collects

data points from the largest to smallest weight, the weight must be the opposite value.

 To better understand how the WRS algorithm can preserve in normal regions,

Figure 4.13 shows the behavior of WRS sampling from four batches and 9 steps. The

first batch (𝑇 = 1) is recorded in the reference window (Step 1), and the second batch

(𝑇 = 2) is recorded in the current window (Step 2). Note that each batch contains 150

data points (w). Once the data points in both the current and the reference window are

calculated MOF scores, the data points are taken a sample from 300 (150+150) to 150

data points by the WRS algorithm. The results show that the half sample of data

points from the reference and the current windows can preserve the normal region and

remove outliers (Step 3). This is because outliers have high MOF scores resulting in a

low probability of being selected by WRS. After that sample is sent to the next

reference window (Step 4) and keep the third batch (𝑇 =3) in the current window

(Step 5), and both windows are taken a sample again (Step 6). The result shows that

the normal region in the sampling, but not in the current window, is faded. Next, the

sample from Step 5 sent to the next reference window (Step 7) and the fourth batch

(𝑇 =4) sent into the current window (Step 8). Finally (Step 9), the WRS algorithms

take a sample of both windows. It shows that old normal region is completely faded.

43

This is because the weight of data points in the reference window is increased by the

average MOF scores of its window, resulting in current data points being more

important than reference data points.

Figure 4.13 The behavior of WRS sampling from batch 1-4

4.2.2 The overview of the SMOF algorithm

The SMOF algorithm processes each batch of streaming data according to

Figure 4.14. The key notations used to describe the method are listed in Table 4.1.

Figure 4.14 The process of the SMOF algorithm

44

Table 4.1 List of symbols

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑀𝑂𝐹(𝐷) Function to calculate MOF scores in D

𝑀𝑂𝐹(𝑝) The MOF score of a data point p

𝑆𝑀𝑂𝐹𝑇 𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝐵𝑇

𝑋𝑡 𝑡𝑡ℎ data point

𝐵𝑇 𝑇𝑡ℎ Batch contain (𝑋((𝑇−1)𝑤+1, … 𝑋(𝑇𝑤))

𝑤 A window size

𝑅 The reference window, 𝑟𝑖 is 𝑖𝑡ℎ the reference data point

𝐶 The current window, 𝑐𝑖 is 𝑖𝑡ℎ the current data point

𝑉𝑅 The weight of R, 𝑣𝑖
𝑟 is the weight of 𝑟𝑖

𝑉𝑐 The weight of C, 𝑣𝑖
𝑐 is the weight of 𝑐𝑖

𝑊𝑅𝑆(𝐷, 𝑉, 𝑚) Random sampling 𝑚 data points of 𝐷 weighted by 𝑉

 During the initial stage (the reference window is null and 𝑇 = 1), the SMOF

algorithm keeps batch 𝐵1 in the reference window 𝑅, and also keeps batch 𝐵2 in the

current window 𝐶. Then the SMOF algorithm calculates SMOF scores (𝑆𝑀𝑂𝐹𝑇)

which is defined as follows:

Definition 4.4 (Streaming Mass ratio variance outlier factor of 𝐵𝑇)

Let 𝑀𝑂𝐹𝑟 and 𝑀𝑂𝐹𝐶 be MOF scores of data points in the reference and the

current windows. 𝜇𝑟 and 𝜇𝑐 are the mean of 𝑀𝑂𝐹𝑟 and 𝑀𝑂𝐹𝐶. The Streaming

Mass ratio variance outlier factor of 𝐵𝑇 is defined as 𝑆𝑀𝑂𝐹𝑇 such that:

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑀𝑂𝐹(𝑅 ∪ 𝐶) = (𝑀𝑂𝐹(𝑟1), … , 𝑀𝑂𝐹(𝑟𝑤), 𝑀𝑂𝐹(𝑐1), … , 𝑀𝑂𝐹(𝑐𝑤))

𝑀𝑂𝐹𝑟 = (𝑀𝑂𝐹(𝑟1), … , 𝑀𝑂𝐹(𝑟𝑤))

𝑀𝑂𝐹𝑐 = (𝑀𝑂𝐹(𝑐1), … , 𝑀𝑂𝐹(𝑐𝑤))

𝜇𝑟 =
1

𝑤
∑ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑀𝑂𝐹(𝑅)

𝜇𝑐 =
1

𝑤
∑ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑀𝑂𝐹(𝐶)

𝑆𝑀𝑂𝐹𝑇 = {
𝑀𝑂𝐹𝑟 ∙ 𝜇𝑟 𝑇 = 1

 𝑀𝑂𝐹𝑐 ∙ 𝜇𝑐 𝑇 > 1

 To measure the outlier score of the next batch (𝐵(𝑇+1)), SMOF needs to clear

the current data points. Thus, the reference and the current data points are sampled by

WRS. Weigh of the reference, and current data points are defined as follows:

45

Definition 4.5 (Weight of the reference and the current data points)

Let 𝜇𝑟𝑐 be the mean of MOF scores in both windows. 𝑉𝑅 is defined as the weight

of reference data points. 𝑉𝐶 is defined as the weight of current data points. 𝑉 is

the weight of the reference and the current data points such that:

𝜇𝑟𝑐 =
1

2𝑤
∑ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑀𝑂𝐹(𝑅 ∪ 𝐶)

𝑉𝑅 = (𝑣1
𝑟 , … , 𝑣𝑤

𝑟) = −(𝑀𝑂𝐹(𝑟1), … , 𝑀𝑂𝐹(𝑟𝑤)) + 𝜇𝑟𝑐

𝑉𝐶 = (𝑣1
𝑐, … , 𝑣𝑤

𝑐) = −(𝑀𝑂𝐹(𝑐1), … , 𝑀𝑂𝐹(𝑐𝑤))

𝑉 = 𝑉𝑅 ∪ 𝑉𝐶

 The SMOF algorithm uses WRS (𝑊𝑅𝑆(𝑅 ∪ 𝐶, 𝑉, 𝑤)) and keeps the sampling

of w data points from 𝑅 and 𝐶 into 𝑅. Once this is done, all data points in 𝐶 are

discarded and get ready to capture the next batch of newly arriving data (𝐵(𝑇+1)). This

process continues as long as the stream exists. Note that after initializing stage has

already passed (𝑇 = 2), the data points in 𝑅 are not from the current batch in

streaming data, but from the previous batch, which already is assigned SMOF scores.

Therefore, the SMOF algorithm will only report SMOF scores only on 𝐶.

4.2.3 The procedure of the SMOF algorithm

 The SMOF flowchart is provided in Figure 4.16 to show and the pseudo code

of the SMOF algorithm in Figure 4.15. In addition, the SMOF algorithm consists of

two stages: the initialization stage to measure SMOF scores in the first batch and the

second batch, and the continuous stage to measure SMOF scores after the second

batch. The steps are as follows:

1) Initialization stage:

Step 1: Input streaming data 𝑆 and a window size.

Step 2: Initialize 𝑅 with the first batch 𝐵1 and set 𝑇 to two in line 1.

Step 3: Streaming data sends data points 𝑋𝑡 to buffer 𝐵𝑇 until reaching 𝑤 data points

in line 3-4.

Step 4: Buffer sends batch 𝐵𝑇 to 𝐶 in line 4.

Step 5: Calculate MOF scores in both 𝑅 and 𝐶 in line 7.

Step 6: Calculate SMOF scores in both the reference window in line 8-10 and the

current window in line 13-15. All of them are returned to the user.

Step 7: Calculate the weight of the reference and the current data points 𝑉 in line 16-

17.

46

Step 8: Sampling 𝑤 data points in 𝑅 and 𝐶 using WRS algorithm weighted by 𝑉 and

keeping them to 𝑅 in line 18.

Step 9: Remove all data points in the current window and increase 𝑇 by one in line

19-20.

Step 10: Go back to Step 2 and add conditions from the continuous stage.

2) Continuous stage:

After the initialization stage is finished, the reference window is filled. The

main step is the same as in the initialization stage, but the SMOF score is only needed

to report in the current window in Step 6. Therefore, line 8–12 is not processed

anymore. The remaining data points in the batch can still be measured.

Figure 4.15 The SMOF flowchart

47

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑆𝑀𝑂𝐹(𝑤, 𝑆)

𝐈𝐧𝐩𝐮𝐭𝐬 ∶ 𝑤 − 𝑊𝑖𝑛𝑑𝑜𝑤 𝑆𝑖𝑧𝑒, 𝑆 – 𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔 𝑑𝑎𝑡𝑎
𝐎𝐮𝐭𝐩𝐮𝐭𝐬 ∶ 𝑆𝑀𝑂𝐹𝑇 – 𝑆𝑀𝑂𝐹 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 each 𝑇𝑡ℎ𝑏𝑎𝑡𝑐ℎ

Line:

1 : 𝑅 ← 𝐵1

2 : 𝑇 ← 2
3 : 𝒘𝒉𝒊𝒍𝒆 𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑆 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒𝑠 𝑑𝑜

4 : 𝐵𝑇 ← 𝐵𝑇 ∪ 𝑋𝑡

5 : 𝒊𝒇 |𝐵𝑇| ≥ 𝑤 𝒕𝒉𝒆𝒏

6 : 𝐶 ← 𝐵𝑇

7 : 𝑀𝑂𝐹𝑟 , 𝑀𝑂𝐹𝑐 ← 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑀𝑂𝐹(𝑅 ∪ 𝐶)

8 : 𝒊𝒇 𝑇 ← 2 𝒕𝒉𝒆𝒏

9 : 𝜇𝑟 ←
1

𝑤
∑ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑀𝑂𝐹(𝑅)

10 : 𝑆𝑀𝑂𝐹1 ← 𝑀𝑂𝐹𝑟 ∙ 𝜇𝑟

11 : 𝑅𝑒𝑝𝑜𝑟𝑡 𝑡ℎ𝑒 𝑆𝑀𝑂𝐹1 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝐵1

12 : 𝒆𝒏𝒅 𝒊𝒇

13 : 𝜇𝑐 ←
1

𝑤
∑ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑀𝑂𝐹(𝐶)

14 : 𝑆𝑀𝑂𝐹𝑇 ← 𝑀𝑂𝐹𝑐 ∙ 𝜇𝑐

15 : 𝑅𝑒𝑝𝑜𝑟𝑡 𝑆𝑀𝑂𝐹𝑇 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝐵𝑇

16 : 𝜇𝑟𝑐 ←
1

2𝑤
∑ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑀𝑂𝐹(𝑅 ∪ 𝐶)

17 : 𝑉 ← 𝑉𝑅 ∪ 𝑉𝐶

18 : 𝑅 ← 𝑊𝑅𝑆(𝑅 ∪ 𝐶, V, 𝑤)

19 : 𝐶 ← 𝑛𝑢𝑙𝑙
20 : 𝑇 + +

21 : 𝒆𝒏𝒅 𝒊𝒇

22 : 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

Figure 4.16 The pseudo code of the SMOF algorithm

4.2.4 The complexity analysis for the SMOF algorithm

The complexity of the SMOF algorithm has been divided into two parts 1) the

outlier detection part and 2) the summarization part. The outlier detection part

includes everything from the arrival of a data point to the returning outlier scores. The

summarization part includes everything starting with calculating 𝑉 and removing all

current data points. The time complexity of each part individually and the total

complexity of the SMOF algorithm is the sum of the complexity of these two parts.
The complexity of the SMOF algorithm is analyzed based on the amount of time. The

SMOF algorithm would take to execute for one data point with respect to window

size. Since the SMOF algorithm is executed for every data point and the number of

data is potentially infinite, the analysis will not use to the number of data points. That

means the time complexity of the SMOF algorithm is related to 𝑤. In the outlier

48

detection part, a new data point from streaming data is sent to a buffer until it reaches

𝑤 data points having an average time complexity 𝑂(1). After that buffer sends a

batch to 𝐶 and then calculates MOF scores. The MOF algorithm has time complexity

𝑂(𝑤2𝑙𝑜𝑔𝑤) and space complexity 𝑂(𝑤2). This processes 2𝑤 data points in both

windows leads to average time complexity 𝑂(𝑤𝑙𝑜𝑔𝑤) and space complexity 𝑂(𝑤2).

The SMOF algorithm uses MOF scores dotted by the average 𝑀𝑂𝐹 scores to

calculate the SMOF score having an average time complexity 𝑂(1). In summary, the

space and average time complexity of the outlier detection is 𝑂(𝑤2) and 𝑂(𝑤𝑙𝑜𝑔𝑤)

respectively. In the summarization part, the SMOF algorithm calculates V. The MOF

scores were already calculated in the first part; therefore, there is only an average time

complexity of 𝑂(1). After that, the SMOF algorithm uses WRS to sample 𝑤 data

points from both windows according to 𝑉 by the sorted algorithm, which has time

complexity 𝑂(𝑤𝑙𝑜𝑔𝑤). Thus, it has an average time complexity 𝑂(𝑙𝑜𝑔𝑤). The

sampling is sent to the 𝑅. The current data points are dropped. The space complexity

of this part contains 2𝑤 data points in both windows. In summary, the space and

average time complexity of the summarization part is 𝑂(𝑤) and 𝑂(𝑙𝑜𝑔𝑤),
respectively. In conclusion, the sum of the average time complexity of the SMOF

algorithm to measure SMOF scores and update each new data point is 𝑂(𝑤𝑙𝑜𝑔𝑤), and

the sum of space complexity is 𝑂(𝑤2).

49

Chapter 5
Experimental Results

 This chapter presents the experimental results of the MOF and the SMOF

algorithms, evaluating their performance in terms of accuracy and execution time. The

experiments are conducted using both real-world and synthesized data sets. It also

presents the details of performance metrics, data sets, simulation models, and

competitive algorithms.

5.1 Performance metrics

To evaluate the performance outlier detection, the accuracy of each studied

algorithm is based on two performance metrics: Precision-Recall Area Under Curve

(PR AUC) and Receiver Operator Characteristic Area Under Curve (ROC AUC). All

performance metrics are based on the confusion matrix shown in Table 5.1, in which a

true positive (𝑇𝑃) is a true outlier that is identified as an outlier, and a true negative

(𝑇𝑁) is a normal data point that is identified as a normal data point, a false positive

(𝐹𝑃) is a normal data point that is identified as an outlier, and a false negative (𝐹𝑁) is

an outlier that is identified as a normal data point. A good outlier detection technique

maximizes true positives while reducing false negatives and positives.

In the case of outlier detection, true negatives are ignored. The number of

normal data points is significantly more than outliers. So, the number of true

negatives is very high compared to the number of true positives. All cases of the data

set evaluated in this chapter contain a lower 5% outlier.

Table 5.1 The confusion matrix

Actual

Outliers

Actual

normal data points

Predicted

Outliers TP FP

Predicted

normal data points FN TN

50

5.1.1 Precision

Precision is defined as the ratio of correct identifications to total

identifications. Where there is no mistaken classification, the highest achievable

precision is 1. The notation is as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

5.1.2 Recall

Recall is the ratio of the number of detected outliers to the total number of

outliers. In reality, precision just demonstrates the correctness of the results; it does

not represent the completeness of the results, so precision is always combined with a

recall to illustrate the correctness and completeness of an algorithm. The highest

achievable recall is 1. The notation is as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

5.1.3 ROC AUC (AUC)

Precision and Recall based on the confusion matrix can only evaluate the

performance of a binary score. Although an outlier score can set a threshold to

convert to a binary score, it is not comfortable to find the best threshold. AUC ROC

curve is a performance measurement for classification problems at various threshold

settings. ROC is a probability curve, and AUC represents the degree or measure of

separability. It explains how capable the model is capable of distinguishing between

outliers and normal data points. An excellent model has an AUC close to one,

indicating that it has a high level of separability. A poor model has an AUC close to

zero, indicating that it has the weakest measure of separability. In fact, it means that it

is reversing the result. Outliers are predicted as normal data points, and normal data

points are predicted as outliers. When AUC is 0.5, the model has no class separation

capacity at all. The highest AUC is one in which algorithms can identify separability

between outliers and normal data points, while the lowest AUC is 0, in which

algorithms can reverse identify separability between them. In fact, it means that it is

reversing the result. Outliers are predicted as normal data points, and normal data

points are predicted as outliers. While the average AUC is 0.5, algorithms cannot

identify separability between outliers and normal data points.

 Figure 5.1 Receiver operating characteristic curveshows the ROC curve with

True positive (𝑇𝑃) against the False positive (𝐹𝑃) where 𝐹𝑃 and 𝑇𝑃 are on-axis 𝑥 and

𝑦 respectively. The orange curve is ROC, and the green area under the orange curve is

AUC.

51

Figure 5.1 Receiver operating characteristic curve

 To investigate the use of the area under the ROC curve (AUC) as a measure of

classifier performance. When the decision threshold (𝑖) is varied, and the number of

points on the ROC curve [𝑇𝑃𝑅 = 𝑎, 𝐹𝑃𝑅 = 𝛽] which have been obtained, the

simplest way to calculate the area under the ROC curve is to use trapezoidal

integration. The notations are as follows.

𝐴𝑈𝐶 = ∑{(𝛽 ∙ ∆𝛼)

𝑛

𝑖=1

+
1

2
[∆𝛽 ∙ 𝛼]}

𝑤ℎ𝑒𝑟𝑒 ∆𝛽 = 𝛽𝑖 − 𝛽𝑖−1

∆𝛼 = 𝛼𝑖 − 𝛼𝑖−1

5.1.4 Average Precision (AP)

The Precision-Recall AUC is similar to the ROC AUC in that it summarizes

the curve as a single score with a range (𝑛) of threshold 𝑖 values. Thresholds are used

to convert outlier scores into precision and recall on-axis 𝑦 and 𝑥, according to Figure

5.2. The weighted mean of precision acquired at each threshold is used to describe a

precision-recall curve as average precision (AP).

𝐴𝑃 = ∑(𝑅𝑖 − 𝑅𝑖 − 1)𝑃𝑖

𝑖∈𝑛

 where 𝑃𝑖 and 𝑅𝑖 are the precision and recall at the 𝑖𝑡ℎ threshold that has been

obtained, the easiest way to calculate the PA is to use the trapezoidal integration.

52

Figure 5.2 Precision-Recall curves

5.1.5 A paired t-test

 In fact, each outlier detection algorithm has a different idea to detect outliers.

To compare the pattern of detecting outliers between the two algorithms. A paired t-

test is used when the difference between two algorithms is interested in the same data

set. Supposed 𝑛 data sets were given outlier scores by algorithms A and B. The

paired t-test is used to prove that algorithm B leads to improvements or deterioration

in detecting outliers compared with algorithm A. The score of each data set can be

calculated by recall or precision. Let 𝑋 = {𝑥1, 𝑥2 , … , 𝑥𝑛} be a subset of metric scores

from algorithm A and 𝑌 = {𝑦1, 𝑦2 , … , 𝑦𝑛} be a subset of metric scores from

algorithm B. To test the null hypothesis that the true mean difference is zero, the

procedure is as follows:

1. Calculate the difference {𝑑𝑖| 𝑑𝑖 = 𝑦𝑖 − 𝑥𝑖 𝑤ℎ𝑒𝑟𝑒 𝑖 = {1,2, … , 𝑛}}

2. Calculate the mean different �̅� =
∑ 𝑑𝑖

𝑛
𝑖=1

𝑛

3. Calculate the standard deviation of the difference, 𝑠𝑑, and use this to calculate the

standard error of mean difference, 𝑆𝐸(�̅�) =
𝑠𝑑

√𝑛

4. Calculate the t-statistic, which is given by 𝑇 =
�̅�

𝑆𝐸(𝑑 ̅)
. Under the null hypothesis,

this statistic follows a t-distribution with 𝑛 − 1 degree of freedom.

5. Use tables of the t-distribution to compare your value for 𝑇 to the 𝑛 − 1

distribution. This will give the 𝑝-value for the paired t-test.

6. The 𝑝-value is the probability of obtaining test results at least as extreme as the

results observed, under the assumption that the null hypothesis is correct. A 𝑝-

value larger than a chosen threshold (e.g., 5% or 1%) indicates that our

observation is not so unlikely to have occurred by chance. Moreover, it rejects the

null hypothesis of equal population means if the 𝑝-value is smaller than the

threshold.

53

5.2 Details and Parallel coordinates plots of benchmark

data sets

Benchmark data sets include Shuttle, Glass, Saimage-2, Satellite, [43], HTTP,

and SMTP data, which is KDD CUP 99 network intrusion data as used in [44], and

Mulcross [45] which all categorical attributes are removed. In addition, this section

also shows parallel coordinates plots of each data set in which axis x is a dimension,

and axis y is the value of each dimension. The last dimension is a binary label in

which the yellow and blue lines are outliers and normal data points, respectively.

Table 5.2 provides the properties of all data sets, where #𝑛 is the number of data

points, #𝐷𝑖𝑚 is the number of dimensions whose index of dimensions starts from

zero, and the percentage in brackets indicates the percentage of outliers.

Table 5.2 Data properties

Data sets #𝒏 #𝑫𝒊𝒎 #Outliers (%)

Glass 214 9 9 (4.2%)

Musk 3062 166 97 (3.2%)

Satimage-2 5803 36 71 (1.2%)

Satellite 6435 36 2036 (32%)

MNIST 7603 100 700 (9.2%)

Ionosphere 351 33 126 (36%)

Shuttle 49097 9 3511 (7%)

HTTP 567479 3 2211 (0.4%)

Satimage-2 5803 36 71 (1.2%)

Mulcross 262144 4 26214 (10%)

SMTP 95156 3 30 (0.03%)

5.2.1 Satimage-2 data

 Satimage-2 data: Statlog (Landsat Satellite) data set is a multi-class

classification data set that contains 7 classes. Class 2 is down sampled to 71 data

points as an outlier, and other classes are pooled to produce normal data points. The

revised data set has been dubbed Satimage-2. Figure 5.3 shows that the values of all

dimensions of most outlier and normal data points are stratified. In addition, they are

dense masses that are closely related to each other.

54

Figure 5.3 Parallel coordinates plot for Satimage-2 data

5.2.2 MNIST data

 MNIST data: the original data’s MNIST database (Modified National Institute

of Standards and Technology database) is a massive collection of handwritten digits

that is frequently used to train image processing systems that contain 28×28 pixels or

784 features. Seven hundred images are sampled from the digit-six class as the

outliers, and all digit-zero classes are considered normal data points; in addition, 100

features are randomly selected from 784 total features. Figure 5.4, Figure 5.5, and

Figure 5.6 show that the values of most dimensions of most outlier and normal data

points are unclearly stratified.

Figure 5.4 Parallel coordinates plot for MNIST data in 0-34th dimensions

55

Figure 5.5 Parallel coordinates plot for MNIST data in 35-69th dimensions

Figure 5.6 Parallel coordinates plot for MNIST data in 70-99th dimensions

5.2.3 Ionosphere data

 Ionosphere data: The original ionosphere data set was radar data collected by a

system in Goose Bay. It has a dimensionality of 34 and is a binary classification data

set. A "good" label indicates that radar detects some type of structure in the

ionosphere, while a "bad" indicates that radar does not detect any; their signals pass

through the ionosphere. The “Good” and “Bad” labels are classified as normal data

points and outliers. Moreover, one feature has 0 values and is thus discarded. As a

result, the total number of features is 33. Figure 5.7 shows that the values of most

dimensions of most outliers and normal data points are unclearly stratified. In

addition, outliers are scattered, while the normal data points are grouped together.

56

Figure 5.7 Parallel coordinates plot for the Ionosphere data

5.2.4 Musk data

 Musk data: the data set contains several musk and non-musk classes. No-musk

classes j146, j147, and 252 are combined as normal data points, while musk classes

213 and 211 are combined as an outlier. Note those other classes have been dropped.

Figure 5.8, Figure 5.9, Figure 5.10, and Figure 5.11 show that the values of most

dimensions of most outlier and normal data points are unclearly stratified. In addition,

the outlier’s values on some dimensions agglomerated.

Figure 5.8 Parallel coordinates plot for Musk data in 0-41th dimensions

57

Figure 5.9 Parallel coordinates plot for Musk data in 42-83th dimensions

Figure 5.10 Parallel coordinates plot for Musk data in 84-125th dimensions

Figure 5.11 Parallel coordinates plot for Musk data in 126-165th dimensions

5.2.5 Satellite data

 Satellite data: Statlog (Landsat Satellite) data set is a multi-class classification

data set that contains 7 classes. Classes 2, 4, and 5 are combined as outliers, while the

other classes are combined as normal data points. The revised data set has been

58

dubbed Satellite. Figure 5.12 shows that the values of the minor dimensions of normal

data points and outliers are stratified, while most normal data points and outliers have

high overlapping values. In addition, both of them are closely clustered together.

Figure 5.12 Parallel coordinates plot for Satellite data

5.2.6 Glass data

 Glass data: The data set contains seven types of glass. The number of data

points in class 6 is the lowest among other classes, so class 6 is an outlier, while other

classes are normal data points. Note each feature of this data includes the ingredient

element and the refractive index. Figure 5.13 shows that the values of all dimensions

of all normal data points and outliers are not very stratified.

Figure 5.13 Parallel coordinates plot for Glass data

5.2.7 HTTP and SMTP data

 HTTP, SMTP, and SMTP+HTTP data: The original KDD Cup 1999 data set

contains a standard set of data to be audited, which includes a wide variety of

intrusions simulated in a military network environment. It contains 3,925,651 attacks

(80.1%) out of 4,898,431 data points, and 41 attributes (34 continuous, and 7

59

categorical). However, this data set keeps only the attribute “logged_in” positive,

resulting in 3,377 attacks (0.35%) of 976,157 data points. However, there are still

categorical and useless attributes; therefore, they are reduced to 4 attributes: Duration,

src_bytes, and dst_bytes continuous attributes which are concentrated around 0.

Therefore, they transform each value into a log scale by 𝑦 = log (𝑥 + 0.1). After that,

three smaller data sets are forged according to the service attribute. Firstly, SMTP

data contains only the "SMTP" service attribute. Secondly, HTTP data contains only

the "HTTP" service attribute. Lastly, SMTP+HTTP data contains sequence data of

SMTP and HTTP data, respectively. Figure 5.14 and Figure 5.15 show that the values

of the first dimension (src_bytes) of all normal data points and outliers are stratified.

The zero and the second dimensions are noise dimensions.

Figure 5.14 Parallel coordinates plot for HTTP data

 Figure 5.15 Parallel coordinates plot for SMTP data

5.2.8 Shuttle data

 Shuttle data: Statlog (Landsat Satellite) data set contains 7 classes. Classes 2,

3, 5, 6, and 7 are combined as outliers, while class 1 is a normal data point. Class 4 is

discarded. The revised data set has been dubbed Shuttle data. Figure 5.16 shows that

the values of the zero and first dimensions of the outlier are spread, while normal data

60

points are dense. The values of other dimensions of outliers and normal data points

have high overlapping values. In addition, both of them are closely clustered together.

Figure 5.16 Parallel coordinates plot for the Shuttle data

5.2.9 Mulcross data

 Mulcross data: synthesize data is generated by a multidimensional normal

distribution that contains two clusters of outliers that are far from the center of the

normal cluster by 2 distance factors. Figure 5.17 shows that the values of the zero and

first dimensions are noise, while the values of other dimensions of outlier and normal

data points are stratified. In addition, outlier and normal data points are dense masses

that are closely related to each other.

Figure 5.17 Parallel coordinates plot for the Mulcross data

5.3 Simulation Model

The simulation goal is to demonstrate the effectiveness of SMOF, MOF, and

other state-of-the-art algorithms. Static data is used to calculate their outlier scores,

whereas streaming data is imitated. It generates each data point incrementally to the

model over a fixed time interval. The entire simulation model is built on Google

Colab and runs in Python. Note that all data sets are scaled by min-max scale before

61

they are processed. The SMOF and the HS-Trees algorithms use random methods.

Therefore, the performance results are from an average of 10 trials.

5.4 Competitive algorithms

The MOF algorithm is compared to six other algorithms: LOF [41], OOF [22],

AOF[24], FastABOD [25], and kNN, all of which are discussed in detail in Chapter 2.

LOF, kNN, and FastABOD have a single parameter (𝑘-nearest neighbors), whereas

OOF and AOF are parameter-free. The LOF, kNN, and FastABOD algorithms are

imported from Pyod [46] while the OOF, AOF, and MOF algorithms are coded by the

author and accelerated by Numba [47] which converts Python functions to optimized

machine code that can approach C speeds.

The SMOF algorithm is compared to the HS-Trees algorithm, the details of

which are already presented in Chapter 2. The HS-Trees parameters include the

number of HS-Trees in an ensemble (ℰ), the maximum depth (ℎ), 𝑠𝑖𝑧𝑒𝐿𝑖𝑚𝑖𝑡, and

window sizes (𝑤).

Note: HS-Trees and FastABOD assign low outlier scores as an outlier. The

outlier score of them is inverted for comparing AUC and AP metrics with other state-

of-the-art outlier detection techniques.

5.5 Experiments and results of the MOF algorithm

 This section evaluates the MOF algorithm with extensive experiments. All

examples are used to illustrate some specific data points that appear to be meaningful,

but cannot be identified by other methods. The first example starts with 2d

synthesized data sets, for which the outlier scores are colored. The second example

uses the paired t-test to evaluate the detection pattern. The third example is from real-

world data sets and evaluated performance by AUC, AP, and execute time metrics. In

the last experiment, the top-10 outliers in modified real-world data sets are extracted.

5.5.1 Visualization of outlier scores

 The purpose of this section is to compare the distribution of MOF scores to

𝑂𝑂𝐹 and AOF scores on six 2d synthesized data sets. The OOF and the AOF

algorithms are also unsupervised parameter-free outliers scoring the same as MOF.

Figure 5.18 depicts that they are on a scatter plot. The color is the degree of outlier

score by each algorithm, with blue indicating a low outlier score and red indicating a

high outlier score (according to rainbow colors). The experiments yielded the

following results:

• The data sets 1) and 2) contain local and global outliers. MOF, OOF, and AOF

can assign outlier scores to global outliers far from normal regions, significantly

greater than normal data points. However, OOF and AOF cannot detect local

62

outliers at the center as normal data points, while the MOF algorithm can detect

them correctly.

• The data set 3) contains three normal region clusters generated by a gaussian

distribution with a difference in mean and variance. The MOF algorithm balances

MOF scores across all clusters, whereas the OOF and the AOF algorithms assign

the highest outlier scores to the highest sparse cluster (middle cluster).

• The data set 4) is made up of three ellipse clusters generated by a

multidimensional gaussian distribution, each with a different mean but the same

variance. The MOF algorithm can detect outliers correctly. In contrast, OOF and

AOF fail to detect outliers around clusters

• The data sets 5) and 6) only contain global outliers from the normal region. OOF,

AOF, and MOF can significantly assign outlier scores to outliers greater than all

normal regions.

Figure 5.18 Assigning the log-scale on MOF (a – f), OOF (A-F), and (I-VI) scores to

the six 2d synthesized data sets (1-6)

The results of these experiments show that the MOF algorithm can detect local

and global outliers in single or multiple normal region clusters with different

densities, whereas AOF and OOF cannot. However, OOF and AOF can still detect

global outliers in single or multiple normal regional clusters with the same densities.

This is because the above data set necessitates the principle of data density-based

rather than distance-based.

63

5.5.2 Comparison of detection patterns by paired t-test

The MOF algorithm is inspired by many other algorithmic results to cover

conceptual bases such as LOF is the density-based outlier detection, AOF assigns an

outlier score based on other data points, and FastABOD uses variance to summarize

the outlier score. Therefore, this experiment aims to compare detection patterns of

MOF to LOF, AOF, and FastABOD by paired t-test of precision and recall metrics.

To implement, the data sets will be generated to have 1-cluster, 2-cluster, and 3-

cluster patterns. Each cluster pattern will be generated for 100 data sets, and each data

set will have two numeric attributes with 1,000 data points. From 1,000 data points,

990 data points will follow the gaussian distribution having random centroids and

variances. Note centroids of the gaussian distribution and the other 10 data points,

which are generated randomly within a box [-10,10] × [-10,10]. The example 2 data

set from each cluster pattern is shown in Figure 5.19.

Figure 5.19 One, two, and three clusters pattern of 2d synthesized data sets

After that, the MOF and other algorithms measure outlier scores on all 100

data sets and return the top-10 highest scores from each algorithm. They will change

to precision and recall metrics which is the perfect score of 1. It intends to utilize the

paired t-test to establish the statistical significance of precision and recall from all

data sets of the MOF to AOF, FastABOD, and LOF. The significance level in this

experiment is set to 0.05. If the 𝑝-value is less than or equal to 0.05, then the null

hypothesis will be rejected. In contrast, if the 𝑝-value is greater than 0.05, then the

null hypothesis cannot be rejected. This means that the MOF algorithm obtains a

64

similar performance to the considered algorithm. The results of 𝑝-values are shown in

Table 5.1. The underlined numbers are marked for a 𝑝-value lower than 0.05.

Table 5.3 shows that the MOF algorithm has significantly different recall and

precision compared with AOF since all cluster patterns have 𝑝-values less than 0.05.

In contrast, The MOF algorithm does not show significantly different recall and

precision compared with FastABOD and LOF. All cluster patterns have 𝑝-values

greater than 0.05.

Table 5.3 p-value for each cluster pattern and algorithm

Cluster 𝒑-value

patterns AOF FastABOD LOF

Recall Precision Recall Precision Recall Precision

1 0.045 0.045 0.320 0.320 0.566 0.566

2 0.000 0.000 0.103 0.103 0.083 0.083

3 0.000 0.000 0.241 0.241 0.250 0.250

The results of these experiments show that the detection pattern of the MOF

algorithm is the same as the FastABOD and LOF algorithm but different from the

AOF algorithm. The main reasons are the following:

• Both the MOF and the LOF algorithms can detect outliers in multiple or single

clusters (Gaussian distribution) with different densities (variance).

• Both MOF and FastABOD use the variance of contribution data points to

summarize the outlier score, which can distinguish between outlier and normal

data points.

• Although both MOF and AOF are parameters-free, AOF is distance-based, order

difference distance which has an outlier scoring idea that is very different from

MOF.

5.5.3 Experiments on real-world data sets

 From the past two experiments, the MOF algorithm can detect outliers in the

synthesized data set. Therefore, it has the potential to detect outliers in real-world data

sets. This experiment aims to compare performance among MOF, LOF, OOF, and

kNN in real-world data sets such as Glass, Ionosphere, MNIST, Musk, Satellite, and

Satimage-2 (detail in section 5.2). Since it is hard to know the real outliers in the data

set, all parameters of all algorithms must be set to the default value to detect outliers

in all data sets. The MOF and the OOF algorithms have no parameters to configure,

whereas LOF and kNN have 𝑘-nearest neighbors set to 20 and 5, respectively. The

performance metrics to evaluate are AUC, AP, and execution time. The experimental

65

results are shown in Table 5.4, Table 5.5, and Table 5.6 ordered by rank. Rank 1
shows the best and rank 4 shows the worst. If the algorithm's performance is the same

as the other model, ranks are shared. The underline in Table 5.4 and Table 5.5

indicated that they had the highest score, while Table 5.6 indicated that they had the

shortest execution time. In addition, all tables show the average value and rank of

performance for a summary. The following are the performance results.

Table 5.4 and Table 5.5 show that the MOF algorithm outperforms other

algorithms in terms of AUC and AP scores on the Glass, MNIST, Musk, and

Satimage-2 data sets. This is because these data sets contain dense outliers according

to the parallel coordinates plot in section 5.2, in which most dimensions of the outlier

are dense, which is larger than 𝑘 data points in the parameters of the LOF and the

kNN algorithms. In addition, the AOF algorithm cannot detect micro-outliers.

However, parallel coordinates plots of Satellite and Ionosphere are shown that

each dimension of the outlier is high spread. Therefore, the kNN algorithm

outperforms in Ionosphere data, and OOF outperforms in Satellite. The outlier score

in this data set should be from the distance of the nearest neighbors.

One interesting point is that the LOF algorithm has the worst performance

accuracy. This is because the 𝑘-nearest neighbors are very sensitive. The 𝑘-nearest

neighbors must be based on the number of micro-clusters to detect outliers. You can

see that AUC and AP of LOF are worse than kNN in the Satimage-2 data set, in

which outliers are very dense compared to other data sets. Although 𝑘-nearest

neighbors in LOF are greater than 𝑘-nearest neighbors in kNN, AP of LOF is lower

than six times AP of kNN.

Table 5.6 shows that the MOF algorithm takes execution time (seconds)

longer than LOF and kNN but faster than OOF because LOF and kNN use 𝑘-nearest

neighborhoods to measure outlier scores in the local area (𝑘 data points). In contrast,

both the OOF and MOF algorithms measure outlier scores in relation to all data points

(𝑛 data points) in a data set. Moreover, kNN and LOF have a time complexity of

𝑂(𝑛2), whereas the OOF and MOF algorithms share a time complexity of

𝑂(𝑛2𝑙𝑜𝑔𝑛). The OOF algorithm should be the same as the MOF algorithm because it

has steps to calculate lower than MOF. The source code of the OOF algorithm has

shared some parts with the AOF algorithm. Note: All of these algorithms use the same

Euclidean distance measurement; number dimensions do not play a role in

determining time complexity.

Overall performance by average performance and rank can be summarized as

follows:

• They showed that the accuracy of the MOF algorithm outperforms other

algorithms while the LOF underperforms other algorithms.

• For execution time, the LOF and the kNN algorithms are faster execution times

than the MOF and OOF algorithms.

66

Table 5.4 AUC scores for static data

Data sets
MOF OOF LOF kNN

Rank AUC Rank AUC Rank AUC Rank AUC

Glass 1 0.850 4 0.824 3 0.831 2 0.84

Ionosphere 2 0.920 4 0.718 3 0.895 1 0.933

MNIST 1 0.871 3 0.771 4 0.679 2 0.841

Musk 1 1.000 2 0.811 4 0.637 3 0.759

Satellite 2 0.696 1 0.782 4 0.546 3 0.672

Satimage-2 1 0.997 2 0.965 4 0.542 3 0.938

Average 1.33 0.889 2.67 0.812 3.67 0.688 2.33 0.831

Table 5.5 AP scores for static data

Data sets
MOF OOF LOF kNN

Rank AP Rank AP Rank AP Rank AP

Glass 1 0.222 2 0.111 2 0.111 2 0.111

Ionosphere 2 0.810 4 0.5 3 0.770 1 0.881

MNIST 1 0.429 3 0.39 4 0.294 2 0.424

Musk 1 1.000 2 0.598 3 0.258 4 0.237

Satellite 2 0.552 1 0.61 4 0.376 3 0.492

Satimage-2 1 0.747 2 0.732 4 0.07 3 0.394

Average 1.33 0.627 2.33 0.49 3.33 0.313 2.5 0.423

Table 5.6 Execution time for static data

Data sets
MOF OOF LOF kNN

Rank Time

Rank Time

Rank Time

e

Rank Time

Glass 2 0.009 4 1.849 3 0.009 1 0.004

Ionosphere 4 0.035 3 0.031 2 0.018 1 0.008

MNIST 3 21.547 4 21.950 1 1.979 2 1.989

Musk 3 2.828 4 3.346 1 0.315 2 0.346

Satellite 3 10.919 4 14.523 1 1.043 2 1.072

Satimage-2 3 8.406 4 10.444 4 0.89 1 0.879

Average 3 7.290 3.83 8.691 1.67 0.709 1.5 0.716

67

5.5.4 The top-10 outliers

 This section aims to evaluate outlier detections such as MOF, OOF,

FastABOD, and LOF on three real-world data sets, Ionosphere, Musk, and Satimage-

2 data set, comparing only the top-10 highest scores extracted with their indices. From

the previous section, the MOF algorithm can detect dense outliers perfectly.

Therefore, the outliers of each data set are reduced to just ten data points randomly to

evaluate real-world data sets which contain few outliers. In addition, the parameters

for LOF vary from 10 to 40 and return the best tune by grid search. The AOF and the

MOF algorithms do not require any parameter, while the parameter of the FastABOD

algorithm is set to 0.1 of the real-world data sizes. The reported results are the ones

with the maximum number of large indices from each real-world data set and the

number of outliers that are detected.

 Three real-world data sets are the Ionosphere data set, the Musk data set, and

the Satimage-2 data set, as shown in Table 5.7. First, the Ionosphere data set has 225

normal data points and 126 outliers. It has 33 dimensions. Second, the Musk data set

contains several musk and non-musk classes. This data set contains 97 musk and

2,965 non-musk classes with 166 dimensions. Lastly, the Satimage-2 contains class 2

as 71 outliers and 5,732 as normal classes with 36 dimensions. In the experiment,

only the first 10 outliers were kept.

Table 5.7 Three real-world data sets

Data sets Non-outlier Indices Outlier Indices #Dim

Ionosphere 0 - 234 235 - 244 33

Musk 0 - 2,964 2,965 - 2,974 166

Satimage-2 0 - 5,731 5,732 - 5,741 36

 The results shown in Table 5.8 are the top-10 ranks and the number of each

algorithm that detects outliers correctly. The parameter 𝑘 of LOF is determined to be

28, 21, and 22 for the Ionosphere data set, the Musk data set, and the Satimage-2 data

set, respectively. In the Ionosphere data set, the MOF algorithm can detect more

outliers than AOF but detect the same number of outliers as FastABOD and LOF. In

addition, No. 61 and No. 17 are detected by MOF, FastABOD, and LOF as outliers.

In the Musk data set, the MOF and the LOF algorithms can detect all outliers, but the

FastABOD algorithm can only detect No. 2965 while the AOF algorithm can detect

No. 2965 and No. 2967. The last experiment was on the Satimage-2 data set. Both the

MOF and the FastABOD algorithms can detect the top-8 outliers correctly and

identify No. 3366 as an outlier.

68

Table 5.8 The outlier scores of each algorithm for three real-world data sets

Ionosphere data set

Top-10 MOF AOF FastABOD LOF

Index Score Index Score Index Score Index Score

1 233 125.12 233 0.54 233 -5.42E-06 230 3.69

2 234 104.49 26 0.17 234 -1.30E-05 231 3.39

3 226 71.57 94 0.16 230 -3.46E-05 234 3.07

4 228 65.93 230 0.15 232 -7.88E-05 228 2.96

5 230 41.50 181 0.13 228 -7.98E-05 61 2.93

6 231 29.05 171 0.12 231 -1.10E-04 233 2.82

7 61 24.65 55 0.11 226 -1.30E-04 232 2.61

8 232 21.02 234 0.09 17 -2.50E-04 17 2.55

9 25 18.73 39 0.08 61 -3.00E-04 226 2.41

10 17 17.88 14 0.08 25 -5.60E-04 95 2.37

Correct 8 - 3 8 - 7

Musk data set

Top-10 MOF AOF FastABOD LOF

Index Score Index Score Index Score Index Score

1 2,972 57.95 1,647 11.44 2,965 -8.59E-15 2,972 1.77

2 2,973 57.86 2,965 9.56 393 -3.65E-14 2,973 1.77

3 2,969 53.93 1,835 7.97 126 -3.88E-14 2,969 1.76

4 2,968 53.83 1,889 6.73 354 -4.30E-14 2,968 1.76

5 2,966 53.63 1,668 5.08 83 -4.45E-14 2,966 1.76

6 2,974 49.50 1,649 4.65 359 -4.53E-14 2,965 1.76

7 2,971 49.46 501 4.64 224 -4.56E-14 2,974 1.76

8 2,965 48.99 2,967 4.63 769 -4.57E-14 2,971 1.76

9 2,970 44.98 1,898 4.46 320 -4.67E-14 2,970 1.74

10 2,967 44.85 1,827 3.94 627 -4.72E-14 2,967 1.74

Correct 10 - 2 1 - 10

Satimage-2 data set

Top-10 MOF AOF FastABOD LOF

Index Score Index Score Index Score Index Score

1 5,738 512.69 5,738 21.36 5,738 -2.9E-11 5,738 2.75

2 5,732 411.45 5,737 14.07 5,736 -3.8E-11 5,732 2.46

3 5,739 388.40 5,739 6.56 5,735 -3.8E-11 5,737 2.45

4 5,737 345.91 5,741 4.69 5,734 -4.3E-11 5,739 2.43

5 5,734 185.57 5,740 3.85 5,732 -4.5E-11 4,335 2.27

6 5,741 181.76 5,732 3.54 5,741 -4.6E-11 5,741 2.25

7 5,735 114.32 4,241 3.31 5,739 -4.7E-11 3,302 2.22

8 5,736 114.32 4,242 2.80 5,737 -6.2E-11 5,740 2.17

9 936 93.79 404 1.60 3,366 -8.1E-11 5,734 2.14

10 3,366 89.73 5,734 1.53 72 -1.1E-10 964 2.12

Correct 8 - 7 8 - 8

69

 The results of these experiments show that the MOF algorithm still can detect

a few outliers in data sets better than other algorithms. For the LOF algorithm, if it

can use a grid search for the best tune, the number of outliers detected by the LOF

algorithm is near to the MOF algorithm.

5.5.5 Conclusions on Experimental Results for the MOF algorithm

 The experimental evaluations presented in the previous sections for the MOF

algorithm are as follows:

• The AOF and the OOF algorithms are not applicable to detect local outliers which

are near the normal region and micro-outlier clusters that consist of a small group

of outliers.

• The AOF and the OOF algorithms are also inapplicable for a data set consisting of

different densities of the normal region.

• The LOF and the kNN algorithms are not applicable to detect outliers in data that

is the unknown distribution of data. The parameter values affect the detection of

abnormal data, especially the LOF algorithm.

• The MOF algorithm is applicable and effective in all cases. Moreover, it does not

assume the density of outlier and normal data points. Hence, the applicability of

the MOF algorithm is much broader compared to the LOF and the kNN

algorithms, which must be set by some parameters.

• The MOF algorithm is perfectly applicable for data sets that contain dense

outliers, such as the Musk data set, where the existing outlier detection technique

fails to work.

• Although the execution time of the MOF algorithm is more than that of the LOF

and the kNN algorithms, the accuracy of MOF is still better than theirs.

• The accuracy (AUC and AP) of the MOF algorithm is not based on any user

parameter. Thus, the user can use it without prior knowledge.

5.6 Experiments and results of the SMOF algorithm

 This section evaluates the SMOF algorithm with extensive experiments. They

confirm that the SMOF algorithm can be used successfully to identify outliers that

appear to be meaningful but cannot be identified by other algorithms. The first

example starts with 2d synthesized data sets. The second example assigns outlier

scores to 2d synthesized data sets which are evaluated performance by AUC, AP, and

execute time metrics. In the third example, benchmark data sets are used and

evaluated performance by AUC and AP. The latest experiment deals with the

meaningful impact of window size on benchmark data sets.

70

5.6.1 Visualization of comparison sampling data sets

 Since the purpose of WRS in the SMOF algorithm is to select half of the data

points to preserve the normal data points and remove outliers throughout the

processing of streaming data, WRS can be regarded as a random sampling algorithm

weighted by the MOF score.

 Figure 5.20 and Figure 5.21 show the sampling result of random sampling and

WRS by MOF score. For the synthetized normal data set, WRS takes samples

successfully in which high-density regions are preserved (inside the normal region)

while low-density regions (normal border region) fade, but the random sampling

distorts the shape of data distribution since it selects samples just uniformly regardless

of the characteristics of data distribution. In the case of synthesized noise, which

contains many outliers or noise, random sampling selects data points just uniformly in

all regions. In contrast, WRS intensively selects data points in high-density regions

and removes outliers in Figure 5.21(A), (B), (D), and (E). This result in Figure 5.21

(C) shows that WRS makes the boundaries between the high-density regions and the

low-density regions clearer. Due to such an effect of WRS, outlier detection

algorithms can easily distinguish outliers even if these data sets contain many noisy

data points. However, Figure 5.21(F) shows that some edges of normal regions are

removed.

Figure 5.20 Original six synthesized normal data sets (a-f), half sampling results of

them by weighted random sampling (A-F) and random sampling (I-VI)

71

Figure 5.21 Original six synthetized-noisy data set data sets (a-f), half sampling

results of them by Weighted random Sampling (A-F) and Random Sampling (I-VI)

 In conclusion, the experiment shows that the SMOF algorithm can preserve

normal data points and remove outliers every time sampling data points in reference

and the current windows. This result leads to normal data points in the reference

window, which make the MOF algorithm assign high outlier scores to data points in

the current window which are not in the normal region.

5.6.2 Outlier scoring on 3d synthesized data

 Since the SMOF algorithm detects outliers in each batch of streaming data,

there will be a problem if the window size is too small to distinguish between normal

data points and outliers. Furthermore, if concept drift occurs, normal data points from

new unseen normal regions in the current window that differ from normal regions in

the reference window may be misidentified as outliers. This section evaluates the

SMOF algorithm compared to the HS-Trees algorithm on 3d synthesized data.

 To understand how the HS-Trees and the SMOF algorithms assign outlier

scores to this data set, Figure 5.22 depicts generated 3d synthesized data according to

a timestamp in Figure 5.23. Before the normal region changes to the new normal

region, sequence outliers occur between them. This situation is the so-called concept

drift. The red, green, and purple data points are normal, while the red and orange data

points are outliers. These scores are processed in the HS-Trees and the SMOF

algorithms and return outlier scores to evaluate performance. The window sizes are

set to range from 100 to 500. Other hyperparameters of the HS-Trees algorithm are

default values according to Table 5.9.

72

Figure 5.22 3d synthesized data

Figure 5.23 Timestamp (t) 0 to 4000 for a 3d synthesized data

 Figure 5.24 depicts AUC and AP metrics of the SMOF and HS-Trees

algorithms varying with a window size. It shows that the larger the window size, the

accuracy of the SMOF algorithm tends to increase, while the accuracy of the HS-

Trees algorithm tends to be stable. This is because when the concept drift occurs,

normal regions in the reference window are different from normal regions in the

current window. HS-Trees algorithm assigns outlier scores to current data points

based only on the reference window leading to detecting them as an outlier. In

contrast, the SMOF algorithm passes outlier scores to current data points based on

both the reference and the current windows, leading to detecting them as normal data

points. To better understand, Figure 5.25 shows the outlier score assigned by the

73

SMOF and the HS-Trees algorithms at the period time stamp (𝑤 = 350). It shows

that when the normal region changes (𝐵𝑎𝑡𝑐ℎ 𝐴 𝑡𝑜 𝐵 𝑜𝑟 𝐶 𝑡𝑜 𝐷), the current normal

region (𝐵𝑎𝑡𝑐ℎ 𝐵 𝑎𝑛𝑑 𝐷) is assigned a high outlier score by HS-Trees algorithm,

while a low outlier score by the SMOF algorithm compares to the outlier score of the

current normal region (𝐵𝑎𝑡𝑐ℎ 𝐴 𝑎𝑛𝑑 𝐶). In addition, the execution time of the SMOF

algorithm is faster than the HS-Trees algorithm. This is because the time complexity

is based on the number of trees and deep trees. When the window size is large

enough, the execution time tends to be stable. Although the time complexity of the

SMOF algorithm is based on window size.

Figure 5.24 The impact of window size on 3d synthesized data set

Figure 5.25 a) SMOF and b) HS-Trees scores of each data point in 3d synthesized

data set

 In conclusion, both the SMOF and the HS-Trees algorithms are passing high

outlier scores to the new normal region. However, their outlier scores assigned by the

HS-Trees algorithm are more sensitive than the SMOF algorithm.

74

5.6.3 Experiments on benchmark data sets

 Since the previous experiment showed that the SMOF algorithm was able to

detect synthesized multidimensional streaming data, it has the potential to detect

outliers in streaming data. However, a small number of data points (only 3,050 data

points) cannot be used to evaluate outlier detection in streaming data which is a large

number of data points.

 In this section, the SMOF algorithm is evaluated by synthesized and real-

world data sets to compare performance among outlier detection in static (the LOF

and the MOF algorithms) and streaming data (the HS-Trees algorithm). In fact, the

SMOF algorithm does not require any parameter, for equal, each algorithm uses grid

search to best tune performance with only one parameter. The range of values of the

default values of each parameter is presented in Table 5.9. The default values are

chosen based on the characteristics of existing literature. Although the HS-Trees

algorithm has other parameters that are set to a default value, the SMOF algorithm has

time complexity related to the window size while the HS-Trees algorithm does not.

 Table 5.10 and Table 5.11 show the average AUC and AP of four algorithms

for five data sets from 10 repeated trials. The underlying value indicated that they had

the best accuracy. Moreover, the bottom of the tables has a summary of performance

by average rank and performance accuracy. Since the number of data points in all data

sets is enormous, the MOF algorithm does not deal with the large data sets, resulting

in a memory leak in Google Colab; thus, the MOF algorithm cannot report any result.

 The SMTP data set contains a few outliers (only 30 data points) that are far

from the normal region. It is assumed to contain an outlier of type I. the LOF

algorithm is acceptably designed for this situation where outliers have few and are

isolated, although it is streaming data.

 Other data sets have characteristics of streaming data. Moreover, some outliers

are type I or II. Thus, LOF tries to detect outliers based on the assumption that they

are locally dense according to the range of 𝑘-nearest neighbors. It causes numerous

errors and misidentifies many normal data points as outliers, resulting in poor AUC

and AP.

 In contrast, AUC and AP of the SMOF and the HS-Trees algorithms are

acceptable. Both of them can detect outliers with greater than 80% AUC for all data

sets. These prove that the HS-Trees and the SMOF algorithms can detect outliers in

streaming data.

 Overall performance by average performance and rank can be summarized as

follows:

• The MOF algorithm cannot process large data sets.

• The LOF algorithm has the worst accuracy, with an average ranking of 2.8 and 2.6

for AUC and AP.

75

The SMOF algorithm has the best performance accuracy with an average ranking

of 1 and 1.4 for AUC and AP.

Table 5.9 Parameters setting

Parameters SMOF HS-Trees LOF MOF

𝑘 N/A N/A 5- 300 N/A

𝑤 100 - 500 100 - 4000 N/A N/A

ℎ N/A 10 N/A N/A

ℰ N/A 15 N/A N/A

𝑠𝑖𝑧𝑒𝐿𝑖𝑚𝑖𝑡 N/A 0.1w N/A N/A

Table 5.10 Average AUC scores for streaming data

Data sets SMOF HS-Trees LOF MOF

Rank AUC Rank AUC Rank AUC Rank AUC

SMTP+HTTP 1 0.998 2 0.986 3 0.378 N/A N/A

HTTP 1 0.999 2 0.996 3 0.369 N/A N/A

Mulcross 1 0.998 2 0.971 3 0.606 N/A N/A

SMTP 1 0.941 3 0.873 2 0.933 N/A N/A

Shuttle 1 0.989 2 0.970 3 0.583 N/A N/A

Average 1 0.985 2.2 0.959 2.8 0.574 N/A N/A

Table 5.11 Average AP scores for streaming data

Data sets SMOF HS-Trees LOF MOF

Rank AP Rank AP Rank AP Rank AP

SMTP+HTTP 1 0.950 2 0.262 3 0.033 N/A N/A

HTTP 1 0.954 2 0.475 3 0.046 N/A N/A

Mulcross 1 0.966 2 0.782 3 0.177 N/A N/A

SMTP 3 0.202 3 0.258 1 0.309 N/A N/A

Shuttle 1 0.837 2 0.829 3 0.167 N/A N/A

Average 1.4 0.782 2.2 0.521 2.6 0.146 N/A N/A

5.6.4 Impact of the window size

 This section aims to study the impact of the window size on the performance

of the SMOF and the HS-Trees algorithms. Not only setting parameters are the same

as in the previous section but also the data sets to evaluate are the same. This section

also adds execution time to evaluate the time complexity of an algorithm. The results

76

of performance metrics in this section can be divided into accuracy (AUC and AP)

and execution time, and it will analyze the experimental results of each data set as

follows:

Figure 5.26 The impact of window size on SMTP data

 Figure 5.26 shows the impact of window size on the performance of the

SMOF and the HS-Trees algorithms. SMTP data is streaming data involving

intrusions. SMTP data does not have surges of outliers, but possibly exhibits some

distribution changes within the short streaming sequence.

 To detect these few outliers, the window size of the SMOF algorithm must be

large enough to identify outliers and normal data points. Therefore, the increased

window size leads to increasing AUC and AP. However, an increased window size of

the HS-Trees algorithm slightly affects accuracy.

 One interesting in SMTP data at window size 400, AUC in the SMOF

algorithm decreases while in the HS-Trees algorithm increases. This is because few

sequence outliers occur between the joints of the reference and the current windows.

This problem occurs the same as the 3d synthesized data set in Figure 5.25 in which

the outlier scores normal data points (green points) after detecting the first sequence

outlier (red points). The SMOF algorithm can decrease this problem by increasing the

window size. However, both algorithms have a low AP because this data set is very

unbalanced (0.03%), and some data points have all values in dimensions in the normal

region.

77

Figure 5.27 The impact of window size on HTTP data

 Figure 5.27 shows that AUC and AP of the SMOF algorithm are stable while

they increase in the HS-Trees algorithm with the increase of the window size in HTTP

data. This is because HTTP data is streaming data involving network intrusions that

are characterized by sudden outliers in some streaming segments. HTTP data also has

a long sequence of dense duplicate outliers and distribution changes within the

streaming sequence. The HS-Trees algorithm uses the mass profile in the reference

window to measure the outlier score in the next window, which is also used to

measure outliers in the window. If the next window contains all outliers, the HS-Trees

algorithm will use the mass profile of the outlier to measure outlier scores leading to

failure. Therefore, the increasing window will be the window that contains more

normal data points than an outlier. However, the SMOF algorithm detects a long

sequence of dense duplicate outliers. This is because the MOF algorithm has the

function of duplicating outlier scoring. The more data redundancy, the higher the

outlier score. Moreover, the MOF score is doted by the average MOF scores result

which assigns a very high score to sequence outliers. To better understand, Figure

5.28 shows the outlier score of sequence outlier (orange data points) by a) the SMOF

and b) the HS-Trees algorithm. They show that SMOF can assign outlier scores to

most of the outliers more than normal data points (blue). Although the HS-Trees

algorithm can assign outlier scores more than normal data points in the first period,

the second period is less than normal data points.

78

Figure 5.28 The outlier scores of sequence outliers (the orange data points) by a) the

SMOF and b) the HS-Trees algorithms (window size is 1000).

Figure 5.29 The impact of window size on SMTP+HTTP data

 Figure 5.29 shows the impact of the window size on the performance of the

SMOF and the HS-Trees algorithms. SMTP + HTTP data is a combination of SMTP

data followed by HTTP data. When the communication protocol is switched from

SMTP domain to HTTP domain, this data reflects the scenario distribution change

that will occur. In fact, the results of AUC and AP in this data set are near to the ones

in HTTP. This is because HTTP contains more data than SMTP, around 6 times, and

both algorithms can deal with concept drift. Therefore, switching from SMTP to

HTTP data does slightly affect AP and AUC. However, it still affects the HS-Trees

algorithm. This is because HS-Trees structures binary trees are created based on

SMTP data. Therefore, AUC and AP decrease.

79

Figure 5.30 The impact of the window size on Mulcross data

 Figure 5.30 shows the impact of the window size on the performance of the

SMOF and the HS-Trees algorithms. Mulcross data distributions with little or no

variation. Mulcross data, on the other hand, contains dense clusters of outliers that are

more difficult to detect than scattered outliers. This data set contains small normal

regions. AUC in both algorithms quickly converges to a stable state which is the

narrow window size. In fact, the outlier is dense clusters, and the result of WRS

sampling always contains outliers. Hence, the wider the window size, AUC of the

SMOF algorithm decreases. However, the HS-Trees algorithm is not affected by this

situation.

Figure 5.31 The impact of the window size on Shuttle data

 Figure 5.31 shows the impact of window size on the performance of the

SMOF and the HS-Trees algorithms. Shuttle data is a data set with little or no

distribution changes and a high number of class outliers. In terms of AUC and AP,

SMOF outperforms the HS-trees algorithm. There are a number of outliers in this data

set. Increasing the window size has no effect on AUC score when window sizes are

large enough to include both normal and outlier data points. In contrast, increasing the

window size causes the outlier score of normal data points to increase and outlier

clusters of data points to increase slightly, causing AP score tends to fall.

80

In summary, AUC increases with the increase of the window sizes in the SMOF and

the HS-Trees algorithms from all data sets. This is because data sets contain a large

normal region to preserve in the reference window. When the window size is large

enough, both algorithms can preserve all normal regions to predict the current data

points correctly, leading to AUC being stable. In addition, the SMOF algorithm can

deal with duplicate outliers. The overall AUC and AP of the SMOF algorithm are

better than the HS-trees algorithm.

Figure 5.32 The impact of the window size on benchmark data

 The experimental results in Figure 5.32 show that executive time increases in

the SMOF algorithm while it converges to a stable state in the HS-Trees algorithm

with the increase of the window size in all data sets. This is because the time

complexity of the HS-Trees algorithm is 𝑂(𝑡(ℎ)) which does not affect the size of the

window, while the time complexity of HS-Trees is 𝑂(𝑤𝑙𝑜𝑔𝑤).

5.6.5 Conclusions on experimental results for the SMOF

algorithm

 The conclusions from the experimental results can be summarized as follows:

• Weighted random sampling based on MOF scores can pick normal data points and

remove outliers better than simple random sampling. In addition, normal regions

are still preserved.

• The SMOF algorithm performs better than the HS-Trees algorithm for real

applications like network intrusion detection or NASA's space shuttle

classification. The diversity of the data sets shows the applicability of SMOF for a

wide range of applications.

81

• Although the SMOF algorithm processes with better accuracy compared to the

HS-Trees algorithm, the SMOF algorithm has a worse competitive execution time.

• The impact of window size on accuracy is very small when it is large enough.

Thus, the user has much liberty in choosing an appropriate value for this

parameter. Even if the user chooses a value that is not optimal, the SMOF

algorithm is still capable of detecting outliers.

• The execution time of the SMOF algorithm is also insensitive to the window size,

which trades off accuracy. Thus, the user should choose the window size

according to arrival time.

• The execution time of the SMOF algorithm increases with the log-linear increase

in the window size.

• The SMOF algorithm has a function to deal with long sequences and duplicate

outliers, while the HS-Trees algorithm does not.

82

Chapter 6
Conclusions and Future works

 This thesis proposes two outlier detection techniques for static and streaming

data called MOF and SMOF, respectively. The first algorithm, the MOF algorithm,

unsupervised parameter-free outlier scoring, has been designed to detect outliers in

multidimensional numeric data. The MOF algorithm processes all data points in a

data set and returns the MOF score, which is a variance of the mass-ratio distribution.

The large variance is associated with outliers, while the small variance is associated

with normal data points.

 The second algorithm, the SMOF algorithm, unsupervised outlier scoring, has

been designed to measure outlier score outliers in numeric multidimensional

streaming data. The SMOF algorithm is based on MOF with a detected outlier based

on a non-overlapping sliding window. SMOF assigns SMOF scores and summarizes

reference data points. SMOF addresses the following characteristics of streaming

data: transiency, the notion of time, the notion of infinity, and concept drift.

 The complexity analysis has been conducted to evaluate the time and space

complexity of the MOF and the SMOF algorithms. By means of simulation and using

data sets, comprehensive experiments are performed to compare the MOF algorithm

with the four existing algorithms: LOF, AOF, OOF, and FastABOD, for static data

and compare SMOF with the HS-Trees algorithm for streaming data. In the next

section, the performance evaluation results and the future research are discussed.

6.1 Conclusions of the MOF algorithm

 Outlier detection in static data is most important for data presenting to detect

or remove outliers. The simple and effective outlier detection is a proximity model,

which makes it easy to understand how an outlier is different from a normal data

point. Their main idea is that the outliers are far from the rest of the normal data

points in a data set. In addition, most of them can detect outliers by measuring outliers

that allow a user to choose the top-𝑛 outliers. However, most of them also require

parameters for identifying outliers, such as 𝑘-nearest neighbors, number of clusters, or

radius distance. The wrong parameter results in failure to detect. Hence, detecting or

measuring outliers with parameter-free outlier detection is very challenging.

 This thesis proposed novel outlier detection with a parameter-free technique

for static data. The MOF algorithm uses a variance of mass ratio to measure the

outlier score of data points. The conclusion of the MOF algorithm is as follows:

• The MOF algorithm is the only parameter-free outlier scoring technique for static

data based on the density concept that does not assume any distribution of the data

set.

83

• The time complexity of the MOF algorithm is 𝑂(𝑛2𝑙𝑜𝑔𝑛) with respect to the

number of data points in the data set. Most of the time complexity is due to the

sorting step that sort 𝑛 data points.

• The space complexity of the MOF algorithm is 𝑂(𝑛2) with respect to the number

of data points in the data set. Most of the space complexity involves collecting all

pairwise distances of data points in a data set.

• The LOF and the kNN algorithms are needed 𝑘-nearest neighbors’ parameter that

is applicable to detect outliers with knowledge of data sets due to the sensitivity of

the parameter.

• The AOF and the OOF algorithms are based on the first nearest neighbors, so

when the data set consists of the micro-outlier detection, local outlier, or different

density normal regions, it cannot detect them.

• The MOF algorithm with some threshold can detect outliers of synthesized data

sets by generating many types of distributions such as gaussian distribution, half-

moon, or circle according to the density concept.

• The MOF algorithm has performance no different compared to the LOF and the

OOF algorithms, while different compared with the AOF algorithm.

• The MOF algorithm has AUC and AP scores that are better than LOF, kNN, and

OOF on most of the benchmark data sets. However, execution times are always

more than LOF and kNN and less than OOF.

• The MOF algorithm can detect more outliers than AOF, FastABOD, and LOF

with the best tune parameter on real-world data sets.

6.2 Conclusions of the SMOF algorithm

 The SMOF algorithm is designed for multidimensional streaming data non-

overlapping on sliding windows. Unlike other approaches, the SMOF algorithm does

not use user-parameter settings to assume any distribution of data. the SMOF

algorithm tries to keep the present normal data points in the reference window based

on the MOF scores and measure SMOF scores on the data points of each batch with

respect to the reference and the current data points. The summary of the SMOF

algorithm is as follows:

• The SMOF algorithm is flexible and easy to use for detecting outliers in

multidimensional streaming data.

• Although the MOF algorithm is parameter-free, the SMOF algorithm still needs

the window size, even though it is not a critical parameter as long as the window

contains more normal data points than outliers.

• Neither time nor space is sensitive to the number of data points. The memory

usage of the SMOF algorithm is limited, although the number of data points is

infinite.

• The SMOF algorithm attempts to keep the current normal data points and discard

old reference data points in the reference window by using weighted random

sampling.

84

• The SMOF algorithm can adapt window size to adapt execution time, according to

the arrival rate of seaming data.

• Experiments studying the impacts of the concept drift show that the SMOF

algorithm can handle concept drift in SMTP+HTTP data effectively without

affecting its accuracy while the HS-Trees algorithm is not applicable to detect

outliers that occur in concept drift because the binary trees construct only at the

start of streaming data.

• Experiments studying the impacts of a long sequence of outliers show that the

SMOF algorithm can handle them in HTTP data effectively without affecting its

accuracy, while the HS-Trees algorithm fails.

• AUC of the SMOF algorithm increases with the increase in the window sizes,

even if the data set has a large number of outliers in batches. However, AP of

SMOF slightly decreases with the increasing of window sizes if the outlier is

densely likely to have normal data points but a few. Normal data points and

outliers also increase the outlier score.

• AUC of the SMOF algorithm is stable when the window size is large enough to

preserve the normal region of data points. The recommended window size setting

is 500 according to the experimental results.

• The execution time of the SMOF algorithm increases with the increase of window

size. After calculating MOF scores with respect to the window size, the user

should consider the execution time.

• The average time complexity of the SMOF algorithm to detect a data point is

𝑂(𝑤𝑙𝑜𝑔𝑤) to detect a data point with respect to window size 𝑤.

• The space complexity of SMOF is 𝑂(𝑤2) with respect to the window size.

6.3 Future works

• The MOF and the SMOF algorithms are very flexible outlier detection techniques

for multidimensional streaming and static data. Although it is very scalable in

terms of accuracy, its execution time grows as the number of window sizes and

data points increases. The fast and scalable version of the MOF and the SMOF

algorithms in terms of execution time should be developed in the future.

• The MOF and the SMOF algorithms have just measured the outlier score of the

data points, and that each attribute is of the same importance, there are no

explored cross-correlations among the data points. Therefore, it will be more

interesting to study the effect of complex cross-correlations among the data points

from multidimensional streaming data to the SMOF algorithms.

85

REFERENCES

REFERENCES

1. Zimek, A. and E. Schubert, Outlier Detection, in Encyclopedia of Database Systems, L. Liu
and M.T. Özsu, Editors. 2017, Springer New York: New York, NY. p. 1-5.

2. Aggarwal, C.C., An Introduction to Outlier Analysis, in Outlier Analysis. 2017, Springer
International Publishing: Cham. p. 1-34.

3. Ahmed, M., A.N. Mahmood, and J. Hu, A survey of network anomaly detection techniques.
Journal of Network and Computer Applications, 2016. 60: p. 19-31.

4. Aleskerov, E., B. Freisleben, and B. Rao. Cardwatch: A neural network based database
mining system for credit card fraud detection. in Proceedings of the IEEE/IAFE 1997
computational intelligence for financial engineering (CIFEr). 1997. IEEE.

5. Nasi, J., A. Sorsa, and K. Leiviska. Sensor validation and outlier detection using fuzzy
limits. in Proceedings of the 44th IEEE Conference on Decision and Control. 2005. IEEE.

6. Spence, C., L. Parra, and P. Sajda. Detection, synthesis and compression in mammographic
image analysis with a hierarchical image probability model. in Proceedings IEEE
workshop on mathematical methods in biomedical image analysis (MMBIA 2001). 2001.
IEEE.

7. Chandola, V., A. Banerjee, and V. Kumar, Anomaly detection: A survey. ACM computing
surveys (CSUR), 2009. 41(3): p. 1-58.

8. Hodge, V. and J. Austin, A survey of outlier detection methodologies. Artificial intelligence
review, 2004. 22(2): p. 85-126.

9. Goldberger, A.L., et al., PhysioBank, PhysioToolkit, and PhysioNet: components of a new
research resource for complex physiologic signals. circulation, 2000. 101(23): p. e215-
e220.

86

10. Ester, M., et al. A density-based algorithm for discovering clusters in large spatial
databases with noise. in kdd. 1996.

11. Ertöz, L., M. Steinbach, and V. Kumar, Finding topics in collections of documents: A
shared nearest neighbor approach, in Clustering and information retrieval. 2004, Springer.
p. 83-103.

12. Kohonen, T. Exploration of very large databases by self-organizing maps. in Proceedings
of international conference on neural networks (icnn'97). 1997. IEEE.

13. MacQueen, J. Some methods for classification and analysis of multivariate observations. in
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability.
1967. Oakland, CA, USA.

14. Dempster, A.P., N.M. Laird, and D.B. Rubin, Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological),
1977. 39(1): p. 1-22.

15. Smith, R., et al., Clustering approaches for anomaly based intrusion detection. Proceedings
of intelligent engineering systems through artificial neural networks, 2002. 9.

16. He, Z., X. Xu, and S. Deng, Discovering cluster-based local outliers. Pattern recognition
letters, 2003. 24(9-10): p. 1641-1650.

17. Zhang, J. and H. Wang, Detecting outlying subspaces for high-dimensional data: the new
task, algorithms, and performance. Knowledge and information systems, 2006. 10(3): p.
333-355.

18. Angiulli, F. and C. Pizzuti. Fast outlier detection in high dimensional spaces. in European
conference on principles of data mining and knowledge discovery. 2002. Springer.

19. Eskin, E., et al., A geometric framework for unsupervised anomaly detection, in
Applications of data mining in computer security. 2002, Springer. p. 77-101.

87

20. Knorr, E.M. and R.T. Ng. Finding intensional knowledge of distance-based outliers. in
Vldb. 1999. Citeseer.

21. Din, S.U., et al., Data stream classification with novel class detection: a review,
comparison and challenges. Knowledge and Information Systems, 2021. 63(9): p. 2231-
2276.

22. Buthong, N., A. Luangsodsai, and K. Sinapiromsaran. Outlier detection score based on
ordered distance difference. in 2013 International Computer Science and Engineering
Conference (ICSEC). 2013. IEEE.

23. Kiangia, W., A. Luangsodsai, and K. Sinapiromsaran. Weighted minimum consecutive pair
of the extreme pole outlier factor. in 2016 International Computer Science and Engineering
Conference (ICSEC). 2016. IEEE.

24. Pumruckthum, P., S. Boonsiri, and K. Sinapiromsaran. Parameter-Free Outlier Scoring
Algorithm Using the Acute Angle Order Difference Distance. in International Conference
on Computing and Information Technology. 2019. Springer.

25. Kriegel, H.-P., M. Schubert, and A. Zimek. Angle-based outlier detection in high-
dimensional data. in Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining. 2008.

26. Barnett, V. and T. Lewis, Outliers in statistical data. Wiley Series in Probability and
Mathematical Statistics. Applied Probability and Statistics, 1984.

27. Thakkar, P., J. Vala, and V. Prajapati, Survey on outlier detection in data stream. Int. J.
Comput. Appl, 2016. 136(2): p. 13-16.

28. Zubaroglu, A. and V. Atalay, Data stream clustering: a review. Artificial Intelligence
Review, 2021. 54(2): p. 1201-1236.

29. Angiulli, F. and F. Fassetti. Detecting distance-based outliers in streams of data. in

88

Proceedings of the sixteenth ACM conference on Conference on information and knowledge
management. 2007.

30. Yang, D., E.A. Rundensteiner, and M.O. Ward. Neighbor-based pattern detection for
windows over streaming data. in Proceedings of the 12th international conference on
extending database technology: advances in database technology. 2009.

31. Cao, L., et al. Scalable distance-based outlier detection over high-volume data streams. in
2014 IEEE 30th international conference on data engineering. 2014. IEEE.

32. Kontaki, M., et al. Continuous monitoring of distance-based outliers over data streams. in
2011 IEEE 27th International Conference on Data Engineering. 2011. IEEE.

33. Papadimitriou, S., et al. Loci: Fast outlier detection using the local correlation integral. in
Proceedings 19th international conference on data engineering (Cat. No. 03CH37405).
2003. IEEE.

34. Zhang, K., M. Hutter, and H. Jin. A new local distance-based outlier detection approach for
scattered real-world data. in Pacific-Asia Conference on Knowledge Discovery and Data
Mining. 2009. Springer.

35. Kriegel, H.-P., et al. LoOP: local outlier probabilities. in Proceedings of the 18th ACM
conference on Information and knowledge management. 2009.

36. Pokrajac, D., A. Lazarevic, and L.J. Latecki. Incremental local outlier detection for data
streams. in 2007 IEEE symposium on computational intelligence and data mining. 2007.
IEEE.

37. Salehi, M., et al., Fast memory efficient local outlier detection in data streams. IEEE
Transactions on Knowledge and Data Engineering, 2016. 28(12): p. 3246-3260.

38. Na, G.S., D. Kim, and H. Yu. Dilof: Effective and memory efficient local outlier detection
in data streams. in Proceedings of the 24th ACM SIGKDD International Conference on

89

Knowledge Discovery & Data Mining. 2018.

39. Cordeiro, M., et al., Evolving networks and social network analysis methods and
techniques. Social media and journalism-trends, connections, implications, 2018: p. 101-
134.

40. Efraimidis, P. and P. Spirakis, Weighted Random Sampling, in Encyclopedia of Algorithms,
M.-Y. Kao, Editor. 2008, Springer US: Boston, MA. p. 1024-1027.

41. Breunig, M.M., et al. LOF: identifying density-based local outliers. in Proceedings of the
2000 ACM SIGMOD international conference on Management of data. 2000.

42. Bolton, R.J. and D.J. Hand, Unsupervised profiling methods for fraud detection. Credit
scoring and credit control VII, 2001: p. 235-255.

43. Asuncion, A. and D. Newman, UCI machine learning repository. 2007, Irvine, CA, USA.

44. Yamanishi, K., et al., On-line unsupervised outlier detection using finite mixtures with
discounting learning algorithms. Data Mining and Knowledge Discovery, 2004. 8(3): p.
275-300.

45. Rocke, D.M. and D.L. Woodruff, Identification of outliers in multivariate data. Journal of
the American Statistical Association, 1996. 91(435): p. 1047-1061.

46. Zhao, Y., Z. Nasrullah, and Z. Li, Pyod: A python toolbox for scalable outlier detection.
arXiv preprint arXiv:1901.01588, 2019.

47. Lam, S.K., A. Pitrou, and S. Seibert. Numba: A llvm-based python jit compiler. in
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC. 2015.

90

91

VITA

VITA

NAME Phichapop Changsakul

DATE OF BIRTH 9 August 1996

PLACE OF BIRTH Bangkok, Thailand

INSTITUTIONS ATTENDED Bachelor of Electrical Engineering Programs, Kasetsart University

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1 Introduction
	1.1 The basic outlier detection
	1.2 The proximity-based outlier detection
	1.3 The parameter-free outlier detection
	1.4 The basic outlier detection in streaming data
	1.5 Aims and objectives

	Chapter 2 Background
	2.1 Input Data
	2.1.1 Static data
	2.1.2 Streaming data

	2.2 Proximity-based outlier detection methods
	2.2.1 Distance function
	2.2.2 Scaling and normalization

	2.3 Window models
	2.3.1 The landmark window model
	2.3.2 The non-overlapping sliding window model
	2.3.3 The overlapping sliding window model

	2.4 Weighted Random Sampling (WRS)

	Chapter 3 Literature Surveys
	3.1 Outlier detection algorithms in static data
	3.1.1 Local Outlier Factor (LOF)
	3.1.2 k-Nearest Neighbors (kNN)
	3.1.3 Ordered difference distance Outlier Factor (OOF)
	3.1.4 Acute angle order difference distance Outlier Factor (AOF)
	3.1.5 Angle-Based Outlier Detection (ABOD)

	3.2 Outlier detection algorithm in streaming data
	3.2.1 Streaming Half-Space-Trees (HS-Trees)

	3.3 Examples of calculating outlier detection in static data
	3.3.1 Examples of calculating outlier scores
	3.3.2 LOF algorithm
	3.3.3 OOF algorithm
	3.3.4 kNN algorithm

	Chapter 4 Research Methodology
	4.1 Mass ratio variance-based Outlier Factor (MOF)
	4.1.1 The motivation of the MOF algorithm
	4.1.2 The overview of the MOF algorithm
	4.1.3 The procedure of the MOF algorithm
	4.1.4 The complexity analysis for the MOF algorithm

	4.2 Streaming Mass ratio variance-based Outlier Factor (SMOF)
	4.2.1 The motivation of the SMOF algorithm
	4.2.2 The overview of the SMOF algorithm
	4.2.3 The procedure of the SMOF algorithm
	4.2.4 The complexity analysis for the SMOF algorithm

	Chapter 5 Experimental Results
	5.1 Performance metrics
	5.1.1 Precision
	5.1.2 Recall
	5.1.3 ROC AUC (AUC)
	5.1.4 Average Precision (AP)
	5.1.5 A paired t-test

	5.2 Details and Parallel coordinates plots of benchmark data sets
	5.2.1 Satimage-2 data
	5.2.2 MNIST data
	5.2.3 Ionosphere data
	5.2.4 Musk data
	5.2.5 Satellite data
	5.2.6 Glass data
	5.2.7 HTTP and SMTP data
	5.2.8 Shuttle data
	5.2.9 Mulcross data

	5.3 Simulation Model
	5.4 Competitive algorithms
	5.5 Experiments and results of the MOF algorithm
	5.5.1 Visualization of outlier scores
	5.5.2 Comparison of detection patterns by paired t-test
	5.5.3 Experiments on real-world data sets
	5.5.4 The top-10 outliers
	5.5.5 Conclusions on Experimental Results for the MOF algorithm

	5.6 Experiments and results of the SMOF algorithm
	5.6.1 Visualization of comparison sampling data sets
	5.6.2 Outlier scoring on 3d synthesized data
	5.6.3 Experiments on benchmark data sets
	5.6.4 Impact of the window size
	5.6.5 Conclusions on experimental results for the SMOF algorithm

	Chapter 6 Conclusions and Future works
	6.1 Conclusions of the MOF algorithm
	6.2 Conclusions of the SMOF algorithm
	6.3 Future works

	REFERENCES
	VITA

