การทดสอบแบบจำลองปรับแก้ค่าพิกัดทางราบใช้สำหรับการแปลงค่าพิกัดจากเทคนิคการหาตำแหน่ง จุดเดี่ยวความละเอียดสูงจีเอ็นเอสเอสไปยังโครงข่ายสถานีอ้างอิงค่าพิกัดต่อเนื่องจีเอ็นเอสเอสของ ประเทศไทยที่อยู่บนกรอบพิกัดอ้างอิงสากล ITRF2014

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมสำรวจ ภาควิชาวิศวกรรมสำรวจ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2564 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย TESTING A HORIZONTAL COORDINATE CORRECTION MODEL USED FOR A TRANSFORMATION FROM A PRECISE POINT POSITIONING GNSS TECHNIQUE TO A THAI GNSS CORS NETWORK BASED ON ITRF2014

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Survey Engineering Department of Survey Engineering FACULTY OF ENGINEERING Chulalongkorn University Academic Year 2021 Copyright of Chulalongkorn University

หัวข้อวิทยานิพนธ์	การทดสอบแบบจำลองปรับแก้ค่าพิกัดทางราบใช้สำหรับ
	การแปลงค่าพิกัดจากเทคนิคการหาตำแหน่งจุดเดี่ยวความ
	ละเอียดสูงจีเอ็นเอสเอสไปยังโครงข่ายสถานีอ้างอิงค่าพิกัด
	ต่อเนื่องจีเอ็นเอสเอสของประเทศไทยที่อยู่บนกรอบพิกัด
	อ้างอิงสากล ITRF2014
โดย	นายเมธา น้อยนาค
สาขาวิชา	วิศวกรรมสำรวจ
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	ศาสตราจารย์ ดร.เฉลิมชนม์ สถิระพจน์
อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม	ดร.ชัยยุทธ เจริญผล
	Connord Connection of Connecti

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วนหนึ่ง ของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต

	9
(ศาสตราจารย์ ดร.สุพจน์ เตชวรสินสกุล)	คณบดคณะวควกรรมคาสตร
การสอบวิทยานิพนธ์	ประธานกรรมการ
(อาจารย์ ดร.ชัยโชค ไวภาษา) กันหาวิทยาลัง	
CHULALONGKORN UNIVERS	อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก
(ศาสตราจารย์ ดร.เฉลิมชนม์ สถิระพจน์)	
	อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม
(ดร.ชัยยุทธ เจริญผล)	
	กรรมการภายนอกมหาวิทยาลัย
(ผู้ช่วยศาสตราจารย์พันโท ดร.สรวิศ สุภเวชย์)	
	 (ศาสตราจารย์ ดร.สุพจน์ เตชวรสินสกุล) การสอบวิทยานิพนธ์ (อาจารย์ ดร.ชัยโชค ไวภาษา) (ศาสตราจารย์ ดร.เฉลิมชนม์ สถิระพจน์) (ดร.ชัยยุทธ เจริญผล) (ผู้ช่วยศาสตราจารย์พันโท ดร.สรวิศ สุภเวชย์)

เมธา น้อยนาค : การทดสอบแบบจำลองปรับแก้ค่าพิกัดทางราบใช้สำหรับการแปลงค่าพิกัดจากเทคนิคการหาตำแหน่งจุดเดี่ยว ความละเอียดสูงจีเอ็นเอสเอสไปยังโครงข่ายสถานีอ้างอิงค่าพิกัดต่อเนื่องจีเอ็นเอสเอสของประเทศไทยที่อยู่บนกรอบพิกัดอ้างอิง สากล ITRF2014. (TESTING A HORIZONTAL COORDINATE CORRECTION MODEL USED FOR A TRANSFORMATION FROM A PRECISE POINT POSITIONING GNSS TECHNIQUE TO A THAI GNSS CORS NETWORK BASED ON ITRF2014) อ.ที่ปรึกษาหลัก : ศ. ดร.เฉลิมชนม์ สถิระพจน์, อ.ที่ปรึกษาร่วม : ดร.ชัยยุทธ เจริญผล

การเคลื่อนตัวของแผ่นเปลือกโลกส่งผลกระทบโดยตรงต่อการระบุตำแหน่งด้วยค่าพิกัดและการอ้างอิงตำแหน่งบนพื้นโลกของ ตำแหน่งเดียวกันเมื่อเวลาผ่านไปค่าพิกัดบนพื้นหลักฐานย่อมมีค่าที่แตกต่างกัน โดยองค์กรหรือหน่วยงานในระดับสากลได้ร่วมปรับปรุงระบบ กรอบพิกัดอ้างอิงสากล (The International Terrestrial Reference Frame; ITRF) ให้สอดคล้องกับการเคลื่อนตัวของแผ่นเปลือกโลกมาก ยิ่งขึ้น ซึ่งหน่วยงานในประเทศไทยได้ศึกษาเรื่องการปรับปรุงพื้นหลักฐานและระบบพิกัดอ้างอิงมาอย่างต่อเนื่องเพื่อให้สอดคล้องตาม มาตรฐานสากล อาทิเช่น กรมแผนที่ทหารซึ่งเป็นหน่วยงานหลักที่กำหนดโครงข่ายอ้างอิงของประเทศได้ปรับปรุงคำพิกัดอ้างอิงของหมุดควบคุม ในโครงข่ายหลักบนกรอบพิกัดอ้างอิงสากล ITRF2008 และได้ประกาศใช้ในราชการตั้งแต่ปี พ.ศ.2557 เป็นต้นมา และจะเปลี่ยนมาใช้ระบบ กรอบพิกัดอ้างอิงพิกัดสากล ITRF2014 ในเร็วๆนี้

การวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาการสร้างแบบจำลองค่าปรับแก้พิกัดทางราบสำหรับกรอบพิกัดอ้างอิงสากล ITRF2014 ใน ประเทศไทย อันเนื่องมาจากการระบุตำแหน่งพิกัดสากลของประเทศไทยจำเป็นต้องมีการอ้างอิงพิกัดสัมบูรณ์ที่บูรณาการกันภายในประเทศ หากประเทศไทยเริ่มใช้งานระบบกรอบพิกัดอ้างอิงสากล ITRF2014 จะเกิดค่าต่างพิกัดขยายใหญ่ขึ้นตามเวลา จึงต้องมีแบบจำลองค่าต่างพิกัด มาการปรับแก้พิกัดให้อยู่ในระบบเนื้อเดียวกัน โดยแบบจำลองค่าต่างพิกัดได้จากการหาค่าต่างพิกัดเฉลี่ยต่อปี (มิลลิเมตรต่อปี) ที่ได้จากคำนวณ ค่าพิกัดด้วยเทคนิคการรังวัดจุดเดี่ยวความละเอียดสูง (Precise Point Positioning; PPP) ให้สอดคล้องกับกรอบอ้างอิงค่าพิกัดสากลของ หน่วยงานกรมแผนที่ทหารบนกรอบพิกัดอ้างอิง ITRF 2014 โดยนำค่าต่างพิกัดที่ได้จากการประมวลผลข้อมูลดาวเทียมด้วยซอฟต์แวร์เชิงวิจัย GipsyX จากโครงข่ายสถานีอ้างอิงรับสัญญาณดาวเทียมของกรมแผนที่ทหาร จำนวน 80 สถานี ของช่วงเวลาที่แตกต่างกันมาสร้างแบบจำลอง ค่าต่างพิกัดทางราบบนตำแหน่งกริด ซึ่งใช้วิธีการประมาณค่าในช่วง 4 วิธี คือ IDW, Kriging, Natural Neighbor และ Spline แล้วเปรียบเทียบ ความถูกต้องทางตำแหน่งทางราบด้วยค่ารากที่สองของความคลาดเคลื่อนเฉลี่ยกำลังสอง (RMSE) ของแบบจำลองค่าปรับแก้พิกัดทางราบ โดย ใช้หมุดทดสอบ 145 ตำแหน่งที่กระจายตัวทั่วพื้นที่ประเทศไทย

ผลการวิจัยพบว่าแบบจำลองค่าปรับแก้พิกัดทางราบ ซึ่งประกอบด้วยแบบจำลองค่าต่างพิกัดทางราบด้วยวิธี IDW, Kriging, Natural Neighbor และ Spline มีความถูกต้องทางตำแหน่งทางราบอยู่ที่ 0.011, 0.010, 0.017 และ 0.017 เมตร ตามลำดับ โดยมีความ คลาดเคลื่อนทางราบเฉลี่ยอยู่ที่ 0.006 ± 0.010, 0.006 ± 0.009, 0.011 ± 0.013 และ 0.011 ± 0.014 เมตร ตามลำดับ ซึ่งวิธี Kriging ให้ค่า พิกัดทางราบมีความถูกต้องสูงที่สุด ดังนั้นสามารถนำมาใช้แปลงค่าพิกัดสำหรับกรอบพิกัดอ้างอิงสากล ITRF2014 ในประเทศไทยให้มีความ ถูกต้องอยู่ในระดับ 2 ซม. และเมื่อพิจารณาที่ระดับความเชื่อมั่น 95% มีความถูกต้องอยู่ในระดับต่ำกว่า 3 ซม. และที่ระดับความเชื่อมั่น 99.7% มีความถูกต้องอยู่ในระดับ c่าว่า 4 ซม. ตามลำดับซึ่งจะเป็นการเชื่อมโยงค่าพิกัดทางราบระหว่างหน่วยงานให้สอดคล้องกันและสามารถนำมาใช้ งานร่วมกันได้เพื่อรองรับการใช้งานบนกรอบพิกัดอ้างอิง ITRF2014 ในอนาคต ให้มีความถูกต้องสัมพันธ์ตามการเคลื่อนตัวของแผ่นเปลือกโลก มากยิ่งขึ้นในระดับเซนติเมตร

สาขาวิชา ปีการศึกษา วิศวกรรมสำรวจ 2564 ลายมือชื่อนิสิต ลายมือชื่อ อ.ที่ปรึกษาหลัก ลายมือชื่อ อ.ที่ปรึกษาร่วม

6370239721 : MAJOR SURVEY ENGINEERING

 KEYWORD:
 The International Terrestrial Reference Frame (ITRF), Interpolation, Grid Correction

 Metha
 Noinak : TESTING A HORIZONTAL COORDINATE CORRECTION MODEL USED FOR A TRANSFORMATION

 FROM
 A PRECISE
 POINT
 POSITIONING
 GNSS
 TECHNIQUE
 TO
 A
 THAI
 GNSS
 CORS
 NETWORK
 BASED
 ON

 ITRF2014.
 Advisor:
 Prof.
 CHALERMCHON
 SATIRAPOD, Ph.D.
 Co-advisor:
 CHAIYUT
 CHAROENPHON, Ph.D.

The movement of tectonic plates directly affects the coordinates of geolocation and the reference frame at the same position over time. Many international organizations and agencies have attempted to improve the reference frame to be more consistent with the current plate movements. Especially in Thailand continuously improve the datum and reference frame following the international terrestrial reference system such as the Royal Thai Survey Department (RTSD) which is the main agency defining zero-order geodetic network based upon the ITRF2008 since 2014 and will switch to the international terrestrial reference frame 2014 (ITRF2014) soon

The objective is to test a horizontal coordinates correction model, based on ITRF2014 in Thailand. The correction model is obtained from the average annual coordinate difference (mm./years) from the coordinate calculation by using the Precise Point Positioning technique (PPP) in accordance with the international coordinate reference frame of the Royal Thai Survey Department on the ITRF2014. The coordinates of 80 CORS reference network stations were processed with GIPSYX software in different time periods. The correction model is placed on the grid position and consists of the different grids to interpolate using 4 methods by Inverse Distance Weighted (IDW), Kriging, Natural Neighbor, and Spline method. Compared horizontal coordinates accuracy by Root Mean Square Error (RMSE) with known 145 checkpoints throughout the country.

The findings indicated that the correction model of horizontal coordinates by applying the difference grid of Inverse Distance Weighted (IDW), Kriging, Natural Neighbor, and Spline method gives horizontal coordinates accuracy of about 0.011, 0.010, 0.017, and 0.017 meters, respectively. The mean error of the horizontal coordinates is about 0.006 \pm 0.009, 0.011 \pm 0.013, and 0.011 \pm 0.014 meters, respectively. The Kriging method gives the highest horizontal coordinate accuracy. Thus, this can improve the accuracy of horizontal coordinates for the ITRF2014 in Thailand by less than 2 cm. and consider of confidence level 95% less than 3 cm., of confidence level 99.7% less than 4 cm. This will connect to the coordinates of other users and support future use on the ITRF2014 coordinate frame in Thailand.

Field of Study: Academic Year: Survey Engineering 2021 Student's Signature Advisor's Signature Co-advisor's Signature

กิตติกรรมประกาศ

วิทยานิพนธ์ฉบับนี้สำเร็จลุล่วงได้ด้วยดีจากความช่วยเหลือและการสนับสนุนจากหลายฝ่าย ด้วยกันโดยเฉพาะอย่างยิ่ง ข้าพเจ้าขอขอบพระคุณ ศาสตราจารย์ ดร.เฉลิมชนม์ สถิระพจน์ อาจารย์ที่ ปรึกษาหลักวิทยานิพนธ์ที่ให้แนวคิดและแนวทางในการศึกษาวิจัยครั้งนี้ และอาจารย์ ดร.ชัยยุทธ เจริญ ผล อาจารย์ที่ปรึกษาร่วมวิทยานิพนธ์ที่ให้คำปรึกษาและคำแนะนำในการแก้ไขปัญหาต่าง ๆ พร้อมทั้ง ตรวจสอบวิทยานิพนธ์ฉบับนี้ให้ข้าพเจ้า นอกจากนี้ข้าพเจ้าขอขอบพระคุณคณะกรรมการสอบ วิทยานิพนธ์ซึ่งประกอบด้วย อาจารย์ ดร.ชัยโชค ไวภาษา ประธานกรรมการสอบวิทยานิพนธ์ และ ผศ. พันโท ดร.สรวิศ สุภเวชย์ กรรมการภายนอกมหาวิทยาลัย ที่ให้คำแนะนำต่าง ๆ ตั้งแต่การสอบโครงร่าง วิทยานิพนธ์จนวิทยานิพนธ์ฉบับนี้เสร็จสมบูรณ์

ข้าพเจ้าขอขอบพระคุณบุคลากรทุกท่านในภาควิชาวิศวกรรมสำรวจ จุฬาลงกรณ์มหาวิทยาลัย ซึ่งประกอบด้วย คณาจารย์ที่ให้การอบรมสั่งสอน ให้ความรู้ในด้านวิชาการและคำแนะนำต่าง ๆ แก่ ข้าพเจ้าตลอดจนเจ้าหน้าที่ที่ช่วยอำนวยความสะดวกด้านจัดการสอบและดำเนินงานด้านเอกสารในการ ศึกษาวิจัยครั้งนี้รวมถึงเพื่อน ๆ พี่ ๆ น้อง ๆ นิสิตที่เป็นกัลยาณมิตร โดยเฉพาะอย่างยิ่ง ร.ท.กรกฎ บุตร วงษ์ และอาจารย์ ดร.ชัยยุทธ เจริญผล ที่ให้ความช่วยเหลือสนับสนุนข้าพเจ้าอย่างเต็มที่ และขอขอบคุณ นางสาววริศรา ละเอียดมาก ที่คอยเป็นกำลังใจและแรงผลักดันในชีวิตของข้าพเจ้าให้ประสบความสำเร็จ ในทุกๆด้าน

ข้าพเจ้าขอขอบพระคุณหน่วยงานต่าง ๆ ซึ่งประกอบด้วย กรมที่ดิน กรมแผนที่ทหาร และ กรมโยธาธิการและผังเมือง ที่ให้ความอนุเคราะห์ข้อมูลรังวัดสัญญาณดาวเทียม GNSS ของโครงข่าย สถานีอ้างอิงถาวรรวมถึงให้การสนับสนุนการศึกษาวิจัยนี้เป็นอย่างดีและท้ายนี้ข้าพเจ้าขอขอบพระคุณ ครอบครัวและคนรักของข้าพเจ้าที่ให้การสนับสนุนในทุกด้าน และคอยเป็นกำลังใจให้กับข้าพเจ้าเสมอมา ข้าพเจ้าหวังเป็นอย่างยิ่งว่าวิทยานิพนธ์ฉบับนี้จะเป็นประโยชน์ต่องานทางด้านการสำรวจของ ประเทศไทยและผู้ที่สนใจต่อไป และหากวิทยานิพนธ์ฉบับนี้มีความบกพร่องประการใด ข้าพเจ้าขอน้อม รับและขออภัยเป็นอย่างสูง

เมธา น้อยนาค

สารบัญ

หน้า
ค
บทคัดย่อภาษาไทยค
บทคัดย่อภาษาอังกฤษง
กิตติกรรมประกาศจ
สารบัญฉ
สารบัญตารางญ
สารบัญรูปภาพฏ
บทที่ 1 บทนำ1
1.1 ที่มาและความสำคัญของปัญหา1
1.2 วัตถุประสงค์
1.3 ประโยชน์ที่คาดว่าจะได้รับ
1.4 ขอบเขตงานวิจัย
1.4.1 ขอบเขตพื้นที่ศึกษา
1.4.2 ข้อมูลที่ใช้ในการวิจัย
้ 1.4.3 ขอบเขตเนื้อหาที่ศึกษา5
1.4.4 ซอฟต์แวร์สำหรับประมวลผลข้อมูล GNSS6
บทที่ 2 ทฤษภีและงานวิจัยที่เกี่ยวข้อง
2.1 ทฤษภีที่เกี่ยวข้อง
2.1.1 สัณฐานของโลก (Earth Shape)
2.1.2 ระบบพิกัด (Coordinate System)

2.1.3 พื้นหลักฐาน (Datum)	.11
2.1.4 การประมาณค่าในช่วง (Interpolation)	.16
2.1.4.1 วิธีค่าเฉลี่ยถ่วงน้ำหนัก (Inverse Distance Weighted: IDW)	.16
2.1.4.2 วิธีคริกิง (Kriging)	.17
2.1.4.3 วิธี Natural Neighbor	.21
2.1.4.4 วิธีฟังก์ชั่นเสมือนพหุนาม (Spline)	.22
2.1.4.5 วิธีการประมาณค่าในช่วงแบบเชิงเส้นคู่ (Bi-linear)	.24
2.1.5 การวิเคราะห์และเปรียบเทียบความถูกต้องด้วยวิธีการทางสถิติ	.25
2.1.5.1 สถิติทดสอบที (T - test Statistic)	.25
2.1.5.2 ค่ารากที่สองของความคลาดเคลื่อนเฉลี่ยกำลังสอง (Root Mean Square Error: RMSE)	.25
2.1.5.3 ส่วนเบี่ยงเบนมาตรฐาน (Standard Deviation; SD หรือ σ)	.26
2.1.6 แบบจำลองซีเอสซีเอส (Country Specific Coordinate System Model: CSCS	
Model)	.28
2.2 เอกสารและงานวิจัยที่เกี่ยวข้อง	.29
บทที่ 3 วิธีการดำเนินงานวิจัย	.32
3.1 ศึกษาทฤษฎีและงานวิจัยที่เกี่ยวข้อง	.32
3.2 รวบรวมข้อมูลที่ใช้ในงานวิจัย	.32
3.3 ศึกษาการใช้ซอฟต์แวร์ที่ใช้ในงานวิจัย	.33
3.4 ประมาณค่าในช่วงของค่าต่างพิกัดทางราบ	.33
3.5 สร้างแบบจำลองค่าต่างพิกัดทางราบบนตำแหน่งกริด	.34
3.6 สร้างแบบจำลองค่าปรับแก้พิกัดทางราบ	.34
3.7 เปรียบเทียบความถูกต้องทางตำแหน่งทางราบ	.34
3.8 แผนผังการประมวลผลข้อมูล	.35

บทที่ 4 ผลการวิจัย	36
4.1 ค่าพิกัดสถานีกรมแผนที่ทหารและสถานีตรวจสอบบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2020.17 และ Epoch 2021.17	36
4.1.1 ค่าพิกัดสถานีกรมแผนที่ทหาร 80 สถานี หลังการประมวลผลด้วยซอฟต์แวร์ GIPSYX ณ Epoch 2020.17	36
4.1.2 ค่าพิกัดสถานีกรมแผนที่ทหาร 80 สถานี หลังการประมวลผลด้วยซอฟต์แวร์ GIPSYX ณ Epoch 2021.17	38
4.1.3 ค่าพิกัดสถานีตรวจสอบ 145 สถานี หลังการประมวลผลด้วยซอฟต์แวร์ GIPSYX ณ Epoch 2020.17	41
4.2 พื้นผิวค่าต่างพิกัดทางราบ	45
4.2.1 พื้นผิวค่าต่างพิกัดด้วยวิธี IDW	45
4.2.2 พื้นผิวค่าต่างพิกัดด้วยวิชี Kriging	47
4.2.3 พื้นผิวค่าต่างพิกัดด้วยวิชี Natural Neighbor	50
4.2.4 พื้นผิวค่าต่างพิกัดด้วยวิธี Spline	50
4.3 แบบจำลองค่าต่างพิกัด	52
4.4 แบบจำลองค่าปรับแก้พิกัด	56
4.5 ความถูกต้องทางตำแหน่งทางราบของแบบจำลองค่าปรับแก้พิกัด	58
GHULALONGKOM GMWERSIN 4.6 การวิเคราะห์และเปรียบเทียบความถูกต้องด้วยวิธีการทดสอบที (T - test Statistic)	61
4.7 การทดสอบความถูกต้องทางตำแหน่งทางราบจากค่าพิกัดเพิ่มเติมในห้วงเวลา Epoch 2020.66, Epoch 2021.66 และ Epoch 2021.93 ด้วยชุดคำสั่งแปลงค่าพิกัดบนกรอบพิกั อ้างอิงสากล ITRE2014 Epoch 2020 17	ด 63
4.8 ผลลัพธ์ค่าพาราบิเตอร์ของการประมาญค่าช่วง วิธี Kriging	65
าเทที่ 5 สราโผลการวิจัย	72
5 1 อภิปรายผลความอกต้องทางตำแหน่งทางรามของแบบจำลองค่าปรับแก้พิกัดทางราบ	72
5.1.1 แบบจำลองค่าปรับแก้พิกัดทางราบด้วยวิธี IDW	72

5.1.2 แบบจำลองค่าปรับแก้พิกัดทางราบด้วยวิธี Kriging	72
5.1.3 แบบจำลองค่าปรับแก้พิกัดทางราบด้วยวิธี Natural Neighbor	73
5.1.4 แบบจำลองค่าปรับแก้พิกัดทางราบด้วยวิธี Spline	73
5.2 อภิปรายผลวิเคราะห์ด้วยวิธีการทดสอบที (T - test Statistic)	74
5.3 อภิปรายผลความสามารถในการปรับแก้ของแบบจำลองค่าปรับแก้พิกัดทางราบ	75
5.4 อภิปรายผลวิเคราะห์การประมาณค่าในช่วงด้วยวิธี Kriging	76
5.5 วิเคราะห์โปรแกรมชุดคำสั่งสำหรับรองรับการป้อนค่าพิกัดตำแหน่ง	78
5.6 ปัญหาและข้อเสนอแนะ	79
ภาคผนวก	81
บรรณานุกรม	112
ประวัติผู้เขียน	116

Chulalongkorn University

สารบัญตาราง

หน้า	
ตารางที่ 1 กรอบพิกัดอ้างอิงสากลจากอดีตจนถึงปัจจุบัน12	
ตารางที่ 2 ค่าพิกัดสถานีกรมแผนที่ทหารบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2020.1738	
ตารางที่ 3 ค่าพิกัดสถานีกรมแผนที่ทหารบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2021.1740	
ตารางที่ 4 ค่าพิกัดสถานีตรวจสอบบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2020.1744	
ตารางที่ 5 แบบจำลองค่าต่างพิกัดด้วยวิธี IDW ยกกำลัง 1	
ตารางที่ 6 แบบจำลองค่าต่างพิกัดด้วยวิธี IDW ยกกำลัง 2	
ตารางที่ 7 แบบจำลองค่าต่างพิกัดด้วยวิธี IDW ยกกำลัง 353	
ตารางที่ 8 แบบจำลองค่าต่างพิกัดด้วยวิธี Kriging Spherical53	
ตารางที่ 9 แบบจำลองค่าต่างพิกัดด้วยวิธี Kriging Circular54	
ตารางที่ 10 แบบจำลองค่าต่างพิกัดด้วยวิธี Kriging Exponential54	
ตารางที่ 11 แบบจำลองค่าต่างพิกัดด้วยวิธี Kriging Gaussian	
ตารางที่ 12 แบบจำลองค่าต่างพิกัดด้วยวิธี Kriging Linear	
ตารางที่ 13 แบบจำลองค่าต่างพิกัดด้วยวิธี Natural Neighbor	
ตารางที่ 14 แบบจำลองค่าต่างพิกัดด้วยวิธี Spline Regularized	
ตารางที่ 15 แบบจำลองค่าต่างพิกัดด้วยวิธี Spline Tension	
ตารางที่ 16 ความคลาดเคลื่อนทางราบและความถูกต้องทางตำแหน่งทางราบ	
ตารางที่ 17 ความคลาดเคลื่อนทางราบและความถูกต้องทางตำแหน่งทางราบของ Epoch 2020.66,	
Epoch 2021.66 และ Epoch 2021.9363	
ตารางที่ 18 ค่าปรับแก้พิกัดทางทิศตะวันออก [E] และทางทิศเหนือ [N]	
ตารางที่ 19 ค่าพิกัดสถานีตรวจสอบบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2020.66 100	
ตารางที่ 20 ค่าพิกัดสถานีตรวจสอบบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2021.66 104	

ตารางที่ 21 ค่าพิกัดสถานีตรวจสอบบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2021.93...... 108

สารบัญรูปภาพ

	หน้า
รูปที่ 1 การเปลี่ยนแปลงพิกัดทางราบของหมุดควบคุมโครงข่ายหลัก	3
รูปที่ 2 ค่าต่างทางตำแหน่งทางราบของสถานีกรมแผนที่ทหาร (Epoch 2020.17 กับ 2021.17)	3
รูปที่ 3 ตำแหน่งสถานีอ้างอิงถาวรในพื้นที่การศึกษา	5
รูปที่ 4 ความสัมพันธ์ระหว่างสัณฐานของโลก	7
รูปที่ 5 ค่าพิกัดทรงกลม	8
รูปที่ 6 ทรงรี	9
รูปที่ 7 ความสัมพันธ์ระหว่างระบบพิกัดภูมิศาสตร์และระบบพิกัดฉากคาร์ทีเซียน	.10
รูปที่ 8 ความแตกต่างระหว่างพื้นฐานท้องถิ่นกับพื้นหลักฐานทั่วโลก	.14
รูปที่ 9 ระยะทางระหว่างจุดข้อมูลของวิธี IDW	.16
รูปที่ 10 ความสัมพันธ์ระหว่าง Semi-variogram และ Distance ของวิธี Kriging	.17
รูปที่ 11 ความสัมพันธ์เชิงพื้นที่ระหว่างจุดข้อมูลตัวอย่าง	.19
รูปที่ 12 แบบจำลองความสัมพันธ์เชิงพื้นที่แบบ Spherical	.19
รูปที่ 13 แบบจำลองความสัมพันธ์เชิงพื้นที่แบบ Circular	.19
รูปที่ 14 แบบจำลองความสัมพันธ์เชิงพื้นที่แบบ Exponential	.20
รูปที่ 15 แบบจำลองความสัมพันธ์เชิงพื้นที่แบบ Gaussian	.20
รูปที่ 16 แบบจำลองความสัมพันธ์เชิงพื้นที่แบบ Linear	.20
รูปที่ 17 ความสัมพันธ์เชิงพื้นที่แบบ Spherical และ Exponential ระหว่างจุดข้อมูลตัวอย่าง	
ตามลำดับ (ArcGIS Desktop 10.8, 2020)	.20
รูปที่ 18 พื้นที่โวโรนอยรอบจุดข้อมูลของวิธี Natural Neighbor	.21
รูปที่ 19 กราฟส่วนโค้งจุดข้อมูลของวิธี Spline	.22
รูปที่ 20 การประมาณค่าด้วยวิธี Bi-linear	.24

รูปที่ 21 พื้นที่ใต้กราฟของการแจกแจงแบบปกติ (วิชัย เยี่ยงวีรชน, 2015)	27
รูปที่ 22 ขั้นตอนการประมาณค่าในช่วงของค่าต่างพิกัดทางราบโดยวิธีต่างๆ	33
รูปที่ 23 แผนผังแสดงขั้นตอนการประมวลผลข้อมูล	35
รูปที่ 24 พื้นผิวค่าต่างพิกัดด้วยวิธี IDW ค่ายกกำลัง 1	45
รูปที่ 25 พื้นผิวค่าต่างพิกัดด้วยวิธี IDW ค่ายกกำลัง 2	46
รูปที่ 26 พื้นผิวค่าต่างพิกัดด้วยวิธี IDW ค่ายกกำลัง 3	46
รูปที่ 27 พื้นผิวค่าต่างพิกัดด้วยวิธี Kriging แบบจำลอง Spherical	47
รูปที่ 28 พื้นผิวค่าต่างพิกัดด้วยวิธี Kriging แบบจำลอง Circular	48
รูปที่ 29 พื้นผิวค่าต่างพิกัดด้วยวิธี Kriging แบบจำลอง Exponential	48
รูปที่ 30 พื้นผิวค่าต่างพิกัดด้วยวิธี Kriging แบบจำลอง Gaussian	49
รูปที่ 31 พื้นผิวค่าต่างพิกัดด้วยวิธี Kriging แบบจำลอง Linear	49
รูปที่ 32 พื้นผิวค่าต่างพิกัดด้วยวิธี Natural Neighbor	50
รูปที่ 33 พื้นผิวค่าต่างพิกัดด้วยวิธี Spline แบบจำลอง Regularized	51
รูปที่ 34 พื้นผิวค่าต่างพิกัดด้วยวิธี Spline แบบจำลอง Tension	51
รูปที่ 35 ตัวอย่างแบบจำลองค่าต่างพิกัดบนตำแหน่งกริดที่ระยะ 1 ลิปดา	52
รูปที่ 36 รูปแบบไฟล์ของแบบจำลองค่าต่างพิกัดด้วยวิธี IDW ค่ากำลัง 1	56
รูปที่ 37 แบบจำลองค่าต่างพิกัด ในซอฟต์แวร์ Leica Infinity 3.1	57
รูปที่ 38 แบบจำลองค่าปรับแก้พิกัด ในซอฟต์แวร์ Leica Infinity 3.1	57
รูปที่ 39 กราฟความคลาดเคลื่อนทางราบของวิธี IDW	59
รูปที่ 40 กราฟความคลาดเคลื่อนทางราบของวิธี Kriging	59
รูปที่ 41 กราฟความคลาดเคลื่อนทางราบของวิธี Natural Neighbor	60
รูปที่ 42 กราฟความคลาดเคลื่อนทางราบของวิธี Spline	60
รูปที่ 43 กราฟความถูกต้องทางตำแหน่งทางราบที่ระดับความเชื่อมั่นต่างๆ	61
รูปที่ 44 ผลลัพธ์การทดสอบ T ระหว่างค่าพิกัดทางราบที่ผ่านแบบจำลองในแต่ละแบบจำลอง.	62

รูปที่ 45 กราฟความคลาดเคลื่อนทางราบของพิกัด ณ Epoch 2020.66 ที่ผ่านแบบจำลองปรับแก้พิกัด64
รูปที่ 46 กราฟความคลาดเคลื่อนทางราบของพิกัด ณ Epoch 2021.66 ที่ผ่านแบบจำลองปรับแก้พิกัด64
รูปที่ 47 กราฟความคลาดเคลื่อนทางราบของพิกัด ณ Epoch 2021.93
CO
รูปที่ 48 คาพารามเตอรการประมาณคาในช่วง Kriging แบบ Spherical ของคาตางทาง X
รูปที่ 49 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Spherical ของค่าต่างทาง Y
รูปที่ 50 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Spherical ของค่าต่างทาง Z67
รูปที่ 51 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Circular ของค่าต่างทาง X67
รูปที่ 52 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Circular ของค่าต่างทาง Y68
รูปที่ 53 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Circular ของค่าต่างทาง Z68
รูปที่ 54 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Exponential ของค่าต่างทาง X69
รูปที่ 55 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Exponential ของค่าต่างทาง Y69
รูปที่ 56 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Exponential ของค่าต่างทาง Z70
รูปที่ 57 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Gaussian ของค่าต่างทาง X70
รูปที่ 58 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Gaussian ของค่าต่างทาง Y71
รูปที่ 59 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Gaussian ของค่าต่างทาง Z71
รูปที่ 60 แผนภาพโวโรนอยของช่วงค่าปรับแก้พิกัดทางทิศตะวันออก (E) และทางทิศเหนือ (N) ทั่ว พื้นที่ประเทศไทย
รูปที่ 61 Semi-variogram ค่าต่างพิกัดทาง X ของสถานีกรมแผนที่ทหาร 80 สถานี
รูปที่ 62 Semi-variogram ค่าต่างพิกัดทาง Y ของสถานีกรมแผนที่ทหาร 80 สถานี77
รูปที่ 63 Semi-variogram ค่าต่างพิกัดทาง Z ของสถานีกรมแผนที่ทหาร 80 สถานี77
รูปที่ 64 ค่าความคลาดเคลื่อนทางราบจากค่าพิกัดเพิ่มเติมในห้วงเวลา Epoch 2020.66, Epoch
2021.66 และ Epoch 2021.93 ตามลำดับ

รูปที่	65	การเลือกใช้เครื่องมือ Raster Interpolation	82
รูปที่	66	ตั้งค่าการประมาณค่าพื้นผิวด้วยวิธี IDW ค่ายกกำลัง 1	83
รูปที่	67	ตั้งค่ากำหนดขอบเขตการประมาณค่าในช่วง Processing Extent	83
รูปที่	68	ผลลัพธ์ประมาณค่าพื้นผิวค่าต่างพิกัดด้วยวิธี IDW ค่ายกกำลัง 1	84
รูปที่	69	การเลือกใช้เครื่องมือ Create Fishnet	84
รูปที่	70	ตั้งค่าการสร้างกริดขนาด 1 ลิปดาครอบคุลมพื้นที่ 97-106°E และ 5-21°N	85
รูปที่	71	ผลลัพธ์การสร้างกริดขนาด 1 ลิปดา	85
รูปที่	72	การเลือกใช้เครื่องมือ Feature Vertices to Points	86
รูปที่	73	ตำแหน่งกริดบนมุมร่วมที่ระยะ 1 ลิปดา	86
รูปที่	74	การสร้าง Field ของค่าพิกัดทางราบบนตำแหน่งกริด	87
รูปที่	75	การคำนวณค่าพิกัดทางราบบนตำแหน่งกริด	87
รูปที่	76	ค่าพิกัดทางราบบนตำแหน่งกริด	88
รูปที่	77	การเลือกใช้เครื่องมือ Extract Multi Values to Points การดึงค่าต่างพิกัดมาไว้บน	
ตำแเ	หน่ง	กริด	88
รูปที่	78	Attribute แบบจำลองค่าต่างพิกัดด้วยวิชี IDW ค่ายกกำลัง 1	89
รูปที่	79	แบบจำลองค่าต่างพิกัดทางราบด้วยวิธี IDW ค่ายกกำลัง 1	89
รูปที่	80	แบบจำลองค่าปรับแก้พิกัดทางราบด้วยวิธี IDW ค่ายกกำลัง 1	90
รูปที่	81	รูปแบบไฟล์ข้อมูลค่าพิกัดทางราบของหมุดทดสอบ	90
รูปที่	82	การนำเข้าข้อมูลค่าพิกัดทางราบของหมุดทดสอบ	91
รูปที่	83	การทดสอบแบบจำลองค่าปรับแก้พิกัดทางราบของหมุดทดสอบ	91
รูปที่	84	ค่าพิกัดทางราบ[ม.]จากจากการทดสอบแบบจำลองทั้ง 11 แบบ 1	09
รูปที่	85	เลือกทดสอบทางสถิติ F-Test ในการทดสอบความแปรปรวนของค่าพิกัดทางราบ 1	09
รูปที่	86	จับคู่การทดสอบความแปรปรวนของค่าพิกัดทางราบที่ผ่านแบบจำลอง IDW-1 กับ IDW-3	
			09

รูปที่ 87 ตัวอย่างผลลัพธ์การทดสอบ F ของค่าความแปรปรวนของค่าพิกัดทางราบที่ได้จาก	
แบบจำลอง IDW-1 กับ IDW-3	. 110
รูปที่ 88 เลือกทดสอบทางสถิติ T-Test ในการทดสอบค่าเฉลี่ยของค่าพิกัดทางราบ	. 110
รูปที่ 89 จับคู่การทดสอบค่าเฉลี่ยของค่าพิกัดทางราบที่ผ่านแบบจำลอง IDW-1 กับ IDW-3	. 111
รูปที่ 90 ตัวอย่างผลลัพธ์การทดสอบ T ของค่าเฉลี่ยของค่าพิกัดทางราบที่ได้จากแบบจำลอง	
IDW-1 กับ IDW-3	. 111

บทที่ 1 บทนำ

1.1 ที่มาและความสำคัญของปัญหา

ในปัจจุบันหน่วยงานต่างๆ ของประเทศไทย โดยเฉพาะกรมแผนที่ทหารซึ่งเป็นหน่วยงาน หลักที่กำหนดโครงข่ายอ้างอิงของประเทศ (Zero Order Geodetic Network) ได้ปรับเปลี่ยนไปใช้ พื้นหลักฐาน WGS1984 บนกรอบพิกัดอ้างอิงสากล 2008 (International Terrestrial Reference Frame 2008: ITRF2008) Epoch 2013.81 ประกาศใช้งานเมื่อ พ.ศ.2557 เป็นระบบโครงข่าย สถานีรังวัดสัญญาณดาวเทียม GNSS แบบอัตโนมัติ มีวัตถุประสงค์เพื่อเพิ่มขีดความสามารถการ ปฏิบัติงานสำรวจและการทำแผนที่ให้สามารถตอบสนองต่อการประเมินและป้องกันด้านอุทกภัยและ ภัยพิบัติธรรมชาติอื่นๆ รวมทั้งทำให้การสำรวจหาค่าพิกัดทั้งทางราบและค่าความสูงเหนือระดับทะเล ปานกลาง โดยการประยุกต์ใช้ร่วมกับแบบจำลองยีออยด์ท้องถิ่นความละเอียดสูง ในเวลาอันรวดเร็ว แบบทันที สามารถให้ค่าพิกัดที่มีความละเอียดถูกต้องในระดับ 3-5 เซนติเมตร เป็นการยกระดับการ สำรวจในประเทศไทย ให้เป็นมาตรฐานสากลและรองรับการเข้าสู่ประชาคมเศรษฐกิจอาเซียน ภายใต้ โมเดล Thailand 4.0 (กรมแผนที่ทหาร กองบัญชากองทัพไทย, 2562) และมีแผนที่จะปรับปรุงเป็น กรอบพิกัดอ้างอิงสากล ITRF2014 (Altamimi et al., 2016) หรือกรอบพิกัดอ้างอิงสากล ITRF2020 (IDS, 2020) ในอนาคต เพื่อให้สอดคล้องกับตำแหน่งที่เป็นปัจจุบันตามการเคลื่อนตัวของเปลือกโลก

นอกจากนี้หน่วยงานของกรมที่ดินได้ศึกษาการปรับปรุงพื้นหลักฐานและระบบพิกัดอ้างอิงมา อย่างต่อเนื่องเช่นกัน โดยได้ใช้ค่าพิกัดอ้างอิงที่คำนวณโยงยึดมาจากหมุดควบคุมในโครงข่ายหลักของ กรมแผนที่ทหารบนกรอบพิกัดอ้างอิงสากล ITRF2005 Epoch 2008.87 และได้ประกาศใช้ใน ราชการตั้งแต่ปี พ.ศ.2552 เรื่อยมาจนถึงปัจจุบัน ทำให้ประเทศไทยมีการใช้งานกรอบพิกัดอ้างอิง สากลของประเทศไทยที่แตกต่างกันส่งผลให้การระบุตำแหน่งพิกัดเป็นไปอย่างไม่เป็นเอกภาพ จึงได้มี การร่วมมือกันระหว่างหน่วยงานกรมที่ดินกับภาควิชาวิศวกรรมสำรวจจุฬาลงกรณ์มหาวิทยาลัย จัดทำโครงการศึกษาการคำนวณปรับแก้ค่าพิกัดขั้นสูงของโครงข่ายการรังวัดด้วยดาวเทียมแบบจลน์ เพื่อรองรับการปรับเปลี่ยนพื้นหลักฐานและกรอบพิกัดอ้างอิงสากล นำไปสู่การปรับปรุงค่าพิกัดของ สถานีโครงข่ายการรังวัดด้วยดาวเทียมแบบจลน์ให้มีความสอดคล้องกับตำแหน่งที่เป็นปัจจุบันสามารถ ใช้อ้างอิงได้กับทุกหน่วยงานได้เป็นมาตรฐานเดียวกัน โดยสอดคล้องกับกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2020.17

การรังวัดสำรวจด้วยเทคโนโลยี GNSS ในปัจจุบันได้มีการพัฒนาอย่างต่อเนื่องเพื่อให้ได้ค่า พิกัดที่มีความถูกต้องมากยิ่งขึ้นและลดขั้นตอนต่างๆ ในการทำการสำรวจ ทำให้การประมวลผลข้อมูล ดาวเทียม GNSS ด้วยวิธีด้วยเทคนิคการรังวัดจุดเดี่ยวความละเอียดสูง (Precise Point Positioning: PPP) (Kouba & Héroux, 2001) จึงถูกนำมาใช้งานแพร่หลายขึ้นเรื่อย ๆ เพราะด้วยความสะดวก เพียงใช้เครื่องรับสัญญาณดาวเทียม GNSS เครื่องเดียวก็สามารถให้ค่าความถูกต้องที่สูงได้ โดยไม่ จำเป็นต้องเข้าใช้งานผ่านระบบโครงข่ายการรังวัดด้วยดาวเทียมแบบจลน์ (CORS) โดยรูปแบบการ คำนวณค่าพิกัดตำแหน่งสามารถใช้ซอฟต์แวร์เชิงวิจัยหรือการคำนวณผ่านทางออนไลน์ที่ให้บริการ ขึ้นอยู่กับความเหมาะสมกับลักษณะงานที่จะเลือกใช้ โดยเฉพาะซอฟต์แวร์เชิงวิจัย จะใช้กับงานที่ ต้องการความละเอียดถูกต้องสูง แต่เนื่องจากมีการทำงานที่ยุ่งยาก ราคาแพงและผู้ใช้งานต้องมีทักษะ เฉพาะ จึงทำให้ผู้ใช้งานทั่วไปอาจจะเลือกการบริการคำนวณค่าพิกัดผ่านทางเว็บไซต์ของผู้ให้บริการ แทน ซึ่งการทำงานไม่ยุ่งยากและให้ความถูกต้องอยู่ในระดับเซนติเมตร โดยใช้เวลาที่คำนวณไม่เกิน 2-3 นาที ก็จะได้ผลการคำนวณส่งกลับมาทาง E-mail

การเคลื่อนตัวของแผ่นเปลือกโลกจะส่งผลกระทบโดยตรงต่อการอ้างอิงค่าพิกัด ทำให้การ ระบุตำแหน่งด้วยค่าพิกัดไม่สอดคล้องกับสภาพความเป็นจริง และพบว่าการใช้ค่าพิกัดบนกรอบพิกัด อ้างอิงสากลที่ไม่สอดคล้องกัน สามารถเป็นสาเหตุที่ทำให้ผู้ใช้งานค่าพิกัดเกิดความสับสนและไม่ สามารถนำค่าพิกัดไปใช้งานร่วมกันได้ จากการเปรียบเทียบค่าพิกัดของหมุดควบคุมในโครงข่ายหลัก ของกรมแผนที่ทหารบนกรอบพิกัดอ้างอิงสากล ITRF2005 และ ITRF2008 จำนวน 18 หมุด พบว่า ้ค่าพิกัดมีความแตกต่างกันซึ่งส่งผลต่อความคลาดเคลื่อนทางตำแหน่ง โดยค่าพิกัดมีการเปลี่ยนแปลง ไปทางทิศตะวันออกเฉียงใต้เฉลี่ยอยู่ที่ 11.6 ซม. ดังแสดงในรูปที่ 1 (กรกฎ บุตรวงษ์, 2563) และ จากการเปรียบเทียบค่าพิกัดที่ได้จากการรังวัดวิธีจุดเดี่ยวความถูกต้องสูง (Precise Point Positioning; PPP) บนกรอบพิกัดอ้างอิงสากล ITRF2014 ในห้วงเวลาที่แตกต่างกัน ก็จะทำให้การ อ้างอิงค่าพิกัดของตำแหน่งเดียวกันย่อมจะให้ค่าพิกัดที่แตกต่างกันด้วยเมื่อเวลาผ่านไป สอดคล้องกับ ทิศทางการเคลื่อนตัวของแผ่นเปลือกโลกของประเทศไทยเฉลี่ยอยู่ที่ 3 เซนติเมตรต่อปี ไปทางทิศ ตะวันออกเฉียงใต้ ซึ่งมีความใกล้เคียงกับอัตราการเคลื่อนที่ของแผ่น Sundaland Block ซึ่งมีอัตรา เคลื่อนที่ด้วยความเร็วเฉลี่ย 3 ซม.ต่อปี ในทางทิศตะวันออกเฉียงใต้เช่นกัน (ธนพัทธ์ จงรักชอบ, 2560) ดังแสดงในรูปที่ 2 ทั้งนี้ทำให้ผู้ใช้งานทั่วไปที่ใช้ประโยชน์จากการรังวัดและทำแผนที่ด้วยวิธีการ รังวัดด้วยจุดเดี่ยวความละเอียดสูง (PPP) ผนวกใช้งานในเทคโนโลยีต่างๆ อาทิ Robotic และ Autonomous vehicle อาจละเลยหรือเกิดความสับสนขึ้นได้เนื่องจากค่าพิกัดที่ได้มีความไม่ สอดคล้องกัน โดยสะสมตามเวลาอันเนื่องมาจากการเคลื่อนที่ของแผ่นเปลือกโลก

รูปที่ 1 การเปลี่ยนแปลงพิกัดทางราบของหมุดควบคุมโครงข่ายหลัก (ธนพัทธ์ จงรักชอบ, 2560)

รูปที่ 2 ค่าต่างทางตำแหน่งทางราบของสถานีกรมแผนที่ทหาร (Epoch 2020.17 กับ 2021.17)

ดังนั้นในงานวิจัยนี้ผู้วิจัยมีความสนใจที่จะหาแบบจำลองการปรับแก้พิกัดทางราบที่ได้จาก การสำรวจรังวัดด้วยเทคนิคการรังวัดจุดเดี่ยวความละเอียดสูง (Precise Point Positioning; PPP) ให้สอดคล้องกับกรอบอ้างอิงค่าพิกัดสากลของหน่วยงานกรมแผนที่ทหารบนกรอบพิกัดอ้างอิง ITRF 2014 โดยนำค่าต่างพิกัดที่ได้จากการประมวลผลข้อมูลดาวเทียมด้วยซอฟต์แวร์เซิงวิจัย GipsyX จาก โครงข่ายสถานีอ้างอิงรับสัญญาณดาวเทียมของกรมแผนที่ทหาร จำนวน 80 สถานี มาสร้าง แบบจำลองค่าต่างพิกัดทางราบบนตำแหน่งกริด โดยใช้วิธีการประมาณค่าในช่วง 4 วิธี คือ IDW, Kriging, Natural Neighbor และ Spline โดยการกำหนดขนาดเซลล์ (Cell size) ของข้อมูลในการ ประมาณค่าในช่วงเท่ากับ 1 ลิปดา หรือประมาณ 1.85 กิโลเมตร จากนั้นทำการวิเคราะห์แบบจำลอง ในการเลือกแบบจำลองปรับแก้พิกัดทางราบด้วยการทดสอบทางสถิติ แล้วเปรียบเทียบความถูกต้อง ทางตำแหน่งทางราบ โดยใช้สถานีทดสอบ 149 สถานี ที่กระจายตัวทั่วพื้นที่ประเทศไทย ทั้งนี้เพื่อ รองรับการใช้งานบนกรอบพิกัดอ้างอิง ITRF2014 ในอนาคต ให้มีความถูกต้องสัมพันธ์ตามการเคลื่อน ดัวของแผ่นเปลือกโลกมากยิ่งขึ้นในระดับเซนติเมตร ทั้งจะเป็นการเอื้อประโยชน์ต่อหน่วยงานทั้ง ภาครัฐและเอกซนที่เกี่ยวข้องกับงานสำรวจรังวัดหรือจัดทำแผนที่ในประเทศไทยต่อไป

1.2 วัตถุประสงค์

 1.2.1 เพื่อวิเคราะห์และอธิบายถึงค่าต่างของค่าพิกัดทางราบที่เกิดขึ้นจากการใช้เทคนิคการ ประมวลผลแบบจุดเดี่ยวความละเอียดสูง (Precise Point Positioning; PPP) บนกรอบอ้างอิง ITRF 2014 เทียบกับค่าพิกัดโครงข่ายบนกรอบอ้างอิงนานาชาติของกรมแผนที่ทหาร ในห้วงเวลาที่ แตกต่างกัน

1.2.2 วิเคราะห์และเสนอแนวทางในการคำนวณปรับแก้ค่าพิกัดทางราบที่ได้จากการรังวัด ด้วยเทคนิคการประมวลผลแบบจุดเดี่ยวความละเอียดสูง (Precise Point Positioning; PPP) บน กรอบอ้างอิง ITRF 2014 ให้สอดคล้องกับระบบโครงข่ายการรังวัดด้วยดาวเทียมแบบจลน์ บนกรอบ อ้างอิงนานาชาติของกรมแผนที่ทหารได้ในระดับเซนติเมตร

1.3 ประโยชน์ที่คาดว่าจะได้รับ

1.3.1 แบบจำลองในการคำนวณปรับแก้ค่าพิกัดทางราบที่ได้จากการรังวัดด้วยเทคนิคการ ประมวลผลแบบจุดเดี่ยวความละเอียดสูง (Precise Point Positioning; PPP) ให้สอดคล้องกับพิกัด ระบบโครงข่ายการรังวัดด้วยดาวเทียมแบบจลน์ บนกรอบอ้างอิงนานาชาติของกรมแผนที่ทหารบน กรอบอ้างอิง ITRF 2014 ได้ในระดับเซนติเมตร เพื่อให้ค่าพิกัดมีความถูกต้องสัมพันธ์กัน

1.4 ขอบเขตงานวิจัย

1.4.1 ขอบเขตพื้นที่ศึกษา

โครงข่ายสถานีอ้างอิงรับสัญญาณดาวเทียมถาวรต่อเนื่อง (Continuously Operating Reference Stations; CORS) 3 หน่วยงาน ประกอบด้วย กรมที่ดิน 134 สถานี, กรมแผนที่ ทหาร 80 สถานี และกรมโยธาธิการและผังเมือง 15 สถานี รวม 229 สถานี

1.4.2 ข้อมูลที่ใช้ในการวิจัย NGKORN UNIVERSITY

ข้อมูลรังวัดสัญญาณดาวเทียม GNSS โดยมีอัตราการเก็บข้อมูลอยู่ที่ 15 วินาที ต่อเนื่องเป็นระยะเวลา 7 วัน ใช้ข้อมูลทั้งหมดสองห้วงเวลา คือ ห้วงเวลาแรก ตั้งแต่วันที่ 29 ก.พ. 2563 ถึง 6 มี.ค. 2563 (Day of year 060-066) และห้วงเวลาที่สอง ตั้งแต่วันที่ 1 มี.ค. 2564 ถึง 7 มี.ค. 2564 (Day of year 060-066)

1.4.3 ขอบเขตเนื้อหาที่ศึกษา

- 1.4.3.1 ศึกษาการประมวลผลข้อมูลรังวัดสัญญาณดาวเทียม GNSS
- 1.4.3.2 ศึกษาวิธีการประมาณค่าในช่วงสำหรับการสร้างพื้นผิวค่าต่างพิกัดทางราบ
- 1.4.3.3 ศึกษาการสร้างแบบจำลองค่าปรับแก้พิกัดทางราบ

1.4.3.4 ศึกษาการใช้งานโปรแกรมที่ใช้ในงานวิจัย GipsyX, ArcGIS Desktop 10.8 และ CSCS Model Convert

1.4.3.5 ศึกษาการวิเคราะห์ข้อมูลและการเปรียบเทียบความถูกต้องทางตำแหน่ง ทางราบด้วยวิธีทางสถิติ

1.4.4 ซอฟต์แวร์สำหรับประมวลผลข้อมูล GNSS

1.4.4.1 GipsyX

ในงานวิจัยนี้จะใช้ซอฟต์แวร์เชิงวิจัยยิปซี (GNSS-Inferred Positioning System and Orbit Analysis Simulation Software: GipsyX) (Bertiger et al., 2020) สำหรับ วิเคราะห์และประมวลผลจากข้อมูล GNSS ซึ่งได้รับการพัฒนาโดยหน่วยงาน JPL (The Jet Propulsion Laboratory) เพื่อหาตำแหน่งพิกัดที่มีความถูกต้องสูงโดยแต่ละสถานีถูก ประมวลผลอย่างเป็นอิสระต่อกัน ด้วยเทคนิคการประมวลผลแบบจุดเดี่ยวความละเอียดสูง (Precise Point Positioning: PPP) ร่วมกับข้อมูลวงโครจรและค่าแก้นาฬิกาดาวเทียมความ ละเอียดสูง และค่าปรับแก้ค่าคลาดเคลื่อนอื่นๆ ให้ค่าความถูกต้องทางราบในระดับมิลลิเมตร และทางดิ่งในระดับเซนติเมตร ถูกนำไปประยุกต์ด้านต่างๆ เช่น การศึกษาการเคลื่อนตัวของ แผ่นเปลือกโลก, การเปลี่ยนแปลงสภาพอากาศของชั้นบรรยากาศไอโอโนสเพียร์ และชั้น บรรยากาศโทรโพสเพียร์, งานศึกษาหากรอบพิกัดอ้างอิง (Reference Frame), หรือการหา พารามิเตอร์การหมุนและการวางตัวของแกนโลก (Earth Rotation Parameters) เป็นต้น

1.4.4.2 ArcGIS Desktop 10.8

ซอฟต์แวร์ ArcGIS Desktop เวอร์ชั่น 10.8 เป็นซอฟต์แวร์จัดการข้อมูลภูมิ สารสนเทศ ถูกพัฒนาโดยบริษัท ESRI Inc ประเทศสหรัฐอเมริกา สำหรับการสร้างพื้นผิวค่า ค่าต่างพิกัดทางราบด้วยการประมาณค่าในช่วงโดยวิธีต่างๆและการสร้างแบบจำลองค่าต่าง พิกัดทางราบบนตำแหน่งกริด

1.4.4.3 CSCS Model Convert

ซอฟต์แวร์ CSCS Model Convert เป็นซอฟต์แวร์จัดการรูปแบบไฟล์พัฒนาโดย บริษัท Leica Geosystem AG ประเทศเยอรมัน สำหรับแปลงไฟล์ข้อมูลแบบจำลองค่าต่าง พิกัดทางราบบนตำแหน่งกริดในรูปแบบ Generic ASCII (.txt) ให้เป็นไฟล์ CSCS (.csc) ตาม รูปแบบของ CSCS Model

บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

2.1 ทฤษฎีที่เกี่ยวข้อง

2.1.1 สัณฐานของโลก (Earth Shape)

ยีออเดซี (Geodesy) เป็นศาสตร์ที่ว่าด้วยการศึกษาเพื่อหารูปทรงสัณฐาน, ขนาด, การวางตัว, และสนามความโน้มถ่วงของโลก รวมไปถึงการเรียนรู้ถึงการเปลี่ยนแปลงสัณฐาน ของโลกที่เปลี่ยนแปลงไปตามกาลเวลา ได้แก่ การเกิดได้จากการปรากฏการณ์แผ่นดินไหว, ภูเขาไฟระเบิด, การเคลื่อนตัวของชั้นเปลือกโลก, น้ำขึ้นน้ำลง และการเปลี่ยนแปลงของแกน ขั้วโลก เป็นต้น สัณฐานของโลกสามารถแบ่งออกได้เป็น 3 ลักษณะ คือ

1. สัณฐานทางกายภาพ (Terrestrial Surface) ได้แก่ แนวเขต ดิน น้ำ ชั้นบรรยากาศ เป็นลักษณะของผิวโลกจริง ไม่สามารถนิยามรูปร่างหรือรูปทรงทางเรขาคณิตได้

 สัณฐานยีออยด์ (Geoid) เป็นสัณฐานที่มีศักยภาพความโน้มถ่วงเท่ากันทุกจุด แต่ เนื่องจากยีออยด์นั้นมีความบุบเบี้ยวไม่สม่ำเสมอ ทำให้ยากต่อการคำนวณทางคณิตศาสตร์ จึง ไม่เหมาะสมที่จะใช้เป็นระบบอ้างอิงสำหรับการรังวัดระยะทางราบ แต่ถูกใช้เพื่ออ้างอิง ระยะทางดิ่งเนื่องจากสอดคล้องกับทิศทางการไหลของน้ำ โดยกำหนดให้มีระดับเริ่มต้น ณ ระดับเดียวกับระดับน้ำทะเลปานกลาง

3. สัณฐานรูปทรงรี (Ellipsoid) ซึ่งเป็นสัณฐานที่นำมาใช้เพื่อเป็นสัณฐานของโลก กำหนดด้วยระยะกึ่งแกนยาว (semi-major axis, a) และกึ่งแกนสั้น (semi-minor axis, b)

รูปที่ 4 ความสัมพันธ์ระหว่างสัณฐานของโลก (<u>https://www.esri.com/news/arcuser/0703/geoid1of3.html</u>)

2.1.2 ระบบพิกัด (Coordinate System)

2.1.2.1 ระบบพิกัดทรงกลม (Spherical Coordinate)

ค่าประมาณของรูปทรงและขนาดของโลกที่ใช้ในยุคแรกๆ คือรูปทรงกลมที่ มีรัศมี 6,371 กิโลเมตร โดยมีคำจำกัดความที่ใช้อธิบายค่าพิกัดทรงกลมอยู่ 3 อย่าง ซึ่งก็คือ

- ละติจูด (Latitude) เป็นมุมที่วัดจากระนาบศูนย์สูตร ซึ่งอาจจะเป็น ทางฝั่งขั้วโลกเหนือหรือใต้ก็ได้ โดยทั่วไปใช้สัญลักษณ์ φ
- ลองจิจูด (Longitude) เป็นมุมที่วัดไปทางตะวันออกหรือตกจาก ระนาบเมอริเดียอน (Meridian plane) ที่ผ่านเมืองกรีนิช (Greenwich) โดยทั่วไปใช้สัญลักษณ์ λ
- ความสูง (Height) ค่าระยะทางที่วัดเทียบจากพื้นผิวทรงกลมมาถึงจุดที่ พิจารณา (หน่วยเป็นเมตร) และใช้ตัวย่อเป็น h

2.1.2.2 ระบบพิกัดทรงรี (Spheroidal coordinates)

เป็นรูปทรงที่ใช้ประมาณสัณฐานของโลกที่ดีกว่ารูปทรงกลม ในบางทีอาจ เรียกว่า Ellipsoid หรือ Spheroid ซึ่งถูกสร้างจากการหมุนวงรีรอบแกนโท (แกน หมุนของโลก) การกำหนดรูปทรงรีต้องอาศัยตัวแปรอย่างน้อย 2 ตัวคือ ค่าความยาว กึ่งแกนโท (b) และค่าความยาวกึ่งแกนเอก (a) ดังแสดงในรูปที่ 6

(เฉลิมชนม์ สถิระพจน์, 2548)

เราสามารถคำนวณค่าตัวแปรอื่นๆ ได้ เช่น อัตราการยุบตัว (Flattening) และค่าการเยื้องศูนย์ (Eccentricity) เป็นต้น ความสัมพันธ์ทางคณิตศาสตร์สามารถ หารายละเอียดได้จากสมการที่ 1-4 (ซูเกียรติ วิเชียรเจริญ, 2537)

อัตราการยุบตัว (Flattening;
$$f$$
)
 $f = \frac{a-b}{a}$ (1)
ค่าการเยื้องศูนย์ (Eccentricity; e)
 $e^2 = \frac{a^2-b^2}{a^2}$ (2)

ความสัมพันธ์ระหว่าง f และ e

 $2f - f^2 \tag{3}$

$$\sqrt{1 - e^2} = 1 - f = \frac{b}{a} \tag{4}$$

ดังนั้นในการกำหนดรูปทรงรีขึ้นมา เราจำเป็นต้องทราบตัวแปรอย่างน้อย 2 ตัวแปร จากการที่เราสร้างรูปทรงรีขึ้นจากตัวแปร 2 ตัว เราก็สามารถกำหนดค่า พิกัดที่อยู่บนรูปทรงรีได้ โดยใช้ตัวแปร 3 ตัว คือ ค่าละติจูด (ϕ) ลองจิจูด (λ) และ ความสูง (h) โดยที่ค่าละติจูดและลองจิจูดจะถูกกำหนดตามทิศทางของแนวเส้นตั้ง ฉากกับพื้นผิวทรงรี ค่าพิกัดในระบบนี้อาจถูกเรียกว่า ค่าพิกัดจีออเดติก (Geodetic coordinates) หรือค่าพิกัดภูมิศาสตร์ (Geographic coordinates) ซึ่งจะเป็นค่า พิกัดที่เป็นพื้นฐานของงานสำรวจรังวัดและทำแผนที่ 2.1.2.3 ระบบพิกัดฉากคาร์ทีเซียน (Cartesian Coordinate)

ค่าพิกัดฉากคาร์ทีเซียนอยู่ในรูป 3 มิติ คือ X Y และ Z (ค่า X และ Y ไม่ใช้ ค่าพิกัดทางราบ และ Z ก็ไม่ใช้ค่าพิกัดทางดิ่ง) จุดศูนย์กำเนิดของค่าพิกัดชนิดนี้จะ อยู่ที่จุดศูนย์กลางของรูปทรงรีและโดยทั่วไปจะอยู่ที่จุดศูนย์มวลสารของโลก โดยมี แกน Z วางตามแนวของแกนโทของรูปทรงรีซึ่งจะเป็นแนวเดียวกันกับแกนหมุนของ โลก ส่วนแกน X จะอยู่บนระนาบศูนย์สูตรและวางตามแนวเมริเดียนที่ผ่านเมือง กรีนิช และแกน Y ตั้งฉากกับแกน X และ Z ซึ่งเป็นไปตามระบบมือขวา

รูปที่ 7 ความสัมพันธ์ระหว่างระบบพิกัดภูมิศาสตร์และระบบพิกัดฉากคาร์ทีเซียน (https://www.nosco.ch/mathematics/en/earth-coordinates.php)

การคำนวณค่าพิกัดฉากคาร์ทีเซียน (X, Y, Z) จากค่าพิกัดภูมิศาสตร์ ($arphi, \lambda, h$) ตามสมการที่ 5-7 (Hofmann-Wellenhof et al., 2007)

จุฬาลงกรณ์มหาวิทยาลัย

$$X = (N+h)\cos\varphi\,\cos\lambda \tag{5}$$

$$Y = (N+h)\cos\varphi\,\sin\lambda\tag{6}$$

$$Z = \left(\frac{b^2}{a^2}N + h\right)sin\varphi \tag{7}$$

โดยที่ $N=rac{a^2}{\sqrt{(a^2cos^2arphi+b^2sin^2arphi)}}$

การคำนวณค่าพิกัดภูมิศาสตร์ ($m{arphi}, \lambda, h$) จากค่าพิกัดฉากคาร์ทีเซียน (X, Y, Z) ตามสมการที่ 8-9 (Hofmann-Wellenhof et al., 2007)

$$tan\lambda = \frac{Y}{X} \tag{8}$$

$$tan\varphi = \frac{Z + e^{\prime 2}bsin^{3}\theta}{X}$$
(9)

$$h = \frac{\rho}{\cos\varphi} - N \tag{10}$$

โดยที่ $ho = \sqrt{X^2 + tan heta - rac{Za}{2}}$

$$tan\theta = \frac{Za}{\rho b} \\ e'^{2} = \frac{a^{2}-b^{2}}{b^{2}}, e^{2} = \frac{a^{2}-b^{2}}{a^{2}}$$

2.1.3 พื้นหลักฐาน (Datum)

2.1.3.1 พื้นหลักฐานดาวเทียม (Satellite datums)

เมื่อพิจารณาพื้นหลักฐานทั่วโลกที่ระดับสากลได้ใช้เป็นมาตรฐานเดียวกัน รูปทรงรีอ้างอิงที่เหมาะสมที่สุดคือการกำหนดให้จุดศูนย์กำเนิดอยู่ที่จุดศูนย์กลาง มวลสารของโลกที่เรียกว่า Geocentric datum และมีขนาดรูปร่างใกล้เคียงกับผิว ยีออยด์มากที่สุด ซึ่งมีความสำคัญและจำเป็นต่อการคำนวณ วงโคจรดาวเทียมเป็น อย่างมากในช่วงปลาย พ.ศ.2503 ได้มีความพยายามที่จะกำหนดพื้นหลักฐานทั่วโลก ขึ้นเรียกว่าพื้นหลักฐานดาวเทียม 1960 (World Geodetic System 1960: WGS1960) ซึ่งดูแลโดย The US National Imagery and Mapping Agency และได้มีการพัฒนาและปรับปรุงระบบซึ่งในปี พ.ศ.2527 ได้มีพื้นหลักฐานดาวเทียม 1984 (World Geodetic System 1984: WGS1984) หรือที่รู้จักกันในชื่อ WGS84 นั่นเองโดยค่าตัวแปรอ้างอิงที่กำหนดรูปทรงรีคือ a = 6378137 เมตร และ f = 1/298.257223563

การกำหนดให้พื้นหลักฐาน WGS84 เป็นพื้นหลักฐานทั่วโลกทำให้ผู้ใช้ ข้อมูลรังวัดด้วยระบบดาวเทียมสามารถหาค่าพิกัดที่อ้างอิงอยู่บนพื้นหลักฐาน WGS84 ได้โดยตรง สำหรับในกรณีที่นำข้อมูลวงโคจรดาวเทียมความละเอียดสูง (Precise satellite orbits) ที่ได้จากหน่วยงาน International GNSS Service (IGS) มาใช้ในการคำนวณตำแหน่งดาวเทียมจะมีผลทำให้ค่าพิกัดไม่ได้อยู่บนพื้น หลักฐาน WGS84 ซึ่งได้มีการเชื่อมโยงโครงข่ายสถานีฐานที่คอยติดตามดาวเทียม GNSS ให้เข้ากับกรอบพิกัดอ้างอิงสากล โดยพื้นหลักฐาน WGS84 ได้มีการปรับปรุง ระบบให้มีความถูกต้องสูงขึ้น

2.1.3.2 กรอบพิกัดอ้างอิงสากล (International Terrestrial Reference Frames: ITRF)

กรอบพิกัดอ้างอิงถูกปรับปรุงดูแลโดยหน่วยงาน International Earth Rotation Service (IERS) ซึ่งเป็นระบบพิกัดอ้างอิงที่มีความละเอียดสูงสอดคล้อง กับการเปลี่ยนแปลงของสัณฐานของโลก ปัจจุบันถูกสร้างและพัฒนามาจากการ ประยุกต์ใช้เทคนิคการรังวัดทางด้านยีออเดซีจากการรับสัญญาณจากอวกาศ เพื่อ คำนวณหาพารามิเตอร์ (Parameter) ประกอบไปด้วย จุดกำเนิด, ขนาดของการหด และขยายตัว, และการวางตัวของโลก รวมทั้งอัตราการเปลี่ยนแปลงของพารามิเตอร์ ข้างต้น ประกอบด้วย Global Navigation Satellite System (GNSS), Very Long Baseline Interferometry (VLBI), Lunar and Satellite Laser Ranging (LLS, SLR) และ Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) (IDS, 2020)

ในงานที่ต้องการความถูกต้องทางตำแหน่งสูง ไม่สามารถใช้ระบบพื้น หลักฐานอ้างอิงที่ไม่ขึ้นกับเวลาได้ เนื่องจากการเคลื่อนตัวของแผ่นเปลือกโลกจะมี ผลทำให้ค่าพิกัดของตำแหน่งที่อยู่ในระบบพื้นหลักฐานอ้างอิงที่ไม่ขึ้นกับเวลามีการ เปลี่ยนแปลงตามอัตราการเคลื่อนตัวซึ่งมีขนาดหลายเซนติเมตรต่อปี จึงได้รวมเอา อัตราเร็วการเคลื่อนตัวของจุดอ้างอิงในโครงข่ายเข้าไปอยู่ในนิยามของกรอบพิกัด อ้างอิงสากลด้วย ดังนั้นการใช้งานค่าพิกัดจึงต้องมีการระบุไปยังจุดของเวลาด้วย

a	d b b b b b b b b b b	a	କ ଏ	ູ
ตารางทุ่า	กรลาเพกดอางองสากลอาก	າລ໑ຓລາ	ากงาโล	ລາເາເ
VIIG INVI			301101	งูบผ

ITRF	EPOCH	NOTE
ITRF92	1988.0	พื้นหลักฐานแรกโดย International Terrestrial Reference System: ITRS)
ITRF93	1988.0	
ITRF94	1993.0	

ITRF96	1997.0	
ITRF97	1997.0	
ITRF2000	1997.0	เป็นครั้งแรกที่ได้นำผลลัพธ์จากการรังวัดด้วยวิธียีออเดซีจากการรับ
		สัญญาณจากอวกาศ (Space Geodesy techniques) ในหลากหลาย
		รูปแบบ (GPS, VLBI, SLR, LLS, และ DORIS) โดยไม่มีแบบจำลองการ
		เคลื่อนที่ของแผ่นเปลือกโลก (Altamimi et al., 2002)
ITRF2005	2000.0	สร้างด้วยข้อมูลภายใต้รูปแบบของอนุกรมเวลาของตำแหน่งสถานีและ
		การวางตัวของโลก หรือ Earth Orientation Parameters (EOP)
		(Altamimi et al., 2007)
	2005.0	เพิ่มเติมแบบจำลองชั้นบรรยากาศโทรโพสเฟียร์ และพัฒนา
ITRF2008		แบบจำลองใหม่ ทำให้มีความถูกต้องมากยิ่งขึ้น (Altamimi et al.,
		2011)
ITRF2014	2010.0	สร้างขึ้นด้วยการสร้างแบบจำลองของการเคลื่อนที่ของสถานีที่ไม่เป็น
		เชิงเส้น (Nonlinear Motion) (Altamimi et al., 2016)
ITRF2020	2020.0	ปรับปรุงเพิ่มเติมจาก ITRF2014 ด้วยการประมวลผลใหม่จากการ
		เปลี่ยนแปลงสัณฐานของโลกที่จากการเกิดแผ่นดินไหว, การเคลื่อนตัว
		ของแผ่นเปลือกโลก, การละลายของแผ่นน้ำแข็งขั้วโลก รวมทั้ง
		ปรับปรุงค่าคลาดเคลื่อนการประมวลผลก่อนหน้า และเพิ่มจำนวนผล
		การรังวัดติดตามการเปลี่ยนแปลงสัณฐานของโลกจากเทคนิคการรังวัด
		แบบต่างๆ (GNSS, VLBI, DORIS, SLR) คาดว่าประกาศใช้อย่างเป็น
		ทางการในช่วง ก.ยต.ค. 2564 (IDS, 2020)

2.1.3.3 พื้นหลักฐานท้องถิ่น (Local datum)

การกำหนดพื้นหลักฐานท้องถิ่นทำได้โดยการเลือกจุดศูนย์กำเนิดสำหรับ ประเทศหรือภูมิภาคนั้น ๆ ปัจจัยหลักในการเลือกจุดศูนย์กำเนิดของพื้นหลักฐานนั่น คือ ทำให้ค่าต่างระหว่างพื้นผิวยีออยด์ (Geoid) และรูปทรงรี (Geoid-ellipsoid separation) ให้มีค่าพอดีกันมากที่สุด ดังแสดงในรูปที่ 8 จะเห็นได้ว่าพื้นหลักฐาน ท้องถิ่นจะแนบกับพื้นผิวยีออยด์ (Geoid) ในบริเวณนั้นได้ดีกว่าพื้นหลักฐานทั่วโลก

รูปที่ 8 ความแตกต่างระหว่างพื้นฐานท้องถิ่นกับพื้นหลักฐานทั่วโลก (BLICK & CROOK, 2012)

ซึ่งระบบพื้นหลักฐานอ้างอิงสามารถจำแนกตามประเภท (Datum Types) ได้ 3 แบบดังนี้

- ระบบพื้นหลักฐานอ้างอิงแบบคงที่ (Static Datum)

เป็นระบบพิกัดอ้างอิงที่ถูกหยุดไว้ ณ ช่วงเวลาที่คำนวณ ซึ่งจะไม่คำนึงถึงผลกระทบ ของการเคลื่อนตัวของแผ่นเปลือกโลก หรือปรากฏการณ์ต่าง ๆ ทำให้ค่าพิกัดไม่เป็น ปัจจุบัน โดยส่วนใหญ่จะเป็นค่าพิกัดที่ได้ถูกประกาศใช้งานตามหน่วยงานต่าง ๆ ซึ่ง ถูกคำนวณไว้เมื่อหลายปีก่อนเพื่อใช้อ้างอิงในงานขยายโครงข่ายอื่น ๆ ให้อยู่บนพื้น หลักฐานหรือกรอบพิกัดอ้างอิงสากลเดียวกัน อาทิเช่น งานขยายโครงข่ายสถานี อ้างอิงถาวรของกรมแผนที่ทหาร (RTSD CORS Network) 80 สถานีจะใช้ค่าพิกัด บนกรอบพิกัดอ้างอิงสากล ITRF2008 ที่ epoch2013.10 ที่ได้ถูกคำนวณและ ประกาศใช้เมื่อปี พ.ศ.2557 โดยใช้หมุดควบคุมในโครงข่ายหลัก (Primary Network) 18 หมุดเป็นหมุดยึดตรึงค่าพิกัดด้วยวิธีการคำนวณปรับแก้โครงข่ายแบบ Fully Constrained ระบบพื้นหลักฐานอ้างอิงแบบเคลื่อนที่ (Dynamic Datum) เป็นระบบพิกัดอ้างอิงที่ขึ้นกับเวลา โดยจะคำนวณค่าพิกัดตามการเคลื่อนตัวของ แผ่นเปลือกโลก รวมถึงปรากฏการณ์ต่าง ๆ ที่จะส่งผลกระทบของการอ้างอิงค่าพิกัด ได้แก่ การเปลี่ยนแปลงหลังการเกิดแผ่นดินไหว แรงกระทำของมหาสมุทร (Ocean loading) ซึ่งจะได้ค่าพิกัดอ้างอิงบนกรอบ ITRF และช่วงเวลา ณ ปัจจุบัน (Current Epoch) ทำให้ค่าพิกัดที่คำนวณได้มีการเปลี่ยนแปลงตามสภาพความเป็นจริงและมี ความถูกต้องเป็นปัจจุบันอยู่เสมอซึ่งในกรณีที่ต้องการคำนวณค่าพิกัดย้อนหลังจะใช้ พารามิเตอร์จำนวน 14 ตัวแปรสำหรับแปลงค่าพิกัดระหว่างกรอบ ITRF และ แบบจำลองการเคลื่อนตัวของแผ่นเปลือกโลก (Velocity model) สำหรับย้อน ช่วงเวลา (Epoch) ซึ่งจะคำนวณค่าพิกัดด้วยซอฟต์แวร์เชิงวิจัยโดยวิธีการ ประมวลผลแบบจุดเดี่ยวความละเอียดสูง (PPP) สามารถใช้ในการวิเคราะห์และ ติดตามเรื่องของการเคลื่อนตัวของแผ่นเปลือกโลกในภูมิภาคต่าง ๆ ได้

ระบบพื้นหลักฐานอ้างอิงแบบกึ่งเคลื่อนที่ (Semi - dynamic Datum) เป็นระบบพิกัดอ้างอิงที่ขึ้นกับเวลาในช่วงเวลาขณะหนึ่ง โดยจะคำนวณค่าพิกัดตาม การเคลื่อนตัวของแผ่นเปลือกโลก รวมถึงปรากฏการณ์ต่าง ๆ ที่จะส่งผลกระทบของ การอ้างอิงค่าพิกัดในช่วงเวลานั้น ในการคำนวณจะใช้วิธีการเช่นเดียวกันกับแบบ Dynamic แต่จะถูกย้อนในช่วงเวลาสั้น ๆ เท่านั้น เนื่องจากจะช่วยลดความ คลาดเคลื่อนของแบบจำลองการเคลื่อนตัวและจะใช้พารามิเตอร์ของการแปลงพื้น หลักฐานด้วยแบบจำลอง Helmert Transformation เข้ามาช่วยในการแปลงค่า พิกัดระหว่างกรอบ ITRF และช่วงเวลา Epoch ที่ต้องการ หรือที่เรียกว่าวิธี Snapshot โดยค่าพิกัดที่ได้จะถูกใช้อ้างอิงในงานขยายโครงข่ายในช่วงเวลาหนึ่ง เท่านั้นซึ่งมีลักษณะคล้ายกับแบบคงที่ และมีการคำนวณค่าพิกัดใหม่เพื่อปรับปรุง ตามการเคลื่อนตัวของแผ่นเปลือกโลกและสภาพความเป็นจริงตามระยะเวลาที่ เหมาะสม (กรกฏ บุตรวงษ์, 2563)

2.1.4 การประมาณค่าในช่วง (Interpolation)

การประมาณค่าในช่วงเป็นการวิเคราะห์และคาดการณ์โดยอาศัยจุดข้อมูลตัวอย่าง ด้วยการใช้ทฤษฎีทางคณิตศาสตร์เพื่อสร้างข้อมูลพื้นผิวที่มีความต่อเนื่อง ได้เลือกใช้วิธีการ ประมาณค่าในช่วง 4 วิธีประกอบด้วย Inverse Distance Weighted (IDW), Kriging, Natural Neighbor และ Spline สำหรับสร้างพื้นผิวค่าต่างทางราบขึ้น ซึ่งในแต่ละวิธีจะให้ ข้อมูลพื้นผิวที่แตกต่างกัน และเลือกใช้วิธีการประมาณค่าในช่วงแบบเชิงเส้นคู่ (Bi-Linear) สำหรับการทดสอบแบบจำลองค่าปรับแก้พิกัดทางราบ

2.1.4.1 วิธีค่าเฉลี่ยถ่วงน้ำหนัก (Inverse Distance Weighted: IDW)

เป็นวิธีการประมาณค่าโดยคำนวณค่าจากจุดข้อมูลตัวอย่างแต่ละจุดสัมพันธ์กับ ระยะทาง ถ้าจุดที่ต้องการประมาณค่าอยู่ใกล้จุดข้อมูลตัวอย่างก็จะมีผลกระทบของค่ามาก แต่ถ้าอยู่ใกลออกไปจะมีผลกระทบน้อยลง ดังนั้นจุดที่อยู่ใกล้กับที่ต้องการคำนวณหาค่าจะมี น้ำหนักมากกว่าจุดที่อยู่ใกลออกไป โดยสามารถเจาะจงจำนวนจุดหรืออาจใช้ทุกจุดที่อยู่ใน รัศมีที่กำหนดมาคำนวณหาค่าให้ผลลัพธ์ได้ วิธีการนี้เหมาะกับกรณีที่ตัวแปรที่ใช้ในมีการปรับ ค่าตามระยะทางจากจุดข้อมูลตัวอย่าง

ในงานวิจัยนี้ได้ทดลองการประมาณค่าช่วงวิธีค่าเฉลี่ยถ่วงน้ำหนัก โดยการนำข้อ มูลค่าต่างพิกัดในรูปแบบละติจูดและลองติจูด จำนวน 80 สถานีของกรมแผนที่ทหารที่ กระจายตัวอยู่ทั่วประเทศไทยมาทำการสร้างพื้นผิวค่าปรับแก้ 2 รูปแบบ คือ พื้นผิวค่าปรับ แก้ทางละติจูด และพื้นผิวค่าปรับแก้ทางลองติจูด ซึ่งจะทดลองในส่วนของการยกกำลังของ ระยะทางที่แตกต่างกัน คือ กำลัง 1, กำลัง 2, และกำลัง 3 รวมทั้งสิ้น 6 พื้นผิวค่าปรับแก้ทาง ราบ โดยพื้นผิวค่าปรับแก้ได้จากการหาความสัมพันธ์ของจุดดังกล่าวจะถูกโอนค่าต่างพิกัด ทางราบมาอยู่ในรูปแบบค่าต่างพิกัดทางราบบนตำแหน่งกริด และคำนวณสร้างแบบจำลอง ต่อไป

รูปที่ 9 ระยะทางระหว่างจุดข้อมูลของวิธี IDW (https://gisgeography.com/inverse-distance-weighting-idw-interpolation/)

ในการประมาณค่าจะใช้ค่าถ่วงน้ำหนักจากระยะทางระหว่างจุดข้อมูลตัวอย่างกับจุด ที่ต้องการทราบค่าด้วยความสัมพันธ์ดังสมการที่ 11 (ArcGIS Desktop 10.8, 2020)

$$Z_{p} = \frac{\sum_{i=1}^{n} (\frac{Z_{i}}{d_{i}^{p}})}{\sum_{i=1}^{n} (\frac{1}{d_{i}^{p}})}$$
(11)

โดยที่

 Z_p คือ ค่าของจุดที่ต้องการทราบค่า

 Z_i คือ ค่าของจุดข้อมูลตัวอย่างที่ i

 d_i คือ ระยะทางจุดข้อมูลตัวอย่างที่ i ไปยังจุดที่ต้องการทราบค่า

p คือ ค่ายกกำลัง (Power) ของระยะทาง

n คือ จำนวนจุดข้อมูลตัวอย่างที่ใช้ประมาณค่า

2.1.4.2 วิธีคริกิง (Kriging)

เป็นวิธีการประมาณค่าที่สันนิษฐานจากระยะทางหรือทิศทางระหว่างจุดข้อมูล ตัวอย่างแต่ละจุด ซึ่งสะท้อนให้เห็นถึงความสัมพันธ์เชิงพื้นที่ที่สามารถนำมาใช้ในการอธิบาย การเปลี่ยนแปลงที่เกิดขึ้นบนพื้นผิวได้ จะทำการเลือกสมการคณิตศาสตร์ที่เหมาะสมกับจุด ข้อมูลตัวอย่างที่เลือกไว้ หรือจุดข้อมูลตัวอย่างทั้งหมด ภายในรัศมีที่กำหนด เพื่อให้ค่า ผลลัพธ์ในแต่ละพื้นที่ออกมา โดยมีการทำงานหลายขั้นตอนผสมผสานการสำรวจวิเคราะห์ค่า ทางสถิติของข้อมูล การทำแบบจำลองแบบ Semi-Variogram เพื่อตรวจดูความแปรปรวน ของพื้นผิว วิธีการนี้มักนิยมใช้ในกรณีที่ต้องการทราบความสัมพันธ์ของระยะทาง หรือทิศทาง ที่มีผลต่อการเปลี่ยนแปลงของข้อมูล

รูปที่ 10 ความสัมพันธ์ระหว่าง Semi-variogram และ Distance ของวิชี Kriging (ArcGIS Desktop 10.8, 2020) ในงานวิจัยนี้ได้ทดลองใช้การประมาณค่าในช่วงวิธีคริกิง โดยการนำข้อมูลค่าต่าง พิกัดในรูปแบบละติจูดและลองติจูด จำนวน 80 สถานีของกรมแผนที่ทหารที่กระจายตัวอยู่ ทั่วประเทศไทยมาทำการสร้างพื้นผิวค่าปรับแก้ 2 รูปแบบ คือ พื้นผิวค่าปรับแก้ทางละติจูด และพื้นผิวค่าปรับแก้ทางลองติจูด โดยพื้นผิวค่าปรับแก้ดังกล่าวมีทั้งหมด 5 รูปแบบได้แก่ Spherical, Circular, Exponential, Gaussian, และ Linear ซึ่งมีทั้งหมด 10 พื้นผิวค่าปรับ แก้ทางราบ และจะถูกโอนค่าต่างพิกัดทางราบดังกล่าวมาอยู่ในรูปแบบค่าต่างพิกัดทางราบ บนตำแหน่งกริด และคำนวณสร้างแบบจำลองต่อไป ในการประมาณค่าจะใช้ค่าถ่วงน้ำหนัก จากแบบจำลอง Semi-variogram ที่ใช้ความสัมพันธ์ทางตำแหน่งระหว่างจุดที่ต้องการทราบ ค่ากับจุดข้อมูลตัวอย่างด้วยความสัมพันธ์ดังสมการที่ 12 (ArcGIS Desktop 10.8, 2020)

$$Z(s_0) = \sum_{i=1}^n \lambda_i Z(s_i) \tag{12}$$

โดยที่

 $Z(s_0)$ คือ ค่าของจุดที่ต้องการทราบค่าที่ตำแหน่ง s_0

- $Z(s_i)$ คือ ค่าของจุดข้อมูลตัวอย่างที่ตำแหน่ง s_i
- λ_i คือ ค่าน้ำหนักของจุดข้อมูลตัวอย่างที่ i

N คือ จำนวนจุดข้อมูลตัวอย่างที่ใช้ประมาณค่า

โดยค่า λ_i ของวิธี Kriging ขึ้นกับแบบจำลองที่ใช้ในการหาความสัมพันธ์เชิงพื้นที่ ระหว่างจุดข้อมูลตัวอย่างและจุดที่ต้องการทราบค่า ซึ่งวิธี Kriging มี 2 กระบวนการคือ การหาความสัมพันธ์เชิงพื้นที่จุดข้อมูลตัวอย่างที่ใช้คำนวณโดยใช้ความสัมพันธ์ระหว่าง Semi-variogram และ Distance ด้วยความสัมพันธ์ดังสมการที่ 13 (ArcGIS Desktop 10.8, 2020)

$$\gamma(h) = \frac{1}{2N} \sum_{i=1}^{N} [Z(X_i) - Z(X_i + h)]^2$$
(13)

โดยที่

 $\gamma(h)$ คือ ค่า Semi-variogram ที่ระยะทาง h $Z(X_i)$ คือ ค่าของจุดข้อมูลตัวอย่างที่ X_i $Z(X_i+h)$ คือ ค่าของจุดข้อมูลตัวอย่างที่ X_i+h N คือ จำนวนจุดข้อมูลตัวอย่างที่ใช้หาความสัมพันธ์เชิงพื้นที่

(https://gisgeography.com/semi-variogram-nugget-range-sill/)

โดยแบบจำลองที่เลือกใช้จะสอดคล้องกับจุดข้อมูลตัวอย่างหรือไม่ ต้องพิจารณาจาก ค่า Nugget, Sill และ Range ในกราฟความสัมพันธ์เชิงพื้นที่ระหว่างจุดข้อมูลตัวอย่าง โดย ค่า Nugget อธิบายถึงความผิดพลาดจากการเก็บข้อมูลตัวอย่างที่มีระยะห่างเกินไปหรือ ความผิดพลาดที่เกิดจากการวิเคราะห์ค่าความแปรปรวน, ค่า Sill อธิบายถึงความแปรปรวน ของระยะทางที่ตัวแปรไม่มีความสัมพันธ์กับข้อมูลข้างเคียงอีกต่อไป และค่า Range อธิบาย ถึงระยะทางที่ข้อมูลเริ่มมีความเป็นอิสระต่อกันและเมื่อได้ความสัมพันธ์เชิงพื้นที่ระหว่างจุด ข้อมูลตัวอย่างแล้วจะนำแบบจำลองความสัมพันธ์ไปใช้หาระยะทางระหว่างจุดข้อมูลและค่า Semi-variance เพื่อใช้เป็นค่าน้ำหนักในการประมาณค่าของจุดที่ต้องการทราบค่าต่อไป ซึ่งในการหาความสัมพันธ์เชิงพื้นที่ระหว่างจุดข้อมูลตัวอย่างจะใช้แบบจำลองทางคณิตศาสตร์ เพื่อจำลองความสัมพันธ์ดังรูปที่ 12-16 นี้

รูปที่ 13 แบบจำลองความสัมพันธ์เชิงพื้นที่แบบ Circular (ArcGIS Desktop 10.8, 2020)

2.1.4.3 วิธี Natural Neighbor

เป็นวิธีการประมาณค่าโดยอาศัยค่าน้ำหนักตามความสัมพันธ์กับขนาดพื้นที่ของรูป ปิด (Polygon) ที่เรียกว่า โวโรนอย (Voronoi) ในเบื้องต้นจะสร้างโวโรนอยรอบจุดข้อมูล ตัวอย่างขึ้นมาก่อน จากนั้นจะสร้างโวโรนอยรอบจุดที่ต้องการประมาณค่าขึ้นมาใหม่ แล้ว คำนวณค่าน้ำหนักตามอัตราส่วนขนาดพื้นที่ของโวโรนอยที่ซ้อนทับกัน โดยจะใช้จุดข้อมูล ตัวอย่างที่อยู่ใกล้เคียงและล้อมรอบจุดที่ต้องการประมาณค่าทุกจุดในการคำนวณ

ในงานวิจัยนี้ได้ทดลองการประมาณค่าช่วงวิธี Natural Neighbor โดยการนำข้อ มูลค่าต่างพิกัดในรูปแบบพื้นที่โวโรนอยละติจูดและพื้นที่โวโรนอยลองติจูด จำนวน 80 สถานี ของกรมแผนที่ทหารที่กระจายตัวอยู่ทั่วประเทศไทยมาทำการสร้างพื้นผิวค่าปรับแก้ 2 รูปแบบ คือ พื้นผิวค่าปรับแก้ทางละติจูด และพื้นผิวค่าปรับแก้ทางลองติจูด โดยพื้นผิวค่า ปรับแก้ดังกล่าวได้จากการหาอัตราส่วนของพื้นที่ซ้อนทับกัน และจะถูกโอนค่าต่างพิกัดทาง ราบดังกล่าวมาอยู่ในรูปแบบค่าต่างพิกัดทางราบบนตำแหน่งกริด และคำนวณสร้าง แบบจำลองต่อไป

รูปที่ 18 พื้นที่โวโรนอยรอบจุดข้อมูลของวิธี Natural Neighbor (<u>https://wikiwand.com/en/Natural_neighbor_interpolation</u>)

ในการประมาณค่าจะใช้การคำนวณค่าถ่วงน้ำหนักจากอัตราส่วนขนาดพื้นที่โวโร นอยของจุดที่ต้องการทราบค่ากับโวโรนอยของจุดข้อมูลตัวอย่างด้วยความสัมพันธ์ดังสมการ ที่ 14 (ArcGIS Desktop 10.8, 2020)

$$G(x, y) = \sum_{i=1}^{N} W_i f(x_i, y_i)$$
(14)

โดยที่

G(x,y) คือ ค่าของจุดที่ต้องการทราบค่า

 W_i คือ อัตราส่วนขนาดพื้นที่ Voronoi ที่ i โดยคำนวณจาก $\frac{Q_i}{R_i}$ Q_i คือ ขนาดพื้นที่ซ้อนทับ Voronoi ของจุดที่ต้องการทราบค่าที่ i R_i คือ ขนาดพื้นที่ Voronoi ของจุดข้อมูลตัวอย่างที่ i $f(x_i, y_i)$ คือ ค่าของจุดข้อมูลตัวอย่างที่ตำแหน่ง x_i, y_i N คือ จำนวนจุดข้อมูลตัวอย่างที่ใช้ประมาณค่า

2.1.4.4 วิธีฟังก์ชั่นเสมือนพหุนาม (Spline)

เป็นวิธีการประมาณค่าให้พอดีเป็นพื้นผิวที่มีความโค้งเว้าอย่างน้อยตามจุดข้อมูล ตัวอย่างที่นำเข้ามาเหมือนกับการบิดงอของแผ่นยางให้ผ่านจุดข้อมูลตัวอย่างทุกจุด โดย พยายามให้มีแนวโน้มสร้างสมการให้ความโค้งเข้าหาจุดข้อมูลตัวอย่าง เป็นสมการทาง คณิตศาสตร์ที่สร้างเส้นโค้งเล็ก ๆ บนระนาบหรือแผ่นแบน ๆ โดยต้องผ่านจุดข้อมูลตั้งต้น เสมอวิธีการนี้เหมาะสำหรับค่าที่มีการเปลี่ยนแปลงอย่างค่อยเป็นค่อยไป ซึ่งจะให้ข้อมูล พื้นผิวที่มีความกลมกลืน และไม่เหมาะกับบริเวณที่มีการเปลี่ยนแปลงค่ามาก ๆ ภายใน ระยะทางสั้น ๆ โดยวิธี Spline มีสองประเภท

- แบบพื้นผิวปกติ (Regularized) มีความกลมกลืน ความแปรปรวนพื้นผิวแบบ ค่อยเป็นค่อยไป
- 2. แบบพื้นผิวตึงตัว (Tension) มีลักษณะพื้นผิวไม่กลมกลืนกัน

รูปที่ 19 กราฟส่วนโค้งจุดข้อมูลของวิธี Spline

(https://www.neonscience.org/resources/learning-hub/tutorials/spatial-interpolation-basics)

ในงานวิจัยนี้ได้ทดลองการประมาณค่าในช่วงวิธีฟังก์ชั่นเสมือนพหุนามทั้ง 2 รูปแบบ โดยการนำข้อมูลค่าต่างพิกัดในรูปแบบละติจูดและลองติจูด จำนวน 80 สถานีของกรมแผนที่ ทหารที่กระจายตัวอยู่ทั่วประเทศไทยมาทำการสร้างพื้นผิวค่าปรับแก้ 2 รูปแบบ คือ พื้นผิว ค่าปรับแก้ทางละติจูด และพื้นผิวค่าปรับแก้ทางลองติจูด ซึ่งมีพื้นผิวค่าปรับแก้แต่ละแบบจะ ทดลองในส่วนของแบบ Regularized และ แบบ Tension รวมทั้งสิ้น พื้นผิวค่าปรับแก้มี ทั้งสิ้น 4 พื้นผิว โดยพื้นผิวค่าปรับแก้ดังกล่าวจะถูกโอนค่าต่างพิกัดทางราบดังกล่าวมาอยู่ใน รูปแบบค่าต่างพิกัดทางราบบนตำแหน่งกริด และคำนวณสร้างแบบจำลองต่อไป

ในการประมาณค่าจะใช้การสร้างเส้นโค้งให้สอดคล้องกับจุดข้อมูลตัวอย่าแล้วนำเส้น โค้งไปประมาณค่าจุดที่ต้องการทราบค่าระหว่างจุดข้อมูลตัวอย่างด้วยความสัมพันธ์ดังสมการ ที่ 15 (ArcGIS Desktop 10.8, 2020)

$$S(x,y) = T(x,y) + \sum_{j=1}^{N} \lambda_j R(r_j)$$
⁽¹⁵⁾

โดยที่

S(x,y) คือ ค่าของจุดที่ต้องการทราบค่า

 λ_j คือ สัมประสิทธิ์ของสมการเส้นตรง

N คือ จำนวนจุดข้อมูลตัวอย่างที่ใช้คำนวณ

T(x,y)และ $R(r_j)$ คือ สมการตามประเภทของวิธี Spline ที่ใช้ประมาณค่า โดยแบ่งออกเป็น

 ประเภทแบบพื้นผิวปกติ (Regularized) ตามสมการที่ 16-17 (ArcGIS Desktop 10.8, 2020)

$$T(x,y) = a_1 + a_2 x + a_3 y \tag{16}$$

$$R(r_j) = \frac{1}{2\pi} \{ \frac{r^2}{4} \left[\ln\left(\frac{r}{2\tau}\right) + c - 1 \right] + \tau^2 \left[K_0\left(\frac{r}{\tau}\right) + c + \ln(\frac{r}{2\pi}) \right] \}$$
(17)

โดยที่ a_i คือ สัมประสิทธิ์ของสมการเส้นตรง $M_{
m ensuremath{B}}$

r คือ ระยะห่างระหว่างจุดที่ต้องการทราบค่าและจุดข้อมูลตัวอย่าง

 au^2 คือ ค่าน้ำหนัก

 K_0 คือ Bessel function

c คือ ค่าคงที่ เท่ากับ 0.577215

2. ประเภทแบบพื้นผิวตึง (Tension) ตามสมการที่ 18-19 (ArcGIS Desktop 10.8, 2020)

$$T(x,y) = a_1 \tag{18}$$

$$R(r_i) = \frac{1}{2\pi\varphi^2} \left[\ln\left(\frac{r\varphi}{2}\right) + c + K_0(r\varphi) \right]$$
(19)

โดยที่

 a_1 คือ สัมประสิทธิ์ของสมการเส้นตรง

r คือ ระยะห่างระหว่างจุดที่ต้องการทราบค่าและจุดข้อมูลตัวอย่าง

 $arphi^2$ คือ ค่าน้ำหนัก

 K_0 คือ Bessel function

c คือ ค่าคงที่ เท่ากับ 0.577215

2.1.4.5 วิธีการประมาณค่าในช่วงแบบเชิงเส้นคู่ (Bi-linear)

เป็นการประมาณค่าด้วยจุดข้อมูลตัวอย่างในลักษณะ Grid จำนวน 4 ตำแหน่งที่อยู่ ใกล้เคียงและล้อมรอบตำแหน่งที่ต้องการทราบค่า โดยการคำนวณตามระยะทางและให้ค่า น้ำหนักกับจุดข้อมูลตัวอย่างที่อยู่ใกล้มากกว่าจุดข้อมูลตัวอย่างที่อยู่ไกล ในการประมาณค่า จะใช้ค่าน้ำหนักจากตำแหน่งกริด 4 ตำแหน่งที่อยู่ใกล้เคียงและล้อมรอบจุดที่ต้องการทราบ ค่าที่ไปตกในช่องกริดนั้นด้วยความสัมพันธ์ดังสมการที่ 20 (Garnero, 2014)

รูปที่ 20 การประมาณค่าด้วยวิธี Bi-linear

$$z = (1-s)(1-t)z_{00} + (1-s)tz_{01} + s(1-t)z_{10} + stz_{11}$$
(20)

โดยที่
$$s = \frac{x - x_0}{x_1 - x_0}, t = \frac{y - y_0}{y_1 - y_0}$$

2.1.5 การวิเคราะห์และเปรียบเทียบความถูกต้องด้วยวิธีการทางสถิติ

การพิจารณาแบบจำลองที่เหมาะสมจากการทดสอบทางสถิติ T-test เพื่อเปรียบเทียบ ค่าต่างพิกัดทางราบ ที่ได้จากการประมาณช่วงข้อมูล ทั้ง 11 แบบจำลอง และการเปรียบเทียบ ความถูกต้องทางตำแหน่งทางราบบนกรอบพิกัดอ้างอิงสากล ITRF2014 ระหว่าง epoch ที่ 2020.17 กับ epoch ที่ 2021.17 คือ ค่ารากที่สองของความคลาดเคลื่อนเฉลี่ยกำลังสอง (Root Mean Square Error; RMSE)

2.1.5.1 สถิติทดสอบที่ (T - test Statistic)

สถิติเพื่อทดสอบค่าเฉลี่ยของข้อมูลที่ได้จากแบบจำลองทั้ง 11 แบบ ว่ามี ค่าเฉลี่ยของค่าพิกัดทางราบแตกต่างกันอย่างมีนัยสำคัญหรือไม่ ข้อมูลที่ใช้ในการ ทดสอบใช้สมมุติฐานกรณีนี้คือ ค่าเฉลี่ยค่าพิกัดทางราบของแบบจำลองแต่ละ แบบจำลองซึ่งมีอิสระต่อกัน สมมุติฐานว่าง (Null Hypothesis) H_0 : $\mu_1 = \mu_2$ และมีสมมุติฐานทางเลือก (Alternative Hypothesis) H_1 : $\mu_1 \neq \mu_2$

2.1.5.2 ค่ารากที่สองของความคลาดเคลื่อนเฉลี่ยกำลังสอง (Root Mean Square Error: RMSE)

การวิเคราะห์และเปรียบเทียบความถูกต้องทางตำแหน่งทางราบด้วย แบบจำลองค่าปรับแก้พิกัดทางราบ ซึ่งจะเปรียบเทียบความถูกต้องของค่าพิกัดทาง ราบในระบบพิกัด UTM เพื่อให้เห็นขนาดของความคลาดเคลื่อนที่มีหน่วยวัดเป็น ระยะทาง โดยการคำนวณหาค่าต่างทางทิศตะวันออก (ΔE) และทางทิศเหนือ (ΔN) แล้วคำนวณค่าคลาดเคลื่อนทางราบของสถานีทดสอบและค่ารากที่สองของความ คลาดเคลื่อนเฉลี่ยกำลังสอง (RMSE) ของแบบจำลองค่าปรับแก้พิกัดทางราบตาม สมการที่ 21 (FGDC, 1998)

$$RMSE_{Horr} = \sqrt{\frac{\sum_{i=1}^{n} [(E_{check,i} - E_{model,i})]^2 + [(N_{check,i} - N_{model,i})]^2}{n}}$$
(21)

โดยที่

 E_{check,i}, N_{check,i} คือ ค่าพิกัดทางราบอ้างอิงของสถานีตรวจสอบที่ได้จากการ ประมวลผล GIPSYX ที่ห้วงเวลา epoch 2021.17 (เมตร)
 E_{model,i} , N_{model,i} คือ ค่าพิกัดทางราบที่ได้จากแบบจำลอง (เมตร)
 n คือ จำนวนหมุดทดสอบ (ตำแหน่ง)

2.1.5.3 ส่วนเบี่ยงเบนมาตรฐาน (Standard Deviation; SD หรือ σ)

เป็นวิธีการทางสถิติเพื่อวัดการกระจายตัวของข้อมูลซึ่งจะแสดงถึงคุณภาพ ของข้อมูล ใช้เปรียบเทียบข้อมูลว่ามีการกระจายตัวห่างจากค่าเฉลี่ยของข้อมูลมาก น้อยเพียงใด หากส่วนเบี่ยงเบนมาตรฐานมีค่าน้อยแสดงว่าข้อมูลมีการกระจายตัว ห่างจากค่าเฉลี่ยต่ำ ซึ่งหมายถึงข้อมูลมีคุณภาพดี และในทางกลับกันถ้าส่วน เบี่ยงเบนมาตรฐานมีค่ามากแสดงว่าข้อมูลมีการกระจายตัวห่างจากค่าเฉลี่ยสูง ซึ่ง หมายถึงข้อมูลมีคุณภาพไม่ดี ตามความสัมพันธ์ดังสมการที่ 22 (วิชัย เยี่ยงวีรชน, 2015)

$$SD = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})^2}$$
(22)

โดยที่

 X_i คือ ค่าพิกัดของหมุดร่วมตามทิศ E, N (เมตร)

 $ar{X}$ คือ ค่าเฉลี่ยของหมุดร่วมตามทิศ E, N (เมตร)

N คือ จำนวนหมุดทดสอบ (ตำแหน่ง)

ในการหาความน่าจะเป็นของความคลาดเคลื่อนที่เกิดขึ้นกับจำนวนของการ รังวัดที่เป็นเปอร์เซ็นต์ต่าง ๆ สามารถคำนวณได้จากสมการที่ 23 (วิชัย เยี่ยงวีรชน, 2015)

$$E_p = C_p * \sigma_x \tag{23}$$

โดยที่

 E_p คือ ค่าคลาดเคลื่อนสุ่มที่เป็นไปได้ที่อัตราส่วนร้อยละ p

 \mathcal{C}_p คือ ค่าสัมประสิทธิ์ที่อัตราส่วนร้อยละ p

 σ_x คือ ส่วนเบี่ยงเบนมาตรฐานของการแจกแจงแบบปกติ

รูปที่ 21 พื้นที่ใต้กราฟของการแจกแจงแบบปกติ (วิชัย เยี่ยงวีรชน, 2015)

ค่าอัตราส่วนร้อยละ p สามารถใช้บอกถึงระดับความเชื่อมั่น (Confidence level) ของการวัดนั้น ๆ โดยระดับความเชื่อมั่นต่าง ๆ ที่นิยมใช้มีดังนี้ 1) ที่ระดับความเชื่อมั่น 68% มีความน่าจะเป็นของความคลาดเคลื่อน p ($-\sigma \le \varepsilon \le \sigma$) 2) ที่ระดับความเชื่อมั่น 95% มีความน่าจะเป็นของความคลาดเคลื่อน p ($-1.96 \sigma \le \varepsilon \le 1.96 \sigma$) 3) ที่ระดับความเชื่อมั่น 99.7% มีความน่าจะเป็นของความคลาดเคลื่อน p ($-3 \sigma \le \varepsilon \le 3 \sigma$)

27

2.1.6 แบบจำลองซีเอสซีเอส (Country Specific Coordinate System Model: CSCS Model)

เป็นแบบจำลองที่ถูกพัฒนาโดยบริษัท Leica Geosystem AG ประเทศเยอรมัน ใช้ สำหรับการปรับแก้ค่าพิกัดในลักษณะของตำแหน่งกริดที่มีค่าพิกัดและบรรจุค่าแก้ตามตำแหน่ง ของกริดไว้ ซึ่งสามารถใช้ในการปรับแก้ค่าพิกัด โดยวิธีการประมาณค่าจากตำแหน่งกริดที่อยู่ ใกล้เคียงและล้อมรอบมาทำการปรับแก้ค่าพิกัดนั่นเอง ซึ่งสามารถใช้แปลงระบบพิกัดใน รูปแบบของระบบพิกัดฉากสามมิติ (Cartesian; X, Y, Z), ระบบพิกัดภูมิศาสตร์ (Geodetic; Latitude, Longitude) และระบบพิกัดยูทีเอ็ม (Grid; Easting, Northing) โดยมีการ จัดรูปแบบไฟล์ (File format) ตามที่กำหนดในรูปแบบของ Generic ASCII (.txt) ก่อนที่จะทำ การแปลงไฟล์ด้วย CSCS Model Converter ให้อยู่บนรูปแบบของ CSCS Model (.csc) โดย มี 2 ส่วนที่สำคัญซึ่งประกอบด้วย ส่วน Header และส่วน Body โดยในแต่ละคำสั่งจะคั่นด้วย เครื่องหมาย Semicolon (;) (LEICA Geosystems AG, 2014)

ส่วนที่ 1 Header เป็นส่วนที่ระบุรูปแบบของแบบจำลองมีอยู่ 5 บรรทัดประกอบด้วย

บรรทัดที่1 : ชื่อแบบจำลอง (Name)

- บรรทัดที่2 : ประเภทแบบจำลอง (Model Type), วิธีการประมาณค่าแก้ (Interpolation Method), ระบบพิกัด (Coord Type)
- บรรทัดที่3 : จุดเริ่มต้นแบบจำลอง (Corner Point Start), ทิศทางการใช้ค่าแก้ (Reading-Direction), จำนวนแถว (#of NS values), จำนวนหลัก (#of EW values)
- บรรทัดที่4 : ค่าพิกัดเริ่มต้น (Start Corner Point; East/Lon, North/Lat), ระยะกริด (Spacing NS, Spacing EW)
- บรรทัดที่5 : จำนวนแบบจำลอง (#of Grids)

ส่วนที่ 2 Body เป็นส่วนที่บรรจุค่าแก้ในตำแหน่งกริด (Point grid) ตามประเภท

แบบจำลอง (Model Type) ที่เลือกใช้

แบบจำลองในระบบพิกัดฉากสามมิติ : ค่าแก้ทางแกน X, ค่าแก้ทางแกน Y, ค่าแก้ทางแกน Z มีหน่วยเป็นเมตร

แบบจำลองในระบบพิกัดภูมิศาสตร์ : ค่าแก้ทาง Latitude, ค่าแก้ทาง Longitude มีหน่วยเป็นฟิลิปดา

แบบจำลองในระบบพิกัด UTM : ค่าแก้ทาง E, ค่าแก้ทาง N มีหน่วยเป็นเมตร

2.2 เอกสารและงานวิจัยที่เกี่ยวข้อง

(กรกฎ บุตรวงษ์, 2563) ได้ทำการศึกษาการสร้างแบบจำลองค่าปรับแก้พิกัดทางราบสำหรับ ้กรอบพิกัดอ้างอิงสากลITRF2005 และ ITRF2008 ในประเทศไทย ซึ่งประกอบด้วย พารามิเตอร์ของ การแปลงพื้นหลักฐาน (Transformation Parameters) ใช้วิธีการแปลงค่าพิกัดฉากสามมิติโดย พารามิเตอร์ 7 ตัวแปรด้วยแบบจำลอง Bursa-Wolf และแบบจำลอง Molodensky-Badekas และ แบบจำลองค่าเศษเหลือ (Grid Residuals) ใช้วิธีการประมาณค่าในช่วง 4 วิธี คือ IDW, Kriging, Natural Neighbor และ Spline แล้วเปรียบเทียบความถูกต้องทางตำแหน่งทางราบด้วยค่ารากที่สอง ของความคลาดเคลื่อนเฉลี่ยกำลังสอง (RMSE) ของแบบจำลองค่าปรับแก้พิกัดทางราบ โดยใช้หมุด ทดสอบ 100 ตำแหน่งที่กระจายตัวทั่วพื้นที่ประเทศไทยผลการวิจัยพบว่าแบบจำลองค่าปรับแก้พิกัด ทางราบ ซึ่งประกอบด้วย พารามิเตอร์ของแบบจำลอง Molodensky-Badekas และแบบจำลองค่า เศษเหลือพิกัดทางราบด้วยวิธี IDW, Kriging, Natural Neighbor และ Spline มีความถูกต้องทาง ตำแหน่งทางราบอยู่ที่ 1.4, 1.2, 1.4 และ 1.4 ซม. ตามลำดับ โดยมีความคลาดเคลื่อนทางราบเฉลี่ย อยู่ที่ 1.0 ± 0.9, 1.0 ± 0.8, 1.0± 0.9 และ 1.1 ± 0.8 ซม. ตามลำดับ ซึ่งวิธี Kriging ให้ค่าพิกัดทาง ราบมีความถูกต้องสูงที่สุด ดังนั้นสามารถนำมาใช้แปลงพื้นหลักฐานสำหรับกรอบพิกัดอ้างอิงสากล ITRF2005 ไปสู่ ITRF2008 ในประเทศไทยให้มีความถูกต้องอยู่ในระดับต่ำกว่า 2 ซม. และเมื่อ พิจารณาที่ระดับความเชื่อมั่น 95% มีความถูกต้องอยู่ในระดับต่ำกว่า 3 ซม. และที่ระดับความเชื่อมั่น 99.7% มีความถูกต้องอยู่ในระดับต่ำกว่า 4 ซม. ตามลำดับ

(ธนพัทธ์ จงรักชอบ, 2560) ได้ทำการศึกษาเปรียบเทียบโครงข่ายอ้างอิงในประเทศไทย ระหว่างกรอบพิกัดอ้างอิงสากล ITRF2008 และ ITRF2014 โดยมีแนวคิดที่ว่าลักษณะพื้นฐานทาง กายภาพของโลกที่มีการเปลี่ยนแปลงอยู่ตลอดเวลา ผู้วิจัยจึงได้ทำการศึกษาผลของการเปลี่ยนแปลง โครงข่ายอ้างอิงในประเทศไทยระหว่างกรอบพิกัดอ้างอิงสากล ITRF2008 ที่ epoch2013.10 และ ITRF2014 ที่ epoch 2016.11 โดยใช้ข้อมูลรังวัดสัญญาณดาวเทียม GPS จากหมุดหลักฐานใน โครงข่ายอ้างอิงในห้วงเดือนพฤศจิกายน พ.ศ.2560 มาประมวลผลแบบจุดเดี่ยวความละเอียดสูง (Precise Point Positioning; PPP) ด้วยโปรแกรม Bernese GNSS Software 5.2 ผลการ เปรียบเทียบพบว่าค่าพิกัดบนกรอบพิกัดอ้างอิงสากล ITRF2014 ที่ epoch2016.11 มีการ เปลี่ยนแปลงไปทางทิศตะวันออกเฉลี่ยใต้เฉลี่ยอยู่ที่ 7.5 ซม. พบว่ามีความใกล้เคียงกับอัตราการ เคลื่อนที่ของแผ่น Sundaland Block ซึ่งมีอัตราเคลื่อนที่ด้วยความเร็วเฉลี่ย 3 ซม.ต่อปีในทางทิศ ตะวันออกเฉียงใต้ (กรมแผนที่ทหาร และ มหาวิทยาลัยเชียงใหม่, 2560) ได้จัดทำข้อมูลความโน้มถ่วงพิภพบน ตำแหน่งกริดที่เหมาะสม ซึ่งเป็นขั้นตอนหนึ่งในโครงการพัฒนาแบบจำลอง Geoid ความละเอียดสูง ของประเทศไทย (TGM2017) เนื่องจากการจัดทำข้อมูลความโน้มถ่วงพิภพบนตำแหน่งกริดที่ เหมาะสมจำเป็นจะต้องใช้ข้อมูลความโน้มถ่วงพิภพภาคพื้นดินมาพิจารณา โดยใช้ข้อมูลการรังวัด ความโน้มถ่วงพิภพมาตรฐานงานชั้นที่1 และ 3 บริเวณทั่วพื้นที่ทั่วประเทศไทยประมาณ 10,000 หมุด และใช้ข้อมูล Free-air anomaly ที่ได้จากการลดทอนลงอย่างต่อเนื่องพร้อมค่าแก้ภูมิประเทศที่ความ ละเอียดเชิงพื้นที่ 30 ฟิลปดา, 1 ลิปดา และ2 ลิปดานำมาทำการคำนวณหาแบบจำลองGeoid เบื้องต้น โดยครอบคลุมพื้นที่ 96° - 107°E และ 5° -21°N และทำการทดสอบเปรียบเทียบระหว่าง ความสูงGeoid ที่ได้จากหมุดร่วมจำนวน 412 หมุดกับแบบจำลอง Geoid ที่คำนวณได้จากข้อมูล รังวัดความโน้มถ่วงพิภพที่ความละเอียดเชิงพื้นที่ต่างกัน พบว่ามีค่า SD ที่ระดับความเชื่อมั่น 90% ที่ ระยะกริด 30 ฟิลิปดา, 1 ลิปดา และ2 ลิปดา เท่ากับ 0.120, 0.115 และ 0.129 เมตร ตามลำดับ จากการทดสอบกริด 3 ระยะทำให้ทราบว่าระยะกริดที่เหมาะสมควรอยู่ที่ 1 ลิปดาเนื่องจากมีค่า SD น้อยที่สุด

(Besim & Kornél, 2019) ได้ทำการศึกษาเปรียบเทียบความแตกต่างของแบบจำลอง ระดับสูงเชิงเลข (Digital Elevation Model; DEM) ด้วยวิธีการประมาณค่าในช่วง(Interpolation) กรณีพื้นที่ศึกษาเมือง Rahovec ประเทศ Kosovo โดยมีแนวคิดที่ว่าการสร้างพื้นผิวข้อมูลเป็นสิ่งที่ สำคัญเนื่องจากเป็นการจำลองข้อมูลเพื่อใช้เป็นตัวแทนสิ่งที่ปรากฏอยู่จริงบนโลก (Real world) ซึ่ง จะใช้วิธีการวิเคราะห์เชิงพื้นที่ (Spatial analysis) สำหรับการสร้างแบบจำลอง โดยการใช้ข้อมูล เดียวกันแต่วิธีการประมาณค่าในช่วงแตกต่างกันจะให้ผลลัพธ์พื้นผิวแตกต่างกัน ในงานวิจัยจะใช้ข้อ มูลค่าระดับสูงของจุดข้อมูลตัวอย่างที่กระจายตัวทั่วพื้นที่ศึกษาจำนวน 15,583 จุด และแบ่งการใช้จุด ข้อมูลตัวอย่างออกเป็น 3 กรณี คือ ใช้จุดข้อมูลตัวอย่าง 10%, 20% และ 30% ของจุดข้อมูลตัวอย่าง ้ทั้งหมด ซึ่งเท่ากับ 1,536, 3,117 และ 4,675 จุด ตามลำดับ และใช้วิธีการประมาณค่าในช่วง 4 วิธี ้คือ IDW, Kriging, Natural Neighbor และ Spline แล้วทำการเปรียบเทียบค่าระดับสูงที่ได้จาก พื้นผิวกับจุดข้อมูลตัวอย่างที่เหลือในแต่ละกรณีด้วยค่า RMSE ผลการเปรียบเทียบทั้ง 3 กรณีได้ผล ดังนี้ กรณีที่1 วิธี Spline ให้ผลลัพธ์ดีที่สุดมีค่า RMSE = 0.774 เมตร และวิธี IDW ให้ผลลัพธ์แย่ที่สุด มีค่า RMSE = 1.302 เมตร, กรณีที่2 วิธี Kriging ให้ผลลัพธ์ดีที่สุดมีค่า RMSE = 0.804 เมตร และวิธี IDW ให้ผลลัพธ์แย่ที่สุดมีค่า RMSE = 1.429 เมตร และกรณีที่3 วิธี Spline ให้ผลลัพธ์ดีที่สุดมีค่า RMSE = 0.815 เมตร และวิธี IDW ให้ผลลัพธ์แย่ที่สุดมีค่า RMSE = 1.476 เมตร ซึ่งพบว่าวิธีการ ประมาณค่าในช่วงที่เหมาะสมและให้ผลลัพธ์ที่ดีที่สุดในกรณีศึกษาดังกล่าว คือ วิธี Spline, Kriging, Natural Neighbor และ IDW ตามลำดับ

(Garnero, 2014) ได้ทำการศึกษาการนำ NTv2 (National Transformation version2) มาประยุกต์ใช้ในงานด้านวิศวกรรม โดยใช้เทคนิคการแปลงค่าพิกัดระหว่างระบบพิกัดด้วย NTv2 ซึ่ง เป็นวิธีการนำค่าพารามิเตอร์ระหว่างระบบพิกัดมาใช้ในกระบวนแปลงค่าพิกัด โดย NTv2 สามารถ สร้างกริดที่ความละเอียดตามความต้องการขึ้นอยู่กับความหนาแน่นของข้อมูล โดยในประเทศ ออสเตรเลียและนิวซีแลนด์ได้นำ NTv2 มาใช้ในการแปลงค่าพิกัดระหว่างระบบพิกัด เช่น Australian Geodetic Datum of 1984 (AGD1984) กับ Geocentric Datum of Australia of 1994 (GDA1994) และ New Zealand Geodetic Datum of 1949 (NZGD1949) กับ NZGD2000 เป็น ต้น โดยการหาค่าแก้ (Shift) ของตำแหน่งที่ไปตกอยู่ในช่องกริดด้วยการใช้ตำแหน่งกริด 4 ตำแหน่งที่ อยู่ล้อมรอบมาประมาณค่าด้วยวิธี Bi-linear ผู้วิจัยได้นำมาประยุกต์ใช้กับการหาตำแหน่งบนทางด่วน ที่ Pedemontana Lombarda โดยการแปลงค่าพิกัดจากระบบพิกัด UTM/WGS84 zone32 ไปสู่ ระบบพิกัด Rectilinear ด้วยจำนวนจุดทดสอบ 391 จุด โดยมีกริดหลัก (Parent grid) ที่ระยะ 1 องศาและมีกริดย่อย (Sub-grid) ที่ระยะ 5 ฟิลิปดา ผลการทดสอบพบว่าค่าเศษเหลือของค่าพิกัดที่ ได้มีความต่างอยู่ในระดับมิลลิเมตรจำนวน 365 จุด และอยู่ในระดับ 5 เซนติเมตรจำนวน 29 จุด ตามลำดับ

CHULALONGKORN UNIVERSITY

บทที่ 3 วิธีการดำเนินงานวิจัย

ในงานวิจัยนี้มีวัตถุประสงค์เพื่อทำการศึกษาการสร้างแบบจำลองในการคำนวณปรับแก้ค่า พิกัดทางราบที่ได้จากการรังวัดด้วยเทคนิคการประมวลผลแบบจุดเดี่ยวความละเอียดสูง (PPP) ให้ สอดคล้องกับระบบโครงข่ายการรังวัดด้วยดาวเทียมแบบจลน์ บนกรอบอ้างอิงนานาชาติของกรมแผน ที่ทหารบนกรอบอ้างอิง ITRF 2014 มีขั้นตอนการดำเนินงานวิจัยดังนี้

3.1 ศึกษาทฤษฎีและงานวิจัยที่เกี่ยวข้อง

ศึกษาทฤษฎีที่เกี่ยวข้องกับงานวิจัย ได้แก่ การประมวลผลข้อมูลรังวัดสัญญาณดาวเทียม GNSS ด้วยเทคนิคการประมวลผลแบบจุดเดี่ยวความละเอียดสูง (PPP) จากซอฟต์แวร์เซิงวิจัย GIPSYX, วิธีการประมาณค่าในช่วงของค่าต่างพิกัดทางราบ, การสร้างค่าต่างพิกัดทางราบบน ตำแหน่งกริด, การสร้างแบบจำลองค่าปรับแก้พิกัดทางราบ และการวิเคราะห์ข้อมูลและเปรียบเทียบ ความถูกต้องทางตำแหน่งทางราบด้วยวิธีการทางสถิติ

3.2 รวบรวมข้อมูลที่ใช้ในงานวิจัย

ข้อมูลที่ใช้ในงานวิจัย ได้แก่ ข้อมูลที่ใช้ในการสร้างแบบจำลองปรับแก้ค่าพิกัดทางราบ ประกอบด้วย ข้อมูลรังวัดสัญญาณดาวเทียม GNSS ของสถานีอ้างอิงถาวรกรมแผนที่ทหาร 80 สถานี ห้วงแรกตั้งแต่วันที่ 29 ก.พ. 2563 ถึง 6 มี.ค. 2563 (Day of year 060-066) บนกรอบพิกัดอ้างอิง สากล ITRF 2014 epoch 2020.17 และข้อมูลรังวัดสัญญาณดาวเทียม GNSS ของสถานีอ้างอิงถาวร กรมแผนที่ทหาร 80 สถานี ห้วงที่สองตั้งแต่วันที่ 1 มี.ค. 2564 ถึง 7 มี.ค. 2564 (Day of year 060-066) บนกรอบพิกัดอ้างอิงสากล ITRF 2014 epoch 2021.17 และข้อมูลที่ใช้ในการทดสอบ แบบจำลองค่าปรับแก้พิกัดทางราบ ประกอบด้วย ข้อมูลรังวัดสัญญาณดาวเทียม GNSS ของสถานี อ้างอิงถาวร 149 สถานี ประกอบด้วย กรมที่ดิน 134 สถานี และกรมโยธาธิการและผังเมือง 15 สถานี ในห้วงวันที่ 29 ก.พ. 2563 ถึง 6 มี.ค. 2563 (Day of year 060-066) บนกรอบพิกัดอ้างอิง สากล ITRF 2014 epoch 2020.17

3.3 ศึกษาการใช้ซอฟต์แวร์ที่ใช้ในงานวิจัย

ซอฟต์แวร์ที่ใช้ในงานวิจัย ได้แก่ ซอฟต์แวร์ประมวลผลเชิงวิจัย GIPSYX สำหรับการ ประมวลผลค่าพิกัดของสถานีของกรมแผนที่ทหารและสถานีทดสอบของทั้งสองห้วงเวลา ประกอบด้วย กรอบพิกัดอ้างอิงสากล ITRF2014 ที่ epoch2020.17 และ ITRF2014 ที่ epoch2021.17, ซอฟต์แวร์ ArcGIS Desktop 10.8 สำหรับการประมาณค่าในช่วงของค่าต่างพิกัด ทางราบเพื่อสร้างพื้นผิวค่าต่างพิกัดทางราบที่มีความต่อเนื่องและแบบจำลองค่าต่างพิกัดทางราบบน ตำแหน่งกริด และซอฟต์แวร์ CSCS Model Convert สำหรับการแปลงไฟล์ข้อมูลแบบจำลองค่าต่าง พิกัดทางราบบนตำแหน่งกริดในรูปแบบ Generic ASCII (.txt) ให้เป็นไฟล์ CSCS (.csc) ตามรูปแบบ ของ CSCS Model เพื่อเปรียบเทียบพิกัดทางราบต่อไป

3.4 ประมาณค่าในช่วงของค่าต่างพิกัดทางราบ

ในการประมาณค่าในช่วงจะเลือกใช้วิธีการประมาณค่าในช่วง 4 วิธี ประกอบด้วย วิธี Inverse Distance Weighted (IDW) ใช้ค่ายกกำลัง (Power) เท่ากับ 1, 2 และ 3, วิธี Kriging ใช้ แบบจำลอง (Semi-variogram model) คือ Spherical, Circular, Exponential, Gaussian และ Linear, วิธี Natural Neighbor และวิธี Spline ใช้ประเภท (Spline type) คือ Regularized และ Tension โดยการกำหนดขนาดเซลล์ (Cell size) ของข้อมูลในการประมาณค่าในช่วง เท่ากับ 1 ลิปดา หรือประมาณ 1.85 กิโลเมตร และขอบเขตการประมาณค่าในช่วงครอบคลุมพื้นที่ประเทศ ไทย เพื่อสร้างพื้นผิวค่าต่างพิกัดทางราบที่มีความต่อเนื่อง โดยแยกการประมาณค่าต่างพิกัดทางราบ ออกเป็น 2 ส่วนคือ ค่าต่างพิกัดทาง X, ค่าต่างพิกัดทาง Y, และค่าต่างพิกัดทาง Z ด้วยการประมาณ ค่าในช่วงทั้งหมด 11 เงื่อนไขแบบจำลอง ซึ่งจะได้พื้นผิวค่าต่างพิกัดทางราบทั้งหมด 33 พื้นผิว เพื่อ นำไปสร้างแบบจำลองค่าต่างพิกัดทางราบบนตำแหน่งกริดต่อไป

รูปที่ 22 ขั้นตอนการประมาณค่าในช่วงของค่าต่างพิกัดทางราบโดยวิธีต่างๆ

3.5 สร้างแบบจำลองค่าต่างพิกัดทางราบบนตำแหน่งกริด

แบบจำลองค่าต่างพิกัดทางราบบนตำแหน่งกริดจะทำการสร้างตำแหน่งกริดบนมุมร่วมของก ริดที่ระยะ 1 ลิปดา หรือประมาณ 1.85 กิโลเมตร ซึ่งจะสอดคล้องกับแบบจำลองยีออยด์ความ ละเอียดสูงของประเทศไทย (กรมแผนที่ทหาร และ มหาวิทยาลัยเชียงใหม่, 2560) โดยให้ครอบคลุม พื้นที่ 97° - 106°E และ 5° - 21°N จากนั้นคำนวณค่าพิกัดทางราบของตำแหน่งกริดและดึงค่าต่าง พิกัดทางราบจากพื้นผิวมาเก็บไว้ตามตำแหน่งกริด ซึ่งจะได้ตำแหน่งกริดที่ระยะ 1 ลิปดา ที่มีค่าพิกัด ทางราบและบรรจุค่าต่างพิกัดซึ่งจะได้แบบจำลองค่าต่างพิกัดทางราบทั้งหมด 11 แบบจำลอง เพื่อ นำไปสร้างแบบจำลองค่าปรับแก้พิกัดทางราบต่อไป

3.6 สร้างแบบจำลองค่าปรับแก้พิกัดทางราบ

ในการสร้างแบบจำลองค่าปรับแก้พิกัดทางราบจะต้องแก้ไขไฟล์ของแบบจำลองค่าต่างพิกัด ทางราบตามรูปแบบของ CSCS Model ในรูปแบบของ Generic ASCII (.txt) โดยกำหนดให้ แบบจำลองของการปรับแก้ (Model types) เป็นระบบพิกัดฉากคาร์ทีเซียน ใช้วิธีการประมาณค่า ในช่วงของค่าต่างพิกัดทางราบ (Interpolation Method) แบบเชิงเส้นคู่ (Bi-Linear) ใช้ตำแหน่ง เริ่มต้นที่มุมล่างซ้าย (5° N, 97° E) และสิ้นสุดที่มุมบนขวา (21° N, 106° E) ซึ่งมีทิศทางจากทิศ ตะวันตกไปยังทิศตะวันออก (W-E) และทิศใต้ขึ้นไปทิศเหนือ (S-N) ตามลำดับ และแปลงไฟล์ให้อยู่ใน รูปแบบของ CSCS (.csc) จากนั้นสร้างแบบจำลองค่าปรับแก้พิกัดทางราบซึ่งประกอบด้วยแบบจำลอง ค่าปรับแก้พิกัดทางราบทั้งหมด 11 แบบจำลอง เพื่อนำไปเปรียบเทียบความถูกต้องทางตำแหน่งทาง ราบด้วยค่าพิกัดของสถานีทดสอบ 149 ตำแหน่ง แล้วทำการเลือกแบบจำลองค่าพิกัดที่เหมาะสมจาก การทดสอบทางสถิติ T-test โดยทดสอบสมมุติฐานที่ว่าแบบจำลองแต่ละแบบมีค่าเฉลี่ยแตกต่างกัน อย่างมีนัยสำคัญหรือไม่

3.7 เปรียบเทียบความถูกต้องทางตำแหน่งทางราบ

การเปรียบเทียบความถูกต้องค่าพิกัดทางราบในระบบพิกัด UTM ระหว่างค่าพิกัดบนกรอบ พิกัดอ้างอิงสากล ITRF2014 ที่ epoch 2020.17 ที่ได้จากหัวข้อ 3.3 กับค่าพิกัดบนกรอบพิกัดอ้างอิง สากล ITRF2014 ที่ epoch 20021.17 ที่ได้จากหัวข้อ 3.3 ด้วยแบบจำลองค่าปรับแก้พิกัดทางราบ แบบต่าง ๆ โดยการคำนวณหาค่าต่างทางทิศตะวันออก (*Δ*E) และทางทิศเหนือ (*Δ*N) แล้วคำนวณ ความคลาดเคลื่อนทางราบของหมุดทดสอบและค่ารากที่สองของความคลาดเคลื่อนเฉลี่ยกำลังสอง (*RMSE*) ของแบบจำลองค่าปรับแก้พิกัดทางราบ

รูปที่ 23 แผนผังแสดงขั้นตอนการประมวลผลข้อมูล

บทที่ 4 ผลการวิจัย

4.1 ค่าพิกัดสถานีกรมแผนที่ทหารและสถานีตรวจสอบบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2020.17 และ Epoch 2021.17

การประมวลผลค่าพิกัดได้เลือกใช้ซอฟต์แวร์เชิงวิจัย GIPSYX สำหรับวิเคราะห์และ ประมวลผลจากข้อมูลการรังวัดสัญญาณดาวเทียม GNSS ซึ่งสามารถประมวลผลค่าพิกัดตำแหน่งของ สถานีอ้างอิงรับสัญญาณดาวเทียมถาวรต่อเนื่อง (CORS) ของกรมแผนที่ทหาร ,กรมที่ดิน และ กรมโยธิการและผังเมือง ณ ช่วงเวลา Epoch 2020.17 และ Epoch 2021.17 บนกรอบพิกัดอ้างอิง สากล ITRF2014 ได้ผลลัพธ์การประมวลผลค่าพิกัดดังตารางที่ 2-4 นี้

				/ A BOB A			
ลำดับ	สถานี	X [ม.]	Y [ม.]	Z [ູม.]	ละติจูด [° ' "]	ลองจิจูด [° ' "]	ความสูงเหนือ ทรงรี [ม.]
1	AKSN	-1482252.357	5925273.256	1831476.146	16° 47' 52.19571"	104° 2' 41.07769"	173.575
2	APKN	-1037945.151	6165674.186	1255828.644	11° 25' 53.52253"	99° 33' 20.59609"	-2.258
3	ARNG	-941903.945	6213713.800	1084084.378	9° 51' 5.92271"	98° 37' 10.35687"	-3.911
4	ATRG	-1044225.220	6238038.907	820027.015	7° 26' 11.51096"	99° 30' 10.79168"	-9.378
5	AUTT	-1130743.783	5969730.590	1934162.469	17° 46' 10.64138"	100° 43' 31.78353"	143.416
6	CKRI	-962275.433	6105153.019	1570944.034	14° 21' 12.22251"	98° 57' 25.54449"	214.218
7	CTAK	-960118.219	6017801.110	1876856.735	17° 13' 36.50647"	99° 3' 53.75465"	114.207
8	DACR	-1549651.357	5935497.645	1740863.957	15° 56' 40.14495"	104° 37' 56.16232"	152.991
9	DBRM	-1381901.813	6018323.535	1592491.770	14° 33' 16.45788"	102° 55' 54.6688"	185.028
10	DCMI	-937854.367	5944574.416	2106753.086	19° 24' 50.08974"	98° 57' 55.63669"	409.470
11	DCRI	-1028340.627	5903260.365	2179044.463	20° 6' 27.63507"	99° 52' 54.10507"	436.560
12	DLEI	-1258695.112	5956128.351	1897416.512	17° 25' 15.33584"	101° 55' 57.43229"	282.093
13	DMSN	-837150.671	6008179.523	1964076.876	18° 3' 13.04165"	97° 55' 56.08874"	157.288
14	DNAN	-1145278.750	5919706.532	2073937.321	19° 6' 0.62321"	100° 56' 58.80976"	326.090
15	DNPM	-1522984.925	5909676.269	1848124.093	16° 57' 18.5014"	104° 27' 4.56823"	133.772
16	DPLK	-1087332.997	6008757.916	1835935.684	16° 50' 25.29009"	100° 15' 25.67974"	16.421
17	DPNB	-1182920.924	6003701.938	1793446.879	16° 26' 21.925"	101° 8' 46.75857"	96.887
18	DSNI	-1020697.537	6217118.803	989737.185	8° 59' 13.06201"	99° 19' 24.17248"	-4.731
19	DSNK	-1457051.884	5914549.215	1885146.136	17° 18' 18.4463"	103° 50' 21.37822"	155.768
20	DSSK	-1505872.003	5970251.766	1658989.502	15° 10' 35.32237"	104° 9' 23.01285"	134.801
21	DUDN	-1400643.008	5939285.059	1850039.306	16° 58' 23.41594"	103° 16' 9.98285"	155.846
22	DUTI	-1024115.769	6069400.077	1666393.542	15° 14' 45.18746"	99° 34' 39.16706"	108.229

4.1.1 ค่าพิกัดสถานีกรมแผนที่ทหาร 80 สถานี หลังการประมวลผลด้วยซอฟต์แวร์ GIPSYX ณ Epoch 2020.17

ลำดับ	สถานี	X [ม.]	Y [ม.]	Z [ม.]	ละติจูด [° ' "]	ลองจิจูด [° ' "]	ความสูงเหนือ ทรงรี [ม.]
23	DYLA	-1218007.569	6219834.622	712783.957	6° 27' 34.35739"	101° 4' 47.33183"	57.900
24	ECMI	-924694.451	5980687.451	2008263.000	18° 28' 25.26441"	98° 47' 20.76407"	262.687
25	ENMA	-1283834.414	6038812.597	1597052.031	14° 35' 49.58985"	102° 0' 8.01215"	205.465
26	LCNT	-1070784.277	6069037.860	1637876.031	14° 58' 45.16677"	100° 0' 21.39682"	-8.978
27	LCPM	-1261224.616	6015257.624	1699797.839	15° 33' 31.88315"	101° 50' 30.1904"	169.711
28	LKPT	-1010663.189	6031474.172	1805406.638	16° 33' 7.89925"	99° 30' 44.59426"	74.425
29	LKRI	-1021280.071	6096688.230	1565943.798	14° 18' 25.63443"	99° 30' 34.36949"	54.487
30	LLEI	-1257391.853	5974248.833	1840688.906	16° 53' 4.682"	101° 53' 7.77148"	236.815
31	LLPG	-1046898.289	5950358.636	2037915.183	18° 45' 22.9831"	99° 58' 42.31869"	252.366
32	LLPN	-945162.165	6001074.628	1937646.424	17° 48' 6.74872"	98° 57' 1.7734"	421.101
33	LLRI	-1145246.522	6052214.258	1649689.130	15° 5' 23.00498"	100° 42' 54.90974"	5.566
34	LMDH	-1554648.965	5914873.569	1804870.552	16° 32' 49.25694"	104° 43' 34.96264"	120.938
35	LNAN	-1128247.237	5942056.800	2018483.976	18° 34' 16.92554"	100° 45' 3.76946"	163.422
36	LNBP	-1311175.420	5951371.724	1876583.499	17° 13' 26.23974"	102° 25' 28.64206"	209.557
37	LNKI	-1339229.203	5922621.866	1945761.637	17° 52' 46.91622"	102° 44' 29.40969"	145.531
38	LNMA	-1356900.391	6000717.742	1677331.726	15° 20' 53.99373"	102° 44' 29.80442"	122.529
39	LNSN	-1111112.123	6052438.113	1672093.685	15° 17' 57.91028"	100° 24' 9.29262"	53.758
40	LPBI	-1075534.171	6128876.492	1395510.388	12° 43' 22.24421"	99° 57' 11.81195"	-12.283
41	LPCT	-1083659.531	6020119.871	1800764.026	16° 30' 30.9772"	100° 12' 15.56498"	10.598
42	LPLK	-1145387.974	5989310.860	1864348.984	17° 6' 29.97904"	100° 49' 35.22181"	184.077
43	LPRE	-1035726.406	5976349.367	1966343.839	18° 4' 31.08951"	99° 49' 54.99499"	110.949
44	LSN1	-1088138.328	6196941.039	1042730.296	9° 28' 20.48887"	99° 57' 33.11549"	8.302
45	LSN2	-973259.758	6226269.175	980242.222	8° 54' 0.0262"	98° 53' 3.4764"	29.899
46	LSNK	-1468571.709	5901750.529	1915781.420	17° 35' 43.24197"	103° 58' 24.56777"	132.008
47	LSRN	-1477946.350	5993065.900	1601258.165	14° 38' 11.53545"	103° 51' 11.72947"	144.263
48	LSSK	-1561088.460	5971825.453	1601693.992	14° 38' 26.23275"	104° 38' 59.29463"	139.362
49	LTRG	-1057745.075	6230578.256	858627.255	7° 47' 18.96668"	99° 38' 6.20318"	39.809
50	LTRT	-1352218.011	6085818.591	1342643.851	12° 14' 0.20278"	102° 31' 37.69645"	-8.494
51	LYST	-1499624.861	5952706.002	1725794.929	15° 48' 10.887"	104° 8' 23.66485"	109.151
52	MKRI	-1047824.338	6083730.549	1598072.149	14° 36' 25.54489"	99° 46' 20.61987"	10.016
53	MNSN	-1136318.458	6038711.057	1704194.983	15° 36' 1.59585"	100° 39' 24.7151"	37.086
54	MRBR	-1059873.871	6110212.672	1485747.908	13° 33' 37.6839"	99° 50' 26.07592"	-21.644
55	NKBI	-1004107.401	6237146.549	874718.743	7° 56' 7.95169"	99° 8' 43.72232"	-8.885
56	PCCO	-1248697.123	6077550.997	1473351.837	13° 26' 42.29891"	101° 36' 37.6152"	49.734
57	PCPM	-1253922.876	6000701.601	1755580.397	16° 4' 57.49279"	101° 48' 10.24292"	230.786
58	PCRI	-996241.477	5925989.603	2132025.319	19° 39' 21.95952"	99° 32' 34.7473"	422.090
59	PNST	-1030041.798	6225236.229	927766.903	8° 25' 12.23092"	99° 23' 42.60497"	37.083
60	SBKK	-1139278.638	6089742.507	1510744.361	13° 47' 34.59879"	100° 35' 47.37808"	1.444

	accent	V Feu]	V/ [au]	7 [0]]			ความสูงเหนือ
สาตบ	สถาน	X [ມ.]	Y [ม.]	∠ [່ม.]	ଗଅଡାର୍ଡା []	สองงงูต [****]	ทรงรี [ม.]
61	TCP1	-998580.611	6185787.716	1187602.176	10° 48' 10.39454"	99° 10' 12.81802"	31.794
62	TCP2	-988846.325	6202198.842	1107854.108	10° 4' 11.35587"	99° 3' 31.31579"	5.355
63	TCTI	-1275980.969	6090015.956	1396880.056	12° 44' 7.7242"	101° 50' 0.39718"	16.826
64	TKK1	-1364654.008	5952327.913	1835840.025	16° 50' 18.43593"	102° 54' 45.7291"	382.386
65	TKK2	-1343631.391	5987078.646	1735623.320	15° 53' 42.44883"	102° 38' 55.86485"	197.084
66	TKRI	-1013658.087	6103489.954	1544279.905	14° 6' 18.74448"	99° 25' 46.29734"	26.141
67	TNPM	-1532978.175	5894327.802	1888232.755	17° 20' 3.65057"	104° 34' 42.0247"	152.257
68	TNPT	-1068059.876	6094631.125	1542424.343	14° 5' 16.86401"	99° 56' 23.72005"	-19.166
69	TNSN	-1108936.325	6035226.718	1733982.288	15° 52' 48.7466"	100° 24' 41.82144"	2.187
70	TNST	-1090749.782	6213697.045	935326.010	8° 29' 21.21501"	99° 57' 22.46351"	-10.571
71	TPK1	-1069622.719	6137421.701	1362359.538	12° 24' 56.90856"	99° 53' 10.13582"	-4.822
72	TPK2	-1019361.908	6178593.622	1207649.512	10° 59' 14.16388"	99° 22' 6.34015"	135.805
73	TPKT	-914875.262	6247977.688	896544.432	8° 8' 4.38091"	98° 19' 49.69934"	219.435
74	TPRI	-1256831.590	6062465.653	1527009.162	13° 56' 39.76269"	101° 42' 44.21378"	-3.473
75	TSKA	-1143697.012	6227724.508	764312.752	6° 55' 43.47605"	100° 24' 22.28979"	5.866
76	TSKW	-1340690.908	6051254.323	1500217.945	13° 41' 41.79661"	102° 29' 32.71202"	25.203
77	TSRI	-1194168.758	6055888.025	1602984.630	14° 39' 6.77742"	101° 9' 18.4141"	475.291
78	TSSK	-1549340.537	5961235.533	1651359.461	15° 6' 18.29479"	104° 34' 8.35729"	119.143
79	TUBN	-1581409.497	5950176.103	1660747.238	15° 11' 34.73726"	104° 53' 1.40144"	116.741
80	TUTT	-1068725.873	5984703.458	1922897.189	17° 39' 46.92113"	100° 7' 29.7808"	52.663
			E.				

ตารางที่ 2 ค่าพิกัดสถานีกรมแผนที่ทหารบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2020.17

4.1.2 ค่าพิกัดสถานีกรมแผนที่ทหาร 80 สถานี หลังการประมวลผลด้วยซอฟต์แวร์ GIPSYX ณ Epoch 2021.17

ลำดับ	สถานี	X [ม.]	Y [ม.]	Z [ม.]	ละติจูด [° ' "]	ลองจิจูด [° ' "]	ความสูงเหนือ ทรงรี [ม.]
1	AKSN	-1482252.388	5925273.254	1831476.135	16° 47' 52.19531"	104° 2' 41.07872"	173.577
2	APKN	-1037945.179	6165674.186	1255828.631	11° 25' 53.52206"	99° 33' 20.59701"	-2.256
3	ARNG	-941903.959	6213713.794	1084084.366	9° 51' 5.92234"	98° 37' 10.35735"	-3.917
4	ATRG	-1044225.229	6238038.905	820027.018	7° 26' 11.51106"	99° 30' 10.79199"	-9.378
5	AUTT	-1130743.814	5969730.587	1934162.460	17° 46' 10.64108"	100° 43' 31.78457"	143.415
6	CKRI	-962275.446	6105153.021	1570944.047	14° 21' 12.22211"	98° 57' 25.54407"	214.210
7	CTAK	-960118.249	6017801.108	1876856.724	17° 13' 36.50608"	99° 3' 53.75565"	114.206
8	DACR	-1549651.385	5935497.643	1740863.945	15° 56' 40.14454"	104° 37' 56.16325"	152.993

ลำดับ	สถานี	X [ม.]	Y [ม.]	Z [ม.]	ละติจูด [° ' "]	ลองจิจูด [° ' "]	ความสูงเหนือ ทรงรี [ม.]
9	DBRM	-1381901.845	6018323.526	1592491.761	14° 33' 16.45762"	102° 55' 54.66992"	185.024
10	DCMI	-937854.398	5944574.411	2106753.077	19° 24' 50.08947"	98° 57' 55.63778"	409.468
11	DCRI	-1028340.661	5903260.363	2179044.455	20° 6' 27.63476"	99° 52' 54.10622"	436.561
12	DLEI	-1258695.145	5956128.342	1897416.498	17° 25' 15.33543"	101° 55' 57.43344"	282.087
13	DMSN	-837150.704	6008179.525	1964076.865	18° 3' 13.04125"	97° 55' 56.08986"	157.290
14	DNAN	-1145278.772	5919706.531	2073937.317	19° 6' 0.62303"	100° 56' 58.81052"	326.092
15	DNPM	-1522984.955	5909676.263	1848124.081	16° 57' 18.501"	104° 27' 4.56928"	133.770
16	DPLK	-1087333.026	6008757.913	1835935.676	16° 50' 25.28982"	100° 15' 25.68071"	16.421
17	DPNB	-1182920.949	6003701.936	1793446.871	16° 26' 21.92472"	101° 8' 46.75941"	96.887
18	DSNI	-1020697.553	6217118.801	989737.177	8° 59' 13.06177"	99° 19' 24.17301"	-4.731
19	DSNK	-1457051.908	5914549.209	1885146.132	17° 18' 18.44617"	103° 50' 21.37906"	155.767
20	DSSK	-1505872.051	5970251.756	1658989.472	15° 10' 35.32141"	104° 9' 23.01448"	134.795
21	DUDN	-1400643.038	5939285.051	1850039.293	16° 58' 23.41553"	103° 16' 9.98388"	155.841
22	DUTI	-1024115.799	6069400.062	1666393.530	15° 14' 45.18718"	99° 34' 39.16813"	108.217
23	DYLA	-1218007.604	6219834.625	712783.922	6° 27' 34.35625"	101° 4' 47.33292"	57.905
24	ECMI	-924694.456	5980687.458	2008262.984	18° 28' 25.26384"	98° 47' 20.76422"	262.689
25	ENMA	-1283834.436	6038812.598	1597052.014	14° 35' 49.58928"	102° 0' 8.01287"	205.467
26	LCNT	-1070784.305	6069037.854	1637876.016	14° 58' 45.16631"	100° 0' 21.39776"	-8.983
27	LCPM	-1261224.652	6015257.627	1699797.835	15° 33' 31.88294"	101° 50' 30.19158"	169.720
28	LKPT	-1010663.211	6031474.167	1805406.632	16° 33' 7.89908"	99° 30' 44.59504"	74.422
29	LKRI	-1021280.098	6096688.225	1565943.786	14° 18' 25.63403"	99° 30' 34.3704"	54.484
30	LLEI	-1257391.882	5974248.835	1840688.893	16° 53' 4.68154"	101° 53' 7.77241"	236.818
31	LLPG	-1046898.321	5950358.639	2037915.178	18° 45' 22.98286"	99° 58' 42.31975"	252.372
32	LLPN	-945162.197	6001074.630	1937646.415	17° 48' 6.74835"	98° 57' 1.77448"	421.106
33	LLRI	-1145246.550	6052214.257	1649689.118	15° 5' 23.00459"	100° 42' 54.91065"	5.567
34	LMDH	-1554648.992	5914873.564	1804870.539	16° 32' 49.25652"	104° 43' 34.96356"	120.936
35	LNAN	-1128247.269	5942056.797	2018483.967	18° 34' 16.92524"	100° 45' 3.77054"	163.422
36	LNBP	-1311175.452	5951371.724	1876583.488	17° 13' 26.23934"	102° 25' 28.64312"	209.561
37	LNKI	-1339229.235	5922621.867	1945761.629	17° 52' 46.91588"	102° 44' 29.41076"	145.536
38	LNMA	-1356900.418	6000717.744	1677331.716	15° 20' 53.99335"	102° 44' 29.80528"	122.534
39	LNSN	-1111112.153	6052438.113	1672093.678	15° 17' 57.90999"	100° 24' 9.29359"	53.760
40	LPBI	-1075534.193	6128876.489	1395510.377	12° 43' 22.24385"	99° 57' 11.81267"	-12.285
41	LPCT	-1083659.557	6020119.860	1800764.012	16° 30' 30.97681"	100° 12' 15.56591"	10.589
42	LPLK	-1145388.004	5989310.855	1864348.973	17° 6' 29.97867"	100° 49' 35.22283"	184.075
43	LPRE	-1035726.440	5976349.370	1966343.833	18° 4' 31.08925"	99° 49' 54.99612"	110.955
44	LSN1	-1088138.346	6196941.042	1042730.287	9° 28' 20.48854"	99° 57' 33.11606"	8.306
45	LSN2	-973259.773	6226269.170	980242.209	8° 54' 0.02579"	98° 53' 3.47692"	29.894
46	LSNK	-1468571.736	5901750.519	1915781.409	17° 35' 43.24165"	103° 58' 24.56873"	132.001

ลำดับ	สถานี	X [ม.]	Y [ม.]	Z [ູม.]	ละติจูด [° ' "]	ลองจิจูด [° ' "]	ความสูงเหนือ ทรงรี [ม.]
47	LSRN	-1477946.379	5993065.897	1601258.154	14° 38' 11.53507"	103° 51' 11.73044"	144.264
48	LSSK	-1561088.489	5971825.448	1601693.979	14° 38' 26.23234"	104° 38' 59.2956"	139.361
49	LTRG	-1057745.094	6230578.262	858627.248	7° 47' 18.96642"	99° 38' 6.20373"	39.817
50	LTRT	-1352218.036	6085818.589	1342643.840	12° 14' 0.2024"	102° 31' 37.69729"	-8.493
51	LYST	-1499624.891	5952706.004	1725794.920	15° 48' 10.88665"	104° 8' 23.66581"	109.158
52	MKRI	-1047824.371	6083730.551	1598072.140	14° 36' 25.54454"	99° 46' 20.62097"	10.021
53	MNSN	-1136318.487	6038711.056	1704194.974	15° 36' 1.59554"	100° 39' 24.71605"	37.088
54	MRBR	-1059873.896	6110212.690	1485747.901	13° 33' 37.68353"	99° 50' 26.07666"	-21.624
55	NKBI	-1004107.412	6237146.550	874718.732	7° 56' 7.95132"	99° 8' 43.72269"	-8.885
56	PCCO	-1248697.146	6077550.990	1473351.824	13° 26' 42.29852"	101° 36' 37.61599"	49.729
57	PCPM	-1253922.907	6000701.586	1755580.401	16° 4' 57.49298"	101° 48' 10.24403"	230.779
58	PCRI	-996241.583	5925989.720	2132025.351	19° 39' 21.95944"	99° 32' 34.74847"	422.093
59	PNST	-1030041.815	6225236.232	927766.894	8° 25' 12.23063"	99° 23' 42.60551"	37.088
60	SBKK	-1139278.663	6089742.503	1510744.350	13° 47' 34.59845"	100° 35' 47.37892"	1.443
61	TCP1	-998580.629	6185787.721	1187602.169	10° 48' 10.39425"	99° 10' 12.81859"	31.800
62	TCP2	-988846.356	6202198.824	1107854.099	10° 4' 11.35563"	99° 3' 31.31688"	5.341
63	TCTI	-1275980.996	6090015.944	1396880.044	12° 44' 7.72386"	101° 50' 0.39812"	16.818
64	TKK1	-1364654.037	5952327.907	1835840.015	16° 50' 18.43561"	102° 54' 45.73007"	382.383
65	TKK2	-1343631.417	5987078.643	1735623.309	15° 53' 42.44847"	102° 38' 55.86574"	197.084
66	TKRI	-1013658.110	6103489.953	1544279.896	14° 6' 18.74416"	99° 25' 46.29809"	26.141
67	TNPM	-1532978.212	5894327.794	1888232.743	17° 20' 3.65016"	104° 34' 42.02599"	152.254
68	TNPT	-1068059.900	6094631.109	1542424.328	14° 5' 16.86362"	99° 56' 23.72093"	-19.181
69	TNSN	-1108936.358	6035226.707	1733982.272	15° 52' 48.74614"	100° 24' 41.82257"	2.178
70	TNST	-1090749.792	6213696.999	935325.996	8° 29' 21.21477"	99° 57' 22.46411"	-10.615
71	TPK1	-1069622.739	6137421.711	1362359.530	12° 24' 56.9082"	99° 53' 10.13643"	-4.811
72	TPK2	-1019361.928	6178593.634	1207649.501	10° 59' 14.16341"	99° 22' 6.34076"	135.818
73	TPKT	-914875.273	6247977.682	896544.415	8° 8' 4.38036"	98° 19' 49.69972"	219.429
74	TPRI	-1256831.616	6062465.647	1527009.155	13° 56' 39.76247"	101° 42' 44.21468"	-3.474
75	TSKA	-1143697.028	6227724.511	764312.742	6° 55' 43.47571"	100° 24' 22.29029"	5.870
76	TSKW	-1340690.943	6051254.314	1500217.934	13° 41' 41.7963"	102° 29' 32.71321"	25.200
77	TSRI	-1194168.785	6055888.021	1602984.621	14° 39' 6.77714"	101° 9' 18.41498"	475.290
78	TSSK	-1549340.572	5961235.525	1651359.457	15° 6' 18.29464"	104° 34' 8.35847"	119.143
79	TUBN	-1581409.522	5950176.090	1660747.227	15° 11' 34.73696"	104° 53' 1.40238"	116.732
80	TUTT	-1068725.905	5984703.461	1922897.183	17° 39' 46.92086"	100° 7' 29.78185"	52.670

ตารางที่ 3 ค่าพิกัดสถานีกรมแผนที่ทหารบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2021.17

ลำดับ	สถานี	X [ม.]	Y [ม.]	Z [ม.]	ละติจูด [° ' "]	ลองจิจูด [° ' "]	ความสูงเหนือ ทรงรี [ม.]
1	АМКО	-883144.219	6010907.005	1937627.314	17° 48' 2.29569"	98° 21' 29.89222"	785.007
2	AWLK	-956898.435	6237553.723	923074.198	8° 22' 38.03922"	98° 43' 18.14402"	-7.216
3	AYYA	-1134356.396	6075002.993	1572057.263	14° 21' 51.51647"	100° 34' 36.35912"	-14.578
4	BDNG	-1394062.205	5916172.572	1926911.234	17° 42' 2.97176"	103° 15' 32.65139"	147.826
5	BGKN	-1429610.406	5884459.087	1996199.632	18° 21' 33.15853"	103° 39' 18.9684"	131.786
6	BGSP	-1025844.591	6171496.231	1237207.960	11° 15' 35.37918"	99° 26' 15.31317"	7.120
7	ВКОК	-1164774.680	5954584.539	1961139.600	18° 1' 29.9733"	101° 4' 4.29749"	402.374
8	BLAN	-1092605.756	6093002.944	1531704.744	13° 59' 17.31997"	100° 9' 58.70879"	-17.893
9	BLMG	-1173899.714	6106033.702	1416075.389	12° 54' 48.56109"	100° 52' 56.90176"	-12.499
10	BNMG	-1424892.324	5903605.378	1942688.837	17° 51' 2.02168"	103° 34' 9.73827"	134.639
11	BNNR	-1245302.536	6020376.347	1693509.567	15° 29' 59.40265"	101° 41' 12.11663"	186.648
12	BNPE	-1312990.608	5935131.934	1925599.197	17° 41' 18.06343"	102° 28' 27.3575"	158.748
13	BNPG	-1490327.957	5883321.509	1954981.029	17° 58' 2.26821"	104° 12' 53.33351"	127.476
14	BNST	-1237503.579	6218448.741	691007.128	6° 15' 41.10511"	101° 15' 18.41719"	46.811
15	BOBR	-1391662.815	5971556.580	1750910.623	16° 2' 20.15283"	103° 7' 6.77595"	151.335
16	воко	-1166457.823	5914134.511	2079169.625	19° 8' 56.38636"	101° 9' 26.52589"	709.950
17	BORI	-1351917.635	6077445.227	1380185.526	12° 34' 50.96792"	102° 32' 28.152"	11.007
18	BPLE	-1165298.087	6090154.928	1489142.360	13° 35' 31.2868"	100° 49' 55.63673"	-18.404
19	BRAI	-1018998.512	6075037.514	1649079.880	15° 5' 1.42495"	99° 31' 18.7958"	125.355
20	BTAK	-961971.401	6023304.427	1858216.180	17° 3' 2.19091"	99° 4' 26.31832"	93.435
21	BTHG	-1639450.197	5947411.612	1614110.094	14° 45' 23.8634"	105° 24' 40.61824"	139.538
22	BTNG	-1218862.833	6227967.185	639033.031	5° 47' 18.96657"	101° 4' 23.81421"	288.912
23	BUYI	-1321931.390	6001461.375	1702320.666	15° 34' 57.31937"	102° 25' 19.47974"	143.866
24	CHAN	-1305191.143	6086920.577	1383367.980	12° 36' 37.10795"	102° 6' 8.69675"	7.746
25	CHDN	-1186343.961	6041578.752	1659611.960	15° 10' 57.26829"	101° 6' 33.97025"	25.766
26	CHKG	-1081312.011	5889457.742	2190327.440	20° 12' 59.76603"	100° 24' 13.35739"	327.842
27	CHKN	-1227549.579	5946180.386	1947708.655	17° 53' 52.979"	101° 39' 52.08466"	191.474
28	CHMA	-941577.350	5965123.907	2046196.056	18° 50' 6.98245"	98° 58' 11.86354"	295.867
29	CHPM	-1279552.466	6003832.008	1726072.744	15° 48' 19.8216"	102° 1' 51.69982"	158.938
30	CHTK	-1120651.119	5988384.887	1882119.978	17° 16' 35.16122"	100° 35' 58.51408"	174.788
31	CHYA	-1002385.532	6212541.235	1035825.221	9° 24' 32.70723"	99° 9' 56.18773"	-1.671
32	CLPK	-1155477.047	5899960.052	2124054.727	19° 34' 46.20479"	101° 4' 51.01356"	473.194
33	CMPN	-994847.673	6192799.983	1153707.246	10° 29' 28.17694"	99° 7' 34.87655"	-9.964
34	DKTN	-1255359.684	6026997.728	1662480.852	15° 12' 32.50612"	101° 45' 57.15328"	193.383
35	DPT9	-1136984.475	6091176.559	1506866.871	13° 45' 24.40266"	100° 34' 23.53413"	37.995

4.1.3 ค่าพิกัดสถานีตรวจสอบ 145 สถานี หลังการประมวลผลด้วยซอฟต์แวร์ GIPSYX ณ

Epoch 2020.17

ลำดับ	สถานี	X [ม.]	Y [ม.]	Z [ม.]	ละติจูด [° ' "]	ลองจิจูด [° ' "]	ความสูงเหนือ ทรงรี [ม.]
36	DSAI	-1177823.261	5977435.627	1882542.922	17° 16' 47.98692"	101° 8' 49.33753"	331.114
37	DUDM	-1602826.602	5952860.236	1630520.631	14° 54' 36.39236"	105° 4' 10.8692"	116.124
38	HACH	-983713.350	5976430.909	1992894.776	18° 19' 38.64872"	99° 20' 49.22076"	249.448
39	JAHM	-1003279.847	5959660.153	2032774.361	18° 42' 26.19212"	99° 33' 21.12174"	274.930
40	JKRT	-1324558.651	6017890.483	1641619.404	15° 0' 49.87133"	102° 24' 47.06561"	149.423
41	KBCG	-1451929.889	6004093.374	1583920.677	14° 28' 28.42419"	103° 35' 40.09946"	181.741
42	KHJM	-1643844.701	5929414.479	1674145.776	15° 19' 6.76839"	105° 29' 42.96121"	94.297
43	KHMR	-1610363.372	5916201.436	1751219.493	16° 2' 30.91195"	105° 13' 36.32003"	118.830
44	KKJN	-1042150.277	6130097.941	1415474.700	12° 54' 28.0526"	99° 38' 54.06284"	48.442
45	KKOI	-1177854.300	6060476.198	1595852.111	14° 35' 10.99586"	100° 59' 54.0005"	-0.890
46	KKOR	-1166142.746	6001730.323	1813679.054	16° 37' 40.56629"	100° 59' 44.25464"	911.002
47	KLKG	-1033372.689	6038317.297	1769416.304	16° 12' 47.93157"	99° 42' 40.6297"	34.296
48	KLNG	-1260305.967	6092119.714	1401768.025	12° 46' 51.01748"	101° 41' 17.42397"	-11.088
49	KMCE	-1522611.470	5922257.989	1808079.664	16° 34' 37.79259"	104° 25' 6.45692"	159.742
50	KNKN	-1359633.969	5966157.836	1793620.770	16° 26' 27.42197"	102° 50' 16.61553"	138.654
51	KNSN	-1430048.066	5950286.068	1791563.781	16° 25' 17.75308"	103° 30' 49.51351"	128.742
52	KNSW	-1304888.186	5994466.161	1739513.946	15° 55' 54.41556"	102° 16' 50.46284"	158.939
53	KNYM	-835485.587	5981025.452	2046761.034	18° 50' 23.12829"	97° 57' 7.75131"	590.383
54	KOGD	-1356671.055	6098368.046	1280387.729	11° 39' 29.02668"	102° 32' 31.34817"	35.978
55	KORN	-1310277.480	6035215.533	1589147.587	14° 31' 24.00585"	102° 14' 56.85815"	190.603
56	KSKS	-1297233.783	6014497.503	1675341.927	15° 19' 46.52605"	102° 10' 16.89641"	160.736
57	KSSB	-1268451.474	5991382.303	1776614.846	16° 16' 50.21859"	101° 57' 13.42834"	206.275
58	KSWS	-1442358.306	5971380.779	1710148.411	15° 39' 22.00271"	103° 34' 45.89397"	115.386
59	KTBN	-1108230.055	6099966.606	1492516.619	13° 37' 24.26104"	100° 17' 49.46784"	-19.308
60	KUKN	-1513557.942	5981932.909	1609518.504	14° 42' 49.40997"	104° 11' 56.63664"	137.642
61	LAGU	-1076506.994	6240273.659	759452.822	6° 53' 4.16836"	99° 47' 15.85229"	-7.308
62	LGNT	-1539633.488	5929778.800	1768790.590	16° 12' 25.70756"	104° 33' 18.45687"	142.775
63	LMHP	-1338442.360	6090317.193	1336050.087	12° 10' 20.70263"	102° 23' 40.59276"	-14.116
64	LOMS	-1186805.194	5992762.803	1827069.014	16° 45' 22.81116"	101° 12' 6.82959"	137.919
65	LPBR	-1140009.373	6061593.425	1618813.984	14° 48' 3.25765"	100° 39' 4.50589"	9.765
66	LPMA	-1369203.243	6007554.615	1642821.674	15° 1' 30.4086"	102° 50' 21.03217"	145.025
67	MEJM	-879958.582	5986692.648	2011006.703	18° 29' 57.44693"	98° 21' 42.43894"	437.885
68	MHGS	-834433.806	5964347.356	2093791.609	19° 17' 25.69589"	97° 57' 51.10019"	203.475
69	MSAI	-1026415.089	5891082.113	2212260.292	20° 25' 39.67036"	99° 53' 0.76202"	378.013
70	MSOD	-910899.734	6042331.663	1822373.709	16° 42' 42.90236"	98° 34' 22.64269"	180.782
71	MSSB	-1562766.470	5945493.530	1694592.815	15° 30' 36.59933"	104° 43' 37.21599"	117.483
72	MWOG	-1015276.727	6054806.645	1723480.932	15° 46' 52.76098"	99° 31' 7.91604"	97.510
73	NAMY	-1598658.704	5966273.172	1585475.654	14° 29' 20.77645"	105° 0' 0.02019"	169.915

ลำดับ	สถายี	V [91]	V [91]	7 [9]]	ລະຫຼືລຸດ [° ' "]	ລລ <u>ເ</u> ວັລລ [° ' "]	ความสูงเหนือ
61 1910	6161 1 16	∧ [å.]	ا [ها.]	ک [ها.]	เอยบูชเ []	ยองงงูต []	ทรงรี [ม.]
74	NANO	-1125627.488	5951335.145	1992890.457	18° 19' 38.5079"	100° 42' 37.17834"	248.786
75	NDDG	-1363561.208	6029294.021	1566955.378	14° 18' 58.13449"	102° 44' 36.28309"	231.281
76	NKNY	-1201408.943	6066337.513	1555734.208	14° 12' 43.44603"	101° 12' 7.91035"	-13.852
77	NKSW	-1078589.886	6046539.298	1713801.063	15° 41' 26.28347"	100° 6' 50.82321"	21.223
78	NROA	-1317070.963	5974071.092	1799116.557	16° 29' 33.51948"	102° 25' 58.09674"	172.782
79	NRTW	-1298692.459	6203821.305	709432.958	6° 25' 44.77526"	101° 49' 24.30926"	4.419
80	NSHO	-1360065.410	5988322.078	1718374.696	15° 43' 59.71278"	102° 47' 45.32649"	145.749
81	OKRK	-1178265.176	6073650.627	1544929.848	14° 6' 40.88979"	100° 58' 43.652"	-15.417
82	PBHN	-1616951.269	5939039.505	1666309.675	15° 14' 42.35255"	105° 13' 48.33143"	109.002
83	PDCP	-1215054.316	6014245.702	1736656.829	15° 54' 16.92496"	101° 25' 18.08899"	249.212
84	PJRK	-1062387.58	6152905.13	1297009.247	11° 48' 41.82378"	99° 47' 46.85933"	-11.937
85	PKET	-922365.1127	6250473.36	869690.3801	7° 53' 22.65861"	98° 23' 39.83138"	0.148
86	PKKT	-1132704.548	6087759.823	1523587.252	13° 54' 44.91072"	100° 32' 24.27302"	13.348
87	PKNK	-1118572.255	6211237.111	918761.1053	8° 20' 16.16107"	100° 12' 31.98285"	-11.784
88	PLDG	-1209062.84	6097744.539	1422375.329	12° 58' 18.53769"	101° 12' 54.58089"	37.342
89	PNNK	-1203243.395	6086106.937	1475570.37	13° 27' 57.00958"	101° 11' 0.04732"	-12.337
90	PNPS	-1373244.107	5909347.224	1962218.336	18° 2' 9.63535"	103° 4' 56.94849"	141.240
91	PNTG	-1479558.099	5941540.024	1780479.207	16° 19' 1.79077"	103° 59' 0.0465"	143.385
92	PONG	-1075183.213	5930943.386	2079127.661	19° 8' 59.96613"	100° 16' 30.71529"	265.018
93	PPRM	-1080405.794	6003678.773	1856402.659	17° 2' 1.21769"	100° 12' 5.7733"	20.423
94	PTBR	-1072925.059	6119632.107	1437164.118	13° 6' 32.91595"	99° 56' 39.54263"	-16.111
95	PTLG	-1105618.698	6224823.322	839659.5524	7° 36' 56.10843"	100° 4' 17.49926"	-2.650
96	PYAO	-1034057.824	5936806.187	2083569.756	19° 11' 31.62136"	99° 52' 49.84134"	378.689
97	RAND	-1132675.47	6217668.033	856322.4625	7° 46' 3.44132"	100° 19' 27.7811"	-4.072
98	RATP	-1126888.779	6227967.612	786903.8984	7° 8' 4.3991"	100° 15' 22.08888"	17.109
99	RAYG	-1216734.613	6103746.812	1389703.635	12° 40' 8.55582"	101° 16' 25.28752"	-13.427
100	SADO	-1148836.056	6229446.574	742561.6353	6° 43' 50.28779"	100° 26' 56.74733"	24.397
101	SAKW	-1298270.758	6057510.419	1512153.925	13° 48' 21.63339"	102° 5' 48.70486"	25.703
102	SAMG	-916785.9014	5968686.545	2047599.063	18° 50' 53.25706"	98° 43' 56.43645"	470.350
103	SATN	-1107406.436	6238298.924	730921.7375	6° 37' 28.89954"	100° 3' 58.08361"	-4.857
104	SBRI	-1275756.48	6205019.399	739691.325	6° 42' 16.29306"	101° 37' 5.3513"	1.527
105	SCHP	-1289380.033	5970108.092	1831833.266	16° 48' 4.27392"	102° 11' 13.68857"	179.323
106	SDAN	-1154290.768	6017173.133	1766859.288	16° 11' 20.92146"	100° 51' 33.41558"	75.171
107	SDAO	-1314806.307	6071793.064	1440225.338	13° 8' 13.30274"	102° 13' 6.14228"	233.838
108	SGNN	-1252681.639	6036861.346	1628666.962	14° 53' 33.15293"	101° 43' 22.15352"	212.203
109	SICN	-1083287.762	6206159.053	991943.7841	9° 0' 25.80627"	99° 54' 4.50297"	-9.815
110	SISA	-1031455.957	5996166.429	1907542.806	17° 31' 3.10701"	99° 45' 37.62588"	41.092
111	SISK	-1519763.851	5968501.708	1652534.884	15° 6' 58.03064"	104° 17' 8.46022"	104.979

ลำดับ	สถานี	X [ม.]	Y [ม.]	Z [ม.]	ละติจูด [° ' "]	ลองจิจูด [° ' "]	ความสูงเหนือ
112	CKBD	005237 3278	6000004 052	1656706 581	15° 0' 18 02508"	08° 27' 12 10803"	173 752
112		1/100626 616	E011740.002	1020700.201	17° 0' 19 72690"	1040 9' 1 2471"	165.061
113	SKOM	-1400020.010	5911749.00Z	1009290.017	10, 2, 40, 22404"	104 0 1.3471	155.001
114	SKOM	-1289316.139	5927263.301	1965132.927	18- 3 49.23486	102 16 19.12454	151.123
115	SKPM	-1469423.092	5986140.003	1634345.147	14° 56' 45.13589"	103° 47' 30.29984"	119.960
116	SKTH	-1041316.434	6011521.176	1853388.601	17° 0' 18.65555"	99° 49' 38.15952"	23.118
117	SMNM	-974577.7581	5987074.708	1965312.333	18° 3' 54.71673"	99° 14' 43.9146"	212.947
118	SNCK	-1229477.578	6075764.874	1496301.024	13° 39' 30.88114"	101° 26' 23.14305"	-7.191
119	SOKA	-1163641.922	6220193.938	794819.1083	7° 12' 24.08049"	100° 35' 46.03962"	18.700
120	SPBR	-1086264.426	6079455.131	1588618.425	14° 31' 7.93893"	100° 7' 50.10515"	-13.283
121	SPDI	-1305397.842	6206671.048	671589.7629	6° 5' 5.40837"	101° 52' 38.76093"	21.164
122	SPUG	-1017286.829	6117912.66	1484364.827	13° 32' 50.43081"	99° 26' 26.76515"	100.680
123	SRTN	-1021155.545	6214494.449	1005605.03	9° 7' 55.9966"	99° 19' 52.89965"	9.802
124	STHP	-1177361.176	6111613.614	1389031.092	12° 39' 46.15259"	100° 54' 14.64075"	-17.297
125	STUK	-1414855.293	5988824.878	1671947.37	15° 17' 52.43875"	103° 17' 32.50409"	114.033
126	SURN	-1438061.176	5995700.035	1627265.529	14° 52' 46.69332"	103° 29' 15.14092"	129.045
127	TAPY	-1371960.23	6035820.382	1533662.442	14° 0' 22.35116"	102° 48' 21.30018"	58.278
128	TEPA	-1204574.588	6217562.723	753451.1898	6° 49' 47.37249"	100° 57' 52.20802"	-2.415
129	TGSG	-1060808.532	6224765.01	895963.6728	8° 7' 46.10754"	99° 40' 16.64251"	42.613
130	THKP	-914616.1355	6235615.314	977034.8555	8° 52' 14.584"	98° 20' 39.92745"	-14.106
131	THPP	-925142.0344	6099791.191	1612846.748	14° 44' 41.53746"	98° 37' 27.11628"	118.713
132	THSY	-871885.6226	6031205.72	1876842.366	17° 13' 36.16296"	98° 13' 32.98736"	99.746
133	TKPP	-1594093.506	5934256.246	1704737.019	15° 36' 19.09258"	105° 2' 10.16275"	126.482
134	TPHN	-1108846.275	6024716.937	1769997.662	16° 13' 7.85695"	100° 25' 42.79084"	10.069
135	TPNM	-1549746.756	5903314.759	1846192.036	16° 56' 12.88049"	104° 42' 34.03336"	125.757
136	UDON	-1346748.678	5936987.393	1896511.375	17° 24' 45.82659"	102° 46' 50.55863"	150.109
137	UTHI	-1069154.093	6058114.381	1678632.61	15° 21' 38.97327"	100° 0' 31.20654"	0.531
138	UTOG	-1061726.494	6087755.935	1573446.452	14° 22' 38.17109"	99° 53' 35.10896"	-13.887
139	UTTD	-1065932.963	5986322.631	1919422.312	17° 37' 48.32912"	100° 5' 46.85813"	51.071
140	VCBR	-1183380.676	6027944.457	1710264.202	15° 39' 26.54589"	101° 6' 24.54677"	46.186
141	WGCN	-1012833.74	5986317.492	1947860.272	17° 53' 59.40865"	99° 36' 10.85063"	72.731
142	WHAG	-902983.4751	5944738.349	2122260.394	19° 33' 41.59271"	98° 38' 13.17268"	705.654
143	WNKH	-1268879.667	6047266.359	1577808.343	14° 25' 1.22953"	101° 51' 1.02404"	400.604
144	WNNW	-1445454.757	5906211.341	1919621.417	17° 37' 54.17703"	103° 45' 7.05253"	142.734
145	WSPG	-1242444.99	5963540.517	1884709.217	17° 18' 2.81895"	101° 46' 7.18984"	228.980

ตารางที่ 4 ค่าพิกัดสถานีตรวจสอบบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2020.17

4.2 พื้นผิวค่าต่างพิกัดทางราบ

การประมาณค่าในช่วงของค่าต่างพิกัดได้เลือกใช้ซอฟต์แวร์ ArcGIS Desktop 10.8 ซึ่งมี วิธีการประมาณค่าในช่วงทั้ง 4 วิธี ประกอบด้วย วิธี Inverse Distance Weighted (IDW) ใช้ค่ายก กำลัง (Power) เท่ากับ 1, 2 และ 3 , วิธี Kriging ใช้แบบจำลอง Semi-variogram model คือ Spherical, Circular, Exponential, Gaussian และ Linear, วิธี Natural Neighbor และวิธี Spline ใช้ประเภท Spline type คือ Regularized และ Tension โดยกำหนดขนาดเซลล์ (Cell size) เท่ากับ 1 ลิปดา หรือประมาณ 1.85 กิโลเมตร และขอบเขตการประมาณค่าในช่วง (Processing Extent) ครอบคลุมพื้นที่ 97° - 106°E และ 5° - 21°N ซึ่งได้ผลลัพธ์พื้นผิวค่าต่างพิกัด ดังนี้

4.2.1 พื้นผิวค่าต่างพิกัดด้วยวิธี IDW

กำหนดค่ายกกำลัง (Power) เพื่อกำหนดความสำคัญของจุดข้อมูลตัวอย่างในการประมาณ ค่าในช่วง ซึ่งจะเป็นอัตราส่วนผกผันของระยะทาง โดยเลือกค่ายกกำลัง (Power) เท่ากับ 1, 2 และ 3 ตามลำดับ ซึ่งได้ผลลัพธ์จากการประมาณค่าในช่วงดังนี้

รูปที่ 24 พื้นผิวค่าต่างพิกัดด้วยวิธี IDW ค่ายกกำลัง 1

รูปที่ 25 พื้นผิวค่าต่างพิกัดด้วยวิธี IDW ค่ายกกำลัง 2

รูปที่ 26 พื้นผิวค่าต่างพิกัดด้วยวิธี IDW ค่ายกกำลัง 3

46

4.2.2 พื้นผิวค่าต่างพิกัดด้วยวิธี Kriging

ใช้แบบจำลอง Semi-variogram model เพื่อวิเคราะห์ข้อมูลตามความเหมาะสมกับจุด ข้อมูลตัวอย่าง ซึ่งจะใช้ค่าสหสัมพันธ์ (Correlation) ในการประมาณค่าในช่วงโดยเลือกแบบจำลอง (Semi-variogram model) คื อ Spherical, Circular, Exponential, Gaussian และ Linear ตามลำดับ ซึ่งได้ผลลัพธ์จากการประมาณค่าในช่วงดังนี้

รูปที่ 27 พื้นผิวค่าต่างพิกัดด้วยวิธี Kriging แบบจำลอง Spherical

รูปที่ 29 พื้นผิวค่าต่างพิกัดด้วยวิธี Kriging แบบจำลอง Exponential

รูปที่ 31 พื้นผิวค่าต่างพิกัดด้วยวิธี Kriging แบบจำลอง Linear

4.2.3 พื้นผิวค่าต่างพิกัดด้วยวิธี Natural Neighbor

ใช้การสร้างโวโรนอยล้อมรอบจุดข้อมูลตัวอย่างและจุดที่ต้องการทราบ โดยใช้ค่าน้ำหนักตาม อัตราส่วนขนาดพื้นที่ของโวโรนอยในการประมาณค่า ซึ่งได้ผลลัพธ์จากการประมาณค่าในช่วงดังนี้

Chulalongkorn University

4.2.4 พื้นผิวค่าต่างพิกัดด้วยวิธี Spline

ใช้ประเภท Spline type ในการประมาณค่าในช่วงจุดข้อมูลตัวอย่างเหมือนกับการบิดโค้งงอ ของแผ่นยางผ่านจุดข้อมูลตัวอย่างทุกจุด โดยเลือกประเภท (Spline type) คือ Regularized และ Tension ตามลำดับ ซึ่งได้ผลลัพธ์จากการประมาณค่าในช่วงดังนี้

รูปที่ 34 พื้นผิวค่าต่างพิกัดด้วยวิธี Spline แบบจำลอง Tension

4.3 แบบจำลองค่าต่างพิกัด

การสร้างแบบจำลองค่าต่างพิกัดบนตำแหน่งกริดจะใช้ซอฟต์แวร์ ArcGIS Desktop 10.8 ใน การสร้างตำแหน่งกริดที่ระยะ 1 ลิปดา หรือประมาณ 1.85 กิโลเมตร โดยครอบคลุมพื้นที่ 97° - 106°E และ 5° - 21°N จะได้ตำแหน่งกริดจำนวน 519,901 ตำแหน่ง โดยแบ่งตามแนวแถว (Row) เท่ากับ 961 ตำแหน่ง และแนวคอลัมภ์ (Column) เท่ากับ 541 ตำแหน่ง ซึ่งได้ผลลัพธ์ แบบจำลองค่าต่างพิกัดด้วยวิธีต่าง ๆ ดังนี้

รูปที่ 35 ตัวอย่างแบบจำลองค่าต่างพิกัดบนตำแหน่งกริดที่ระยะ 1 ลิปดา

ตารางที่ 5 แบบจำลองค่าต่างพิกัดด้วยวิธี IDW ยกกำลัง 1

ด่าทางสุกิติ	ค่าปรับแก้พิกัด								
11 171 19616171	X [ม.]	Y [ม.]	Z [ม.]	E [ม.]	N [ม.]				
ค่าต่ำสุด	-0.0109	-0.0173	-0.0026	0.0052	-0.0491				
ค่าสูงสด	0.0474	0.0442	0.0337	0.0491	0.0104				
ค่าเฉลี่ย	0.0245	0.0036	0.0108	0.0250	-0.0248				
ค่า SD	0.0055	0.0024	0.0017	0.0055	0.0056				

ค่าทางสถิติ	ค่าปรับแก้พิกัด								
	X [ม.]	Y [ม.]	Z [ม.]	E [ม.]	N [ม.]				
ค่าต่ำสุด	-0.0130	-0.0178	-0.0039	0.0045	-0.0349				
ค่าสูงสด	0.0479	0.0456	0.0343	0.0497	0.0064				
ค่าเฉลี่ย	0.0245	0.0034	0.0111	0.0250	-0.0109				
ค่า SD	0.0059	0.0033	0.0028	0.0056	0.0027				

ตารางที่ 6 แบบจำลองค่าต่างพิกัดด้วยวิธี IDW ยกกำลัง 2

ตารางที่ 7 แบบจำลองค่าต่างพิกัดด้วยวิธี IDW ยกกำลัง 3

ค่าทางสถิติ		คาบรับแกพกด							
	X [ນ.]	Y [ม.]	Z [ม.]	E [ม.]	N [ม.]				
ค่าต่ำสุด	-0.0130	-0.0178	-0.0039	0.0045	-0.0349				
ค่าสูงสด	0.0479	0.0456	0.0343	0.0497	0.0065				
ค่าเฉลี่ย	0.0246	0.0033	0.0114	0.0252	-0.0113				
ค่า SD	0.0063	0.0041	0.0038	0.0058	0.0038				

ตารางที่ 8 แบบจำลองค่าต่างพิกัดด้วยวิธี Kriging Spherical

ค่าทางสถิติ	ค่าปรับแก้พิกัด							
	X [ม.]	Y [ม.]	Z [ม.]	E [ม.]	N [ม.]			
ค่าต่ำสุด	0.0076	-0.0035	0.0052	0.0046	-0.0246			
ค่าสูงสด	0.0361	0.0122	0.0233	0.0496	-0.0041			
ค่าเฉลี่ย	0.0250	0.0033	0.0121	0.0258	-0.0121			
ค่า SD	0.0057	0.0024	0.0039	0.0067	0.0042			

ด่างการสถิติ	ค่าปรับแก้พิกัด							
TI IVI INGIGIVI	X [ม.]	Y [ม.]	Z [ม.]	E [ม.]	N [ม.]			
ค่าต่ำสุด	0.0092	-0.0035	0.0051	0.0046	-0.0248			
ค่าสูงสด	0.0354	0.0122	0.0234	0.0496	-0.0040			
ค่าเฉลี่ย	0.0250	0.0033	0.0122	0.0258	-0.0122			
ค่า SD	0.0056	0.0024	0.0040	0.0067	0.0043			

ตารางที่ 9 แบบจำลองค่าต่างพิกัดด้วยวิธี Kriging Circular

ตารางที่ 10 แบบจำลองค่าต่างพิกัดด้วยวิธี Kriging Exponential

ค่าทางสถิติ	ค่าปรับแก้พิกัด							
	X [ม.]	Y [ม.]	Z [ม.]	E [ม.]	N [ม.]			
ค่าต่ำสุด	0.0050	-0.0036	0.0040	0.0046	-0.0267			
ค่าสูงสด	0.0374	0.0122	0.0252	0.0496	-0.0026			
ค่าเฉลี่ย	0.0249	0.0033	0.0123	0.0257	-0.0122			
ค่า SD	0.0059	0.0024	0.0042	0.0064	0.0045			

จุหาลงกรณ์มหาวิทยาลัย

ตารางที่ 11 แบบจำลองค่าต่างพิกัดด้วยวิธี Kriging Gaussian

ค่าทางสถิติ	ค่าปรับแก้พิกัด							
	X [ม.]	Y [ม.]	Z [ม.]	E [ม.]	N [ม.]			
ค่าต่ำสุด	0.0121	-0.0025	0.0061	0.0091	-0.0266			
ค่าสูงสด	0.0322	0.0124	0.0252	0.0349	-0.0064			
ค่าเฉลี่ย	0.0251	0.0034	0.0120	0.0260	-0.0119			
ค่า SD	0.0051	0.0023	0.0037	0.0052	0.0039			

ค่าทางสถิติ	ค่าปรับแก้พิกัด							
	X [ม.]	Y [ม.]	Z [ม.]	E [ม.]	N [ม.]			
ค่าต่ำสุด	0.0105	-0.0034	0.0050	0.0061	-0.0251			
ค่าสูงสด	0.0349	0.0126	0.0236	0.0480	-0.0038			
ค่าเฉลี่ย	0.0250	0.0033	0.0122	0.0250	-0.0122			
ค่า SD	0.0054	0.0024	0.0041	0.0066	0.0044			

ตารางที่ 12 แบบจำลองค่าต่างพิกัดด้วยวิธี Kriging Linear

ตารางที่	13	แบบเอ้าลอง	เ <i>ต่าต่</i>	างพิกัดด้า	ยาวิสี	Natural	Noighh	\sim
V)] J] N V)	1)	66000 1610		IN WI JVIVI 8	0 80	nuturut	Neighio	<i>OI</i>

ค่าทางสถิติ	ค่าปรับแก้พิกัด							
	X [ม.]	Y [ม.]	Z [ม.]	E [ม.]	N [ม.]			
ค่าต่ำสุด	-0.0129	-0.0178	-0.0037	0.0046	-0.0348			
ค่าสูงสด	0.0478	0.0452	0.0342	0.0496	0.0062			
ค่าเฉลี่ย	0.0246	0.0031	0.0119	0.0259	-0.0118			
ค่า SD	0.0074	0.0044	0.0044	0.0053	0.0043			

ด่างการสถิติ	ค่าปรับแก้พิกัด						
ฑ เท เงสเพ	X [ม.]	Y [ม.]	Z [ม.]	E [ม.]	N [ม.]		
ค่าต่ำสุด	-0.2056	-0.0799	-0.0899	-0.0774	-0.2100		
ค่าสูงสด	0.1806	0.1126	0.2138	0.1827	0.0930		
ค่าเฉลี่ย	0.0293	0.0125	0.0304	0.0353	-0.0285		
ค่า SD	0.0479	0.0240	0.0466	0.0403	0.0452		
ด่างการสถิติ		1	ค่าปรับแก้พิกัด)			
-----------------	---------	---------	-----------------	---------	---------		
YI IVI INGIGIVI	X [ม.]	Y [ม.]	Z [ม.]	E [ม.]	N [ม.]		
ค่าต่ำสุด	-0.0567	-0.0196	-0.0063	-0.0067	-0.0817		
ค่าสูงสด	0.0673	0.0507	0.0839	0.0693	0.0065		
ค่าเฉลี่ย	0.0254	0.0049	0.0182	0.0278	-0.0177		
ค่า SD	0.0192	0.0090	0.0180	0.0150	0.0174		

ตารางที่ 15 แบบจำลองค่าต่างพิกัดด้วยวิธี Spline Tension

4.4 แบบจำลองค่าปรับแก้พิกัด

การแปลงไฟล์ของแบบจำลองค่าต่างพิกัดได้เลือกใช้ซอฟต์แวร์ CSCS Model Convert ใน รูปแบบของ Generic ASCII (.txt) ให้อยู่ในรูปแบบของ CSCS (.csc) โดยกำหนดให้แบบจำลองของ การปรับแก้ (Model types) เป็นระบบพิกัดฉากคาร์ทีเซียน ใช้วิธีการประมาณค่าในช่วงของค่าต่าง พิกัด (Interpolation Method) แบบเชิงเส้นคู่ (Bi-Linear) ใช้ตำแหน่งเริ่มต้นที่มุมล่างซ้าย (5° N, 97° E) และสิ้นสุดที่มุมบนขวา (21° N, 106° E) ซึ่งมีทิศทาง (Reading Direction) จากทิศตะวันตก ไปยังทิศตะวันออก (W-E) และทิศใต้ขึ้นไปทิศเหนือ (S-N) ตามลำดับ

รูปที่ 36 รูปแบบไฟล์ของแบบจำลองค่าต่างพิกัดด้วยวิธี IDW ค่ากำลัง 1

จากตัวอย่างการจัดรูปแบบไฟล์ Generic ASCII (.txt) ตามรูปแบบของ CSCS Model ข้างต้น คือ แบบจำลองค่าต่างพิกัดด้วยวิธี Inverse Distance Weighted (IDW) ค่ายกกำลัง 1 โดย บรรทัดที่ 1 – 5 ประกอบด้วยชื่อแบบจำลองว่า IDW1 เป็นแบบจำลองของการปรับแก้ค่าพิกัดใน ระบบพิกัดฉากคาร์ทีเซียน ด้วยวิธีการประมาณค่าในช่วงแบบเชิงเส้นคู่ อ่านค่าพิกัดเริ่มต้นที่ ตำแหน่งกริดมุมล่างซ้ายโดยมีทิศทางจากทิศตะวันตกไปยังทิศตะวันออก และทิศใต้ขึ้นไปทิศเหนือ มี ตำแหน่งกริดตามแนวแถว 961 ตำแหน่ง และแนวคอลัมภ์ 541 ตำแหน่ง โดยค่าพิกัดเริ่มต้นที่ 5° N, 97° E ระยะห่างระหว่างตำแหน่งกริด 1 ลิปดา ซึ่งมีเพียง 1 แบบจำลองหลักเท่านั้น และในส่วน บรรทัดที่ 6 เป็นต้นไปจะเป็นค่าต่างพิกัดทาง X, Y, และ Z ในหน่วยของเมตร ตามลำดับ ในการสร้าง แบบจำลองค่าปรับแก้พิกัดแบบต่าง ๆ ประกอบด้วยแบบจำลองค่าปรับแก้พิกัดในซอฟต์แวร์ Leica Infinity 3.1 ดังแสดงในรูปที่ 36-37

Coordinate Sys	tem Man	ager								E 32
Import Export	Report	Delete	Coordinate System	Representation (Ellipsoid (Projection Network)	Geoid Model	Determine	Create Geoid Field File	e CSCS d File		
S Coordinate System	ms 🖽 Tr	ansformatio	ons @ Ellip	soids 🐻 Projection	s 🖄 Geoid Model	s 💀 cscs i	Vodels Q		🗐 Propertie 🐰 CS	iCS Field File Generat 🛛
Name Y	Source 1	Z Last N	Vodified 🍸	Original File Name	Y Method Y	Geodetic D	atum Kind Y Coordinate	Type 🍸 Int	DW1	*
Kriging_Exponential	\$	18-12-2	2021 11:49:36	Kriging_Exponential	Cartesian shifts	Local	Geodetic	Bi	▲ CSCS Model	
Kriging_Circular	A	18-12-2	2021 11:50:45	Kriging_Circular	Cartesian shifts	Local	Geodetic	Bi-	Name	IDW1
Natural_Neighbor		18-12-2	2021 09:55:12	Natural_Neighbor	Cartesian shifts	Local	Geodetic	Bi	Last Modified	18-12-2021 15:08:53
IDW2	2	18-12-2	2021 15:07:59	IDW2	Cartesian shifts	Local	Geodetic	Bi-	Path	C:\ProgramD\JDW1.csc
IDW1		18-12-2	2021 15:08:53	IDW1	Cartesian shifts	Local	Geodetic	Bi	Original File Name	IDW1
IDW3	2	18-12-2	2021 10:05:01	IDW3	Cartesian shifts	Local	Geodetic	Bi-	Kind	Cartesian shifts
Kriging_Spherical		18-12-2	2021 11:50:51	Kriging_Spherical	Cartesian shifts	Local	Geodetic	Bi	Geodetic Datum Kind	Local
Spline_Tension	2	18-12-2	2021 10:00:00	Spline_Tension	Cartesian shifts	Local	Geodetic	Bi-	Coordinate Type	Geodetic
Spline_regularized		18-12-2	2021 09:56:54	Spline_regularized	Cartesian shifts	Local	Geodetic	Bi	Interpolation Type	Bi-linear
IDW2_test	2	18-12-2	2021 12:40:35	IDW2_test	Cartesian shifts	WGS84	Geodetic	Bi-	▲ Extents	
Kriging_Linear		18-12-2	2021 11:50:16	Kriging_Linear	Cartesian shifts	Local	Geodetic	Bi	South-West Corner	
Kriging_Gaussian		18-12-2	2021 09:50:55	Kriging_Gaussian	Cartesian shifts	Local	Geodetic	Bi-	Latitude	5.00000000°
									Longitude	97.00000000*
									North-East Corner	
									Latitude	21.00000000*
									Longitude	106.00000000*
									▲ Spacing	
									North-South	D.01666667*
									East-West	0.01666667°
-									Ca	ncel Create
								Meter 🔻	🖓 Decimal Degrees 💌	O Decimal Degrees •

รูปที่ 37 แบบจำลองค่าต่างพิกัด ในซอฟต์แวร์ Leica Infinity 3.1

Image: Dept	🖷 Coordinate Systen	n Manager									0
Conditionation Diffusion Description Conditionation Diffusion Diffusion <th>Import Export Re</th> <th>port Delete</th> <th>Coordinate System</th> <th>sformation 🚵 Geo sold 🔂 CSC ection New</th> <th>id Model S Model Transformation</th> <th>Create C Geoid Field File • Tools</th> <th>reate CSCS Field File</th> <th></th> <th></th> <th></th> <th></th>	Import Export Re	port Delete	Coordinate System	sformation 🚵 Geo sold 🔂 CSC ection New	id Model S Model Transformation	Create C Geoid Field File • Tools	reate CSCS Field File				
Name Y Las Modified Y TransformaY Height Mode Y Residual Distritucion Filipoid Y P D01 18-122021 130833 None WGS84 UT None Coordination Symmetry D02 18-122021 130835 None WGS84 UT None D01 D03 18-122021 120035 None WGS84 UT None D01 D04 18-122021 120035 None WGS84 UT Transformation Type Kriging_Chrule 18-122021 110365 None WGS84 UT Transformation Type Kriging_Chrule 18-122021 110365 None WGS84 UT Transformation Type Kriging_Chrule 18-122021 110365 None WGS84 UT Elipoid WGS84 UT Kriging_Chrule 18-122021 110365 None WGS84 UT Elipoid WGS84 UT Kriging_Chrule 18-122021 10365 None WGS84 UT Geord MG0T TMA0 Geord MG0T	Scoordinate Systems	# Transformatio	ns @ Ellipsoids (🕈 Projections 🛛 💫	Geoid Models 🛛 🐼 CSCS I	Models .	Q,	٦	🗄 Propertie 🕮 C	SCS Field File Ge	nerat
URM Bit-32021 150839 None WGS4 UT Conditation System DM2 18-12-2021 150739 None WGS4 UT Name DM1 DM3_start 18-12-2021 150739 None WGS4 UT Name DM1 DM3_start 18-12-2021 15023 None WGS4 UT Name/Orall None WGS4 UT	Name Y	Last Modified	Y Transforma_ Y	Transforma Y	Height Mode 🍸 Residual	Distribution Y E	lipsoid 🍸	Pr	TIDW1		
UNV2 18-13/2011 130/9 None WG584 UT Newe UDV1 DR02, sett 18-13/2011 120.03 None WG584 UT Lar Modeline Nore<	IDW1	18-12-2021 15:08:	53		None	WG	584	UTI	A Coordinate System	m	
DR02_sett 10-12-021 120:035 None WG54 UTL Mole (IN-12:021 1506) DR03 16-12-021 120:051 None WG384 UTL Tandomation Type Kriging_Crucium 16-12:021 110:055 None WG584 UTL Tandomation Type Kriging_Crucium 16-12:021 110:055 None WG584 UTL Residence Transformation 16-12:021 110:055 None WG584 UTL Residence Transformation WG584 UTL Residence Transformation None WG584 UTL Residence Transformation WG584 UTL Geod Model Tendence Transformation Tendence Transformation Tendence Transformation Tendence Transformation Tende	IDW2	18-12-2021 15:07:	59		None	WG	S84	UTI	Name	IDW1	
DM3 11-12:2021 100:001 Nove WISSA UIT Nove Nove <td>IDW2_test</td> <td>18-12-2021 12:40:</td> <td>35</td> <td></td> <td>None</td> <td>WG</td> <td>584</td> <td>UTI</td> <td>Last Modified</td> <td>18-12-2021</td> <td>15:08:5</td>	IDW2_test	18-12-2021 12:40:	35		None	WG	584	UTI	Last Modified	18-12-2021	15:08:5
Kojng Chruin 10-12:201115045 None W0504 UT Readomation Type Kojng Chruin 10-12:201115036 None W0504 UT Readomation Type Kojng Chruin 10-12:201115036 None W0504 UT Ellipsical W0504 UT Kojng Chruin 10-12:201115036 None W0504 UT Ellipsical UT M040 UT Ellipsical UT M040 UT None W0504 UT None W0504 UT Pagetonin UT M040 UT None W0504 UT Pagetoniny UTM UT VC504 UT Pagetoniny UT None W0504 UT Solution So	IDW3	18-12-2021 10:054	01		None	WG	S84	υm	Transformation	None	- 0
Kojng Sportni 10-12/2021 11/8/36 Nove W0584 UT Reside Distribution Nore Kojng Sportni 18-12/2021 11/8/36 Nove W0584 UT Reparition W0584 UT Geal Model TOMOT W0584 UT Geal Model TOMOT V0794 Spline Tomot W0584 UT Geal Model Tomot W0584 UT Geal Model Tomot W0594 Tomot Geal Model Tomot V07 \$ \$ Spline_Tension 18-12/2021 05/54 Nove W0584 UT Geal Model Tomot \$ \$ Spline_Tension 18-12/2021 10/000 Nove W0584 UT \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Kriging_Circular	18-12-2021 11:505	45		None	WG	584	UΠ	Transformation Type		
Kojng Sansian 11-12:2021 (19:555 None WGSI4 UT Bipolad WGSI4 • Kujng Linear 18-12:2021 (19:505 None WGSI4 UT Pojecilon UTM44 • Kujng Linear 18-12:2021 (19:505 None WGSI4 UT Pojecilon UTM44 • Namuri Negahare 18-12:2021 (19:5512 None WGSI4 UT Geoid Mod41 TOMOT_JIX1* > Spine, Regulared 18-12:2021 (19:5654 None WGSI4 UT Geoid Mod41 TOMOT_JIX1* > Spine, Regulared 18-12:2021 (19:000 None WGSI4 UT Editation DW1 >	Kriging_Exponential	18-12-2021 11:49:	36		None	WG	\$84	υm	Residual Distribution	None	
Noing Line 10-12:2021 11:50:16 Noine WGS84 UT Projection UTMA • Cl Kniging Spherical 18-12:2021 11:50:51 Noine WGS84 UT Projection Type UTM Kniging Spherical 18-12:2021 10:55:12 Noine WGS84 UT Geold Model T0MODT_s112(**) Spline, Regulared 18-12:2021 10:00:00 Noine WGS84 UT CSCS Model 10:V1 * Spline, Resion 18-12:2021 10:00:00 Noine WGS84 UT * *	Kriging_Gaussian	18-12-2021 09:50:	55		None	WG	S84	UTI	Ellipsoid	WGS84	- 6
Knjeng Speland I 11-12:2011 15:051 Nove WIGS4 UTT Spelanding UTI Knjeng Speland I 11-12:2011 15:051 Nove WIGS4 UTT Gerdi Model TGM017,11214 J Spline, Regularized 11-12:2011 15:0554 Nove WIGS4 UTT Gerdi Model TGM017,11214 J Spline, Tention 11-12:2021 10:0005 Nove WIGS4 UTT CICS Model IDV1 J	Kriging_Linear	18-12-2021 11:50:	16		None	WG	\$84	UΠ	Projection	UTM48	• 6
Natural/Register 11-12:2021 02:5512 None W0054 UT Geneil Model TOM017_11/21/4 J Spline/Registrated 18-12:2021 02:5654 None W0584 UT CSCS Model DW1 - Spline/Textion 18-12:2021 10:00:00 None W0504 UT1 CSCS Model DW1 -	Kriging_Spherical	18-12-2021 11:502	51		None	WG	S84	υTh	Projection Type	UTM	
Spine_Tension 11-112-2021 10:00:05 4 Nove WISS84 UT (555 Model 10:W1 • A	Natural_Neighbor	18-12-2021 09:55:	12		None	WG	584	UΠ	Geoid Model	TGM2017_s120	(* 🥖
Spine_Tension 18-12-2021 100000 None W6584 UT	Spline_Regularized	18-12-2021 09:563	54		None	WG	S84	υm	CSCS Model	IDW1	* /
	Spline_Tension	18-12-2021 10:005	00		None	WG	584	UΠ			
Carrel Create										and	reals

รูปที่ 38 แบบจำลองค่าปรับแก้พิกัด ในซอฟต์แวร์ Leica Infinity 3.1

4.5 ความถูกต้องทางตำแหน่งทางราบของแบบจำลองค่าปรับแก้พิกัด

การเปรียบเทียบความถูกต้องของค่าพิกัดทางราบในระบบพิกัด UTM ด้วยการคำนวณหาค่า ต่างทางทิศตะวันออก (Δ E) และทางทิศเหนือ (Δ N) แล้วคำนวณค่าคลาดเคลื่อนทางราบของหมุด ทดสอบและค่ารากที่สองของความคลาดเคลื่อนเฉลี่ยกำลังสอง (RMSE) ของแบบจำลองค่าปรับแก้ พิกัดทางราบ โดยใช้ข้อมูลหมุดทดสอบ 145 ตำแหน่งที่ได้ประมวลผลค่าพิกัดมาแล้วในหัวข้อที่ 4.1.3 ตารางที่ 4 โดยจะเปรียบเทียบค่าพิกัดทางราบบนกรอบพิกัดอ้างอิงสากล ITRF2014 ที่ epoch2020.17 ซึ่งได้ผลลัพธ์ความคลาดเคลื่อนทางราบและความถูกต้องทางตำแหน่งทางราบดังนี้

ລຳຄັນ	แนนเว้าออนด่วยไร้นแก้พิถัดหางราน		ความคล	าดเคลื่อนท	างราบ [ม.]	
61 1910		ค่าต่ำสุด	ค่าสูงสุด	ค่าเฉลี่ย	ค่า SD	RMSE
1	Inverse Distance Weighted power 1	0.0005	0.0889	0.0054	0.0086	0.0101
2	Inverse Distance Weighted power 2	0.0002	0.0888	0.0061	0.0092	0.0111
3	Inverse Distance Weighted power 3	0.0003	0.0892	0.0068	0.0099	0.0120
4	Kriging Spherical	0.0005	0.0861	0.0058	0.0087	0.0104
5	Kriging Circular	0.0005	0.0861	0.0058	0.0086	0.0104
6	Kriging Exponential	0.0005	0.0861	0.0058	0.0086	0.0104
7	Kriging Gaussian	0.0004	0.0867	0.0053	0.0083	0.0098
8	Kriging Linear	0.0004	0.0861	0.0058	0.0086	0.0103
9	Natural Neighbor	0.0003	0.0803	0.0107	0.0127	0.0166
10	Spline Regularized	0.0005	0.0786	0.0117	0.0151	0.0190
11	Spline Tension	0.0003	0.0856	0.0087	0.0118	0.0146

GHULALONGKORN UNIVERSITY ตารางที่ 16 ความคลาดเคลื่อนทางราบและความถูกต้องทางตำแหน่งทางราบ

รูปที่ 39 กราฟความคลาดเคลื่อนทางราบของวิธี IDW

รูปที่ 40 กราฟความคลาดเคลื่อนทางราบของวิธี Kriging

รูปที่ 41 กราฟความคลาดเคลื่อนทางราบของวิธี Natural Neighbor

รูปที่ 42 กราฟความคลาดเคลื่อนทางราบของวิธี Spline

รูปที่ 43 กราฟความถูกต้องทางตำแหน่งทางราบที่ระดับความเชื่อมั่นต่างๆ

4.6 การวิเคราะห์และเปรียบเทียบความถูกต้องด้วยวิธีการทดสอบที (T - test Statistic)

การทดสอบค่าเฉลี่ยของข้อมูลที่ได้จากแบบจำลองทั้ง 11 แบบ ว่ามีค่าเฉลี่ยของค่าพิกัดทาง ราบแตกต่างกันอย่างมีนัยสำคัญหรือไม่ ข้อมูลที่ใช้ในการทดสอบใช้สมมุติฐานกรณีนี้คือ ค่าเฉลี่ยค่า พิกัดทางราบของแบบจำลองแต่ละแบบจำลองซึ่งมีอิสระต่อกัน โดยขั้นตอนการทดสอบมี 2 ขั้นตอน คือ ขั้นตอนที่ 1 ทดสอบสมมติฐานเกี่ยวกับความแปรปรวนของค่าพิกัดทางราบจากค่าพิกัดของแต่ละ แบบจำลอง และขั้นตอนที่ 2 ทดสอบสมมติฐานเกี่ยวกับค่าเฉลี่ยของค่าพิกัดทางราบจากค่าพิกัดของ แต่ละแบบจำลอง (รายละเอียดวิธีการอยู่ในภาคผนวก ง.) ขั้นตอนการทดสอบค่าทางสถิติของ t-Test ของค่าพิกัดทางราบที่ได้จากการปรับแก้พิกัดโดยใช้แบบจำลองการปรับแก้พิกัดทางราบแต่ละ แบบจำลองทำการจับคู่ทดสอบกัน เพื่อวิเคราะห์แบบจำลองทั้ง 11 แบบ ว่าแบบจำลองประเภทใดมี ้ความเหมาะสมในการเลือกใช้มาเป็นแบบจำลองการปรับแก้ค่าพิกัด ให้ไปสู่พิกัดบนกรอบพิกัดอ้างอิง สากล ITRF2014 Epoch 2020.17 โดยผลลัพธ์การจับคู่ทดสอบแบบจำลองทั้ง 11 แบบนั้น ได้ ์ ทั้งหมด 55 ผลลัพธ์ตามรูปภาพที่ 50 และสรุปได้ว่าแบบจำลอง IDW ทั้งดีกรี 1, 2, และ 3 และ Kriging ทั้ง Spherical, Circular, Exponential, Gaussian, และ Linear มีค่าเฉลี่ยค่าพิกัดทางราบ ที่ไม่แตกต่างกัน สามารถนำแบบจำลองปรับแก้พิกัดทางราบดังกล่าวมาเลือกใช้ในการปรับแก้พิกัดที่ ้เหมาะสมได้ ทั้งนี้สามารถสรุปร่วมกับการทดสอบ RMSE ของค่าพิกัดทางราบ จากรูปภาพที่ 42 ได้ว่า แบบจำลองปรับแก้พิกัดทางราบประเภท Kriging Gaussian ให้ค่ารากที่สองของความคลาดเคลื่อน เฉลี่ยกำลังสอง (RMSE) ของแบบจำลองค่าปรับแก้พิกัดทางราบน้อยที่สุด

รูปที่ 44 ผลลัพธ์การทดสอบ T ระหว่างค่าพิกัดทางราบที่ผ่านแบบจำสองในแต่ละแบบจำลอง

variable2 ariable1	IDW-1	2-MQI		IDW-3		Kriging Spherical		Kriging Circular	2	iging Exponent	le	Kriging Gaussiar	_	Kriging Linea	Ŀ	Natural Neigh	ö	Spline Regulari	pəz	Spline Tensio	E
		t Stat	-0.735	t Stat	1.346	t Stat -0.4	451	t Stat -0.	.413	t Stat -(1.413	t Stat 0	.029	t Stat	-0.400	t Stat	-4.232	t Stat	-4.368	t Stat	-2.719
T-M/I		t Critical two-tail	1.968	t Critical two-tail	1.968 t	Critical two-tail 1.5	968 ti	Critical two-tail 1.	.968 t Cri	tical two-tail	.968 t(Critical two-tail	.968 t	Critical two-tail	1.968	t Critical two-tail	1.968	t Critical two-tail	1.968 1	Critical two-tail	1.968
				t Stat	0.620	t Stat 0.2	297	t Stat 0.	.335	t Stat C	1335	t Stat 0	775	t Stat	0.349	t Stat	-3.540	t Stat	-3.762	t Stat	-2.031
7-M/1				t Critical two-tail	1.968 t	Critical two-tail 1.5	968 ti	Critical two-tail 1.	.968 t Cri	tical two-tail	.968 t(Critical two-tail	.968 t	Critical two-tail	1.968	t Critical two-tail	1.968	t Critical two-tail	1.968	Critical two-tail	1.968
C MUI						t Stat 0.5	923	t Stat 0.	.961	t Stat C	1961	t Stat 1	.394	t Stat	0.975	t Stat	-2.925	t Stat	-3.218	t Stat	-1.429
C-W/1					ţ	Critical two-tail 1.5	968 t(Critical two-tail 1.	.968 t Cri	tical two-tail 1	.968 t(Critical two-tail	.968 t	Critical two-tail	1.968	t Critical two-tail	1.968	t Critical two-tail	1.968 1	Critical two-tail	1.968
Vuicine Caboucol								t Stat 0.	.039	t Stat C	039	t Stat 0	.488	t Stat	0.053	t Stat	-3.861	t Stat	-4.041	t Stat	-2.335
Niging Spilelical							t	Critical two-tail 1.	.968 t Cri	tical two-tail	.968 t(Critical two-tail	.968 t	Critical two-tail	1.968	t Critical two-tail	1.968	t Critical two-tail	1.968 1	Critical two-tail	1.968
Vricing Circular										t Stat C	000	t Stat 0	.450	t Stat	0.014	t Stat	-3.897	t Stat	-4.072	t Stat	-2.370
N IGHIS CII CUIAI									t Cri	tical two-tail 1	.968 t(Critical two-tail	.968 t	Critical two-tail	1.968	t Critical two-tail	1.968	t Critical two-tail	1.968 1	Critical two-tail	1.968
Vricina Evanantial												t Stat 0	.450	t Stat	0.014	t Stat	-3.897	t Stat	-4.072	t Stat	-2.370
NIBILIS EXPUTETILIAL											t (Critical two-tail	.968 t	Critical two-tail	1.968	t Critical two-tail	1.968	t Critical two-tail	1.968 1	Critical two-tail	1.968
Vricing Conscient														t Stat	-0.436	t Stat	-4.304	t Stat	-4.427	t Stat	-2.777
IIBIKCUAUSIAII													+	Critical two-tail	1.968	t Critical two-tail	1.968	t Critical two-tail	1.968	Critical two-tail	1.968
Vrining Linoar																t Stat	-3.913	t Stat	-4.086	t Stat	-2.385
NIGHIS LINCAL																t Critical two-tail	1.968	t Critical two-tail	1.968 1	Critical two-tail	1.968
Natural Naichbar																		t Stat	-0.558	t Stat	1.443
																		t Critical two-tail	1.968 1	Critical two-tail	1.968
Culine Renaularized																			l	t Stat	1.879
opilite heugulatieu																			-	Critical two-tail	1.968
Spline Tension																					

62

ศือ ผลลัพธ์การจับคู่แบบจำลองโดยได้ค่าเฉลี่ยของค่าพิกัดทางราบ ที่ไม่แตกต่างกัน ทำให้แบบจำลองไม่มีความแตกต่างกัน หมายเหตุ :

ศือ ผลลัพธ์การจับคู่แบบจำลองโดยได้ค่าเฉลี่ยของค่าพิกัดทางราบ ที่แตกต่างกัน ทำให้แบบจำลองมีความแตกต่างกัน

4.7 การทดสอบความถูกต้องทางตำแหน่งทางราบจากค่าพิกัดเพิ่มเติมในห้วงเวลา Epoch 2020.66, Epoch 2021.66 และ Epoch 2021.93 ด้วยชุดคำสั่งแปลงค่าพิกัดบนกรอบพิกัด อ้างอิงสากล ITRF2014 Epoch 2020.17

การทดสอบความถูกต้องของค่าพิกัดทางราบในระบบพิกัด UTM ด้วยการคำนวณหาค่าต่าง ทางทิศตะวันออก (△E) และทางทิศเหนือ (△N) แล้วคำนวณค่าคลาดเคลื่อนทางราบของหมุดทดสอบ และค่ารากที่สองของความคลาดเคลื่อนเฉลี่ยกำลังสอง (RMSE) ของแบบจำลองค่าปรับแก้พิกัดทาง ราบ โดยใช้ข้อมูลหมุดทดสอบ 145 ตำแหน่งที่ได้ประมวลผลค่าพิกัดมาแล้วในภาคผนวก โดยจะ เปรียบเทียบค่าพิกัดทางราบบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2020.66, Epoch 2021.66 และ Epoch 2021.93 ที่ผ่านชุดคำสั่งแปลงค่าพิกัดบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2020.17 จากภาคผนวก ซึ่งได้ผลลัพธ์ความคลาดเคลื่อนทางราบและความถูกต้องทาง ตำแหน่งทางราบตามตารางที่ 17 ดังนี้

โดยชุดคำสั่งแปลงค่าพิกัดบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2020.17 จาก ภาคผนวกนั้นได้เลือกแบบจำลองปรับแก้พิกัดจากแบบจำลอง Kriging Gaussian ในชุดคำสั่ง และได้ มีการเขียนชุดคำสั่งเพิ่มเติมในส่วนของการใช้วิธีการประมาณค่าในช่วงของค่าต่างพิกัด (Interpolation Method) แบบเชิงเส้นคู่ (Bi-Linear) รวมถึงการนำออกข้อมูลในรูปแบบค่าพิกัดทาง ราบในระบบพิกัด UTM ด้วย ซึ่งสามารถพัฒนาต่อยอดในส่วนของโปรแกรมชุดคำสั่งสำหรับรองรับ การป้อนค่าพิกัดตำแหน่งที่อยู่บนกรอบพิกัดอ้างอิงสากล ITRF2014 ณ Epoch ใดๆ เพื่อแปลงพิกัด ให้กลายเป็นพิกัดอ้างอิงของประเทศไทย โดยสมมุติให้เป็นกรอบพิกัดอ้างอิงสากล ITRF2014 ณ Epoch 2020.17 เพื่อเป็นพิกัดอ้างอิงที่สอดคล้องกันแต่ละหน่วยงาน หรือผู้ใช้งานทั่วไปสามารถนำ ผลลัพธ์ค่าพิกัดที่ได้ไปใช้ประโยชน์ในทิศทางเดียวกัน

ลำดับ	ต่าพิถัด ก⊨EDOCH		ความคล	าดเคลื่อนท	างราบ [ม.]	
61 1010		ค่าต่ำสุด	ค่าสูงสุด	ค่าเฉลี่ย	ค่า SD	RMSE
1	ITRF2014 Epoch 2020.66	0.0004	0.0217	0.0046	0.0031	0.0056
2	ITRF2014 Epoch 2021.66	0.0003	0.0231	0.0060	0.0041	0.0072
3	ITRF2014 Epoch 2021.93	0.0002	0.0253	0.0068	0.0051	0.0085

Chulalongkorn University

ตารางที่ 17 ความคลาดเคลื่อนทางราบและความถูกต้องทางตำแหน่งทางราบของ Epoch 2020.66, Epoch 2021.66 และ Epoch 2021.93

รูปที่ 45 กราฟความคลาดเคลื่อนทางราบของพิกัด ณ Epoch 2020.66

ที่ผ่านแบบจำลองปรับแก้พิกัด

รูปที่ 46 กราฟความคลาดเคลื่อนทางราบของพิกัด ณ Epoch 2021.66 ที่ผ่านแบบจำลองปรับแก้พิกัด

รูปที่ 47 กราฟความคลาดเคลื่อนทางราบของพิกัด ณ Epoch 2021.93 ที่ผ่านแบบจำลองปรับแก้พิกัด

4.8 ผลลัพธ์ค่าพารามิเตอร์ของการประมาณค่าช่วง วิธี Kriging

โดยแบบจำลองที่เลือกใช้จะสอดคล้องกับจุดข้อมูลตัวอย่างหรือไม่ ต้องพิจารณาจากค่า Nugget, Sill และ Range ในกราฟความสัมพันธ์เชิงพื้นที่ระหว่างจุดข้อมูลตัวอย่าง โดยได้ค่า Nugget, Sill, และ Range ดังในรูปภาพที่ 48-59 แล้วนำแบบจำลองความสัมพันธ์ไปใช้หาระยะทาง ระหว่างจุดข้อมูลและค่า Semi-variance เพื่อใช้เป็นค่าน้ำหนักในการประมาณค่าของจุดที่ต้องการ ทราบค่าต่อไป ซึ่งในการหาความสัมพันธ์เชิงพื้นที่ระหว่างจุดข้อมูลตัวอย่างจะใช้แบบจำลองทาง คณิตศาสตร์เพื่อจำลองความสัมพันธ์ ประกอบด้วย Spherical, Circular, Exponential, Gaussian, Linear พร้อมทั้งระบุค่าสถิติในการประมาณค่าในช่วงของแบบจำลองต่างๆ ใน sample ของข้อมูล 80 สถานีของกรมแผนที่ทหารที่นำมาสร้างแบบจำลอง

รูปที่ 48 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Spherical ของค่าต่างทาง X

รูปที่ 49 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Spherical ของค่าต่างทาง Y

รูปที่ 50 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Spherical ของค่าต่างทาง Z

รูปที่ 51 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Circular ของค่าต่างทาง X

รูปที่ 52 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Circular ของค่าต่างทาง Y

รูปที่ 53 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Circular ของค่าต่างทาง Z

รูปที่ 54 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Exponential ของค่าต่างทาง X

รูปที่ 55 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Exponential ของค่าต่างทาง Y

รูปที่ 56 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Exponential ของค่าต่างทาง Z

รูปที่ 57 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Gaussian ของค่าต่างทาง X

รูปที่ 58 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Gaussian ของค่าต่างทาง Y

รูปที่ 59 ค่าพารามิเตอร์การประมาณค่าในช่วง Kriging แบบ Gaussian ของค่าต่างทาง Z

บทที่ 5 สรุปผลการวิจัย

จากการศึกษาสร้างแบบจำลองค่าปรับแก้พิกัดทางราบและเปรียบเทียบความถูกต้องของค่า พิกัดทางราบสำหรับใช้ในการแปลงค่าพิกัดบนกรอบพิกัดอ้างอิงสากล ITRF2014 ที่ Epoch 2020.17 เพื่อรองรับการปรับเปลี่ยนค่าพิกัดทางราบให้สอดคล้องกับการเคลื่อนตัวของแผ่นเปลือกโลกและ สามารถใช้งานร่วมกันระหว่างหน่วยงาน โดยใช้สถานีอ้างอิงถาวรของกรมแผนที่ทหาร 80 สถานีที่ กระจายตัวทั่วพื้นที่ประเทศไทยเป็นหมุดร่วมในการคำนวณหาค่าต่างพิกัดของช่วงเวลาที่ต่างกัน และ สร้างแบบจำลองค่าต่างพิกัดทางราบด้วยการประมาณค่าในช่วง 4 วิธีซึ่งประกอบด้วย วิธี Inverse Distance Weighted (IDW), วิธี Kriging, วิธี Natural Neighbor และวิธี Spline แล้วนำแบบจำลอง ค่าต่างพิกัดทางราบมาสร้างเป็นแบบจำลองค่าปรับแก้พิกัดทางราบโดยดำเนินการตรวจสอบด้วยหมุด ทดสอบ 145 ตำแหน่งที่กระจายตัวทั่วพื้นที่ประเทศไทย ซึ่งได้อภิปรายผลการวิจัยและผลการ วิเคราะห์แบบจำลองค่าปรับแก้พิกัดทางราบดังนี้

5.1 อภิปรายผลความถูกต้องทางตำแหน่งทางราบของแบบจำลองค่าปรับแก้พิกัดทางราบ

จากการเปรียบเทียบความถูกต้องของค่าพิกัดทางราบที่ได้จากการแปลงพื้นหลักฐานด้วย แบบจำลองค่าปรับแก้พิกัดทางราบโดยใช้หมุดทดสอบ 145 ตำแหน่ง สามารถสรุปได้ดังนี้

5.1.1 แบบจำลองค่าปรับแก้พิกัดทางราบด้วยวิธี IDW

ใช้ค่ายกกำลัง (Power) เท่ากับ 1, 2 และ 3 ให้ความถูกต้องทางตำแหน่งทางราบอยู่ที่ 0.010, 0.011 และ 0.012 เมตร ตามลำดับ โดยมีความคลาดเคลื่อนทางราบเฉลี่ยอยู่ที่ 0.005 ± 0.009, 0.006 ± 0.009 และ 0.007 ± 0.010 เมตร ตามลำดับ และมีความคลาดเคลื่อนทางราบ สูงสุดอยู่ที่ 0.089, 0.088 และ 0.089 เมตร ตามลำดับ

5.1.2 แบบจำลองค่าปรับแก้พิกัดทางราบด้วยวิธี Kriging

ใช้แบบจำลอง (Semi-Variogram model) คือ Spherical, Circular, Exponential, Gaussian และ Linear ให้ความถูกต้องทางตำแหน่งทางราบอยู่ที่ 0.010, 0.010, 0.010, 0.009 และ 0.010 เมตร ตามลำดับ โดยมีคลาดเคลื่อนทางราบเฉลี่ยอยู่ที่ 0.006 ± 0.009, 0.006 ± 0.009, 0.006 ± 0.009, 0.005 ±0.008 และ 0.006 ± 0.009 เมตร ตามลำดับ และมีค่าความคลาดเคลื่อน ทางราบสูงสุดอยู่ที่ 0.086, 0.086, 0.086, 0.087 และ 0.086 เมตร ตามลำดับ

5.1.3 แบบจำลองค่าปรับแก้พิกัดทางราบด้วยวิธี Natural Neighbor

ให้ความถูกต้องทางตำแหน่งทางราบอยู่ที่ 0.017 เมตร โดยมีความคลาดเคลื่อนทางราบเฉลี่ย อยู่ที่ 0.011 ± 0.013 เมตร และมีความคลาดเคลื่อนทางราบสูงสุดอยู่ที่ 0.080 เมตร

5.1.4 แบบจำลองค่าปรับแก้พิกัดทางราบด้วยวิธี Spline

โดยใช้ประเภท (Spline type) คือ Regularized และ Tension ให้ความถูกต้องทาง ตำแหน่งทางราบอยู่ที่ 0.019 และ 0.015 เมตร ตามลำดับ โดยมีความคลาดเคลื่อนทางราบเฉลี่ยอยู่ที่ 0.012 ± 0.015 และ 0.009 ± 0.012 เมตร ตามลำดับ และมีความคลาดเคลื่อนทางราบสูงสุดอยู่ที่ 0.079 และ 0.086 เมตร ตามลำดับ

โดยสรุปผลการปรับแก้พิกัดทางราบของสถานีทดสอบ 145 ตำแหน่ง สำหรับกรอบพิกัด อ้างอิงสากล ITRF2014 Epoch 2020.17 ในประเทศไทยด้วยแบบจำลองค่าปรับแก้พิกัดทางราบจาก แบบจำลองค่าต่างพิกัดด้วยวิธี IDW, Kriging, Natural Neighbor และ Spline มีความถูกต้องทาง ตำแหน่งทางราบอยู่ที่ 0.011, 0.010, 0.017 และ 0.017 เมตร ตามลำดับ โดยมีความคลาดเคลื่อน ทางราบเฉลี่ยอยู่ที่ 0.006 ± 0.010, 0.006 ± 0.009, 0.011 ± 0.013 และ 0.011 ± 0.014 เมตร ตามลำดับและมีความคลาดเคลื่อนทางราบสูงสุดอยู่ที่ 0.0890, 0.0860, 0.0860 และ 0.0821 เมตร ตามลำดับ และมีความคลาดเคลื่อนทางราบต่ำสุดอยู่ที่ 0.0003, 0.0005, 0.0003 และ 0.0004 เมตร ตามลำดับ เมื่อพิจารณาที่ระดับความเชื่อมั่น 95% มีความถูกต้องทางตำแหน่งทางราบอยู่ที่ 0.022, 0.020, 0.032 และ 0.033 เมตร ตามลำดับ และที่ระดับความเชื่อมั่น 99.7% มีความถูกต้องทาง ตำแหน่งทางราบอยู่ที่ 0.032, 0.031, 0.050 และ 0.051 เมตร ตามลำดับ ดังนั้นแบบจำลอง IDW, Kriging, Natural Neighbor และ Spline สามารถใช้แบบจำลองชนิดใดก็ได้เมื่อพิจารณาถึงความ ถูกต้องในระดับเซนติเมตร เนื่องจากมีค่าความถูกต้องทางตำแหน่งที่ต่างกันเล็กน้อย แต่แบบจำลอง ้ค่าปรับแก้พิกัดทางราบจากแบบจำลองค่าต่างพิกัดด้วยวิธี Kriging แบบ Gaussian ให้ค่าพิกัดทาง ราบมีความถูกต้องสูงที่สุดเมื่อพิจารณาค่าความถูกต้องทางตำแหน่งทางราบที่ระดับมิลลิเมตร ซึ่ง สามารถปรับแก้พิกัดทางราบสำหรับกรอบพิกัดอ้างอิงสากล ITRF2014 ในประเทศไทยให้มีความ ถูกต้องอยู่ในระดับต่ำกว่า 2 ซม. และที่ระดับความเชื่อมั่น 95% มีความถูกต้องอยู่ในระดับต่ำกว่า 3 ซม. และที่ระดับความเชื่อมั่น 99.7% มีความถูกต้องอยู่ในระดับต่ำกว่า 4 ซม. ตามลำดับ

5.2 อภิปรายผลวิเคราะห์ด้วยวิธีการทดสอบที (T - test Statistic)

การทดสอบค่าเฉลี่ยของข้อมูลที่ได้จากแบบจำลองทั้ง 11 แบบ ซึ่งข้อมูลกลุ่มตัวอย่างที่ใช้ใน การทดสอบสมมุติฐานกรณีนี้คือ ค่าเฉลี่ยของค่าพิกัดทางราบในแต่ละแบบจำลองทั้ง 11 แบบซึ่งมี ้อิสระต่อกันทดสอบด้วยพิกัดอ้างอิง 80 สถานีจากสถานีกรมแผนที่ทหาร จากจำนวนสถานีอ้างอิง พิกัดถาวรทั้งหมด 229 สถานีในประเทศไทย โดยที่ใช้ในการทดสอบได้อ้างอิงจากค่าต่างพิกัดทางราบ ที่เปรียบเทียบกับพิกัดตำแหน่งอ้างอิงที่มีความถูกต้องสูงจากการคำนวณด้วยซอฟต์แวร์เชิงวิจัย ณ ช่วงเวลาหนึ่งและมีแนวโน้มการเปลี่ยนแปลงพิกัดที่คงที่สอดคล้องกับการเคลื่อนที่ของแผ่นเปลือกโลก มั่นใจได้ว่าข้อมูล Observation ที่จะนำมาสร้างแบบจำลองมีความเสถียรทางด้านพิกัดตำแหน่งพอ ทำให้ผลการจับคู่จะได้การทดสอบจำนวน n(n-1)/2 หรือ 55 ครั้ง เมื่อ n คือจำนวนแบบจำลอง ซึ่ง สรุปได้ว่าแบบจำลอง IDW ทั้งดีกรี 1, 2, และ 3 และ Kriging ทั้ง Spherical, Circular, Exponential, Gaussian, และ Linear มีค่าเฉลี่ยค่าพิกัดทางราบที่ไม่แตกต่างกัน สามารถนำ แบบจำลองปรับแก้พิกัดทางราบดังกล่าวมาเลือกใช้ในการปรับแก้พิกัดที่เหมาะสมแบบใดก็ได้ โดย พิจารณาแล้วว่า Mean และ Variance ของ Variable ที่จับคู่ทดสอบกันมีผลลัพธ์ไม่ต่างกัน ต่างจาก แบบจำลอง Natural Neighbor, Spline ทั้ง Regularized และ Tension ถ้ามีการจับคู่ทดสอบ พบว่าทั้ง 3 แบบจำลองนี้ได้ค่าเฉลี่ยค่าพิกัดทางราบที่แตกต่างกัน โดยพิจารณาจากค่า t ของการ ทดสอบอยู่นอกขอบเขตช่วงของ t-Critical เมื่อพิจารณาแบบจำลอง Natural Neighbor มีค่า Mean และ Variance ที่ค่อนข้างใหญ่เมื่อจับคู่กับแบบจำลองทั้งหมด ซึ่งอาจจะไม่เหมาะสมในการเลือกใช้ แบบจำลองชนิดนี้ และเมื่อพิจารณาแบบจำลอง Spline ทั้ง Regularized และ Tension พบว่า แบบจำลอง Spline วิธี Tension ให้ผลลัพธ์ Mean และ Variance ที่ดีกว่าวิธี Regularized แต่ค่า Variance ค่อนข้างสูงหากเปรียบเทียบกับแบบจำลองอื่นๆ

ทั้งนี้สามารถสรุปร่วมกับการทดสอบค่ารากที่สองของความคลาดเคลื่อนเฉลี่ยกำลังสอง (RMSE) ของค่าพิกัดทางราบเพิ่มเติมได้ว่าแบบจำลองปรับแก้พิกัดทางราบของ IDW ทั้งดีกรี 1, 2, และ 3 และ Kriging ทั้ง Spherical, Circular, Exponential, Gaussian, และ Linear ให้ค่ารากที่ สองของความคลาดเคลื่อนเฉลี่ยกำลังสอง (RMSE) ของแบบจำลองค่าปรับแก้พิกัดทางราบน้อยที่สุด เพื่อประกอบการตัดสินใจในการเลือกแบบจำลอง เมื่อพิจารณาความคลาดเคลื่อนในระดับเซนติเมตร แบบจำลอง IDW ทั้งดีกรี 1, 2, และ 3 และ Kriging ทั้ง Spherical, Circular, Exponential, Gaussian, และ Linear มีความแตกต่างกันเล็กน้อย เมื่อพิจารณาความคลาดเคลื่อนในระดับ มิลลิเมตร พบว่าแบบจำลอง Kriging วิธี Gaussian ให้ค่ารากที่สองของความคลาดเคลื่อนเฉลี่ยกำลัง สอง (RMSE) ของแบบจำลองค่าปรับแก้พิกัดทางราบน้อยที่สุดในบรรดาแบบจำลองทั้ง 11 แบบ

5.3 อภิปรายผลความสามารถในการปรับแก้ของแบบจำลองค่าปรับแก้พิกัดทางราบ

แบบจำลองค่าปรับแก้พิกัดทางราบจากแบบจำลองค่าต่างพิกัดด้วยวิธี Kriging Gaussian ให้ ค่าพิกัดทางราบมีความถูกต้องสูงที่สุด จากหัวข้อ 5.1 โดยจากการวิเคราะห์ค่าปรับแก้พิกัดทางราบ และช่วงค่าปรับแก้พิกัดทางราบของแบบจำลองทั่วพื้นที่ประเทศไทยได้ผลลัพธ์ดังนี้

	ค่าปรับแก้	า้พิกัดทาง
พาทา เงศเษา	E [ม.]	N [ม.]
ค่าต่ำสุด	-0.0043	-0.0194
ค่าสูงสด	0.0047	0.0553
ค่าเฉลี่ย	0.0009	0.0011
ค่า SD	0.0015	0.0066

ตารางที่ 18 ค่าปรับแก้พิกัดทางทิศตะวันออก [E] และทางทิศเหนือ [N] ของแบบจำลองค่าต่างพิกัดด้วยวิธี Kriging

รูปที่ 60 แผนภาพโวโรนอยของช่วงค่าปรับแก้พิกัดทางทิศตะวันออก (E) และทางทิศเหนือ (N) ทั่ว พื้นที่ประเทศไทย

5.4 อภิปรายผลวิเคราะห์การประมาณค่าในช่วงด้วยวิธี Kriging

จากการวิเคราะห์ความเหมาะสมของการประมาณค่าในช่วงด้วยวิธี Kriging ด้วยข้อมูล Semi variogram ด้วยซอฟต์แวร์ ArcMap ตามในรูปภาพที่ 61-63 จากค่าต่างพิกัดทาง X, Y, และ Z ของ สถานีกรมแผนที่ทหารของทั้ง 80 สถานี ที่นำมาสร้างแบบจำลองพบว่าบางสถานีมีค่าต่างที่ค่อนข้าง สูงในทิศทางต่างๆเมื่อพิจารณาจากค่า Variance เทียบกับระยะทางดังกล่าว แต่ในกระบวนการของ Kriging นั้นจะช่วยลดการรบกวนของอัตราการเคลื่อนที่ที่ค่อนข้างสูงในพื้นที่ย่อย ๆ ของพื้นผิวที่มี ความต่อเนื่องของอัตราการเคลื่อนที่นี้ในค่าต่างพิกัดในทิศทาง X, Y, และ Z จาก (Bogusz et al., 2014) ที่ได้จัดทำ velocity field ของพื้นที่กริด Northing และ Easting ในประเทศโปแลนด์และ สรุปได้ว่าวิธี Kriging ได้ถูกนำมาใช้ในการสร้างแบบจำลองต่อเนื่องและมีแนวโน้มลดผลกระทบการ รบกวนได้ดี และยิ่งไปกว่านั้นการทดสอบด้วยแบบจำลองต่อเนื่องและมีแนวโน้มลดผลกระทบการ รบกวนได้ดี และยิ่งไปกว่านั้นการกดสอบด้วยแบบจำลองต่อเนื่องและมีแนวโน้มลดผลกระทบการ อยกวนได้ดี และยิ่งไปกว่านั้นการทดสอบด้วยแบบจำลองต่อเนื่องและมีแนวโน้มลดผลกระทบการ อบกวนได้ดี และยิ่งไปกว่านั้นการทดสอบด้วยแบบจำลองต่อเนื่องและมีแนวโน้มลดผลกระทบการ มาวนได้ดี และยิ่งไปกว่านั้นการทดสอบด้วยแบบจำลองต่อเนื่องและมีแนวโน้มลดผลกระทบการ มาวนได้ดี และยิ่งไปกว่านั้นการสร้างแบบจำลอง ดีงนี้ว่า Kriging แบบ Gaussian ให้ค่า Mean Error, Root Mean Squared Error, และ Root Mean Squared deviation ratio ค่อนข้างดีกว่าแบบ อื่นๆ และนำมาใช้ในการสร้างแบบจำลอง ซึ่งสอดคล้องกับงานวิจัยนี้ที่ได้สรุปแบบจำลองค่าปรับแก้ พิกัดทางราบจากแบบจำลองค่าต่างพิกัดด้วยวิธี Kriging แบบ Gaussian ให้ค่าพิกัดทางราบมีความ ถูกต้องสูงที่สุด

รูปที่ 61 Semi-variogram ค่าต่างพิกัดทาง X ของสถานีกรมแผนที่ทหาร 80 สถานี

รูปที่ 62 Semi-variogram ค่าต่างพิกัดทาง Y ของสถานีกรมแผนที่ทหาร 80 สถานี

รูปที่ 63 Semi-variogram ค่าต่างพิกัดทาง Z ของสถานีกรมแผนที่ทหาร 80 สถานี

5.5 วิเคราะห์โปรแกรมชุดคำสั่งสำหรับรองรับการป้อนค่าพิกัดตำแหน่ง

การทดสอบความถูกต้องของค่าพิกัดทางราบในระบบพิกัด UTM โดยชุดคำสั่งแปลงค่าพิกัด บนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2020.17 ได้เลือกแบบจำลองปรับแก้พิกัดจาก แบบจำลอง Kriging Gaussian ในชุดคำสั่ง และได้มีการเขียนชุดคำสั่งเพิ่มเติมในส่วนของการใช้ วิธีการประมาณค่าในช่วงของค่าต่างพิกัด (Interpolation Method) แบบเชิงเส้นคู่ (Bi-Linear) รวมถึงการนำออกข้อมูลในรูปแบบค่าพิกัดทางราบในระบบพิกัด UTM ด้วย

ผลลัพธ์ที่ได้ตามตางรางที่ 17 เมื่อทดสอบกับค่าพิกัดเพิ่มเติม ณ Epoch ที่ 2020.66 มี ความคลาดเคลื่อนทางราบอยู่ที่ 0.006 เมตร ความคลาดเคลื่อนทางราบเฉลี่ย 0.005 ± 0.003 เมตร ความคลาดเคลื่อนทางราบสูงสุดและต่ำสุด 0.022 และ 0.0004 เมตร ตามลำดับ ผลการทดสอบค่า พิกัดเพิ่มเติม ณ Epoch ที่ 2021.66 มีความคลาดเคลื่อนทางราบอยู่ที่ 0.007 เมตร ความคลาด เคลื่อนทางราบเฉลี่ย 0.006 ± 0.004 เมตร ความคลาดเคลื่อนทางราบอยู่ที่ 0.007 เมตร ความคลาด เคลื่อนทางราบเฉลี่ย 0.006 ± 0.004 เมตร ความคลาดเคลื่อนทางราบสูงสุดและต่ำสุด 0.023 และ 0.0003 เมตร ตามลำดับ และผลการทดสอบค่าพิกัดเพิ่มเติม ณ Epoch ที่ 2021.93 มีความคลาด เคลื่อนทางราบอยู่ที่ 0.007 เมตร ความคลาดเคลื่อนทางราบเฉลี่ย 0.006 ± 0.004 เมตร ความคลาด เคลื่อนทางราบอยู่ที่ 0.007 เมตร ความคลาดเคลื่อนทางราบเฉลี่ย 0.006 ± 0.004 เมตร ความคลาด เคลื่อนทางราบสูงสุดและต่ำสุด 0.023 และ 0.0003 เมตร ตามลำดับ เมื่อพิจารณาที่ระดับความ เชื่อมั่น 95% มีความถูกต้องทางตำแหน่งทางราบอยู่ที่ 0.006, 0.008 และ 0.010 เมตร ตามลำดับ และที่ระดับความเชื่อมั่น 99.7% มีความถูกต้องทางตำแหน่งทางราบอยู่ที่ 0.009, 0.012 และ 0.015 เมตร ตามลำดับ

รูปที่ 64 ค่าความคลาดเคลื่อนทางราบจากค่าพิกัดเพิ่มเติมในห้วงเวลา Epoch 2020.66, Epoch 2021.66 และ Epoch 2021.93 ตามลำดับ

5.6 ปัญหาและข้อเสนอแนะ

5.4.1 เนื่องจากความสมบูรณ์ของข้อมูลรังวัดสัญญาณดาวเทียม GNSS ของสถานีอ้างอิง ถาวรในห้วงเวลาดังกล่าว ทำให้ไม่สามารถประมวลผลค่าพิกัดร่วมกันทั้งหมด 229 สถานีได้ ทำให้ จำเป็นต้องทำการตัดบางสถานีออกโดยจำแนกจากค่าพิกัดที่ประมวลผลค่าพิกัดแล้วได้ค่าพิกัดเฉลี่ยที่ แกว่งเกิน 2 ซม. ซึ่งสถานีที่ทำการตัดออกไป 4 สถานี คือ 1. สถานี AUPG (สำนักงานที่ดินจังหวัด ตาก อำเภอ อุ้มผาง) 2. สถานี CNBR (กรมโยธาธิการและผังเมือง จังหวัดชลบุรี) 3. สถานี KPNG (สำนักงานที่ดินจังหวัดสุราษฎร์ธานี อำเภอเกาะพะงัน) และ 4. สถานี NKRM (กรมโยธาธิการและผัง เมือง จังหวัดนครราชสีมา) โดยทั้ง 4 สถานีนี้เป็นสถานีทดสอบทั้งหมด ทำให้จำนวนสถานีทดสอบจะ อยู่ที่ 145 ตำแหน่ง

5.4.2 ในการทดสอบแบบจำลองค่าปรับแก้พิกัดทางราบด้วยสถานีทดสอบ 145 ตำแหน่งยัง ไม่สามารถเป็นตัวแทนที่ดีของประเทศไทยได้เนื่องจากการดำเนินงานเรื่องการรับสัญญาณไม่ ครอบคลุมทั่วประเทศ จึงเลือกใช้หมุดทดสอบ 145 ตำแหน่งเพื่อเป็นตัวแทนผลลัพธ์ในขั้นต้นของ ความถูกต้องทางตำแหน่งทางราบของแบบจำลอง ดังนั้นจึงควรมีการทดสอบแบบจำลองเพิ่มเติมด้วย การเพิ่มจำนวนสถานีทดสอบและให้มีการกระจายตัวทั่วพื้นที่ประเทศไทย

5.4.3 เนื่องจากข้อมูลรังวัดของสถานีทดสอบใช้ข้อมูลรังวัดสัญญาณดาวเทียม GNSS ของ สถานีอ้างอิงถาวรในขั้นต้นเท่านั้น โดยใช้ข้อมูลเพียงแค่ 7 วัน แล้วนำค่าพิกัดที่ได้มาเฉลี่ยเป็นตัวแทน ของสถานี ณ Epoch นั้นๆ ทำให้ผลการทดสอบแบบจำลองค่าปรับแก้พิกัดทางราบจะพบว่ามีสถานี ทดสอบในบางพื้นที่ยังมีความคลาดเคลื่อนทางราบค่อนข้างสูง โดยสาเหตุอาจจะเกิดจากความ สมบูรณ์ของข้อมูลรังวัดในห้วงเวลาดังกล่าวของสถานีทดสอบ อันเนื่องมาจากความต่อเนื่องของการ รับสัญญาณ ดังนั้นควรจะมีการเพิ่มระยะเวลาของการรับสัญญาณดาวเทียม GNSS ของสถานีอ้างอิง ถาวรในพื้นที่ดังกล่าวเพิ่มเติมด้วยการเพิ่มจำนวนเวลาการรับสัญญาณและเพิ่มจำนวนสถานีทดสอบ

5.4.4 ในกรณีที่แบบจำลองค่าปรับแก้พิกัดทางราบไม่สามารถให้ผลลัพธ์ที่ดีได้ครอบคลุมทั่ว พื้นที่ประเทศไทย เนื่องจากแบบจำลองค่าปรับแก้เป็นแบบจำลองหลัก ซึ่งจะมีความสามารถในการ ปรับแก้ค่าพิกัดที่มีความละเอียดไม่เพียงพอ ดังนั้นควรมีการสร้างแบบจำลองค่าต่างแยกย่อยขึ้นมาใน พื้นที่ที่มีปัญหาด้วยการติดตามการเคลื่อนตัวและคำนวณหาค่าต่างเพิ่มเติม เพื่อนำมาสร้าง แบบจำลองค่าต่างและแบบจำลองค่าปรับแก้ในพื้นที่ดังกล่าว

5.4.5 ในการประมาณค่าในช่วงด้วยวิธี Kriging อาจจะต้องมีการคำนึงถึงทิศทาง (Direction) และระยะทาง (Distance) ของการประมาณค่าพิกัดทาง X, Y, และ Z รวมอยู่ด้วยเผื่อความสมบูรณ์ ของแบบจำลอง โดยการเคลื่อนที่ของสถานีที่ใช้ในการสร้างแบบจำลองจากรูปภาพที่ 2 สามารถนำมา วิเคราะห์ anisotropy เพื่อดูทิศทางของแกนการเอียงตัวของโมเดลที่เหมาะสมของวิธีการ Kriging 5.4.6 เนื่องจากงานวิจัยนี้ได้สร้างแบบจำลองค่าปรับแก้พิกัดจากการหาค่าต่างพิกัดต่อหน่วย เวลา (mm./year) โดยใช้ข้อมูลเพียง 7 วัน จากปี 2020 กับ 2021 เท่านั้น โดยแนวโน้มการเคลื่อน ตัวของแผ่นเปลือกตลอดทั้งปีนั้นมีลักษณะแกว่งไปมา ซึ่งโดยมีความชัน (slope) ไม่เป็นเส้นตรง ทำให้ การใช้แบบจำลองนี้มีแนวโน้มคลาดเคลื่อนเพิ่มขึ้นเมื่อนำข้อมูลทดสอบ ณ Epoch ใดๆที่ระยะเวลา ห่างเกินไปเมื่อนำมาแปลงค่าพิกัดเข้าสู่ ITRF2014 Epoch 2020.17 จึงจำเป็นต้องเพิ่มการเก็บข้อมูล ในทุกๆรายสัปดาห์เพื่อนำมาประมวลผลดูค่าพิกัด (weekly solution) เพื่อติดตามอัตราการเคลื่อน ตัวของค่าพิกัด เพื่อศึกษาเพิ่มเติมและนำไปใช้เป็น local velocity ของประเทศไทยต่อไป

5.4.7 เนื่องจากการเคลื่อนตัวของแผ่นเปลือกโลกเกิดขึ้นอยู่ตลอดเวลา ซึ่งส่งผลกระทบ โดยตรงต่อการอ้างอิงทางตำแหน่งด้วยค่าพิกัด ดังนั้นหน่วยงานในประเทศไทยควรมีการปรับปรุงค่า พิกัดให้อ้างอิงบนพื้นหลักฐานหรือกรอบพิกัดอ้างอิงสากลที่สอดคล้องกับการเคลื่อนตัวของแผ่น เปลือกให้มากที่สุดและใช้ค่าพิกัดอ้างอิงบนพื้นหลักฐานหรือกรอบพิกัดอ้างอิงสากลให้สอดคล้องกันทั้ง ประเทศ หวังว่าในงานวิจัยนี้จะเป็นส่วนหนึ่งในการต่อยอดในการผลิตกระบวนการเพื่อแปลงพิกัดให้ เข้าสู่กรอบอ้างอิงสากลในประเทศให้มีความถูกต้องสูงที่สุด เพื่อให้เกิดการบูรณาการระหว่าง หน่วยงานและให้สามารถใช้งานค่าพิกัดอ้างอิงร่วมกันได้ทั้งประเทศ ซึ่งจะเป็นประโยชน์อย่างมากต่อ งานด้านการสำรวจของประเทศไทยในอนาคต และเพื่อการแข่งขันกับนานาประเทศในด้านต่างๆ ใน การยกระดับสร้างความเข้มแข็งทางเศรษฐกิจและแข่งขันได้อย่างยั่งยืนให้กับประเทศของเราในเวที โลก

CHULALONGKORN UNIVERSITY

ภาคผนวก ก. ขั้นตอนการสร้างแบบจำลองค่าปรับแก้พิกัดทางราบ

<u>ขั้นตอนที่ 1</u> การสร้างแบบจำลองค่าต่างพิกัดทางราบจะใช้ค่าต่างพิกัดทางราบของโครงข่ายสถานีรับ สัญญาณดาวเทียมของกรมแผนที่ทหาร 80 สถานีเป็นจุดข้อมูลตัวอย่างในการประมาณค่าในช่วงเพื่อ สร้างพื้นผิวข้อมูลที่มีความต่อเนื่องและดึงค่าต่างพิกัดทางราบมาเก็บไว้บนตำแหน่งกริด โดยจะใช้ ซอฟต์แวร์ ArcGIS Desktop 10.8 ในที่นี้จะแสดงตัวอย่างการสร้างแบบจำลองค่าต่างพิกัดทางราบ โดยการประมาณค่าในช่วงด้วยวิธี Inverse Distance Weighted ค่ายกกำลัง 1 (IDW-1) ดังนี้

 ประมาณค่าต่างพิกัดทางราบเพื่อสร้างพื้นผิวแบ่งข้อมูลออกเป็น 3 ส่วน คือ ค่าต่างพิกัด ทาง X ทาง Y และทาง Z ด้วยเครื่องมือ ArcToolbox >> 3D Analyst >> Raster Interpolation >> IDW >> กำหนด Output Cell size: 1' (0.016667°) และ Power: 1

รูปที่ 65 การเลือกใช้เครื่องมือ Raster Interpolation

T IDW	- 0	×	
Input point features			\sim
2020_2021_RTSD	_	6	
Z value field			
dX		\sim	
Output raster		_	
C:\Users\manki\OneDrive\Desktop\Reverse_ARC\IDW1_dx		2	
Output cell size (optional)			
0.016667		2	
Power (optional)		1	
Search radius (optional)			
Variable V			
Search Radius Settings			
Number of points: 12			
Maximum distance:			
Input barrier polyline features (optional)			
		6	
OK Cancel Environments	Show H	Help >>	
			_

รูปที่ 66 ตั้งค่าการประมาณค่าพื้นผิวด้วยวิธี IDW ค่ายกกำลัง 1

	77. GERRAGINGERA					
🛠 Environment Settings						>
Workspace						,
[≠] Output Coordinates						1
* Processing Extent						
Extent						
As Specified Below				\sim	6	
	Тор					
		21.000000				
Left 97.000000			Right	106.000000		
571000000	Bottom			100.000000		
		5.000000				
Snap Raster						
					2	
XX Resolution and Tolerance						
M Values						
M Values						
۶ M Values ۶ Z Values						
% M Values % Z Values % Geodatabase						
× M Values × Z Values × Geodatabase × Geodatabase Advanced						

รูปที่ 67 ตั้งค่ากำหนดขอบเขตการประมาณค่าในช่วง Processing Extent

รูปที่ 68 ผลลัพธ์ประมาณค่าพื้นผิวค่าต่างพิกัดด้วยวิธี IDW ค่ายกกำลัง 1

2. สร้างกริดขนาด 1 ลิปดาหรือประมาณ 1.85 กม. ด้วยเครื่องมือ ArcToolbox >> Data Management Tools >> Sampling >> Create Fishnet >> ก ำ ห น ด Template Extent: 97-106°E, 5-21°N และ Geometry Type: Polygon

รูปที่ 69 การเลือกใช้เครื่องมือ Create Fishnet

Create Fishnet				-		
Output Feature Class						
C:\Users\manki\OneDrive\Desktop\Reverse_ARC	C\Gridcell.shp					2
Template Extent (optional)						
					~	2
	Тор					_
		21.000000				
Left			Rig	ht		
97.000000				106.00	0000	
	Botton	1				
		5.000000		C	lear	
Fishnet Origin Coordinate						
(Coordinate		Y Coordinate				
	97					5
(-Avis Coordinate						
(Coordinate		Y Coordinate				
	97					15
Cell Size Width						
					0.0166	67
Cell Size Height						
Sell Size Height					0.0166	67
t					0.0100	
NUMBER OF ROWS						
there and Calence						
vumber of Columns						
Departies corpor of Eichnot (optional)						
Coordinate		Y Coordinate				
(door dimate	106					21
_						
Create Label Points (optional)						
Geometry Type (optional)						
POLYGON						\sim
	E C	OK	Cancel	omonto	Chow Mail	
	L	OK	Cancel Enviro	nments	Show Hel	ib >>

รูปที่ 70 ตั้งค่าการสร้างกริดขนาด 1 ลิปดาครอบคุลมพื้นที่ 97-106°E และ 5-21°N

รูปที่ 71 ผลลัพธ์การสร้างกริดขนาด 1 ลิปดา

และสร้างตำแหน่งกริดบนมุมร่วมของช่องกริดด้วยเครื่องมือ ArcToolbox >> Data Management Tools >> Features >> Feature Vertices to Points >> กำหนด Point Type: Start

ocerring Curtomize Windows Help		
20 🔤 👪 🖅 💥 🔘 🖬 🖥		
📔 🔝 📔 📻 🤅 Geostatistical Analyst 🕶 🥪 👳 🗄 3D Analyst	• 🕪 IDW1_dx 💽 🎲 🚵 🕹 🖆	L *
	ArcToolbox	×
	arcToolbox	
	🛞 🚳 3D Analyst Tools	
	🕀 😋 Analysis Tools	
	🗄 🚳 Cartography Tools	
	Genversion Tools	
	🗄 😋 Data Interoperability Tools	
	😑 🚳 Data Management Tools	
	Archiving	
	Attachments Attachments	
	Data Companison Data Companison Data Companison	
	🕫 🗞 Domains	
	🗉 🗞 Feature Class	
	🖃 🗞 Features	
	Add Geometry Attributes	333.
	Add XY Coordinates	
FILL FILL FILL FILL FILL FILL FILL FILL	Adjust 3D Z	
	Bearing Distance To Line	Seature Vertices To Points - X
	Conv Featurer	
	S Delete Features	
	Dice	Input Features
4 1	Feature Envelope To Polygon	
	Feature To Line	
	Feature To Point	Output Feature Class
	Feature To Polygon	Children hand a low and the Cite Defendent and the Cite and the Market and the Cite
	Feature Vertices To Points	c. bseis Auguin (hormieurs An cats heranic 3on Jainiceil To An-1
	Minimum Paradian Garmata	Point Type (optional)
	Multipart To Singlepart	START
	Record and a subject of subject o	
	Polygon To Line	
	Repair Geometry	
	🔨 Split Line at Point	
	Split Line At Vertices	· · · · · · · · · · · · · · · · · · ·
	Table To Ellipse	
	Unsplit Line	
	ArcToolbox Catalog	OK Cancel Environments Show Help >>
	7.7 7.7 6056	

รูปที่ 72 การเลือกใช้เครื่องมือ Feature Vertices to Points

รูปที่ 73 ตำแหน่งกริดบนมุมร่วมที่ระยะ 1 ลิปดา

 คำนวณค่าพิกัดทางราบของตำแหน่งกริดด้วยเครื่องมือ Open Attribute Table >> Add Field ค่าพิกัดทางละติจูดและลองจิจูด >> Calculate Geometry >> เลือกคำนวณ Y-Coordinate สำหรับค่าพิกัดทางละติจูด และ X-Coordinate สำหรับค่าพิกัดทางลองจิจูด

THESIS MAN myd - ArcMan	
File Edit View Bookmarks Insert Selection Geoprocessing Customize Windows Hel	Add Field X
i 🗋 🚰 🖶 🐥 i % 🗃 🏝 🗙 🔊 🍽 🔶 - 1:500,000 🚽 📈 📼 🗊 🖓 🚳	
i • • • • • • • • • • • • • • • • • • •	Name: latitude
:Editor・トトレノアロ・米 四山:中×① 国国 🕫 🕫 Geostatistical Analys	Type:
Table Of Contents Table Of Contents	Double V
	Field Properties
□	Alias
□ ☑ Gridcell_FeatureVerticesToPo4	Allow NULL Values Yes
C:\Users\manki\OneDrive\Deskton\Reverse AR(Default Value
Gridcell Table	
- 🖬 2020 2021 📴 🖣 🖶 幅 👧 🖾 🐢 🗶	
dX A Find and Replace	
 -0.0130-	
0.01134 Clear Selection	OK Cancel
0.02354 Select All	
0.03574 Add Field	Add Field X
CiUsersiman 🗄 Turn All Fields On Add Field	
☐ ✔ ShapeThai ✔ Show Field Aliases Adds a new field to the table.	Name: longitude
Arrange Tables	
Restore Default Column Widths	Type: Double V
Kestore Default Held Order	Deld Desertion
□ idw1_dz Related Tables	Field Properties
Value 0.0337 din Create Graph	Alias
0.02850 Add Table to Layout	Allow NULL Values Yes
0.02331 C Reload Cache	
0.01293. 🖨 Print	
0.00774 Reports	
-0.0026	
□ idw1_dy Appendice	
0.04414 29 Point 0 28	OK Cancel
0.03537/1 30 (Point 0 29)	
	(5)
รงไที่ 74 การสร้าง Field ของค่าพิกัดข	ทางราง เงเขตำแหงปุ่งกริด
	, , , , , , , , , , , , , , , , , , , ,
Table	VERSITY
⊡ ▼ 🛱 ▼ 🖷 🜠 🖂 🗠 🗙	
Gridcell_FeatureVerticesToPo4	
FID* Shape* Id ORIG_FID latitude	Calculate Geometry X
1 Point 0 0 Null> Sort Ascending	
2 Point 0 1 <null> 🖉 Sort Descending</null>	Property: Y Coordinate of Point ~
3 Point 0 2 <null> Advanced Sorting</null>	Coordinate System
4 Point 0 3 <nul></nul>	Ise coordinate system of the data source:
6 Point 0 4 (Null> Summarize	GCS: WGS 1984
7 Point 0 6 Shulls Statistics	
8 Point 0 7 <null></null>	O Use coordinate system of the data frame:
9 Point 0 8 <null> Calculate Geometry</null>	GCS: WGS 1984
10 Point 0 9 <null></null>	
11 Point 0 10 <null></null>	Units: Decimal Degrees V
12 Point 0 11 <nul> Freeze/Unfreeze Column</nul>	
14 Point 0 13 Auth V Delete Field	Calculate selected records only
	About calculating geometry OK Cancel

รูปที่ 75 การคำนวณค่าพิกัดทางราบบนตำแหน่งกริด

FID *	Shape *	ld	ORIG_FID	latitude	longitude
1	Point	0	0	5	97
2	Point	0	1	5	97.016667
3	Point	0	2	5	97.033334
4	Point	0	3	5	97.050001
5	Point	0	4	5	97.066668
6	Point	0	5	5	97.083335
7	Point	0	6	5	97.100002
8	Point	0	7	5	97.116669
9	Point	0	8	5	97.133336
10	Point	0	9	5	97.150003
11	Point	0	10	5	97.16667
12	Point	0	11	5	97.183337
13	Point	0	12	5	97.200004
14	Point	0	13	5	97.216671
15	Point	0	14	5	97.233338
16	Point	0	15	5	97.250005
17	Point	0	16	5	97.266672
18	Point	0	17	5	97.283339
19	Point	0	18	5	97.300006
20	Point	0	19	5	97.316673
21	Point	0	20	5	97.33334
22	Point	0	21	5	97.350007
23	Point	0	22	5	97.366674
24	Point	0	23	5	97.383341
25	Point	0	24	5	97.400008
26	Point	0	25	5	97.416675
27	Point	0	26	5	97.433342
28	Point	0	27	5	97.450009
29	Point	0	28	5	97.466676
30	Point	0	29	5	97.483343
31	Point	0	30	5	97.50001
32	Point	0	31	5	97.516677
33	Point	0	32	5	97.533344
34	Point	0	33	5	97.550011

รูปที่ 76 ค่าพิกัดทางราบบนตำแหน่งกริด

และดึงค่าต่างพิกัดทางราบจากพื้นผิวมาเก็บไว้บนตำแหน่งกริดตามตำแหน่งพิกัดทาง ราบด้วยเครื่องมือ ArcToolbox >> Spatial Analyst Tools >> Extraction >> Extract Multi Values to Points >> เลือกค่าต่างพิกัดทาง X ,ทาง Y และทาง Z

ArcToolbox		
🙀 ArcToolbox	A	
🕀 💱 3D Analyst Tools	10	
🗉 🚳 Analysis Tools		
🗄 😭 Cartography Tools		
Genversion Tools		
🗄 🚳 Data Interoperability Tools	· · · · · · · · · · · · · · · · · · ·	
🗉 📦 Data Management Tools	าเมหาวทยาลย	
🗄 🚳 Editing Tools		
🗉 🚳 Geocoding Tools		
🗄 🚳 Geostatistical Analyst Tools	KORN UNIVERSITY	
🗉 🏟 Linear Referencing Tools		
🗄 🚳 Multidimension Tools		
🗉 🚳 Network Analyst Tools		
🗄 🚳 Parcel Fabric Tools		
🗄 🌍 Schematics Tools		
🕀 🌍 Server Tools		
😑 😂 Spatial Analyst Tools		
🕀 🗞 Conditional	Extract Multi Values to Points	- 🗆 ×
🕀 🇞 Density		
🕀 🇞 Distance	Input point reatures	
🖃 🗞 Extraction	ondcell_reatureventices loP 04	L 🙋
🔨 Extract by Attributes	Input rasters	- 6
🔨 Extract by Circle		L 🗾 💆
🔨 Extract by Mask	Raster	Output field name
🔨 Extract by Points	♦ IDW1_dx	IDW1_dx
🔨 Extract by Polygon	oidw1_dy	idw1_dy
🔨 Extract by Rectangle	⊘idw1_dz	idw1_dz
🔨 Extract Multi Values to Points		
K Extract Values to Points		OK Cancel Environments Show Help >>
🔨 Sample		

รูปที่ 77 การเลือกใช้เครื่องมือ Extract Multi Values to Points การดึงค่าต่างพิกัดมาไว้บน ตำแหน่งกริด

Ì	dcell Fea	tureVertices	ToPo4						
1	EID *	Shape *	ld	ORIG FID	latitude	longitude	IDW1 dx	idw1 dv	idw1 o
1	115	Point	0	540	5.016667	97	0.015729	0.003779	0.0115
1	116	Point	0	541	5.016667	97.016667	0.01573	0.003777	0.0115
1	117	Point	0	542	5.016667	97.033334	0.015732	0.003775	0.0115
1	118	Point	0	543	5.016667	97.050001	0.015733	0.003773	0.0115
1	119	Point	0	544	5.016667	97.066668	0.015735	0.003771	0.0115
1	120	Point	0	545	5.016667	97.083335	0.015736	0.003769	0.0115
1	121	Point	0	546	5.016667	97.100002	0.015738	0.003766	0.0115
1	122	Point	0	547	5.016667	97.116669	0.01574	0.003764	0.0115
1	123	Point	0	548	5.016667	97.133336	0.015742	0.003762	0.0115
]	124	Point	0	549	5.016667	97.150003	0.015743	0.00376	0.0115
1	125	Point	0	550	5.016667	97.16667	0.015745	0.003758	0.0115
]	126	Point	0	551	5.016667	97.183337	0.015747	0.003755	0.0115
1	127	Point	0	552	5.016667	97.200004	0.015749	0.003753	0.0115
1	128	Point	0	553	5.016667	97.216671	0.015751	0.003751	0.0115
]	129	Point	0	554	5.016667	97.233338	0.015753	0.003748	0.0115
]	130	Point	0	555	5.016667	97.250005	0.015754	0.003746	0.0115
]	131	Point	0	556	5.016667	97.266672	0.015756	0.003744	0.0115
]	132	Point	0	557	5.016667	97.283339	0.015759	0.003741	0.0115
]	133	Point	0	558	5.016667	97.300006	0.015761	0.003739	0.0115
]	134	Point	0	559	5.016667	97.316673	0.015763	0.003737	0.0115
]	135	Point	0	560	5.016667	97.33334	0.015765	0.003734	0.011
]	136	Point	0	561	5.016667	97.350007	0.015767	0.003732	0.011
]	137	Point	0	562	5.016667	97.366674	0.015769	0.003729	0.0115
]	138	Point	0	563	5.016667	97.383341	0.015771	0.003727	0.0115
]	139	Point	0	564	5.016667	97.400008	0.015774	0.003725	0.0115
]	140	Point	0	565	5.016667	97.416675	0.015776	0.003722	0.0115
]	141	Point	0	566	5.016667	97.433342	0.015778	0.00372	0.0115
]	142	Point	0	567	5.016667	97.450009	0.015781	0.003717	0.0115
]	143	Point	0	568	5.016667	97.466676	0.015783	0.003715	0.0115
]	144	Point	0	569	5.016667	97.483343	0.015786	0.003712	0.0115
J	145	Point	0	570	5.016667	97.50001	0.015788	0.003709	0.0115
J	146	Point	0	571	5.016667	97.516677	0.015791	0.003707	0.0115
1	147	Point	0	572	5.016667	97.533344	0.015794	0.003704	0.0115
1	148	Point	0	573	5.016667	97.550011	0.015796	0.003702	0.011

รูปที่ 78 Attribute แบบจำลองค่าต่างพิกัดด้วยวิธี IDW ค่ายกกำลัง 1

ขั้นตอนที่ 2 การสร้างแบบจำลองค่าปรับแก้พิกัดทางราบจะต้องใช้แบบจำลองค่าต่างพิกัดซึ่งเป็น ส่วนประกอบหลักของแบบจำลอง โดยการสร้างพื้นหลักฐานขึ้นมาใหม่ (Coordinate System) ประกอบด้วยแบบจำลองค่าต่างพิกัด (CSCS Model) โดยใช้ซอฟต์แวร์ Leica Infinity 3.1 ใน ขั้นตอนการสร้างแบบจำลองค่าปรับแก้พิกัดทางราบรวมถึงการทดสอบแบบจำลองด้วยในที่นี้จะแสดง การสร้างแบบจำลองค่าปรับแก้พิกัดทางราบ ประกอบด้วยแบบจำลองค่าต่างพิกัดทางราบด้วยวิธี Inverse Distance Weighted ค่ายกกำลัง 1 (IDW1)

Import Export	Report (Delete Coordinate System	Hi Transformation 🖄 Ellipsoid M Projection New	Geoid Model CSCS Model Tran	etermine sformation	Create CSCS File • Field File Tools			
😸 Coordinate System	ns 🕂 Tran	sformations	oids 📓 Projections	⊱ Geoid Models	CSCS Models	Q.		📄 Propertie 🕮 CS	CS Field File General
Name Y	Source Y	Last Modified 🛛 🖞	Original File Name 🍸	Method Y	Geodetic Datum Kind $~$	Coordinate Type 🍸	Inte	New CSCS Model	1
(riging_Exponential	2	18-12-2021 11:49:36	Kriging_Exponential	Cartesian shifts	Local	Geodetic	Bi-I		
(riging_Circular		18-12-2021 11:50:45	Kriging_Circular	Cartesian shifts	Local	Geodetic	Bi-I	Name	IDW1
latural_Neighbor		18-12-2021 09:55:12	Natural_Neighbor	Cartesian shifts	Local	Geodetic	Bi-I	Last Modified	
DW2		18-12-2021 15:07:59	IDW2	Cartesian shifts	Local	Geodetic	Bi-I	Path	C\IDW1.csc
DW1	<u>s</u>	15-02-2022 13:37:55	IDW1	Cartesian shifts	Local	Geodetic	Bi-I	Original File Name	IDW1
DW3	- 2	18-12-2021 10:05:01	IDW3	Cartesian shifts	Local	Geodetic	Bi-I	Kind	Cartesian shifts
riging_Spherical	<u>s</u>	18-12-2021 11:50:51	Kriging_Spherical	Cartesian shifts	Local	Geodetic	Bi-I	Geodetic Datum Kind	Local
pline_Tension	- 2	18-12-2021 10:00:00	Spline_Tension	Cartesian shifts	Local	Geodetic	Bi-I	Coordinate Type	Geodetic
pline_regularized	<u>s</u>	18-12-2021 09:56:54	Spline_regularized	Cartesian shifts	Local	Geodetic	Bi-I	Interpolation Type	Bi-linear
DW2_test	- 2	18-12-2021 12:40:35	IDW2_test	Cartesian shifts	WGS84	Geodetic	Bi-I	∡ Extents	
riging_Linear	- 5	18-12-2021 11:50:16	Kriging_Linear	Cartesian shifts	Local	Geodetic	Bi-I	South-West Corner	
riging_Gaussian	- 2	18-12-2021 09:50:55	Kriging_Gaussian	Cartesian shifts	Local	Geodetic	Bi-I	Latitude	5.0000000
								Longitude	97.0000000
								North-East Corner	
								Latitude	21.0000000
								Longitude	106.0000000
								▲ Spacing	
								North-South	0.01666667
								East-West	0.01666667

1. นำเข้าแบบจำลองค่าต่างพิกัดทางราบที่ได้แปลงไฟล์ให้อยู่ในรูปแบบของ CSCS Model แล้ว

รูปที่ 79 แบบจำลองค่าต่างพิกัดทางราบด้วยวิธี IDW ค่ายกกำลัง 1

 สร้างแบบจำลองค่าปรับแก้พิกัดทางราบโดยเลือกการแปลงพื้นหลักฐานและแบบจำลองค่าต่าง พิกัดทางราบที่ได้สร้างไว้แล้ว

ତ୍ତ Coordinate System Manager 🔤 ଅ											
Import Export R	eport Delete	Coordinate System	Geoid Model CSCS Model Determine Transformation	Create Geoid Field File ▼ Tools							
Coordinate Systems	# Transformation	ons 🐵 Ellipsoids 👹 Projections	🖄 Geoid Models 🛛 🙀 CSCS N	Nodels 🖕 🔍	🔚 Propertie 🛛 CSCS Field File Generat 🕮						
Name Y	Last Modified	Y Transforma Y Transforma	Y Height Mode Y Residual	Distribution Y Ellipsoid Y	🐔 New Coordinate	System 💌					
IDW1	15-02-2022 13:37	:55	None	WGS84	▲ Coordinate System	n					
IDW2	18-12-2021 15:07	:59	None	WGS84	Name	IDW1					
IDW2_test	18-12-2021 12:40	:35	None	WGS84	Last Modified						
IDW3	18-12-2021 10:05	:01	None	WGS84	Transformation	None 🔻 🕕					
Kriging_Circular	18-12-2021 11:50	:45	None	WGS84	Transformation Type						
Kriging_Exponential	18-12-2021 11:49	:36	None	WGS84	Residual Distribution	None 👻					
Kriging_Gaussian	18-12-2021 09:50	:55	None	WGS84	Ellipsoid	WGS84 🝷 🚺					
Kriging_Linear	18-12-2021 11:50	:16	None	WGS84	Projection	UTM47 🔻 🚺					
Kriging_Spherical	18-12-2021 11:50	:51	None	WGS84	Projection Type	UTM					
Natural_Neighbor	18-12-2021 09:55	:12	None	WGS84	Geoid Model	TGM2017_s120(👻 🦯					
Spline_Regularized	18-12-2021 09:56	:54	None	WGS84	CSCS Model	IDW1 👻 🦯					
Spline_Tension	18-12-2021 10:00	:00	None	WGS84							
4				► 🧳 Meter 🔻	Ca	ncel Create					

รูปที่ 80 แบบจำลองค่าปรับแก้พิกัดทางราบด้วยวิธี IDW ค่ายกกำลัง 1

และในการทดสอบจะนำเข้าค่าพิกัดทางราบของหมุดทดสอบ 145 ตำแหน่งบนกรอบพิกัดอ้างอิง สากล ITRF2014 Epoch 2021.17 โดยจัดไฟล์ให้อยู่ในรูปแบบของ Text (Comma delimited) แล้วทดสอบการปรับแก้ค่าพิกัดสำหรับกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2021.17 ไปสู่ ITRF2014 Epoch 2020.17 ด้วยแบบจำลองค่าปรับแก้พิกัดทางราบ แล้วนำค่าพิกัดทางราบที่ได้ไป เปรียบเทียบความถูกต้องทางตำแหน่งทางราบตามลำดับ

ู่หาลงกรณํมหาวิทยาลัย

🔚 Chec	k2021.csv 🖸
1	Sta,x,y,z,E,N,lat,lon,ell_h
2	AMK0,-883144.2546,6010906.998,1937627.296,431991.2611,1968245.508,17.80063754,98.35830373,785.0002429
3	AWLK, -956898.451, 6237553.718, 923074.184, 469361.0532, 926012.7694, 8.377232999, 98.72170682, -7.220457143
4	AYYA, -1134356.422, 6075002.989, 1572057.252, 670023.5426, 1588598.303, 14.36431003, 100.5767667, -14.58075714
5	BDNG,-1394062.238,5916172.571,1926911.227,951972.1623,1962200.828,17.7008254,103.2590701,147.8297714
6	BGKN,-1429610.434,5884459.076,1996199.622,992248.7074,2036236.508,18.35921062,103.6552693,131.7792714
7	BGSP,-1025844.612,6171496.229,1237207.948,547761.7819,1244744.534,11.25982744,99.43758718,7.1187
8	BKOK, -1164774.712, 5954584.534, 1961139.586, 718916.9846, 1994173.392, 18.02499246, 101.0678607, 402.3709286
9	BLAN,-1092605.783,6093002.937,1531704.732,625964.7246,1546725.063,13.98814433,100.1663082,-17.89755714
10	BLMG,-1173899.739,6106033.697,1416075.377,704241.7078,1428318.858,12.91348908,100.882473,-12.50178571
11	BNMG,-1424892.356,5903605.377,1942688.826,984551.5276,1979584.103,17.85056147,103.569372,134.6415571
12	BNNR,-1245302.568,6020376.345,1693509.556,788249.5357,1715418.079,15.49983396,101.6866994,186.6489571
13	BNPE, -1312990.638, 5935131.939, 1925599.192, 868621.0468, 1959105.16, 17.68835088, 102.4742662, 158.7574333
14	BNPG,-1490327.994,5883321.51,1954981.017,1052777.951,1994342.561,17.96729659,104.2148152,127.4821429
15	BNST, -1237503.604, 6218448.747, 691007.1212, 749514.2744, 692638.1784, 6.261418018, 101.2551161, 46.82074286
16	BOBR,-1391662.843,5971556.567,1750910.61,940888.5832,1777625.3,16.03893124,103.1185492,151.3257286
17	BOKO,-1166457.853,5914134.5,2079169.612,726902.3166,2118715.404,19.14899612,101.1573686,709.9411429
18	BORI,-1351917.666,6077445.218,1380185.518,884865.0891,1393374.389,12.58082436,102.5411536,11.0023
19	BPLE, -1165298.114, 6090154.925, 1489142.349, 698226.5366, 1503351.932, 13.59202402, 100.8321216, -18.40445714
20	BRAI,-1018998.54,6075037.504,1649079.867,556085.6405,1667653.305,15.08372905,99.521888,125.3465429

รูปที่ 81 รูปแบบไฟล์ข้อมูลค่าพิกัดทางราบของหมุดทดสอบ

Import ASCII Ten	nplate Editor									
Template			Preview							
Name	manny_XYZ	#	Point Id▼	WGS84 X 🔻	WGS84 Y 🔫	WGS84 Z 🔻	Unused 🔻	Unused 🔻	Unused 🔻	Unused
Settings		1	Sta	х	У	z	E	N	lat	lon
Start import at row	2 🗘	2	AMKO	-883144.254	6010906.998	1937627.296	431991.2611	1968245.508	17.80063754	98.35830
Column Sonarator	-	3	AWLK	-956898.451	6237553.718	923074.184	469361.0532	926012.7694	8.377232999	98.72170
Column Separator	Treat Consecutiv	4	AYYA	-1134356.422	6075002.989	1572057.252	670023.5426	1588598.303	14.36431003	100.57676
Decimal Separator	Local format (.) 🔹	5	BDNG	-1394062.238	5916172.571	1926911.227	951972.1623	1962200.828	17.7008254	103.2590
Coordinate	WGS84 Cartesian 🔹	6	BGKN	-1429610.434	1 5884459.076	1996199.622	992248.7074	2036236.508	18.35921062	103.6552
Height Mode	Ellipsoidal 👻	7	BGSP	-1025844.612	2 6171496.229	1237207.948	547761.7819	1244744.534	11.25982744	99.43758
Point Role	User-entered 🔹	8	BKOK	-1164774.712	2 5954584.534	1961139.586	718916.9846	1994173.392	18.02499246	101.0678
Linear Unit	Meter 👻	9	BLAN	-1092605.783	6093002.937	1531704.732	625964.7246	1546725.063	13.98814433	100.1663
Format	DD MM SS 👻	10	BLMG	-1173899.739	6106033.697	1416075.377	704241.7078	1428318.858	12.91348908	100.8824
Attribute		11	BNMG	-1424892.350	5 5903605.377	1942688.826	984551.5276	1979584.103	17.85056147	103.5693
Separator	/ •	12	BNNR	-1245302.568	6020376.345	1693509.556	788249.5357	1715418.079	15.49983396	101.6866
Value Separator	- *	13	BNPE	-1312990.638	5935131.939	1925599.192	868621.0468	1959105.16	17.68835088	102.47420
Preview	x=1/y=2	14	BNPG	-1490327.994	5883321.51	1954981.017	1052777.951	1994342.561	17.96729659	104.21483
		15	BNST	-1237503.604	6218448.747	691007.1212	749514.2744	692638.1784	6.261418018	101.25511
		16	BOBR	-1391662.843	3 5971556.567	1750910.61	940888.5832	1777625.3	16.03893124	103.1185
			BOKO	-1166457.853	3 5914134.5	2079169.612	726902.3166	2118715.404	19.14899612	101.1573
		18	BORI	-1351917.66	5 6077445.218	1380185.518	884865.0891	1393374.389	12.58082436	102.5411
									OK	Cancel

รูปที่ 82 การนำเข้าข้อมูลค่าพิกัดทางราบของหมุดทดสอบ

			6/ //	1 1.00	<u> 880. – .</u>					
<mark>0 🖍 🗠 🏦 🗘 </mark>	5 🗟 🧍	3		Revers	e_XYZ - Leica Infinit	У				n 🛛 🗱 e 🛛 Su
File Home	Processing	Surfaces Point Clouds	Imaging Infras	tructure Adjus	tments Features	External Services				<u>^</u>
Import Export R	eports Go	ogle orth Point Station O New	bservation Lay	Survey Data Thematic Co ager Referenced Layers	odes -	Clip Feature WFS Base Map Info Map Services	Link	Unlink Georeference Image	COGO Coord	nates
🛞 Navigator 🛛 🕅	¢ل View			ූ	Inspector					x
٩	1/2 Feat	tures 🚦 TPS 💸 GNSS 🎲	🔨 Level 🖾 Imag	jing 🏯 Infrastru	ucture 🛛 🗱 Adjusti	ments 💿 Feature Coding			٩	
▲ Library	1	Points								
▲ [®] _{®®} Points [▲]		Point Id Y	X [m] 🏻 🍸	Y [m] Y	Z [m] 🏾 🍸	Latitude [°]	Y	Longitude [°] 🏾 🍸	Ellip. Height [🍸	WGS84
He e		O AMKO (18-12-2021	-883,144.2264	6,010,906.9974	1,937,627.3056	17.800	63763" N	98.35830347* E	784.9983	1
O AMK		O AWLK (18-12-2021	-956,898.4363	6,237,553.7227	923,074.1946	8.3772	23309° N	98.72170668° E	-7.2167	
O AWLK		O AYYA (18-12-2021	-1,134,356.3951	6,075,002.9917	1,572,057.2624	14.3643	31013° N	100.57676642* E	-14.5800	1
O AYYA	1 2	O BDNG (18-12-2021	-1,394,062.2082	5,916,172.5756	1,926,911.2374	17.700	82550° N	103.25906985° E	147.8307	1
O BDNC V		O BGKN (18-12-2021	-1,429,610.4042	5,884,459.0810	1,996,199.6326	18.3592	21073° N	103.65526900° E	131.7802	1
4 Source		O BGSP (18-12-2021	-1,025,844.5891	6,171,496.2265	1,237,207.9592	11.259	82755" N	99.43758698° E	7.1152	1
Check2021 cs		O BKOK (18-12-2021	-1,164,774.6819	5,954,584.5359	1,961,139.5947	18.0249	99255° N	101.06786044° E	402.3692	1
		O BLAN (18-12-2021	-1,092,605.7589	6,093,002.9404	1,531,704.7434	13.988	14444* N	100.16630803* E	-17.8959	1
		O BLMG (18-12-2021	-1,173,899.7143	6,106,033.7000	1,416,075.3874	12.9134	48918° N	100.88247272° E	-12.501	None
		O BNMG (18-12-2021	-1,424,892.3266	5,903,605.3823	1,942,688.8364	17.850	56156° N	103.56937176° E	134.643	IDW1
		O BNNR (18-12-2021	-1,245,302.5372	6,020,376.3465	1,693,509.5629	15.4998	83403° N	101.68669907° E	186.646	IDW2
		O BNPE (18-12-2021	-1,312,990.6075	5,935,131.9425	1,925,599.2018	17.6883	35097° N	102.47426595° E	158.757	IDW2_test
		O BNPG (18-12-2021	-1,490,327.9644	5,883,321.5155	1,954,981.0275	17.9672	29669" N	104.21481492* E	127.483	IDW3
 Archive 		O BNST (18-12-2021	-1,237,503.5800	6,218,448.7484	691,007.1417	6.2614	41821° N	101.25511588° E	46.820	Kriging_Circular
 Exported Files 		O BOBR (18-12-2021	-1,391,662.8126	5,971,556.5707	1,750,910.6200	16.038	93134° N	103.11854888° E	151.325	Kriging_Exponential
		O BOKO (18-12-2021	-1,166,457.8246	5,914,134.5012	2,079,169.6185	19.1489	99618° N	101.15736834° E	709.939	Kriging_Gaussian
		O BORI (18-12-2021	-1,351,917.6398	6,077,445.2227	1,380,185.5289	12.5800	82446° N	102.54115338° E	11.004	Kriging_Linear
		O BPLE (18-12-2021	-1,165,298.0888	6,090,154.9281	1,489,142.3594	13.5920	02411° N	100.83212133* E	-18.403	Kriging_Spherical
		O BRAI (18-12-2021 1	-1,018,998.5138	6,075,037.5112	1,649,079.8786	15.083	72915° N	99.52188775° E	125.352	Natural_Neighbor
<		O BTAK (18-12-2021	-961.971.3945	6.023.304.4057	1.858.216.1733	17.050	60859* N	99.07397728* E	93.412	Spline_regularized
22						o ji =	s R	⊘ Meter 🝷 👌 De	cimal Degrees 🔻	IDW1 A

รูปที่ 83 การทดสอบแบบจำลองค่าปรับแก้พิกัดทางราบของหมุดทดสอบ
ภาคผนวก ข. ชุดคำสั่งแปลงค่าพิกัดบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2020.17

Created on Mon Jan 28 ,2022 @Author: Metha Noinak @Surveying Engineering, Chulalongkorn University

@Email: 6370239721@student.chula.ac.th

....

.....

from outputXYZ import *

++++++++++ กำหนดค่า ++++++++++++

....

....

input_file =?

ตำแหน่งที่เก็บไฟล์ค่าพิกัดที่อยู่ในระบบ Geodetic บนพื้นหลักฐาน WGS84 โดยมีรูปแบบ *.csv (คั่นด้วยสัญลักษณ์ , (comma))การเรียงข้อมูลดังนี้

No, X, Y, Z, epoch

1, 663423.3434, 1563433.231, -23.2322, 47, 2021.17

2, 463485.3434, 1563633.731, -40.7322, 48, 2021.17

ตัวอย่าง input_file = r'C:\Users\manki\OneDrive\Desktop\Python for begingner\input_file.csv'

output_file =?

```
ตำแหน่งที่เก็บไฟล์ผลลัพธ์ ซึ่งมีรูปแบบดังนี้
```

No, X, Y, Z, Lat, Lon, h, E47, N47, E48, N48

ตัวอย่าง output_file = r'C:\Users\manki\OneDrive\Desktop\Python for begingner\\output_file.csv'

ขั้นตอนการคำนวณ

- 1) กำหนดค่า input_file และ output_file
- 2) ประมวลผลโดยอ่านค่าพิกัดจากไฟล์ input_file แล้วประมวลผลดังนี้ 👘 🗄
 - 2.1 แปลงค่าพิกัด ITRF ที่ epoch ใดๆ ไปยัง ITRF 2014 epoch 2020.17 ตามที่กำหนดในตัวแปร
 - 2.2 บันทึกผลลัพธ์ลงไฟล์ ตามที่กำหนดในตัวแปร output file

หมายเหตุ จำเป็นต้องติดตั้งไลบรารีที่สำคัญดังนี้คือ

- pyproj วิธีติดตั้งพิมพ์คำสั่ง pip install pyproj
- pandas วิธีติดตั้งพิมพ์คำสั่ง pip install pandas

m

input_file = r'C:\Users\manki\OneDrive\Desktop\Python for begingner\input_file_mid_2020.csv'
output_file= r'C:\Users\manki\OneDrive\Desktop\Python for begingner\output_file_mid_2020.csv'

PPP_To_RTSD_ITRF2014_2020(input_file,output_file)

Created on Mon Jan 28 ,2022 @Author: Metha Noinak @Surveying Engineering, Chulalongkorn University @Email: 6370239721@student.chula.ac.th """ import os import os import sys import pyproj import numpy as np from math import radians import pandas as pd import subprocess

def PPP_To_RTSD_ITRF2014_2020(input_file,output_file):

try:

```
cwd = os.path.dirname(os.path.abspath(__file__))
```

Kriging = os.path.join(cwd,r'C:\Users\manki\OneDrive\Desktop\Python for

begingner\Kriging_Gaussian.csv')

```
df_corr = pd.read_csv(Kriging)
```

```
df = pd.read_csv(input_file)
```

```
with open(output_file,'w') as f:
```

f.write('No,X,Y,Z,Lat,Lon,h,E47,N47,E48,N48\n')

```
i = 0;
```

for index, row in df.iterrows():

```
i +=1
```

```
ini_epoch = 2020.17
```

X_in,Y_in,Z_in,time_epoch = row['X'],row['Y'],row['Z'],row['epoch']

```
lat,lon,h = xyz2lla(X_in,Y_in,Z_in)
```

nlat,nlon,h = xyz2lla(nX,nY,nZ)

X_corr,Y_corr,Z_corr = getCorr(df_corr,lat,lon) # กริดชดเชยค่าต่างพิกัด

```
nX,nY,nZ = X_in-(X_corr*(ini_epoch-time_epoch)),Y_in-(Y_corr*(ini_epoch-time_epoch)),Z_in-
```

(Z_corr*(ini_epoch-time_epoch))

```
# แปลงพิกัด ECEF เป็น Geodetic (lat.lon.h)
```

ปรับแก้ค่าพิกัดจากกริดชดเชยค่าต่างพิกัด

E47,N47,h = lla2utm(nlat,nlon,h,47) # us

```
# แปลงพิกัด Geodetic (lat,lon,h) ไปเป็น UTM ZONE 47
```

E48,N48,h = lla2utm(nlat,nlon,h,48) # แปลงพิกัด Geodetic (lat,lon,h) ไปเป็น UTM ZONE 48

เขียนผลลัพธ์ลงไฟล์ output_file ในรูปแบบ csv (ใช้ , คั่น)

```
result = str(i)
result += ',' + '{:.4f}'.format(nX) + ',' + '{:.4f}'.format(nY) + ',' + '{:.4f}'.format(nZ)
result += ',' + DectoDMS(nlat,'lat')+ ',' + DectoDMS(nlon,'lon')+ ',' + '{:.3f}'.format(h)
result += ',' + '{:.3f}'.format(E47)+ ',' + '{:.3f}'.format(N47)
```

```
result += ',' + '{:.3f}'.format(E48)+ ',' + '{:.3f}'.format(N48)
f.write(result + '\n' )
```

```
path = os.path.dirname(output_file)
```

subprocess.Popen('explorer ' + path) # เปิดโฟลเดอร์ที่เขียนไฟล์ผลลัพธ์

print('Processing Complete.')

except :

print("Unexpected error:", sys.exc_info()[0])

raise

return True

def getCorr(df,lat,lon):

Input

m

df : Kriging dataframe

lat,lon in degree

output

lat_corr,lon_corr in Degree

...

cell_size = 0.016667

```
X_corr,Y_corr,Z_corr = 0.0, 0.0, 0.0
```

up,down,left,right = lat+cell_size,lat-cell_size,lon-cell_size,lon+cell_size

df_filter = df[(df['lat']>down) & (df['lat']<up) & (df['lon']>left) & (df['lon']<right) & (df['X_corr']!=-9999)

& (df['Y_corr']!=-9999)& (df['Z_corr']!=-9999)]

if df_filter['lat'].size == 4:

points = (df_filter[['lon','lat','X_corr']]).to_numpy()

p = [tuple(points[0]),tuple(points[1]),tuple(points[2]),tuple(points[3])]

```
X_corr = bilinear_interpolation(lon,lat,p)
```

points = (df_filter[['lon','lat','Y_corr']]).to_numpy()

p = [tuple(points[0]),tuple(points[1]),tuple(points[2]),tuple(points[3])]

```
Y_corr = bilinear_interpolation(lon,lat,p)
```

```
points = (df_filter[['lon','lat','Z_corr']]).to_numpy()
```

p = [tuple(points[0]),tuple(points[1]),tuple(points[2]),tuple(points[3])]

Z_corr = bilinear_interpolation(lon,lat,p)

```
return (X_corr,Y_corr,Z_corr)
```

ecef = {"proj":'geocent', "ellps":'WGS84', "datum":'WGS84'} # Cartisian
lla = "EPSG:4326" # WGS84 Geodetic
transproj = pyproj.Transformer.from_crs(ecef,lla)
lat,lon,ell_h = transproj.transform(x,y,z,radians=False)
return lat,lon,ell_h

def DectoDMS(Decimal, latlon):

```
d = int(Decimal)
```

temp = (Decimal - d) * 60.0

m = int(temp)

s = (temp-m) * 60.0

if latlon=='lat':

return '{:.0f}'.format(d) + ' ' + ('0'+'{:.0f}'.format(m))[-2:3] + "' " + '{:.5f}'.format(s) + " N' else:

return '{:.0f}'.format(d) + ' ' + ('0'+'{:.0f}'.format(m))[-2:3] + "' " + '{:.5f}'.format(s) + " E'

def lla2utm(lat,lon,ell_h,zone):

```
# Input lat, lon in degreee
```

Check Zone 47 or 48

utm = "EPSG:32647" if zone==47 else "EPSG:32648"

```
lla = "EPSG:4326" # WGS84 Geodetic
```

transproj = pyproj.Transformer.from_crs(lla,utm,always_xy=True) # always_xy หมายถึงให้เรียง lon,lat

E,N,h = transproj.transform(lon,lat,ell_h,radians=False)

return (E,N,h)

def bilinear_interpolation(x, y, points):

"Interpolate (x,y) from values associated with four points.

The four points are a list of four triplets: (x, y, value). The four points can be in any order. They should form a rectangle.

>>> bilinear_interpolation(12, 5.5,

 [(10, 4, 100),
 (20, 4, 200),
 (10, 6, 150),
 (20, 6, 300)])

See formula at: http://en.wikipedia.org/wiki/Bilinear_interpolation

```
points = sorted(points) # order points by x, then by y
(x1,y1,q11),(_x1,y2,q12),(x2,_y1,q21),(_x2,_y2,q22) = points
```

```
if x1 != _x1 or x2 != _x2 or y1 != _y1 or y2 != _y2:
raise ValueError('points do not form a rectangle')
if not x1 <= x <= x2 or not y1 <= y <= y2:
raise ValueError('(x, y) not within the rectangle')
```

return (q11 * (x2 - x) * (y2 - y) + q21 * (x - x1) * (y2 - y) + q12 * (x2 - x) * (y - y1) + q22 * (x - x1) * (y - y1)) / ((x2 - x1) * (y2 - y1) + 0.0)

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ภาคผนวก ค. ค่าพิกัดบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2020.66 และ Epoch 2021.66

ลำดับ	สถาบี	X [91]	¥ [9⊥]	7 [9]]	ละติ จด [°' "]	ลองอิจด [º ' "]	ความสูงเหนือ
61 1010	6161 1 148	7 [41.]	1 [64.]	ل (ما، ا			ทรงรี [ม.]
1	АМКО	-883144.234	6010906.984	1937627.302	17° 48' 2.29549"	98° 21' 29.89281"	784.986
2	AWLK	-956898.438	6237553.707	923074.190	8° 22' 38.03905"	98° 43' 18.14418"	-7.233
3	AYYA	-1134356.402	6075002.972	1572057.255	14° 21' 51.51637"	100° 34' 36.3594"	-14.600
4	BDNG	-1394062.213	5916172.551	1926911.225	17° 42' 2.97164"	103° 15' 32.65179"	147.806
5	BGKN	-1429610.416	5884459.080	1996199.624	18° 21' 33.15836"	103° 39' 18.96876"	131.779
6	BGSP	-1025844.595	6171496.213	1237207.953	11° 15' 35.37906"	99° 26' 15.31341"	7.101
7	ВКОК	-1164774.695	5954584.511	1961139.598	18° 1' 29.97347"	101° 4' 4.29816"	402.349
8	BLAN	-1092605.764	6093002.920	1531704.736	13° 59' 17.3199"	100° 9' 58.70916"	-17.916
9	BLMG	-1173899.723	6106033.688	1416075.381	12° 54' 48.56093"	100° 52' 56.90208"	-12.512
10	BNMG	-1424892.333	5903605.363	1942688.828	17° 51' 2.02152"	103° 34' 9.73879"	134.624
11	BNNR	-1245302.548	6020376.343	1693509.562	15° 29' 59.40249"	101° 41' 12.11712"	186.645
12	BNPE	-1312990.616	5935131.923	1925599.195	17° 41' 18.06347"	102° 28' 27.35791"	158.739
13	BNPG	-1490327.978	5883321.503	1954981.018	17° 58' 2.26789"	104° 12' 53.33431"	127.472
14	BNST	-1237503.586	6218448.735	691007.124	6° 15' 41.10501"	101° 15' 18.41755"	46.806
15	BOBR	-1391662.823	5971556.570	1750910.614	16° 2' 20.15261"	103° 7' 6.77635"	151.325
16	воко	-1166457.827	5914134.481	2079169.615	19° 8' 56.38636"	101° 9' 26.52624"	709.920
17	BORI	-1351917.650	6077445.211	1380185.530	12° 34' 50.96813"	102° 32' 28.1526"	10.996
18	BPLE	-1165298.094	6090154.904	1489142.351	13° 35' 31.28669"	100° 49' 55.63704"	-18.428
19	BRAI	-1018998.518	6075037.486	1649079.868	15° 5' 1.42481"	99° 31' 18.79617"	125.326
20	BTAK	-961971.416	6023304.405	1858216.185	17° 3' 2.19124"	99° 4' 26.31893"	93.419
21	BTHG	-1639450.206	5947411.598	1614110.089	14° 45' 23.86334"	105° 24' 40.6188"	139.526
22	BTNG	-1218862.839	6227967.168	639033.027	5° 47' 18.96649"	101° 4' 23.81448"	288.896
23	BUYI	-1321931.393	6001461.366	1702320.652	15° 34' 57.31903"	102° 25' 19.47993"	143.854
24	CHAN	-1305191.152	6086920.571	1383367.976	12° 36' 37.10784"	102° 6' 8.69709"	7.742
25	CHDN	-1186343.969	6041578.729	1659611.950	15° 10' 57.26813"	101° 6' 33.97068"	25.743
26	CHKG	-1081312.023	5889457.726	2190327.423	20° 12' 59.76566"	100° 24' 13.35785"	327.824
27	CHKN	-1227549.587	5946180.355	1947708.643	17° 53' 52.97889"	101° 39' 52.08516"	191.443
28	CHMA	-941577.415	5965123.894	2046196.067	18° 50' 6.98281"	98° 58' 11.86581"	295.867
29	CHPM	-1279552.473	6003831.983	1726072.731	15° 48' 19.8214"	102° 1' 51.70018"	158.913
30	CHTK	-1120651.126	5988384.882	1882119.967	17° 16' 35.16089"	100° 35' 58.51428"	174.781
31	CHYA	-1002385.535	6212541.231	1035825.215	9° 24' 32.70705"	99° 9' 56.18787"	-1.676
32	CLPK	-1155477.058	5899960.026	2124054.715	19° 34' 46.20469"	101° 4' 51.01407"	473.168
33	CMPN	-994847.675	6192799.960	1153707.238	10° 29' 28.1768"	99° 7' 34.87673"	-9.987
34	DKTN	-1255359.696	6026997.706	1662480.841	15° 12' 32.50595"	101° 45' 57.15381"	193.361

1. ค่าพิกัดบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2020.66

ลำดับ	สถาบี	Y [91]	V [91]	7 [91]	ລະຫຼືລ⊚ [° ' "]	ລລະລີລຸດ [° ' "]	ความสูงเหนือ
61 1010	6161 1 16	7 [91.]	1 [6].]	ک (۲۹۰۰)	ยองเว็น []	ยองข้าน []	ทรงรี [ม.]
35	DPT9	-1136984.514	6091176.521	1506866.862	13° 45' 24.40263"	100° 34' 23.53558"	37.963
36	DSAI	-1177823.272	5977435.603	1882542.914	17° 16' 47.98685"	101° 8' 49.33803"	331.091
37	DUDM	-1602826.613	5952860.209	1630520.617	14° 54' 36.39213"	105° 4' 10.86986"	116.098
38	HACH	-983713.358	5976430.880	1992894.765	18° 19' 38.64865"	99° 20' 49.22121"	249.419
39	JAHM	-1003279.855	5959660.120	2032774.349	18° 42' 26.19207"	99° 33' 21.12222"	274.896
40	JKRT	-1324558.662	6017890.466	1641619.396	15° 0' 49.87118"	102° 24' 47.06604"	149.407
41	KBCG	-1451929.897	6004093.365	1583920.668	14° 28' 28.42396"	103° 35' 40.09977"	181.731
42	KHJM	-1643844.702	5929414.452	1674145.760	15° 19' 6.76813"	105° 29' 42.9615"	94.268
43	KHMR	-1610363.374	5916201.412	1751219.485	16° 2' 30.9119"	105° 13' 36.32026"	118.806
44	KKJN	-1042150.283	6130097.928	1415474.684	12° 54' 28.05219"	99° 38' 54.06311"	48.428
45	KKOI	-1177854.306	6060476.181	1595852.106	14° 35' 10.9958"	100° 59' 54.00086"	-0.906
46	KKOR	-1166142.753	6001730.315	1813679.049	16° 37' 40.5662"	100° 59' 44.25499"	910.995
47	KLKG	-1033372.696	6038317.273	1769416.290	16° 12' 47.93134"	99° 42' 40.63007"	34.270
48	KLNG	-1260305.977	6092119.706	1401768.021	12° 46' 51.01737"	101° 41' 17.42424"	-11.094
49	KMCE	-1522611.479	5922257.978	1808079.655	16° 34' 37.7924"	104° 25' 6.45729"	159.731
50	KNKN	-1359633.980	5966157.826	1793620.764	16° 26' 27.42185"	102° 50' 16.61604"	138.645
51	KNSN	-1430048.076	5950286.054	1791563.768	16° 25' 17.75277"	103° 30' 49.51404"	128.727
52	KNSW	-1304888.194	5994466.149	1739513.937	15° 55' 54.41539"	102° 16' 50.46317"	158.927
53	KNYM	-835485.598	5981025.441	2046761.023	18° 50' 23.12805"	97° 57' 7.75173"	590.371
54	KOGD	-1356671.062	6098368.029	1280387.726	11° 39' 29.02666"	102° 32' 31.34858"	35.962
55	KORN	-1310277.490	6035215.523	1589147.580	14° 31' 24.00571"	102° 14' 56.85859"	190.593
56	KSKS	-1297233.791	6014497.477	1675341.919	15° 19' 46.52598"	102° 10' 16.89682"	160.711
57	KSSB	-1268451.481	5991382.289	1776614.834	16° 16' 50.21834"	101° 57' 13.42872"	206.260
58	KSWS	-1442358.311	5971380.760	1710148.401	15° 39' 22.00253"	103° 34' 45.89436"	115.367
59	KTBN	-1108230.062	6099966.586	1492516.610	13° 37' 24.26087"	100° 17' 49.4682"	-19.328
60	KUKN	-1513557.953	5981932.899	1609518.496	14° 42' 49.40977"	104° 11' 56.63703"	137.633
61	LAGU	-1076507.000	6240273.646	759452.816	6° 53' 4.16819"	99° 47' 15.85257"	-7.321
62	LGNT	-1539633.491	5929778.789	1768790.583	16° 12' 25.7074"	104° 33' 18.4572"	142.764
63	LMHP	-1338442.370	6090317.180	1336050.083	12° 10' 20.70256"	102° 23' 40.59312"	-14.127
64	LOMS	-1186805.185	5992762.787	1827068.999	16° 45' 22.81088"	101° 12' 6.8293"	137.897
65	LPBR	-1140009.374	6061593.323	1618813.954	14° 48' 3.25753"	100° 39' 4.50658"	9.660
66	LPMA	-1369203.245	6007554.594	1642821.657	15° 1' 30.40823"	102° 50' 21.03252"	145.001
67	MEJM	-879958.594	5986692.628	2011006.693	18° 29' 57.44682"	98° 21' 42.43941"	437.865
68	MHGS	-834433.815	5964347.336	2093791.596	19° 17' 25.6957"	97° 57' 51.10061"	203.453
69	MSAI	-1026415.100	5891082.087	2212260.280	20° 25' 39.67028"	99° 53' 0.76252"	377.987
70	MSOD	-910899.746	6042331.649	1822373.698	16° 42' 42.90215"	98° 34' 22.64316"	180.767
71	MSSB	-1562766.478	5945493.498	1694592.803	15° 30' 36.59921"	104° 43' 37.21656"	117.451
72	MWOG	-1015276.736	6054806.625	1723480.927	15° 46' 52.76098"	99° 31' 7.91645"	97.491

ลำดับ	สกาบี	X [9]]	Y [1]	7 [11]	<u>ละติ</u> จด [° ' "]	<u>ลองจิจด [° ' "]</u>	ความสูงเหนือ
11110	0101 120	7 [00.]	1 [04.]	2 [%.]			ทรงรี [ม.]
73	NAMY	-1598658.713	5966273.150	1585475.645	14° 29' 20.7763"	105° 0' 0.02067"	169.895
74	NANO	-1125627.493	5951335.107	1992890.446	18° 19' 38.50793"	100° 42' 37.17864"	248.749
75	NDDG	-1363561.213	6029293.995	1566955.370	14° 18' 58.13442"	102° 44' 36.28356"	231.255
76	NKNY	-1201408.943	6066337.447	1555734.177	14° 12' 43.44554"	101° 12' 7.91074"	-13.922
77	NKSW	-1078589.897	6046539.292	1713801.059	15° 41' 26.28338"	100° 6' 50.82362"	21.217
78	NROA	-1317070.973	5974071.066	1799116.546	16° 29' 33.51938"	102° 25' 58.09728"	172.756
79	NRTW	-1298692.466	6203821.292	709432.954	6° 25' 44.77516"	101° 49' 24.30953"	4.407
80	NSHO	-1360065.419	5988322.053	1718374.678	15° 43' 59.7124"	102° 47' 45.32702"	145.723
81	OKRK	-1178265.185	6073650.597	1544929.839	14° 6' 40.88975"	100° 58' 43.65249"	-15.447
82	PBHN	-1616951.278	5939039.491	1666309.666	15° 14' 42.35238"	105° 13' 48.33192"	108.989
83	PDCP	-1215054.326	6014245.697	1736656.825	15° 54' 16.92489"	101° 25' 18.08935"	249.208
84	PJRK	-1062387.601	6152905.108	1297009.231	11° 48' 41.8234"	99° 47' 46.86014"	-11.958
85	PKET	-922365.114	6250473.336	869690.371	7° 53' 22.65843"	98° 23' 39.83154"	0.123
86	PKKT	-1132704.555	6087759.811	1523587.248	13° 54' 44.91068"	100° 32' 24.27324"	13.337
87	PKNK	-1118572.258	6211237.089	918761.095	8° 20' 16.16084"	100° 12' 31.98307"	-11.806
88	PLDG	-1209062.848	6097744.528	1422375.322	12° 58' 18.53751"	101° 12' 54.58119"	37.331
89	PNNK	-1203243.402	6086106.917	1475570.362	13° 27' 57.00948"	101° 11' 0.04776"	-12.357
90	PNPS	-1373244.117	5909347.213	1962218.327	18° 2' 9.63516"	103° 4' 56.94888"	141.229
91	PNTG	-1479558.108	5941540.022	1780479.201	16° 19' 1.79056"	103° 59' 0.04683"	143.383
92	PONG	-1075183.221	5930943.357	2079127.649	19° 8' 59.96605"	100° 16' 30.71573"	264.990
93	PPRM	-1080405.800	6003678.746	1856402.648	17° 2' 1.2176"	100° 12' 5.77368"	20.395
94	PTBR	-1072925.068	6119632.083	1437164.110	13° 6' 32.91585"	99° 56' 39.54306"	-16.135
95	PTLG	-1105618.701	6224823.307	839659.545	7° 36' 56.10825"	100° 4' 17.49941"	-2.664
96	PYAO	-1034057.835	5936806.173	2083569.751	19° 11' 31.62134"	99° 52' 49.8418"	378.676
97	RAND	-1132675.474	6217668.011	856322.456	7° 46' 3.4412"	100° 19' 27.78132"	-4.094
98	RATP	-1126888.784	6227967.613	786903.895	7° 8' 4.39896"	100° 15' 22.08898"	17.111
99	RAYG	-1216734.620	6103746.792	1389703.629	12° 40' 8.55576"	101° 16' 25.28796"	-13.445
100	SADO	-1148836.062	6229446.579	742561.632	6° 43' 50.28766"	100° 26' 56.7474"	24.404
101	SAKW	-1298270.763	6057510.402	1512153.915	13° 48' 21.63319"	102° 5' 48.705"	25.686
102	SAMG	-916785.905	5968686.521	2047599.057	18° 50' 53.25712"	98° 43' 56.43671"	470.325
103	SATN	-1107406.437	6238298.901	730921.733	6° 37' 28.89948"	100° 3' 58.08384"	-4.881
104	SBRI	-1275756.486	6205019.383	739691.319	6° 42' 16.29293"	101° 37' 5.35152"	1.511
105	SCHP	-1289380.044	5970108.073	1831833.250	16° 48' 4.27359"	102° 11' 13.68903"	179.302
106	SDAN	-1154290.776	6017173.106	1766859.275	16° 11' 20.92126"	100° 51' 33.41592"	75.142
107	SDAO	-1314806.315	6071793.037	1440225.323	13° 8' 13.30246"	102° 13' 6.1428"	233.810
108	SGNN	-1252681.649	6036861.333	1628666.955	14° 53' 33.15279"	101° 43' 22.15385"	212.192
109	SICN	-1083287.763	6206159.032	991943.774	9° 0' 25.80606"	99° 54' 4.50312"	-9.837
110	SISA	-1031455.970	5996166.409	1907542.798	17° 31' 3.10695"	99° 45' 37.62642"	41.073

ลำดับ	สถานี	X [ม.]	Y [ม.]	Z [ນ.]	ละติจูด [° ' "]	ลองจิจูด [° ' "]	ความสูงเหนือ ทรงรี [ม.]
111	SISK	-1519763.859	5968501.701	1652534.881	15° 6' 58.03055"	104° 17' 8.46055"	104.973
112	SKBR	-905237.338	6090994.934	1656706.573	15° 9' 18.02588"	98° 27' 12.10845"	173.735
113	SKNK	-1488626.623	5911748.988	1869298.012	17° 9' 18.72685"	104° 8' 1.34736"	155.049
114	SKOM	-1289316.147	5927263.273	1965132.918	18° 3' 49.23485"	102° 16' 19.12507"	151.096
115	SKPM	-1469423.103	5986140.001	1634345.142	14° 56' 45.13575"	103° 47' 30.30015"	119.959
116	SKTH	-1041316.442	6011521.141	1853388.592	17° 0' 18.65558"	99° 49' 38.15999"	23.084
117	SMNM	-974577.768	5987074.679	1965312.326	18° 3' 54.71676"	99° 14' 43.9151"	212.919
118	SNCK	-1229477.584	6075764.863	1496301.017	13° 39' 30.88097"	101° 26' 23.14325"	-7.202
119	SOKA	-1163641.929	6220193.934	794819.103	7° 12' 24.08033"	100° 35' 46.03992"	18.698
120	SPBR	-1086264.425	6079455.096	1588618.424	14° 31' 7.93918"	100° 7' 50.10528"	-13.316
121	SPDI	-1305397.849	6206671.040	671589.760	6° 5' 5.40828"	101° 52' 38.76122"	21.157
122	SPUG	-1017286.836	6117912.641	1484364.818	13° 32' 50.43065"	99° 26' 26.76548"	100.662
123	SRTN	-1021155.549	6214494.452	1005605.024	9° 7' 55.99639"	99° 19' 52.89979"	9.805
124	STHP	-1177361.185	6111613.602	1389031.086	12° 39' 46.15246"	100° 54' 14.6412"	-17.307
125	STUK	-1414855.299	5988824.864	1671947.365	15° 17' 52.43869"	103° 17' 32.50428"	114.019
126	SURN	-1438061.181	5995700.030	1627265.523	14° 52' 46.69316"	103° 29' 15.14112"	129.039
127	TAPY	-1371960.241	6035820.382	1533662.437	14° 0' 22.35096"	102° 48' 21.30048"	58.279
128	TEPA	-1204574.597	6217562.722	753451.184	6° 49' 47.3723"	100° 57' 52.20828"	-2.415
129	TGSG	-1060808.533	6224765.005	895963.669	8° 7' 46.10745"	99° 40' 16.64257"	42.608
130	THKP	-914616.140	6235615.290	977034.844	8° 52' 14.58376"	98° 20' 39.9277"	-14.131
131	THPP	-925142.040	6099791.161	1612846.738	14° 44' 41.53737"	98° 37' 27.11662"	118.683
132	THSY	-871885.633	6031205.696	1876842.362	17° 13' 36.16305"	98° 13' 32.98781"	99.724
133	TKPP	-1594093.514	5934256.235	1704737.013	15° 36' 19.09244"	105° 2' 10.16304"	126.473
134	TPHN	-1108846.281	6024716.912	1769997.654	16° 13' 7.85691"	100° 25' 42.79116"	10.044
135	TPNM	-1549746.764	5903314.747	1846192.029	16° 56' 12.88036"	104° 42' 34.03368"	125.745
136	UDON	-1346748.774	5936987.331	1896511.363	17° 24' 45.82659"	102° 46' 50.56212"	150.068
137	UTHI	-1069154.112	6058114.349	1678632.596	15° 21' 38.97309"	100° 0' 31.20737"	0.500
138	UTOG	-1061726.498	6087755.915	1573446.447	14° 22' 38.17111"	99° 53' 35.10922"	-13.907
139	UTTD	-1065932.973	5986322.614	1919422.306	17° 37' 48.32908"	100° 5' 46.85856"	51.055
140	VCBR	-1183380.686	6027944.436	1710264.191	15° 39' 26.5457"	101° 6' 24.54732"	46.165
141	WGCN	-1012833.752	5986317.468	1947860.261	17° 53' 59.40854"	99° 36' 10.85118"	72.707
142	WHAG	-902983.487	5944738.325	2122260.384	19° 33' 41.59264"	98° 38' 13.17323"	705.630
143	WNKH	-1268879.675	6047266.335	1577808.333	14° 25' 1.22938"	101° 51' 1.02456"	400.581
144	WNNW	-1445454.766	5906211.323	1919621.410	17° 37' 54.17694"	103° 45' 7.05307"	142.718
145	WSPG	-1242444.997	5963540.490	1884709.210	17° 18' 2.81897"	101° 46' 7.1903"	228.954

ตารางที่ 19 ค่าพิกัดสถานีตรวจสอบบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2020.66

ลำดับ	สถานี	X [ม.]	Y [ม.]	Z [ม.]	ละติจูด [° ' "]	ลองจิจูด [° ' "]	ความสูงเหนือ ทรงรี [ม.]
1	АМКО	-883144.234	6010906.995	1937627.307	17° 48' 2.29504"	98° 21' 29.89415"	784.999
2	AWLK	-956898.432	6237553.716	923074.192	8° 22' 38.03861"	98° 43' 18.1447"	-7.231
3	AYYA	-1134356.392	6075002.978	1572057.259	14° 21' 51.51596"	100° 34' 36.36048"	-14.594
4	BDNG	-1394062.201	5916172.556	1926911.232	17° 42' 2.97133"	103° 15' 32.65308"	147.808
5	BGKN	-1429610.404	5884459.068	1996199.633	18° 21' 33.15823"	103° 39' 18.9702"	131.767
6	BGSP	-1025844.583	6171496.216	1237207.957	11° 15' 35.37868"	99° 26' 15.31403"	7.107
7	BKOK	-1164774.680	5954584.523	1961139.596	18° 1' 29.97286"	101° 4' 4.29924"	402.359
8	BLAN	-1092605.754	6093002.926	1531704.742	13° 59' 17.31952"	100° 9' 58.70988"	-17.911
9	BLMG	-1173899.713	6106033.694	1416075.386	12° 54' 48.56058"	100° 52' 56.90316"	-12.508
10	BNMG	-1424892.319	5903605.369	1942688.835	17° 51' 2.02118"	103° 34' 9.73956"	134.627
11	BNNR	-1245302.537	6020376.337	1693509.564	15° 29' 59.40211"	101° 41' 12.1182"	186.638
12	BNPE	-1312990.604	5935131.926	1925599.200	17° 41' 18.06313"	102° 28' 27.35904"	158.739
13	BNPG	-1490327.964	5883321.500	1954981.020	17° 58' 2.26747"	104° 12' 53.33544"	127.466
14	BNST	-1237503.581	6218448.745	691007.141	6° 15' 41.10474"	101° 15' 18.41832"	46.817
15	BOBR	-1391662.806	5971556.563	1750910.620	16° 2' 20.15239"	103° 7' 6.77748"	151.317
16	воко	-1166457.817	5914134.488	2079169.619	19° 8' 56.38603"	101° 9' 26.52732"	709.928
17	BORI	-1351917.639	6077445.218	1380185.536	12° 34' 50.96777"	102° 32' 28.15368"	10.999
18	BPLE	-1165298.084	6090154.914	1489142.358	13° 35' 31.28633"	100° 49' 55.63812"	-18.419
19	BRAI	-1018998.513	6075037.505	1649079.879	15° 5' 1.42447"	99° 31' 18.79709"	125.340
20	BTAK	-961971.405	6023304.426	1858216.183	17° 3' 2.19049"	99° 4' 26.31983"	93.435
21	BTHG	-1639450.190	5947411.605	1614110.094	14° 45' 23.86289"	105° 24' 40.61952"	139.528
22	BTNG	-1218862.834	6227967.173	639033.045	5° 47' 18.96626"	101° 4' 23.8152"	288.903
23	BUYI	-1321931.381	6001461.367	1702320.656	15° 34' 57.31867"	102° 25' 19.4808"	143.854
24	CHAN	-1305191.142	6086920.571	1383367.981	12° 36' 37.1075"	102° 6' 8.69796"	7.740
25	CHDN	-1186343.956	6041578.735	1659611.954	15° 10' 57.2678"	101° 6' 33.97176"	25.747
26	CHKG	-1081312.012	5889457.730	2190327.428	20° 12' 59.76544"	100° 24' 13.35888"	327.831
27	CHKN	-1227549.578	5946180.370	1947708.652	17° 53' 52.97856"	101° 39' 52.08624"	191.460
28	СНМА	-941577.406	5965123.894	2046196.073	18° 50' 6.98251"	98° 58' 11.86698"	295.871
29	CHPM	-1279552.464	6003831.995	1726072.738	15° 48' 19.8211"	102° 1' 51.70116"	158.926
30	CHTK	-1120651.113	5988384.883	1882119.976	17° 16' 35.16071"	100° 35' 58.51536"	174.782
31	CHYA	-1002385.526	6212541.230	1035825.218	9° 24' 32.70664"	99° 9' 56.18844"	-1.682
32	CLPK	-1155477.041	5899960.022	2124054.719	19° 34' 46.20446"	101° 4' 51.015"	473.165
33	CMPN	-994847.667	6192799.977	1153707.244	10° 29' 28.1764"	99° 7' 34.87735"	-9.974
34	DKTN	-1255359.684	6026997.711	1662480.843	15° 12' 32.50559"	101° 45' 57.15468"	193.365

2. ค่าพิกัดบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2021.66

ลำดับ	สถานี	X [ม.]	Y [ม.]	Z [ม.]	ละติจูด [° ' "]	ลองจิจูด [° ' "]	ความสูงเหนือ ทรงรี [ม.]
35	DPT9	-1136984.501	6091176.512	1506866.865	13° 45' 24.40228"	100° 34' 23.53656"	37.953
36	DSAI	-1177823.261	5977435.618	1882542.921	17° 16' 47.98654"	101° 8' 49.33896"	331.105
37	DUDM	-1602826.613	5952860.220	1630520.625	14° 54' 36.39168"	105° 4' 10.8714"	116.110
38	HACH	-983713.351	5976430.893	1992894.773	18° 19' 38.64832"	99° 20' 49.22236"	249.435
39	JAHM	-1003279.850	5959660.137	2032774.360	18° 42' 26.1918"	99° 33' 21.1234"	274.918
40	JKRT	-1324558.648	6017890.465	1641619.404	15° 0' 49.87098"	102° 24' 47.06712"	149.404
41	KBCG	-1451929.879	6004093.359	1583920.678	14° 28' 28.42374"	103° 35' 40.10064"	181.723
42	KHJM	-1643844.689	5929414.470	1674145.766	15° 19' 6.76758"	105° 29' 42.96264"	94.282
43	KHMR	-1610363.363	5916201.426	1751219.494	16° 2' 30.9115"	105° 13' 36.32124"	118.818
44	KKJN	-1042150.276	6130097.926	1415474.692	12° 54' 28.05185"	99° 38' 54.06392"	48.428
45	KKOI	-1177854.289	6060476.188	1595852.116	14° 35' 10.99554"	100° 59' 54.00168"	-0.902
46	KKOR	-1166142.721	6001730.269	1813679.040	16° 37' 40.566"	100° 59' 44.25576"	910.941
47	KLKG	-1033372.683	6038317.285	1769416.295	16° 12' 47.93094"	99° 42' 40.631"	34.276
48	KLNG	-1260305.966	6092119.704	1401768.028	12° 46' 51.01709"	101° 41' 17.42532"	-11.096
49	KMCE	-1522611.464	5922257.980	1808079.661	16° 34' 37.79206"	104° 25' 6.45852"	159.729
50	KNKN	-1359633.966	5966157.823	1793620.765	16° 26' 27.42151"	102° 50' 16.61712"	138.641
51	KNSN	-1430048.066	5950286.054	1791563.776	16° 25' 17.75251"	103° 30' 49.51512"	128.727
52	KNSW	-1304888.180	5994466.146	1739513.937	15° 55' 54.41495"	102° 16' 50.4642"	158.921
53	KNYM	-835485.592	5981025.435	2046761.021	18° 50' 23.12758"	97° 57' 7.753"	590.366
54	KOGD	-1356671.050	6098368.036	1280387.732	11° 39' 29.0263"	102° 32' 31.3494"	35.968
55	KORN	-1310277.475	6035215.512	1589147.581	14° 31' 24.00542"	102° 14' 56.85972"	190.578
56	KSKS	-1297233.780	6014497.488	1675341.924	15° 19' 46.52562"	102° 10' 16.8978"	160.721
57	KSSB	-1268451.470	5991382.298	1776614.840	16° 16' 50.21803"	101° 57' 13.4298"	206.269
58	KSWS	-1442358.297	5971380.765	1710148.410	15° 39' 22.00223"	103° 34' 45.89544"	115.370
59	KTBN	-1108230.052	6099966.596	1492516.618	13° 37' 24.26052"	100° 17' 49.46892"	-19.317
60	KUKN	-1513557.931	5981932.894	1609518.502	14° 42' 49.40946"	104° 11' 56.63796"	137.623
61	LAGU	-1076506.996	6240273.662	759452.827	6° 53' 4.16785"	99° 47' 15.8532"	-7.306
62	LGNT	-1539633.477	5929778.792	1768790.592	16° 12' 25.70713"	104° 33' 18.45828"	142.764
63	LMHP	-1338442.358	6090317.192	1336050.089	12° 10' 20.70217"	102° 23' 40.59384"	-14.118
64	LOMS	-1186805.170	5992762.803	1827069.013	16° 45' 22.81075"	101° 12' 6.83028"	137.911
65	LPBR	-1140009.358	6061593.320	1618813.958	14° 48' 3.25721"	100° 39' 4.50756"	9.651
66	LPMA	-1369203.231	6007554.610	1642821.664	15° 1' 30.40788"	102° 50' 21.03324"	145.014
67	MEJM	-879958.584	5986692.631	2011006.705	18° 29' 57.44666"	98° 21' 42.44047"	437.873
68	MHGS	-834433.805	5964347.348	2093791.609	19° 17' 25.69546"	97° 57' 51.10168"	203.470
69	MSAI	-1026415.091	5891082.103	2212260.289	20° 25' 39.67"	99° 53' 0.76366"	378.006
70	MSOD	-910899.739	6042331.652	1822373.707	16° 42' 42.90185"	98° 34' 22.64426"	180.769
71	MSSB	-1562766.465	5945493.514	1694592.814	15° 30' 36.59882"	104° 43' 37.21764"	117.466
72	MWOG	-1015276.727	6054806.633	1723480.931	15° 46' 52.76057"	99° 31' 7.91749"	97.494

ลำดับ	สถาบี	¥ [91]	V [91]	7 [91]	ລ ∝ ີສລ໑ [° ' "]	ລລະລີລຸດ [° ' "]	ความสูงเหนือ
61 1010	6161 1 66	۸ [ها.]	1 [61.]	ل الما.]		ยองข้าน []	ทรงรี [ม.]
73	NAMY	-1598658.699	5966273.166	1585475.655	14° 29' 20.77595"	105° 0' 0.0216"	169.908
74	NANO	-1125627.484	5951335.120	1992890.453	18° 19' 38.50759"	100° 42' 37.17972"	248.764
75	NDDG	-1363561.200	6029294.004	1566955.388	14° 18' 58.13431"	102° 44' 36.28464"	231.263
76	NKNY	-1201408.934	6066337.458	1555734.185	14° 12' 43.4452"	101° 12' 7.91172"	-13.913
77	NKSW	-1078589.886	6046539.289	1713801.063	15° 41' 26.28305"	100° 6' 50.8248"	21.210
78	NROA	-1317070.963	5974071.085	1799116.553	16° 29' 33.51901"	102° 25' 58.09836"	172.775
79	NRTW	-1298692.459	6203821.298	709432.973	6° 25' 44.77493"	101° 49' 24.3102"	4.414
80	NSHO	-1360065.405	5988322.065	1718374.685	15° 43' 59.71202"	102° 47' 45.32784"	145.734
81	OKRK	-1178265.174	6073650.607	1544929.848	14° 6' 40.88941"	100° 58' 43.65336"	-15.437
82	PBHN	-1616951.264	5939039.494	1666309.675	15° 14' 42.35204"	105° 13' 48.333"	108.990
83	PDCP	-1215054.321	6014245.696	1736656.831	15° 54' 16.92468"	101° 25' 18.09048"	249.206
84	PJRK	-1062387.589	6152905.097	1297009.234	11° 48' 41.82304"	99° 47' 46.8609"	-11.969
85	PKET	-922365.109	6250473.357	869690.376	7° 53' 22.65804"	98° 23' 39.83201"	0.138
86	PKKT	-1132704.545	6087759.821	1523587.255	13° 54' 44.91032"	100° 32' 24.27432"	13.345
87	PKNK	-1118572.248	6211237.089	918761.085	8° 20' 16.15996"	100° 12' 31.98384"	-11.815
88	PLDG	-1209062.837	6097744.535	1422375.330	12° 58' 18.5372"	101° 12' 54.58212"	37.337
89	PNNK	-1203243.393	6086106.927	1475570.370	13° 27' 57.00913"	101° 11' 0.04848"	-12.348
90	PNPS	-1373244.107	5909347.216	1962218.334	18° 2' 9.63481"	103° 4' 56.94996"	141.229
91	PNTG	-1479558.091	5941539.995	1780479.203	16° 19' 1.79029"	103° 59' 0.04812"	143.354
92	PONG	-1075183.211	5930943.372	2079127.658	19° 8' 59.96576"	100° 16' 30.71676"	265.006
93	PPRM	-1080405.789	6003678.752	1856402.653	17° 2' 1.21722"	100° 12' 5.77476"	20.400
94	PTBR	-1072925.061	6119632.089	1437164.116	13° 6' 32.91545"	99° 56' 39.5439"	-16.128
95	PTLG	-1105618.697	6224823.323	839659.558	7° 36' 56.10797"	100° 4' 17.50008"	-2.651
96	PYAO	-1034057.826	5936806.175	2083569.758	19° 11' 31.62109"	99° 52' 49.84298"	378.682
97	RAND	-1132675.469	6217668.019	856322.465	7° 46' 3.44083"	100° 19' 27.78204"	-4.090
98	RATP	-1126888.775	6227967.610	786903.905	7° 8' 4.39866"	100° 15' 22.0896"	17.105
99	RAYG	-1216734.608	6103746.802	1389703.636	12° 40' 8.55541"	101° 16' 25.28868"	-13.438
100	SADO	-1148836.057	6229446.574	742561.645	6° 43' 50.28739"	100° 26' 56.74812"	24.397
101	SAKW	-1298270.752	6057510.414	1512153.922	13° 48' 21.63283"	102° 5' 48.70608"	25.694
102	SAMG	-916785.888	5968686.528	2047599.069	18° 50' 53.25695"	98° 43' 56.43754"	470.336
103	SATN	-1107406.430	6238298.917	730921.745	6° 37' 28.89912"	100° 3' 58.0842"	-4.866
104	SBRI	-1275756.478	6205019.391	739691.337	6° 42' 16.29269"	101° 37' 5.35224"	1.519
105	SCHP	-1289380.031	5970108.089	1831833.267	16° 48' 4.27352"	102° 11' 13.68996"	179.321
106	SDAN	-1154290.767	6017173.119	1766859.280	16° 11' 20.92092"	100° 51' 33.417"	75.153
107	SDAO	-1314806.303	6071793.053	1440225.332	13° 8' 13.30217"	102° 13' 6.14352"	233.822
108	SGNN	-1252681.634	6036861.329	1628666.956	14° 53' 33.15246"	101° 43' 22.15488"	212.186
109	SICN	-1083287.759	6206159.052	991943.781	9° 0' 25.80579"	99° 54' 4.50367"	-9.824
110	SISA	-1031455.961	5996166.422	1907542.808	17° 31' 3.10667"	99° 45' 37.62742"	41.087

ลำดับ	สกาบี	X [1]	Y [1]	7 [11]	<u>ละติ</u> จด [° ' "]	ลองจิจด [° ' "]	ความสูงเหนือ
611010	6161 1 46	7 [64.]	1 [64.]	_ [64.]			ทรงรี [ม.]
111	SISK	-1519763.843	5968501.700	1652534.885	15° 6' 58.03013"	104° 17' 8.46168"	104.970
112	SKBR	-905237.338	6090994.943	1656706.581	15° 9' 18.02552"	98° 27' 12.10946"	173.740
113	SKNK	-1488626.613	5911748.989	1869298.019	17° 9' 18.72655"	104° 8' 1.34844"	155.050
114	SKOM	-1289316.138	5927263.283	1965132.928	18° 3' 49.23461"	102° 16' 19.1262"	151.106
115	SKPM	-1469423.086	5986139.999	1634345.151	14° 56' 45.13546"	103° 47' 30.30108"	119.955
116	SKTH	-1041316.430	6011521.147	1853388.598	17° 0' 18.65527"	99° 49' 38.16106"	23.089
117	SMNM	-974577.759	5987074.693	1965312.334	18° 3' 54.71644"	99° 14' 43.91614"	212.936
118	SNCK	-1229477.570	6075764.850	1496301.021	13° 39' 30.88076"	101° 26' 23.14428"	-7.219
119	SOKA	-1163641.922	6220193.931	794819.115	7° 12' 24.08003"	100° 35' 46.04064"	18.693
120	SPBR	-1086264.414	6079455.089	1588618.426	14° 31' 7.9388"	100° 7' 50.10636"	-13.326
121	SRTN	-1021155.542	6214494.447	1005605.023	9° 7' 55.99597"	99° 19' 52.90039"	9.792
122	STHP	-1177361.174	6111613.612	1389031.093	12° 39' 46.15211"	100° 54' 14.64192"	-17.299
123	STUK	-1414855.285	5988824.866	1671947.372	15° 17' 52.43834"	103° 17' 32.50536"	114.021
124	SURN	-1438061.166	5995700.027	1627265.531	14° 52' 46.69288"	103° 29' 15.1422"	129.034
125	TAPY	-1371960.225	6035820.386	1533662.443	14° 0' 22.35053"	102° 48' 21.30156"	58.279
126	TEPA	-1204574.590	6217562.716	753451.198	6° 49' 47.37203"	100° 57' 52.209"	-2.422
127	THKP	-914616.133	6235615.312	977034.850	8° 52' 14.58334"	98° 20' 39.92816"	-14.116
128	THPP	-925142.043	6099791.176	1612846.745	14° 44' 41.53697"	98° 37' 27.11762"	118.695
129	THSY	-871885.622	6031205.675	1876842.353	17° 13' 36.16244"	98° 13' 32.98894"	99.698
130	TKPP	-1594093.497	5934256.230	1704737.019	15° 36' 19.0921"	105° 2' 10.16412"	126.465
131	TPHN	-1108846.272	6024716.925	1769997.659	16° 13' 7.85654"	100° 25' 42.79224"	10.051
132	TPNM	-1549746.753	5903314.752	1846192.037	16° 56' 12.88007"	104° 42' 34.03476"	125.748
133	UDON	-1346748.761	5936987.328	1896511.366	17° 24' 45.82627"	102° 46' 50.5632"	150.062
134	UTHI	-1069154.089	6058114.379	1678632.609	15° 21' 38.97274"	100° 0' 31.20768"	0.522
135	UTOG	-1061726.492	6087755.924	1573446.454	14° 22' 38.1707"	99° 53' 35.11014"	-13.899
136	UTTD	-1065932.964	5986322.619	1919422.311	17° 37' 48.32875"	100° 5' 46.85964"	51.061
137	VCBR	-1183380.675	6027944.448	1710264.197	15° 39' 26.54532"	101° 6' 24.5484"	46.174
138	WGCN	-1012833.742	5986317.476	1947860.269	17° 53' 59.40823"	99° 36' 10.8522"	72.717
139	WHAG	-902983.476	5944738.340	2122260.396	19° 33' 41.59238"	98° 38' 13.17422"	705.649
140	WNKH	-1268879.662	6047266.344	1577808.339	14° 25' 1.22905"	101° 51' 1.02528"	400.586
141	WNNW	-1445454.754	5906211.327	1919621.419	17° 37' 54.1767"	103° 45' 7.0542"	142.720
142	WSPG	-1242444.985	5963540.500	1884709.215	17° 18' 2.81858"	101° 46' 7.19148"	228.962

ตารางที่ 20 ค่าพิกัดสถานีตรวจสอบบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2021.66

ลำดับ	สถานี	X [ม.]	Y [ม.]	Z [ມ.]	ละติจูด [° ' "]	ลองจิจูด [° ' "]	ความสูงเหนือ ทรงรี [ม.]
1	АМКО	-883144.285	6010906.985	1937627.285	17° 48' 2.29487"	98° 21' 29.89454"	784.988
2	AWLK	-956898.459	6237553.687	923074.174	8° 22' 38.03862"	98° 43' 18.14498"	-7.252
3	AYYA	-1134356.436	6075002.955	1572057.238	14° 21' 51.51593"	100° 34' 36.36068"	-14.613
4	BDNG	-1394062.253	5916172.543	1926911.214	17° 42' 2.97129"	103° 15' 32.65319"	147.803
5	BGKN	-1429610.454	5884459.053	1996199.613	18° 21' 33.15818"	103° 39' 18.97027"	131.759
6	BGSP	-1025844.622	6171496.195	1237207.936	11° 15' 35.3786"	99° 26' 15.31437"	7.086
7	BKOK	-1164774.726	5954584.506	1961139.574	18° 1' 29.97275"	101° 4' 4.29926"	402.343
8	BLAN	-1092605.795	6093002.904	1531704.720	13° 59' 17.31947"	100° 9' 58.71031"	-17.930
9	BLMG	-1173899.754	6106033.668	1416075.365	12° 54' 48.56051"	100° 52' 56.9033"	-12.530
10	BNMG	-1424892.373	5903605.358	1942688.816	17° 51' 2.02112"	103° 34' 9.74006"	134.625
11	BNNR	-1245302.586	6020376.321	1693509.545	15° 29' 59.40207"	101° 41' 12.11845"	186.627
12	BNPE	-1312990.654	5935131.918	1925599.178	17° 41' 18.0629"	102° 28' 27.35914"	158.737
13	BNPG	-1490328.011	5883321.492	1954981.003	17° 58' 2.26744"	104° 12' 53.33542"	127.465
14	BNST	-1237503.614	6218448.720	691007.115	6° 15' 41.10476"	101° 15' 18.41846"	46.796
15	BOBR	-1391662.861	5971556.553	1750910.603	16° 2' 20.15233"	103° 7' 6.7777"	151.315
16	воко	-1166457.872	5914134.476	2079169.602	19° 8' 56.38592"	101° 9' 26.52777"	709.919
17	BORI	-1351917.683	6077445.183	1380185.511	12° 34' 50.96769"	102° 32' 28.15385"	10.972
18	BPLE	-1165298.127	6090154.892	1489142.336	13° 35' 31.28627"	100° 49' 55.63824"	-18.436
19	BRAI	-1018998.553	6075037.466	1649079.851	15° 5' 1.4244"	99° 31' 18.79743"	125.308
20	BTAK	-961971.450	6023304.404	1858216.156	17° 3' 2.19029"	99° 4' 26.32008"	93.414
21	BTHG	-1639450.244	5947411.587	1614110.073	14° 45' 23.86282"	105° 24' 40.61998"	139.522
22	BTNG	-1218862.868	6227967.147	639033.022	5° 47' 18.9664"	101° 4' 23.81555"	288.881
23	BUYI	-1321931.432	6001461.356	1702320.640	15° 34' 57.31864"	102° 25' 19.48125"	143.849
24	CHAN	-1305191.185	6086920.556	1383367.961	12° 36' 37.10743"	102° 6' 8.69824"	7.731
25	CHDN	-1186344.005	6041578.711	1659611.935	15° 10' 57.26776"	101° 6' 33.97197"	25.729
26	CHKG	-1081312.063	5889457.717	2190327.413	20° 12' 59.76538"	100° 24' 13.35932"	327.819
27	CHKN	-1227549.628	5946180.346	1947708.631	17° 53' 52.97853"	101° 39' 52.08655"	191.440
28	CHMA	-941577.459	5965123.889	2046196.056	18° 50' 6.98244"	98° 58' 11.86732"	295.866
29	CHPM	-1279552.511	6003831.968	1726072.719	15° 48' 19.82109"	102° 1' 51.7016"	158.903
30	CHTK	-1120651.163	5988384.862	1882119.959	17° 16' 35.16079"	100° 35' 58.51569"	174.767
31	CHYA	-1002385.559	6212541.217	1035825.198	9° 24' 32.70656"	99° 9' 56.18871"	-1.688
32	CLPK	-1155477.097	5899960.019	2124054.705	19° 34' 46.20436"	101° 4' 51.01545"	473.165
33	CMPN	-994847.701	6192799.947	1153707.221	10° 29' 28.17631"	99° 7' 34.87764"	-9.999
34	DKTN	-1255359.729	6026997.690	1662480.827	15° 12' 32.50558"	101° 45' 57.15502"	193.349

3. ค่าพิกัดบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2021.93

ลำดับ	สกาบี	Y [9]]	V [91]	7 [91]	ລະຕີລຸດ [° ' "]	ລລະລີລຸດ [° ' "]	ความสูงเหนือ
61 1910	6161 1 14	∧ [ها.]	ا [ها.]	ل [4].]	เอยบูชเ []	ยองงมู่ที่[]	ทรงรี [ม.]
35	DSAI	-1177823.310	5977435.589	1882542.899	17° 16' 47.98645"	101° 8' 49.33942"	331.080
36	DUDM	-1602826.658	5952860.190	1630520.600	14° 54' 36.39164"	105° 4' 10.8714"	116.088
37	HACH	-983713.403	5976430.875	1992894.752	18° 19' 38.64824"	99° 20' 49.22273"	249.417
38	JAHM	-1003279.898	5959660.116	2032774.341	18° 42' 26.19178"	99° 33' 21.12369"	274.896
39	JKRT	-1324558.701	6017890.452	1641619.383	15° 0' 49.87083"	102° 24' 47.06748"	149.399
40	KBCG	-1451929.932	6004093.347	1583920.657	14° 28' 28.42366"	103° 35' 40.10106"	181.720
41	KHJM	-1643844.744	5929414.447	1674145.744	15° 19' 6.76758"	105° 29' 42.96288"	94.270
42	KHMR	-1610363.413	5916201.398	1751219.469	16° 2' 30.91143"	105° 13' 36.32171"	118.799
43	KKJN	-1042150.313	6130097.900	1415474.668	12° 54' 28.05183"	99° 38' 54.06425"	48.402
44	KKOI	-1177854.332	6060476.166	1595852.095	14° 35' 10.99554"	100° 59' 54.00176"	-0.919
45	KKOR	-1166142.791	6001730.302	1813679.036	16° 37' 40.56585"	100° 59' 44.25628"	910.985
46	KLKG	-1033372.733	6038317.257	1769416.274	16° 12' 47.93092"	99° 42' 40.63137"	34.257
47	KLNG	-1260306.009	6092119.689	1401768.006	12° 46' 51.01697"	101° 41' 17.42548"	-11.107
48	KMCE	-1522611.518	5922257.964	1808079.641	16° 34' 37.792"	104° 25' 6.4587"	159.724
49	KNKN	-1359634.016	5966157.812	1793620.749	16° 26' 27.42144"	102° 50' 16.61723"	138.635
50	KNSN	-1430048.115	5950286.047	1791563.758	16° 25' 17.75245"	103° 30' 49.51529"	128.727
51	KNSW	-1304888.232	5994466.132	1739513.918	15° 55' 54.41485"	102° 16' 50.46456"	158.914
52	KNYM	-835485.644	5981025.428	2046761.006	18° 50' 23.12757"	97° 57' 7.75337"	590.360
53	KOGD	-1356671.093	6098368.008	1280387.711	11° 39' 29.0263"	102° 32' 31.34967"	35.946
54	KORN	-1310277.524	6035215.500	1589147.565	14° 31' 24.00534"	102° 14' 56.85981"	190.575
55	KSKS	-1297233.826	6014497.463	1675341.904	15° 19' 46.52558"	102° 10' 16.89811"	160.702
56	KSSB	-1268451.520	5991382.270	1776614.821	16° 16' 50.21804"	101° 57' 13.4301"	206.247
57	KSWS	-1442358.351	5971380.756	1710148.390	15° 39' 22.00215"	103° 34' 45.89562"	115.369
58	KTBN	-1108230.093	6099966.567	1492516.594	13° 37' 24.26046"	100° 17' 49.46931"	-19.344
59	KUKN	-1513557.986	5981932.883	1609518.482	14° 42' 49.4094"	104° 11' 56.63828"	137.622
60	LAGU	-1076507.024	6240273.627	759452.807	6° 53' 4.16797"	99° 47' 15.85345"	-7.336
61	LGNT	-1539633.533	5929778.780	1768790.570	16° 12' 25.70699"	104° 33' 18.4585"	142.762
62	LMHP	-1338442.399	6090317.158	1336050.067	12° 10' 20.70217"	102° 23' 40.59428"	-14.145
63	LOMS	-1186805.225	5992762.764	1827068.999	16° 45' 22.811"	101° 12' 6.83087"	137.883
64	LPBR	-1140009.406	6061593.299	1618813.939	14° 48' 3.25722"	100° 39' 4.50775"	9.639
65	LPMA	-1369203.282	6007554.580	1642821.643	15° 1' 30.40787"	102° 50' 21.03371"	144.992
66	MEJM	-879958.636	5986692.615	2011006.685	18° 29' 57.44662"	98° 21' 42.44089"	437.856
67	MHGS	-834433.857	5964347.330	2093791.587	19° 17' 25.69542"	97° 57' 51.10206"	203.450
68	MSAI	-1026415.144	5891082.079	2212260.267	20° 25' 39.66988"	99° 53' 0.76407"	377.981
69	MSOD	-910899.787	6042331.638	1822373.686	16° 42' 42.9018"	98° 34' 22.64458"	180.759
70	MSSB	-1562766.516	5945493.491	1694592.790	15° 30' 36.59876"	104° 43' 37.21783"	117.451
71	MWOG	-1015276.776	6054806.609	1723480.911	15° 46' 52.76057"	99° 31' 7.91786"	97.479
72	NAMY	-1598658.751	5966273.141	1585475.634	14° 29' 20.77596"	105° 0' 0.02198"	169.894

ลำดับ	สถายี	V [91]	V [91]	7 [9]]	ລະຫຼືລຸດ [° ' "]	aa taa [° ' "]	ความสูงเหนือ
61 1910	6161 1 16	∧ [ها.]	ا [ها.]	ک [ها.]	เอยมูชเ []	ยองงงูต []	ทรงรี [ม.]
73	NANO	-1125627.537	5951335.105	1992890.433	18° 19' 38.50746"	100° 42' 37.18023"	248.750
74	NDDG	-1363561.250	6029293.974	1566955.364	14° 18' 58.13433"	102° 44' 36.28483"	231.242
75	NKNY	-1201408.979	6066337.442	1555734.165	14° 12' 43.44516"	101° 12' 7.91199"	-13.923
76	NKSW	-1078589.934	6046539.269	1713801.041	15° 41' 26.28293"	100° 6' 50.82495"	21.198
77	NROA	-1317071.012	5974071.053	1799116.534	16° 29' 33.51903"	102° 25' 58.09862"	172.748
78	NRTW	-1298692.495	6203821.269	709432.947	6° 25' 44.77499"	101° 49' 24.31064"	4.390
79	NSHO	-1360065.455	5988322.042	1718374.666	15° 43' 59.71206"	102° 47' 45.32825"	145.717
80	OKRK	-1178265.217	6073650.581	1544929.826	14° 6' 40.8894"	100° 58' 43.65362"	-15.458
81	PBHN	-1616951.316	5939039.481	1666309.654	15° 14' 42.35198"	105° 13' 48.33318"	108.986
82	PDCP	-1215054.368	6014245.683	1736656.811	15° 54' 16.92448"	101° 25' 18.09083"	249.198
83	PJRK	-1062387.628	6152905.084	1297009.213	11° 48' 41.82296"	99° 47' 46.86115"	-11.981
84	PKET	-922365.135	6250473.329	869690.357	7° 53' 22.65798"	98° 23' 39.83224"	0.118
85	PKKT	-1132704.588	6087759.791	1523587.232	13° 54' 44.91029"	100° 32' 24.27452"	13.319
86	PKNK	-1118572.283	6211237.066	918761.081	8° 20' 16.16047"	100° 12' 31.98401"	-11.826
87	PLDG	-1209062.879	6097744.509	1422375.307	12° 58' 18.53714"	101° 12' 54.58235"	37.315
88	PNNK	-1203243.434	6086106.900	1475570.348	13° 27' 57.0091"	101° 11' 0.04883"	-12.370
89	PNPS	-1373244.159	5909347.199	1962218.315	18° 2' 9.63482"	103° 4' 56.95038"	141.221
90	PNTG	-1479558.147	5941539.992	1780479.187	16° 19' 1.79031"	103° 59' 0.04831"	143.360
91	PONG	-1075183.261	5930943.349	2079127.638	19° 8' 59.96572"	100° 16' 30.71715"	264.985
92	PPRM	-1080405.840	6003678.732	1856402.633	17° 2' 1.21718"	100° 12' 5.77509"	20.384
93	PTBR	-1072925.100	6119632.071	1437164.094	13° 6' 32.91539"	99° 56' 39.54419"	-16.144
94	PTLG	-1105618.732	6224823.291	839659.536	7° 36' 56.108"	100° 4' 17.50053"	-2.676
95	PYAO	-1034057.877	5936806.170	2083569.742	19° 11' 31.621"	99° 52' 49.84325"	378.677
96	RAND	-1132675.498	6217667.981	856322.441	7° 46' 3.44084"	100° 19' 27.7823"	-4.121
97	RATP	-1126888.808	6227967.594	786903.884	7° 8' 4.39867"	100° 15' 22.08991"	17.096
98	RAYG	-1216734.648	6103746.777	1389703.614	12° 40' 8.55535"	101° 16' 25.2889"	-13.458
99	SADO	-1148836.089	6229446.553	742561.621	6° 43' 50.2874"	100° 26' 56.74851"	24.381
100	SAKW	-1298270.799	6057510.384	1512153.901	13° 48' 21.63283"	102° 5' 48.70644"	25.672
101	SAMG	-916785.936	5968686.509	2047599.049	18° 50' 53.25694"	98° 43' 56.43781"	470.316
102	SATN	-1107406.462	6238298.888	730921.723	6° 37' 28.89919"	100° 3' 58.08466"	-4.890
103	SBRI	-1275756.514	6205019.358	739691.313	6° 42' 16.29281"	101° 37' 5.35265"	1.492
104	SCHP	-1289380.079	5970108.055	1831833.239	16° 48' 4.27333"	102° 11' 13.69034"	179.290
105	SDAN	-1154290.815	6017173.093	1766859.260	16° 11' 20.92087"	100° 51' 33.41739"	75.133
106	SDAO	-1314806.349	6071793.024	1440225.310	13° 8' 13.30209"	102° 13' 6.14392"	233.802
107	SGNN	-1252681.683	6036861.317	1628666.939	14° 53' 33.15237"	101° 43' 22.15516"	212.180
108	SICN	-1083287.792	6206159.018	991943.764	9° 0' 25.80578"	99° 54' 4.50412"	-9.846
109	SISA	-1031456.010	5996166.401	1907542.787	17° 31' 3.10661"	99° 45' 37.6278"	41.068
110	SISK	-1519763.897	5968501.687	1652534.867	15° 6' 58.03017"	104° 17' 8.46187"	104.966

ลำดับ	สถานี	X [ม.]	Y [ม.]	Z [ູມ.]	ละติจูด [° ' "]	ลองจิจูด [° ' "]	ความสูงเหนือ ทรงรี [ม.]
111	SKBR	-905237.395	6090994.966	1656706.553	15° 9' 18.0249"	98° 27' 12.11019"	173.768
112	SKNK	-1488626.665	5911748.979	1869297.998	17° 9' 18.7264"	104° 8' 1.34889"	155.046
113	SKOM	-1289316.187	5927263.261	1965132.906	18° 3' 49.23451"	102° 16' 19.1264"	151.089
114	SKPM	-1469423.138	5986139.976	1634345.129	14° 56' 45.13547"	103° 47' 30.30154"	119.941
115	SKTH	-1041316.480	6011521.125	1853388.578	17° 0' 18.6552"	99° 49' 38.16137"	23.071
116	SMNM	-974577.809	5987074.669	1965312.309	18° 3' 54.71628"	99° 14' 43.9165"	212.910
117	SNCK	-1229477.622	6075764.852	1496301.008	13° 39' 30.88072"	101° 26' 23.14463"	-7.207
118	SOKA	-1163641.956	6220193.919	794819.094	7° 12' 24.08007"	100° 35' 46.04083"	18.686
119	SPBR	-1086264.460	6079455.070	1588618.404	14° 31' 7.93871"	100° 7' 50.10662"	-13.340
120	SPDI	-1305397.878	6206671.024	671589.752	6° 5' 5.40807"	101° 52' 38.76226"	21.146
121	SPUG	-1017286.869	6117912.623	1484364.802	13° 32' 50.43024"	99° 26' 26.76667"	100.645
122	SRTN	-1021155.570	6214494.432	1005605.008	9° 7' 55.99596"	99° 19' 52.90057"	9.786
123	STHP	-1177361.215	6111613.584	1389031.071	12° 39' 46.15206"	100° 54' 14.64223"	-17.323
124	STUK	-1414855.338	5988824.851	1671947.351	15° 17' 52.43826"	103° 17' 32.50577"	114.012
125	SURN	-1438061.219	5995700.012	1627265.509	14° 52' 46.69281"	103° 29' 15.1425"	129.028
126	TAPY	-1371960.277	6035820.372	1533662.419	14° 0' 22.35043"	102° 48' 21.30178"	58.273
127	TEPA	-1204574.628	6217562.700	753451.177	6° 49' 47.37212"	100° 57' 52.20944"	-2.431
128	TGSG	-1060808.558	6224764.990	895963.655	8° 7' 46.10705"	99° 40' 16.64346"	42.595
129	THKP	-914616.160	6235615.281	977034.829	8° 52' 14.58328"	98° 20' 39.92839"	-14.140
130	THPP	-925142.080	6099791.152	1612846.724	14° 44' 41.53696"	98° 37' 27.11797"	118.676
131	THSY	-871885.675	6031205.657	1876842.334	17° 13' 36.16247"	98° 13' 32.98941"	99.685
132	TKPP	-1594093.551	5934256.219	1704736.997	15° 36' 19.09199"	105° 2' 10.16446"	126.462
133	TPHN	-1108846.319	6024716.894	1769997.636	16° 13' 7.85646"	100° 25' 42.79255"	10.029
134	TPNM	-1549746.804	5903314.741	1846192.017	16° 56' 12.87996"	104° 42' 34.03511"	125.746
135	UDON	-1346748.813	5936987.318	1896511.350	17° 24' 45.82625"	102° 46' 50.56364"	150.060
136	UTHI	-1069154.135	6058114.347	1678632.584	15° 21' 38.97269"	100° 0' 31.20812"	0.499
137	UTOG	-1061726.532	6087755.896	1573446.431	14° 22' 38.17067"	99° 53' 35.11046"	-13.923
138	UTTD	-1065933.011	5986322.606	1919422.292	17° 37' 48.32866"	100° 5' 46.85988"	51.050
139	VCBR	-1183380.721	6027944.420	1710264.177	15° 39' 26.54533"	101° 6' 24.5485"	46.152
140	WGCN	-1012833.791	5986317.459	1947860.249	17° 53' 59.40819"	99° 36' 10.85253"	72.701
141	WHAG	-902983.530	5944738.322	2122260.375	19° 33' 41.59233"	98° 38' 13.1747"	705.631
142	WNKH	-1268879.710	6047266.321	1577808.320	14° 25' 1.22902"	101° 51' 1.02569"	400.571
143	WNNW	-1445454.806	5906211.319	1919621.399	17° 37' 54.17655"	103° 45' 7.05431"	142.719
144	WSPG	-1242445.038	5963540.478	1884709.195	17° 18' 2.81853"	101° 46' 7.19168"	228.946

ตารางที่ 21 ค่าพิกัดสถานีตรวจสอบบนกรอบพิกัดอ้างอิงสากล ITRF2014 Epoch 2021.93

ภาคผนวก ง. การวิเคราะห์ความถูกต้องด้วยวิธีการทดสอบที (T - test Statistic)

ขั้นตอนที่ 1 ทดสอบสมมติฐานเกี่ยวกับความแปรปรวนของค่าพิกัดทางราบจากค่าพิกัด ของแต่ละแบบจำลอง ที่ระดับนัยสำคัญ 0.10

			ঀ								
STA	IDW1		IDW3	Kriging	Kriging	Kriging	Kriging	Kriging	Natural	Spline	Spline
5177			10113	Spherical	Circular	Exponential	Gaussian	Linear	Neighbor	Regularized	Tension
АМКО	0.010	0.010	0.009	0.010	0.010	0.010	0.011	0.010	0.007	0.007	0.008
AWLK	0.003	0.003	0.003	0.003	0.003	0.003	0.004	0.003	0.003	0.004	0.004
AYYA	0.001	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
BDNG	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.006	0.004
BGKN	0.003	0.002	0.002	0.003	0.003	0.003	0.003	0.003	0.031	0.020	0.005
BGSP	0.001	0.003	0.004	0.001	0.001	0.001	0.002	0.001	0.003	0.003	0.003
вкок	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.004	0.004	0.004
BLAN	0.003	0.002	0.002	0.003	0.003	0.003	0.005	0.003	0.002	0.003	0.002

ขั้นที่ 1 ใส่ข้อมูลดังรูป เลือกเมนู Data เลือก Data Analysis

รูปที่ 84 ค่าพิกัดทางราบ[ม.]จากจากการทดสอบแบบจำลองทั้ง 11 แบบ

<u>ขั้นที่ 2</u> ในหน้าต่าง Data Analysis เลือก F-Test Two Sample for Variances เลือก OK

- (C) (C)		
Data Analysis	?	×
Analysis Tools		эк
Correlation		211
Covariance	Ca	ncel
Descriptive Statistics		
Exponential Smoothing		a lua
F-Test Two-Sample for Variances	H	eip
Fourier Analysis		
Histogram		
Moving Average		
Random Number Generation		
Rank and Percentile		

รูปที่ 85 เลือกทดสอบทางสถิติ F-Test ในการทดสอบความแปรปรวนของค่าพิกัดทางราบ

้<u>ขั้นที่ 3</u> ในส่วน Input Variable 1 Range คือระบุข้อมูลของตัวแปรที่ 1

Variable 2 Range คือระบุข้อมูลของตัวแปรที่ 2

Alpha คือค่าระดับนัยสำคัญ 2 ทาง เช่นถ้า lpha=0.10 ใส่ค่า 0.05

				Kri	iging	Kriging Kriging		Kriging	Kriging	Nat	ural	
STA	IDW1	IDW2	IDW3	Sph	nerical	Circular	Ехро	nential	Gaussian	Linear	Neig	hbo
АМКО	0.010	0.010	0.009	0.	.010	0.010	0.	010	0.011	0.010	0.0	007
AWLK	0.003	0.003	0.003	0	F-Test T	wo-Sample f	or Varian	ces		?	×	03
ΑΥΥΑ	0.001	0.000	0.001	0	Input Variabl	e <u>1</u> Range:		SB\$3:SBS	147 🛨	ОК		01
BDNG	0.002	0.002	0.002	0	0 Variable <u>2</u> Range: \$C\$3:\$C\$147 €				Cance	02		
BGKN	0.003	0.002	0.002	0	<mark>∠∐ab</mark> Alpha:	els 0.05				Telb		31
BGSP	0.001	0.003	0.004	0	Output	options						03
вкок	0.005	0.005	0.005	0	O Qui Nev	:put Range: v Worksheet	<u>Ply:</u>		Ť			04
BLAN	0.003	0.002	0.002	0	○ Nev	v <u>W</u> orkbook						02
BLMG	0.002	0.002	0.002	0.	.002	0.002	0.	002	0.002	0.002	0.0	003

รูปที่ 86 จับคู่การทดสอบความแปรปรวนของค่าพิกัดทางราบที่ผ่านแบบจำลอง IDW-1 กับ IDW-3

<u>ขั้นที่ 4</u> จะได้ผลลัพธ์

	F-Test Two-Sample for Variances							
		IDW-1	IDW-3					
ค่าเฉลี่ย	Mean	0.00536754	0.00683401					
ความแปรปรวน	Variance	0.00007347	0.00009863					
จำนวนตัวอย่าง	Observations	145	145					
df=n ₁ -1,n ₂ -1	df	144	144					
ค่าสถิติทดสอบ F	F	0.74490738						
P-Value	P(F<=f) one-tail	0.03914110						
ค่าวิกฤติf <u>a</u> , _{v1,v2}	F Critical one-tail	0.75953450						
2/10/2								

รูปที่ 87 ตัวอย่างผลลัพธ์การทดสอบ F ของค่าความแปรปรวนของค่าพิกัดทางราบที่ได้จาก

แบบจำลอง IDW-1 กับ IDW-3

เนื่องจาก F = 0.7449 อยู่ในบริเวณยอมรับ *H*₀ หมายความว่าความแปรปรวนของค่าพิกัด ทางราบจากแบบจำลอง IDW-1 และ IDW-3 เท่ากัน ที่ระดับนัยสำคัญ 0.10

ขั้นตอนที่ 2 ทดสอบสมมติฐานเกี่ยวกับค่าเฉลี่ยของค่าพิกัดทางราบจากค่าพิกัดของแต่ละ แบบจำลอง

<u>ขึ้นที่ 1</u> เลือกเมนู Data เลือก Data Analysis เลือกวิธีการวิเคราะห์ถ้าความแปรปรวนของ ข้อมูลทั้ง 2 กลุ่มเท่ากัน ($\sigma_1^2 = \sigma_1^2$) เลือกคำสั่ง T-Test: Two Sample Assuming Equal Variances ถ้าความแปรปรวนของข้อมูลทั้ง 2 กลุ่มไม่เท่ากัน ($\sigma_1^2 \neq \sigma_1^2$) เลือกคำสั่ง T-Test: Two Sample Assuming Unequal Variances

จากขั้นตอนที่ 1 ได้ผลว่าความแปรปรวนของค่าพิกัดทางราบจากแบบจำลอง IDW-1 และ IDW-3 เท่ากัน ดังนั้น เลือก T-Test: Two Sample Assuming Equal Variances

Data Analysis		?	\times	
Analysis Tools	OK			
Moving Average Random Number Generation		Ca	ncel	
Rank and Percentile Regression		H	elp	
Sampling t-Test: Paired Two Sample for Means				
t-Test: Two-Sample Assuming Equal variances t-Test: Two-Sample Assuming Unequal Variances	-			

รูปที่ 88 เลือกทดสอบทางสถิติ T-Test ในการทดสอบค่าเฉลี่ยของค่าพิกัดทางราบ

ขั้นที่ 2 ในส่วน Input Variable 1 Range คือระบุข้อมูลของตัวแปรที่ 1

Variable 2 Range คือระบุข้อมูลของตัวแปรที่ 2

Hypothesized Mean Difference คือผลต่างของค่าเฉลี่ย หรือ μ_0

Alpha คือค่าระดับนัยสำคัญ

CT A				Kri	ging	Kriging	ŀ	Kriging	Kriging	Kriging	Nat	ural									
SIA	IDVVI	10002	10005	Sph	erical	Circular	Exp	onential	Gaussian	Linear	Neig	hbo									
АМКО	0.010	0.010	0.009	t-T	t-Test: Two-Sample Assuming Equal Variances						×	07									
AWLK	0.003	0.003	0.003	3 Input Variable 1 Pange: EPE2:EPE147						OK		03									
AYYA	0.001	0.000	0.001	1 Variable 2 Range: SDS3:SDS147				1 Variable 2 Range: \$D\$3:\$D\$147				I Variable <u>2</u> Range: SDS3:SDS147				Variable 2 Range: \$D\$3:\$D\$147					
BDNG	0.002	0.002	0.002	н	ypoth <u>e</u> siz	Help															
BGKN	0.003	0.002	0.002		Labels	05						31									
BGSP	0.001	0.003	0.004	0	utput op	tions						03									
вкок	0.005	0.005	0.005) <u>O</u> utput New W	: Range: orksheet <u>P</u> ly:			Ţ			04									
BLAN	0.003	0.002	0.002) New <u>W</u>	orkbook						02									
BLMG	0.002	0.002	0.002	0.	002	0.002		0.002	0.002	0.002	0.0	003									

รูปที่ 89 จับคู่การทดสอบค่าเฉลี่ยของค่าพิกัดทางราบที่ผ่านแบบจำลอง IDW-1 กับ IDW-3

// // 353			
	t-Test: Two-Sample A	Assuming Equa	I Variances
	19((0))9(1(0)	IDW-1	IDW-3
ค่าเฉลี่ย	Mean	0.00533383	0.00682226
ความแปรปรวน	Variance	0.00007382	0.00009930
จำนวนตัวอย่าง	Observations	144	144
ความแปรปรวนร่วม	Pooled Variance	0.00008656	
ผลด่างค่าเฉลี่ย	Hypothesized Mean Difference	0	
$df = n_1 + n_2 - 2$	ณมหา _{df} ทยาล	E 286	
ค่าสถิติทดสอบ T กรณีค่าเฉลี่ย 2 กลุ่มที่เป็นอิสระ $(\sigma_1^2=\sigma_1^2)$	CORN t Stat IVER	-1.35747754	
P-Value การทดสอบทางเดียว	P(T<=t) one-tail	0.08784985	
ค่าวิกฤติทางเดียว t_{lpha,n_1+n_2-2}	t Critical one-tail	1.65019890	
P-Value การทดสอบ 2 ทาง	P(T<=t) two-tail	0.17569970	
ี ค่าวิกฤติ 2 ทาง ± t _{n1+n2} _2	t Critical two-tail	1.96829326	
2, 1 2			

<u>ขั้นที่ 3</u> ได้ผลลัพธ์ ดังนี้

รูปที่ 90 ตัวอย่างผลลัพธ์การทดสอบ T ของค่าเฉลี่ยของค่าพิกัดทางราบที่ได้จากแบบจำลอง IDW-1 กับ IDW-3

เนื่องจากค่าสถิติทดสอบ T = -1.3574 อยู่ในบริเวณยอมรับ H₀ หมายความว่าค่าเฉลี่ยของ ค่าพิกัดทางราบจากแบบจำลอง IDW-1 และ IDW-3 ไม่แตกต่างกัน ที่ระดับนัยสำคัญ 0.05

บรรณานุกรม

- Altamimi, Z., Collilieux, X., Legrand, J., Garayt, B., & Boucher, C. (2007). ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. *Journal of Geophysical Research: Solid Earth*, *112*(B9).
- Altamimi, Z., Collilieux, X., & Métivier, L. (2011). ITRF2008: an improved solution of the international terrestrial reference frame. *Journal of Geodesy*, *85*(8), 457-473.
- Altamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X. (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions [Article]. *Journal of Geophysical Research: Solid Earth*, *121*(8), 6109-6131. <u>https://doi.org/10.1002/2016JB013098</u>
- Altamimi, Z., Sillard, P., & Boucher, C. (2002). ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. *Journal of Geophysical Research: Solid Earth, 107*(B10), ETG 2-1-ETG 2-19.
- ArcGIS Desktop 10.8. (2020). An overview of the Interpolation toolset. Retrieved 14 Nov 2021 from <u>https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/an-overview-of-the-interpolation-tools.htm</u>
- Bertiger, W., Bar-Sever, Y., Dorsey, A., Haines, B., Harvey, N., Hemberger, D., Heflin, M., Lu, W., Miller, M., & Moore, A. W. (2020). GipsyX/RTGx, a new tool set for space geodetic operations and research. *Advances in Space Research*, 66(3), 469-489.
- Besim, A., & Kornél, C. (2019). A comparative analysis of different DEM interpolation methods in GIS: case study of Rahovec, Kosovo [article]. *Geodesy and Cartography*, *45*(1). <u>https://doi.org/10.3846/gac.2019.7921</u>
- BLICK, G., & CROOK, C. (2012). Four Dimensional Deformation Modelling, the link between International, Regional and Local Reference Frames.
- Bogusz, J., Kłos, A., Grzempowski, P., & Kontny, B. (2014). Modelling the velocity field in a regular grid in the area of Poland on the basis of the velocities of European permanent stations. *Pure and Applied Geophysics*, *171*(6), 809-833.
- FGDC, F. G. D. C. (1998). Geospatial Positioning Accuracy Standards, part 3: National

standard for spatial data accuracy. *Washington, DC, Federal Geographic Data Committee Report.*

- Garnero, G. (2014). Use of NTv2 transformation grids in engineering applications. *Earth Science Informatics*, 7(2), 139-145.
- Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2007). *GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more*. Springer Science & Business Media.
- IDS, I. D. S. (2020, 02 March 2020). *Preparation for ITRF2020*. <u>https://ids-</u> doris.org/analysis-coordination/itrf2020.html
- Kouba, J., & Héroux, P. (2001). Precise point positioning using IGS orbit and clock products. *GPS solutions*, *5*(2), 12-28.
- LEICA Geosystems AG. (2014). *Leica Geo Office Online Help: Leica Geo Office 8.4*. <u>https://leica-geosystems.com/products/gnss-systems/software/leica-infinity</u>
- เฉลิมชนม์ สถิระพจน์. (2548). เอกสารคำสอนวิชา *2108631 Advanced GPS Satellite Survey* งาน รังวัดดาวเทียมจีพีเอสขั้นสูง. ภาควิชาวิศวกรรมสำรวจ คณะวิศวกรรมศาสตร์จุฬาลงกรณ์ มหาวิทยาลัย.
- กรกฎ บุตรวงษ์. (2563). การ คำนวณหาแบบจำลองค่าปรับแก้พิกัดทางราบสำหรับกรอบพิกัดอ้างอิง สากล ITRF2005 ไปสู่ ITRF2008 ของประเทศไทย. การประชุมวิชาการวิศวกรรมโยธาแห่งชาติ ครั้งที่ *26, 26*.
- กรมแผนที่ทหาร และ มหาวิทยาลัยเชียงใหม่. (2560). รายงานฉบับสมบูรณ์: โครงการพัฒนาแบบจำลอง Geoidความละเอียดสูงของประเทศไทย. https://www.rtsd.mi.th/main/%E0%B9%82%E0%B8%84%E0%B8%A3%E0%B8%88 7%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%9E%E0%B8%B1%E0%B8%92 %E0%B8%99%E0%B8%B2%E0%B9%81%E0%B8%9A%E0%B8%9A%E0%B8%88% E0%B8%B3%E0%B8%A5%E0%B8%AD%E0%B8%87%E0%B8%A2%E0%B8%B5/
- กรมแผนที่ทหาร กองบัญชากองทัพไทย. (2562). ระบบโครงข่ายสถานีรังวัดสัญญาณดาวเทียม *GNSS* แบบอัตโนมัติ. Retrieved 14 พ.ย. 2564 from <u>https://gnss-</u> <u>portal.rtsd.mi.th/portal/apps/sites/#/gnss</u>

ชูเกียรติ วิเชียรเจริญ. (2537). ยีออเดซี. ภาควิชาวิศวกรรมสำรวจ คณะวิศวกรรมศาสตร์ จุฬาฯ. ธนพัทธ์ จงรักชอบ. (2560). การเปรียบเทียบโครงข่ายอ้างอิงในประเทศไทยระหว่างกรอบอ้างอิง ITRF2008 และ ITRF2014. วารสารแผนที่ (*Royal Thai Survey Department Journal*) ฉบับที่*1*, ปีที่*38*, เดือนมกราคม-มิถุนายน *2561*, หน้า 52-62.

วิชัย เยี่ยงวีรชน. (2015). การสำรวจรังวัด : ทฤษฎีและการประยุกต์ใช้ (พิมพ์ครั้งที่ 7. ed.) [Nonfiction]. สำนักพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย.

https://chula.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?dir ect=true&db=cat05085a&AN=chu.b2048890&site=eds-live

CHULALONGKORN UNIVERSITY

Chulalongkorn University

ประวัติผู้เขียน

ชื่อ-สกุล วัน เดือน ปี เกิด สถานที่เกิด วุฒิการศึกษา

ที่อยู่ปัจจุบัน

เมธา น้อยนาค 17 มิถุนายน 2537 จังหวัดชัยนาท วิศวกรรมศาสตร์บัณฑิต (วศ.บ.) สาขาวิศวกรรมสำรวจ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย 22/23 ซอยไชยภรณ์ ถนนพรหมประเสริฐ ตำบลในเมือง อำเภอเมือง ชัยนาท จังหวัดชัยนาท 17000

CHULALONGKORN UNIVERSITY