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งานวิจัยนี้ใช้เอฟพีจีเอเพื่อเพิ่มประสิทธิภาพการจำลองของการคำนวณควอนตัมในสอง

ด้าน ได้แก่  1.ใช้คำสั่งควบคุมเงื่อนไขแทนการคำนวณผลิตภัณฑ์เทนเซอร์ สิ่งนี้ทำให้ผลิตภัณฑ์เทน
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ใน VerilogHDL ประสิทธิภาพสามารถประเมินได้โดยใช้โปรแกรมจำลอง FPGA ผลที่ได้แสดงให้
เห็นว่าในกระบวนการจำลองด้วยงานของเราดีขึ้นเมื่อเปรียบเทียบกับการจำลองบนคอมพิวเตอร์
แบบคลาสสิก 
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We use FPGA to optimize the simulation of quantum computing in two 
aspects. (a) The if-else state is used in place of tensor product calculation. This 
allows the tensor product of each quantum operator to be generated in a single 
clock cycle. (b) The pre-calculated lookup ROM is used for estimating the sine and 
cosine values. This facilitates the computation of quantum gates that are related 
to angle. To validate our work, we implement our design in VerilogHDL. The 
performance is evaluated using an FPGA simulator. The result shows a dramatic 
improvement in the simulation process comparing to those of simulation on 
classical computers. 
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Introduction 

Problem and Motivation 
While a quantum computing provider (such as IBM) allows remote access to a 

real quantum computer, the developers still have to wait in a long line. 

Consequently, the use of a quantum computing simulator or emulator is an 

alternative tool that allows initial algorithm development to be tested and validated.  

With the use of physical effects like superposition, a quantum state is able to 

represent multiple states at the same time. In addition, entanglement allows a 

change in the state of one qubit to immediately change the state of the associated 

qubit. These properties allow a quantum computer to solve problems that are 

intractable for a classical computer.  Examples include solving the factorization 

problem for RSA decryption using Shor's algorithm in polynomial time. Because one 

part of Shor's algorithm comes from a quantum fourier transform that takes 

advantage of quantum computing. 

There exist several software simulations of a quantum computing on classical 

computers. Unlike the parallel execution in a quantum computer, the inherent 

classical computer is, however, executed in a sequence. Intuitively, the 

implementation of a quantum algorithm on the classical computer would take more 

time to execute comparing to those of the quantum computer. To ease the 

simulation speed, parallel execution hardware, such as graphics processing units 

(GPUs) and Field Programmable Gate Arrays (FPGAs), has been employed to achieve 

faster simulation time. 

We aim at using FPGA to improve the speed of quantum computer 

simulators. This simulator allows developer to test arbitrary quantum algorithm. 
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Objective  

To design a platform for quantum computing simulation using VerilogHDL 

simulation that can simulate arbitrary quantum algorithms at a faster speed than 

software simulation. 

Scope 
1. This research is simulated on VerilogHDL. 

2. We need to focus on run time to compare with the baseline (Qiskit). 

3. The Qiskit is used as a baseline for proving the correctness of 

quantum circuits. 

Background knowledge 

Quantum Computer   

A quantum computer is a type of computer that takes the advantage of 

quantum phenomena, this allows the quantum computer to outperform a classical 

computer. In general, there are 2 properties: superposition and entanglement. 

Superposition 

    It is the principle of quantum superposition states that allows a quantum state to 

represent more than one (classical) state at the same time. In another word, we can 

represent arbitrary states by using the combination of all possible states in quantum 

bits. 

Entanglement 

    Quantum entanglement is a physical phenomenon that happens when we have 2 

qubits, which can be entangled. Change in the state of one qubit will immediately 

change the state of another one. The change of that qubit is easy to foretell. This 

phenomenon has been true although these qubits are far away from each together. 

[1] 
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Representing a quantum state in quantum computing 

In the classical machine, a bit is used for describing the information of the 

classical system. The classical bit is either 0 or 1. On another hand, the quantum 

computer has a unit that can represent multiple states at the same time. it's called a 

qubit. [2] A quantum bit or a qubit is a unit of information describing a two-

dimensional quantum system. A qubit can be represented by a 2n-by-1 matrix with 

complex numbers. 

      (1) 

where n is the number of qubits and |c0|2 and |c1|2 are the probabilities amplitude of 

qubit, where the measurement will result in |0> and |1> respectively. Thus, |c0|2 + 

|c1|2 = 1.[1] 

 

Representing an operator in quantum computing 

Basic quantum gate 

In classical computer, logic gates are ways of managing bits. If the input bits 

are passed through a gate, we will get the result bits. So, the calculation relies on 

types of each gate.  In the same way, quantum computer qubits are manipulated by 

quantum gate. 

    A quantum gate is simply an operator that acts on qubits. Such operators can be 

represented by unitary matrices. We can express the gate in the form of 2n-by-2n 

matrix (2). Where n is number of qubits. 

      (2) 
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There are many types of quantum gates that are shown with their unitary 

matrix in Table 1.[3] 

Operator Gate Matrix 

Pauli-X (X) 
 

 

 

Pauli-Y (Y) 
 

 

 

Pauli-Z (Z) 
 

 

 

S 
 

 

 

T (
𝜋

8
) 

  

 

Square root of 

NOT gate  
 

 

Phase shift 
 

 

 

Controlled U 

  
 

When U is an arbitrary single quantum 

gate. 
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Controlled NOT 

(CX, C-NOT) 
 

 

 

Controlled Z 

(CZ) 
 

 

 

SWAP 

   

 

Toffoli gate 

(CCX, CCNOT, 

TOFF) 

 

 

 

 

Table  1 Show the quantum gates 
 

Quantum gate in quantum system 

Each qubit in a quantum system interacts with others. To model them, a 

tensor product is the mathematical expression from multiple qubits transformation. 

The tensor operation on any pair of 1-qubit transformations is illustrated as 

follows.[1] 
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    (3) 

Definition of unitary matrix 

When we have an n-by-n matrix U, it will be unitary matrix if and only if  

     (4) 

when  is conjugate and transpose of . 

 

Transforming state in quantum computing 

If we want to apply a quantum gate (operator) on a quantum state, a matrix-

vector multiplication can be used to describe this transformation. The example is 

shown in equation 5. 

   (5) 

 

Field-programmable gate arrays (FPGAs) 

Field-programmable gate arrays (FPGAs) are digital devices that rely on digital 

logic. There are many general-purposed logic gates on FPGA that can be used for 

design the circuit using drawing logic gates or using the Verilog (or another) hardware 

description language. [4] 
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Related Work   
There are many ways to simulate or emulate quantum computing. In this 

chapter, we will present the proposition of the quantum computer architecture and 

the previous quantum computing simulator or emulator by software, GPUs and FPGA 

respectively. 

Quantum Computer Architecture  
The concept and implementation of a quantum computer architecture to 

allow creating a new computational device as a quantum computer accelerator are 

presented by Koen Bertels et al [6]. They present the idea of a quantum accelerator 

that contains the full-stack of the layers of an accelerator. The highest level is an 

algorithm or application, and the next layer is quantum logic that can represent the 

algorithm. This logic is translated to a common assembly language called cQASM by 

OpenQL. Then, the compiler can convert cQASM to eQASM to generate an 

executable on the specific device. 

Moreover, this article mentions the use of a full-stack quantum accelerator. 

There are 2 ways of using quantum accelerators, so it depends on the type of the 

lowest layer device. If the device is quantum chip material, it is used to improve the 

quality of qubits. If the device is a quantum simulator, such as a GPU or FPGA, it is 

used to develop quantum algorithms. 

Qiskit 
Qiskit [quiss-kit] is an open-source SDK for working with quantum computers 

at the level of pulses, circuits, and application modules. [5] 

However, the nature of the classical computer, which processes in sequence, 

causes it to take exponential time and resources, and is not suitable for simulating 

the parallel processing inherent in the quantum computer. Accordingly, the usage of 

devices that can process in parallel, such as GPUs and FPGAs, is interesting. 
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Graphic processing units (GPU) 
Graphic processing units (GPU) is a device that can process in parallel.  Smith 

A. and Khavari K. [6] implemented quantum fourier transform (QFT) which is the 

heart of many other quantum algorithms using Compute Unified Device Architecture 

(CUDA) GPUs. They proposed optimization for GPU in two ways. First, Algebraic 

manipulations include combining consecutive phase shift gates into one that 

improves 3.8xspeedup by choosing cosf and sqrt instead of sinf and cosf (by the 

knowledge that  in calculations.  Second, Combining Kernels and 

Shared Memory when they realize these methods together can achieve further 

speed up. 

Oumarou et al. [7] use CuPy, which is the NumPy equivalent library that 

supports CUDA enabled GPUs, a general-purpose library (linear algebra) developed 

specifically for CUDA-based GPUs, to simulate quantum circuits. Within the Python 

ecosystem, they have to pay attention to usability, implementation, and 

maintainability. They benchmarked the performance of CuPy using two types of 

circuits: supremacy and arithmetic. When compared to state-of-the-art C++-based 

simulators, the speedup for supremacy circuits is around 2x, and for quantum 

multipliers it is nearly 22x. 

Field programable gate arrays (FPGA) 
Field-programmable gate arrays (FPGAs) are digital devices that rely on digital 

logic. There are many general-purposed logic gates on FPGA that can be used for 

designing the circuit using drawing logic gates, VerilogHDL or other hardware 

description languages.[4] Moreover, FPGA which has intrinsic parallelism is a good 

choice to mimic quantum computer behavior because of its properties in performing 

bit-level parallelism. From the previous studies, there are 3 ways to simulate 

quantum computer using FPGA. 
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 From the architectural point of view, C. Conceição and R. Reis [8] proposed a 

processor architecture based on single instruction multiple data (SIMD) which is 

capable of efficiently emulate quantum circuit. Lee et al. [9] presented serial-parallel 

architecture with efficient resource utilization. Their work has two advantages:  serial 

architecture uses fewer resource comparing to those of others and the pipeline 

architecture yield higher throughput. This work can achieve a linear reduction of 

resource utilization when compared to pipeline architecture. Furthermore, this work 

chooses a suitable number of fixed-point representations for balancing between 

precision error and resource utilization.  

 From the circuit point of view, N. Mahmud, E. El-Araby, and D. Caliga [10] 

inspected the approach for emulating quantum computing instead of emulating gate-

based quantum circuit. Scalability was their goal.  There were 2 models of emulation 

depending on the type of matrix representing the quantum algorithm. The first 

model is suitable for the dense quantum algorithm matrix. Reducing the quantum 

circuit to arithmetic operation (complex multiplication-and-accumulation CMAC) is a 

key of this model. Moreover, they can optimize this model by combining two types 

of computation consisting of lookup and dynamic generation. Lookup needs to pre-

compute and store value in memory for speed optimization. Dynamic generation 

causes space optimization.  The second model is appropriate for the sparse quantum 

algorithm matrix. The core operations of that matrix are extracted as a kernel. It is 

then applied iteratively across all groups of input states.  

 From the coprocessor point of view, A. U. Khalid et. al. [11] represents the 

approach for emulating the quantum circuit using the ability of FPGA to emulate the 

parallelism of quantum computing and to resolve the bottleneck in software 

simulation. Besides, the code-generation, which is a capability of VHDL language, 

constructs the n-input gates from 1-input gates (from software quantum circuit 

package) instead of keeping the multiple-input gate in large matrix form. Regarding 

the evolution, the quantum circuit have quantum state register (QSR) for holding 
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amplitude of every state after each transformation. For the quantum measurement, 

simulator from the software part is used.  The universal and scalable quantum 

emulator using the FPGA to emulate the behavior of a real quantum system is 

proposed in [12]. This emulator was user, so it focuses on the ease of use and 

reflects on the behaviors of real-quantum computer by using advantage of FPGA that 

can operate the instruction in one clock tick. Hence, there are parts of software and 

hardware that can communicate together. Moreover, it can run the entire quantum 

algorithm, contains state initialization, transformation, and measurement. However, 

the resource optimization is not their goal. Hence, this work can emulate only two 

qubits, which is not enough for general quantum algorithms. 
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Design and Methodology 
In this chapter, we will describe the system design and methodology of our 

simulation. To understanding more, let’s start with the example. If we want to run 

Quantum Fourier transform (QFT) for 5 qubits, we begin the process by generating 

quantum state or vector of complex number and quantum circuit that is the matrix 

of operator. Next, to transforming quantum state the vector is multiplied with that 

matrix. The process is repeated until all operators have been used. Lastly, the 

measurement step is performed on a final result of quantum state. The details of 

this process are described following this. 

 

Figure  1 Quantum circuit of Quantum Fourier Transform (QFT) for 5 qubits. 
First, we will explain generating quantum state step. This step produces the 

vector of complex number size 2n-by-1 is show as in (6) when n is a number of 

qubits and 2n is all possible quantum state in our system. 

    (6) 

 After that, generating quantum circuit as the matrix size 2n-by-2n is performed. 

For the circuit is shown as in figure 1, all matrix operator that represent the circuit at 
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each layer can be creating using directly calculating the tensor product. Its layer is 

presented by equation (7) – (21) 

       (7) 

      (8) 

      (9) 

    (10) 

    (11) 

     (12) 

    (13) 

    (14) 
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    (15) 

     (16) 

    (17) 

    (18) 

     (19) 

    (20) 

     (21) 

From these equations, we notice that in case of equation (7), (8), (12), (13), 

(16), (17) (19), (20), (21). We can directly find the tensor product of these by operating 

quantum gate for target qubit and identity gate (I) for others. On the other case for 

the rest equations, Since the CR(theta) gate must be acted on 2-closed-qubits, 

therefore these layers are consisted of SWAP gate before and after a desired gate CR 

(theta) for switching 2-target-qubit to close each other.   

 Next, matrix-vector multiplication, which is the executing of each layer 

operator on qubits, is performed for transforming quantum state. Finally, if all 

operators have been used, we will measure a final vector from this process. 

As an above example, in the latter case of generating quantum circuit by 

using tensor product at each layer uses a lot of operations of switching qubits. 
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Moreover, if the 2-target-qubit are more far, the number of operations for switching 

are larger. Therefore, we propose an optimization proposition for calculating tensor 

product step to improve the speed of quantum computing simulation with an 

implementation using FPGA. We will explain it in the next section. 

Moreover, for the quantum gate that involved with angle such as R gate, CR 

gate. It must use sine and cosine value in calculating tensor product step. CORDIC 

algorithm was introduced for the computation of Trigonometric functions, 

Multiplication, Division, Data type conversion, Square Root and Logarithms in FPGA as 

mention in [13].  

Criteria CORDIC ROM 
Time  ✓ 
Space ✓  
Accuracy  ✓ 

Table  2 Comparison of CORDIC and ROM 
In table 2, we compared 2 methods that are used to compute sine and 

cosine values in 3 aspects.  

First, in the time aspect, ROM can overcome CORDIC. Because ROM uses the 

pre-compute of sine and cos values, this allows the ROM to directly use the sine and 

cos values. While CORDIC is an iterative algorithm, this can compute trigonometric 

values. For this reason, it spends more time computing each iteration than ROM. 

Next, in view of space, CORDIC can overcome ROM. Because CORDIC collect a 

group of initial values that is used to compute other values. On another hand, the 

space for collecting value in ROM is depend on the number of values that we want 

to use. For example, suppose that we want to use sine in range 0 – 90 degrees. If we 

use CORDIC, it will spend 30 units to collect initial value then it will use that value to 

compute others. But, if we use ROM, it will spend 91 unit to collect all values. 
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Finally, in terms of accuracy, ROM can outperform CORDIC. Because ROM 

outputs the exact values, whereas CORDIC outputs the approximate values by using 

the group of initial values. Furthermore, the CORDIC requires more iteration for 

calculating sine and cosine value to achieve higher accuracy. 

For the reasons stated above, ROM can outperform CORDIC in terms of speed 

and accuracy. As a result, the ROM is chosen for collecting sine and cosine values 

rather than directly calculating them (CORDIC). 

Propositions 
From the example above, there are two steps to simulate quantum 

computing using the matrix method: calculating the tensor product of quantum 

operators, which creates operators that act on all qubits, and matrix-vector 

multiplication, which is the operation of operator on qubits. In this work, we propose 

an optimization proposition for calculating tensor product step to improve the speed 

of quantum computing simulation with an implementation using VerilogHDL 

simulation. 

Proposition I: Describes the relationship within the operator's matrix rather 

than directly calculating the tensor product 

From usage this proposition, the matrix operator can be created without the 

need for any calculation operations. Because this method simply compares the 

desired qubit's index in the matrix using a comparison operation instead of 

calculation. Therefore, this method uses operations for generating the operator. 

The algorithm for use of this method is shown in algorithm 1 for single-qubit gate 

and 2 for multiple-qubits gate. In these algorithms, the initial state is the row index in 

the binary form of the matrix, and the final state is the column index in the binary 

form of the matrix. And each qubit is equivalent to a binary index bit. 
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Figure  2 Algorithm for creating matrix operator of single-qubit gate 
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Figure  3 Algorithm for creating matrix operator of multiple-qubit gate 
Proposition II: Use a lookup table to collect sine and cosine values instead of 

calculating them directly 

By implementing our propositions on FPGAs, we hope to speed up the 

quantum computing simulation in the calculation the tensor product step. 
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Instruction set architecture 
 In this section, we will explain about an instruction format that is used to 

command the system. Moreover, the representation of data, which is quantum state 

and quantum gate, and involved signal of our system are also described.  

Instruction format 

 In our system, we designed the instruction format have a length of 32 bits. It 

contains the following data that is required to simulate a quantum circuit: 

1. Opcode is interpreted as the type of operator that a user wants to simulate. 

There are 7 types of opcodes as shown in Table 3. 

Type Opcode Operation 
Gen_vec 101000 Generate quantum state 

as vector of complex 
number by gen_vec 
module. 

1Q-type 
1 target qubit gate 

000xxx Generate quantum gate by 
using opcode and target as 
input 

000000 X gate 
000001 Y gate 
000010 Z gate 
000110 H gate 

1Q1C-type 
1 target qubit with 1 
constant (an angle). 

001000 Generate P gate by using 
opcode, target and angle 
as input. 

2Q-type 
1 target qubit and 1 
control qubit. 

010xxx Generate quantum gate by 
using opcode, target and 
control as input 

010000 CX gate 
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010001 CY gate 
010010 CZ gate 

2Q1C-type 011000 Generate CP gate by using 
opcode, target control and 
angle as input. 

3Q-type 100000 Generate CCX gate by 
using opcode, target and 2 
control as input 

Table  3 Type of opcode in our system 
2. Target is a position of target qubit that a user wants to perform quantum gate 

on it. 

3. Ctrl0 and Ctrl1 are the position of control qubit. The Ctrl0 is used in case that 

quantum gate what we perform has 1 control qubit but in case it has 2 

control qubits the both Ctrl0 and Ctrl1 are used. 

4. Angle is interpreted as the angle that is used to rotate the qubit for the 

quantum gate that is involved with angle. In our work, it can use angle from 0 

to 90 degree because it has 7 bits which represents this part. 

5. N is a number of qubits of the quantum circuit that user want to simulate. 

The instruction format of our system can be represented as below. 

gen_vec-type 

Opcode (6 bits) Reserved (22 bits) N (4 bits) 

1Q-type 

Opcode (6 bits) Target (5 bits) Reserved (17 bits) N (4 bits) 

1Q1C-type 

Opcode (6 bits) Target (5 bits) Reserved (10 bits) Angle (7 bits) N (4 bits) 

2Q-type 

Opcode (6 bits) Target (5 bits) Ctrl0 (5 bits) Reserved (12 bits) N (4 bits) 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 
 

 

2Q1C-type 

Opcode (6 bits) Target (5 bits) Ctrl0 (5 bits) Reserved (5 bits) Angle (7 bits) N (4 bits) 

3Q-type 

Opcode (6 bits) Target (5 bits) Ctrl0 (5 bits) Ctrl1 (5 bits) Reserved (7 bits) N (4 bits) 

 

Representation of data in our system 

In general, data representation of a quantum state is represented by vector of 

complex number and a quantum gate is represented by matrix of complex number. 

However, in hardware it cannot represent data as 2 dimensions and complex 

number. Hence, these data must be represented by 1 dimension of fixed-point 

number of real part and imaginary part stick together as in figure 4.  

 

Figure  4 Fixed-point number that represent complex number 
In fixed-point number, 1 bit is used to represent sign of the value and 1 bit is 

used to represent an integer because the amplitude of quantum state and the value 

in quantum gate is not over 1. And the rest of fixed-point (14 bits) are enough for 

using to represent the fraction part. So, the 16 bits fixed-point number is sufficient to 

represent the value of each part.  
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System design 
Our system design contains 3 main parts that is processor, generator and co-

processor. Overall, of our system can be shown as figure 5. 

 

 

Figure  5 System design of our work 

Signal 

 Before we get into the details of each module, these modules have the 

relevant signals that are used commonly for controlling it. As shown in this table 4. 

Signal Function 
clock Determine the timing of each module. 
nreset  Determine the non-reset (nreset=1) or 

reset (nreset=0) of each module. 
start_flag Determine the starting of each module. 
done_flag Determine the completion of each 

module. 
Table  4 Relevant signal of our system 
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Processor 

 Processor is a part that put the state machine and memory together. It 

controls and manages overall of system. Function of each part can be delineated as 

follows. 

State machine 

 State machine is a heart for controlling workflow of our system. In our work, 

there is a state machine that is different type depends on the functionality of each 

module in our system.  

For the first module is a system module is shown as in figure 6. It has seven 

states:” IDLE”,” FETCH”,” GENVEC”,” MEASURE”,” GENMAT”,” CALCULATE” and” 

DONE”. If this module receives a system-start signal from user, it will change its state 

from” IDLE” to” FETCH.” After that, an instruction from memory is read and checked 

its opcode. If it equal to 6’b101100 a next state is assigned as” GENVEC” then the 

generator vector module will start. But if the opcode is 6’b110000 the next state is 

assigned as” MEASURE” then the measure module will start. Otherwise, If the 

opcode equal to other values the next state is assigned as” GENMAT” then the 

generator matrix module will start. Afterwards, when it’s done, the next state is 

changed to” CALCULATE” for starting vector-matrix multiplication. Finally, when” 

GENVEC” or” MEASURE” or” CALCULATE” are finished, it sends a signal to the 

system’s state machine telling it to change the state to” done,” and then it returns 

to” idle.” 
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Figure  6  State machine of system module 
Second module is a group of generator matrix module. The word “group” 

refers to, there are five types that depend on the input of these modules. These 

differences are discussed in the section of instruction format. Although these 

modules have differences, they have the same workflow. Hence, there are the same 

state machine. It has three states:” idle,”” busy,” and” done” that is shown as in 

figure 7. If this module receives a system-start signal, it will change its state from” 

idle” to” busy.” This module generating matrix follows proposition I when the state 

is” busy.” When it is finished, it sends a signal to the state machine telling it to 

change the state to” done,” and then it returns to” idle.” 
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Figure  7 State machine of generator matrix module and vector-matrix 
multiplication module 

Next module is a vector-matrix multiplication module. It has three states is 

same as the state machine of generator matrix module. For working of this state 

machine looks as follows. If this module receives a system-start signal, it will change 

its state from” idle” to” busy.” Then, this module starts to multiply matrix and 

vector input. When it has finished, it sends a signal to the state machine to change 

the state to” done,” and then it returns to” idle.” 

Last module is measurement module as shown in figure 8. It has four states: 

“idle”, “cal_prob”, “clear” and “done”. Normally, the state is “idle” after that if the 

start-to-measure signal comes to this module, the state will be changed to 

“cal_prob” then vector input is calculated probability. Then, when it has finish 

calculating, the state is changed to “clear” to clear the value of all registers and 

changed to “done” and then it returns to” idle.” 
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Figure  8 State machine of measurement module 
 

Memory 

 Memory is used for writing an instruction from user to our system and read or 

fetch instruction to the system. Thus, random access memory (RAM) that can be read 

and writhed data is used as memory in our work.  

 This module has clock, address, instruction (when writing) as input and done 

flag, instruction (when reading) as output. 
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Generator 

 Generator part is a part that generates vector and matrix corresponding with 

an instruction. These vector and matrix are used for input of multiplication unit to 

transform quantum state. There are 2 types of this generator: 

Vector generator 

 For the first line of every set of instruction must be the instruction declare a 

number of qubits and command our system to generate initial vector of complex 

number size 2n. Vector generator is a module that is used for this task as shown in 

figure 9.  

 

Figure  9 Vector generator module 
 The input of this module is clock, nreset (non-reset), opcode and start_flag 

and the output are done_flag and res (result) that is the vector of complex number.  

Matrix generator 

 Matrix generator module is used to generate a matrix of quantum operator in 

our system. This module can be divided this into 5 types according to instruction 

format. In each type, there are differences input that is shown in figure 10. All 

modules have similar output that is done_flag and res (result). The result represents 

the matrix of complex number.  
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Figure 10 Matrix generator module 

Co-processor 

 The main function of co-processor is about arithmetic operation. This part 

includes a vector-matrix multiplication module and a measurement module.  

Vector-Matrix multiplication module  

 Vector-Matrix multiplication module is used for multiplication vector of 

quantum state and matrix of quantum operator. In addition, this multiplication is a 

complex number that is represented in fixed-point number format. This number is 

between [-1,1] because the probability of quantum state no more than 1. As 

illustrated in the figure 11 it has vector size 2n-by-1 and matrix size 2n-by-2n be as an 

input and result size 2n-by-1 be as an output. 
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Figure  11 Vector-Matrix multiplication module 
 Inside this module, it has 4 QMULT and 4 QADD for using in multiplication 

and addition between each element of vector and matrix as shown in figure 12. To 

describe how it works, we assumed that it has one vector , which has size 2-by-1 in 

equation 22, and one matrix , which has size 2-by-2 in equation 23, are input of our 

module.  

    (22) 

   (23) 

If we calculate  , we will get an output vector , which has size 2-by-1 by 

using calculation as in equation 24. 

   (24) 

 From figure 12, the QADD number 3 and 4 are used for accumulating the 

result from multiplication of each row ( ,  in first row and ,  in 

second row) in real part and imaginary part respectively. The RTL_REG_SYNC is used 

for collecting the temporary out output from QADD 3 and 4 when it has not finished 

adding. Next, we focused in multiplication between a multiplier and a multiplicand 

of each element such as  that refers to complex number multiplication as 

. It has multiplication 2 times for real part of complex 

number that is , , and others for imaginary part that is , 
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. Thus, QMULT number 1 and 2 are used for multiplication this real part and 

QMULT number 3 and 4 are used for the rest part. In addition, the QMULT has an  

input it will assign to 1 when the multiplier and the multiplicand are both imaginary 

then flip a sign of output of it (from + to – or from – to +). For others case,  is set to 

0 and the sign is not flipped. The output of QMULT number 1 and 2, which is real 

part, and number 3 and 4, which is imaginary part, are added by QADD number 1 and 

2 respectively. Finally, the output of that QADD is accumulated by QADD number 3 

and 4. 

 

Figure  12 Design of vector-matrix multiplication module 

Measurement module 

 Measurement module is used for measuring the final-quantum state, which is 

matrix of vector state that are transformed by quantum circuit. As shown in figure 13, 

this module has clock, nreset, startp_flag and vector as input. The startp_flag is used 

to trigger calculating probability and the vector is the final-quantum state.  
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Figure  13 Design of measurement module 
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Results 
 In this chapter, we will show the result of our simulation. By starting with the 

verification of our system. Next, the result of each proposition is represented. Finally, 

the runtime of the simulation is compared with the baseline. 

Verification of the simulation 
 In this part, the verification of our modules in system are shown. There are 

three parts that must be checked for the correctness of the work. 

 Before we consider our verification results, we need to understand the actual 

data format of each part's output. The output is binary (fixed-point representation) as 

described in section of data representation. For example, if we want to create 

quantum circuit that has 3 qubits (0, 1, 2) and operate the H gate on 0th qubit. The 

process will be in the following 4 steps. First, the vector generator will create vector 

of complex number with the size of 23-by-1. Second, the matrix generator will create 

matrix of complex number with the size 23-by-23. Afterwards, the vector and the 

matrix will be multiplied by using vector-matrix multiplication module that get the 

vector of complex number with the size 23-by-1. Finally, for measurement step the 

measurement module will find the probability of each quantum state (each element 

of the final-state vector) and then get the output as a vector of real number with the 

size of 23-by-1. Hence, the actual output from each module at each step can be 

shown as in Table 5. 
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Verification of generator module 

 The verification result of generator module is described in this section. It 

contains 2 parts of generator module. The result of vector generator module is 

shown as in Table 6 and the result of matrix generator modules are shown as in 

Table 7-9. 

Verification of vector generator module 

Number of qubits Expected result Simulation result 
3 
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Table  6 Verification of vector generator module 
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Verification of Measurement module 

Quantum circuit Expected result Simulation result 
QFT 3 

 

 

QFT 5 

 

 
QFT 7  

 

 

 

 

 
Table  11 Verification of Measurement module 

From the verification result is the table 6 is vector generator module, table 7-

9 is matrix generator module, table 11 is measurement module. We got the result 

that match with baseline.  But in the table 10 is vector-matrix multiplication module 
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we got the result that didn’t match with the baseline. Therefore, the expected result 

is recalculated by hand. To check if the results from our simulations are correct or 

not. As a result, our result matched with this calculation. Note that this result is 

shown in appendix section. Thus, we concluded that our system can simulate 

quantum computing correctly. 

Result of propositions 
In this part, the result of our propositions is shown. Before we consider our 

proposition results, we need to know about the experiment setup. The propositions 

are modelled in VerilogHDL using a clock speed of 2.00 GHz. The Qiskit, a quantum 

simulation software library, was chosen as a baseline. This library runs on Colab with 

clock speed 2.20 GHz.  

For our baseline, it didn’t spend the same amount of runtime each time. 

Therefore, its runtime, as shown in the result, is an average of run time 10 times by 

cutting out the min and max value. 

 

Result of Proposition I: Describes the relationship within the operator's matrix rather 

than directly calculating the tensor product 

In this section, we design an experiment to compare how much time the 

software simulation with our work spends building the tensor product of each 

quantum gate. 

 To reduce the overlap measurement of propositions I and II, there are four 

different types of quantum gates in the experiment. The single qubit gate and the 

control single gate, which are not involved with angles (sine and cosine values), are 

used to demonstrate the result of proposition I. The others are used to demonstrate 

the result of proposition II. 
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Type of gate Number of 
qubits 

Qiskit (s) Our work (s) Speedup 

Single qubit 
gate 
H(2) 

3 

 
 

2.97 x 10-4 5.13 x 10-8 5.79 x 103 

4  

 
 

3.09 x 10-4 1.47 x 10-7 2.10 x 103 

5 

 
 

3.10 x 10-4 5.31 x 10-7 5.84 x 102 

Control single 3 2.72 x 10-4 5.13 x 10-8 5.30 x 103 
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qubit gate 
CX(0,2) 

 
 
4  

 
 

2.69 x 10-4 1.47 x 10-7 1.83 x 103 

5 

 
 

2.32 x 10-4 5.31 x 10-7 4.37 x 102 

Phase gate 
P(37,2) 

3 

 
 

2.87 x 10-4 5.13 x 10-8 5.59 x 103 

4 2.62 x 10-4 1.47 x 10-7 1.78 x 103 
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5 

 

2.86 x 10-4 5.31 x 10-7 5.39 x 102 

Control phase 
gate 
CP(60, 0, 2) 

3  

 
 

2.77 x 10-4 5.13 x 10-8 5.40 x 103 

4  

 
 

2.83 x 10-4 1.47 x 10-7 1.93 x 103 

5  2.76 x 10-4 5.31 x 10-7 5.20 x 102 
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Table  12 Comparison of runtime between software simulation and our work 

 In table 12, our propose method takes less time to run than those of 

software simulation. As a result of proposition I, we can generate a matrix operator 

by assignment through the if-else statement method rather than calculating the 

tensor product directly. This allows the generation of a matrix step in one clock cycle 

from 15.750 ns to 16.250 ns as shown in Fig 14. The resources required is 22n, where 

n is the number of qubits in the circuit.  

 

Figure  14 Simulation result for generating operator step in 1 clock cycle 
 Table 13 represents the meanings of all the states in our system. Fig. 15 

shows the timing diagram of the state machine of our system when it was simulating 

that it contains states that follow the instruction. If we zoom out this timing diagram 

as Fig. 16, we will find that almost all time is spent on state 4, or the matrix-vector 

multiplication step.  

Number State 
0 IDLE 
1 FETCH 
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2 GENVEC (generate vector) 
3 GENMAT (generate matrix) 
4 CALCULATE (matrix-vector multiplication) 
5 GENRAND (generate random number) 
6 MEASURE (find probability of final state) 
7 DONE 

Table  13 Meaning of all states in our system 

 

Figure  15 Timing diagram represent state machine when simulation (Zoom in) 
 

 

Figure  16 Timing diagram represent state of state machine when simulation  
(Zoom out) 

Result of Proposition II: Use a lookup table to collect sine and cosine values 

instead of calculating them directly 

 Proposition II is yet another reason why a matrix step can be generated in a 

single clock cycle. Because it reduces the time it takes to access sine and cosine 

values. 

To compare the simulation time of our work with software simulation when 

simulate Quantum Fourier Transform (QFT) at 3, 5, 7 qubits that is a quantum 

algorithm. Table 14 is shown the simulation time of both.  
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Quantum circuit Qiskit  
run on colab @2.2 GHz 

(s) 

Our work  
@2 GHz (s) 

Speedup 

QFT 3 qubits 3.18x10-4 2.24x10-7 1.42x103 

QFT 5 qubits 4.83x10-4 7.79x10-6 6.20x10 

QFT 7 qubits 3.99 x10-4 2.30x10-4 1.73 

Table  14 Simulation time comparison of our work and software simulation 
If we simulate these circuit by our work with the same time spent as qiskit's, 

we will use the clock speed in each case as shown in table 15.  

Quantum circuit Simulation time (s) Qiskit  Our work  
 

QFT 3 qubits 3.18x10-4 2.2 GHz 1.41 MHz 

QFT 5 qubits 4.83x10-4 2.2 GHz 32.2 MHz 

QFT 7 qubits 3.99 x10-4 2.2 GHz 1.15 GHz 

Table  15 Clock speed comparison of our work and software simulation 
The clock speed in this table can be calculated from (22). From the result in 

table 15. Our work takes less clock speed than qiskit at the same time. 

  (22) 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

52 
 

 

 

Conclusion and Future Work 
Based on these results, we conclude that optimizing the construction of 

tensor products using our proposed if-else method can significantly reduce the 

execution time of quantum computing simulation. However, the number of qubits 

and quantum gates in the circuit will increase the runtime. This is due to the fact 

that the multiplication vector-matrix step is still not optimized in this experiment.  

Moreover, due to hardware resource constraints, we intend to modify this 

module to support the generation of quantum operators for larger quantum circuits. 

Furthermore, the matrix-vector multiplication step should also be redesigned to gain 

better performance. 

We plan to modify our system by increasing the number of matrix-vector 

multiplication module in order to multiply vector and matrix in parallel. This will 

increase the speed of our simulation. In addition, the matrix-vector multiplication 

module and matrix generator module should be concurrent working for reduce the 

space that is used to collect the output of matrix generator module to increase the 

space for supporting larger circuit.   
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Appendix 
This table represent the calculation of each algorithm by hand. 

Quantum circuit Calculation 
by hand 

Simulation result 

All-gate 

  

 
 
 
 
 
 
 

 

 

Quantum Fourier Transform of 3 qubits 
(QFT 3) 

 

 

 
 

 

 

This table represent the raw data of run time of Qiskit. 
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Type of gate Number of qubits Round Run time of Qiskit 
(s) 

Single qubit gate 
H(2) 

3 

 
 

1 4.24 x 10-4 

2 3.60 x 10-4 
3 3.00 x 10-4 
4 3.10 x 10-4 
5 2.90 x 10-4 
6 2.89 x 10-4 
7 2.88 x 10-4 
8 2.66 x 10-4 
9 2.71 x 10-4 
10 
 

2.66 x 10-4 

4  

 
 

1 4.04 x 10-4 

2 4.04 x 10-4 
3 2.93 x 10-4 
4 2.95 x 10-4 
5 2.84 x 10-4 
6 2.66 x 10-4 
7 2.70 x 10-4 
8 3.05 x 10-4 
9 2.96 x 10-4 
10 
 
 

3.27 x 10-4 

5 1 4.40 x 10-4 
2 3.95 x 10-4 
3 3.02 x 10-4 
4 2.80 x 10-4 
5 2.94 x 10-4 
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6 3.06 x 10-4 
7 2.98 x 10-4 
8 2.85 x 10-4 
9 2.77 x 10-4 
10 
 

3.23 x 10-4 

Control single qubit 
gate 
CX(0,2) 

3 

 
 
 

1 3.74 x 10-4 
2 3.91 x 10-4 
3 3.90 x 10-4 
4 5.55 x 10-4 
5 2.42 x 10-4 
6 2.04 x 10-4 
7 1.93 x 10-4 
8 1.93 x 10-4 
9 1.88 x 10-4 
10 
 

1.86 x 10-4 

4  

 
 

1 3.73 x 10-4 
2 3.18 x 10-4 
3 2.99 x 10-4 
4 2.58 x 10-4 
5 2.34 x 10-4 
6 2.58 x 10-4 
7 2.56 x 10-4 
8 2.54 x 10-4 
9 2.53 x 10-4 
10 
 

2.56 x 10-4 
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5 

 
 

1 2.79 x 10-4 
2 2.27 x 10-4 
3 1.99 x 10-4 
4 1.96 x 10-4 
5 1.93 x 10-4 
6 2.86 x 10-4 
7 2.35 x 10-4 
8 2.08 x 10-4 
9 2.97 x 10-4 
10 
 

2.29 x 10-4 

Phase gate 
P(37,2) 

3 

 
 

1 3.69 x 10-4 
2 3.11 x 10-4 
3 2.76 x 10-4 
4 2.83 x 10-4 
5 2.79 x 10-4 
6 2.55 x 10-4 
7 2.54 x 10-4 
8 2.57 x 10-4 
9 2.71 x 10-4 
10 
 

5.05 x 10-4 

4 

 
 

1 2.95 x 10-4 
2 3.38 x 10-4 
3 2.77 x 10-4 
4 2.62 x 10-4 
5 2.55 x 10-4 
6 3.53 x 10-4 
7 2.41 x 10-4 
8 2.07 x 10-4 
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9 2.06 x 10-4 
10 2.23 x 10-4 

5 

 

1 3.82 x 10-4 
2 3.76 x 10-4 
3 3.91 x 10-4 
4 2.70 x 10-4 
5 2.68 x 10-4 
6 2.56 x 10-4 
7 2.45 x 10-4 
8 2.44 x 10-4 
9 2.48 x 10-4 
10 
 

2.43 x 10-4 

Control phase gate 
CP(60, 0, 2) 

3  

 
 

1 4.01 x 10-4 
2 3.46 x 10-4 
3 3.24 x 10-4 
4 2.84 x 10-4 
5 3.45 x 10-4 
6 2.35 x 10-4 
7 2.34 x 10-4 
8 2.22 x 10-4 
9 2.15 x 10-4 
10 
 

2.28 x 10-4 

4  1 4.05 x 10-4 
2 3.27 x 10-4 
3 3.02 x 10-4 
4 2.91 x 10-4 
5 2.79 x 10-4 
6 2.63 x 10-4 
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7 2.63 x 10-4 
8 2.69 x 10-4 
9 2.68 x 10-4 
10 
 

2.65 x 10-4 

5  

 

1 3.92 x 10-4 
2 2.95 x 10-4 
3 2.75 x 10-4 
4 2.93 x 10-4 
5 2.91 x 10-4 
6 2.60 x 10-4 
7 2.64 x 10-4 
8 3.01 x 10-4 
9 2.25 x 10-4 
10 
 

2.31 x 10-4 

Table  16 Raw data of run time of Qiskit.
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