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Chapter 1 
Introduction 

1.1 Statement of the problems 
It has been widely known that conveyor belt sushi experienced is a big boom in 

popularity in Japan. The main reasons are a wide variety of menu choices (example 
as shown in Figure 1), reasonable price, and accessible to all types of customers. 
Especially when people loved being able to eat quickly. Therefore, Japanese people 
decide to choose sushi served on rotation plates. The main concept of a typical 
conveyor belt sushi restaurant is using color-coded plates to identify sushi price and 
calculate the bill. The color-coded plate does not limit to only sushi item, non-sushi 
items can be calculated as well, as shown in Figure 2. However, the main problem 
with conveyor belt sushi restaurant is the method for calculating the bill. Generally, 
customers call a staff member to count all the sushi plates on the table, where each 
sushi plate has its own color-coded. If there are many customers who come to the 
restaurant and order a variety of sushi items with various prices, this may cause a 
delay in sorting and counting the plates. Repetition and fatigue may cause human 
error in the restaurant. From the aforementioned factors, it impacts delays in 
services. When service failure occurs due to a long waiting time, this reflects 
negatively on customer satisfaction and the store's image. 

This research presents the application of Object Detection to count the 
number of color-coded plates. The study is based on the patterns of sushi color-
coded plates from the most famous conveyor belt sushi restaurant in Japan. Central 
World has the first branch of conveyor belt sushi from Japan that opened its door in 
Thailand [1]. Applying the color-coded detection of sushi plates by implementing 
YOLO technique version 4 (YOLOv4) in conjunction with the OpenCV Library. The 
input data first use the photos from the mobile camera of the restaurant staffs. Then 
processing the color-coded plates recognition, and calculating the amount that the 
customer has to pay. It is designed and developed as an Application Programming 
Interface (API) developed with Java framework, Spring Boot REST API. This tool can 
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work on 3 platforms, namely Android, iOS and Web application. It is expected that 
the results of the research will enhance quality of service, operational efficiency, 
responsive calculation, paper usage and human accuracy. Additionally, reducing 
queue at the counter in front of the restaurant and keeping customers safe from 
contracting Covid 19 in the epidemic situation of emerging infectious disease. 

 
Figure 1: Uobei Sushi Menu [2] 

 

Figure 2: Price of desserts on sushi plates [3] 
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1.2 Objectives 
Introducing an Intelligent billing system for conveyor belt sushi restaurants. by 

applying technology to detect objects from mobile device shot of sushi plates. To 
reduce the time for counting containers and calculating the cost of food that 
customers have to pay. as well as supporting a new normal life in a communicable 
disease epidemic situation. 

1.3 Scope of Study 
1.3.1 Using the dataset of sushi plates from the Japanese’s most famous 

conveyor belt sushi franchise restaurant in Bangkok, Thailand. 
1.3.2 Able to detect objects, consisting of free water cups, sauce dishes, sushi 

dishes in 4 colors: 1. Red, 40 baht, 2. Silver, 60 baht, 3. Gold, 80 baht, and 4. 
Black, 120 baht , and the container is not sushi dishes. 

1.3.3 The picture of the sushi plate is clear. Not far away and the image is not 
broken 

1.4 Research Methodology 
1.4.1 Study and research related theories and literature review 
1.4.2 Explore and Data colloection sushi dishes. 
1.4.3 Data preprocessing 
1.4.4 Develop an object detection model with the YOLOv4 algorithm. 
1.4.5 Use file (*.weight) trained with the YOLOv4 algorithm as an application 

interface (API). 
1.4.6 Test and evaluate research results. 
1.4.7 Summary the result. 
1.4.8 Compile and produce reseach paper. 
1.4.9 Compile and produce thesis. 

1.5 Outcomes 
1.5.1 The speed of customer service in a conveyor belt sushi restaurant 

business 

1.5.2 Use technology to reduce the risk of infection in epidemic situations from 

queuing at the counter. 
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1.6 Thesis Publication 

Parts of the thesis had been published in the conference as following: 
R. Maitriboriruks and Y. Limpiyakorn, “Object Detection for Classifying Sushi 

Dishes in Conveyor Belt Sushi Business”, in Proceedings of the 8th International 
Conference on Computer Technology Applications (ICCTA) , 2022 , Vienna , Austria 

RANGRAK MAITRIBORIRUKS and  PATCHARIYA PIYA-AROMRAT and YACHAI 
LIMPIYAKORN , “Smart Conveyor Belt Sushi Bill Payment with a Mobile Shot “, 2022, 
GuangZhou, China 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 5 

Chapter 2  
Related Theories and Literature Review 

2.1 Related Theories 

2.1.1 Object Detection 
Object Detection [4] is a modern computer technology that deals with the 
application of Computer Vision and Image processing to detect various types of 
objects in images or videos by detecting objects with a number of researchers. The 
focus is on face detection and pedestrian detection along the road or various 
locations, and object detection can be divided into two main categories: 

2.1.1.1 Multiple-Stage Object Detection 
Multiple-Stage Object Detection [5] detects objects that use two or 

more models. Typically, the first model is used to separate regions and the 
second model is used to classify objects. (object classification) Multiple-Stage 
Object Detection is the detection of objects with high accuracy. The 
disadvantage is that it takes longer to detect other types of objects. Examples 
of models classified as Multiple-Stage Object Detection is Region Based 
Convolutional Neural Network (R-CNN) [6] invented by Ross Girshick et al. in 
2014 and is said to be a CNN-based model (CNN) in The problem of object 
detection and segmentation is very good. Figure 3 shows the working of the 
R-CNN consisting of 3 modules: 
• Region Proposal – Creating bounding box for object of interest 
• Feature Extractor - Serves to extract features from each region of the 

object of interest using Deep CNN. 
• Classifier - Use to classify the object of interest as an object class by 

using the SVM classifier. 
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Figure 3: R-CNN workflow [6] 

2.1.1.2 Single-Stage Object Detection 

Single-State Object Detection [6] is an object detection that uses only 
one model to detect all classes of objects in an image or video. The 
advantage is that Single-State Object Detection takes less training time than 
multiple- stage object detection and suitable for use with mobile devices and 
also has high accuracy.An example of a Single-Stage Object Detection is 
YOLO. It is a model developed by Joseph Redmon et al. Figure 4 shows the 
YOLO workflow starting from the S x S grid division of the image. Each grid is 
responsible for predicting the bounding box if the center of the bounding box 
lies within each grid. Each grid predicts the bounding box with respect to x ,y, 
width, height, sentiment. (confidence) and use Non Maximal Suppression to 
find bounding boxes with the highest Intersection Over Union (IoU) value, 
reducing the problem of bounding boxes overlapping in multiple layers 

 
Figure 4: YOLO workflow [6] 

2.1.2 Spring Boot REST API 

 Spring Boot [7] developed by Pivotal, is an open-source framework that uses Java 
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as its primary language. Spring Boot uses the concept of Microservices, which clearly 

separates each function into sub-services by Spring. Boot adopts the concept of 

REST, an architectural style that takes advantage of Web protocol technologies to 

create Web services to create application interfaces. API in order to make the client 

(Client) able to communicate with the server (Server) 

2.1.3 OpenCV 

OpenCV [8] developed by Intel, is a library with the goal of real-time 

computer rendering. for use in the development of open-source software systems 

OpenCV is used to perform visualizations in Machine Learning or Artificial Intelligence 

in object recognition or Face Recognition problems. Developed with C++ and also 

supports Python, Java and MathLab, the OpenCV is a cross-platform library. It is 

cross-platform and freely available under the Berkeley Source Distribution (BSD) 

open-source software license. Detect objects of interest. 

 
Figure 5: Object detection using OpenCV trained by YOLO [4] 
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2.2 Literature Review 

2.2.1 Comparison of Faster-RCNN, YOLO, and SSD for Real-Time Vehicle 
Type Recognition [9] 

Jeong-ah Kim et al. conducted research on comparing three neural 
network models, 1. Faster-RCNN, 2.YOLOv4, and 3.Single-Shot Detector (SSD), 
with the Automobile dataset, which were more efficient and have the most 
accurate in real-time object detection. The research categorizes vehicles into 
6 categories: 1.car 2.mini_van 3.big_van 4.mini_truck 5.truck and 6.compact. 
Before taking the dataset for training, a Region of Interest (ROI) was done to 
label the objects of interest before training with the model as shown in Figure 
6. The SSD model uses mobilenet v1, the Faster-RCNN model uses Inception 
v2 and YOLOv4 is all used by default. Comparisons of the results are 
summarized in Table 1. 

 

Figure 6: ROI before training with the model [9] 
Table 1 shows that Faster-RCNN is a model with two state object 

detection: regional proposal and classification. Low accuracy was obtained 
with real-time datasets of type F1score=0.90 , Precision=0.86 , Recall=0.94 , 
and mAP=93.40 makes Faster-RCNN unsuitable for use. The SSD has the 
fastest speed compared to Faster-RCNN and YOLOv4 because it uses a 
mobilenet light model, but the accuracy is the lowest compared to Faster-
RCNN and YOLOv4, with F1score=0.88 , Precision=0.90 , Recall=0.87 and mAP 
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= 90.56, making SSD unsuitable for adoption. YOLOv4 is a very accurate 
model that predicts vehicles without fail in real time. However, the model 
training speed is slower than SSD but faster than Faster-RCNN: F1score=0.96 , 
Precision=0.93 , Recall. =0.98 and mAP=98.19, which is the highest 
achievement compared to Faster-RCNN and SSD, thus YOLOv4 has the best 
predictive performance compared to Faster-RCNN and SSD. 

Table 1: Comparison of model performance: Faster-RCNN, SSD, YOLOv4 [9] 

 F1score Precision Recall mAP Time 

Faster-RCNN 0.90 0.86 0.94 93.40 Ranking 3 

SSD 0.88 0.90 0.87 90.56 Ranking 1 

YOLOv4 0.93 0.98 0.98 98.19 Ranking 2 

 
2.2.2 YOLOv4: Optimal Speed and Accuracy of Object Detection [10] 

Alexey Bochkovskiy et al. implemented YOLOv4 to overcome the 
drawbacks of Convolutional Neural Networks that suffer the detection of 
overlapping objects, real-time detection, and high GPU consumption. Figure 4 
illustrates the four major learning steps consisting of: 
• Input - the training images 
• Backbone - CSPDarknet53 is chosen as the pretrained model for object 

recognition. Compared to CSPResNet50 and EfficientNet-B3, CSPDarknet53 
provides higher accuracy rate and less training time. 

• Neck - combine the features in conv net as preparation before moving to 
the next step. The PANet model was selected for feature integration. The 
block following CSPDarknet53 was implemented with the SPP model to 
augment the receptive field and separate important features from the 
backbone. 

• Head - apply Head of YOLOv3 to predict the bounding box used for 
classification and regression. The format of the enclosing framework is 
divided into 4 characters: width, height, center, and label prediction score. 
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As a result, using YOLOv4 achieved 43.5% speed (AP) from the real-
time MS COCO dataset of 65 Frame per second (FPS) on the Tesla V100 GPU. 
When comparing YOLOv4 with YOLOv3, the Average Precision (AP) increased by 
10% and FPS increased by 12%. The benchmark of YOLOv4 against other single 
stage object detection models using the same dataset MS COCO is depicted in 
Figure 8. The graph shows that YOLOv4 achieved the highest average Precision 
/frames per second, indicating that YOLOv4 had the highest accuracy despite 
the increased frames per second that could be applied. YOLOv4, therefore, 
works well for object detection of real-life photography [11]. 

 
Figure 7: Steps of object detection of YOLOv4 [10] 

 

 
Figure 8: Yolov4 BenchMark [11] 
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2.2.3 Automatic Counting Shrimp Larvae Based You Only Look Once (YOLO) 
[12] 

Siska Armalivia et al. conducted research on using YOLOv3 3 model to 
help shrimp embryo count as shown in Figure 9 to help shrimp farmers to 
determine the number of shrimp embryos. for calculating profit or loss The 
research process is as follows. 

• Data Collection - A total of 355 images of shrimp embryos were 
collected by mobile phones taken at the Takalar Brackish Water 
Aquaculture Fisheries, Center Takalar Regency and South Sulawesi. 

• Annotation Image - Bring the image dataset to be converted into a file 
format Label image using YOLO mark tools. By creating a Label image 
will set a frame to the object of interest and the resulting value will be 
in the file format (*.txt)  

• Training the Model - Before training the model with the dataset, edit 
the .cfg file by setting the learning rate=0.001, batches=64, 
iteration=4000. The dataset was divided into 325 training data and 30 
testing data. After changing the values in the cfg file and dividing the 
dataset, the model was trained using the Graphics Processing Unit 
(GPU). 
The research result achieved F1score=94.38%, Recall=93.51%, 

Precision=95.26%, mAP@0.5=96.83% and average of Accuracy=76.48%. Note 
that the Precision is very high and when the larger the number of images will 
make the value more accurate. 
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Figure 9: Example of an embryo counting image [12]. 

2.2.4 Sushi Dish : Object detection and classification from real images [13] 
Yeongjin Oh et al. 2017 conducted research on the object detection 

and classification of sushi plates from real images. The researchers 
implemented Ellipse Detection method to detect sushi plates as shown in 
Figure 10. The Convolutional Neural Network model was trained to classify 
color-coded plates as shown in Figure 11. The model achieved ellipse 
detection precision 85%, recall 96%, and classification accuracy 92%  

 
Figure 10: Ellipse Detection method to detect sushi plates [13] 
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Figure 11: Convolutional Neural Network for classify sushi plates [13] 
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Chapter 3  
Proposed Methodology 

This chapter mainly describes the construction of an object detection model 
implemented with YOLOv4 to facilitate the automated count of distinct colored 
sushi dishes. Figure 12 illustrates the architectural design of the proposed smart 
billing system for a conveyor belt sushi restaurant. The system structure can be 
divided into three main components. The frontend is developed with Flutter to build 
single codebase for UIs. The intelligent component of sushi plate count or the object 
detection model is constructed using YOLOv4. The backend is designed with 
Microservices architecture. Orchestration of YOLOv4, OpenCV and the Spring Boot 
REST API will create an API (Application Programming Interface) offering a service to 
other pieces of software. For example, when the API has finished calculating the cost 
of food, it will store the food cost for billing and the customer's information for 
membership benefits in the database. The Spring Boot REST API is selected as it can 
support a large number of incoming requests by making the API itself as a 
Microservice. While OpenCV [8] is a huge Opensource Computer Vision library that 
contributes to image processing and performing computer vision tasks. The library is 
cross-platform and mainly aimed at real-time computer vision. 

3.1 YOLOv4 Model 

According to related research, the findings of using the YOLOv4 approach to 

train an image dataset revealed high accuracy and the capacity to discriminate 

overlapping items [12]. As a result, this approach is appropriate for the sushi plate's 

visual qualities. Sushi platters are naturally sorted into column before being counted. 

As a result, the researcher chose the YOLOv4 approach as a training method for the 

image dataset, dividing the dataset into 80% for training and 30% for testing. Setting 

the pre-trained weight to yolov4.conv.137, divided into 4 main steps as described 

following: 
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Figure 12: Architecture Design of Integrated Research System 

3.1.1 Image collection of how the sushi plates is arranged in layers 

with different color-coded plates from the iPhone 12 in JPEG (.jpeg) file 

format. As indicated in Figure 13, the photographs collected are a plate of 

sushi arranged according to the nature of the restaurant's clients. Sushi plates 

have a clear habit of being sorted in a variety of ways. It can be arranged both 

in color order and out of color order. It could also include non-sushi plates. 

When there are a lot of plates, it is usually organized in more than one 

column. Various objects, like as sauce dishes, free cups, chopsticks, and food 

trash, are frequently placed on top of sushi platters. 
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Figure 13: example of sushi plates 

  3.1.2 Label Image 

The initial step was to collect photos from a dataset and label it, 
which was called Annotation Image. Label image in order to identify the 
position of the objects of interest, before using the YOLOv4 approach. The 
label image's value is determined by five factors as Figure 14: 

• Category Number is the class of the object of interest consisting 7 

classes: 0) “40baht” represents the red sushi plate, 1) “60baht” 

represents the silver sushi plate, 2) “80baht” represents the golden 

sushi plate, 3) “120baht” represents the black sushi plate, 4) “free-

water” represents the free water cup, 5) “free-dish” represents the 

free sauce plate, and 6) “not-sushi-dish” represents other kinds of 

plates used for special orders. Note that in this work, the class label 

indicates the product pricing rather than the type of sushi plate. 

• Bounding Box Left X denotes the initial x-axis position of the object of 
interest at the upper left corner. 
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• Bounding Box Top Y denotes the initial y-axis position of the object of 
interest at the upper left corner. 

• Bounding Box Right X denotes the starting x-axis of the object of 
interest at the lower right corner. 

• Bounding Box Bottom Y denotes the starting y-axis of the object of 
interest at the lower right corner. 

Labelimg [14], an open-source software that allows you to configure 
an image in the form of a label image that looks like a text (.txt) file. In figure 
4, Labelimg can be used to create a label image. 

 
Figure 14: Label images format 

  3.1.3 Config the parameter in YOLOv4-custom.cfg  

change the values in the file (*.cfg) as follows: batch at 64, 

subdivisions at 16, width at 416, height at 416, max_batches at 14000 (all 

value from class are multiplied by 2000), steps at 11200,12600(the first value 

is 80% of the max_batches, and the second value is 90% of the max_batches) 

filters at 33 (values are based on (class+5)*3) claesses at 7 (values from the 

number of classes of objects of interest), all of these numbers are based on 

the inventor of YOLOv4 [15] 
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  3.1.4 Pre-Trained Weight YOLOv4 

Download the yolov4.conv.137 file, which is the YOLOv4 Pre-Training 
Weight file used to train datasets that are not in the MS COCO dataset. The 
research datasets are conveyor belt sushi dishes. 

3.2 API Gateway 
The Spring Boot REST API was used in this phase to help create the 

application interface so that data could be exchanged between the frontend and 
backend. According to related research studies, the majority of them were built in 
Python. However, in this study, Spring Boot REST API was chosen because of JAVA 
unique property of being able to write Microservices better than Python [15]. This 
approach is the best way to manage in parts when using the Microservice 
architecture. Managing future upgraded versions is undeniably convenient. Another 
advantage of using the Spring Boot REST API is having a database ecosystem that is 
simple to connect to the database and suitable of making application interfaces. 

3.3 Microservices 
This section is divided into 2 main Microservices: 

 3.3.1 Payment Service 

The payment service's main function is to process the weight value 

received from YOLOv4 training and apply it to the application interface. It can 

then determine the total payable amount to the customer and, finally, 

record the customer's daily data in the database. The Request body is being 

rolled out as a photo base64 and customer data receiver. The calculated 

amount, as well as the number of sushi color-coded plates that clients have 

ordered, are returned to the Response. 

 3.3.2 Userprofile Service 

The User Profile Service's main function is to store and retrieve 
customer information that has been subscribed to the database. 
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3.4 Database 
The database was built using Structured Query Language (SQL). To further 

explain the advantages of SQL, it is straightforward to work when table features are 
in a fixed layout format. TRANSACTION_LOG and MEMBER_LOG are the only two 
variables in the database. To be clear, TRANSACTION_LOG records the details of 
consumers who visit the conveyor belt sushi restaurant on a daily basis. 
MEMBER_LOG stores information on customers who have signed up to be restaurant 
members. 

3.5 Model Evaluation 
Use the confusion matrix metrics including recall, precision, f1-score and 

mean average precision for accuracy. For the accuracy of sushi plates calculations 
will test by call the API with postman 
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Chapter 4  
Evaluation and Result 

4.1 Object Detection Model 
In this work, a unified, real-time object detector was constructed with YOLOv4 

to classify the type of sushi plates in conveyor belt sushi business. The performance 
of YOLOv4 models tends to achieve high accuracy and the capacity to discriminate 
overlapping items. The image dataset used for model construction is collected from 
a Japanese revolving sushi restaurant franchise in Bangkok, Thailand.  

4.1.1 Data Collection  

Prior to count the number of consumed dishes, the plates are typically 
arranged in layers with different colors. A set of 600 photographs was taken by a 

smartphone─ iPhone 12 pro max. Figure 15 illustrates example consumed dishes 
gathered from the Japanese’s most famous conveyor belt sushi franchise restaurant 
in Bangkok, Thailand. Figure 11a) portrays the stacks overlap each other. Figure 11b) 
contains a noise of a sauce plate with a spoon at the top of stack. Figure 11c) 
displays a close-up shot. Only half-side of stack is captured in Figure 11d). Figure 11e) 
contains noises of chopsticks at the top of stack. Example of the high stack is 
depicted in Figure 11f). Figures 11g), 11h), and 11i) present the cases where the top 
plate is upside-down, and the same color as the beneath; but not sushi plate; and 
different color from the beneath, respectively. 
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Figure 15: Example training images. 
4.1.2 Data Preprocessing  

Use Preview, a program that has the ability to image viewer and PDF viewer 
of the macOS operating system. In addition to viewing and printing digital images and 
Portable Document Format files, it can also edit these media types [16] to transform 
the image format from (*.HEIC) to (*.JPEG). Next, the dimensions of images were 
converted to 960x1280 following the input format of YOLOv4 as shown in Figure16.  
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Figure 16: Example after data preprocessing images. 
4.1.3 Image annotation 

Manual image annotation was performed to define the regions of interest in 
an image and label a textual description of those regions. Labelimg, an open-source 
software, is used as a tool to facilitate the task of configuring an image in the form of 
a label image that looks like a text (.txt) file, as shown in Figure 17. The directory 
after making the label image will look like in Figure 18. there is a file (*.JPEG) 
converted in the data preprocessing step along with a file (.txt) obtained from the 
Label image. After that compression directory in a format (.zip) and upload it to 
Google drive for use in the training model process. 
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Figure 17: (a) screen capture of Labelimg showing bounding box. (b) label image 
format  (.txt). 

 

Figure 18: screen capture directory after labeling images 
4.1.4 Model Training 

The model was trained on the Google cloud (colab pro) with the specification of 
GPU = T4, RAM size = 32GB. Training the model on cloud is easy to maintain and the 
system is stable. 

Use Google drive to access the dataset (*.zip) made in Data preprocessing and 
Image Annotation steps and to store the file (*.weight) obtained from the YOLOv4 
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train model. The advantage of storing the file (*.weight) is when training model and 
then disconnected or lose session, no need to retrain the model from the beginning 
but can bring the last saved file (*.weight) to run where the file (*.weight) will be 
saved every 100 iteration [17] In google drive need to mount drive to retrieve data in 
google colab Use the command drive.mount('/content/drive') under the google.colab 
library and !mkdir ~dir to create a directory to store the YOLOv4 library and files 
(*.weight) as shown in Figure19.  

 

Figure 19: Code for connecting google drive with google colab 
 

Download the YOLOv4 library from github and store it in the directory 
~/mydrive/rungruk_yolov4 using the !git clone https://github.com/AlexeyAB/darknet 
command as shown in Figure 20.  

 

Figure 20: Code for download YOLOv4 library 

Unzip the dataset on Google drive to directory 
~/rungruk_yolov4/darknet/data using the command !unzip 
/mydrive/rungruk_yolov4/obj.zip -d data/ as shown in Figure 21. 

 

Figure 21: Code for unzip dataset to directory ~/rungruk_yolov4/darknet/data 

https://github.com/AlexeyAB/darknet
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Once the unzip dataset is complete, The dataset of 600 images was divided 
into train and test sets with the ratio 80:20, i.e., 480 images of training data will be 
written to train.txt and 120 images of testing data will be written to. File test.txt as 
shown in Figure 22. Figure 23 is a code to randomly split dataset in ratio 80:20 and 
write to file train.txt and test.txt. 

 
Figure  22: Screen capture Train.txt and Test.txt 
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Figure 23: Python code for split data 

 

Create obj.data and obj.names files in directory 
~/rungruk_yolov4/darknet/data where obj.data is a config path file that tells each 
parameter to read from that path, by setting classes = 7, train = data/train.txt, valid = 
data/test.txt, names = data/obj.names, backup = /mydrive/yolov4/training as shown 
in Figure24, and The obj.names file tells the class of the objection of interest 
consisting of how many classes and what is the name of each class as shown in 
Figure25. 
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Figure 24: Capture screen of obj.data 

 

 

Figure 25: Capture screen of obj.names 
 

Modify the values in the file (yolov4-custom.cfg) in directory 
~/rungruk_yolov4/darknet/cfg as follows: batch at 64, subdivisions at 16, width at 
416, height at 416, max_batches at 16000 , steps at 12800,14400 (the first value is 
80% of the max_batches, and the second value is 90% of the max_batches), filters at 
36 (values are based on (class+5)*3), classes at 7 (values from the number of classes 
of objects of interest) as shown in Figure26. Some parameter settings are the defaults 
suggested by the inventor of YOLOv4 [18]. Each variable in the config file can be 
described as follows. batch is a number of samples images which will be processed 
in one batch , subdivisions is a number of mini_batches in one batch, size mini_batch 
= batch/subdivisions, so GPU processes mini_batch samples at once, and the weights 
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will be updated for batch samples (1 iteration processes batch images) , width and 
height is a network size of width and height, so every image will be resized to the 
network size during Training and Detection, steps is an Adjust of the learning rate 
after 500 and 1000 batches , max_batches is the training will be processed for this 
number of iterations and filter is a number of kernel-filters. 

 
Figure 26: yolov4-custom.cfg 
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Download the pre-trained weight of yolov4 stored in the directory 
~/rungruk_yolov4/darknet where the weight to be used as the pre-trained weight is 
yolov4.conv.137 The command used to download the pre-trained weight value is 
!wget ~url as shown in Figure 27. 

 
Figure 27: yolov4-custom.cfg 

 

 Modify the values in the Makefile to enable OpenCV and enable GPU to use the 
GPU to train the model using !sed -i 's/OPENCV=0/OPENCV=1/' Makefile. 
and !sed -i 's/GPU=0/GPU=1/' Makefile and build darknet using !make command to 
prepare to train model of YOLOv4 as shown in Figure 28. 

 
Figure 28: Code for enable OpenCV and GPU 

 

 After everything is ready, run the command !./darknet detector train data/obj.data 
cfg/yolov4-custom.cfg yolov4.conv.137 -dont_show –map as shown in Figure 29. To 
bring dataset and file (* .cfg) that adjusts the parameters and the pre-trained weight 
together to train the data, where model performance was monitored with the values 
of loss as shown in Figure 30. The completion of training generates the output file 
(*.weight). that will be used in the next testing phase 

 

 
Figure 29: Code for trainning model using darknet 
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Figure 30: Loss graph of 16,000 epochs of training. 
4.1.5 Model Performance Evaluation  

The values (*.weight) and files (*.cfg) were combined at this stage to detect 
sushi plates with the trained model. The confidence threshold is set to 0.4 in this 
work. The successfully detected object class will then be notified by a bounding box 
associated with the confidence score not lower than 0.4. Figure 31 reports the model 
performance evaluated with the test image dataset separated from the training set. 
The performance measures include Precision, Recall, F1-Score, and mAP. And the 
object detector achieved the values of 97%, 97%, 97%, and 97.3% respectively. The 
value of precision is calculated by [True positive of all classes / (True positive of all 
classes, +False positive of all classes)], so we get [1087/(1087+32)] = 97%. Recall is 
calculated from [True positive of all classes / (True positive of all classes + False 
Negative of all classes)], so we get [1087/(1087+28)] = 97%. F1-score is 
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2*[(precision*recall)/(precision+recall)] = 2*[(97*97)/(97+97)] = 97% and The value 
mAP@0.5 is mean average precision averaged over IOU thresholds in 0.5. It is 
calculated by taking the average precision of all classes and dividing by the total 
number of classes (99.30+98.19+97.51+96.10+99.17+93.75+97.12)/7 = 97.30%. The 
truepositive value is obtained by predicting each class in each figure in the testing set 
that if the prediction value with IoU is greater than or equal to the threshold value is 
truepositive.False positive is obtained by predicting each class in each figure in the 
testing set that if a prediction value has an IoU value less than a threshold value, it is 
counted as false positive, and False negative is a prediction that cannot predict the 
class at all in each figure as shown in Figure 32. Figure 33 shows some test images 
associated with the classification results. The photographs contained 9 characteristics 
of sushi dishes collected from the selected restaurant including: a) the sushi dishes 
stacks overlap each other. b) sushi dishes that contain a noise of a sauce plate with a 
spoon at the top of stack. c) the sushi dishes close-up shot. d) only half-side of sushi 
dish stack. e) The sushi dishes that contains noises of chopsticks at the top of stack. 
f) the high stack sushi dishes g) The sushi dishes where the top plate is upside-down 
and the same color as the beneath. h) The sushi dishes where the top plate is 
upside-down and the not sushi dish as the beneath. i) The sushi dishes where the 
top plate is upside-down and different color with the beneath dish. The trained 
model successfully recognized all 7 object classes. Compared to the results of the 
CNN model [13], the object detector implemented with YOLOv4 in this work 
achieves the higher precision, recall, and f1-score values. as shown in Table 2. 

 

Figure 31: Screen capture showing model performance. 
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Figure 32: Object detection base on IoU threshold[19]. 
 

 

Figure 33: Example of test images and the results of detection. 
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Table 2: Comparison of model performance of YOLOv4 implemented in this work 
with CNN model [13] 
 

 Precision Recall F1score mAP Accuracy 

CNN 0.85 0.96 0.90 N/A 0.92 

YOLOv4 0.97 0.97 0.97 97.03 N/A 

 

4.2 Model training by using K Fold Cross validation 
 In this step, use k fold cross validation to find which fold have the best fit training 
set and testing set for the dataset. We chose 5 fold because we will divide the 
training set 80% and testing set 20%. The dataset has 600 images, so if k = 5 is 
selected, Every image in the dataset is a testing set at least once, wherein the 
dataset the image file names are numbers 1-600 in sequence. And the way to split 
the dataset into testing set. First is using the python library random to randomize the 
images out of order. After randomization, the images will be stored on the stack. 
After that, 120 images will be popped from the stack and stored in a new list as 
shown in Figure 34. 

 
Figure 34: Python code for split data in k fold 

 Create a directory to store the training set and testing set of each fold using the 
command mkdir directory_name as shown in Figure 35 and create a total of 5 
directories. 
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Figure 35: Code for create directory command 

 After that, take the list obtained from pop stack 120 to write to file test.txt and 
put 480 images that are not in test.txt in train.txt as shown in Figure 36. The result is 
the file train.txt and test.txt that will be in the directory of each fold that will have a 
unique number of test sets in each fold. 

 

Figure 36: Python code for write train.txt and test.txt in each fold 
After that, training dataset of each fold using model yolov4. Starting from 

Fold 1, training set and testing set as shown in Figure 37. Bring training set and testing 
set of Fold 1 to training and config (*.cfg) file similar with 4.1.4, the result from 
training data Fold 1 is a confusion matrix with precision = 98%, recall = 99%, F1-
Score = 99% and mAP@0.5 = 99.86% as shown in the figure. at 38 
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Figure 37: Screen capture Train.txt and Test.txt in Fold1 

 

Figure 38: Screen capture showing model performance in Fold1. 
Fold 2 training set and testing set as shown in Figure 39. Bring the training set 

and testing set of Fold 2 to training and config (*.cfg)  file like in 4.1.4. Figure 40 
shows the results from train data of Fold 2 is obtained with precision = 96%, recall = 
97%, F1-Score = 96% and mAP@0.5 = 95.10%. 
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Figure 39: Screen capture Train.txt and Test.txt in Fold2 

 

Figure 40: Screen capture showing model performance in Fold2. 
Fold 3 training set and testing set as shown in Figure 41. Bring the training set 

and testing set of Fold 3 to training and config (*.cfg)  file like in 4.1.4. Figure 42 
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shows the results obtained from train data of Fold 3 is obtained with precision = 
91%, recall = 95%, F1-Score = 93% and mAP@0.5 = 94.34%. 

 

Figure 41: Screen capture Train.txt and Test.txt in Fold3 

 

Figure 42: Screen capture showing model performance in Fold3. 
Fold 4 training set and testing set as shown in Figure 43. Bring the training set 

and testing set of Fold 4 to training and config (*.cfg)  file like in 4.1.4. Figure 44 
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shows the results from train data of Fold 4 is obtained with precision = 97%, recall = 
99%, F1-Score = 98% and mAP@0.5 = 99.67%. 

 

Figure 43: Screen capture Train.txt and Test.txt in Fold4 

 

Figure 44: Screen capture showing model performance in Fold4. 
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And the last fold is Fold5. Fold 5 training set and testing set as shown in 
Figure 45. Take the training set and testing set of Fold 5 for traning and config file 
(*.cfg) as in 4.1.4. Figure 46 shows the results from training data. Fold 5 is obtained 
with precision = 95%, recall = 97%, F1-Score = 96% and mAP@0.5 = 96.47%. 

 

Figure 45: Screen capture Train.txt and Test.txt in Fold5. 
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Figure 46: Screen capture showing model performance in Fold5. 
 Table 3 shows the results from k fold cross validation. Fold1 is the fold with the 
highest precision, recall, f1-score and mAP values compared to other folds. The 
average results were precision = 95%, recall = 97%, f1-score = 96% and mAP = 97.07. 
It was observed that the results were similar to the train model in 4.1.4 using a 
randomized training set and testing set without doing k fold cross validation. 

Table 3: Summary and average of performance metrics of 5-fold. 

 Precision Recall F1-Score mAP 

Fold1 0.98 0.99 0.99 99.86 

Fold2 0.96 0.97 0.96 95.10 

Fold3 0.91 0.95 0.93 94.34 

Fold4 0.97 0.99 0.98 99.67 

Fold5 0.95 0.97 0.96 96.47 

Average 0.95 0.97 0.96 97.09 

4.3 API Gateway 
 The API Gateway uses Spring Boot REST API version 2.3.11. RELEASE to create a 
controller for API. The Spring Boot library is called by adding the Spring Boot 
dependency format xml into the pom.xml file as shown in Figure 47. 

 

Figure 47: Spring Boot library in pom.xml 
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4.4 Microservice 
4.4.1 Payment service 
Payment service uses OpenCV version 4.5.3-1.5.6 . which is maven library as 

shown in Figure 48. The process of calculating payment is shown in Figure 49. It 
begins by converting the image to base64 and then decode it to byte-array. It 
translates the byte-array value into Mat format, which is an OpenCV image variable. 
Next, it takes the Mat value along with importing the YOLOv4 exercise's values 
(*.weight) and files (*.cfg) into the readNetFromDarknet function. To detect and 
classify sushi plates, set the parameters to confThreshold at 0.4 and nmsThreshold 
at 0.4. The money is then calculated by counting each verifiable type of sushi dish. 
As illustrated in Figure 50, checking the accuracy of the calculation and the number 
of sushi plates of each kind using postman to test the API. Request body as image 
converted to base64 and Response reveals the accuracy of the calculation and the 
correct number of sushi plates of each type. 

 

Figure 48: OpenCV version 4.5.3-1.5.6. 

  

Figure 49: Process flow of payment service. 
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Figure 50: Screen capture of postman testing payment service. 
4.4.2 Userprofile 

The main function of Userprofile service is to store and retrieve customer 
information that has been subscribed to the database. It is categorized into 3 parts:  

1. User_Register is an API that allows customers to apply for membership 
with the restaurant, where customer information will be stored in the 
store's database. SignIn function receive a request body from frontEnd 9 
values: memberID, email, password, firstname, lastname, phoneNumber, 
age, birthday. The password stored in the database must be hashed by 
algorithm PBKDF2 for security purposes. Figure 51 shows the operation of 
hashing with algorithm PBKDF2, which starts from receiving requestBody 
password sent as String, which is a String that has not been hashed, and 
converts String to ByteArray and a salt is set to be used for the hash 
encryption. After the encryption is complete, the value will be converted 
to HexString and stored in the database. 
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Figure 51: Password encoding step 
2. User_SignOut is an API made to provide Customer logout. SignOut 

function will send a value to update the database in the table so that the 
user's status is N. 

3. User_SignIn is an API made to provide Customer login. This function will 
get requestBody from frontEnd as 2 values: username , password . the 
function will take username and password that have been hashed with 
PBKDF2 to check at database and like both values match in database, will 
return response back to frontEnd total 7 values is memberID ,firstname, 
lastname, phoneNumber, age, email, birthday and change status to Y 

4.5 Database 

The database was created using Structured Query Language (SQL). 
TRANSACTION_LOG and MEMBER are the only two variables in the database. 
TRANSACTION_LOG records the details of consumers who visit the conveyor belt 
sushi restaurant on a daily basis. MEMBER stores information on customers who 
have signed up to be restaurant members. Table 4 shows the database schema 
and the datatypes that stored in the table TRANSACTION_LOG. And Table 5 
shows the schema of the data and the date type that stored in the MEMBER 
table. 
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Table 4: TRANSACTION_LOG table description. 

Database name: demo Table name: TRANSACTION_LOG 

Table description: table that keep customer daily log 

No. FieldName Description DataType Key Condition 

1 ID Unique number VARCHAR(32) PK NOT NULL 

2 MEMBER_ID Customer id VARCHAR(32) FK NOT NULL 

3 REQUEST_UID API Request id  VARCHAR(22)   

5 DETAILS Customer Details  JSON   

6 AMOUNT Customer amount per bill VARCHAR(100)   

7 AMOUNT_NET 
Amount + (17% of 
VAT/Service charge) VARCHAR(100)   

8 BRANCH_NO Merchant branch number VARCHAR(4)   

9 TRANSACTION_DATE Date of log DATE   

10 CREATE_DATE Record created date time TIMESTAMP   
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Table 5: MEMBER table description. 

Database name: demo Table name: Member 

Table description: table that keep customer data 

No. FieldName Description DataType Key Condition 

1 EMAIL Customer email VARCHAR(200) PK NOT NULL 

2 MEMBER_ID Customer id VARCHAR(32) FK NOT NULL 

3 FIRSTNAME Customer first name VARCHAR(300)   

5 LASTNAME Customer last name VARCHAR(300)   

6 PHONE_NUMBER 
Customer phone 

number VARCHAR(20)   

7 AGE Customer age VARCHAR(4)   

8 PASSWORD Customer password VARCHAR(100)   

9 DATE_OF_BIRTH Customer birthday DATE   

10 STATUS Login Status VARCHAR(1)   

11 CREATE_DATE 
Record created date 

time TIMESTAMP   
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Chapter 5  
Conclusion 

This thesis presents the application of YOLOv4 object detection to detect and 
classify sushi dishes, resulting in a new innovation of smart billing for conveyor belt 
sushi business that will replace the current billing system that uses RFID to calculate 
the billing system. RFID is costly due to the investment and maintenance of attaching 
tags to each plate. The exhausted radio-frequency batteries may cause counting 
error, in addition to increase the electronic waste hazardous to society. The approach 
also requires manual count to double-check the total number of consumed dishes. 
The dataset used is a reliable dataset from the Japanese's most famous conveyor 
belt sushi franchise restaurant in Bangkok, Thailand. and collecting 600 images of 
sushi plates by myself. Therefore, the detection and classification of sushi plates 
requires high accuracy and speed. It is suitable for using YOLOv4 in this work because 
YOLOv4 is a single state objection, which makes it faster than other models and 
achieves the accuracy similar as the multiple state objection model. 

For application in real life, the researcher has created an API that can be 
applied to any mobile device to calculate payment. The payment API functionality 
brings a file (*.weight) that is the resulting file from train the YOLOv4 model and 
integrates it with Spring Boot RESTAPI to create an API that can calculate payment for 
classification sushi dish 

All images in the dataset must be labeled images before being used in the 
train model. The labeling is a manual 600 images, then split the data into 80% train 
sets and 20% test sets, and then train the dataset through the YOLOv4 model. The 
YOLOv4 achieved the values of Precision = 97%, Recall = 97%, F1-Score = 97% and 
mAP = 97.3% by randomly split dataset in ratio 80:20 and Experiment with K Fold 
Cross validation using k = 5, found that the mean of confusion metric value equal to 
Precision = 95%, Recall = 97% , F1-Score = 96% , mAP = 97.07%. 

Since the API is still running on localhost, the system management cannot try 
to handle the massive incoming traffic. Further direction would be applying Cloud 
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Native and Load Balancer to handle the massive traffic that will help the API support 
the traffic from the usage better, as well as improve the model performance. And 
increase the model's ability to be compatible with other types of restaurant dishes 
other than plates from conveyor belt sushi restaurants. 
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Appendix  
Model Testing Result 

 
Figure 52: (a) The image in the testset. (b) The result of detection 

 

Figure 53: (a) The image in the testset. (b) The result of detection 
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Figure 54: (a) The image in the testset. (b) The result of detection 

 
Figure 55: (a) The image in the testset. (b) The result of detection 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 50 

 

Figure 56: (a) The image in the testset. (b) The result of detection 

 

Figure 57: (a) The image in the testset. (b) The result of detection 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 51 

 

Figure 58: (a) The image in the testset. (b) The result of detection 

 

Figure 59: (a) The image in the testset. (b) The result of detection 
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Figure 60: (a) The image in the testset. (b) The result of detection 

 

Figure 61: (a) The image in the testset. (b) The result of detection 
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Figure 62: (a) The image in the testset. (b) The result of detection 

 

Figure 63: (a) The image in the testset. (b) The result of detection 
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Figure 64: (a) The image in the testset. (b) The result of detection 

 

Figure 65: (a) The image in the testset. (b) The result of detection 
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Figure 66: (a) The image in the testset. (b) The result of detection 

 

Figure 67: (a) The image in the testset. (b) The result of detection 
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Figure 68: (a) The image in the testset. (b) The result of detection 

 

Figure 69: (a) The image in the testset. (b) The result of detection 
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Figure 70: (a) The image in the testset. (b) The result of detection 

 

Figure 71: (a) The image in the testset (b) The result of detection 
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