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Abstract

In this senior project, vortex solutions of the fermionic system constrained in the
(2+1)-dimensional spacetime by Cho, Kim and Park (CKP) [1] are reviewed. The
existence of solutions comes from dynamics of the Dirac field coupled with pure
Chern-Simons gauge field in the long distance limit. Motivated by the study of
electromagnetic vortex solutions emerged from the gauged, nonlinear Schrodinger
equation by Jackiw and Pi (JP) [2], we attempt to find a new vortex solution in the
fermionic and relativistic system that also generates electric field. A well-defined
solution has not been found so far, we instead investigate the possibility of a non-
vanishing electric field solution in the fermionic system. First, we review the JP
solutions and the vortex solutions from CKP construction in the non-relativistic
limit provided by Duval, Horváthy and Palla (DHP) [3]. Then, we compare these
two solutions and argue the origin of the electric field. Finally, we conclude all the
results obtained from these three theories.
Keywords: fermionic system, (2+1)-dimensional space-time, Chern-Simons gauge
field, electromagnetic vortex
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1 Introduction

One of the reasons that makes the gauge theory in 2+1 dimensions interesting to
study is the fact that we can introduce another gauge term which is both Lorentz
invariant and gauge invariant besides the Maxwell term. That term is called the
Chern-Simons term [4]. The Chern-Simons gauge field alone does not have any
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dynamics whatsoever so the term is useless on its own. However, if we couple it
with the Maxwell term, the resulting theory will be able to describe a massive
gauge field. Consider the Lagrangian

LMCS = −1

4
F µνFµν +

κ

4
εµνρAµFνρ. (1)

The corresponding equations of motion are

∂µF
µν +

κ

2
εναβFαβ = 0. (2)

By rewriting F µν in term of the pseudovector dual field F̃ µ = 1
2
εµνρFνρ, the equa-

tions of motion can be rewritten as

(∂µ∂
µ + κ2)F̃ ν = 0, (3)

which is the relativistic massive wave equation that describes the massive gauge
field of mass κ.

We could also add a matter field to the above system and see what additional
results we can obtain. The system of the Maxwell and Chern-Simons gauge field
coupled to the matter current has the Lagrangian of the form

LMMCS = −1

4
F µνFµν +

κ

4
εµνρAµFνρ − eAµJµ. (4)

where we use the mostly minus convention ηµν = (+,−,−) and the coupling is e.

The Chern-Simons term may not look gauge invariant at first. But under a
gauge transformation Aµ → Aµ + ∂µΛ, the Lagrangian changes by the amount

δL =
κ

2
∂µ(Λ∂νAρ),

which vanishes on the boundary so LMMCS is actually gauge invariant.

By varying the Lagrangian with respect to the gauge field, we obtain the equa-
tions of motion

∂νF
νµ +

κ

2
εµνρFνρ = eJµ. (5)

Decomposing to each component, we obtain three equations,

eρ = ∂iE
i − κB, (6a)

eJ i = −∂tEi + εij∂jB − κεijEj. (6b)

The original Maxwell equations are now modified by the Chern-Simons term. This
leads to some of the fascinating consequences that we cannot expect from the
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Maxwell term alone. To see it clearly let us consider the system in the long-
distance limit where the Maxwell term can be dropped off. This can be understood
by considering the length dimension from each gauge term in (5). We see that both
have two gauge potential but the Chern-Simons term has lower derivative than the
Maxwell term by one. Thus, κ has inverse length dimension (L−1) and specifies
the characteristic length of the system. Consider the length scale L, the Maxwell
term is then suppressed by the factor (1/|κ|)/L respect to the Chern-Simons term.
Therefore, in the long-distance limit where L is large compared to 1/|κ|, the Chern-
Simons term dominates the system and the Maxwell term can be neglected. The
equations then take the form

eρ = −κB, (7a)
eJ i = −κεijEj. (7b)

The first equation tells us that the Chern-Simons term binding the matter source
with a magnetic (gauge) field. Thus, wherever the particle is, there must be a
magnetic flux couple to it as well. The second equation is the typical Hall term.
Seeing this, we might assume that the Chern-Simons theory is a suitable field
theory to deal with the quantum Hall effect which turns out to be true. In the
context of quantum many-body system, many models involving the Chern-Simons
terms successfully explain both the integer and fractional quantum Hall effects
[5]. However, our purpose here in this senior project does not concern much with
these phenomena. We are rather interested in the existence of solutions with
certain properties in the Chern-Simons theory in the fermionic system which will
be stated in details later.

Because the coupling to a matter field gives nontrivial physical aspects to the
Chern-Simons theory, there have been many studies concerned with the conse-
quence after coupling the Chern-Simons terms with scalar and spinor fields in
both non-relativistic and relativistic regimes. Interestingly, all admits vortex solu-
tions which are bound states between the matter field and the magnetic flux with
some distinct properties depending on the theory. One of the most important work
in this field is the study by Jackiw and Pi. They obtained vortex solutions from
the gauged, nonlinear Schrodinger equation where the particle is coupled with the
magnetic flux through the Chern-Simons interaction. The study is in the long-
distance limit which means the Maxwell terms are neglected in this setting just
like the CKP construction. Many properties of the solutions are similar to the
CKP solutions except that they also have their own electric field. Motivated by
this study, we search for a new solution in the CKP theory that also generates a
nonzero electric field as well. We managed to find one numerical solution. The
magnetic field and electric field are plotted and shown in section 2.
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However, because the solution we obtain blows up at a finite distance, the
existence of an electromagnetic solution in the fermionic system becomes ques-
tionable. It is possible that there might be some kind of mechanisms only occur
in the fermionic system that prevent it? Initiating by this idea, We start tackling
this problem by reviewing the JP solutions and the vortex solutions solved in the
CKP setting in the non-relativistic limit which is provided by Duval, Horváthy
and Palla. We then compare these solutions from two different theories and look
out for the origin of the electric field. The existence of the electric field is shown to
have a connection with the non-linear coupling factor of the system. No evidence
support that the electromagnetic vortex could not exist in the fermionic case. We
also obtain non-vanishing electric field solutions for the DHP case as a by-product
of this speculation. Finally, we conclude all the results we have found thus far
from these three theories.

2 Pure Magnetic Vortex CKP Solutions

2.1 Constructing the System

We start with the Lagrangian of the Quantum Electrodynamics (QED) theory in
3+1 dimensions with spinors in the chiral basis defined by

LQED(3+1) = −1

4
FµνF

µν + Ψ̄(iγµDµ −m)Ψ, (8)

γµ =

(
0 σ̄µ

σµ 0

)
.

where we choose the metric convention to be mostly minus ηµν = (+,−,−) with
charge e. This means Dµ = ∂µ + ieAµ.

Next, we assume the axial symmetric solutions along the z-axis

Ψ =

(
eip+zψ+(t, x, y)
eip−zψ−(t, x, y)

)
, (9)

where the upper and lower components represent the right and left-handed spinor
respectively.

Inserting Ψ into L3+1 and applying the dimensional reduction by integrating
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out the z component give us the effective QED Lagrangian in 2+1 dimensions

LQED(2+1) =− 1

4
FαβF

αβ + ψ̄+iγ
α
+Dαψ+ + ψ̄−iγ

α
−Dαψ− − p+ψ̄+ψ+ − p−ψ̄−ψ−

−m(ψ†+ψ− + ψ†−ψ+)
(10)

where γα± (α = 0, 1, 2) are two sets of the gamma matrices in 2+1 dimensions
defined as

γα+ = (σ3, iσ2,−iσ1) , γα− = (−σ3, iσ2,−iσ1).

Notice that the original 4-spinor Ψ is now separated into two dependent fermionic
fields. This Lagrangian becomes two coupled Dirac Lagrangian with different
handedness in which the frequency p± play the role of the mass terms of fermions
on this plane.

Now that our theory lives in 2+1 dimensions, it is possible to induce the Chern-
Simons term through the one-loop computation of the fermion effective action [6].
The Lagrangian then describes the Chern-Simons quantum electrodynamics theory
with the form

LCSQED(2+1) =− 1

4
FαβF

αβ +
κ

4
εαβγAαFβγ + ψ̄+iγ

α
+Dαψ+ + ψ̄−iγ

α
−Dαψ−

− p+ψ̄+ψ+ − p−ψ̄−ψ− −m(ψ†+ψ− + ψ†−ψ+),
(11)

where κ is the Chern-Simons coupling and its value is arbitrary.

2.2 Solving for the Solutions

For simplicity, we will consider the system in the long-distance limit where the
Chern-Simons term dominates the Maxwell term and we assume we can neglect
the Maxwell term overall. To find the solutions, first, we substitute (11) into the
Euler-Lagrange equation which gives us the equations of motion

κ

2
εαβγFβγ = e (ψ̄+γ

α
+ψ+ + ψ̄−γ

α
−ψ−), (12a)

(iγα+Dα − p+)ψ+ = mσ3ψ−, (12b)
(iγα−Dα − p−)ψ− = −mσ3ψ+. (12c)
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Next, we apply the following ansatz to (12a), (12b), (12c)

Aα =

{
0, α =t, ρ,
A(ρ), α =φ,

ψ+ = eiE+t

(
f+(ρ)eik+φ

ig+(ρ)eil+φ

)
,

ψ− = eiE−t

(
f−(ρ)eik−φ

ig−(ρ)eil−φ

)
,

(13)

to get,

k+ = l+ − 1 = k− = l− − 1, E+ = E− = E, p+ = p− = p, (14a)

−κ
ρ

dA

dρ
= e (|f+|2 + |g+|2 + |f−|2 + |g−|2), (14b)

0 = f+g
∗
+ − f−g∗−, (14c)

df+
dρ

=
k+ + eA

ρ
f+ − (E + p)g+ +mg−, (14d)

dg+
dρ

= − l+ + eA

ρ
g+ + (E − p)f+ −mf−, (14e)

df−
dρ

=
k− + eA

ρ
f− + (E − p)g− −mg+, (14f)

dg−
dρ

= − l− + eA

ρ
g− − (E + p)f− +mf+, (14g)

with the on-shell condition
E2 = p2 +m2.

Now, we are ready to solve the equations.

Case 1: κ > 0

We choose g+ = g− = 0 to satisfy the constraint and redefine k+ = n. (14) is
then reduced to

−κ
ρ

dA

dρ
= e (|f+|2 + |f−|2), (15a)

df+
dρ

=
n+ eA

ρ
f+, (15b)

f− =
E − p
m

f+. (15c)

7



This can be further reduced into a single differential equation with only one un-
known variable. The final equation is

1

ρ

d2A

dρ
− (n+ eA+

1

2
)

2

ρ2
dA

dρ
= 0. (16)

By solving this nonlinear differential equation above, we obtain the solution

A(ρ) = −2(n+ 1)

e

(
ρ2(eA0+n+1)

ρ2(eA0+n+1) + λ2

)
− A0

(
ρ2(eA0+n+1) − λ2

ρ2(eA0+n+1) + λ2

)
f+ =

(eA0 + n+ 1)λ

e

[
2µ

(
E + p

E

)]1/2(
ρeA0+n

ρ2(eA0+n+1) + λ2

)
.

(17)

Case 2: κ < 0

Knowing the solution in the first case, it becomes a trivial task to obtain the
solution for this case by observing that setting κ < 0 is equivalent to the first case
but with replacement e→ − e. To obtain the equation that has a similar form to
(15b), we instead choose f+ = f− = 0 and redefine l− = n. The set of reduced
equations now become almost identical to (15) where f+ → g− and f− → g+.
Thus, the set of solutions are

A =
2(n+ 1)

e

(
ρ2(−eA0+n+1)

ρ2(−eA0+n+1) + λ2

)
− A0

(
ρ2(−eA0+n+1) − λ2

ρ2(−eA0+n+1) + λ2

)
,

g− =
(−eA0 + n+ 1)λ

e

[
−2µ

(
E + p

E

)]1/2(
ρ(−eA0+n)

ρ2(−eA0+n+1) + λ2

)
,

g+ =
E − p
m

g−.

(18)

The solutions in both cases are shown in Figure 1 in which the bottom plot is
for κ > 0 case and the upper plot is for κ < 0 case respectively.

Let us show that the solutions we obtained above are actually special cases of
the Liouville equation. To do that, we will assume a more general ansatz

At = 0, ∂tAi = 0,

ψ+ = e−iE+t

(
F+(x, y)
iG+(x, y)

)
,

ψ− = e−iE−t
(
F−(x, y)
iG−(x, y)

)
,

(19)
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(a) A vs ρ (b) B vs ρ

Figure 1: The vector potential A and its corresponding magnetic field B from the
pure magnetic vortex solutions

with
E+ = E− = E, p+ = p− = p,

E2 − p2 = m2, F− =
E − p
m

F+, G+ =
E − p
m

G−.
(20)

(12) then becomes

κεij∂iAj = − 2eE

E + p
(|F+|2 + |G−|2),

(D1 + iD2)F± = 0, (D1 − iD2)G± = 0.

(21)

By setting either F± or G± to zero, The other will immediately satisfy the Liouville
equation and thus, give us an exact solution which can be restored to the form
above by imposing the axial symmetry. The reason we emphasize this point here
is because in JP case and DHP case, we will encounter with the Liouville equation
again which show us how similar they are in terms of mathematical structure.

2.3 Physical Properties and Conserved Quantities of the
CKP Solutions

The solutions we obtained from section 2.2 are clearly the vortex solutions (the
gauge vector field curled around the origin) where λ determines the size of the
vortex because the peak’s position of the vortex depends on λ. What is less clear
about the solutions is the gauge potential at the origin A(ρ = 0) = A0. We define
A as the vector potential in the azimuthal direction which means that if we have a
non-vanishing value of A at the origin, it must be a singularity (it points in every
direction). The authors argued that this singularity is harmless and physically
acceptable because we can think of it as an infinitely thin solenoid pass through
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the origin along the z-direction. However, it is a complicated task to generate a
singular gauge field from a limit of the solenoid so we will assume that A0 = 0 for
simplicity.

The first two physical quantities we consider are the magnetic flux Φ and the
charge q. The magnetic flux pass through the circle area of radius ρ is

Φ(ρ) =

∫
Area

~B · d~a =

∫ ρ

0

1

ρ

dA

dρ
ρdρdφ = 2πA(ρ). (22)

For the total magnetic flux

Φ(∞) = 2πA(∞) = ∓4π

e
(n+ 1), (23)

where the upper sign is for case κ > 0, lower sign is for case κ < 0. Notice that
there is an additional parameter n contribute to the magnetic flux. Looking back
at our ansatz (13), This n is actually the coefficient inside the exponential function
of the azimuthal part. For the solutions to be single-valued and thus physical, n
must be an integer value with the constraint n + 1 > 0 so we could say that n
specifies the mode of the vortices.

The total charge can be directly calculated from (6a) where the charge is cou-
pled to the magnetic flux

q = ∓κΦ. (24)

The conserved quantities of the system can also be computed from the energy
momentum tensor (symmetric and gauge invariant) which is given by

Tαβ =
i

2
[ψ̄+(γ+αDβ + γ+βDα)ψ+ + ψ̄−(γ−αDβ + γ−βDα)ψ−]. (25)

Knowing the energy-momentum tensor, we can calculate the total energy E , and
total angular momentum J of the vortices to be

E =
q

e
E,

J =
κ

2e
Φ = ∓ q

2e
.

(26)

What worth mentioning are that even though the solutions are special cases (axi-
ally symmetric) of the solutions that satisfy the Liouville equation. They do have
non-vanishing energy unlike the same solutions that was found in Jackiw and Pi
work. The total angular momentum J = ∓q/2e in CKP case is also only half of
the value J = ∓q/e in JP case. This is something to be expected because these
solutions describe fermions, unlike them that describe a scalar particle.
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3 Electromagnetic Vortex Solution from the CKP
Theory

From the work of Jackiw and Pi, they found out that possible solutions for the
Chern-Simons gauged, non-linear Schrödinger equations in 2+1 dimension describ-
ing a scalar particle are zero mode and have non-vanishing electric field. This be-
comes our motivation to seek for a vortex solution that also admits a non-vanishing
electric field in the Chern-Simons quantum electrodynamics theory.

We initially guess the ansatz of the form

Aα =


A0(ρ), α =t,

0, α =ρ,
A(ρ), α =φ,

ψ+ = e−iE+t

(
f+(ρ)eik+φ

ig+(ρ)eil+φ

)
,

ψ− = e−iE−t

(
f−(ρ)eik−φ

ig−(ρ)eil−φ

)
.

(27)

See that our ansatz is almost identical to the one in the pure magnetic vortex case
except the non-vanishing gauge field in time component. So we should expect that
substituting (27) in (12) will give us almost the same form as (14). Our guess is
true in which the only differences are that the energy E is shifted by the electric
potential of the value −eA0 and the current equation (14c) is not forced to be zero
anymore.

For (12a), we consider each component,

(12a) α = 1 ;

κε120F20 =e

[(
f ∗+e

−ik+φ −ig∗+e−il+φ
)(0 1

1 0

)(
f−e

ik−φ

ig−e
il−φ

)

−
(
f ∗−e

−ik−φ −ig∗−e−il−φ
)(0 1

1 0

)(
f+e

ik+φ

ig+e
il+φ

)]
−κE2 =e

[
if ∗+g+e

−i(k+−l+)φ − ig∗+f+ei(k+−l+)φ

−if ∗−g−e−i(k−−l−)φ + ig∗−f−e
i(k−−l−)φ

]
(28)
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(12a) α = 2 ;

κε210F10 =e

[(
f ∗+e

−ik+φ −ig∗+e−il+φ
)(0 −i
i 0

)(
f−e

ik−φ

ig−e
il−φ

)

−
(
f ∗−e

−ik−φ −ig∗−e−il−φ
)(0 −i
i 0

)(
f+e

ik+φ

ig+e
il+φ

)]
κE1 =e

[
f ∗+g+e

−i(k+−l+)φ + g∗+f+e
i(k+−l+)φ

−f ∗−g−e−i(k−−l−)φ − g∗−f−ei(k−−l−)φ
]

(29)

(12a) α = 0 ;

− κ

ρ

dA

dρ
= e(|f+|2 + |g+|2 + |f−|2 + |g−|2) (30)

Imposing k+ = k− = l+ − 1 = l− − 1 = k ,

(28) ;

κ∂yA0 =e[if ∗+g+e
iφ − ig∗+f+e−iφ − if ∗−g−eiφ − ig∗−f−e−iφ]

=ie[(f ∗+g+ − g∗+f+) cosφ+ (f ∗+g+ + g∗+f+)i sinφ

− (f ∗−g− − g∗−f−) cosφ− (f ∗−g− + g∗−f−)i sinφ]

(31)

(29) ;

−κ∂xA0 =e[f ∗+g+e
iφ + g∗+f+e

−iφ − f ∗−g−eiφ + g∗−f−e
−iφ]

=e[(f ∗+g+ + g∗+f+) cosφ+ (f ∗+g+ − g∗+f+)i sinφ

− (f ∗−g− + g∗−f−) cosφ− (f ∗−g− − g∗−f−)i sinφ]

(32)

; ∂yA0 =
∂ρ

∂y
∂ρA0 +

∂φ

∂y
∂φA0 = sinφ ∂ρA0 +

cosφ

ρ
∂φA0

∂xA0 = cosφ ∂ρA0 −
sinφ

ρ
∂φA0

(31) sinφ− (32) cosφ ;

− κ

e
∂ρA0 = f ∗+g+ + g∗+f+ − f ∗−g− − g∗−f− (33)

(31) cosφ+ (32) sinφ ;

κ

eρ
∂φA0 = −i(f ∗+g+ − g∗+f+ − f ∗−g− + g∗−f−)
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Input the ansatz A0 = A0(ρ)→ ∂φA0 = 0

0 = f ∗+g+ − g∗+f+ − f ∗−g− + g∗−f−. (34)

To reduce the differential equations and still make the solution satisfies the con-
straint (34), we choose the choice

f+ = f ∗−, g∗+ = −g−,

E+ = E− = E, p+ = −p− = p,

and also assume that f± and g± are real functions. Then,

(33) ; 0 = 0

(34) ; −κ
e
∂ρA0 = 4(f+g+) (35)

(14b) ; −κ
ρ

dA

dρ
= 2e(f 2

+ + g2+) (36)

(14d) E → E − eA0 ;
df−
dρ
− k + eA

ρ
f− − (E − eA0 + p)g− = −mg+ (37)

(14e) E → E− eA0 ;
dg+
dρ

+
k + 1 + eA

ρ
g+− (E− eA0− p)f+ = −mf− (38)

(14f) E → E − eA0 ;
df−
dρ
− k + eA

ρ
f− − (E − eA0 − p)g− = −mg+ (39)

(14g) E → E− eA0 ; −dg+
dρ
− k + 1 + eA

ρ
g+ + (E− eA0 + p)f+ = mf− (40)

We see that (37)=(39) and (38)=(40) when p = m = 0 so we will set it like this.
This also forces E = 0 from the on-shell condition. Now, the four equations below
are reduced to two and we are left with total four coupled differential equations
with four unknown variables

(35) ; −κ
e

dA0

dρ
= 4(f+g+) (41)

(36) ; −κ
ρ

dA

dρ
= e(f 2

+ + g2+) (42)

(37) ;
df+
dρ
− k + eA

ρ
f+ − eA0g+ = 0 (43)

(38) ;
dg+
dρ

+
k + 1 + eA

ρ
g+ + eA0f+ = 0 (44)

13



(a) E vs ρ (b) B vs ρ

Figure 2: The electric field and magnetic field of the electromagnetic vortex solu-
tion

There is no known exact solutions for this set of equations up until now. The best
we can do is to solve it numerically by setting appropriate boundary conditions
for each function.

One solution that we found so far is from the boundary conditions

A(0.001) = 0.001, A0(0.001) = 0.001, f(0.001) = 1, g(0.001) = 1,

with parameters µ = 1, e = 1.6, n = 1. The results are shown in Figure 2.

Even though we could find a solution, it does have a crucial problem. Both
electric field and magnetic field blow up at a finite radial distance which should
not be possible in nature. we suspect either that the boundary condition in this
case is still inappropriate or the numerical method we use is still not efficient.
But put that aside, if we look far beyond the problem of boundary conditions and
ask its physics instead, an open question arise. Is it possible for the fermionic
system to admit non-vanishing electric field from Chern-Simons dynamics in the
first place? The motivation we got come from the system of scalar particles so it is
possible that there might be some mechanisms that prevent this electric property
in ferminonic particles. An attempt to answer this question is shown in the next
section.
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4 Possibility of Electromagnetic Vortex Solutions
in Fermionic System

4.1 Vortex Solutions by Jackiw and Pi

To answer whether the fermionic system under the influence of the Chern-Simons
gauge field do admit an electromagnetic vortex solution or not, we first investigate
where our motivation arises. Jackiw and Pi showed us that the gauged, nonlinear
Schrödinger equation naturally gives zero mode vortex solutions if the scalar field
couple to the Chern-Simons gauge field. They start with the Lagrangian

LJP =
κ

4
εµνρAµFνρ + i~Ψ∗

(
∂t +

ie

~
A0

)
Ψ− ~2

2m

∣∣∣∣(∇− ie

~c
~A

)
Ψ

∣∣∣∣2 +
g

2
(Ψ∗Ψ)2.

(45)
where the convention of the metric they use is mostly minus ηµν = (+,−,−)
and the charge is e. For the importance of each term, the Chern-Simons terms
give us dynamics of gauge fields. The second and third term are the Schrödinger
Lagrangian. And the last term represents nonlinear behavior of the system which
is the interaction of the particle with itself. This term may not look familiar yet
but after we specify the nonlinear coupling g later, the physical meaning of the
last term will reveal itself.

The gauge equations are identical to the ones we show in section 1 after we
apply the long-distance limit. They are

eρ = −κB, (46a)
eJ i = −κεijEj. (46b)

Knowing these gauge field equations, we can express the gauge field Aµ in terms
of the matter source and current as

~A(t, ~r) =
1

κ

∫
d2~r

′ ~G(~r − ~r′)ρ(t, ~r
′
), (47a)

A0(t, ~r) =
1

κ

∫
d2~r

′ ~G(~r − ~r′) ·~j(t, ~r′), (47b)

where ~G is the Green’s function

Gi(~r) =
1

2π
εij∂j ln r, (48)

that satisfies
∇× ~G(~r) = −δ2(~r). (49)
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Because ~A and A0 are dependent on Ψ∗ and Ψ, substituting LJP into the Euler-
Lagrange equation to obtain the matter field Ψ equation will make the task com-
plicated. Instead, we will use the Hamiltonian formalism to deal with the problem.
Legendre transformation from LJP give us the Hamiltonian

HJP =

∫
d2~r

{
~2

2m
| ~DΨ|2 − g

2
(Ψ∗Ψ)2

}
. (50)

where ~D ≡
(
∇− ie

~c
~A
)
.

Then, Ψ equation can be obtained from the Hamiltonian field equation

i~ ∂tΨ(t, ~r) =
δH

δΨ∗(t, ~r)
. (51)

Supplemented by (47), we obtain the equation

i~ ∂tΨ =

[
− ~2

2m
~D2 + eA0 − g(Ψ∗Ψ)

]
Ψ. (52)

With the form of the Schrödinger equation, we could say that Ψ describes quantum
particles moving in the vicinity of the nonlinear potential with strength − g. Thus,
the matter current Jµ follow directly from the usual Schrödinger equation.

Jµ = (ρc, ~J) =

(
cΨ∗Ψ,

~
2mi

[Ψ∗( ~DΨ)−Ψ( ~DΨ)∗]

)
. (53)

Now, to solve the equation, we assume a static system in which the zero mode
solutions satisfy the self-dual ansatz

(D1 ± iD2)Ψ = 0. (54)

We can make the equation looks more solvable by assuming one more ansatz

Ψ = exp
(
i
e

~c
ω
)
ρ1/2. (55)

Substituting Ψ into the self-dual equation gives us the gauge field

~A = ∇ω ± ~c
2e
∇× ln ρ. (56)

We see that ω is just an arbitrary gauge which can be set to zero for simplicity.
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To solve for Jµ we substitute ~A into the gauge equation (46a)

B = − e
κ
ρ

∂1∂2ω − ∂2∂1ω ±
~c
2e

(ε21∂21 lnρ− ε12∂22 lnρ) = − e
κ
ρ

∇2 ln ρ = ± 2e2

~cκ
ρ.

This is the Liouville equation which admits an exact solution only when the coef-
ficient on the right hand side has a negative value. The sign ± we choose must be
opposite to the sign of κ. Therefore, we could write the equation as

∇2 ln ρ = − 2e2

~c|κ|
ρ, (57)

and in order to avoid sign confusion, here and henceforth we will replace ± with
−κ/|κ|.

The corresponding solution is of the form

ρ =
4

α

|f ′(z)|2

(1 + |f(z)|2)2
, (58)

where z is a complex variable, α = e2/(~c|κ|) and f(z) is an arbitrary function.

We can construct a general axially symmetric solution out of the Liouville
equation by setting f(z) =

(
r0
r

)n. The solution becomes

ρ =
4n2

αr2

[(r0
r

)n
+

(
r

r0

)n]−2
. (59)

Notice the similarity between this solution and the one we solve in the CKP theory,
this is because both are solutions of the same Liouville equation and assume the
same axially symmetric property. B also relates to ρ in the same way thus they
are solutions that describe a vortex.

Next, we can relate ~J to ρ using the definition (53). Substituting ~A from (56)
to get

Jk =
~

2mi

[
Ψ∗(∂k −

ie

~c
Ak)Ψ−Ψ(∂k +

ie

~c
Ak)Ψ∗

]
= − eρ

mc

(
− κ

|κ|
~c
2e
εkj∂j ln ρ

)
= −

(
− κ

|κ|
~

2m

)
εkj∂jρ.

(60)
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(a) Radial plot

(b) Vector field plot

Figure 3: Plots show the electric field of the JP solutions

This non-vanishing ~J is what makes this solution interesting. By inserting ~J into
the second gauge field equations (6b), we obtain a non-vanishing electric field

Ei = −
(
− κ

|κ|
e~

2mcκ

)
εijεjk∂kρ = − e~

2mc|κ|
∂iρ, (61)

The radial and vector field plot on the plane of this electric field are shown in
Figure 3 in which we set all constants to unity and the parameters r0 = 3, n = 2.

Now we will show that this self-dual ansatz do make the equations consistent.
First, we consider the Hamiltonian of the system

we rewrite the Hamiltonian (50) using the identity

| ~DΨ|2 =

∣∣∣∣(D1 −
κ

|κ|
iD2

)
Ψ

∣∣∣∣2 − κ

|κ|
m

~
(∇× ~J)− κ

|κ|
e

~c
B(Ψ∗Ψ). (62)

The Hamiltonian then becomes

H =
~2

2m

∣∣∣∣(D1 −
κ

|κ|
iD2

)
Ψ

∣∣∣∣2 − κ

|κ|
~
2

(∇× ~J)−
(
g

2
− κ

|κ|
e2~

2mcκ

)
(Ψ∗Ψ)2. (63)

For a well-behaved matter field throughout the plane, ∇ × ~J vanishes after inte-
grating over space. Due to the arbitrariness of g, we can also set g = e2~/(mc|κ|)
(shortly, we will see that this is in fact the natural choice for g) so that the only
first term survives.

H =
~2

2m

∣∣∣∣(D1 −
κ

|κ|
iD2

)
Ψ

∣∣∣∣2 .
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Thus, The minimum energy can be obtained if it satisfies the ansatz (54). We see
that they are truly the zero mode as we first claim from the ansatz.

Next, this self-dual ansatz enable us to rewrite ~D2 as

~D2 = D2
1 +D2

2 =
κ

|κ|
e

~c
B, (64)

so the static equation (52) can become

0 =

[
− κ

|κ|
~e

2mc
B + eA0 − g(Ψ∗Ψ)

]
Ψ.

Substituting g and Ψ∗Ψ in terms of B to get

0 =

[
− κ

|κ|
~e

2mc
B + eA0 −

(
κ

|κ|
~e2

mcκ

)(
−κ
e

)
B

]
Ψ

A0 =− κ

|κ|
~

2mc
B.

(65)

We can now directly calculate for ~E

Ei = −∂iA0

= −
[
− κ

|κ|
~

2mc
∂iε

jk∂j

(
− κ

|κ|
~c
2e
εkl∂l ln ρ

)]
=

~2

4me
∂i∇2 ln ρ

= − ~e
2mc|κ|

∂iρ,

(66)

which agrees with the electric field we previously found from the gauge equation.
Therefore, the Schrödinger equation holds true.

Before we end this section, let us show the consequence of these solutions to
the Schrödinger equation. Using the results we found, (52) can be rewritten as

i~ ∂tΨ =

[
− ~2

2m
~D2 + e

(
− κ

|κ|
e~

2mc

)
B +

(
κ

|κ|
e~
mc

)
B

]
Ψ

=

[
− ~2

2m
~D2 + e

(
κ

|κ|
e~

2mc

)
B

]
Ψ.

(67)

The last term has manifested its nature. With the right choice of κ, it will represent
the Zeeman term of the spin-1/2 particle with the right electron-spin g-factor.
However, because the JP theory starts from a scalar field and this last term is
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actually the contribution from two different physics, one is the electric potential
and one is the self-interaction from the nonlinear term, thus, we may say that
these contributions create a pseudo effect which attach spin magnetic moment to
the scalar particle.

We have shown how to obtain the electric field step-by-step from the JP theory,
in the next section, we will repeat the same procedure with our Chern-Simons
Electrodynamics in 2+1 dimensions and see where the result differs.

4.2 Vortex Solution by Duval, Horváthy and Palla

To compare with Jackiw and Pi case, we consider our system in the non-relativistic
limit. This has already been studied by Duval, Horváthy and Palla in the subject
of non-relativistic spinor fields in 2+1 dimensions. In this system, they choose the
convention ηµν = (−,+,+) and charge −e. They first consider the non-relativistic
limit of the decoupled Dirac equation (12b), (12c)

(icγα±Dα −m)ψ± = 0, (68)

where we set the 3-dimensional mass m to zero and redefine p+ = p− = m,
ψ± represent the right-handed and left-handed spinor respectively with γα± =
(±σ3, iσ1, iσ2). These gamma matrices are slightly different from CKP case be-
cause they rotate the coordinates by 90 degrees so that x→ −y, y → x.

By setting

ψ+ = e−imc
2t

(
Ψ+

χ̃+

)
, ψ− = e−imc

2t

(
χ̃−
Ψ−

)
, (69)

(68) becomes
iDtΦ− c~σ · ~Dχ̃ = 0,

iDtχ− c~σ · ~DΦ− 2mc2χ̃ = 0,

where Φ =

(
Ψ+

Ψ−

)
and χ̃ =

(
χ̃−
χ̃+

)
. In this non-relativistic limit, the last term

of the second equation dominates the time derivative term so we can drop it out.
The final equations is the Lévy-Leblond equations which describe Dirac particles
in the non-relativistic limit.

DtΦ + i(~σ · ~D)χ = 0,

(~σ · ~D)Φ + 2mχ = 0,
(70)
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where we redefine χ̃ as χ = χ̃/c.

The equations tell us that Φ, χ represent two-component spinors that interact
with the Chern-Simons gauge field through the current Jµ which is defined as

Jµ = (ρ, ~J) = (|Φ|2, i(Φ†~σχ− χ†~σΦ)). (71)

By re-arranging the form of the Lévy-Leblond equations with the use of the identity

( ~D · ~σ)2 = ~D2 + eBσ3, (72)

we can write one of the equation to solely depend on one spinor. The first equation
then becomes

iDtΦ = − 1

2m
( ~D2 + eBσ3)Φ. (73)

Because χ is related to Φ by χ = −(1/2m)(~σ · ~D)Φ, thus, this one equation is
enough to solve for a solution.

We see from the equation that Φ satisfies the Pauli equation. This starts to
look similar to the Schrödinger equation (52). The similarity can be achieved
more by considering the static system. Together with the gauge field equations,
the governing equations are

0 = − 1

2m
( ~D2 + eBσ3)Φ + eAtΦ, (74a)

~J = −κ
e
~∇× At, (74b)

κB = −eρ. (74c)

To tackle the equations, first, we assume the self-dual ansatz(
D1 −

κ

|κ|
iD2

)
Φ = 0. (75)

This self-dual equation helps us rewrite ~D2 as (κ/|κ|)eB. The Pauli equation (73)
can then be written as [

− 1

2m
eB

(
κ

|κ|
+ σ3

)
+ eAt

]
Φ = 0[

− 1

2m
eB

(
κ/|κ|+ 1 0

0 κ/|κ| − 1

)
+ eAt

](
Ψ+

Ψ−

)
= 0.

(76)

This equation suggests us that it can be solved with vanishing At and Φ with only
one component. This means

Φ−κ =

(
Ψ−κ

0

)
, Φ+κ =

(
0

Ψ+κ

)
, (77)
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will solve the equations where Φ−κ,Φ+κ correspond to negative κ and positive κ
respectively. Thus, Φ−κ,Φ+κ will each solve the self-dual equation (75)

(D1 + iD2)Φ−κ = 0, (78a)
(D1 − iD2)Φ+κ = 0. (78b)

Moreover, both make χ from the second relation of (70) vanishes. Therefore, it
leads to

ψ+ = e−imc
2t

(
Ψ+

χ+/c

)
= e−imc

2t

(
Ψ−κ

0

)
,

ψ− = e−imc
2t

(
χ−/c

Ψ−

)
= 0,

(79)

for negative κ case, and

ψ+ = e−imc
2t

(
Ψ+

χ+/c

)
= 0,

ψ− = e−imc
2t

(
χ−/c

Ψ−

)
= e−imc

2t

(
0

Ψ+κ

)
,

(80)

for positive κ case.

This means negative κ case will lead to the right-handed spinor with spin up
solution and positive κ case will lead to the left-handed spinor with spin down
solution.

By substituting Φ±κ and B in terms of the mass density ρ = |Φ|2 into the Pauli
equation (73), the final form becomes

iDtΨ±κ =

[
−D

2

2m
− κ

|κ|
λ(Ψ†±κΨ±κ)

]
Ψ±κ, (81)

where λ = e2/(2mκ).

This is almost identical to the gauged, nonlinear Schrodinger equation (52)
except for the value of the non-linear coupling λ. It is exactly half of the value g
used by Jackiw and Pi which becomes the reason why the spinor solution is purely
magnetic. Remind that in Jackiw and Pi case, the electric field is needed such that
At would cancel out half of the non-linear term. In Duval, Horváthy and Palla
case, The nonlinear coupling is already half compared to the first theory so there
is no need for At in the first place.

22



(a) 1st current term (b) 2nd current term

Figure 4: Plots show each current term of the DHP solutions

We can also dig deeper on this electric property by considering ~J using the
definition (71) given by the Lévy-Leblond equation itself. By writing it in terms
of Φ alone. It becomes

~J =
1

2im
[Φ† ~DΦ− ( ~DΦ)†Φ] + ~∇×

(
1

2m
Φ†σ3Φ

)
. (82)

There is an additional divergenceless term compared to the current in the Jackiw
and Pi construction. This term represents current from spin of the spin-1/2 par-
ticle. And by substituting the vortex solutions into the current ~J , we see that

~J =
κ

2m|κ|
∇ × (Ψ∗±κΨ±κ)−

κ

2m|κ|
∇ × (Ψ∗±κΨ±κ)

=0,
(83)

the latter term cancel out the former term completely. Therefore, we could say that
for these vortex solutions, the spin current is responsible for the vanishing total
current overall, the probability fluid stop flowing, no current observed throughout
the plane and thus no electric field could be produced. The vector field plots of the
current from each term in (83) are shown in Figure 4 where we set all constants
to unity and the parameters r0 = 3, n = 2.

But what if we want to force our solutions to produce an electric field in the
spinor case, is it still possible? The answer is shown in the next section.
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4.3 Electromagnetic Vortex Solutions from the DHP The-
ory

Looking back at (76) and we see that we can induce an electric field by swapping
the component of the spinor Φ with respect to the sign of κ. There will be two
possible solutions that still satisfy the self-dual equations, is static, and do not
require vanishing At. They are

Φ−κ =

(
0

Ψ−κ

)
, Φ+κ =

(
Ψ+κ

0

)
, (84)

will solve the equations where Φ−κ,Φ+κ correspond to negative κ and positive κ
respectively. And as the same as DHP case, Φ−κ,Φ+κ will each solve the self-dual
equation (75)

(D1 + iD2)Φ−κ = 0, (85a)
(D1 − iD2)Φ+κ = 0. (85b)

However, unlike DHP case, χ from the second relation of (70) will not vanish.
They will have the value

χ−κ =− 1

2m
(σ · ~D)Φ−κ

=− 1

2m

(
0 D1 − iD2

D1 + iD2 0

)(
0

Ψ−κ

)
=− 1

2m

(
(D1 − iD2)Ψ−κ

0,

) (86)

for negative κ case, and

χ+κ =− 1

2m
(σ · ~D)Φ−κ

=− 1

2m

(
0 D1 − iD2

D1 + iD2 0

)(
Ψ+κ

0

)
=− 1

2m

(
0

(D1 + iD2)Ψ+κ

)
,

(87)

for positive κ case.

Therefore, it leads to

ψ+ = e−imc
2t

(
Ψ+

χ+/c

)
= e−imc

2t

(
Ψ−κ

0

)
,

ψ− = e−imc
2t

(
χ−/c
Ψ−

)
= e−imc

2t

(
(D1 − iD2)Ψ−κ

0

)
,

(88)
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for negative κ case, and

ψ+ = e−imc
2t

(
Ψ+

χ+/c

)
= e−imc

2t

(
0

(D1 + iD2)Ψ+κ

)
,

ψ− = e−imc
2t

(
χ−/c

Ψ−

)
= e−imc

2t

(
0

Ψ+κ

)
,

(89)

for positive κ case.

Now our solution from both cases give us both positive and negative chiral
spinors. Thus, they are different from the solutions solved by DHP.

To solve for the solutions, first, we substitute the ansatz Ψ±κ = ρ1/2 into the
self-dual equation. For simplicity, we will only consider for negative κ case. The
second component of the self dual equation (85a) then becomes

[(∂1 − ieA1) + i (∂2 − ieA2)] ρ
1/2 =0(

1

2
ρ−1/2∂1ρ+ eA2ρ

1/2

)
+ i

(
1

2
ρ−1/2∂2ρ− eA1ρ

1/2

)
=0(

1

2e
ρ−1∂1ρ+ A2

)
+ i

(
1

2e
ρ−1∂2ρ− eA1

)
=0

→ Ai =
1

2e
εij∂j ln ρ.

(90)

Substituting Ai into the gauge field equation (74c) will give us

B = − e
κ
ρ

∂1A2 − ∂2A1 = − e
κ
ρ

1

2e
(ε21∂21 lnρ− ε12∂22 lnρ) = − e

(−|κ|)
ρ

∇2 ln ρ = −2e2

|κ|
ρ.

(91)

This is just the same Liouville equation (57) as in JP case. Thus, we immediately
obtain the axially symmetric solution ρ in the form

ρ =
4n2|κ|
e2r2

[(r0
r

)n
+

(
r

r0

)n]−2
. (92)

For the magnetic field B, It is linearly related to ρ (74c). Thus, It is not
different from JP case and CKP case. The radial plots of ρ and B are shown in
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(a) ρ radial plot (b) B radial plot

Figure 5: Plots show the radial plots of matter field ρ and magnetic field B of the
electromagnetic vortex solutions from the DHP Theory

Figure 5 where we set all the constants to unity and the parameters r0 = 3, n = 2.

Next we compute the electric field. By substituting Φ−κ and Φ+κ into (76).
Φ−κ will give us[

− 1

2m
eB

(
−1 + 1 0

0 −1− 1

)
+ eAt

](
0

Ψ−κ

)
= 0

− eB
2m

(
0

(−2)Ψ−κ

)
+ eAt

(
0

Ψ−κ

)
= 0

→ At = −B
m
,

(93)

with the corresponding electric field

Ei = −∂iAt = −
[
− 1

m
∂i

(
−eρ
κ

)]
=

e

m|κ|
∂iρ. (94)

And Φ+κ will give us[
− 1

2m
eB

(
−1 + 1 0

0 −1− 1

)
+ eAt

](
Ψ+κ

0

)
= 0

− eB
2m

(
0

(−2)Ψ−κ

)
+ eAt

(
Ψ+κ

0

)
= 0

→ At =
B

m
,

(95)

with the corresponding electric field

Ei = −∂iAt = −
[

1

m
∂i

(
−eρ
κ

)]
=

e

m|κ|
∂iρ. (96)

26



(a) Radial plot

(b) Vector field plot

Figure 6: Plots show the electric field of the electromagnetic vortex solutions from
the DHP Theory

Notice that this electric field does not depend on which sign of κ we choose for
the system just like (66) in JP case. However, it has double value compared to JP
case. The radial plot and vector plot of this electric field are shown in Figure 6
where we set all the constants to unity and the parameter r0 = 3, n = 2.

The interesting feature is the attractive closed loop at a finite distance for both
solutions in our case. if there is a test charge in this vicinity, it would fall into this
closed loop. Even though we still not know the mechanism behind it, we suspect
that both spinors play a crucial role in this phenomenon. Also, we note again that
this system is in the long-distance limit. Thus, this closed loop might change its
radius or even disappear once we consider the additional effect from the Maxwell
term.

Another thing that is worth mentioning is their energy. But to calculate it, we
must state the Hamiltonian of the system first. It is

H =

∫ {
1

2m
| ~DΦ|2 + λ|Φ|2Φ†σ3Φ

}
d2x. (97)

We can repeat the same procedure as in JP case by using the identity (62). For
simplicity, we will only compute for negative κ case. The solution by DHP then
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gives the Hamiltonian

HDHP =

∫ {
1

2m
[ |(D1 + iD2)Ψ−κ|2 + eB|Ψ−κ|2 ]

+
e2

2mκ
|Ψ−κ|2

[(
Ψ∗−κ 0

)(1 0
0 −1

)(
Ψ−κ

0

)]}
d2x

=

∫ {
e

2m
B|Ψ−κ|2 +

e2

2mκ
ρ(|Ψ−κ|2)

}
d2x

=

∫ {
e

2m

(
−eρ
κ

)
ρ+

e2

2mκ
ρ2
}
d2x

=0.

(98)

where in the first line, the first term vanishes due to the self-dual property and the
second term vanishes on the boundary. The last two terms cancel each other in
the third line and we get the zero energy as the result. Thus, the DHP solutions
are the zero modes of the system.

Next, we consider our electromagnetic vortex (EMV) solutions, the Hamilto-
nian is

HEMV =

∫ {
1

2m
[ |(D1 + iD2)Ψ−κ|2 + eB|Ψ−κ|2 ]

+
e2

2mκ
|Ψ−κ|2

[(
0 Ψ∗−κ

)(1 0
0 −1

)(
0

Ψ−κ

)]}
d2x

=

∫ {
e

2m
B|Ψ−κ|2 +

e2

2mκ
ρ(−|Ψ−κ|2)

}
d2x

=

∫ {
e

2m

(
−eρ
κ

)
ρ− e2

2mκ
ρ2
}
d2x

=
e

m|κ|

∫
ρ2 d2x.

(99)

Numerical values we obtain after all the parameters are determined tell us that
the Hamiltonian depends on both parameters r0 and n and they are always greater
than zero. Therefore, we can conclude that these solutions are different kind of
mode from the zero modes in the original paper in which the energy depend on
the size and number of solitons in the vortex.

Now, we do have possible non-vanishing electric field solutions for spinor in
non-relativistic limit. Can we extend it to the relativistic case where dynamics of
both two spinors come to play? Two things we can say are that the form of ~J and
(70) will surely be different so even if we consider the static system and the self-
dual equation is satisfied, there is no guarantee that the equation could be solved
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exactly like in the non-relativistic limit. And if it could be solved numerically, the
additional term that manifest only in the relativistic regime will not admit simple
solutions like the one we get in the non-relativistic regime. We have tried some
ansatz to the Dirac equations but so far, none has a simple form enough to be able
to solve (even numerically) except the one we have shown in section 3. However,
the solution is not well-defined at a finite distance so the validity of the solution
is still questionable.

5 Conclusions

All the solutions from fermionic system coupled to the gauge field via Chern-
Simons interaction in relativistic (CKP), non-relativistic limit (DHP) and from the
Chern-Simons gauged non-linear Schrödinger equation (JP) shares many proper-
ties together even though they come from different theories. The reason is because
they are solved from the same self-dual ansatz, the same Liouville equation. Thus,
the same solutions should be expected. However, the underlying structure from
each theory still leads to different solutions directly or indirectly. The most inter-
esting one is the presence of radial electric field in the JP theory. We know that its
presence contributes to half of the Zeeman effect and give us the right factor for the
spin-electron g-factor. It is thus interesting to find the non-vanishing electric field
solutions in the fermionic system in the presence of the Chern-Simons coupling.

In the relativistic regime, we obtain one numerical solution from a specific
setting, we believe that it is unphysical because the solution blows up at a fi-
nite distance, In the non-relativistic regime, we obtain two exact solutions by
exchanging the component of the original spinors Φ±κ with respect to the sign of
Chern-Simons coupling κ. The electromagnetic vortices we found have the electric
field of the same form as the JP solutions except that their amplitude are half of
the value.

For possible physical applications, Chern-Simons vortices in the non-relativistic
regime could be used to explain condensed matter phenomena such as fractional
quantum Hall effect [5] or high temperature superconductivity [8]. For the vortices
in the relativistic regime, the situation is ambiguous because there are not many
relativistic phenomena that are confined in 2+1 dimensions. The condensed mat-
ter system is also intrinsically non-relativistic. Thus, an application from these
relativistic vortices is still unknown.
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6 Appendices

In this section, we present the calculation in details for the equations we used in
this paper.

Appendix A: Calculation Details from Section 2

(2) → (3) ;

First, we rewrite (2) in terms of F̃ µ = 1
2
εµνρFνρ

−(κe2)F̃ ν =∂µF
µν

=
1

2
∂µ(δµαδ

ν
β − δ

µ
βδ

ν
α)Fαβ

=
1

2
∂µ(εµνρεραβ)Fαβ

=
1

2
ηρσε

µνσ∂µ(εραβFαβ)

=ηρσε
µνσ∂µF̃

ρ.

(100)

Multiplying above equation by κe2 and apply (100) into the equation again to get

−(κe2)2F̃ ν =ηρσε
µνσ∂µ(κe2F̃ ρ)

=− ηρσηλβεµνσεαρβ∂µ∂αF̃ λ

=− εµνσελασ∂µ∂αF̃ λ

=− (δµλδ
ν
α − δµαδνλ)∂µ∂

αF̃ σ

=− (∂µ∂νF̃
µ − ∂µ∂µF̃ ν).

By choosing the gauge choice ∂µF̃ µ = 0, we finally get the equation of motion of
the form

[∂µ∂
µ + (κe2)2]F̃ ν = 0. (101)

(8) → (11) ;

30



Substituting (9) into (8) to obtain the Lagrangian

L =− 1

4
F µνFµν +

(
e−ip+zψ†+ e−ip−zψ†−

)(0 1
1 0

)

×

[
i

(
0 1
1 0

)
D0 + i

(
0 −σi
σi 0

)
Di −m

](
eip+zψ+

eip−zψ−

)
=− 1

4
F µνFµν +

(
e−ip+zψ†+ e−ip−zψ†−

)
×

[
i

(
1 0
0 1

)
D0 + i

(
σi 0
0 −σi

)
Di −m

(
0 1
1 0

)](
eip+zψ+

eip−zψ−

)
=− 1

4
F µνFµν +

(
e−ip+zψ†+ e−ip−zψ†−

)
×

(
ieip+zD0ψ+ + iσiDie

ip+zψ+ −meip−zψ−
ieip−zD0ψ− − iσiDie

ip−zψ− −meip+zψ+

)

=− 1

4
F µνFµν + iψ†+D0ψ+ + iψ†−D0ψ− +

2∑
j=1

(iψ†+σ
jDjψ+ − iψ†−σjDjψ−)

+ iψ†+σ
3ip+ψ+ − iψ†−σ3ip−ψ− + (iψ†+σ

3ieAzψ+ − iψ†−σ3ieAzψ−)

= −m(e−i(p+−p−)zψ†+ψ− + ei(p+−p−)zψ†−ψ+).

After performing the dimensional reduction by integrating out the z-dependence
term and neglecting the 7th and 8th terms from L because they are irrelevant in
2+1 dimensions (Az does not contribute to the electric field on the plane or the
magnetic field perpendicular to the plane), the Lagrangian becomes the effective
QED Lagrangian in 2+1 dimensions

L2+1 =− 1

4
F ρσFρσ + iψ†+(σ3σ3D0 + iσ3σ2D1 − iσ3σ1D2)ψ+

− iψ†−(−σ3σ3D0 + iσ3σ2D1 − iσ3σ1D2)ψ− − p+ψ†+σ3ψ+ + p−ψ
†
−σ

3ψ−

−m(ψ†+ψ− + ψ†−ψ+),

where we also assume that p+ and p− are equal so that the mass terms survive
after dimensional reduction.

To make it looks simpler we define ψ̄± = ±ψ†σ3 and γρ± = (±σ3, iσ2,−iσ1) so
that

L2+1 =− 1

4
F ρσFρσ + ψ̄+(iγρ+Dρ − p+)ψ+ + ψ̄−(iγρ−Dρ − p−)ψ−

−m(ψ†+ψ− + ψ†−ψ+)
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Lastly, we induce the Chern-Simons term from the first order loop correction. The
final Lagrangian becomes

LCSQED(2+1) =− 1

4
F ρσFρσ +

κ

4
εαβγAαFβγ + ψ̄+(iγρ+Dρ − p+)ψ+

+ ψ̄−(iγρ−Dρ − p−)ψ− −m(ψ†+ψ− + ψ†−ψ+)

(11) → (12) ;

The equations of motion can be extracted from the Lagrangian (11) by using the
Euler-Lagrange equations, which are in the form

∂L
∂ψ̄+

− ∂α
(

∂L
∂(∂αψ̄+)

)
= 0 (102a)

∂L
∂ψ̄−

− ∂α
(

∂L
∂(∂αψ̄−)

)
= 0 (102b)

∂L
∂Aβ

− ∂α
(

∂L
∂(∂αAβ)

)
= 0 (102c)

Substituting (11) into (102a),(102b) and (102c) to get

(102a) ; mσ3ψ− = (iγµ+Dµ − p+)ψ+

(102b) ; −mσ3ψ+ = (iγµ−Dµ − p−)ψ−

(102c) ;

∂L
∂Aβ

− ∂α
(

∂L
∂(∂αAβ)

)
=
κ

4
εβνρFνρ − e(ψ̄+γ

β
+ψ+ + ψ̄−γ

β
−ψ−)− κ

2
εβµα∂αAµ

κ

2
εβνρFνρ = e(ψ̄+γ

β
+ψ+ + ψ̄−γ

β
−ψ−)

(12) → (14) ;
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Substituting the ansatz (13) into the equations of motion (12a) to obtain

mσ3ψ− =i

[(
1 0
0 −1

)
∂0 + i

(
0 −i
i 0

)
(∂x + ieAx)− i

(
0 1
1 0

)
(∂y + ieAy)

]
ψ+

− p+ψ+ −m
(

1 0
0 −1

)
ψ−

=

(
1 0
0 −1

)
(−iE+)ψ+

+

(
0 1
−1 0

)(
∂ρ

∂x
∂ρ +

∂φ

∂x
∂φ + ie

∂ρ

∂x
Aρ + ie

∂φ

∂x
Aφ

)
ψ+

−
(

0 i
i 0

)(
∂ρ

∂y
∂ρ +

∂φ

∂y
∂φ + ie

∂ρ

∂y
Aρ + ie

∂φ

∂y
Aφ

)
ψ+ + ip+ψ+

+ im

(
1 0
0 −1

)
ψ−

=− i
(

(E+ − p+)f+e
ik+φ

(E+ + p+)(−ig+)eil+φ

)
+

(
cosφ∂ρ− sinφ

ρ
∂φ − ie

sinφ

ρ
A

)(
ig+e

il+φ

−f+eik+φ
)

−
(
i sinφ∂ρ+ i

cosφ

ρ
∂φ − e

cosφ

ρ

)(
ig+e

il+φ

f+e
ik+φ

)
+ im

(
f−e

ik−φ

−ig−eil−φ
)

=− i

(
(E+ − p+)f+e

ik+φ

(E+ + p+)(−ig+)eil+φ

)

+

(e−iφ∂ρ − ie
−iφ

ρ ∂φ + e−iφ

ρ eA)ig+e
il+φ

(−eiφ∂ρ − ie
iφ

ρ ∂φ + eiφ

ρ eA)f+e
ik+φ

+ im

(
f−e

ik−φ

−ig−eil−φ

)
.

We finally obtain two equations out of (12a)

0 = −i(E+ − p+)f+e
ik+φ + imf−e

ik−φ + i

(
∂ρg+ +

l+
ρ
g+ +

eA

ρ
g+

)
ei(l+−1)φ,

0 = −(E+ − p+)g+e
il+φ +mg−e

il−φ − i
(
∂ρf+ −

k+
ρ
f+ −

eA

ρ
f+

)
ei(k+−1)φ.

By setting k+ = k− = l+ − 1 = l− − 1, E+ = E− = E, p+ = p− = p we can
simplify the equations to the form

∂ρg+ = −
(
k+ + 1 + eA

ρ

)
g+ + (E − p)f+ −mf−,

∂ρf+ =

(
k+ + eA

ρ

)
f+ − (E + p)g+ +mg−.
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We can rewrite (12b) in the same manner as (12a), the equations will be similar
except that all the subscript +,− are exchanged and the sign of E and m are
exchanged too so we get

∂ρg− = −
(
k− + 1 + eA

ρ

)
g− − (E + p)f− +mf+,

∂ρf− =

(
k− + eA

ρ

)
f− + (E − p)g− −mg+.

Next, for the last equation (12c), we consider each component

β = 0 ;

κ

2e
(ε012F12 + ε021F21) =

(
f ∗+e

−ik+φ −ig∗+e−il+φ
)
σ3σ3

(
f+e

ik+φ

ig+e
il+φ

)
+
(
f ∗−e

−ik−φ −ig∗−e−il−φ
)

(−σ3)(−σ3)

(
f−e

ik−φ

ig−e
il−φ

)
− κ

eρ
∂ρA =|f+|2 + |f−|2 + |g+|2 + |g−|2

β = 1 ;

κ

2e
(ε120F20 + ε102F02) =

(
f ∗+e

−ik+φ −ig∗+e−il+φ
)
σ3iσ2

(
f+e

ik+φ

ig+e
il+φ

)
+
(
f ∗−e

−ik−φ −ig∗−e−il−φ
)

(−σ3)(iσ2)

(
f−e

ik−φ

ig−e
il−φ

)
0 =

(
f ∗+e

−ik+φ −ig∗+e−il+φ
)(ig+eil+φ

f+e
ik+φ

)
−
(
f ∗−e

−ik−φ −ig∗−e−il−φ
)(ig−eil−φ

f−e
ik−φ

)
0 = if ∗+g+e

iφ − ig∗+f+e−iφ − if ∗−g−eiφ + ig∗−f−e
−iφ

0 = (f ∗+g+ − f ∗−g−)eiφ + (g∗−f− − g∗+f+)e−iφ
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β = 2 ;

κ

2e
(ε201F01 + ε210F10) =

(
f ∗+e

−ik+φ −ig∗+e−il+φ
)
σ3(−iσ1)

(
f+e

ik+φ

ig+e
il+φ

)
+
(
f ∗−e

−ik−φ −ig∗−e−il−φ
)

(−σ3)(−iσ1)

(
f−e

ik−φ

ig−e
il−φ

)
0 =

(
f ∗+e

−ik+φ −ig∗+e−il+φ
)( g+eil+φ

if+e
ik+φ

)
−
(
f ∗−e

−ik−φ −ig∗−e−il−φ
)( g−eil−φ

if−e
ik−φ

)
0 = f ∗+g+e

iφ + g∗+f+e
−iφ − f ∗−g−eiφ − g∗−f−e−iφ

0 = (f ∗+g+ − f ∗−g−)eiφ − (g∗−f− − g∗+f+)e−iφ

The last two components give us two constraints of the system. But notice that
if only g∗+f+− g∗−f− = 0, Both constraints will be satisfied immediately. Thus, we
now obtain all the equations of (14).

(16) → (17) ;

Starting with (16)
1

ρ

d2A

dρ
− (n+ eA+

1

2
)

2

ρ2
dA

dρ
= 0.

Without a knowledge to solve for the exact solution of this non-linear differential
equation, we instead using the DSolve operation in Mathematica to solve this
equation, The solution is

A(ρ) =
1

e
[− 1− n+

√
−1− 2n− n2 − 2e2C1

× tan [
√
−1− 2n− n2 − 2e2C1(C2 + ln ρ)]].

Redefine
−iC3 ≡

√
−1− 2n− n2 − 2e2C1, C4 ≡ C3C2.

; tan (−iC4 − iC3lnρ) = −i
(
eC4eC3lnρ − e−C4e−C3lnρ

eC4eC3lnρ + e−C4e−C3lnρ

)
= −i(ρ

C3 − e−2C4ρ−C3

ρC3 + e−2C4ρ−C3
)

= −i(ρ
2C3 − λ2

ρ2C3 + λ2
) ; λ ≡ e−C4

→ A(ρ) =
1

e

[
−1− n− C3

(
ρ2C3 − λ2

ρ2C3 + λ2

)]
.
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Next, we apply the boundary condition A(0) = A0

A(0) =
1

e
(−1− n− C3),

C3 = eA0 + n+ 1 → eA0 + n+ 1 > 0

→ A(ρ) =
1

e

[
−1− n

(
ρ2C3 + λ2

ρ2C3 + λ2

)
− (eA0 + n+ 1)

(
ρ2C3 − λ2

ρ2C3 + λ2

)]
= −2(n+ 1)

e

(
ρ2(eA0+n+1)

ρ2(eA0+n+1) + λ2

)
− A0

(
ρ2(eA0+n+1) − λ2

ρ2(eA0+n+1) + λ2

)
.

Knowing A(ρ), we can now find f+ by substituting A into (15b) to get

f+ =
(eA0 + n+ 1)λ

e

[
2κ

(
E + p

E

)]1/2(
ρeA0+n

ρ2(eA0+n+1) + λ2

)
.

(25) → (26) ;

In this calculation, we will show the energy and angular momentum for case κ > 0.
The total energy is defined as the integration of the component 00 of the energy-
momentum tensor over the plane

E =

∫
d2xT 00

=

∫
d2xi[ψ̄+(σ3D0)ψ+ − ψ̄−(σ3D0)ψ−]

=

∫
d2xi

[(
f ∗+e

−inφ −ig∗+e−i(n+1)φ
)( (−iE)f+e

inφ

(−iE)ig+e
i(n+1)φ

)
+
(
f ∗−e

−inφ −ig∗−e−i(n+1)φ
)( (−iE)f−e

inφ

(−iE)ig−e
i(n+1)φ

)]
=

∫
d2x(|f+|2 + |f−|2 + |g+|2 + |g−|2)E

=− κ

e
E(

∫
d2xB)

=
q

e
E.

Next, the total angular momentum is defined by

J =

∫
d2xεijx

iT 0j.
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But before we directly calculate J , we will separate T µρ into two parts. Separately
computing and combining it together later will make the calculation looks easier
than calculating it all at once.

T µρ =
i

2
[ψ̄+(γµ+∂

ρ + γρ+∂
µ)ψ+ + ψ̄−(γµ−∂

ρ + γρ−∂
µ)ψ−]

=− e

2
[ψ̄+(γµ+A

ρ + γρ+A
µ)ψ+ + ψ̄−(γµ−A

ρ + γρ−A
µ)ψ−]

=
i

2
T µρ1 +

κ

4
(εµβγFβγA

ρ + ερβγFβγA
µ)

=
i

2
T µρ1 +

κ

4
T µρ2 ,

which means
J =

∫
d2xεijx

i i

2
T 0ρ
1 +

∫
d2xεijx

iκ

4
T 0ρ
2

=J1 + J2.

Next we consider each component from each part of T µρ that contribute to the
angular momentum

T 0y
1 =eiEt

(
f ∗+e

−inφ 0
)
σ3[σ3∂y + (−iσ1)∂0]e−iEt

(
f+e

inφ

0

)
+ eiEt

(
f ∗−e

−inφ 0
)
σ3[σ3∂y + (−iσ1)∂0]e−iEt

(
f−e

inφ

0

)
=
∑
j=±

f ∗j

[
−∂ρ
∂y
∂ρfj −

∂φ

∂y
fj(in)

]
=
∑
j=±

−f ∗j
(

sinφ∂ρfj +
cosφ

ρ
infj

)
,

T 0x
1 =eiEt

(
f ∗+e

−inφ 0
)
σ3[σ3∂x + iσ2∂0]e−iEt

(
f+e

inφ

0

)
+ eiEt

(
f ∗−e

−inφ 0
)
σ3[σ3∂x + iσ2∂0]e−iEt

(
f−e

inφ

0

)
=
∑
j=±

f ∗j

[
−∂ρ
∂x
∂ρfj −

∂φ

∂x
fj(in)

]
=
∑
j=±

−f ∗j
(

sinφ∂ρfj +
cosφ

ρ
infj

)
,

xT 0y
1 − yT 0x

1 =
∑
j=±

−f ∗j (ρ cosφ sinφ∂ρfj + cos2 φikfj − ρ cosφ sinφ∂ρfj + sin2 φikfj)

= −ik(|f+|2 + |f−|2).
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T 0y
2 =ε0xyFxyA

y + ε0yxFyxA
y + εyβγFβγA

0

=2
∂ρA

ρ
(−1)

(
cosφ

ρ
A

)
,

T 0x
2 =2

∂ρA

ρ
(−1)

(
− sinφ

ρ
A

)
,

xT 0y
2 − yT 0x

2 =− 2
∂ρA

ρ
(cos2 φ+ sin2 φ)A

=− 2(∂ρA)A.

Finally,

J1 =
i

2

∫
d2x(xT 0y

1 − yT 0x
1 )

=
n

2

∫
d2x(|f+|2 + |f−|2)

J1 =
n

2

(
−κΦ

e

)
,

J2 =
κ

4

∫
d2x(xT 0y

2 − yT 0x
2 )

=− κ

4
(2)(2π)

∫
A∂ρAdρ

=− κ

4
(2π)A2

∞

=− κ

4
Φ

[
−2

e
(n+ 1)

]
=

(
κΦ

e

)(
n+ 1

2

)
,

J =J1 + J2

=
n

2

(
−κΦ

e

)
+

(
κΦ

e

)(
n+ 1

2

)
=
κΦ

2e
.

Appendix B: Calculation Details from Section 4.1

Verifying that (47) satisfies (46) ;
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∇r × ~A(t, r) =
1

κ

∫
d2r′[∇r × ~G(r − r′)]ρ(t, r′)

=− 1

κ

∫
d2r′δ2(r − r′)ρ(t, r′)

B =− ρ(t, r)

κ
.

∇rA0(t, r) =
1

κ

∫
d2r′∇r[~G(r − r′) ·~j(t, r′)]

=
1

κ

∫
d2r′[(~j(t, r′) · ∇r)~G(r − r′) +~j(t, r′)× (∇r × ~G(r − r′)),

∂t ~A(t, r) =
1

κ

∫
d2r′ ~G(r − r′)(−∇r′ ·~j(t, r′))

=
1

κ

∫
d2r′(~j(t, r′) · ∇r′)~G(r − r′),

Ei =− ∂t ~A− ∂iA0

=
1

κ
εij
∫
d2r′

1

κ
εij
∫
d2r′jj(t, r

′)δ2(r − r′).

(45) → (50) ;

The Hamiltonian and the Lagrangian are related by the Legendre transformation

HJP =

∫
d2r

{
Ψ̇
∂L
∂Ψ̇

+ Ψ̇∗
∂L
∂Ψ̇∗

+ Ȧi
∂L
∂Ȧi

}
− LJP . (103)

To find the form of HJP , notice that by considering only the gauge terms, we can
rewritten them as

Ȧi
∂L
∂Ȧi
− κ

4
εµνρAµFνρ =

κ

2
(A2Ȧ1 − AaȦ2)−

κ

2
[ε012A0(−∂1A2 + ∂2A1)

+ ε120A1(∂2A0 + Ȧ2) + ε201A2(−Ȧ1 − ∂1A0)]

=− κ

2
[A0(−∂1A2 + ∂2A1) + A0(∂2A1 − ∂1A2]

=κA0B,

up to integration over space.
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Substituting it into HJP to get

HJP =

∫
d2r

{
i~Ψ∗Ψ̇ + κA0B − i~Ψ∗Ψ̇ + eA0|Ψ|2 +

~2

2m
| ~DΨ|2 − g

2
(Ψ∗Ψ)2

}
=

∫
d2r

{
~2

2m
| ~DΨ|2 − g

2
(Ψ∗Ψ)2

}
.

(51) → (52) using (50) ;

First, we decompose | ~DΨ|2 into each term (also set natural constants to unity)

| ~DΨ|2 =
2∑
i=1

(DiΨ)(DiΨ)∗

=
2∑
i=1

[(∂i − ieAi)Ψ][(∂i + ieAi)Ψ
∗]

=
2∑
i=1

[∂iΨ∂iΨ
∗ + ieAi(Ψ

∗∂iΨ−Ψ∂iΨ
∗) + e2A2

iΨ
∗Ψ]

=
2∑
i=1

[∂i(Ψ
∗∂iΨ)−Ψ∗∂2i Ψ + ieAi(Ψ

∗∂iΨ−Ψ∂iΨ
∗) + e2A2

iΨ
∗Ψ].

For simplicity, we will consider the functional derivative respect to Ψ∗(r′) on each
term separately.

3rd term ;

δ

δΨ∗(r′)

∫
d2rAi(r)Ψ

∗(r)∂iΨ(r)

=

∫
d2r′′

δ

δAi(r′′)

[∫
d2rAi(r)Ψ

∗(r)∂iΨ(r)

]
δAi(r

′′)[Ψ∗]

δΨ∗(r′)
+ Ai(r

′)∂iΨ(r′)

=

∫
d2r′′Ψ∗(r′′)∂iΨ(r′′)

e

κ
Gi(r

′′ − r′)Ψ(r′) + Ai(r
′)∂iΨ(r′)

= −Ψ(r′)
e

κ

∫
d2r′′Gi(r

′ − r′′)Ψ∗(r′′)∂iΨ(r′′) + Ai(r
′)∂iΨ(r′)
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4th term ;

δ

δΨ∗(r′)

∫
d2rAi(r)Ψ(r)∂iΨ

∗(r)

=
δ

δΨ∗(r′)

∫
d2r[−∂iAi(r)Ψ(r)Ψ∗(r)− Ai(r)∂iΨ(r)Ψ∗(r) + ∂i(Ai(r)Ψ(r)Ψ∗(r))]

= −∂iAi(r′)Ψ(r′)− Ai(r′)∂iΨ(r′)

−
∫
d2r′′

δ

δAi(r′′)

[∫
d2rAi(r)Ψ

∗(r)∂iΨ(r)

]
δAi(r

′′)[Ψ∗]

δΨ∗(r′)

= −∂iAi(r′)Ψ(r′)− Ai(r′)∂iΨ(r′) + Ψ(r′)
e

κ

∫
d2r′′Gi(r

′ − r′′)Ψ∗(r′′)∂iΨ(r′′)

5th term ;

δ

δΨ∗(r′)

∫
d2rA2

i (r)Ψ
∗(r)Ψ(r)

=

∫
d2r′′

δ

δAi(r′′)

[∫
d2rA2

i (r)Ψ
∗(r)Ψ(r)

]
δAi(r

′′)[Ψ∗]

δΨ(r′)
+ A2

i (r
′)Ψ(r′)

= −2

∫
d2r′′Ai(r

′′)Ψ∗(r′′)Ψ(r′′)
e

κ
Gi(r

′ − r′′)Ψ(r′) + A2
i (r
′)Ψ(r′)

Now, we substitute all terms into | ~DΨ(r)|2 to obtain

δ

δΨ∗(r′)

1

2m

∫
d2r| ~DΨ(r)|2

=
1

2m

2∑
i=1

{
−∂2i Ψ(r′) + ieAi(r

′)∂iΨ(r′) + ie∂iAi(r
′)Ψ(r′) + ieAi(r

′)∂iΨ(r′)

+e2A2
i (r
′)Ψ(r′)− ieΨ(r′)

[
1

κ

∫
d2r′′Gi(r

′ − r′′) [Ψ∗(r′′)∂iΨ(r′′) + ∂iΨ(r′′)Ψ∗(r′′)

−2ieAi(r
′′)Ψ∗(r′′)Ψ(r′′)]]}

=− 1

2m
~D2Ψ(r′)

+
2∑
i=1

e

(
1

2mi

)
Ψ(r′)

[
1

κ

∫
d2r′′Gi(r

′ − r′′)[Ψ∗(r′′)DiΨ(r′′)−Ψ(r′′)(DiΨ(r′′))∗]

]
=− 1

2m
~D2Ψ(r′) + eA0Ψ(r′).

Substitute into the right hand side of (51) to obtain the final equation

i∂tΨ = − 1

2m
~D2Ψ + eA0Ψ− g(Ψ∗Ψ)Ψ.
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Proof of the identity (62)

To show explicitly, we will decompose each term and then compare between the
left hand side (LHS) and the right hand side(RHS) of the equation.

1st term LHS ;

2∑
i=1

|DiΨ|2 =
2∑
i=1

(∂iΨ− ieAiΨ)(∂iΨ
∗ + ieAiΨ

∗)

=
2∑
i=1

∂iΨ∂iΨ
∗ + ieAi(Ψ

∗∂iΨ−Ψ∂iΨ
∗) + e2A2

i |Ψ|2

1st term RHS ;

|(D1 + iD2)Ψ|2 =|(∂1 − ieA1 + i∂2 + eA2)Ψ|2

=[(∂1 + eA2 + i(+∂2 − eA1))Ψ][(∂1 + eA2 − i(+∂2 − eA1))Ψ
∗]

=
[
|(∂1 + eA2)Ψ|2 + |(∂2 − eA1)Ψ|2 + i[(∂2 − eA1)Ψ][(∂1 + eA2)Ψ

∗]

−i[(∂1 + eA2)Ψ][(∂2 − eA1)Ψ
∗]]

=|D1Ψ|2 + |D2Ψ|2 + eA2(Ψ∂1Ψ
∗ + Ψ∗∂1Ψ)− eA1(Ψ∂2Ψ

∗ + Ψ∗∂2Ψ)

+ i∂2Ψ∂1Ψ
∗ + i∂1Ψ∂2Ψ

∗

2nd term RHS ;

∂1J2 =
1

2i
[∂1Ψ

∗(∂2 − ieA2)Ψ− ∂1Ψ(∂2 + ieA2)Ψ
∗ + Ψ∗(∂2 − ieA2)∂1Ψ

−Ψ(∂2 + ieA2)∂1Ψ
∗ − ie(2∂1A2|Ψ|2)]

∂1J2 − ∂2J1 =
1

2mi
[2(∂1Ψ

∗∂2Ψ− ∂1Ψ∂2Ψ∗)− 2ieA2(Ψ∂1Ψ
∗ + Ψ∗∂1Ψ)

+ (Ψ∗∂2∂1Ψ−Ψ∂2∂1Ψ
∗)− (Ψ∗∂1∂2Ψ−Ψ∂1∂2Ψ

∗)

+ 2ieA1(Ψ∂2Ψ
∗ + Ψ∗∂2Ψ)− ie2B|Ψ|2]

m(∂1J2 − ∂2J1) =− i(∂1Ψ∗∂2Ψ− ∂1Ψ∂2Ψ∗)− eA2(Ψ∂1Ψ
∗ + Ψ∗∂1Ψ)+

eA1(Ψ∂2Ψ
∗ + Ψ∗∂1Ψ)− eB|Ψ|2

Gathering all terms from the right hand side together to obtain

|(D1 + iD2)Ψ|2 +m(∂1J2 − ∂2J1) + eB|Ψ|2 =| ~DΨ|2.
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Appendix C: Calculation Details from Section 4.2

(68)→ (70) ;

For the right handed spinor equation (ψ+)

0 =(icγα+Dα −m)ψ+

=(iσ3D0 − σ1D1 − σ2D2 −m)ψ+

=e−imc
2t

[
i

(
DtΨ+

−Dtχ̃+

)
+m

(
Ψ+

−χ̃+

)
− c~σ · ~D

(
Ψ+

χ̃+

)
−m

(
Ψ+

χ̃+

)]
0 =i

(
DtΨ+

−Dtχ̃+

)
− c~σ · ~D

(
Ψ+

χ̃+

)
− 2m

(
0
χ̃+

)
.

(104)

For the left handed spinor equation (ψ−)

0 =− i
(
Dtχ̃−
−DtΨ−

)
−m

(
χ̃−
−Ψ−

)
− c~σ · ~D

(
χ̃−
Ψ−

)
−m

(
χ̃−
Ψ−

)
0 =− i

(
Dtχ̃−
−DtΨ−

)
− c~σ · ~D

(
χ̃−
Ψ−

)
− 2m

(
χ̃−
0

)
.

(105)

By swapping the lower component between two equations, (104) becomes

iDt

(
Ψ+

Ψ−

)
− c~σ · ~D

(
χ̃−
χ̃+

)
=0

iDtΦ− c~σ · ~Dχ̃ =0.

and (105) becomes

−iDt

(
χ̃−
χ̃+

)
+ c~σ · ~D

(
Ψ+

Ψ−

)
+ 2m

(
χ̃−
χ̃+

)
=0

−iDtχ̃+ c~σ · ~DΦ + 2mχ̃ =0.

By approximating in the non-relativistic limit, we can drop the time derivative
term out of the second equation so the equation becomes

c~σ · ~DΦ + 2mχ̃ = 0.

Proof of (72)

(~σ · ~D)(~σ · ~D) =σi(∂i − ieAi)σj(∂j − ieAj)
= ~D2 + iεijkσk∂i∂j − ie(Ai∂j + ∂i[Aj)− e2AiAj
= ~D2 + eσkεijkAi∂j + ∂iAj + Aj∂i

= ~D2 + eσ3B

43



7 Bibliography

References

[1] Y. M. Cho, J. W. Kim, and D. H. Park, "Fermionic vortex solutions in Chern-
Simons electrodynamics", Phys. Rev. D 45 (1992) 3802.

[2] R. Jackiw and S.-Y. Pi, "Soliton Solutions to the Gauged Nonlinear
Schrödinger Equation on the Plane", Phys. Rev. Lett. 64 (1990) 2969, "Self-
Dual Chern-Simons Solitons", Prog. Theor. Phys. Suppl. textbf107 (1992) 1.

[3] C. Duval, P. A. Horváthy, and L. Paala, "Spinor vortices in nonrelativis-
tic Chern-Simons theory", Phys. Rev. D 52 (1995) 4700, "Spinors in Non-
relativistic Chern-Simons Electrodynamics", Ann. Phys. (N. Y.) 249 (1996)
265.

[4] S. S. Chern and J. Simons, "Characteristic Forms and Geometric Invariants",
Ann. Math. 99 (1974) 48.

[5] D. Tong, "Lectures on the Quantum Hall Effect", arXiv:1606.06687.

[6] G. V. Dunne, “Aspects of Chern-Simons theory”, arXiv:hep-th/9902115.

[7] R. Jackiw and E. J. Weinberg, "Self-dual Chern-Simons Vortices", Phys. Rev.
Lett. 64 (1990) 2234.

[8] Y.-H. Chen, F. Wilczek, E. Witten, and B. Halperin, "On Anyon Supercon-
ductivity", Int. J. Mod. Phys. B 3 (1989), 1001.

44


	Cover (Thai)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Contents
	1 Introduction
	2 Pure Magnetic Vortex CKP Solutions
	3 Electromagnetic Vortex Solution from the CKPTheory
	4 Possibility of Electromagnetic Vortex Solutionsin Fermionic System
	5 Conclusions
	6 Appendices
	7 Bibliography



