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ABSTRACT (THAI) 
 วสุนันท์ โชคชัยธนากุล : กระบวนการปรับแต่งรูปภาพทางคอมพิวเตอร์สำหรับการคัดแยกโรคโดยใช้

รูปภาพเอกซเรย์ทรวงอกจากหลายแหล่งข้อมูล. ( Adaptive image preprocessing and 
augmentation for disease screening on multi-source chest x-ray datasets) อ.ที่ปรึกษา
หลัก : รศ. ดร.โปรดปราน บุณยพกุกณะ, อ.ที่ปรึกษาร่วม : อ. ดร.เอกพล ช่วงสุวนิช 

  
งานวิจัยสำหรับการใช้การเรียนรู้เชิงลึกบนภาพรังสีทรวงอกได้รับความสนใจเพิ่มขึ้นในสาธารณะ  

อย่างไรก็ตามงานส่วนใหญ่มุ่งเน้นไปที่การพัฒนาแบบจำลองโดยใช้ข้อมูลแหล่งเดียวกับชุดฝึก ซึ่งข้อเสียเปรียบที่
สำคัญเมื่อนำไปใช้ในสถานการณ์จริงคือข้อมูลที่ไม่ตรงกันกับชุดการฝกึ ดังนั้นบางแบบจำลองจึงมีประสิทธิภาพต่ำ
กว่าเมื่อนำไปใช้งานจริง งานนี้มุ่งเน้นไปที่ผลกระทบของชุดข้อมูลที่ไม่ตรงกันบนภาพรังสีทรวงอกและวิเคราะห์
วิธีการแก้ไขปัญหาการไม่ตรงกันของชุดข้อมูล เทคนิค Lung balance contrast enhancement technique 
(Lung BCET) จะระบุบริเวณปอดและปรับภาพเพื่อปรับปรุงความทนทานของแบบจำลองเมื่อใช้บนข้อมูลที่
แหล่งข้อมูลต่างจากชุดฝึก นอกจากนั้น ยังได้สำรวจวิธีการเพิ่มจำนวนข้อมูลที่เหมาะสมกับภาพรังสีทรวงอกอีก
ด้วย ข้อมูลเกี่ยวกับวัณโรค , โควิด-19และปอดบวมจากชุดข้อมูลหลายชุดถูกรวบรวมเพื่อประเมินและ
เปรียบเทียบประสิทธิภาพของกระบวนการเตรียมข้อมูลและวิธีการเพิ่มจำนวนข้อมูลโดยใช้พื้นท่ีใต้โค้งของกราฟ 
Receiver operating characteristic (AUC) และคุณภาพของ Heatmap สำหรับการทดสอบบนแหล่งข้อมูลที่
ต่างจากชุดฝึก วิธีการเตรียมข้อมูลโดยใช้ Lung BCET ได้รับ AUC สูงสุดที่ 0.7978 และ 0.6240 สำหรับชุด
ข้อมูลแม่สอดและกองวัณโรค (BT) ตามลำดับ อย่างไรก็ตาม ไม่มีความแตกต่างสำหรับผลลัพธ์ของการทำนายผล
บนโควิด-19และโรคปอดบวม การศึกษาของเรายังพบว่า Lung BCET สามารถใช้เพื่อเพิ่มข้อมูลร่วมกับวิธีการ
เพิ่มข้อมูลแบบทั่วไปเพื่อปรับปรุงประสิทธิภาพของผลการทดลองทั้งในข้อมูลจากแหล่งเดียวและต่างแหล่งจาก
ชุดฝึกบนวัณโรค 
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ABSTRACT (ENGLISH) 
# # 6272079921 : MAJOR COMPUTER SCIENCE 
KEYWORD: Image preprocessing, Data augmentation, Chest radiography 
 Wasunan Chokchaithanakul : Adaptive image preprocessing and augmentation for 

disease screening on multi-source chest x-ray datasets. Advisor: Assoc. Prof. 
Proadpran Punyabukkana, Ph.D. Co-advisor: Ekapol Chuangsuwanich, Ph.D. 

  
Research on deep learning models for chest radiology applications has increased 

attention by the public. However, most works focus on developing models using in-domain 
data, so the significant drawback, when applied in real-world scenarios, was the mismatched 
data with the training set. Consequently,  some models perform inferior at the deployment 
stage. This work focused on the effects of dataset mismatch on chest radiography and 
analyzed the methods the overcome the mismatch issues. The lung balance contrast 
enhancement technique (lung BCET) automatically identifies the lung region and normalizes 
the image accordingly to improve the robustness of out-of-domain data developed. 
Additionally, augmentation methods that are suitable for chest radiography were explored. The 
data on Tuberculosis (TB), COVID-19, and pneumonia were compiled from multiple datasets to 
evaluate and compare the performance of the preprocessing and augmentation methods using 
the area under the receiver operating characteristic curve (AUC) and heatmap quality. For out-
of-domain testing conditions, the lung BCET preprocessing method achieved the highest AUC 
scores of 0.7978 and 0.6240 for the Maesot and Bureau of TB (BT) datasets, respectively. 
However, there are no differences in performance on COVID-19 and pneumonia datasets. Our 
study also found that lung BCET can be used to perform data augmentation in conjunction 
with the standard augmentation techniques to improve the performance in both in- and out-
of-domain conditions on the TB datasets. 
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1. Introduction 
1.1 Motivation 
In recent years, machine learning has been increasingly used in medical computer vision 

studies, particularly image classification and segmentation. Typically, machine-learning models 
learn from a training set and evaluate on the test set. Nonetheless, medical image data of an 
appropriate size have some difficulties in collecting and using, compared to other image data, 
due to clinical data protection regulations and the deficiency of expert labeling. As a result, 
preprocessing and augmentation approaches have been developed to obtain an increasing 
number of high-quality and diverse data. 

 
Image preprocessing is essential for enhancing image quality by adjusting brightness, contrast, 

noise, and other related factors, in order to reduce unwanted distortions and enhance some 
features required for model learning [1-5]. Data augmentation is a method that simulates the 
training dataset by flipping, rotating, and cropping existing data to avoid overfitting issues [6-8]. 
Advanced augmentation techniques, such as Generative adversarial network (GAN), are used to 
transform an image from one domain to another [9, 10]. 

  
Chest radiography is commonly used to diagnose lung diseases. However, different 

healthcare settings may have different X-ray machines, settings and systems, patients’ 
demographics, and other related factors that could affect the image data. Therefore, applying the 
same preprocessing or augmentation technique may lead to over- and under-enhancement 
problems. Thus, the main objective of this study is to examine new preprocessing and 
augmentation techniques for chest radiography data to aid model learning when trained on non-
diverse data.   

 
The balance contrast enhancement technique (BCET) [11] is a popular method for 

normalizing the intensity values of an image. However, the BCET may fail with the presence of 
foreign objects or annotations, which can change the minimum and maximum values in the 
image. In this research, the BCET analyzed only the lung region, which is usually more uniform 
across different data sources, to perform the normalization so that the BCET can be more robust. 
Furthermore, the lung area can be identified by a lung segmentation model, so-called the lung 
BCET method. A set of augmentation techniques was also proposed by leveraging existing 
preprocessing techniques. Instead of removing all differences in the dataset via preprocessing, the 
preprocessing techniques were applied to generate slight variations by over- or under-correcting 
the images. Contrast limited adaptive histogram equalization (CLAHE) [12] and unsharp masking 
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(UM) [13] were selected in conjunction with our proposed preprocessing technique to produce 
such augmentations. Differential evolution (DE) [14], a genetic algorithm that employs a parallel 
direct search approach, was used to determine the suitable settings for the augmentation. 

 
The area under the receiver operating characteristic curve (AUC) score was selected to 

compare the different techniques for both in- and out-of-domain data sources. Briefly, two 
separate experiments were performed. First, focusing on image preprocessing without 
augmentation, the lung balance contrast enhancement technique (lung BCET) method was 
compared with other related methods. Second, various augmentation methods, such as typical 
image augmentation techniques (random rotation, random brightness, and random contrast), the 
proposed augmentation (random CLAHE and random UM), and their combinations which require 
lung BCET preprocessing as a prerequisite, were compared. Results revealed that lung BCET could 
improve performance in both in- and out-of-domain settings. Moreover, different augmentations 
could further improve the performance. 

 

1.2 Objective 
This thesis aimed to evaluate the use of image preprocessing and augmentation techniques 

for the classification of chest X-rays image datasets. The main hypothesis of this study was: 
 
The proposed image preprocessing techniques can improve the AUC score when tested on 

in- and out-of-domain data, and the augmentation techniques suitable for proposed image 
preprocessing techniques and chest X-ray images were searched for.    
 

The objectives of this thesis were as follows: 
1. To evaluate the output of the model using a new image preprocessing approach with both 

in- and out-of-domain data where no augmentation strategies are applied. 
2. To compare augmentation strategies to learn more variants of chest X-ray images may 

help the model in learning more variations of augmentation. 
 

1.3 Scope 
The scope of this thesis is to use lung segmentation with the BCET to test a new image 

preprocessing technique and choose data augmentation techniques for machine learning of 

various chest X-ray datasets. The results were then evaluated and compared between 

techniques.  
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2. Related works 
Owing to the variety of datasets, several researchers have been interested in comparing the 

performances of in- and out-of-domain data. Sathitratanacheewin et al. [15] used the Shenzhen 
TB dataset for training a model based on InceptionV3 and tested on the Shenzhen and other 
chest X-ray datasets using color space, crop flip, and rotation augmentation to determine the 
generalizability of the model. The AUC on the Shenzhen dataset was 0.8502; however, it dropped 
to 0.7054 on an out-of-domain data (Chest X-ray 8). 
 

In a similar study, Zech et al. [16] tested the model generalization to detect pneumonia in 
chest X-ray images. The National Institutes of Health Clinical Center (NIH) and Mount Sinai 
Hospital (MSH) were selected as the training sets. Additionally, the Indiana University Network for 
Patient Care (IU) was selected as the out-of-domain data. The results showed that the out-of-
domain data had lower AUC scores than the in-domain data. 
 

The findings of these studies show that the model provides poor outcomes when utilizing 
out-of-domain data. As a result, most researchers have applied image enhancement and 
augmentation to increase the AUC scores of the models. 

 
Image enhancement is a crucial image preprocessing step. Several enhancement techniques 

will emphasize important information and decrease or eliminate noise in the images in order to 
improve the quality of an image and the performance of models. Several researchers have 
focused on comparing preprocessing methods to determine the best ways to classify chest X-ray 
images. 

 
Munadi et al. [17] compared the accuracy of three image enhancement techniques, including 

CLAHE, UM, and high-frequency emphasis filtering (HEF), for tuberculosis (TB) detection. The study 
revealed that UM approaches based on the EfficientNetB4 model had the highest accuracy 
through transfer learning (89.92%). 

 
Zotin et al. [18] investigated lung border detection. A median filter was utilized to reduce 

image noise, and then the BCET was applied to improve image quality. 
 
In a study by Rahman et al. [19], the covid-19 dataset and six distinct neural networks were 

used to evaluate the performance assessment matrix using numerous image improvement 
approaches, including histogram equalization (HE), CLAHE, image inversion, gamma correction, 
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and BCET. The study revealed the two best results for gamma correction using the ChexNet 
model and BCET utilizing DenseNet201. 

 
As previously mentioned, BCET is an image preprocessing method used by researchers to 

normalize images from different sources. BCET uses a parabolic function in extending or 
compressing the image contrast without affecting the histogram pattern of the original images 
(see more detail in section 3). 

 
The four basic densities on a chest X-ray are air (displayed in black), fat (gray), water/soft 

tissue/nodule (white to gray), and bone (white) [20]. Because the BCET works by adjusting the 

minimum, maximum, and mean values of the dataset, if the air (black) and nodule (white) colors 

are the same in all the datasets, the images will be similar. However, sometimes the most white 

and black parts of chest X-rays can be derived from other artifacts or distractions outside the 

region of interest. For example, some datasets might impose a box showing patient information 

onto the image, and the BCET may use wrong statistics to normalize the image. Thus, before 

modifying the minimum and maximum specified values, the colors of the air and nodules in the 

lung area of the image. Therefore, BCET with a lung segmentation model was applied as our new 

image preprocessing technique. 

 
Data augmentation is a common technique used in training deep learning models in order to 

increase the amount of training data. The process usually involves changing images from the 
existing training data to avoid overfitting and improve the model performance. 

 
Most medical studies that employ chest X-ray datasets used augmentation approaches to 

improve model performance. Fig. 1 presents the summary of several research using specific 
augmentation approaches to classify chest X-ray images [21-45] (see Table 1 for details). The 
most common augmentations are horizontal flip and random rotation. 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 5 

 
Figure 1: Summary research numbers sorted by augmentation strategies to classify chest X-ray 

images. 
 

Table 1: Details of example papers using augmentation techniques for chest X-ray image 
analysis on classification model. 

Citation 

Augmentation techniques 

Random 
rotate 

Random 
crop or 
zoom 

Horizontal 
flip 

Vertical 
flip 

Random 
noise 

Random 
brightness 

Random 
contrast 

Random 
gamma 

HE Other 

Abbas et al. 
(2018) [21] 

✓  ✓ ✓ ✓     ✓ 

Yadav et al. 
(2018) [22] 

✓   ✓  ✓     

Ahsan et al. 
(2019) [23] 

✓ ✓ ✓   ✓ ✓    

Meraj et al. 
(2019) [24] 

✓ ✓ ✓ ✓       

Rohilla et al. 
(2017) [25] 

✓        ✓  

Hernández 
et al. (2019) 
[26] 

 ✓   ✓      

Nguyen et 
al. (2019) 
[27] 

✓  ✓       ✓ 

Allaouzi et 
al. (2019) 
[28] 

  ✓        

10

1

1

1

3

6

7

14

20

20

Other

HE

Random gamma

Random contrast

Random brightness

Random noise

Random Vertical flip

Random crop or zoom

Random Horizontal flip

Random rotate

Number of used augmentation techniques
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Citation 

Augmentation techniques 

Random 
rotate 

Random 
crop or 
zoom 

Horizontal 
flip 

Vertical 
flip 

Random 
noise 

Random 
brightness 

Random 
contrast 

Random 
gamma 

HE Other 

Duong et al. 
(2021) [29] 

✓ ✓ ✓       ✓ 

Sharma et 
al. (2020) 
[30] 

✓ ✓ ✓       ✓ 

De Moura et 
al. (2020) 
[31] 

  ✓        

Misra et al. 
(2020) [32] 

✓ ✓ ✓        

Sitaula et al. 
(2021) [33] 

✓ ✓ ✓ ✓      ✓ 

Rahman et 
al. (2020) 
[34] 

✓         ✓ 

Asif et al. 
(2020) [35] 

✓  ✓ ✓ ✓     ✓ 

Sirazitdinov 
et al. (2019) 
[36] 

✓  ✓ ✓ ✓ ✓  ✓  ✓ 

Heidari et al. 
(2020) [37] 

✓ ✓ ✓       ✓ 

Nayak et al. 
(2021) [38] 

✓ ✓ ✓  ✓      

Seyyed-
Kalantari et 
al. (2020) 
[39] 

✓ ✓ ✓        

Basu et al. 
(2020) [40] 

✓          

Minaee et 
al. (2020) 
[41] 

✓  ✓ ✓ ✓      

Wang et al. 
(2020) [42] 

✓ ✓ ✓       ✓ 

Chouhan et 
al. (2020) 
[43] 

 ✓ ✓        

Jain et al. 
(2021) [44] 

✓ ✓ ✓        

Zhang et al. 
(2020) [45] 

 ✓ ✓        
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Studies have compared various augmentation approaches to identify the best strategies for 
classifying chest X-ray images. 

 
Sirazitdinov et al. [46] evaluated the AUC scores of diverse data augmentation methods, such 

as random gamma, contrast, brightness, rotation, horizontal flip, Gaussian noise, and Gaussian 
blur, to classify 14 classes of 14 chest X-ray datasets in the Inception-Resnet-v2 network. Their 
investigation suggested a combination of random horizontal flips, random rotations, random 
brightness, and random gamma, which could achieve an AUC score of 0.808. 

 
Ogawa et al. [47] studied the effects of various augmentation approaches on three image 

resolutions, including 128 × 128, 192 × 192, and 256 × 156 pixels. The augmentation methods of 
random rotation, Gaussian blur, and brightness were used with or without the additional 
horizontal or vertical flip. For all image resolutions, random rotation with horizontal flip had the 
best accuracy. In contrast, Gaussian blur with and without flipping had the lowest accuracy 
because Gaussian blur reduced the image details. 

 
Our studies attempted to apply new augmentation approaches in conjunction with popular 

augmentation methods. Image enhancement and preprocessing techniques were used as 
additional augmentations by introducing small offsets. CLAHE and UM were selected for random 
changes and then compared with the other techniques.  
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3. Background 
3.1 Preprocessing techniques 

3.1.1 Balance contrast enhancement technique 
Balance contrast enhancement technique (BCET) [11] is a technique for preparing images by 

extending or compressing the image contrast without affecting the original histogram pattern of 
the images. The function to perform the BCET is a parabolic function, i.e., 
 
 𝑦 = 𝑎(𝑥 − 𝑏)2 + 𝑐 (1) 
 
where 𝑥 is an input image and 𝑦 is an output image.  

 
The parabolic function is controlled by the following three coefficients:  

 
 

𝑎 =
𝐻 − 𝐿

(ℎ − 𝑙)(ℎ + 𝑙 − 2𝑏)
 (2) 

 
 

𝑏 =
ℎ2(𝐸 − 𝐿) − 𝑠(𝐻 − 𝐿) + 𝑙2(𝐻 − 𝐸)

2[ℎ(𝐸 − 𝐿) − 𝑒(𝐻 − 𝐿) + 𝑙(𝐻 − 𝐸)]
 

(3) 

 
 𝑐 = 𝐿 − 𝑎(𝑙 − 𝑏)2 (4) 
 
where 𝑙 and ℎ represent the minimum and maximum values of the input image, respectively;  

         𝐿 and 𝐻 represent the minimum and maximum values of the output image, respectively; 
           𝑒 and 𝐸 represent the mean value of the input and output image, respectively; and 

    𝑠 represents the mean square sum of the input image derived from the following 
equation: 

 
 

𝑠 =
1

𝑁
∑𝑥𝑖

2

𝑁

𝑖=1

 
(5) 

 

where 𝑁 represents the pixel number of the input image. 
 

The histograms of the original image and the image following the BCET are shown in Fig. 2. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 9 

 
Figure 2: Example of an images and histograms: Left - original image and  Right - BCET image. 

 

3.2 Augmentation techniques 
Data Augmentation is a method for reducing model overfitting by expanding the training 

dataset using existing data. The following is a list of augmentation strategies utilized in this paper: 
 

3.2.1 Random brightness 
Random brightness is an augmentation technique that generates images with varying 

brightness. Using the Albumentation library, a random integer in the limited range of the limited 
parameter will be applied to the original image and adjust the image to either brighter or darker. 

 

3.2.2 Random contrast 
The difference in brightness or color that distinguishes one object from other objects in the 

same field of vision is described as a contrast. Most of the images are classified into two types: 
low contrast and high contrast. The histogram of the low contrast image will be clustered in a 
limited intensity range, whereas the histogram of the high contrast image will have a larger gap 
between intensity values. 

 

3.2.3 Random rotate 
The random rotation technique means the image will be rotated in a clockwise direction 

using a random angle from the range. The range for random angle is defined as one limited 
parameter in the Albumentation library. 
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3.2.4 Horizontal flip 
Horizontal flip is a technique that involves horizontally reversing the complete rows and 

columns of image pixels. After applying a horizontal flip, the left side of the original image will be 
switched to the right side. 

 

3.2.5 Gamma correction 
Gamma correction is a technique that uses a non-linear operation on input image pixels to 

adjust the brightness of an image. The following is the gamma correction function: 
 

 
𝑂 = (

𝐼

255
)
𝛾

× 255 (6) 

 
where 𝑂 represents the output image, 𝐼 represents the input image, and 𝛾 represents the 
gamma parameter. When 𝛾 < 1, the dark regions will be brighter, and the histogram will be 
shifted to the right, and vice versa if 𝛾 > 1. In the Albumentation library, 𝛾 uses tens digits 
instead of decimals. 

 

3.2.6 Contrast limited adaptive histogram equalization 
Contrast limited adaptive histogram equalization (CLAHE) [12] is a technique for improving 

image contrast based on adaptive histogram equalization (AHE). Originally, HE and AHE improve 
the image by extending out the intensity range and spreading out frequent pixel intensity values. 
While HE extends out the entire image intensity, AHE divides the image into sub-images and 
stretches out the intensity in each sub-image. Both approaches discovered an over-enhancement 
problem and increased image noise. Therefore, CLAHE is developed to decrease noise in the HE 
and AHE methods by clipping the histogram and spreading out frequent pixels over all intensity 
values before performing the AHE process. 

 

3.2.7 Unsharp Masking 
Unsharp Masking (UM) [13] is one of the techniques most used for image processing. This 

technique is used to sharpen the image by the following equation:  
 

 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑𝑖𝑚𝑔 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑚𝑔 + 𝑎𝑚𝑜𝑢𝑛𝑡(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑚𝑔 − 𝑏𝑙𝑢𝑟𝑟𝑒𝑑𝑖𝑚𝑔) (7) 
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where 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑚𝑔 represents the input image, 𝑏𝑙𝑢𝑟𝑟𝑒𝑑𝑖𝑚𝑔 represents the input image 
after applied Gaussian blur, 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑𝑖𝑚𝑔 represents the output image and 𝑎𝑚𝑜𝑢𝑛𝑡 represents 
the number for adjusting contrast is added to the edges of the image. 

  
From the scikit-image library, the radius parameter is referred to the sigma parameter of the 

Gaussian blur function in equation 8. 
 

 
𝐺(𝑥, 𝑦) =

1

2𝜋𝜎2
𝑒
−
𝑥2+𝑦2

2𝜎2  (8) 

 
where 𝑥 is the distance from the origin in the horizontal axis, 𝑦 is the distance from the origin in 
the vertical axis, and 𝜎 is the standard deviation of the Gaussian distribution. 
 

3.3 Parameter selection 
3.3.1 Differential Evolution 
Differential Evolution (DE) [14] is a sort of genetic algorithm that uses a parallel direct search 

technique via the stages below: 
1. Create an initial NP vector in the population by randomly choosing and covering the entire 

parameter space. 
2. Calculate each initial vector in the population and collect the result. 
3. For each vector in the population:  

3.1. Create a mutant vector using the following equation to calculate the value of each 
parameter: 
 

 𝑝𝑖
𝑚𝑢𝑡 = 𝑝𝑖

𝑏𝑒𝑠𝑡 + 𝐹 ∙ (𝑝𝑖
𝑟1 − 𝑝𝑖

𝑟2) (9) 
 
where  𝑝𝑖

𝑚𝑢𝑡 represents the parameter value of mutant vector, 
 𝑝𝑖

𝑏𝑒𝑠𝑡 represents the parameter value of the best vector (vector from the 
previous vector that has the best calculation result), 
 𝐹 represents the mutation rate in a range of [0, 2], and 
 𝑝𝑖

𝑟1 and 𝑝𝑖
𝑟2 represent the difference between two randomly chosen vector, 

which are 𝑟1 and 𝑟2. 
3.2. Create a trial vector by defining the number of recombination rates and selecting a 

current parameter or mutant parameter at random from a range of [0, 1]. If 𝑅 is less 
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than the rate of recombination, the system will choose the mutant parameter. If 𝑅 is 
greater than the rate of recombination, the system will use the current value. 

3.3. Calculate and gather the results for each trial vector, and then compare the results of 
the current and trial vectors. If the outcome of the trial vector is better than the current 
vector, the system will replace the trial vector with the current vector. 

4. Repeat step 3 until the total number of iterations or standard deviations for the whole 
population is less than a specific percentage of the mean value of the result. 

 

3.4 Deep Convolution neural network 
3.4.1 Resnet 
The deep convolution neural network (DCNN) is the most employed in studies. CNN's 

architecture comprises a convolutional layer, a ReLu activation layer, a pooling layer, and a fully 
connected layer. When training DCNN, the vanishing gradient problem can occur as the gradient 
will be vanishingly tiny until it reaches zero, effectively preventing the weight from changing its 
value. The vanishing gradient may stop the DCNN training. 

 
To solve the vanishing gradient problem, Microsoft has designed the Resnet, or Deep 

Residual Network [48], by including shortcut connections into DCNN. The construction block is 
used to create a shortcut connection for Resnet18 and Resnet34. The bottleneck is added into 
the neural network for Resnet50 and other Resnets with more than 50 layers. The distinct 
architecture between a construction component and a bottleneck is displayed in Fig. 3. 

 

 
Figure 3: Different architecture between building block and bottleneck building block. 
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3.4.2 Efficient Net 
Many researchers have attempted to improve the accuracy of neural networks by using a 

deeper or larger network. In 2020, Google demonstrated how balancing network depth, breadth, 
and resolution might improve performance and introduced the Efficient Net model [49]. 
Compound scaling was used to improve the breadth, depth, and resolution of the Efficient Net 
while keeping the ratio constant. With the constant ratio value, each version of Efficient Net (B0 
through B7) is different. 
 

3.4.3 Pyramid Localization Network 
The Pyramid Localization Network (PYLON) [50] is a neural network developed by the 

Department of Computer Engineering, Chulalongkorn University. It was intended to increase the 
quality of the CAM heatmap and to detect the lesions correctly. PYLON architecture is divided 
into three parts: an encoder that can be replaced with other neural networks similar to the 
Resnet; a decoder that includes the Pyramid Attention (PA) and Upsampling (UP) modules; and a 
prediction head for the classification and the heatmap output. Fig. 4 depicts the PYLON 
architecture and the differences between the CAM and PYLON heatmaps. 

 

 
Figure 4: (A) Comparison between the CAM and PYLON heatmaps and (B) The architecture of the 

PYLON. 
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4. Proposed methods 
4.1 Dataset 
Tuberculosis (TB), COVID-19, and pneumonia labels were obtained from both public and 

private sources. The in-domain data were separated into training and validation sets (80%), and 
test sets (20%). Subsequently, the training and validation sets were randomly split in an 80:20 
ratio. Out-of-domain data were used as the extramural test sets to evaluate the robustness of 
the model. 

 

4.1.1 Tuberculosis 
There are two main classes in this study: TB and non-TB. The entire dataset contains 6,168 

frontal-view chest radiographs obtained from five different sources: Montgomery County, 
Maryland's Department of Health and Human Services [51] (Montgomery; 138 radiographs); 
Shenzhen No.3 Hospital in Shenzhen, Guangdong province, China [51] (Shenzhen; 662 
radiographs); Banglamung hospital, Thailand (BLM; 3,540 radiographs); the Bureau of Tuberculosis, 
Thailand (BT; 1,604 radiographs); and Maesot hospital, Thailand (Maesot; 224 radiographs). 
Montgomery, Shenzhen, and BLM were treated as in-domain data and used in the model training, 
whereas BT and Maesot were used as out-of-domain data. Details of the dataset splitting are 
listed in Table 2. 

 
Table 2: Details of training, validation, and test set from the TB datasets. 

Source Label Number of images 

Training set Validation set Test set Total 

Montgomery TB 40 6 12 58 

non-TB 56 8 16 80 

Shenzhen TB 234 34 68 336 

non-TB 228 33 65 326 

BLM TB 50 7 14 71 

non-TB 2,428 347 694 3,469 

BT TB - - 1,295 1,295 
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Source Label Number of images 

Training set Validation set Test set Total 

non-TB - - 309 309 

Maesot TB - - 9 9 

non-TB - - 215 215 

Total number of images 3,036 435 2,697 6,168 

 

4.1.2 COVID-19 
The COVID-19 dataset comprises 26,097 frontal view chest radiographs labeled as COVID-19 

and non-COVID. These data were collected from the following publicly accessible datasets, 
online sources, and published papers: Valencian Region Medical ImageBank COVID19+ [52] 
(BIMCV; 2,474 radiographs); Hospital Universitario Clínico San Cecilio, Granada, Spain [53] (CG; 852 
radiographs); COVID-CXR [54] (CC; 782 radiographs); German medical school [55], Italian Society of 
Medical Radiology [56], GitHub, Kaggle & Twitter and another source (Other; 1,142 radiographs); 
and King Chulalongkorn Memorial hospital, Thailand (KCMH-C; 5,984 radiographs). The out-of-
domain data was gathered from the KCMH-C dataset by selecting only admitted cases with chest 
radiograph images within four days before admission. Details of the dataset splitting are listed in 
Table 3. 

. 
Table 3: Details of training, validation, and test set from the COVID-19 datasets. 

Source Label Number of images 

Training set Validation set Test set Total 

BIMCV 
 

COVID-19 1,781 198 495 2,474 

non-COVID - - - - 

CG 
 

COVID-19 272 69 85 426 

non-COVID 272 68 86 426 

CC 
 

COVID-19 306 76 96 478 
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Source Label Number of images 

Training set Validation set Test set Total 

non-COVID 194 49 61 304 

Other 
 

COVID-19 819 93 230 1,142 

non-COVID - - - - 

KCMH-C COVID-19 - - 888 888 

non-COVID - - 5,096 5,096 

Total number of images 3,644 553 7,037 11,234 

 

4.1.3 Pneumonia 
The RSNA Pneumonia Detection Challenge (2018) dataset (RSNA) [57], which contains 26,684 

frontal view chest radiographs labelled as pneumonia and non-pneumonia, was used to train and 
evaluate this study. Data from the King Chulalongkorn Memorial Hospital in Thailand (KCMH-P; 
7,654 radiographs) were obtained as the out-of-domain data. Table 4 lists the details of the 
dataset splitting. 

 
Table 4: Details of training, validation, and test set from the pneumonia datasets. 

Source Label Number of images 

Training set Validation set Test set Total 

RSNA 
 

Pneumonia 11,412 2,854 3,567 17,833 

non-
pneumonia 

5,665 1,416 1,770 8,851 

KCMH-P Pneumonia - - 1,194 1,194 

non-
pneumonia 

- - 6,460 6,460 

Total number of images 17,077 5,337 12,991  34,338 
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4.2 Proposed preprocessing 
Images in DICOM or JPEG formats were converted to a NumPy array of type uint8 and down 

sampled to 256 × 256 pixels before applying any preprocessing techniques (lung BCET method, 
gamma correction, and UM). 

 
The lung BCET method was created to reduce the differences between data sources by 

combining lung segmentation [58] and BCET. The study objective was to determine the statistics 
of the lung area for the BCET to operate only on the main area of interest and have less prone 
to encounter artifacts. Automatic lung segmentation via a deep learning model was used to 
determine the lung area of an image in order to gather the minimum and maximum values. 
Subsequently, the values of all the image pixels were updated. If the pixel value was less than 
the minimum value, the pixel value was changed to the minimum value. Similarly, the pixel 
value was changed to the maximum value if the pixel value was greater than the maximum 
value. Then, the images were subjected to the BCET. 

 
However, the automatic lung segmentation process may encounter some problems in the 

images with unclear lung surroundings, resulting in an incapability to determine the lung area or a 
wrong segmentation outside the lung area. Thus, a heuristic was applied to flag whether the 
lungs are properly segmented. If not, the original BCET was applied instead of the lung BCET. To 
determine whether the lung was properly segmented, the percentage of the lung segmentation 
area was calculated by dividing the segmented area by the entire image area. If the percentage is 
less than a cut-off threshold, the BCET, without any special processing, will be applied to the 
image. A percentage cut-off threshold was treated as a hyperparameter and found via tuning on 
the validation set. Fig. 5 shows the diagram of the lung BCET process and an example of an 
image after lung BCET was applied to different sources of dataset. 

 
The gamma correction parameter was chosen from the maximum limit default in the 

Albumentation library, and the UM from the parameter form [17]. Parameter values are 
presented in Table 5. 
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Figure 5: Processing details and the example images from the lung BCET: (A) Diagram of the lung 
BCET process and (B) Comparison of the original images from different sources of datasets with 

the images obtained after applying the lung BECT. 
 

Table 5: Parameter settings for the preprocessing techniques. 

Preprocessing technique Parameter Value 

Lung BCET percent_cutoff  10 (TB), 
40 (COVID-19) and 

15 (pneumonia) 

Gamma correction gamma_value 120 

UM radius 5 

amount 2 

 

4.3 Proposed augmentation 
The augmentation methods used in previous studies and our proposed preprocessing-based 

augmentation method were compared in this study. Basic augmentation techniques were chosen 
from the most common augmentation approaches used in medical image research (Fig. 1), and 
the default values of the Albumentation library were used as the parameters. 

 
Techniques that adjust the color of the image were particularly focused in our study because 

images from different sources had diverse intensities. CLAHE and UM are two methods for 
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modifying image intensity that have been used for image preparation in several chest X-ray 
studies [17, 26, 27]. In this study, the augmentation techniques of random CLAHE and random 
UM, which randomly tweak the parameter values slightly within certain boundaries, were 
adopted. 

 
Since many parameters are presented in different preprocessing and augmentation 

techniques, hyperparameter tuning via grid search is not feasible. Instead, differential evolution 
(DE) was used to discover the best parameter values. First, ten population groups and ten rounds 
were chosen to run DE using the ResNet50 model. Then, the best parameter values were 
selected by finding the best AUC scores on the validation set. See Table 6 for more details of the 
augmentation parameter values. 
 
Table 6: Parameters for augmentation techniques. 

Data augmentation Parameter Value 

Random brightness limit 0.2 

Random contrast limit 0.2 

Random rotate limit 90 

Random horizontal flip - - 

Random gamma gamma_limit (80,120) 

Random CLAHE clip_limit 2 

tile_grid_size (𝑛, 𝑛) where 𝑛 is an integer number 
and selected randomly from (4,5) 

Random UM radius 𝑛 where 𝑛 is an integer number and 
selected randomly from (4,5) 

amount 𝑛 where 𝑛 is an integer number and 
selected randomly from (2,4) 

 
Related studies [46, 47] observed that combining multiple augmentation methods yielded 

better results than any single augmentation technique. Therefore, in this study, the baseline 
augmentation methods were combined with the proposed augmentation method using the 
OneOf function from the Albumentation library, which randomly selected only one augmentation 
technique from the random UM, random CLAHE, and random gamma. Then, the horizontal flip 
was applied with a probability of 0.5, and random rotation was applied with a probability of 0.5. 
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The experimental details for the augmentation comparison were the same as for the 
preprocessing comparison. However, all the experiments applied lung BCET as the preprocessing 
approach. Previous works by Sirazitdinov et al. [46] and Ogawa et al. [47] were selected to 
compare the AUC score with the baseline and our proposed augmentation methods. 
 

4.4 Detail of the experiments 
PyTorch lightning was used for model training and evaluation, and ResNet50 and 

EfficientNetB0 for base models. Additionally, PyTorch and Torchvision were used for experiments 
with PylonResNet50. All experiments applied normalization augmentation from the 
Albumentation library, with mean and standard deviation values of 0.4984 and 0.248, 
respectively. The initial weights of ImageNet were used to train all the neural networks. The 
training used a batch size of 64 chest X-rays with a learning rate of 0.0001 and the Adam 
optimizer. The training was done for 100 epochs with early stopping if there was no improvement 
for two consecutive epochs. For the PyTorch lightning, a deterministic flag was used to ensure 
full reproducibility during training. To compare different preprocessing techniques (Fig. 6A), our 
models were trained using five different random seeds and reported the average. All data were 
subjected to the proposed preprocessing for the augmentation comparison (Fig. 6B). 

 

 
Figure 6: Block diagram of the methodology: (A) Preprocessing comparison and (B) Augmentation 

comparison. 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 21 

4.5 Performance testing 
For in-domain and out-of-domain data performance testing, the weight from the best epoch 

(i.e., the epoch with the least loss) was chosen. The average AUC across five different random 
seeds was reported. Besides the accuracy measurements, the methods were qualitatively 
compared by analyzing whether the heatmaps from the model were rational. Since the datasets 
had no bounding box annotation, the accuracy of the heatmaps was measured via a simple 
heuristic; whether or not the heatmap was located in the lungs. To be specific, only positive 
images were selected and computed the heatmaps of each model were. The results were 
considered correct if the maximum value of the heatmaps contained within the lungs (as defined 
by the automatic lung segmentation). The percentage of correct results over the entire positive 
images in the test set was then calculated. Grad-CAM [59] was used for the heatmap 
computation. Furthermore, the ResNet50 model from one of the random seeds was selected for 
heatmap comparisons. 
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5. Experimental results 
5.1 Preprocessing performance comparison 
 

 
Figure 7: Comparison of the average AUC scores from various preprocessing approaches: (A) In-

domain data and (B) Out-of-domain data. 
 
As shown in Fig. 7, the lung BCET received the highest AUC scores of 0.6240 and 0.7978 in 

two out-of-domain TB data. Gamma received an AUC score of 0.9288, which was the best score, 
whereas lung BCET received an AUC score of 0.9253, which was 0.0035 lower than the best score. 

 
The outcomes for COVID-19 datasets revealed that the AUC scores for all preprocessing 

techniques were similar for both in- and out-of-domain data. The UM had the best AUC score for 
the in-domain data (0.9523), whereas the lung BCET received 0.9426. For the out-of-domain data, 
the AUC score of the lung BCET was 0.7561, which was the second rank score and lowered only 
0.002 from the best score. The lung BCET barely improved performance on the COVID-19 
datasets because 1,563 photos (31% of the training sets) in the COVID-19 image segmentation 
contained segmentation areas of less than 15% of the total image pixels. This suggested that 
many COVID-19 images did not segment the lung area, thereby affecting the lung BCET process. 
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For the pneumonia labels, all results had almost identical AUC. Therefore, our study 
observed that preprocessing strategies had little impact on the performance when training on a 
large dataset. 

 
Tables 9-11 in appendix A provide more details on the results of the TB, COVID-19, and 

pneumonia labels and the AUC scores of different backbone networks. 
 

 
Figure 8: Example of true positive images and their heatmaps for various preprocessing 
approaches on in- and out-of-domain data: (A) Heatmaps of TB-labeled chest X-ray,  

(B) Heatmaps of COVID-19-labeled chest X-ray, and (C) Heatmaps of pneumonia-labeled chest 
X-ray. 
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According to Fig. 8, the lung BCET method improved the heatmaps of all labels by 
highlighting the correct regions with a more specific (smaller) area than other methods. 

 
Table 7 demonstrates that the lung BCET enhanced the heatmap accuracy on both in- and 

out-of-domain settings on the TB label, except for the BT dataset, in which the accuracy of the 
lung BCET was slightly lower than no preprocessing. For pneumonia labels, the lung BCET 
enhanced the heatmap accuracy on both in- and out-of-domain data. For COVID-19, the lung 
BCET received the best percentage on the in-domain data. However, this percentage calculation 
was less reliable due to many COVID-19 images did not fully segment the lung area. 
 
Table 7: Comparing the percentages of positive image maximum heatmaps using various 
preprocessing methods. 

Label Preprocessing 
techniques 

percentages of the positive image maximum heatmaps 
inside the lung area 

Test set BT Maesot 

TB - 54.26% 63.94% 55.56% 

Gamma 45.74% 32.12% 33.33% 

UM 27.66% 28.11% 22.22% 

Lung BCET  
with a 10% cut off 

62.77% 58.76% 66.67% 

  
   

Label Preprocessing 
techniques 

percentages of the positive image maximum heatmaps 
inside the lung area 

Test set KMCH-C 

COVID-19 - 13.11% 10.70% 

Gamma 13.35% 4.17% 

UM 11.12% 2.93% 

Lung BCET  14.64% 3.38% 
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with a 40% cut off 
  

   

Label Preprocessing 
techniques 

percentages of the positive image maximum heatmaps 
inside the lung area 

Test set KMCH-P 

Pneumonia - 14.24% 11.14% 

Gamma 19.88% 24.20% 

UM 17.27% 16.08% 

Lung BCET  
with a 15% cut off 

30.56% 35.85% 

 
 

5.2 Augmentation performance comparison 

 
Figure 9: Comparison of the average AUC scores for various augmentation approaches: (A) In-

domain data and (B) Out-of-domain data. 
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For the TB label, multiple augmentations provided better results than a single augmentation 
for the in-domain datasets. (Fig. 9A) For the in-domain data, random rotation had the greatest 
AUC score compared to any single augmentation technique. However, the previous work by 
Sirazitdinov et al. [46] obtained the AUC score of 0.9447 which was the best for in-domain data. 
Fig. 9B shows that the proposed method achieved the first- and second-rank AUC scores of 0.69 
and 0.8067 for the BT and Maesot datasets, respectively. 

 
For the results of the COVID-19 label, previous work of Sirazitdinov et al. [46] demonstrated 

the best AUC scores for both in- and out-of-domain data. Random rotation achieved the best 
AUC score in all experiments for single augmentation. Our proposed method achieved the AUC 
scores of 0.9580 and 0.7458 for the in- and out-of-domain datasets, respectively. 

 
For the pneumonia label, the results demonstrated that all augmentation techniques had 

similar AUC scores for in- and out-of-domain data. A previous study by Sirazitdinov et al. [46] also 
achieved the best AUC score in all experiments on both in- and out-of-domain data. Among 
single augmentation, random rotation achieved the best AUC score. Our proposed method 
received AUC scores of 0.9477 and 0.8343 for the in- and out-of-domain, respectively, which were 
0.0022 lower than the best score. 

 
See Tables 12-14 in appendix A for the augmentation comparison results on the TB, COVID-

19, and pneumonia labels, using different backbone models. 
 

For the heatmap comparison of the augmentation techniques, non-augmentation, multiple 
augmentations (i.e., two related works and the proposed augmentations), and commonly-used 
augmentations, such as random rotation and random horizontal flip, were selected. Fig. 10 shows 
that the heatmap from all augmentation approaches reveals similarities in the visualization of the 
TB and pneumonia labels. For COVID-19, the heatmap proposed by Ogawa et al. [47] highlighted 
lesions and was better than other augmentation methods. 

 
According to the results in table 8, the method previously proposed by Ogawa et al. [47] 

received the highest percentages of the positive image maximum heatmaps in the TB (except for 
the Maesot dataset) and COVID-19 labels. The proposed augmentation had the highest 
percentages in the pneumonia label (38.10% and 47.32% in the in- and out-of-domain data, 
respectively). 
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Figure 10: Example of a true positive image and its heatmap from various augmentation 

approaches on in-domain and out-of-domain data: (A) Heatmaps from the TB label,  
(B) Heatmaps from the COVID-19 label, and (C) Heatmaps from the pneumonia label. 
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Table 8: Comparing the percentages of positive image maximum heatmaps using various 
augmentation techniques. 

Label Augmentation 
techniques 

The percentages of positive image maximum 
heatmaps inside the lung area 

Test set BT Maesot 

TB - 62.77% 58.76% 66.67% 

Random rotate 56.38% 54.98% 44.44% 

Random horizontal flip  50.00% 59.92% 33.33% 

Random brightness, 
Random gamma, 
Random rotate, 
Random horizontal flip  
[Sirazitdinov et al.] 

59.57% 45.71% 22.22% 

Random rotate, 
Random horizontal flip  
[Ogawa et al.] 

75.53% 67.03% 44.44% 

Proposed augmentation 23.40% 29.19% 11.11% 
  

   

Label Augmentation 
techniques 

The percentages of positive image maximum 
heatmaps inside the lung area 

Test set KMCH-C 

COVID-19 - 14.64% 3.38% 

Random rotate 8.67% 11.82% 

Random horizontal flip  2.34% 2.25% 

Random brightness, 
Random gamma, 

12.30% 12.61% 
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Random rotate, 
Random horizontal flip  
[Sirazitdinov et al.] 

Random rotate, 
Random horizontal flip  
[Ogawa et al.] 

29.39% 24.44% 

Proposed augmentation 4.57% 9.01% 
  

   

Label Augmentation 
techniques 

The percentages of positive image maximum 
heatmaps inside the lung area 

Test set KMCH-P 

Pneumonia - 30.56% 35.85% 

Random rotate 24.14% 25.04% 

Random horizontal flip  25.04% 25.71% 

Random brightness, 
Random gamma, 
Random rotate, 
Random horizontal flip  
[Sirazitdinov et al.] 

24.95% 31.41% 

Random rotate, 
Random horizontal flip  
[Ogawa et al.] 

33.33% 35.68% 

Proposed augmentation 38.10% 47.32% 
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6. Discussion 
The proposed image preprocessing method showed that lung BCET significantly enhances 

the model performance on out-of-domain data by reducing the gap between data sources. On 
the contrary, lung BCET was less likely to improve in-domain data. 
 

This study discovered that lung BCET could improve the model performance, particularly on 
a small number of training sets, when comparing the results from different sizes of the training 
sets. Related studies indicated that the size of the training set and the quality of the images 
affect the model robustness [60] and [61], respectively. According to our findings, the RSNA 
dataset with the pneumonia label, which contained a large amount of data with good image 
quality, obtained excellent results across all preprocessing approaches for both in- and out-of-
domain data. However, the BT and Maesot datasets with the TB label, which contain a small 
dataset, had better performance when lung BCET was used as a preprocessing method. Lung 
BCET was likely to improve the performance on a large training set compared with the other 
preprocessing methods. 

 
The results from the COVID-19 label demonstrated that image quality significantly influenced 

lung BCET because lung BCET segments the lung area before adjusting the image. If the image 
quality is poor (low brightness, blur, or a high level of noise), the segmentation mode had 
difficulty in segmenting the lung area and was unable to collect the actual minimum and 
maximum intensity values for the lung area. Consequently, if inaccurate values are used to 
update the image, an over-enhancement problem or even more detail loss in the image will 
occur. Consistent with other studies, the quality of the dataset was important for developing 
models and ensuring their robustness. 
 

Fig. 8 and Table 7 show that lung BCET enhances the heatmaps. Heatmaps from gamma, UM, 
and no preprocessing described the lesions with more extensive areas than the lung BCET 
heatmaps. Moreover, lung BCET received the highest percentages of positive images with the 
maximal heatmaps placed inside the lung area, indicating lung BCET models were more 
accurately focused on the lung regions than the other methods. Our hypothesis was that the 
lung segmentation used in the method could better normalize the lung region. 
 

Taken together, our study reported that the lung BCET was a proposed image preprocessing 
approach that helped improve model performance on small training sets and, apparently, on 
out-of-domain data with high-quality images. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 31 

Another observation worth noting was how the heatmaps are abysmal without lung 
BCET. This was consistent with the previous study [50], which pointed out that a larger amount of 
training data (100000+) was required in a weakly-supervised manner to obtain high-quality 
heatmaps. Without sufficient data, the model cannot detect adequate data variance to display 
the most important parts. However, our lung BCET can contribute to the model learning to 
achieve better heatmap quality. 

 
Regarding the augmentation comparisons, Fig. 9 shows that random rotation and random 

horizontal flip, commonly used in chest radiography research (Fig. 1), had better AUC scores than 
the other augmentations. When considering a single augmentation technique, random CLAHE, 
and random UM, the proposed augmentation received a lower AUC score than other popular 
approaches. When single and multiple augmentations were compared, multiple augmentations 
yielded a higher AUC score than single augmentation in almost all cases, consistent with earlier 
studies [17, 26, 27].  
 

For in-domain data, previous work by Sirazitdinov et al. [46] reported the best 
performance for all the labels. Our multiple augmentations achieved a slightly lower AUC score. 
However, our proposed augmentation performed well on the TB label in out-of-domain 
situations. Sirazitdinov et al. [46] obtained the best score for out-of-domain data of the COVID-19 
and pneumonia labels. On the contrary, the augmentation of the pneumonia label rarely 
improved the performance of both in- and out-of-domain data, which indicated that 
augmentation did not improve the performance on a sizable and high-quality training set. 

 
The heatmap from all augmentation methods highlights the similarities in the 

visualization. However, Ogawa et al. [47] augmented received the best percentage of positive 
images in which the maximal heatmap was placed inside the lung area on the test set and BT 
dataset while no augmentation received the best percent on Maesot dataset. 

 
The heatmaps from all augmentation methods highlighted the similarities in the 

visualization. However, Ogawa et al. [47] augmentation received the best percentages of positive 
images because the maximal heatmaps were placed inside the lung area on the test and BT data. 
In contrast, no augmentation received the best percentages on the Maesot dataset. Our 
proposed augmentation received the highest percentages on both in- and out-of-domain data in 
the pneumonia label. The heatmaps of the COVID-19 label show that augmentation affected the 
model attention. Augmentation by Ogawa et al. [47] obtained the maximal heatmaps placed 
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inside the lung area and the best percentages of positive images, reflecting that its heatmap was 
highlighted more correctly than other methods. 

 
As mentioned above, previous studies by Sirazitdinov et al. [46] and Ogawa et al. [47] 

achieved better performances than our proposed method. A limitation of this study was that 
random CLAHE and UM parameters were selected by running DE and identifying the parameters 
with the highest AUC scores from the validation set. Due to limited image resources, ten epochs 
were used to run the DE, whereas more epochs could be run to obtain the optimal parameter 
value. This parameter value was not necessary for the COVID-19 and pneumonia labels, which 
contained larger training sets than the TB label, which required more epochs for optimal 
performance.  
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7. Conclusion and future work 
7.1 Conclusion 
Lung BCET, which performs color normalization only on the lung region, could improve the 

AUC score in out-of-domain data and small training set with a high-quality dataset while improve 
heatmap visualizations in two following scenarios: in- and out-of-domain settings. The proposed 
multi-augmentations could improve the AUC score of the TB labels but achieved a performance 
lower than augmentations in related studies on the COVID-19 and pneumonia labels. However, 
the lower heatmap scores inspire further investigation for improving the performance and the 
turning parameter to improve the performance of the proposed augmentation on the COVID-19 
and pneumonia labels. 

 

7.2 Future work 
Poor-quality data must be enhanced to increase its quality before lung BCET is applied. In 

future work, experiments to identify image enhancements (such as adjusting the brightness and 
sharpness) that provide higher quality are beneficial. For the proposed augmentation, it could not 
demonstrate better results with our parameter values than other augmentations due to resource 
limitations. Therefore, running more differential evolution or turning training hyperparameter may 
be necessary to discover an appropriate parameter value. 
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8. Appendix A. Comparing the average AUC score of the different 
backbone networks 

 
Table 9: Comparing the average AUC score of different preprocessing techniques on the 
tuberculosis label using the different backbone networks. 

Model Preprocessing 
techniques 

AUC score 

Test set BT Maesot 

ResNet50 - 0.9336 0.6330 0.7988 

Gamma 0.9365 0.6271 0.8048 

UM 0.9426 0.5518 0.8464 

Lung BCET  
with a 10% cut off 

0.9444 0.7618 0.8269 

EfficientNetB0 - 0.9200 0.3514 0.7616 

Gamma 0.9276 0.3908 0.7704 

UM 0.9043 0.4034 0.7857 

Lung BCET  
with a 10% cut off 

0.9208 0.4810 0.7497 

PylonResNet50 - 0.9272 0.5792 0.7706 

Gamma 0.9221 0.5380 0.6726 

UM 0.9275 0.6601 0.7344 

Lung BCET  
with a 10% cut off 

0.9106 0.6294 0.8167 
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Table 10: Comparing the average AUC score of different preprocessing techniques on the COVID-
19 label using the different backbone networks. 

Model Preprocessing 
techniques 

AUC score 

Test set KMCH-C 

ResNet50 - 0.9567 0.7599 

Gamma 0.9550 0.7732 

UM 0.9585 0.7782 

Lung BCET  
with a 40% cut off 

0.9516 0.8000 

EfficientNetB0 - 0.9460 0.7703 

Gamma 0.9466 0.7632 

UM 0.9422 0.7334 

Lung BCET  
with a 40% cut off 

0.9308 0.7240 

PylonResNet50 - 0.9504 0.7442 

Gamma 0.9507 0.6996 

UM 0.9562 0.7457 

Lung BCET  
with a 40% cut off 

0.9454 0.7442 
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Table 11: Comparing the average AUC scores of different preprocessing techniques on the 
pneumonia label using the different backbone networks. 

Model Preprocessing 
techniques 

AUC score 

Test set KMCH-P 

ResNet50 - 0.9454 0.8296 

Gamma 0.9451 0.8280 

UM 0.9447 0.8318 

Lung BCET  
with a 15% cut off 

0.9473 0.8319 

EfficientNetB0 - 0.9415 0.8199 

Gamma 0.9409 0.8179 

UM 0.9407 0.8214 

Lung BCET  
with a 15% cut off 

0.9388 0.8147 

PylonResNet50 - 0.9428 0.8304 

Gamma 0.9421 0.8312 

UM 0.9370 0.8290 

Lung BCET  
With a 15% cut off 

0.9415 0.8324 
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Table 12: Comparing the average AUC scores of different augmentation techniques on the 
tuberculosis label using the different backbone networks. 

Model Augmentation 
techniques 

AUC score 

Test set BT Maesot 

ResNet50 - 0.9444 0.7618 0.8269 

Random brightness, 
Random gamma, 
Random rotate, 
Random horizontal flip 
[Sirazitdinov et al.] 

0.9511 0.7246 0.8393 

Random rotate, 
Random horizontal flip 
[Ogawa et al.] 

0.9561 0.7447 0.8545 

Random brightness 0.9415 0.6996 0.8001 

Random contrast 0.9454 0.7416 0.8366 

Random rotate 0.9468 0.6988 0.8593 

Random horizontal flip  0.9390 0.7575 0.8403 

Random gamma 0.9372 0.7214 0.8312 

Random CLAHE 0.9343 0.6942 0.8201 

Random UM 
 

0.9355 0.7801 0.8074 

Select one of  
Random UM,  
Random CLAHE, 
Random gamma,  
and Random horizontal 
flip,  
Random rotate 

[combinations between 

0.9415 0.7354 0.8333 
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Model Augmentation 
techniques 

AUC score 

Test set BT Maesot 

proposed and baseline 
augmentation] 

EfficientNetB0 - 0.9208 0.4810 0.7497 

Random brightness, 
Random gamma, 
Random rotate, 
Random horizontal flip 
[Sirazitdinov et al.] 

0.9364 0.5126 0.7947 

Random rotate, 
Random horizontal flip 
[Ogawa et al.] 

0.9239 0.6305 0.7884 

Random brightness 0.9283 0.5027 0.7759 

Random contrast 0.9266 0.4271 0.7529 

Random rotate 0.9242 0.5464 0.7883 

Random horizontal flip  0.9278 0.5152 0.7990 

Random gamma 0.9222 0.4650 0.7664 

Random CLAHE 0.9219 0.4791 0.7260 

Random UM 0.9196 0.5257 0.7504 

Select one of  
Random UM,  
Random CLAHE, 
Random gamma,  
and Random horizontal 
flip,  
Random rotate 

0.9299 0.5867 0.7959 
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Model Augmentation 
techniques 

AUC score 

Test set BT Maesot 

[combinations between 
proposed and baseline 
augmentation] 

PylonResNet50 - 0.9106 0.6294 0.8167 

Random brightness, 
Random gamma, 
Random rotate, 
Random horizontal flip 
[Sirazitdinov et al.] 

0.9463 0.6878 0.7717 

Random rotate, 
Random horizontal flip 
[Ogawa et al.] 

0.9363 0.6027 0.7678 

Random brightness 0.9290 0.6343 0.7391 

Random contrast 0.9234 0.6617 0.7735 

Random rotate 0.9376 0.6457 0.7413 

Random horizontal flip  0.9179 0.7209 0.7902 

Random gamma 0.9196 0.7146 0.7625 

Random CLAHE 0.9119 0.6261 0.7584 

Random UM 0.9302 0.6549 0.6779 

Select one of  
Random UM,  
Random CLAHE, 
Random gamma,  
and Random horizontal 
flip,  
Random rotate 

0.9424 0.7479 0.7909 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 40 

Model Augmentation 
techniques 

AUC score 

Test set BT Maesot 

[combinations between 
proposed and baseline 
augmentation] 
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Table 13: Comparing the average AUC scores of different augmentation techniques on the 
COVID-19 label using the different backbone networks. 

Model Augmentation 
techniques 

AUC score 

Test set BT 

ResNet50 - 0.9516 0.8000 

Random brightness, 
Random gamma, 
Random rotate, 
Random horizontal flip 
[Sirazitdinov et al.] 

0.9616 0.7729 

Random rotate, 
Random horizontal flip 
[Ogawa et al.] 

0.9628 0.7604 

Random brightness 0.9567 0.7820 

Random contrast 0.9507 0.7613 

Random rotate 0.9627 0.7559 

Random horizontal flip  0.9560 0.7512 

Random gamma 0.9541 0.7778 

Random CLAHE 0.9507 0.7834 

Random UM 
 

0.9527 0.6360 

Select one of  
Random UM,  
Random CLAHE, 
Random gamma,  
and Random horizontal 
flip,  
Random rotate 

[combinations between 

0.9562 0.7417 
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Model Augmentation 
techniques 

AUC score 

Test set BT 

proposed and baseline 
augmentation] 

EfficientNetB0 - 0.9308 0.7240 

Random brightness, 
Random gamma, 
Random rotate, 
Random horizontal flip 
[Sirazitdinov et al.] 

0.9647 0.7872 

Random rotate, 
Random horizontal flip 
[Ogawa et al.] 

0.9541 0.7845 

Random brightness 0.9450 0.7301 

Random contrast 0.9376 0.7224 

Random rotate 0.9581 0.8059 

Random horizontal flip  0.9460 0.7483 

Random gamma 0.9376 0.7211 

Random CLAHE 0.9375 0.7270 

Random UM 0.9459 0.7087 

Select one of  
Random UM,  
Random CLAHE, 
Random gamma,  
and Random horizontal 
flip,  
Random rotate 

0.9610 0.7790 
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Model Augmentation 
techniques 

AUC score 

Test set BT 

[combinations between 
proposed and baseline 
augmentation] 

PylonResNet50 - 0.9454 0.7442 

Random brightness, 
Random gamma, 
Random rotate, 
Random horizontal flip 
[Sirazitdinov et al.] 

0.9633 0.7530 

Random rotate, 
Random horizontal flip 
[Ogawa et al.] 

0.9583 0.7410 

Random brightness 0.9521 0.7616 

Random contrast 0.9471 0.7261 

Random rotate 0.9580 0.7285 

Random horizontal flip  0.9494 0.7180 

Random gamma 0.9461 0.7576 

Random CLAHE 0.9422 0.7011 

Random UM 0.9424 0.7123 

Select one of  
Random UM,  
Random CLAHE, 
Random gamma,  
and Random horizontal 
flip,  
Random rotate 

0.9568 0.7247 
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Model Augmentation 
techniques 

AUC score 

Test set BT 

[combinations between 
proposed and baseline 
augmentation] 
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Table 14: Comparing the average AUC score of different augmentation techniques on the 
pneumonia label using the different backbone networks. 

Model Augmentation 
techniques 

AUC score 

Test set BT 

ResNet50 - 0.9473 0.8319 

Random brightness, 
Random gamma, 
Random rotate, 
Random horizontal flip 
[Sirazitdinov et al.] 

0.9489 0.8379 

Random rotate, 
Random horizontal flip 
[Ogawa et al.] 

0.9503 0.8406 

Random brightness 0.9469 0.8284 

Random contrast 0.9460 0.8300 

Random rotate 0.9465 0.8318 

Random horizontal flip  0.9471 0.8327 

Random gamma 0.9449 0.8260 

Random CLAHE 0.9450 0.8250 

Random UM 
 

0.9453 0.8325 

Select one of  
Random UM,  
Random CLAHE, 
Random gamma,  
and Random horizontal 
flip,  
Random rotate 

[combinations between 

0.9487 0.8357 
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Model Augmentation 
techniques 

AUC score 

Test set BT 

proposed and baseline 
augmentation] 

EfficientNetB0 - 0.9388 0.8147 

Random brightness, 
Random gamma, 
Random rotate, 
Random horizontal flip 
[Sirazitdinov et al.] 

0.9480 0.8279 

Random rotate, 
Random horizontal flip 
[Ogawa et al.] 

0.9457 0.8275 

Random brightness 0.9430 0.8198 

Random contrast 0.9424 0.8187 

Random rotate 0.9454 0.8211 

Random horizontal flip  0.9433 0.8195 

Random gamma 0.9397 0.8165 

Random CLAHE 0.9410 0.8180 

Random UM 0.9428 0.8229 

Select one of  
Random UM,  
Random CLAHE, 
Random gamma,  
and Random horizontal 
flip,  
Random rotate 

0.9456 0.8273 
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Model Augmentation 
techniques 

AUC score 

Test set BT 

[combinations between 
proposed and baseline 
augmentation] 

PylonResNet50 - 0.9415 0.8324 

Random brightness, 
Random gamma, 
Random rotate, 
Random horizontal flip 
[Sirazitdinov et al.] 

0.9527 0.8438 

Random rotate, 
Random horizontal flip 
[Ogawa et al.] 

0.9471 0.8371 

Random brightness 0.9426 0.8337 

Random contrast 0.9426 0.8336 

Random rotate 0.9467 0.8359 

Random horizontal flip  0.9402 0.8321 

Random gamma 0.9410 0.8266 

Random CLAHE 0.9396 0.8268 

Random UM 0.9423 0.8328 

Select one of  
Random UM,  
Random CLAHE, 
Random gamma,  
and Random horizontal 
flip,  
Random rotate 

0.9489 0.8398 
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Model Augmentation 
techniques 

AUC score 

Test set BT 

[combinations between 
proposed and baseline 
augmentation] 
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