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1. Introduction 
 

Machine Learning (ML) has shown incredible performances in highly 

sophisticated computational tasks, ranging from defeating humans in the game of Go, 

Dota2, and in image recognition [1], for example. Despite the tremendous successes 

of ML, it is extremely difficult to understand and analyze ML behaviors [2]. From 

practical point of views, ML is typically treated as a black box computational model 

to perform a specific task. The more complex the task is, the more resources and the 

more complexity of the model are required. More complex models come at a cost of 

the requirement to tune a gigantic set of parameters to achieve the best model 

performance. It is difficult to determine the appropriate parameters for the model if 

we have a little understanding of the model’s behaviors. A typical solution is to start 

with a gigantic model size, perhaps with many more parameters than one actually 

needs to fit the data. 

In many-body quantum physics, many useful models have been extensively 

scrutinized, resulting in a comprehensive understanding of models’ behaviors. One 

unique feature of many-body systems is that the Hilbert space of a many-body 

quantum state typically grows exponentially large with a system size. For the analysis 

of the model to be computationally tractable, several approximation techniques have 

been developed to efficiently and compactly represent a quantum state, compressing 

an exponential resource requirement to only a polynomial requirement. Examples of 

such compact representations of many-body quantum states include matrix product 

state (MPS) [3], projected entangled-pair states (PEPS) [4], and multiscale 

entanglement renormalization ansatz (MERA) [5]. 

To exploit the explainable aspects of quantum models and their useful compact 

representations, applying many-body quantum techniques to ML can give more 

insights into the behaviors of ML [6]. For example, Recurrent Arithmetic Circuits 

(RACs) are a type of Recurrent Neural Networks (RNNs) that can be mapped to an 

MPS in many-body quantum physics [7]. RNNs have a recurrent structure, making 

them special and suitable for tasks involving long-range memory such as time-series 
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or sequential predictions. RNNs have tremendous successes in Natural Language 

Processing (NLP) tasks, such as sentiment analysis and text generation. In this work, 

we will scrutinize RACs’ behaviors in sentiment analysis, a computational task that 

classifies given sentences into categories, positive and negative sentiments in this 

work. We borrow the tools used to measure long-range correlations (entanglement 

entropy) in MPS to show that the information propagation in RACs saturates around 

the point where the model accuracy saturates. For the first time, our work reveals that 

a minimal model size which achieves highest prediction accuracy arises from the 

saturation of long-range information propagation in the model. 

Note that the aforementioned result on the minimal model size disregards the 

contributions of correlations from other layers in the RACs network, particularly from 

the word embedding layer. Thus, we also analyze the role of the embedding layer on 

model prediction accuracy. As will be seen in this work, when the embedding layer is 

trainable, as the model size increases, the entanglement entropy increases before 

dropping down to saturate. As the entanglement entropy drops, we show that the word 

embedding becomes more meaningful semantically. This behavior implies that the 

larger the model size RACs possess, the more meaningful the embedding layer 

becomes, while the importance of information propagation in RACs decreases. 

This thesis is organized as follows. First, we begin by providing a comprehensive 

background on RNNs and word embedding in sections 2.1-2.3. The mathematical 

equivalence between RACs and MPS as well as the discussion on the entanglement 

entropy in MPS are provided in sections 2.4-2.5. Then, in section 3, we show the 

RACs’ performance and their information propagation as one increases the model size 

in a sentiment analysis task. The behaviors of the word embedding and of the 

entanglement entropy are also discussed. Finally, we conclude and discuss the future 

improvements of the model in section 4. 
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2. Background 
 

Since language can be viewed as a sequential phenomenon, one common 

approach to model language (statistical language modeling) is to encode a meaningful 

sequence of words into a conditional probability to predict the 𝑛th word given 𝑛 − 1 

previous words 𝑃(𝑤𝑛|𝑤1:𝑛−1), where 𝑤1:𝑛−1 is the word sequence (𝑤1, 𝑤2, … , 𝑤𝑛−1). 

However, the model built on this occurrence probability can be computationally 

impractical. To see why this problem could happen, assume that we have only 100 

words in a dataset, and they can occur with the same frequency. In this case, the 

probability of a sequence of 𝑛 words (𝑤1, 𝑤2, … , 𝑤𝑛) appearing in a data set is 100−𝑛, 

which is practically negligible. Even though a probabilistic model that predicts the 

next word given a shorter sequence of length 𝑘, say 𝑃(𝑤𝑛|𝑤𝑛−𝑘:𝑛−1), called a 𝑘-gram 

model, can be proposed, it is still hard to find a suitable 𝑘, while maintaining both 

exponential decay in probability and the accuracy of a model. For instance, assume 

that a model uses 𝑘 = 𝑛 − 4, which means we use four previous words for prediction. 

The model can give a wrong answer for a sentence like "This special dish that you 

prepared for me …", which may give "are," but the correct answer is "is," which 

requires a 6–8 gram model to achieve the correct answer. We could put or construct a 

model with more parameters in order to capture a long-range sequence while 

maintaining accuracy, but this requires more computational resources, which means 

more money to spend. We can achieve high accuracy with recurrent neural networks 

(RNNs) while only using a small amount of resources. 

RNNs are a type of machine learning specialized in performing sequential 

tasks. This work will focus on many-body physics-inspired RNNs called RACs, 

consisting of a linear operation which is a tensor contraction. We will show that 

RACs can be mapped to an MPS, a 1D chain of tensors. However, before diving into 

the details, let us begin with introducing the terminologies used throughout this work 

to visually represent a tensor calculation as a picture, called a tensor network diagram. 
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2.1 Tensor Network 

When one talks about tensor contractions, indices manipulation is 

unavoidable. However, it is mentally more pleasing to represent tensor operations via 

pictorial thinking. This method is called the tensor diagram notation. Roger Penrose 

proposed the notation in early 1970’s [8]. These methods have been exploited in many 

different domains of physics, computer science, and mathematics. To accommodate 

tensor manipulations as a LEGO-like concatenation, one visually represents a 

mathematical tensor by shapes such as a box or a circle, with zero or more output 

wires called legs, which point up and down corresponding to upper and lower indices, 

respectively. 

 

For example, diagram (a) above represents the tensor 𝜓𝑖  with a single upper 

index (a vector), diagram (b) the tensor 𝑀𝑖𝑗 (a matrix), and diagram (c) the tensor 𝑇𝑗𝑘
𝑖  

(of rank 3). To do tensor contractions (summed over indices), one needs to connect 

two legs corresponding to those indices. 
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Diagram (d) represents the contraction of matrix 𝐵𝑖
𝑗
 with vector 𝐴𝑖 (a 

multiplying matrix with a vector), which results in another vector. The mathematical 

expression of diagram (d) is 𝐵𝑖
𝑗
𝐴𝑖 = 𝐶𝑗 , where the leg labeled 𝑖 is fully connected, 

and hence the corresponding index is summed over (Einstein’s summation convention 

is assumed here). However, unlike in general relativity, we do not have to be 

concerned about whether the indices are upper or lower since. For the purpose of data 

science studied in this work, contravariant and covariant indices are the same as there 

are no requirement on the existence of a metric in our problem. So, we can raise and 

lower the indices freely (e.g., 𝐴𝑖𝐵𝑖
𝑗

= 𝐴𝑖𝐵𝑗𝑖 = 𝐴𝑖𝐵𝑗𝑖). In (e), the diagram is more 

complicated, contracting two indices between a matrix and an order-3 tensor. 

Diagram (e) mathematically expresses 𝐷𝑖𝑗𝐸𝑖𝑗
𝑘 = 𝐹𝑘. Two or more tensor diagrams 

interact with each other will form a tensor network. 

Now, we are armed with the knowledge of tensor networks that can be used to 

represent a cumbersome indices operation into a simpler pictorial representation. 

Next, we will introduce a general concept of RNNs and discuss the mapping between 

RACs and MPS. 

2.2 Recurrent Neural Networks (RNNs) 

As its name suggests, RNNs use recurrent computation to accumulate 

information from the past items in the sequence to predict the current item, as 

opposed to using the conditional probability prediction discussed earlier [9]. To keep 

things simple, we will stick to a sentiment analysis task that returns a binary output 𝑂 

for a given sequence of 𝑁 words (𝑤1, 𝑤2, … , 𝑤𝑁). The output 𝑂 in our case has two 

discrete values, which are 0 for negative sentiment and 1 for positive sentiment. At 

the core of calculation, RNN has the smallest unit called a cell, which calculates the 

hidden state at time step 𝑡. To calculate ℎ at time 𝑡, the RNN cell receives two inputs: 

its previous hidden state 𝒉𝑡−1 from the output of the previous cell and the embedded 

input 𝝓(𝑤𝑡) at time step 𝑡. Thus, it is called recurrent. It is worth noting that, 

depending on the design, RNNs can have multiple hidden states. However, for the 

purposes of this paper, we will only consider one hidden state ℎ because it can be 
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mapped to the tensor form, which will be discussed later. An example of a model that 

contains more than one state is LSTM [10]. 

 

Figure 2.1: This figure illustrates the components of a simple RNN and how it works. 

A simple RNN is composed of a small subunit called a cell. The inputs to the cell are 

different at each time step, but the operations in the cell are identical. The hidden state 

h0 is fed to the RNN cell at time step 𝑡 = 1 together with the first word vector 𝝓(𝑤1). 

The output is called h1 and will be fed to the next time step at 𝑡2, and so on. This 

process keeps repeating until it reaches the final step with the hidden state output hN, 

which will be passed to the output layer and sigmoid function, giving the final output, 

prediction. 

Embedding is the process of transforming a 𝑤𝑡 into a vector 𝝓(𝑤𝑡) ∈ ℝ𝑑𝐼  

using an embedding layer (more on embedding layers in the following subsection). 

The operation of the RNN cell can be written as 

 𝒉𝑡 = 𝑓(𝑊𝐾𝝓(𝑤𝑡), 𝑊𝑅𝒉𝑡−1, 𝒃), (2.1) 

where 𝐡𝑡 is a vector called hidden state at time 𝑡 with dimension 𝜒; 𝑊𝐾 is called a 

kernel, which is a weight matrix for an input with dimension 𝑑𝐼 × 𝜒; 𝑊𝑅 is a 

recurrent kernel which is a weight matrix for the hidden state with dimension 𝜒 × 𝜒; 

and 𝐛 is a bias. The structure of the function 𝑓 depends on what model we are using. 

It can be simple, as in vanilla RNN, where the function 𝑓 is in the form of 

tanh(𝑊𝐾𝝓(𝑤𝑡) + 𝑊𝑅𝒉𝑡 − 1 + 𝒃), or very complicated, as in LSTM, which contains 
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many operations and non-linearity terms. In machine learning, we call this function an 

activation function. The rectified linear unit or ReLU, defined by 𝑓(𝑥) = Max{0, 𝑥}, 

along with its variant [11], is the most commonly used activation function in modern 

machine learning. The inspiration for these functions is to mimic the behavior of 

human neurons. It is believed that each neuron requires a certain threshold of 

incoming signals to be triggered. Hence, the activation function does the same job 

here. As for the bias term, it can be thought of as a background signal of a neuron. 

When the RNN cell is specified, we are now ready for the real RNN 

calculation. By starting with initialized 𝒉0 (mostly set as null state) and the input 

𝝓(𝑤1), the hidden state 𝒉1 can be calculated. Then, continuing the calculation 

recursively using the input 𝝓(𝑤2), … , 𝝓(𝑤3) and the previous hidden state 

(𝒉1, … , 𝒉𝑁−1) with the same cell structure, the hidden states for time steps 𝑡 = 2 to 

𝑡 = 𝑁, i.e., 𝒉2, … , 𝒉𝑁, can be retrieved. The hidden state at the time 𝑡 aggregates all 

the information from the past steps 1 to (𝑡 − 1). Thus, the long-term correlation can 

be achieved without the need for the model to grow with the sequence length. The 

past input can affect the present prediction, while maintaining the independence 

between the length of a series and model parameters is what we needed. 

In the sentiment task, we expect the output to be 0 or 1, 𝑂 ∈ {0,1}. However, 

the hidden state is a vector, so we need a way to transform them to a scalar, which can 

be done by matrix multiplication. We define a dense matrix that will be multiplied 

with the last hidden state as 𝑊𝑂 with dimension 𝜒 × 1, and a bias can also be added 

here. Nevertheless, the matrix 𝑊𝑂 and bias are not enough to make the output within 

the [0,1] range, so we introduce another activation function here called the sigmoid 

activation function, which has the form 𝜎(𝑥) ≡
1

1+𝑒−𝑥. Thus, the explicit form of the 

last layer is 

 

𝑂 =
1

1 + exp(−𝑅)
, 

 

(2.2) 
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where 𝑅 = 𝑊𝑂𝒉𝑁 + 𝑏𝑜 is the result before being put in the sigmoid function. We also 

denote a set of parameters that affect the output 𝑂 as 𝜃 ≡ {𝑊𝐾, 𝑊𝑅 , 𝑊𝑂 , 𝒃, 𝑏𝑜}. We 

will write 𝑂 as 𝑂𝜃 to show that 𝑂𝜃 depends on the set of parameters in 𝜃. Since the 

value of 𝑂𝜃 is inside the window [0,1] not 0 or 1, the 𝑂𝜃 is interpreted as a 

probability of being 1 (or being 0 with probability 1 − 𝑂𝜃). 

The model parameters are initialized randomly. We expect them to be 

improved over time by a method called training. First, we let them do a task and 

measure how far the output predicted by the model and the expected results (the true 

answer) are. Then, the model’s parameters are adjusted such that the distance between 

the model outputs and the expected results is closer than before. We use a function 

called loss function (𝐿) to measure the aggregate of how far the predictions 𝑂𝜃(𝒘𝑚) 

from the true sentiments 𝑌(𝒘𝑚), where 𝑌(𝒘𝑚) = 1 for a positive review and 0 for a 

negative review. The 𝒘𝑚 ≡ 𝑤1:𝑁,𝑚 = (𝑤1, 𝑤2, … , 𝑤𝑁)𝑚 denotes the 𝑚𝑡ℎ sequence in 

the dataset. If the dataset contains 𝑀 sequences of words (𝑀 reviews in our case), 

then we have 𝑚 ∈ {1,2, … , 𝑀}. Generally, for a binary classification problem whose 

output is probabilistic, we use the binary cross-entropy 

 

𝐿 ≡ ∑
1

𝑀

𝑀

𝑚=1

(𝑌(𝐰𝑚)log[𝑂𝜃(𝐰𝑚)] + (1 − 𝑌(𝐰𝑚))log[1 − 𝑂𝜃(𝐰𝑚)]). 
 

(2.3) 

The whole training process is to search for 𝜃∗ that minimizes the loss function 𝐿 or, in 

other words, the 𝜃∗ that makes the prediction as close to the true answer as possible 

(gradient descent, Adam, and their variants can be used to search for the 𝜃∗ [12]). 

Hence, we expect the model with the set of parameters 𝜃∗ will give the well the 

approximated probabilistic distribution that is 

 𝑃(𝑂|𝑤1:𝑁) ≈ RNN𝜃∗(𝑂|𝑤1:𝑁), (2.4) 

where 𝑂 is the output for the given sequence 𝑤1:𝑁, and RNN𝜃∗ is the RNN model 

with the given parameters 𝜃∗. 
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2.3 Word Embedding 

The word embedding was mentioned in the previous subsection, but we did 

not discuss it in detail. This subsection discusses the importance of the embedding 

layer or the word embedding. To change words into the form that a statistical model 

or a numerical computation can perform a calculation, one needs a way to modify 

them to numbers. One of the easiest ways is to tokenize them. To do this, one first 

sorts all the words in the dictionary in the ascending order from the most used to the 

lowest one. After the words are sorted, one can then tokenize each word by assigning 

each word with its order. As an example, assume that a dictionary contains {a, the, 

you}. If the most used word is “the” followed by “you" and “a" respectively, the 

tokenization is the process that maps {the, you, a} to {1, 2, 3}. Hence, each word 

sequence in the dataset can now be represented by a sequence of integers 𝑤1:𝑁 where 

each sequence is forced to have a constant length 𝑁. To do this, we do padding at the 

beginning of the sequence by 0. We use pre-padding instead of post-padding to ensure 

that a data vanishing will not occur during the training process. For example, we set 

𝑁 = 5 with the sentence “I love you” which can be encoded as 𝑤1:5 = (0,0,7,53,8) 

where “I”= 7, “love”= 53, “you”= 8, and 0’s come from the padding process. 

Nevertheless, these processes are not enough. Each word has its meaning, but a 

number does not, so word embedding is needed. The embedding layer embeds a 

number (a word) which is a scalar ℝ to a higher dimensional vector ℝ𝑑𝐼, and the 

elements of the embedding layer are set such that they can be trained (trainable 

parameters) during the training process. The embedded words could learn and adapt 

themselves corresponding to the given task by doing this. In this way, the embedding 

parameters can extract the meaning of the words in the dataset. 

In this work, we use Word2vec [13]. The reason behind it is that they are 

simple to implement and keep the model’s simpleness. Although the complex 

structure can give rise to a better model, we are focusing on the explainability of the 

model. Thus, there is no point in building a complex model that we cannot explain, 

giving us more burdens than benefits. Assume that the size of the dictionary is 𝐷, and 

we want to embed each word to a vector with 𝑑𝐼 dimensions. We define the 
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embedding function 𝝓(𝑤) by a (trainable) matrix 𝜙 of size 𝑑𝐼 × 𝐷, where its 𝑖𝑡ℎ 

column represents the word vector 𝝓(𝑤𝑖) of the word 𝑤𝑖. Notice that, in the last 

subsection, the hidden state at a given time 𝑡 receives 𝝓(𝑤𝑡) as the input. This means 

that the model’s output does not depend only on its weight but also on the embedding 

layer. Thus, if the (unfixed) embedding layer is used in our model, the set of trainable 

parameters 𝜃 should include the 𝜙 within its, 𝜃 ≡ {𝑊𝐾, 𝑊𝑅 , 𝑊𝑂 , 𝐛, 𝑏𝑜 , 𝜙}. 

Because the word embedding is a matrix 𝜙 of size 𝑑𝐼 × 𝐷, it will be more 

intuitive to write an input as a vector 𝑤𝑖 such that 𝜙𝐰𝑖 = 𝝓(𝑤𝑖). One of the simplest 

ways to do this is one-hot encoding. If we have a dictionary of size 𝐷 and the 𝑖-th 

word 𝑤𝑖 in the dictionary, we can encode them to a vector of dimension 𝐷 whose all 

elements are zero except the 𝑖-th position which equal to one, 𝒘𝑖 = (0, … ,0,1,0, … ,0). 

Combining with the definition of the word embedding, we have 

 

𝜙𝒘𝑖 = (

| | |

𝝓(𝑤1) … 𝝓(𝑤𝑖) … 𝝓(𝑤𝐷)

| | |

) 𝒘𝑖 = 𝝓(𝑤𝑖). 

 

(2.5) 

After the training process, we get the 𝜃∗ which includes the trained embedding 

layer 𝜙∗ in there, but how could we know that this new embedding layer is useful, or 

does it learn a proper representation of the words? Since each word is already 

embedded into the higher dimension, the simple yet intuitive metric is to look at the 

angle between two words in the higher dimension using an inner product. One could 

argue that why can’t we measure the Euclidean distance instead of the angle between 

two words? The magnitude of the vector (and hence the distance) can depend on the 

occurrence of a word. This implies that the two words with similar meanings can have 

a long distance between them since one may occur more frequently compared to the 

other. However, the angle between them is more resilient to this variation, and hence 

measuring the angle (or cosine similarity) is semantically preferred [14]. Given two 

words 𝑤𝑎 and 𝑤𝑏, the cosine similarity, which is the cosine of the angle between these 

words, can be computed as 
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sim(𝝓(𝑤𝑎), 𝝓(𝑤𝑏)) =
𝝓(𝑤𝑎) ⋅ 𝝓(𝑤𝑏)

|𝝓(𝑤𝑎)||𝝓(𝑤𝑏)|
. 

 

(2.6) 

If two words give positive cosine, they tend to be used in a similar context. Otherwise, 

it shows the opposite meaning of two words, except zero cosines which shows that 

two words might not correlate. 

Although we keep our embedding layer as simple as possible which can be 

seen that there is no non-linear function, the RNN layer is still implicated with several 

iterations of activation functions, hence yielding highly non-linearity. In the following 

subsection, we discuss the attempt to map the RNN to a MPS by using a specific 

activation function, which helps us transform the highly non-linearity into a simple 

tensor operation with no activation function required. 

2.4 Matrix Product State and Recurrent Arithmetic Circuits 

This section will focus on the mapping between RNN to MPS. For simplicity, 

let us restrict ourselves to the RNN with no bias. The bias can be added back to the 

model later quite easily, as we will show in the following section. 

Instead of setting the activation function 𝑓 as a non-linear function, let us 

define 𝑓 as element-wise multiplication or Hadamard product 

 𝑓RAC(𝑨, 𝑩) = 𝑨 ⊙ 𝑩, (2.7) 

which can be written in the component form as 𝑓𝑖
RAC(𝑨, 𝑩) = 𝐴𝑖𝐵𝑖. The RNN that 

uses the structure in equation (2.1) together with the 𝑓RAC activation function is 

known as Recurrent Arithmetic Circuits (RACs). The special thing about RACs is that 

it can be mapped to the Matrix Product State (MPS) or Tensor Train (TT) [15]. To 

show this, we introduce a rank-3 tensor 𝛿𝑖𝑗𝑘 where the value of tensor is 1 if 𝑖 = 𝑗 =

𝑘, and 0 otherwise: 

 

𝛿𝑖𝑗𝑘 = {
1,    if 𝑖 = 𝑗 = 𝑘
0,   otherwise.  

 

 

(2.8) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 12 

Then, the element-wise multiplication of the two tensors 𝑨 and 𝑩 can be written in the 

component form as 

 

(𝑨 ⊙ 𝑩)𝑘 = ∑ 𝐴𝑖

𝑖,𝑗

𝐵𝑗𝛿𝑖𝑗𝑘 = 𝐴𝑘𝐵𝑘. 

 

(2.9) 

Thus, using the equation (2.1), the hidden state of RACs at time 𝑡 (with no bias) can 

be written in the component form as 

 

𝒉𝑡
(𝛼𝑡)

= ∑ ∑ 𝛿𝑖𝑗𝛼𝑡

𝑑𝐼

𝛾𝑡=1

𝜒

𝑖,𝑗,𝛼𝑡−1=1

𝑊𝑖𝛾𝑡

𝐾 𝜙𝛾𝑡
(𝑤𝑡)𝑊𝑗𝛼𝑡−1

𝑅 𝒉𝑡−1
(𝛼𝑡−1)

. 

 

 

(2.10) 

Let us go a little further by defining a new tensor 𝑇𝛼𝑡𝛼𝑡−1

𝛾𝑡 = ∑ ∑ 𝑊𝑖𝛾𝑡

𝐾𝑑𝐼
𝛾𝑡

𝜒
𝑖,𝑗 𝑊𝑗𝛼𝑡−1

𝑅  to 

make thing cleaner. Thus, equation (2.10) becomes 

 

𝒉𝑡
(𝛼𝑡)

= ∑ ∑ 𝜙𝛾𝑡

𝜒

𝛼𝑡−1=1

𝑑𝐼

𝛾𝑡=1

(𝑤𝑡)𝑇𝛼𝑡𝛼𝑡−1

𝛾𝑡 𝒉𝑡−1
(𝛼𝑡−1)

. 

 

 

(2.11) 

By exploiting its recurrent structure, we can substitute 𝒉𝑡−1
(𝛼𝑡−1)

 into itself, and, hence, 

its explicit form can be retrieved 

 

𝒉𝑡
(𝛼𝑡)

= ∑ ∑ [𝜙𝛾𝑡
(𝑤𝑡)𝑇𝛼𝑡𝛼𝑡−1

𝛾𝑡 ]

𝜒

𝛼𝑡−1,…,𝛼0=1

𝑑𝐼

𝛾𝑡,…,𝛾1=1

[𝜙𝛾𝑡−1
(𝑤𝑡−1)𝑇𝛼𝑡−1𝛼𝑡−2

𝛾𝑡−1 ] … 

[𝜙𝛾1
(𝑤1)𝑇𝛼1𝛼0

𝛾1 ]𝒉0
(𝛼0)

. 

 

 

(2.12) 

One can obviously see that the hidden output at time step 𝑡 can be constructed using 

three components. The first component is a translational invariant MPS, which takes 

the form 
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𝛹‾𝛼𝑡𝛼0

𝛾𝑡…𝛾1 = ∑ 𝑇𝛼𝑡𝛼𝑡−1

𝛾𝑡

𝜒

𝛼𝑡−1,…,𝛼1=1

𝑇𝛼𝑡−1𝛼𝑡−2

𝛾𝑡−1 … 𝑇𝛼1𝛼0

𝛾1 . 

 

(2.13) 

The second one is 

 
Φ𝛾𝑡,…𝛾1

= 𝜙𝛾𝑡
(𝑤𝑡)𝜙𝛾𝑡−1

(𝑤𝑡−1) … 𝜙𝛾1
(𝑤1), 

 

(2.14) 

which is the tensor of rank 𝑡 constructed from the sequence of 𝑡 word embedding 

vectors. The last component is 𝒉0, which is the hidden state at the initial time step 

(𝑡 = 0). Therefore, the hidden state at time step 𝑡 can be written as 

 

𝒉𝑡
(𝛼𝑡)

= ∑ ∑ 𝛹‾𝛼𝑡𝛼0

𝛾𝑡…𝛾1

𝜒

𝛼0=1

𝑑𝐼

𝛾𝑡,…,𝛾1=1

𝛷𝛾𝑡…𝛾1
𝒉0

(𝛼0)
. 

 

(2.15) 

The main purpose of this subsection is to show that the RACs can be 

represented by an MPS. An entanglement entropy that can be extracted from the MPS 

is one of the main characters in this work. It can measure the information propagated 

between two bipartite sub-systems, as we will discuss next. 

2.5 Entanglement Entropy 

The von-Neumann entropy or entanglement entropy of a MPS can be derived 

from Schmidt coefficient 𝜆, which can be obtained from applying a singular value 

decomposition (SVD) to partition a system into two sub-systems. Let 𝐻 be a Hilbert 

space of dimension 𝑛 × 𝑚, and there are two sub-Hilbert spaces 𝐻𝐿 and 𝐻𝑅 with 

dimension 𝑛 and 𝑚 respectively, where 𝐻 = 𝐻𝐿 ⊗ 𝐻𝑅. Without loss of generality, 

assume that 𝑛 ≥ 𝑚, which can be easily extended to the general case. Define 

orthonormal bases {𝑢1, … , 𝑢𝑛} ⊂ 𝐻𝐿 and {𝑣1, … , 𝑣𝑚} ⊂ 𝐻𝑅. Then an arbitrary vector 

𝑤 ∈ 𝐻 can be written as 
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𝑤 = ∑ ∑ 𝛼𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

𝑢𝑖 ⊗ 𝑣𝑗 . 

 

(2.16) 

 

 

 

Figure 2.2: (a) depicts a graphical representation of how the RAC cell transforms to a 

new rank-3 tensor 𝑇, as described in (2.12). The RAC can then be expressed as the 

translational invariant MPS (b) by mapping the cell to 𝑇. The word embedding, 

according to section 2.3, is a matrix of dimension 𝑑𝐼 × 𝐷 contract with a D-dimension 

one-hot vectorwi. As a result, the explicit form of (b) is (c), which is the RAC 

contract to the embedding matrix denoted as Emb in diagram (c). This suggests that 

the contraction of 𝑇 and Emb results in a new rank-3 tensor, implying that the word 

embedding may potentially contribute to the entanglement entropy of the system. 

From singular value decomposition (SVD), there exist an 𝑛 × 𝑛 orthonormal matrix 

𝐿, an 𝑚 × 𝑚 orthonormal matrix 𝑅, and an 𝑚 × 𝑚 positive semidefinite diagonal 

matrix 𝛴 such that a matrix 𝑀 can be written/decomposed as 
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𝑀 = 𝐿 [
 𝛴 

0
] 𝑅𝑇 , 

 

(2.17) 

where 0 is the zero matrix with dimension (𝑛 − 𝑚) × 𝑚. Next, split 𝐿 into two sub 

matrices 𝐿 = [𝐿1 𝐿2], where 𝐿1 is 𝑛 × 𝑚. By doing so, the equation (2.16) becomes 

 𝑀 = 𝐿1Σ𝑅𝑇 . (2.18) 

Let {𝑙1, … , 𝑙𝑛} and {𝑟1, … , 𝑟𝑚} be another set of orthogonal bases of 𝐻𝐿 and 𝐻𝑅 

respectively and {𝜎1, … , 𝜎𝑚} be diagonal elements of the matrix 𝛴. Here, 𝑙𝑖 and 𝑟𝑗 are 

the 𝑖𝑡ℎ and the 𝑗𝑡ℎ column vectors of the matrices 𝐿 and 𝑅. The above equation 

becomes 

 

𝑀 = ∑ 𝜎𝑘

𝑚

𝑘=1

𝑙𝑘𝑟𝑘
𝑇. 

 

(2.19) 

The 𝜎𝑘 in the above equation is called Schmidt coefficient satisfying ∑ 𝜎𝑘
2𝑚

𝑘=1 = 1. 

Since 𝛼𝑖𝑗 in the equation (2.16) is a matrix, it is possible to apply the SVD to the 𝛼𝑖𝑗. 

By choosing the appropriate set of bases, transforming the {𝑢1, … , 𝑢𝑛} → {𝑙1, … , 𝑙𝑛} 

and {𝑣1, … , 𝑣𝑚} → {𝑟1, … , 𝑟𝑚}, we can rewrite 𝑤 as 

 

𝑤 = ∑ 𝜆𝑘

𝑚

𝑘=1

𝑙𝑘 ⊗ 𝑟𝑘, 

 

(2.20) 

where 𝜆𝑘 is the Schmidt coefficients of 𝑤 which satisfies ∑ 𝜆𝑘
2𝑚

𝑘=1 = 1. This can be 

applied to the MPS with closed boundary as well. However, the boundary of our MPS 

in (2.13) is still open because the 𝛼0 and 𝛼𝑡 are the free indices. To close them, we 

need to contract its boundaries, 𝛼0 and 𝛼𝑡, with vectors. We will discuss about the 

appropriate choice of vectors in the next section. For now, let us assume that the MPS 

already has a closed boundary and given by 𝛹𝛾𝑡…𝛾2𝛾1. Since the MPS 𝛹𝛾𝑡…𝛾2𝛾1 is a 
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rank-𝑡 tensor, we know that it can be written in the quantum state form (simply put 

the bases state in) as 

 

|Ψ⟩MPS = ∑ Ψγt…γ2γ1|γt⟩ ⊗ … |γ2⟩ ⊗ |γ1⟩

γ1,γ2,…,γt

. 

 

(2.21) 

Then, the MPS is bipartited into two sub-systems |𝜙𝑖
𝐿⟩ ∈ 𝐻𝐿 and |𝜙𝑖

𝑅⟩ ∈ 𝐻𝑅 where 

they are made up from the |𝛾1⟩, … , |𝛾𝑡/2⟩ and |𝛾𝑡/2+1⟩, … , |𝛾𝑡⟩ respectively. Since the 

MPS is constructed using the same tensor (RAC cell) along the chain, making it a 

translational invariant MPS, it does not matter where one cut them. However, cutting 

near the edge of the tensor should be avoided as the boundary effect may occur since 

we cannot truly build an infinite chain of tensors (bounded by computational 

resources). According to SVD that we have done in (2.16)-(2.20), we have 

 

|Ψ⟩𝑀𝑃𝑆 = ∑ 𝜆𝑖|𝜙𝑖
𝐿⟩ ⊗ |𝜙𝑖

𝑅⟩

𝑙

𝑖=1

 . 

 

(2.22) 

The entanglement entropy [16] between two subsystems of the |Ψ⟩𝑀𝑃𝑆 can be 

calculated by 

 

𝑆 = − ∑ 𝜆𝑖
2

𝑙

𝑖=1

log2𝜆𝑖
2. 

 

(2.23) 

The entanglement entropy measures how much two subsystems are entangled. There 

are several ways to interpret entanglement entropy. One of them is to use pure states 

and mixed states [17]. A pure quantum state is used to describe the state in which we 

have complete knowledge about the quantum system, which has 𝑆 = 0. On the other 

hand, a mixed state, which 𝑆 ≠ 0, can be thought of as the state in which we do not 

have the complete knowledge of the system since we trace over some components of 

a pure state (like we sum over some probability in statistic class). Thus, the non-zero 
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entropy could be interpreted as the ignorance of knowledge or the correlation between 

the current state and the ignored state [18]. 

To make the above statement clearer, let us translate it to the physics notation 

and maths. The rough definition of a pure state is the state that can be written in a 

vector form (e.g., |𝜓⟩ =
1

√2
|0⟩ +

1

√2
|1⟩), but a mixed state is opposite, which cannot 

be written in the vector form like the pure state. Thus, a density matrix is introduced 

to enable us to represent the mixed state naturally. The density matrix 𝜌 of the pure 

state |𝜓⟩ is defined by 

 𝜌 = |𝜓⟩⟨𝜓|. (2.24) 

For the mixed state, it is defined by the summation of all possible pure state, 

 𝜌 = ∑ 𝑝𝑖|𝜓𝑖⟩⟨𝜓𝑖|

𝑖

, (2.25) 

where 𝑝𝑖 is a classical probability that the system will end up in the pure state |𝜓𝑖⟩. 

One can also differentiate the pure and mixed states using the density matrix 𝜌. Using 

equations (2.24) and (2.25), we can show that 𝜌2 = 𝜌 for the pure state, but this is not 

true in the case of the mixed state. From Shannon entropy, the entropy of the 𝜌 is 

 

𝑆Shannon = − ∑ 𝑝𝑖

𝑖

log2𝑝𝑖. 

 

(2.26) 

Since we know that Tr(𝜌log2𝜌) = ∑ 𝑝𝑖𝑖 log𝑝𝑖 (by using the fact that trace is invariant 

under bases transformation), we then define the von-Neumann entropy or quantum-

version of entropy as 

 
𝑆 = −Tr(𝜌log𝜌). 

 

(2.27) 
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If we calculate the entropy of the |Ψ⟩𝑀𝑃𝑆, it will obviously give zero due to the fact 

that it is a pure state. However, if we trace out its component, let’s pick the right part 

|𝜙𝑖
𝑅⟩, then the corresponding density matrix becomes a mixed state 

ρ = ∑ λ𝑖

𝑛

𝑖,𝑗=1

λ𝑗|ϕ𝑖
𝐿⟩ ⊗ |ϕ𝑖

𝑅⟩⟨ϕ𝑗
𝑅| ⊗ ⟨ϕ𝑗

𝐿| 

ρ𝐿 = Tr𝑅(ρ) = ∑ (𝟙 ⊗ ⟨ϕ𝑘
𝑅|)λ𝑖λ𝑗|ϕ𝑖

𝐿⟩ ⊗ |ϕ𝑖
𝑅⟩⟨ϕ𝑗

𝐿| ⊗ ⟨ϕ𝑗
𝑅|(𝟙 ⊗ |ϕ𝑘

𝑅⟩)

𝑛

𝑖,𝑗,𝑘=1

 
 

(2.28) 

ρ𝐿 = ∑ δ𝑖𝑘

𝑛

𝑖,𝑗,𝑘=1

δ𝑗𝑘λ𝑖λ𝑗|ϕ𝑖
𝐿⟩⟨ϕ𝑗

𝐿| = ∑ λ𝑘
2 |ϕ𝑘

𝐿 ⟩

𝑛

𝑘=1

⟨ϕ𝑘
𝐿 | 

The above equation shows that the density matrix cannot be decomposed into the 

outer product of two states, except 𝑛 = 1. Comparing 𝜌𝐿 to the equation (2.25), we 

have 𝑝𝑖 = 𝜆𝑖
2, which, in this case, gives 𝑆 ≠ 0. This implies that the non-zero entropy 

comes from the lack of knowledge of the |𝜙𝑘
𝑅⟩. If we know what |𝜙𝑘

𝑅⟩ is, then we can 

reconstruct back the complete pure state. If not, we are left with the mixed state with 

an ensemble of a new set of pure states |𝜙𝑘
𝐿⟩, and we might conclude that the 

subsystems |𝜙𝑘
𝐿⟩ and |𝜙𝑘

𝑅⟩ entangle to each other in such a way that if we lost either 

one of these states, we lost the information to construct a whole system. Thus, 

subsystem 𝐿 and 𝑅 share information with each other. 

We expect that the stronger the correlation of the two subsystems is, the larger 

the entanglement entropy becomes (due to the more ignorance of the information). 

This implies that the partitioned RACs with large entanglement entropy might be a 

good model for approximating data with strong correlations. Another great 

explanation can be found in [15]. The mentioned paper describes the correlation in 

terms of separation rank measured from the Schmidt coefficients, which can be used 

to calculate the entanglement entropy we just defined. 

Nevertheless, in the entanglement entropy calculation, we did not consider the 

effect of the embedding layer. Since the word embedding is an ordinary matrix that 

contracts with the RACs, it can be viewed as a part of the RAC. Thus, the embedding 
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layer can also contribute to the entanglement entropy of the whole system. One more 

thing to point out is that we also ignored the bias term when the RAC model was 

constructed. Adding the bias to the model is a tricky part of this work. In the next 

section, we will cover how to add the bias to the model and the numerical effect of the 

word embedding. 
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3. Experiments & Results 

 

In this section, we will go through how to set up the model and continue from 

where we have left in the previous section. So far, we have discussed the theoretical 

perspective of the model, which gives the intuition of the physical meaning behind it, 

but there are some topics that we have not yet covered. First, the bias that we have 

ignored plays a crucial role in this work. Because our model only comprises the tensor 

contraction, this leads to a gradient vanishing. This problem arises due to the 

contraction is composed of many multiplication terms. If we start with a small 

number, the results from the operation will converge to zero quickly. To solve this, 

we need to add a summation term, a bias, to stabilize the result of the contraction not 

getting too small. 

The following subsection will show how the bias is added to our MPS. Next, 

we will show the result of the accuracy together with the entanglement entropy of the 

RACs. As mentioned in the previous section, the word embedding might contribute to 

the entanglement entropy. To show that this is the case, we divide our training process 

into two following strategies: fixed pre-trained word embedding and (non-fixed) 

regular training. The idea of the first strategy is to fix the effect of the entanglement 

entropy that arises from the word embedding. In this case, we show that the 

entanglement entropy and accuracy of the model behave in the same way. In the 

beginning, they slightly increase, but after reaching some specific point, both 

entanglement entropy and accuracy are saturated. This interesting behavior helps us 

determine the smallest dimension (or parameter) that can be sufficiently used to 

approximate our task. Second, a word embedding is trained together with the RAC. 

We do this study on the effect of the embedding layer that affects the entanglement 

entropy. Surprisingly, although the accuracy behaves the same way as the first 

strategy, the entanglement entropy is different. The entanglement entropy rapidly 

increases at the beginning before it decreases and plateaus at some saturate value. We 

also report the cosine similarity of the word embedding, which exhibits the opposite 
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𝑑𝐼 + 1 𝜒 + 1 

behavior to the entanglement entropy—implying that the embedding layer involves 

propagation of the information. 

3.1 RACs with Bias 

Before we add the additive biases to the model, first let’s rewrite the RACs in 

equation (2.1) in the easier form as 

 
𝐡𝑡 = 𝑓(𝑊𝐾𝛟(𝑤𝑡), 𝑊𝑅𝐡𝑡−1, 𝐛) → 𝑓RAC(𝑊𝐾𝛟(𝑤𝑡) + 𝐛𝑘, 𝑊𝑅𝐡𝑡−1 + 𝐛𝑅). 

 

(3.1) 

To achieve this, we transform the kernel matrix 𝑊𝐾 and recurrent kernel matrix 𝑊𝑅 

to the new matrix �̃�𝑅 and �̃�𝐾as follow 

 
�̃�𝐾 = ( 𝑊𝐾 𝒃𝑘

0 … 0 1
)} 𝜒 + 1,      �̃�𝑅 = ( 𝑊𝑅 𝒃𝑅

0 … 0 1
)} 𝜒 + 1 

(3.2) 

Because 𝝓(𝑤𝑡) and 𝒉𝑡 are contracting to the 𝑊𝑅 and 𝑊𝐾, we need to enforce them to 

have the same dimension by also transforming them by adding an additional 

dimension as 

 

�̃�(𝑤𝑡) = (
𝝓(𝑤𝑡)

1
),                 �̃�𝑡 = (

𝒉𝑡

1
). 

 

(3.3) 

By using these new forms, one can immediately see that 

 
�̃�𝐾�̃�(𝑤𝑡) = ( 𝑊𝐾 𝒃𝑘

0 … 0 1
) (

𝝓(𝑤𝑡)
1

) = (𝑊𝐾𝝓(𝑤𝑡) + 𝒃𝑘

1
) 

(3.4) 

and 

 

�̃�𝑅�̃�𝑡 = ( 𝑊𝑅 𝒃𝑅

0 … 0 1
) (

𝒉𝑡

1
) = (𝑊𝑅𝒉𝑡 + 𝒃𝑅

1
). 

 

(3.5) 

Thus, the new �̃�𝑡 can be written in the form of activation function as 
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�̃�𝑡 = (𝑓RAC(𝑊𝐾𝛟(𝑤𝑡) + 𝒃𝑘, 𝑊𝑅𝒉𝑡−1 + 𝒃𝑅)
1

). 

(3.6) 

or 

 

�̃�𝑡 = ∑ ∑ δ𝑖𝑗α𝑡
�̃�𝑖γ𝑡

𝐾

𝑑𝐼+1

γ𝑡=1

�̃�γ𝑡
(𝑤𝑡)

χ+1

𝑖,𝑗,α𝑡−1=1

�̃�𝑗α𝑡−1

𝑅 �̃�𝑡−1
(α𝑡−1)

. 

 

(3.7) 

Thus, one need to change the corresponding MPS tensor 𝑇𝛼𝑡𝛼𝑡−1

𝛾𝑡 → �̃�𝛼𝑡𝛼𝑡−1

𝛾𝑡 , 

 

�̃�𝛼𝑡𝛼𝑡−1

𝛾𝑡 = ∑ ∑ �̃�𝑖𝛾𝑡

𝐾

𝑑𝐼

𝛾𝑡=1

𝜒

𝑖,𝑗,𝛼𝑡−1=1

. �̃�𝑗𝛼𝑡−1

𝑅 . 

 

(3.8) 

Now, we can follow the same flow as (2.11)-(2.15), and the chain of MPS can be 

retrieved. Nevertheless, the MPS chain still has open boundaries at the beginning and 

the end. To close these, we define two additional vectors, �̃�0 and �̃�𝑓, which are the �̃�𝑡 

at time 𝑡 = 0 and the final time step. Normally, the initial state of the RNN is set to 

null vector or zero vector, so the �̃�𝑡 at 𝑡 = 0 becomes 

 

�̃�0 = (
𝟎
1

). 

 

(3.9) 

Since we need to make sure that all the output results in the last time step must be 

taken into account, the appropriate choice is to contract them with the vector 

comprised of one in each component. Thus, we define the �̃�𝑓 as 

 

�̃�𝑓 = (
𝟏
1

). 

 

(3.10) 
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However, this choice of �̃�0 and �̃�𝑓 should not affect the entanglement entropy much 

because if the chain is long enough, the boundary effect can be ignored. Lastly, one 

can perform the entanglement entropy calculation in the middle of the (closed 

boundary) MPS chain following the described flow in section 2.5. 

In this subsection, we have modified our existing tensors to work with 

additional biases, whether by adding an additional dimension with one as a 

component or extending both row and column to include the bias vector within them. 

This simple modification allows us to use the same mathematics to calculate the 

entropy and maintain the same mathematical structure of the tensor forms. With this 

help, we can achieve the training process just like the pre-transformed form. In the 

following subsection, we will discuss the training model and the parameters and 

strategy needed in this work. 

3.2 Data Prepossessing 

The IMDb dataset is used in this experiment, which is a standard dataset for 

binary sentiment classification containing movie reviews [19]. This task has two 

labels, “1" for a positive review and “0" for a negative review. The dataset is divided 

into 40,000 reviews for training and 10,000 reviews for testing. The positive and 

negative reviews ratio in the train and test are 20,027: 19,973 and 4,913: 5,027, 

respectively. The maximum length of each review is set to 𝑁 = 50 words with 

dictionary size 𝐷 = 3,000 and 𝐷 = 10,000. Because the datasets are different in size 

(determined by the number of reviews), the dictionary sizes might have an effect on 

the accuracy and behavior since they determine both numbers of parameters and 

words being used in the models. 

We use Keras to implement our RACs model [20]. We use Adam optimizer to 

optimize the loss function for the training process. The number of epochs is set to 200 

with batch size equal to 128. Early stopping is also deployed for stability reasons. The 

model is set to terminate if the change of the loss function at the end of each epoch is 

smaller than 0.001 and has no improvement after 4 epochs. The training process is 

done on a set of bond dimensions 𝜒 given by χ ∈ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
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16,17,18,19,20,25,30,35,40,45,50,55,60,65,70,75,80]. Then, we repeat every training 

process 50 times with the randomly initialized model parameters for each round to 

obtain averaged accuracy and entanglement entropy for each 𝜒, where the entropy is 

obtained by performing a bipartization at the middle of the MPS chain. 

We also experiment on Rotten Tomatoes movie review (MR) with some 

tweaked parameters as follows [21]. In the MR dataset, the batch size, epochs, and 

maximum length are set to 32, 100, and 20, respectively. The parameters are changed 

because the size of the MR dataset, which 8,400 for the train and 2,662 for the test, is 

smaller than the IMDb. The rest of the flow is the same as the IMDb dataset. 

3.3 Results on pre-trained word embedding 

We want to focus solely on the behavior of RACs, so our first strategy is to fix 

the word embedding during the RACs training. However, to do that, we need to have 

a way to train our embedding layer first; otherwise, the outputs of the non-trained 

embedding layer are random values. We achieve this by pre-train the word embedding 

with the flatten layer (available in Keras). The structure of the model is almost the 

same, except the flatten layer is used instead of the RACs. The reason behind using 

flattening is that the layer does not contain trainable parameters. It only picks outputs 

from the previous layer, embedding layer in this case, concatenates them into a long 

sequence of numbers, then feeds this sequence to the next layer, which is a dense 

layer (𝑊𝑂 and a sigmoid function). The word embedding is pre-trained with the same 

setting as the RACs as described in section 3.2, except the early stopping plays a role 

in preventing overfitting instead of the stability of the model. 

The pre-trained process of the word embedding 𝜙 is repeated over 50 times 

with randomly initialized parameters. Since we will train the RAC 50 times with 

random initialization parameters, this gives us a set of 50 distinct 𝜙 which can be 

used to train the RAC. Next, we set the embedding layer to be 𝜙 in the RACs model, 

then train the whole model again while the parameters of the pre-trained 𝜙 are fixed. 

The experimental results of the IMDb dataset with 𝑑𝐼 = 4 and 𝐷 = 10,000 are shown 

in figure 3.1, which shows the plots of accuracy and entanglement entropy of the 
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bipartited RACs at site 𝑁/2 = 25 for different bond dimensions 𝜒. From 𝜒 = 1 to 

𝜒 = 20, the entanglement entropy increases rapidly before it saturates at 𝜒∗ ≈ 20 and 

fluctuates mildly after that, where the maximum of the averaged entropy is 𝑆‾max ≈

2.53. The training and test accuracy also shows a similar trend, but it increases much 

slower than the entropy when 𝜒 approaches 𝜒∗. The training and test accuracy starts 

from 87.1% and 84.7% at 𝜒 = 1 then climbs slowly and reaches 91.5% and 86.3% 

at 𝜒 ≈ 20. Figure 3.2 shows the plots of Schmidt’s coefficients 𝜆𝑖 in the case 𝑑𝐼 = 4 

for each bond dimension 𝜒 as a function of indices, where the coefficients are labeled 

in the descending order, when 𝜒 < 𝜒∗, the spectrum lines of the 𝜆𝑖 are separated. 

However, after the bond dimension 𝜒 hits the value of the 𝜒∗, the spectrum of the 𝜆𝑖 

of the 𝜒 that is larger than 𝜒∗ collapses to the same trend. 

 

Figure 3.1: This plot shows the training accuracy, test accuracy, and the entanglement 

entropy of the IMDb dataset with 𝑑𝐼 = 4 and 𝐷 = 10,000, where the saturation 

occurs at around 𝜒 ≈ 20, and the averaged maximum entropy 𝑆‾max ≈ 2.53. 
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Figure 3.2: This graph illustrates the Schmidt coefficients 𝜆𝑖 used to calculate 

entanglement entropy 𝑆. The 𝜆𝑖’s are plotted as a function of indices labeled in a 

descending order corresponding to their value. The spectrum of the Schmidt 

coefficients collapses to the same trend when 𝜒 > 20 except for the deviation at the 

tails, which are the results of the boundary effect. When the MPS is infinitely long, 

the deviation should not be seen in the ideal case. 

Recalling the entanglement entropy equation (2.23), the maximum entropy which the 

model can achieve is when 𝜆𝑖
2 = 1/(𝜒 + 1) or 

 
S = log2(𝜒 + 1), 

 

(3.11) 

where 𝜒 + 1 comes from the fact that we need to add one extra dimension for the 

availability of the biases. As shown in the figure 3.1 (b, this implies that only the 

leading indices of the Schmidt coefficients matter, which means the two subsystems 

weakly interact. Although log2(21) ≈ 4.39 and log2(81) ≈ 6.34 are the maximum 

value which entanglement entropy can reach, it instead saturates at 𝑆‾𝑚𝑎𝑥 ≈ 2.53 

rather than keep increasing with the bond dimension. This saturation, together with 

the weak interaction, suggests that RAC is not the main source of information 

propagation. Thus, we might investigate further the word embedding, which will be 

discussed next. 
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Figure 3.3: The result on IMDb with 𝑑𝐼 = 4 and 𝐷 = 3,000. The entropy saturates at 

𝜒 ≈ 20 where 𝑆‾max ≈ 2.55. 

 

Figure 3.4: The plots of accuracy and the entropy of the model on the MR dataset 

with 𝑑𝐼 = 4 and 𝐷 = 3,000. 
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Figure 3.5: The plots of accuracy and the entropy of the model on the MR dataset 

with 𝑑𝐼 = 4 and 𝐷 = 10,000 

 

Figure 3.6: The plot of Schmidt coefficients 𝜆𝑖 on the MR dataset with 𝑑𝐼 = 4 and 

𝐷 = 3,000. 
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From figure 3.3, the train and test accuracy of the IMDb dataset with a dictionary size 

of 𝐷 = 3,000 saturate at 85.1% and 83.2%, which are lower than the 𝐷 = 10,000 

case. This is intuitive since the more parameters the model has, the higher the model’s 

accuracy can achieve. Nevertheless, the accuracy and entropy of both 𝐷 = 3,000 and 

𝐷 = 10,000 still plateau when they reach the specific bond dimension. Figures 3.4, 

3.5 and 3.6 show the results of experiments conducted on the MR dataset, which show 

that the saturation phenomena appears in the other dataset. 

In the fixed word embedding, the experiment’s result tells us that the model 

can attain high accuracy, even though the subsystems of the MPS are weakly 

interacting, measuring from the entanglement entropy. In the following section, we 

train the RAC layer and the word embedding simultaneously. We show that 

information propagation of the RAC is not the main source of accuracy and 

expressiveness; rather, word embedding is important. 

3.4 Results on unfixed word embedding 

Unlike the previous experiment, the word embedding is not pre-trained, but 

we use a randomly initialized and unfixed word embedding. To study the effect the 

word embedding has on the model, we train the embedding layer with the RACs 

simultaneously. The results show that the entanglement entropy behaves differently 

from the fixed word embedding. In both datasets, the entropy shows increase and 

decay patterns. First, they sharply boost until hitting the highest value at bond 

dimension 𝜒 = 5 before drops to about 0.8𝑆‾max and saturates at 𝜒 ≈ 25 and 𝜒 ≈ 20 

for IMDb and MR dataset, respectively. In terms of accuracy, the model can achieve 

around 99% in both IMDb and MR datasets, which is higher than the previous case. 

Notice that the maximum of the average entropy which are 𝑆‾max ≈ 1.17 and 𝑆‾max ≈

1.20 are lower than the fixed embedding case. The increase in accuracy while the 

entanglement entropy decreases are contrary to our belief that information 

propagation is the main source of accuracy and expressiveness. Because of the 

presence of the trainable word embedding, which is the only difference between this 

experiment and the previous one, this suggests that the embedding layer plays a role 
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in the contribution of the information or the entanglement entropy, which cannot be 

observed in the traditional RNNs. 

To examine the word embedding in more detail, the cosine similarity between 

two opposite meaning words, which are (worst, best) and (boring, interesting), are 

shown in figure 3.9 and 3.10 for the IMDb and MR dataset, respectively. The words 

are chosen because they are the topmost frequently appear, and their meaning is likely 

to have a high effect on the sentiment prediction. One can see that the cosine 

similarity drops in both datasets while the entropy dramatically increases and hits its 

highest value at 𝜒 = 5. When the entropy drops, the speed at which the cosine 

similarity decreases is also slowed down. When the dropping stops, the entropy and 

the cosine similarity saturate afterward. This behavior might imply that the model 

expressiveness mostly comes from the RACs when 𝜒 ≤ 5. However, when the word 

embedding becomes better, 𝜒 ≥ 5, the role is switched to the embedding layer, which 

can be seen from the decaying of RAC’s entanglement entropy as the word 

embedding attains more meaning measured from the cosine similarity. 

 

Figure 3.7: The plots of accuracy and the entropy of the unfixed word embedding on 

the IMDb dataset. Interestingly, unlike the fixed case, not only it can achieve higher 

accuracy and has lower maximum entropy, but it also shows different behavior in 

entropy which is the increase and decay to some saturated value. 
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Figure 3.8: The result of the model on the MR dataset with unfixed word embedding 

illustrates that the same behavior appears in the MR dataset. 

 

Figure 3.9: This figure shows the plots of entanglement entropy and cosine similarity 

of the opposite meanings of word pairs (worst, best) and (boring, interesting) on the 

IMDb dataset. The cosine similarity rapidly decreases while the entropy increases, 

which is intuitive since they should have an anti-correlation. 
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Figure 3.10: The plots show the cosine similarity and entropy of the model on the MR 

dataset. 
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Discussion and Outlook 

 

In this work, we experiment on the RACs with additive biases and the effect 

of the word embedding by dividing our RACs training process into two strategies. 

The first strategy is to train RACs with the pre-trained and fixed word embedding; the 

second is to simultaneously train RACs and word embedding. In the former case, our 

results have shown that the entanglement entropy saturates when the model accuracy 

saturates. This saturation behavior points out the minimal bond dimensions (and 

hence resource) required to achieve the highest model accuracy, which the traditional 

RNN cannot determine. We notice that although the entanglement entropy is bounded 

by log2(𝜒 + 1), 𝑆‾max is still less than the bounded value at any given 𝜒 indicating that 

the word embedding might play a crucial role in attaining higher accuracy and also 

contribute to the embedding layer. This leads us to investigate further in the latter 

case. By training the embedding layer and RACs concurrently, we find that the 

expressiveness and information propagation of the model stem from the RACs at the 

beginning before the role is switched to the word embedding and the entanglement 

entropy of the RACs starts to drop. We also notice that the latter case can achieve 

higher accuracy and have lower maximum entanglement entropy than the former. For 

the NLP sentiment analysis task on a movie review, we might not necessarily focus 

solely on designing RNNs to increase information propagation. Instead, the 

embedding layer should also be focused on achieving high accuracy. 

4.1 Outlook 

Although the results suggest that the word embedding affects the entanglement 

entropy, we cannot measure them directly. Instead, we have to find a way around it by 

using the cosine similarity. The problem is that the dimension of the bond dimension 

between input and the word embedding is too large (3,000 and 10,000 in our case), 

which cannot be performed by a normal computer. For example, if the MPS chain is 

chosen to contain 10 tensors when the MPS is constructed, the contained parameters 

go up to 3, 00010. This problem can be solved by designing the word embedding to 
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contain arbitrary parameters without affecting the input and output dimensions. 

However, these works require too much effort, and it is not the aim of this project. It 

would be great to investigate further developing such a word embedding. Some of the 

ideas are that we can have two-word embedding instead of one so that the bond 

dimension connecting one to the other can be tuned without affecting the input and 

output size of the embedding layer. 

Another important thing to consider is the stability of the model. Since the 

model comprises many multiplications, some deviation or perturbation (from 

stochastic gradient descent) can lead to exploding gradient. Hence, improvement is 

needed to use RACs with a larger model. We may need to adjust the activation 

function by using a more stable operator such as addition. Lastly, it would be great to 

expand the experiment to the multi-layer RACs because the machine learning model 

in the real-world use cases is mostly deep. Studying deep RACs might give us 

insights to understand more about the interaction and the correlation of layers in deep 

learning. 

We also experiment on a character prediction task in this work. Given a 

sequence of 𝑛 words, the model can predict the (𝑛 + 1)th word, which can be used to 

generate a whole sentence or a long text composing of several sentences. However, 

the structure of the model is a matrix product operator (MPO) rather than an MPS. 

The classical mutual information is the only reasonable quantity that can be measured 

in this case. Although one can directly compute mutual information from the MPO, it 

is a quantum version, which cannot be interpreted as the same as classical mutual 

information. Also, for the model to work well, the size of the bond dimension needs to 

be big. Thus, the requirement leads to the same problems mentioned in the sentiment 

analysis task: stability and computationally intensive. 
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