

TOWARDS EXPLAINABLE SENTIMENT ANALYSIS FOR

WRITTEN REVIEWS VIA QUANTUM TENSOR

NETWORK STATES

Mr. Chanatip Mangkang

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Physics

Department of Physics

FACULTY OF SCIENCE

Chulalongkorn University

Academic Year 2021

Copyright of Chulalongkorn University

การวิเคราะห์ความรู้สึกของงานเขียนท่ีอธิบายไดผ้า่นสถานะเครือข่ายควอนตมั

นายชนาธิป มัง่คัง่

วิทยานิพนธ์น้ีเป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวิทยาศาสตรมหาบณัฑิต
สาขาวิชาฟิสิกส์ ภาควิชาฟิสิกส์

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลยั
ปีการศึกษา 2564

ลิขสิทธ์ิของจุฬาลงกรณ์มหาวิทยาลยั

Thesis Title TOWARDS EXPLAINABLE SENTIMENT

ANALYSIS FOR WRITTEN REVIEWS VIA

QUANTUM TENSOR NETWORK STATES

By Mr. Chanatip Mangkang

Field of Study Physics

Thesis Advisor Dr. THIPARAT CHOTIBUT

Accepted by the FACULTY OF SCIENCE, Chulalongkorn

University in Partial Fulfillment of the Requirement for the Master of

Science

Dean of the FACULTY OF

SCIENCE

 (Professor Dr. POLKIT SANGVANICH)

THESIS COMMITTEE

Chairman

 (Associate Professor Dr. UDOMSILP

PINSOOK)

Thesis Advisor

 (Dr. THIPARAT CHOTIBUT)

Examiner

 (Associate Professor Dr. SURACHATE

LIMKUMNERD)

External Examiner

 (Assistant Professor Dr. Sujint Suwanna)

 iii

ABST RACT (THAI) ชนาธิป มัง่คัง่ : การวิเคราะหค์วามรู้สึกของงานเขียนท่ีอธิบายไดผ้า่นสถานะเครือข่ายควอนตมั. (

TOWARDS EXPLAINABLE SENTIMENT ANALYSIS FOR

WRITTEN REVIEWS VIA QUANTUM TENSOR

NETWORK STATES) อ.ท่ีปรึกษาหลกั : อ. ดร.ธิปรัชต ์โชติบุตร

โครงข่ายประสาทเทียมแบบวนซ ้ า (Recurrent Neural Network: RNN) เป็นการ
เรียนรู้ของเคร่ืองประเภทหน่ึงซ่ึงมีความสามารถในการแกปั้ญหาจ าพวกการประมวลผลภาษาธรรมชาติไดเ้ป็น
อยา่งดี แต่การท าความเขา้ใจพฤติกรรมของมนัในทางทฤษฎีนั้นเป็นเร่ืองท่ีเป็นไปไดย้ากเน่ืองจากการค านวณ
ภายในท่ี มีความซับซ้อน ในงานน้ี เราท าการศึกษา RNN ประเภทห น่ึงท่ี มี ช่ือว่า Recurrent

Arithmetic Circuit หรือ RAC ซ่ึงสามารถแปลงเป็น Matrix Product State (MPS)

ท่ีถูกใช้อย่างแพร่หลายในควอนตัมฟิสิกส์ได้ ส่ิงน้ี ช่วยให้ เราสามารถค านวณ Entanglement

Entropy ของ MPS ซ่ึงสามารถใชอ้ธิบายการส่งผา่นขอ้มูลของโมเดลเพื่ออธิบายพฤติกรรมความถูกตอ้ง
ท่ีเกิดขึ้นในการประมวลผลภาษาธรรมชาติ เราพบว่า Entanglement Entropy นั้นจะอ่ิมตัวเม่ือ
ความถูกตอ้งอ่ิมตัวในกรณีของ Word Embedding มีค่าคงท่ี ในกรณีท่ี Word Embedding

นั้ นไม่ได้ถูกตั้ งให้ มีค่ าคงท่ี Entanglement Entropy นั้ น มีค่ าท่ีลดลงเร่ือย ๆ เม่ือ Word

Embedding มีความสามารถท่ีเพ่ิมขึ้นโดยวดัจาก Cosine Similarity งานของเราช่วยให้การ
เรียนรู้ของเคร่ืองประเภท RNN สามารถถูกอธิบายไดม้ากย่ิงขึ้น

สาขาวิชา ฟิสิกส์ ลายมือช่ือนิสิต
..

ปีการศึกษา 2564 ลายมือช่ือ อ.ท่ีปรึกษาหลกั
..............................

 iv

ABST RACT (ENGLISH) # # 6270023923 : MAJOR PHYSICS

KEYWOR

D:

 Chanatip Mangkang : TOWARDS EXPLAINABLE SENTIMENT

ANALYSIS FOR WRITTEN REVIEWS VIA QUANTUM

TENSOR NETWORK STATES. Advisor: Dr. THIPARAT

CHOTIBUT

Recurrent Neural Networks (RNNs) have shown an incredible

performance in supervised machine learning tasks such as Natural Language

Processing (NLP). However, theoretical understanding of RNNs'

performances in NLP are still limited due to intrinsically complex non-linear

computations of RNNs. This thesis explores a class of RNNs called

Recurrent Arithmetic Circuits (RACs), possessing a dual mathematical

representation as a Matrix Product State (MPS) widely used in many-body

quantum physics. The duality allows us to compute the entanglement entropy

of an MPS, which can be used as a proxy for information propagation in the

dual neural networks, to phenomenologically explain the RNNs-based model

prediction accuracy's behaviors in NLP. We found that the entanglement

entropy saturates when the accuracy saturates in the fixed word embedding

case. The unfixed word embedding experiments also reveal that the

entanglement entropy of the RACs is decaying as the word embedding

becomes more meaningful, as reflected by the behaviors of cosine similarity

between word embeddings. This thesis sheds light on more transparent and

explainable behaviors of RNNs-based machine learning in NLP, using tools

from many-body quantum physics.

Field of

Study:

Physics Student's Signature

...............................

Academic

Year:

2021 Advisor's Signature

..............................

 v

ACKNOWLEDGEMENT S

ACKNOWLEDGEMENTS

First of all, I would like to thank my thesis advisor, Professor

Thiparat Chotibut, and Dr. Jirawat Tangpanitanon for giving me the

opportunity to work on this project. There were times when I got stuck in

coming up with research ideas and in making progress; however, they have

always been providing helpful advice, ideas, and resource to overcome the

obstacles. This project would not be successful without their continuous

supports. I also acknowledge National e-Science Infrastructure Consortium,

Chulalongkorn University cluster for providing us with computational

resources.

Lastly, I also thank my friends and my family who always cheer me

up and encourage me throughout the project.

Chanatip Mangkang

TABLE OF CONTENTS

 Page

.. iii

ABSTRACT (THAI) ... iii

... iv

ABSTRACT (ENGLISH) ... iv

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS .. vi

1. Introduction ... 1

2. Background .. 3

2.1 Tensor Network ... 4

2.2 Recurrent Neural Networks (RNNs) ... 5

2.3 Word Embedding ... 9

2.4 Matrix Product State and Recurrent Arithmetic Circuits 11

2.5 Entanglement Entropy ... 13

3. Experiments & Results .. 20

3.1 RACs with Bias ... 21

3.2 Data Prepossessing .. 23

3.3 Results on pre-trained word embedding .. 24

3.4 Results on unfixed word embedding ... 29

Discussion and Outlook ... 33

4.1 Outlook .. 33

REFERENCES .. 35

VITA .. 37

1. Introduction

Machine Learning (ML) has shown incredible performances in highly

sophisticated computational tasks, ranging from defeating humans in the game of Go,

Dota2, and in image recognition [1], for example. Despite the tremendous successes

of ML, it is extremely difficult to understand and analyze ML behaviors [2]. From

practical point of views, ML is typically treated as a black box computational model

to perform a specific task. The more complex the task is, the more resources and the

more complexity of the model are required. More complex models come at a cost of

the requirement to tune a gigantic set of parameters to achieve the best model

performance. It is difficult to determine the appropriate parameters for the model if

we have a little understanding of the model’s behaviors. A typical solution is to start

with a gigantic model size, perhaps with many more parameters than one actually

needs to fit the data.

In many-body quantum physics, many useful models have been extensively

scrutinized, resulting in a comprehensive understanding of models’ behaviors. One

unique feature of many-body systems is that the Hilbert space of a many-body

quantum state typically grows exponentially large with a system size. For the analysis

of the model to be computationally tractable, several approximation techniques have

been developed to efficiently and compactly represent a quantum state, compressing

an exponential resource requirement to only a polynomial requirement. Examples of

such compact representations of many-body quantum states include matrix product

state (MPS) [3], projected entangled-pair states (PEPS) [4], and multiscale

entanglement renormalization ansatz (MERA) [5].

To exploit the explainable aspects of quantum models and their useful compact

representations, applying many-body quantum techniques to ML can give more

insights into the behaviors of ML [6]. For example, Recurrent Arithmetic Circuits

(RACs) are a type of Recurrent Neural Networks (RNNs) that can be mapped to an

MPS in many-body quantum physics [7]. RNNs have a recurrent structure, making

them special and suitable for tasks involving long-range memory such as time-series

 2

or sequential predictions. RNNs have tremendous successes in Natural Language

Processing (NLP) tasks, such as sentiment analysis and text generation. In this work,

we will scrutinize RACs’ behaviors in sentiment analysis, a computational task that

classifies given sentences into categories, positive and negative sentiments in this

work. We borrow the tools used to measure long-range correlations (entanglement

entropy) in MPS to show that the information propagation in RACs saturates around

the point where the model accuracy saturates. For the first time, our work reveals that

a minimal model size which achieves highest prediction accuracy arises from the

saturation of long-range information propagation in the model.

Note that the aforementioned result on the minimal model size disregards the

contributions of correlations from other layers in the RACs network, particularly from

the word embedding layer. Thus, we also analyze the role of the embedding layer on

model prediction accuracy. As will be seen in this work, when the embedding layer is

trainable, as the model size increases, the entanglement entropy increases before

dropping down to saturate. As the entanglement entropy drops, we show that the word

embedding becomes more meaningful semantically. This behavior implies that the

larger the model size RACs possess, the more meaningful the embedding layer

becomes, while the importance of information propagation in RACs decreases.

This thesis is organized as follows. First, we begin by providing a comprehensive

background on RNNs and word embedding in sections 2.1-2.3. The mathematical

equivalence between RACs and MPS as well as the discussion on the entanglement

entropy in MPS are provided in sections 2.4-2.5. Then, in section 3, we show the

RACs’ performance and their information propagation as one increases the model size

in a sentiment analysis task. The behaviors of the word embedding and of the

entanglement entropy are also discussed. Finally, we conclude and discuss the future

improvements of the model in section 4.

 3

2. Background

Since language can be viewed as a sequential phenomenon, one common

approach to model language (statistical language modeling) is to encode a meaningful

sequence of words into a conditional probability to predict the 𝑛th word given 𝑛 − 1

previous words 𝑃(𝑤𝑛|𝑤1:𝑛−1), where 𝑤1:𝑛−1 is the word sequence (𝑤1, 𝑤2, … , 𝑤𝑛−1).

However, the model built on this occurrence probability can be computationally

impractical. To see why this problem could happen, assume that we have only 100

words in a dataset, and they can occur with the same frequency. In this case, the

probability of a sequence of 𝑛 words (𝑤1, 𝑤2, … , 𝑤𝑛) appearing in a data set is 100−𝑛,

which is practically negligible. Even though a probabilistic model that predicts the

next word given a shorter sequence of length 𝑘, say 𝑃(𝑤𝑛|𝑤𝑛−𝑘:𝑛−1), called a 𝑘-gram

model, can be proposed, it is still hard to find a suitable 𝑘, while maintaining both

exponential decay in probability and the accuracy of a model. For instance, assume

that a model uses 𝑘 = 𝑛 − 4, which means we use four previous words for prediction.

The model can give a wrong answer for a sentence like "This special dish that you

prepared for me …", which may give "are," but the correct answer is "is," which

requires a 6–8 gram model to achieve the correct answer. We could put or construct a

model with more parameters in order to capture a long-range sequence while

maintaining accuracy, but this requires more computational resources, which means

more money to spend. We can achieve high accuracy with recurrent neural networks

(RNNs) while only using a small amount of resources.

RNNs are a type of machine learning specialized in performing sequential

tasks. This work will focus on many-body physics-inspired RNNs called RACs,

consisting of a linear operation which is a tensor contraction. We will show that

RACs can be mapped to an MPS, a 1D chain of tensors. However, before diving into

the details, let us begin with introducing the terminologies used throughout this work

to visually represent a tensor calculation as a picture, called a tensor network diagram.

 4

2.1 Tensor Network

When one talks about tensor contractions, indices manipulation is

unavoidable. However, it is mentally more pleasing to represent tensor operations via

pictorial thinking. This method is called the tensor diagram notation. Roger Penrose

proposed the notation in early 1970’s [8]. These methods have been exploited in many

different domains of physics, computer science, and mathematics. To accommodate

tensor manipulations as a LEGO-like concatenation, one visually represents a

mathematical tensor by shapes such as a box or a circle, with zero or more output

wires called legs, which point up and down corresponding to upper and lower indices,

respectively.

For example, diagram (a) above represents the tensor 𝜓𝑖 with a single upper

index (a vector), diagram (b) the tensor 𝑀𝑖𝑗 (a matrix), and diagram (c) the tensor 𝑇𝑗𝑘
𝑖

(of rank 3). To do tensor contractions (summed over indices), one needs to connect

two legs corresponding to those indices.

 5

Diagram (d) represents the contraction of matrix 𝐵𝑖
𝑗
 with vector 𝐴𝑖 (a

multiplying matrix with a vector), which results in another vector. The mathematical

expression of diagram (d) is 𝐵𝑖
𝑗
𝐴𝑖 = 𝐶𝑗 , where the leg labeled 𝑖 is fully connected,

and hence the corresponding index is summed over (Einstein’s summation convention

is assumed here). However, unlike in general relativity, we do not have to be

concerned about whether the indices are upper or lower since. For the purpose of data

science studied in this work, contravariant and covariant indices are the same as there

are no requirement on the existence of a metric in our problem. So, we can raise and

lower the indices freely (e.g., 𝐴𝑖𝐵𝑖
𝑗

= 𝐴𝑖𝐵𝑗𝑖 = 𝐴𝑖𝐵𝑗𝑖). In (e), the diagram is more

complicated, contracting two indices between a matrix and an order-3 tensor.

Diagram (e) mathematically expresses 𝐷𝑖𝑗𝐸𝑖𝑗
𝑘 = 𝐹𝑘. Two or more tensor diagrams

interact with each other will form a tensor network.

Now, we are armed with the knowledge of tensor networks that can be used to

represent a cumbersome indices operation into a simpler pictorial representation.

Next, we will introduce a general concept of RNNs and discuss the mapping between

RACs and MPS.

2.2 Recurrent Neural Networks (RNNs)

As its name suggests, RNNs use recurrent computation to accumulate

information from the past items in the sequence to predict the current item, as

opposed to using the conditional probability prediction discussed earlier [9]. To keep

things simple, we will stick to a sentiment analysis task that returns a binary output 𝑂

for a given sequence of 𝑁 words (𝑤1, 𝑤2, … , 𝑤𝑁). The output 𝑂 in our case has two

discrete values, which are 0 for negative sentiment and 1 for positive sentiment. At

the core of calculation, RNN has the smallest unit called a cell, which calculates the

hidden state at time step 𝑡. To calculate ℎ at time 𝑡, the RNN cell receives two inputs:

its previous hidden state 𝒉𝑡−1 from the output of the previous cell and the embedded

input 𝝓(𝑤𝑡) at time step 𝑡. Thus, it is called recurrent. It is worth noting that,

depending on the design, RNNs can have multiple hidden states. However, for the

purposes of this paper, we will only consider one hidden state ℎ because it can be

 6

mapped to the tensor form, which will be discussed later. An example of a model that

contains more than one state is LSTM [10].

Figure 2.1: This figure illustrates the components of a simple RNN and how it works.

A simple RNN is composed of a small subunit called a cell. The inputs to the cell are

different at each time step, but the operations in the cell are identical. The hidden state

h0 is fed to the RNN cell at time step 𝑡 = 1 together with the first word vector 𝝓(𝑤1).

The output is called h1 and will be fed to the next time step at 𝑡2, and so on. This

process keeps repeating until it reaches the final step with the hidden state output hN,

which will be passed to the output layer and sigmoid function, giving the final output,

prediction.

Embedding is the process of transforming a 𝑤𝑡 into a vector 𝝓(𝑤𝑡) ∈ ℝ𝑑𝐼

using an embedding layer (more on embedding layers in the following subsection).

The operation of the RNN cell can be written as

 𝒉𝑡 = 𝑓(𝑊𝐾𝝓(𝑤𝑡), 𝑊𝑅𝒉𝑡−1, 𝒃), (2.1)

where 𝐡𝑡 is a vector called hidden state at time 𝑡 with dimension 𝜒; 𝑊𝐾 is called a

kernel, which is a weight matrix for an input with dimension 𝑑𝐼 × 𝜒; 𝑊𝑅 is a

recurrent kernel which is a weight matrix for the hidden state with dimension 𝜒 × 𝜒;

and 𝐛 is a bias. The structure of the function 𝑓 depends on what model we are using.

It can be simple, as in vanilla RNN, where the function 𝑓 is in the form of

tanh(𝑊𝐾𝝓(𝑤𝑡) + 𝑊𝑅𝒉𝑡 − 1 + 𝒃), or very complicated, as in LSTM, which contains

 7

many operations and non-linearity terms. In machine learning, we call this function an

activation function. The rectified linear unit or ReLU, defined by 𝑓(𝑥) = Max{0, 𝑥},

along with its variant [11], is the most commonly used activation function in modern

machine learning. The inspiration for these functions is to mimic the behavior of

human neurons. It is believed that each neuron requires a certain threshold of

incoming signals to be triggered. Hence, the activation function does the same job

here. As for the bias term, it can be thought of as a background signal of a neuron.

When the RNN cell is specified, we are now ready for the real RNN

calculation. By starting with initialized 𝒉0 (mostly set as null state) and the input

𝝓(𝑤1), the hidden state 𝒉1 can be calculated. Then, continuing the calculation

recursively using the input 𝝓(𝑤2), … , 𝝓(𝑤3) and the previous hidden state

(𝒉1, … , 𝒉𝑁−1) with the same cell structure, the hidden states for time steps 𝑡 = 2 to

𝑡 = 𝑁, i.e., 𝒉2, … , 𝒉𝑁, can be retrieved. The hidden state at the time 𝑡 aggregates all

the information from the past steps 1 to (𝑡 − 1). Thus, the long-term correlation can

be achieved without the need for the model to grow with the sequence length. The

past input can affect the present prediction, while maintaining the independence

between the length of a series and model parameters is what we needed.

In the sentiment task, we expect the output to be 0 or 1, 𝑂 ∈ {0,1}. However,

the hidden state is a vector, so we need a way to transform them to a scalar, which can

be done by matrix multiplication. We define a dense matrix that will be multiplied

with the last hidden state as 𝑊𝑂 with dimension 𝜒 × 1, and a bias can also be added

here. Nevertheless, the matrix 𝑊𝑂 and bias are not enough to make the output within

the [0,1] range, so we introduce another activation function here called the sigmoid

activation function, which has the form 𝜎(𝑥) ≡
1

1+𝑒−𝑥. Thus, the explicit form of the

last layer is

𝑂 =
1

1 + exp(−𝑅)
,

(2.2)

 8

where 𝑅 = 𝑊𝑂𝒉𝑁 + 𝑏𝑜 is the result before being put in the sigmoid function. We also

denote a set of parameters that affect the output 𝑂 as 𝜃 ≡ {𝑊𝐾, 𝑊𝑅 , 𝑊𝑂 , 𝒃, 𝑏𝑜}. We

will write 𝑂 as 𝑂𝜃 to show that 𝑂𝜃 depends on the set of parameters in 𝜃. Since the

value of 𝑂𝜃 is inside the window [0,1] not 0 or 1, the 𝑂𝜃 is interpreted as a

probability of being 1 (or being 0 with probability 1 − 𝑂𝜃).

The model parameters are initialized randomly. We expect them to be

improved over time by a method called training. First, we let them do a task and

measure how far the output predicted by the model and the expected results (the true

answer) are. Then, the model’s parameters are adjusted such that the distance between

the model outputs and the expected results is closer than before. We use a function

called loss function (𝐿) to measure the aggregate of how far the predictions 𝑂𝜃(𝒘𝑚)

from the true sentiments 𝑌(𝒘𝑚), where 𝑌(𝒘𝑚) = 1 for a positive review and 0 for a

negative review. The 𝒘𝑚 ≡ 𝑤1:𝑁,𝑚 = (𝑤1, 𝑤2, … , 𝑤𝑁)𝑚 denotes the 𝑚𝑡ℎ sequence in

the dataset. If the dataset contains 𝑀 sequences of words (𝑀 reviews in our case),

then we have 𝑚 ∈ {1,2, … , 𝑀}. Generally, for a binary classification problem whose

output is probabilistic, we use the binary cross-entropy

𝐿 ≡ ∑
1

𝑀

𝑀

𝑚=1

(𝑌(𝐰𝑚)log[𝑂𝜃(𝐰𝑚)] + (1 − 𝑌(𝐰𝑚))log[1 − 𝑂𝜃(𝐰𝑚)]).

(2.3)

The whole training process is to search for 𝜃∗ that minimizes the loss function 𝐿 or, in

other words, the 𝜃∗ that makes the prediction as close to the true answer as possible

(gradient descent, Adam, and their variants can be used to search for the 𝜃∗ [12]).

Hence, we expect the model with the set of parameters 𝜃∗ will give the well the

approximated probabilistic distribution that is

 𝑃(𝑂|𝑤1:𝑁) ≈ RNN𝜃∗(𝑂|𝑤1:𝑁), (2.4)

where 𝑂 is the output for the given sequence 𝑤1:𝑁, and RNN𝜃∗ is the RNN model

with the given parameters 𝜃∗.

 9

2.3 Word Embedding

The word embedding was mentioned in the previous subsection, but we did

not discuss it in detail. This subsection discusses the importance of the embedding

layer or the word embedding. To change words into the form that a statistical model

or a numerical computation can perform a calculation, one needs a way to modify

them to numbers. One of the easiest ways is to tokenize them. To do this, one first

sorts all the words in the dictionary in the ascending order from the most used to the

lowest one. After the words are sorted, one can then tokenize each word by assigning

each word with its order. As an example, assume that a dictionary contains {a, the,

you}. If the most used word is “the” followed by “you" and “a" respectively, the

tokenization is the process that maps {the, you, a} to {1, 2, 3}. Hence, each word

sequence in the dataset can now be represented by a sequence of integers 𝑤1:𝑁 where

each sequence is forced to have a constant length 𝑁. To do this, we do padding at the

beginning of the sequence by 0. We use pre-padding instead of post-padding to ensure

that a data vanishing will not occur during the training process. For example, we set

𝑁 = 5 with the sentence “I love you” which can be encoded as 𝑤1:5 = (0,0,7,53,8)

where “I”= 7, “love”= 53, “you”= 8, and 0’s come from the padding process.

Nevertheless, these processes are not enough. Each word has its meaning, but a

number does not, so word embedding is needed. The embedding layer embeds a

number (a word) which is a scalar ℝ to a higher dimensional vector ℝ𝑑𝐼, and the

elements of the embedding layer are set such that they can be trained (trainable

parameters) during the training process. The embedded words could learn and adapt

themselves corresponding to the given task by doing this. In this way, the embedding

parameters can extract the meaning of the words in the dataset.

In this work, we use Word2vec [13]. The reason behind it is that they are

simple to implement and keep the model’s simpleness. Although the complex

structure can give rise to a better model, we are focusing on the explainability of the

model. Thus, there is no point in building a complex model that we cannot explain,

giving us more burdens than benefits. Assume that the size of the dictionary is 𝐷, and

we want to embed each word to a vector with 𝑑𝐼 dimensions. We define the

 10

embedding function 𝝓(𝑤) by a (trainable) matrix 𝜙 of size 𝑑𝐼 × 𝐷, where its 𝑖𝑡ℎ

column represents the word vector 𝝓(𝑤𝑖) of the word 𝑤𝑖. Notice that, in the last

subsection, the hidden state at a given time 𝑡 receives 𝝓(𝑤𝑡) as the input. This means

that the model’s output does not depend only on its weight but also on the embedding

layer. Thus, if the (unfixed) embedding layer is used in our model, the set of trainable

parameters 𝜃 should include the 𝜙 within its, 𝜃 ≡ {𝑊𝐾, 𝑊𝑅 , 𝑊𝑂 , 𝐛, 𝑏𝑜 , 𝜙}.

Because the word embedding is a matrix 𝜙 of size 𝑑𝐼 × 𝐷, it will be more

intuitive to write an input as a vector 𝑤𝑖 such that 𝜙𝐰𝑖 = 𝝓(𝑤𝑖). One of the simplest

ways to do this is one-hot encoding. If we have a dictionary of size 𝐷 and the 𝑖-th

word 𝑤𝑖 in the dictionary, we can encode them to a vector of dimension 𝐷 whose all

elements are zero except the 𝑖-th position which equal to one, 𝒘𝑖 = (0, … ,0,1,0, … ,0).

Combining with the definition of the word embedding, we have

𝜙𝒘𝑖 = (

| | |

𝝓(𝑤1) … 𝝓(𝑤𝑖) … 𝝓(𝑤𝐷)

| | |

) 𝒘𝑖 = 𝝓(𝑤𝑖).

(2.5)

After the training process, we get the 𝜃∗ which includes the trained embedding

layer 𝜙∗ in there, but how could we know that this new embedding layer is useful, or

does it learn a proper representation of the words? Since each word is already

embedded into the higher dimension, the simple yet intuitive metric is to look at the

angle between two words in the higher dimension using an inner product. One could

argue that why can’t we measure the Euclidean distance instead of the angle between

two words? The magnitude of the vector (and hence the distance) can depend on the

occurrence of a word. This implies that the two words with similar meanings can have

a long distance between them since one may occur more frequently compared to the

other. However, the angle between them is more resilient to this variation, and hence

measuring the angle (or cosine similarity) is semantically preferred [14]. Given two

words 𝑤𝑎 and 𝑤𝑏, the cosine similarity, which is the cosine of the angle between these

words, can be computed as

 11

sim(𝝓(𝑤𝑎), 𝝓(𝑤𝑏)) =
𝝓(𝑤𝑎) ⋅ 𝝓(𝑤𝑏)

|𝝓(𝑤𝑎)||𝝓(𝑤𝑏)|
.

(2.6)

If two words give positive cosine, they tend to be used in a similar context. Otherwise,

it shows the opposite meaning of two words, except zero cosines which shows that

two words might not correlate.

Although we keep our embedding layer as simple as possible which can be

seen that there is no non-linear function, the RNN layer is still implicated with several

iterations of activation functions, hence yielding highly non-linearity. In the following

subsection, we discuss the attempt to map the RNN to a MPS by using a specific

activation function, which helps us transform the highly non-linearity into a simple

tensor operation with no activation function required.

2.4 Matrix Product State and Recurrent Arithmetic Circuits

This section will focus on the mapping between RNN to MPS. For simplicity,

let us restrict ourselves to the RNN with no bias. The bias can be added back to the

model later quite easily, as we will show in the following section.

Instead of setting the activation function 𝑓 as a non-linear function, let us

define 𝑓 as element-wise multiplication or Hadamard product

 𝑓RAC(𝑨, 𝑩) = 𝑨 ⊙ 𝑩, (2.7)

which can be written in the component form as 𝑓𝑖
RAC(𝑨, 𝑩) = 𝐴𝑖𝐵𝑖. The RNN that

uses the structure in equation (2.1) together with the 𝑓RAC activation function is

known as Recurrent Arithmetic Circuits (RACs). The special thing about RACs is that

it can be mapped to the Matrix Product State (MPS) or Tensor Train (TT) [15]. To

show this, we introduce a rank-3 tensor 𝛿𝑖𝑗𝑘 where the value of tensor is 1 if 𝑖 = 𝑗 =

𝑘, and 0 otherwise:

𝛿𝑖𝑗𝑘 = {
1, if 𝑖 = 𝑗 = 𝑘
0, otherwise.

(2.8)

 12

Then, the element-wise multiplication of the two tensors 𝑨 and 𝑩 can be written in the

component form as

(𝑨 ⊙ 𝑩)𝑘 = ∑ 𝐴𝑖

𝑖,𝑗

𝐵𝑗𝛿𝑖𝑗𝑘 = 𝐴𝑘𝐵𝑘.

(2.9)

Thus, using the equation (2.1), the hidden state of RACs at time 𝑡 (with no bias) can

be written in the component form as

𝒉𝑡
(𝛼𝑡)

= ∑ ∑ 𝛿𝑖𝑗𝛼𝑡

𝑑𝐼

𝛾𝑡=1

𝜒

𝑖,𝑗,𝛼𝑡−1=1

𝑊𝑖𝛾𝑡

𝐾 𝜙𝛾𝑡
(𝑤𝑡)𝑊𝑗𝛼𝑡−1

𝑅 𝒉𝑡−1
(𝛼𝑡−1)

.

(2.10)

Let us go a little further by defining a new tensor 𝑇𝛼𝑡𝛼𝑡−1

𝛾𝑡 = ∑ ∑ 𝑊𝑖𝛾𝑡

𝐾𝑑𝐼
𝛾𝑡

𝜒
𝑖,𝑗 𝑊𝑗𝛼𝑡−1

𝑅 to

make thing cleaner. Thus, equation (2.10) becomes

𝒉𝑡
(𝛼𝑡)

= ∑ ∑ 𝜙𝛾𝑡

𝜒

𝛼𝑡−1=1

𝑑𝐼

𝛾𝑡=1

(𝑤𝑡)𝑇𝛼𝑡𝛼𝑡−1

𝛾𝑡 𝒉𝑡−1
(𝛼𝑡−1)

.

(2.11)

By exploiting its recurrent structure, we can substitute 𝒉𝑡−1
(𝛼𝑡−1)

 into itself, and, hence,

its explicit form can be retrieved

𝒉𝑡
(𝛼𝑡)

= ∑ ∑ [𝜙𝛾𝑡
(𝑤𝑡)𝑇𝛼𝑡𝛼𝑡−1

𝛾𝑡]

𝜒

𝛼𝑡−1,…,𝛼0=1

𝑑𝐼

𝛾𝑡,…,𝛾1=1

[𝜙𝛾𝑡−1
(𝑤𝑡−1)𝑇𝛼𝑡−1𝛼𝑡−2

𝛾𝑡−1] …

[𝜙𝛾1
(𝑤1)𝑇𝛼1𝛼0

𝛾1]𝒉0
(𝛼0)

.

(2.12)

One can obviously see that the hidden output at time step 𝑡 can be constructed using

three components. The first component is a translational invariant MPS, which takes

the form

 13

𝛹‾𝛼𝑡𝛼0

𝛾𝑡…𝛾1 = ∑ 𝑇𝛼𝑡𝛼𝑡−1

𝛾𝑡

𝜒

𝛼𝑡−1,…,𝛼1=1

𝑇𝛼𝑡−1𝛼𝑡−2

𝛾𝑡−1 … 𝑇𝛼1𝛼0

𝛾1 .

(2.13)

The second one is

Φ𝛾𝑡,…𝛾1

= 𝜙𝛾𝑡
(𝑤𝑡)𝜙𝛾𝑡−1

(𝑤𝑡−1) … 𝜙𝛾1
(𝑤1),

(2.14)

which is the tensor of rank 𝑡 constructed from the sequence of 𝑡 word embedding

vectors. The last component is 𝒉0, which is the hidden state at the initial time step

(𝑡 = 0). Therefore, the hidden state at time step 𝑡 can be written as

𝒉𝑡
(𝛼𝑡)

= ∑ ∑ 𝛹‾𝛼𝑡𝛼0

𝛾𝑡…𝛾1

𝜒

𝛼0=1

𝑑𝐼

𝛾𝑡,…,𝛾1=1

𝛷𝛾𝑡…𝛾1
𝒉0

(𝛼0)
.

(2.15)

The main purpose of this subsection is to show that the RACs can be

represented by an MPS. An entanglement entropy that can be extracted from the MPS

is one of the main characters in this work. It can measure the information propagated

between two bipartite sub-systems, as we will discuss next.

2.5 Entanglement Entropy

The von-Neumann entropy or entanglement entropy of a MPS can be derived

from Schmidt coefficient 𝜆, which can be obtained from applying a singular value

decomposition (SVD) to partition a system into two sub-systems. Let 𝐻 be a Hilbert

space of dimension 𝑛 × 𝑚, and there are two sub-Hilbert spaces 𝐻𝐿 and 𝐻𝑅 with

dimension 𝑛 and 𝑚 respectively, where 𝐻 = 𝐻𝐿 ⊗ 𝐻𝑅. Without loss of generality,

assume that 𝑛 ≥ 𝑚, which can be easily extended to the general case. Define

orthonormal bases {𝑢1, … , 𝑢𝑛} ⊂ 𝐻𝐿 and {𝑣1, … , 𝑣𝑚} ⊂ 𝐻𝑅. Then an arbitrary vector

𝑤 ∈ 𝐻 can be written as

 14

𝑤 = ∑ ∑ 𝛼𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

𝑢𝑖 ⊗ 𝑣𝑗 .

(2.16)

Figure 2.2: (a) depicts a graphical representation of how the RAC cell transforms to a

new rank-3 tensor 𝑇, as described in (2.12). The RAC can then be expressed as the

translational invariant MPS (b) by mapping the cell to 𝑇. The word embedding,

according to section 2.3, is a matrix of dimension 𝑑𝐼 × 𝐷 contract with a D-dimension

one-hot vectorwi. As a result, the explicit form of (b) is (c), which is the RAC

contract to the embedding matrix denoted as Emb in diagram (c). This suggests that

the contraction of 𝑇 and Emb results in a new rank-3 tensor, implying that the word

embedding may potentially contribute to the entanglement entropy of the system.

From singular value decomposition (SVD), there exist an 𝑛 × 𝑛 orthonormal matrix

𝐿, an 𝑚 × 𝑚 orthonormal matrix 𝑅, and an 𝑚 × 𝑚 positive semidefinite diagonal

matrix 𝛴 such that a matrix 𝑀 can be written/decomposed as

 15

𝑀 = 𝐿 [
 𝛴

0
] 𝑅𝑇 ,

(2.17)

where 0 is the zero matrix with dimension (𝑛 − 𝑚) × 𝑚. Next, split 𝐿 into two sub

matrices 𝐿 = [𝐿1 𝐿2], where 𝐿1 is 𝑛 × 𝑚. By doing so, the equation (2.16) becomes

 𝑀 = 𝐿1Σ𝑅𝑇 . (2.18)

Let {𝑙1, … , 𝑙𝑛} and {𝑟1, … , 𝑟𝑚} be another set of orthogonal bases of 𝐻𝐿 and 𝐻𝑅

respectively and {𝜎1, … , 𝜎𝑚} be diagonal elements of the matrix 𝛴. Here, 𝑙𝑖 and 𝑟𝑗 are

the 𝑖𝑡ℎ and the 𝑗𝑡ℎ column vectors of the matrices 𝐿 and 𝑅. The above equation

becomes

𝑀 = ∑ 𝜎𝑘

𝑚

𝑘=1

𝑙𝑘𝑟𝑘
𝑇.

(2.19)

The 𝜎𝑘 in the above equation is called Schmidt coefficient satisfying ∑ 𝜎𝑘
2𝑚

𝑘=1 = 1.

Since 𝛼𝑖𝑗 in the equation (2.16) is a matrix, it is possible to apply the SVD to the 𝛼𝑖𝑗.

By choosing the appropriate set of bases, transforming the {𝑢1, … , 𝑢𝑛} → {𝑙1, … , 𝑙𝑛}

and {𝑣1, … , 𝑣𝑚} → {𝑟1, … , 𝑟𝑚}, we can rewrite 𝑤 as

𝑤 = ∑ 𝜆𝑘

𝑚

𝑘=1

𝑙𝑘 ⊗ 𝑟𝑘,

(2.20)

where 𝜆𝑘 is the Schmidt coefficients of 𝑤 which satisfies ∑ 𝜆𝑘
2𝑚

𝑘=1 = 1. This can be

applied to the MPS with closed boundary as well. However, the boundary of our MPS

in (2.13) is still open because the 𝛼0 and 𝛼𝑡 are the free indices. To close them, we

need to contract its boundaries, 𝛼0 and 𝛼𝑡, with vectors. We will discuss about the

appropriate choice of vectors in the next section. For now, let us assume that the MPS

already has a closed boundary and given by 𝛹𝛾𝑡…𝛾2𝛾1. Since the MPS 𝛹𝛾𝑡…𝛾2𝛾1 is a

 16

rank-𝑡 tensor, we know that it can be written in the quantum state form (simply put

the bases state in) as

|Ψ⟩MPS = ∑ Ψγt…γ2γ1|γt⟩ ⊗ … |γ2⟩ ⊗ |γ1⟩

γ1,γ2,…,γt

.

(2.21)

Then, the MPS is bipartited into two sub-systems |𝜙𝑖
𝐿⟩ ∈ 𝐻𝐿 and |𝜙𝑖

𝑅⟩ ∈ 𝐻𝑅 where

they are made up from the |𝛾1⟩, … , |𝛾𝑡/2⟩ and |𝛾𝑡/2+1⟩, … , |𝛾𝑡⟩ respectively. Since the

MPS is constructed using the same tensor (RAC cell) along the chain, making it a

translational invariant MPS, it does not matter where one cut them. However, cutting

near the edge of the tensor should be avoided as the boundary effect may occur since

we cannot truly build an infinite chain of tensors (bounded by computational

resources). According to SVD that we have done in (2.16)-(2.20), we have

|Ψ⟩𝑀𝑃𝑆 = ∑ 𝜆𝑖|𝜙𝑖
𝐿⟩ ⊗ |𝜙𝑖

𝑅⟩

𝑙

𝑖=1

 .

(2.22)

The entanglement entropy [16] between two subsystems of the |Ψ⟩𝑀𝑃𝑆 can be

calculated by

𝑆 = − ∑ 𝜆𝑖
2

𝑙

𝑖=1

log2𝜆𝑖
2.

(2.23)

The entanglement entropy measures how much two subsystems are entangled. There

are several ways to interpret entanglement entropy. One of them is to use pure states

and mixed states [17]. A pure quantum state is used to describe the state in which we

have complete knowledge about the quantum system, which has 𝑆 = 0. On the other

hand, a mixed state, which 𝑆 ≠ 0, can be thought of as the state in which we do not

have the complete knowledge of the system since we trace over some components of

a pure state (like we sum over some probability in statistic class). Thus, the non-zero

 17

entropy could be interpreted as the ignorance of knowledge or the correlation between

the current state and the ignored state [18].

To make the above statement clearer, let us translate it to the physics notation

and maths. The rough definition of a pure state is the state that can be written in a

vector form (e.g., |𝜓⟩ =
1

√2
|0⟩ +

1

√2
|1⟩), but a mixed state is opposite, which cannot

be written in the vector form like the pure state. Thus, a density matrix is introduced

to enable us to represent the mixed state naturally. The density matrix 𝜌 of the pure

state |𝜓⟩ is defined by

 𝜌 = |𝜓⟩⟨𝜓|. (2.24)

For the mixed state, it is defined by the summation of all possible pure state,

 𝜌 = ∑ 𝑝𝑖|𝜓𝑖⟩⟨𝜓𝑖|

𝑖

, (2.25)

where 𝑝𝑖 is a classical probability that the system will end up in the pure state |𝜓𝑖⟩.

One can also differentiate the pure and mixed states using the density matrix 𝜌. Using

equations (2.24) and (2.25), we can show that 𝜌2 = 𝜌 for the pure state, but this is not

true in the case of the mixed state. From Shannon entropy, the entropy of the 𝜌 is

𝑆Shannon = − ∑ 𝑝𝑖

𝑖

log2𝑝𝑖.

(2.26)

Since we know that Tr(𝜌log2𝜌) = ∑ 𝑝𝑖𝑖 log𝑝𝑖 (by using the fact that trace is invariant

under bases transformation), we then define the von-Neumann entropy or quantum-

version of entropy as

𝑆 = −Tr(𝜌log𝜌).

(2.27)

 18

If we calculate the entropy of the |Ψ⟩𝑀𝑃𝑆, it will obviously give zero due to the fact

that it is a pure state. However, if we trace out its component, let’s pick the right part

|𝜙𝑖
𝑅⟩, then the corresponding density matrix becomes a mixed state

ρ = ∑ λ𝑖

𝑛

𝑖,𝑗=1

λ𝑗|ϕ𝑖
𝐿⟩ ⊗ |ϕ𝑖

𝑅⟩⟨ϕ𝑗
𝑅| ⊗ ⟨ϕ𝑗

𝐿|

ρ𝐿 = Tr𝑅(ρ) = ∑ (𝟙 ⊗ ⟨ϕ𝑘
𝑅|)λ𝑖λ𝑗|ϕ𝑖

𝐿⟩ ⊗ |ϕ𝑖
𝑅⟩⟨ϕ𝑗

𝐿| ⊗ ⟨ϕ𝑗
𝑅|(𝟙 ⊗ |ϕ𝑘

𝑅⟩)

𝑛

𝑖,𝑗,𝑘=1

(2.28)

ρ𝐿 = ∑ δ𝑖𝑘

𝑛

𝑖,𝑗,𝑘=1

δ𝑗𝑘λ𝑖λ𝑗|ϕ𝑖
𝐿⟩⟨ϕ𝑗

𝐿| = ∑ λ𝑘
2 |ϕ𝑘

𝐿 ⟩

𝑛

𝑘=1

⟨ϕ𝑘
𝐿 |

The above equation shows that the density matrix cannot be decomposed into the

outer product of two states, except 𝑛 = 1. Comparing 𝜌𝐿 to the equation (2.25), we

have 𝑝𝑖 = 𝜆𝑖
2, which, in this case, gives 𝑆 ≠ 0. This implies that the non-zero entropy

comes from the lack of knowledge of the |𝜙𝑘
𝑅⟩. If we know what |𝜙𝑘

𝑅⟩ is, then we can

reconstruct back the complete pure state. If not, we are left with the mixed state with

an ensemble of a new set of pure states |𝜙𝑘
𝐿⟩, and we might conclude that the

subsystems |𝜙𝑘
𝐿⟩ and |𝜙𝑘

𝑅⟩ entangle to each other in such a way that if we lost either

one of these states, we lost the information to construct a whole system. Thus,

subsystem 𝐿 and 𝑅 share information with each other.

We expect that the stronger the correlation of the two subsystems is, the larger

the entanglement entropy becomes (due to the more ignorance of the information).

This implies that the partitioned RACs with large entanglement entropy might be a

good model for approximating data with strong correlations. Another great

explanation can be found in [15]. The mentioned paper describes the correlation in

terms of separation rank measured from the Schmidt coefficients, which can be used

to calculate the entanglement entropy we just defined.

Nevertheless, in the entanglement entropy calculation, we did not consider the

effect of the embedding layer. Since the word embedding is an ordinary matrix that

contracts with the RACs, it can be viewed as a part of the RAC. Thus, the embedding

 19

layer can also contribute to the entanglement entropy of the whole system. One more

thing to point out is that we also ignored the bias term when the RAC model was

constructed. Adding the bias to the model is a tricky part of this work. In the next

section, we will cover how to add the bias to the model and the numerical effect of the

word embedding.

 20

3. Experiments & Results

In this section, we will go through how to set up the model and continue from

where we have left in the previous section. So far, we have discussed the theoretical

perspective of the model, which gives the intuition of the physical meaning behind it,

but there are some topics that we have not yet covered. First, the bias that we have

ignored plays a crucial role in this work. Because our model only comprises the tensor

contraction, this leads to a gradient vanishing. This problem arises due to the

contraction is composed of many multiplication terms. If we start with a small

number, the results from the operation will converge to zero quickly. To solve this,

we need to add a summation term, a bias, to stabilize the result of the contraction not

getting too small.

The following subsection will show how the bias is added to our MPS. Next,

we will show the result of the accuracy together with the entanglement entropy of the

RACs. As mentioned in the previous section, the word embedding might contribute to

the entanglement entropy. To show that this is the case, we divide our training process

into two following strategies: fixed pre-trained word embedding and (non-fixed)

regular training. The idea of the first strategy is to fix the effect of the entanglement

entropy that arises from the word embedding. In this case, we show that the

entanglement entropy and accuracy of the model behave in the same way. In the

beginning, they slightly increase, but after reaching some specific point, both

entanglement entropy and accuracy are saturated. This interesting behavior helps us

determine the smallest dimension (or parameter) that can be sufficiently used to

approximate our task. Second, a word embedding is trained together with the RAC.

We do this study on the effect of the embedding layer that affects the entanglement

entropy. Surprisingly, although the accuracy behaves the same way as the first

strategy, the entanglement entropy is different. The entanglement entropy rapidly

increases at the beginning before it decreases and plateaus at some saturate value. We

also report the cosine similarity of the word embedding, which exhibits the opposite

 21

𝑑𝐼 + 1 𝜒 + 1

behavior to the entanglement entropy—implying that the embedding layer involves

propagation of the information.

3.1 RACs with Bias

Before we add the additive biases to the model, first let’s rewrite the RACs in

equation (2.1) in the easier form as

𝐡𝑡 = 𝑓(𝑊𝐾𝛟(𝑤𝑡), 𝑊𝑅𝐡𝑡−1, 𝐛) → 𝑓RAC(𝑊𝐾𝛟(𝑤𝑡) + 𝐛𝑘, 𝑊𝑅𝐡𝑡−1 + 𝐛𝑅).

(3.1)

To achieve this, we transform the kernel matrix 𝑊𝐾 and recurrent kernel matrix 𝑊𝑅

to the new matrix �̃�𝑅 and �̃�𝐾as follow

�̃�𝐾 = (𝑊𝐾 𝒃𝑘

0 … 0 1
)} 𝜒 + 1, �̃�𝑅 = (𝑊𝑅 𝒃𝑅

0 … 0 1
)} 𝜒 + 1

(3.2)

Because 𝝓(𝑤𝑡) and 𝒉𝑡 are contracting to the 𝑊𝑅 and 𝑊𝐾, we need to enforce them to

have the same dimension by also transforming them by adding an additional

dimension as

�̃�(𝑤𝑡) = (
𝝓(𝑤𝑡)

1
), �̃�𝑡 = (

𝒉𝑡

1
).

(3.3)

By using these new forms, one can immediately see that

�̃�𝐾�̃�(𝑤𝑡) = (𝑊𝐾 𝒃𝑘

0 … 0 1
) (

𝝓(𝑤𝑡)
1

) = (𝑊𝐾𝝓(𝑤𝑡) + 𝒃𝑘

1
)

(3.4)

and

�̃�𝑅�̃�𝑡 = (𝑊𝑅 𝒃𝑅

0 … 0 1
) (

𝒉𝑡

1
) = (𝑊𝑅𝒉𝑡 + 𝒃𝑅

1
).

(3.5)

Thus, the new �̃�𝑡 can be written in the form of activation function as

 22

�̃�𝑡 = (𝑓RAC(𝑊𝐾𝛟(𝑤𝑡) + 𝒃𝑘, 𝑊𝑅𝒉𝑡−1 + 𝒃𝑅)
1

).

(3.6)

or

�̃�𝑡 = ∑ ∑ δ𝑖𝑗α𝑡
�̃�𝑖γ𝑡

𝐾

𝑑𝐼+1

γ𝑡=1

�̃�γ𝑡
(𝑤𝑡)

χ+1

𝑖,𝑗,α𝑡−1=1

�̃�𝑗α𝑡−1

𝑅 �̃�𝑡−1
(α𝑡−1)

.

(3.7)

Thus, one need to change the corresponding MPS tensor 𝑇𝛼𝑡𝛼𝑡−1

𝛾𝑡 → �̃�𝛼𝑡𝛼𝑡−1

𝛾𝑡 ,

�̃�𝛼𝑡𝛼𝑡−1

𝛾𝑡 = ∑ ∑ �̃�𝑖𝛾𝑡

𝐾

𝑑𝐼

𝛾𝑡=1

𝜒

𝑖,𝑗,𝛼𝑡−1=1

. �̃�𝑗𝛼𝑡−1

𝑅 .

(3.8)

Now, we can follow the same flow as (2.11)-(2.15), and the chain of MPS can be

retrieved. Nevertheless, the MPS chain still has open boundaries at the beginning and

the end. To close these, we define two additional vectors, �̃�0 and �̃�𝑓, which are the �̃�𝑡

at time 𝑡 = 0 and the final time step. Normally, the initial state of the RNN is set to

null vector or zero vector, so the �̃�𝑡 at 𝑡 = 0 becomes

�̃�0 = (
𝟎
1

).

(3.9)

Since we need to make sure that all the output results in the last time step must be

taken into account, the appropriate choice is to contract them with the vector

comprised of one in each component. Thus, we define the �̃�𝑓 as

�̃�𝑓 = (
𝟏
1

).

(3.10)

 23

However, this choice of �̃�0 and �̃�𝑓 should not affect the entanglement entropy much

because if the chain is long enough, the boundary effect can be ignored. Lastly, one

can perform the entanglement entropy calculation in the middle of the (closed

boundary) MPS chain following the described flow in section 2.5.

In this subsection, we have modified our existing tensors to work with

additional biases, whether by adding an additional dimension with one as a

component or extending both row and column to include the bias vector within them.

This simple modification allows us to use the same mathematics to calculate the

entropy and maintain the same mathematical structure of the tensor forms. With this

help, we can achieve the training process just like the pre-transformed form. In the

following subsection, we will discuss the training model and the parameters and

strategy needed in this work.

3.2 Data Prepossessing

The IMDb dataset is used in this experiment, which is a standard dataset for

binary sentiment classification containing movie reviews [19]. This task has two

labels, “1" for a positive review and “0" for a negative review. The dataset is divided

into 40,000 reviews for training and 10,000 reviews for testing. The positive and

negative reviews ratio in the train and test are 20,027: 19,973 and 4,913: 5,027,

respectively. The maximum length of each review is set to 𝑁 = 50 words with

dictionary size 𝐷 = 3,000 and 𝐷 = 10,000. Because the datasets are different in size

(determined by the number of reviews), the dictionary sizes might have an effect on

the accuracy and behavior since they determine both numbers of parameters and

words being used in the models.

We use Keras to implement our RACs model [20]. We use Adam optimizer to

optimize the loss function for the training process. The number of epochs is set to 200

with batch size equal to 128. Early stopping is also deployed for stability reasons. The

model is set to terminate if the change of the loss function at the end of each epoch is

smaller than 0.001 and has no improvement after 4 epochs. The training process is

done on a set of bond dimensions 𝜒 given by χ ∈ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,

 24

16,17,18,19,20,25,30,35,40,45,50,55,60,65,70,75,80]. Then, we repeat every training

process 50 times with the randomly initialized model parameters for each round to

obtain averaged accuracy and entanglement entropy for each 𝜒, where the entropy is

obtained by performing a bipartization at the middle of the MPS chain.

We also experiment on Rotten Tomatoes movie review (MR) with some

tweaked parameters as follows [21]. In the MR dataset, the batch size, epochs, and

maximum length are set to 32, 100, and 20, respectively. The parameters are changed

because the size of the MR dataset, which 8,400 for the train and 2,662 for the test, is

smaller than the IMDb. The rest of the flow is the same as the IMDb dataset.

3.3 Results on pre-trained word embedding

We want to focus solely on the behavior of RACs, so our first strategy is to fix

the word embedding during the RACs training. However, to do that, we need to have

a way to train our embedding layer first; otherwise, the outputs of the non-trained

embedding layer are random values. We achieve this by pre-train the word embedding

with the flatten layer (available in Keras). The structure of the model is almost the

same, except the flatten layer is used instead of the RACs. The reason behind using

flattening is that the layer does not contain trainable parameters. It only picks outputs

from the previous layer, embedding layer in this case, concatenates them into a long

sequence of numbers, then feeds this sequence to the next layer, which is a dense

layer (𝑊𝑂 and a sigmoid function). The word embedding is pre-trained with the same

setting as the RACs as described in section 3.2, except the early stopping plays a role

in preventing overfitting instead of the stability of the model.

The pre-trained process of the word embedding 𝜙 is repeated over 50 times

with randomly initialized parameters. Since we will train the RAC 50 times with

random initialization parameters, this gives us a set of 50 distinct 𝜙 which can be

used to train the RAC. Next, we set the embedding layer to be 𝜙 in the RACs model,

then train the whole model again while the parameters of the pre-trained 𝜙 are fixed.

The experimental results of the IMDb dataset with 𝑑𝐼 = 4 and 𝐷 = 10,000 are shown

in figure 3.1, which shows the plots of accuracy and entanglement entropy of the

 25

bipartited RACs at site 𝑁/2 = 25 for different bond dimensions 𝜒. From 𝜒 = 1 to

𝜒 = 20, the entanglement entropy increases rapidly before it saturates at 𝜒∗ ≈ 20 and

fluctuates mildly after that, where the maximum of the averaged entropy is 𝑆‾max ≈

2.53. The training and test accuracy also shows a similar trend, but it increases much

slower than the entropy when 𝜒 approaches 𝜒∗. The training and test accuracy starts

from 87.1% and 84.7% at 𝜒 = 1 then climbs slowly and reaches 91.5% and 86.3%

at 𝜒 ≈ 20. Figure 3.2 shows the plots of Schmidt’s coefficients 𝜆𝑖 in the case 𝑑𝐼 = 4

for each bond dimension 𝜒 as a function of indices, where the coefficients are labeled

in the descending order, when 𝜒 < 𝜒∗, the spectrum lines of the 𝜆𝑖 are separated.

However, after the bond dimension 𝜒 hits the value of the 𝜒∗, the spectrum of the 𝜆𝑖

of the 𝜒 that is larger than 𝜒∗ collapses to the same trend.

Figure 3.1: This plot shows the training accuracy, test accuracy, and the entanglement

entropy of the IMDb dataset with 𝑑𝐼 = 4 and 𝐷 = 10,000, where the saturation

occurs at around 𝜒 ≈ 20, and the averaged maximum entropy 𝑆‾max ≈ 2.53.

 26

Figure 3.2: This graph illustrates the Schmidt coefficients 𝜆𝑖 used to calculate

entanglement entropy 𝑆. The 𝜆𝑖’s are plotted as a function of indices labeled in a

descending order corresponding to their value. The spectrum of the Schmidt

coefficients collapses to the same trend when 𝜒 > 20 except for the deviation at the

tails, which are the results of the boundary effect. When the MPS is infinitely long,

the deviation should not be seen in the ideal case.

Recalling the entanglement entropy equation (2.23), the maximum entropy which the

model can achieve is when 𝜆𝑖
2 = 1/(𝜒 + 1) or

S = log2(𝜒 + 1),

(3.11)

where 𝜒 + 1 comes from the fact that we need to add one extra dimension for the

availability of the biases. As shown in the figure 3.1 (b, this implies that only the

leading indices of the Schmidt coefficients matter, which means the two subsystems

weakly interact. Although log2(21) ≈ 4.39 and log2(81) ≈ 6.34 are the maximum

value which entanglement entropy can reach, it instead saturates at 𝑆‾𝑚𝑎𝑥 ≈ 2.53

rather than keep increasing with the bond dimension. This saturation, together with

the weak interaction, suggests that RAC is not the main source of information

propagation. Thus, we might investigate further the word embedding, which will be

discussed next.

 27

Figure 3.3: The result on IMDb with 𝑑𝐼 = 4 and 𝐷 = 3,000. The entropy saturates at

𝜒 ≈ 20 where 𝑆‾max ≈ 2.55.

Figure 3.4: The plots of accuracy and the entropy of the model on the MR dataset

with 𝑑𝐼 = 4 and 𝐷 = 3,000.

 28

Figure 3.5: The plots of accuracy and the entropy of the model on the MR dataset

with 𝑑𝐼 = 4 and 𝐷 = 10,000

Figure 3.6: The plot of Schmidt coefficients 𝜆𝑖 on the MR dataset with 𝑑𝐼 = 4 and

𝐷 = 3,000.

 29

From figure 3.3, the train and test accuracy of the IMDb dataset with a dictionary size

of 𝐷 = 3,000 saturate at 85.1% and 83.2%, which are lower than the 𝐷 = 10,000

case. This is intuitive since the more parameters the model has, the higher the model’s

accuracy can achieve. Nevertheless, the accuracy and entropy of both 𝐷 = 3,000 and

𝐷 = 10,000 still plateau when they reach the specific bond dimension. Figures 3.4,

3.5 and 3.6 show the results of experiments conducted on the MR dataset, which show

that the saturation phenomena appears in the other dataset.

In the fixed word embedding, the experiment’s result tells us that the model

can attain high accuracy, even though the subsystems of the MPS are weakly

interacting, measuring from the entanglement entropy. In the following section, we

train the RAC layer and the word embedding simultaneously. We show that

information propagation of the RAC is not the main source of accuracy and

expressiveness; rather, word embedding is important.

3.4 Results on unfixed word embedding

Unlike the previous experiment, the word embedding is not pre-trained, but

we use a randomly initialized and unfixed word embedding. To study the effect the

word embedding has on the model, we train the embedding layer with the RACs

simultaneously. The results show that the entanglement entropy behaves differently

from the fixed word embedding. In both datasets, the entropy shows increase and

decay patterns. First, they sharply boost until hitting the highest value at bond

dimension 𝜒 = 5 before drops to about 0.8𝑆‾max and saturates at 𝜒 ≈ 25 and 𝜒 ≈ 20

for IMDb and MR dataset, respectively. In terms of accuracy, the model can achieve

around 99% in both IMDb and MR datasets, which is higher than the previous case.

Notice that the maximum of the average entropy which are 𝑆‾max ≈ 1.17 and 𝑆‾max ≈

1.20 are lower than the fixed embedding case. The increase in accuracy while the

entanglement entropy decreases are contrary to our belief that information

propagation is the main source of accuracy and expressiveness. Because of the

presence of the trainable word embedding, which is the only difference between this

experiment and the previous one, this suggests that the embedding layer plays a role

 30

in the contribution of the information or the entanglement entropy, which cannot be

observed in the traditional RNNs.

To examine the word embedding in more detail, the cosine similarity between

two opposite meaning words, which are (worst, best) and (boring, interesting), are

shown in figure 3.9 and 3.10 for the IMDb and MR dataset, respectively. The words

are chosen because they are the topmost frequently appear, and their meaning is likely

to have a high effect on the sentiment prediction. One can see that the cosine

similarity drops in both datasets while the entropy dramatically increases and hits its

highest value at 𝜒 = 5. When the entropy drops, the speed at which the cosine

similarity decreases is also slowed down. When the dropping stops, the entropy and

the cosine similarity saturate afterward. This behavior might imply that the model

expressiveness mostly comes from the RACs when 𝜒 ≤ 5. However, when the word

embedding becomes better, 𝜒 ≥ 5, the role is switched to the embedding layer, which

can be seen from the decaying of RAC’s entanglement entropy as the word

embedding attains more meaning measured from the cosine similarity.

Figure 3.7: The plots of accuracy and the entropy of the unfixed word embedding on

the IMDb dataset. Interestingly, unlike the fixed case, not only it can achieve higher

accuracy and has lower maximum entropy, but it also shows different behavior in

entropy which is the increase and decay to some saturated value.

 31

Figure 3.8: The result of the model on the MR dataset with unfixed word embedding

illustrates that the same behavior appears in the MR dataset.

Figure 3.9: This figure shows the plots of entanglement entropy and cosine similarity

of the opposite meanings of word pairs (worst, best) and (boring, interesting) on the

IMDb dataset. The cosine similarity rapidly decreases while the entropy increases,

which is intuitive since they should have an anti-correlation.

 32

Figure 3.10: The plots show the cosine similarity and entropy of the model on the MR

dataset.

 33

Discussion and Outlook

In this work, we experiment on the RACs with additive biases and the effect

of the word embedding by dividing our RACs training process into two strategies.

The first strategy is to train RACs with the pre-trained and fixed word embedding; the

second is to simultaneously train RACs and word embedding. In the former case, our

results have shown that the entanglement entropy saturates when the model accuracy

saturates. This saturation behavior points out the minimal bond dimensions (and

hence resource) required to achieve the highest model accuracy, which the traditional

RNN cannot determine. We notice that although the entanglement entropy is bounded

by log2(𝜒 + 1), 𝑆‾max is still less than the bounded value at any given 𝜒 indicating that

the word embedding might play a crucial role in attaining higher accuracy and also

contribute to the embedding layer. This leads us to investigate further in the latter

case. By training the embedding layer and RACs concurrently, we find that the

expressiveness and information propagation of the model stem from the RACs at the

beginning before the role is switched to the word embedding and the entanglement

entropy of the RACs starts to drop. We also notice that the latter case can achieve

higher accuracy and have lower maximum entanglement entropy than the former. For

the NLP sentiment analysis task on a movie review, we might not necessarily focus

solely on designing RNNs to increase information propagation. Instead, the

embedding layer should also be focused on achieving high accuracy.

4.1 Outlook

Although the results suggest that the word embedding affects the entanglement

entropy, we cannot measure them directly. Instead, we have to find a way around it by

using the cosine similarity. The problem is that the dimension of the bond dimension

between input and the word embedding is too large (3,000 and 10,000 in our case),

which cannot be performed by a normal computer. For example, if the MPS chain is

chosen to contain 10 tensors when the MPS is constructed, the contained parameters

go up to 3, 00010. This problem can be solved by designing the word embedding to

 34

contain arbitrary parameters without affecting the input and output dimensions.

However, these works require too much effort, and it is not the aim of this project. It

would be great to investigate further developing such a word embedding. Some of the

ideas are that we can have two-word embedding instead of one so that the bond

dimension connecting one to the other can be tuned without affecting the input and

output size of the embedding layer.

Another important thing to consider is the stability of the model. Since the

model comprises many multiplications, some deviation or perturbation (from

stochastic gradient descent) can lead to exploding gradient. Hence, improvement is

needed to use RACs with a larger model. We may need to adjust the activation

function by using a more stable operator such as addition. Lastly, it would be great to

expand the experiment to the multi-layer RACs because the machine learning model

in the real-world use cases is mostly deep. Studying deep RACs might give us

insights to understand more about the interaction and the correlation of layers in deep

learning.

We also experiment on a character prediction task in this work. Given a

sequence of 𝑛 words, the model can predict the (𝑛 + 1)th word, which can be used to

generate a whole sentence or a long text composing of several sentences. However,

the structure of the model is a matrix product operator (MPO) rather than an MPS.

The classical mutual information is the only reasonable quantity that can be measured

in this case. Although one can directly compute mutual information from the MPO, it

is a quantum version, which cannot be interpreted as the same as classical mutual

information. Also, for the model to work well, the size of the bond dimension needs to

be big. Thus, the requirement leads to the same problems mentioned in the sentiment

analysis task: stability and computationally intensive.

REFE REN CES

REFERENCES

1. Silver, D., et al., Mastering the game of Go with deep neural networks and tree

search. Nature, 2016. 529: p. 484-489.

2. Krishnan, M., Against Interpretability: a Critical Examination of the

Interpretability Problem in Machine Learning. Philosophy & Technology, 2020.

33.

3. Verstraete, F. and J. Cirac, Matrix product states represent ground states

faithfully. Physical Review B, 2005. 73.

4. Verstraete, F. and J. Cirac, Renormalization algorithms for Quantum-Many Body

Systems in two and higher dimensions. 2004.

5. Vidal, G., Entanglement Renormalization. Physical Review Letters, 2007.

99(22): p. 220405.

6. Stoudenmire, E. and D. Schwab, Supervised Learning with Quantum-Inspired

Tensor Networks. 2016.

7. Levine, Y., et al., Quantum Entanglement in Deep Learning Architectures.

Physical Review Letters, 2019. 122(6): p. 065301.

8. Biamonte, J. and V. Bergholm, Tensor Networks in a Nutshell. 2017.

9. Jordan, M.I., Chapter 25 - Serial Order: A Parallel Distributed Processing

Approach, in Advances in Psychology, J.W. Donahoe and V. Packard Dorsel,

Editors. 1997, North-Holland. p. 471-495.

10. Hochreiter, S. and J. Schmidhuber, Long Short-term Memory. Neural

computation, 1997. 9: p. 1735-80.

11. Goodfellow, I., Y. Bengio, and A. Courville, Deep Learning. 2016: MIT Press.

12. Mehta, P., et al., A high-bias, low-variance introduction to Machine Learning

for physicists. Physics Reports, 2018. 810.

13. Mikolov, T., et al., Distributed Representations of Words and Phrases and their

Compositionality. Advances in Neural Information Processing Systems, 2013.

26.

14. Luo, C., et al. Cosine Normalization: Using Cosine Similarity Instead of Dot

Product in Neural Networks. in Artificial Neural Networks and Machine

Learning – ICANN 2018. 2018. Cham: Springer International Publishing.

15. Levine, Y., et al., Deep Learning and Quantum Entanglement: Fundamental

Connections with Implications to Network Design. CoRR, 2017.

abs/1704.01552.

16. Ekert, A. and P.L. Knight, Entangled quantum systems and the Schmidt

decomposition. American Journal of Physics, 1995. 63: p. 415-423.

17. Barata, J., et al., Pure and mixed states. 2019.

18. Mittelstaedt, P., Ignorance Interpretation of Quantum Mechanics, in

Compendium of Quantum Physics, D. Greenberger, K. Hentschel, and F.

Weinert, Editors. 2009, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 305-

306.

19. Maas, A., et al., Learning Word Vectors for Sentiment Analysis. 2011. 142-150.

20. Chollet, F. and Others, Keras. 2015.

21. Pang, B. and L. Lee, Seeing stars: Exploiting class relationships for sentiment

categorization with respect to rating scales. ACL, 2005.

 36

VITA

VITA

NAME ชนาธิป มัง่คัง่

DATE OF BIRTH 2 สิงหาคม 2539

PLACE OF BIRTH นนทบุรี

INSTITUTIONS

ATTENDED

ปริญญาตรี

HOME ADDRESS 61 หมู่ท่ี 3 ต.หนองแสง อ.ปากพลี จ.นครนายก 26130

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	1. Introduction
	2. Background
	2.1 Tensor Network
	2.2 Recurrent Neural Networks (RNNs)
	2.3 Word Embedding
	2.4 Matrix Product State and Recurrent Arithmetic Circuits
	2.5 Entanglement Entropy

	3. Experiments & Results
	3.1 RACs with Bias
	3.2 Data Prepossessing
	3.3 Results on pre-trained word embedding
	3.4 Results on unfixed word embedding

	Discussion and Outlook
	4.1 Outlook

	REFERENCES
	VITA

