HYDROMORPHOLOGICAL CHANGES OF CHI RIVER, MUEANG DISTRICT, KHON KAEN PROVINCE

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Geology Department of Geology FACULTY OF SCIENCE Chulalongkorn University Academic Year 2020 Copyright of Chulalongkorn University การเปลี่ยนแปลงอุทกธรณีสัณฐานของแม่น้ำชีในพื้นที่อำเภอเมือง จังหวัดขอนแก่น

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาธรณีวิทยา ภาควิชาธรณีวิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2563 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	HYDROMORPHOLOGICAL CHANGES OF CHI RIVER, MUEANG
	DISTRICT, KHON KAEN PROVINCE
Ву	Mr. Pawat Wattanachareekul
Field of Study	Geology
Thesis Advisor	Professor MONTRI CHOOWONG, Ph.D.

Accepted by the FACULTY OF SCIENCE, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Science

		Dean of the FACULTY OF SCIENCE
	(Professor POLKIT SANGVANICH, Ph.D.)	
THESIS COMMITT	EE -	
		Chairman
	(Assistant Professor VICHAI CHUTAKOS	ITKANON, Ph.D.)
		Thesis Advisor
	(Professor MONTRI CHOOWONG, Ph.D.)
		Examiner
	(SUMET PHANTUWONGRAJ, Ph.D.)	
		External Examiner
	(Parisa Nimnate, Ph.D.)	ยาลัย
		VERSITY

ภวัต วัฒนจารีกูล : การเปลี่ยนแปลงอุทกธรณีสัณฐานของแม่น้ำชีในพื้นที่อำเภอเมือง จังหวัด ขอนแก่น. (HYDROMORPHOLOGICAL CHANGES OF CHI RIVER, MUEANG DISTRICT, KHON KAEN PROVINCE) อ.ที่ปรึกษาหลัก : ศ. ดร.มนตรี ชูวงษ์

้วัตถุประสงค์ของวิทยานิพนธ์ฉบับนี้คือการประเมินสภาพอุทกธรณีสัณฐานของแม่น้ำชีในพื้นที่อำเภอ เมืองจังหวัดขอนแก่น ใน 5 ช่วงเวลาที่แตกต่างกันได้แก่ พ.ศ. 2495 พ.ศ. 2531 พ.ศ. 2535 พ.ศ. 2549 และ พ.ศ. 2563 และวิเคราะห์ค่าดัชนีสัณฐานวิทยาที่เกี่ยวข้องซึ่งได้แก่ ค่าดัชนีความโค้งของแม่น้ำ ค่าความกว้างของ แม่น้ำ อัตราการ เปลี่ยนแปลงความกว้างของแม่น้ำ อัตราการย้ายตำแหน่ง เพื่ออธิบายสภาพธรณีสัณฐานของ แม่น้ำ นอกจากนี้วิทยานิพนธ์ฉบับนี้ยังได้นำข้อมูลที่ได้จากการออกภาคสนาม และข้อมูลภาพตัดขวางของลำธาร มาวิเคราะห์ร่วมด้วย สำหรับพื้นที่ศึกษาครอบคลุมความยาวแม่น้ำ 67 กิโลเมตร และบริเวณดังกล่าวเป็นพื้นที่ที่ ได้รับความเสียหายจากอุทกภัยบ่อยครั้ง ส่วนการประเมินสภาพอุทกธรณีสัณฐานนั้นจะใช้ดัชนีสัณฐานวิทยา (MQI) มาประเมินระดับการเปลี่ยนแปลงอุทกธรณีสัณฐานในรูปแบบระดับคะแนนสัมพัทธ์ตั้งแต่ 0 จนไปถึง 1 โดยหากคะแนนสัมพัทธ์เท่ากับ 1 แปลว่าพื้นที่ดังกล่าวไม่มีการเปลี่ยนแปลงสภาพอุทกธรณีสัณฐาน แต่ในทาง กลับกันหากคะแนนสัมพัทธ์เท่ากับ 0 แปลว่าพื้นที่ดังกล่าวมีระดับการเปลี่ยนแปลงอุทกธรณีสัณฐานมากที่สุด ซึ่ง ้จากผลการศึกษาพบว่าอัตราการย้ายตำแหน่งของแม่น้ำชีตามธรรมชาติมีค่าเฉลี่ยอยู่ที่ 0.725 เมตรต่อปี ส่วนค่า ดัชนีสัณฐานวิทยาพบว่ามีค่าระหว่าง 0.84 ถึง 0.63 ซึ่งบ่งชี้ว่าพื้นที่ศึกษามีการเปลี่ยนแปลงสภาพอุทกธรณี สัณฐานอุทกธรณีสัณฐานเล็กน้อยไปถึงปานกลาง แต่อย่างไรก็ตามพบว่าค่าดัชนีธรณีสัณฐานตัวอื่นมีการ เปลี่ยนแปลงอย่างมีนัยยะสำคัญ โดยพบว่าบริเวณที่มีการดำเนินการของบ่อทรายมีอัตราการเปลี่ยนแปลงค่า ้ความกว้างของแม่น้ำอยู่ที่ 11.08 เมตรต่อปี สำหรับบริเวณที่เชื่อนชลประทานพาดผ่านพบว่ามีอัตราการย้าย ตำแหน่งสูงสุดนั้นมากกว่า 90 เมตรต่อปี ในช่วงดำเนินการก่อสร้างเชื่อน (ระหว่าง พ.ศ. 2531 ถึง พ.ศ. 2535) ้นอกจากนี้ยังพบว่าค่าความโค้งของแม่น้ำลดลงจาก 1.53 (พ.ศ. 2495) เหลือเพียง 1.02 (พ.ศ. 2563) ซึ่งเป็นการ บ่งชี้ให้เห็นว่าการก่อสร้างเขื่อนส่งผลต่อทิศทางการไหลของแม่น้ำ และสภาพธรณีสัณฐานของแม่น้ำ นอกจากนี้ ยังพบว่าบริเวณที่มีการเปลี่ยนแปลงค่าดัชนีธรณีสัณฐานที่สูงมักเป็นบริเวณที่ระดับถูกรบกวนจากสิ่งปลูกสร้าง จากมนุษย์สูง (ค่า MQI ต่ำ) ซึ่งบ่งชี้ให้เห็นว่าสิ่งปลูกสร้างในพื้นที่ศึกษามีผลกระทบต่อการเปลี่ยนแปลงสภาพ ธรณีสัณฐานสูงกว่าที่เกิดขึ้นเองตามธรรมชาติ สำหรับการวิเคราะห์การเปลี่ยนแปลง ค่าดัชนีสัณฐานวิทยา (MQI) และดัชนีธรณีสัณฐานที่เกี่ยวข้องในพื้นที่ศึกษาบ่งชี้ให้เห็นว่างานวิจัยด้านอุทกธรณีสัณฐานสามารถนำไปใช้ ประโยชน์ในการวางแผนการจัดการแม่น้ำได้ไม่ว่าจะเป็นการทำนาย และป้องกันเหตุการณ์อุทกภัยในอนาคต รวม ลายมือชื่อนิสิต สาขาวิชา ธรณีวิทยา

ปีการศึกษา 2563

ลายมือชื่อ อ.ที่ปรึกษาหลัก

6270086423 : MAJOR GEOLOGY

KEYWORD: HYDROMORPHOLOGY, Chi River, KHON KAEN, MQI

Pawat Wattanachareekul : HYDROMORPHOLOGICAL CHANGES OF CHI RIVER, MUEANG DISTRICT, KHON KAEN PROVINCE. Advisor: Prof. MONTRI CHOOWONG, Ph.D.

This thesis focuses on the analysis of hydrology coupled with geomorphology for river management such as flood mitigation and river restoration. Morphological Quality Index (MQI) is used for assessing hydro-morphological conditions from part of the Chi River (67 km long) at Khon Kaen province, a major river in north-eastern Thailand. This study area has been suffering from unexpected and repeated flooding. MQI is applied to evaluate the degree of hydromorphological alteration in terms of relative scores (from 0 to 1). Basically, in case that MQI score equals 1, it means the area has no any alteration. On the other hand, if MQI score equals 0, the area has maximum alteration. The objective aimed at evaluating hydro-morphological conditions from 5 periods: 1952, 1988,1992, 2006, and 2020. The other relative geomorphic indexes were used to describe river planform including sinuosity index (SI), widening rate of channel width and migration rate of the river. Field survey and channel profiles were conducted. As a result, the natural migration rate of Chi River was calculated as average 0.725 m/year. MQI in the study area ranges from 0.84 to 0.63 indicating that the area owns a degree of alteration from minor to moderate alteration. However, the other geomorphic indexes from river segments shows high alteration. The maximum widening rate is 11.08 m/year in the area where sand mining in the river was observed. In place where a dam across the Chi River was constructed (1988-1992), maximum migration rate was up to 90 m/year and SI value had changed from 1.53 (in 1952) to 1.02 (in 2020). This indicates that the construction of dam has changed river direction and river planform. High geomorphic index alteration will correspond with many areas that were altered by artificial construction (low score of MQI). It suggests that artificial construction in the study area has more impact on river alteration than a natural process. The analysis in change of MQI

Field of Study: Geology Academic Year: 2020 Student's Signature Advisor's Signature V

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my thesis advisor, Professor Dr. Montri Choowong, Department of Geology, Faculty of Science Chulalongkorn University for his invaluable and constant encouragement throughout the course of this research. Special thanks also go for thesis committee: Assist. Professor Dr.Vichai Chutakositkanon (Chairman of Thesis Committee), Dr. Sumet Phantuwongraj (Internal Examiner) and Parisa Nimnate (External Examiner) for their precious advice.

I would like to acknowledge to bachelor's degree student of the department of geology, Chulalongkorn University: Mr. Suwijuk Pata, Mr. Purich Poaiyara and Mr. Tanawat Jirawattanakul for field assistance. Special recognition and thanks to Mr. Peerasit Surakiatchai, Mr. Sirawat Udomsak, Ms. Chanakan Ketthong, Ms. Manunchaya Neanudorn, Mr. Karn Phountong and Mr. Sittiporn Kongsukcho for good advices. I would like also thanks to all staff and lecturer of the department of geology.

Finally, I most gratefully acknowledge my parents and my friends for all their support throughout the period of this research. Financially, I would like thank to Graduate School of Chulalongkorn University for supporting Graduate School Thesis Grant. Thanks extend to Morphology of Earth Surface and Advanced Geohazards in Southeast Asia Research Unit (MESA RU) for logistic work and field expense.

จุฬาลงกรณ์มหาวิทยาลัย Pawat Wattanachareekul

TABLE OF CONTENTS

	Page
ABSTRACT (THAI)	iv
ABSTRACT (ENGLISH)	V
ACKNOWLEDGEMENTS	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xiv
LIST OF FIGURES	
Chapter1: Introduction	21
1.1 Background	21
1.2 Objective	
1.3 Scope	22
1.4 The Study Area	22
1.4.1 Topography	23
1.4.2 Geology	23
1.4.2.1 Cretaceous sedimentary rock	23
1.4.2.1.1 Mahasarakham Formation	23
1.4.2.1.2 Phu Tok Formation	24
1.4.2.2 Quaternary Sediment	24
1.4.2.3.1 Line A-A'	25
1.4.2.3.2 Line B-B'	25
1.5 Climate	25
1.6 Runoff data	26

1.7 Historical Flood	27
Chapter2: Literature Review	28
2.1 River geomorphic index	28
2.1.1 Sinuosity Index (SI)	28
2.1.2 Braiding index (BI)	28
2.1.3 Anabranching index (AI)	29
2.1.4 Confinement	29
2.1.4.1 Definitions of Confinement	29
2.1.4.2 Confinement types	30
2.1.5 Channel Width	
2.1.6 Migration Rate	31
2.2 River Classification	31
2.3 Hydromorphological assessment	34
2.3.1 Types of hydromorphological assessment	34
2.3.2 Delineation spatial scale unit for hydromorphological assessment	34
2.3.3 Geomorphic unit for hydrological assessment	35
2.3.4 Morphological Quality Index (MQI)	39
2.4 Analysis of Channel Asymmetry	40
2.5 Geomorphological effect on downstream of dam	42
2.5.1 Water Discharge	42
2.5.2 Sediment supply	43
2.5.3 Bank erosion	43
2.5.5 Cross-sectional area	43
2.5.6 Channel bed from	43

2.5.7 Slope alteration	
2.5.8 The Channel Planform	
2.5.9 Migration Channel	
Chapter 3: Method	
3.1 Collecting data	
3.2 Creating geomorphological map	
3.3 Delineation of reach	
3.4 Assessing current river condition	
3.5 Discussion and Conclusion	
Chapter4: Results	
4.1 Geomorphological map	
4.1.1 Geomorphological board level	
4.1.1.1 Geomorphological Map board level in 1952	
4.1.1.2 Geomorphological map Board level in 2020	
4.1.2 Geomorphic basic level	
4.1.2.1 Geomorphic basic level in 1952	
4.1.2.1 Geomorphic basic level in 2020	
4.1.3 Confinement index	
4.2 Changing of flood boundary	
4.3 Reach delineation	
4.3.1 Detail of each reach	
4.3.1.1 Detail of Reach 1	60
4.3.1.3 Detail of Reach 3	61
4.3.1.4 Detail of Reach 4	62

4.3.1.5 Detail of Reach 5	62
4.3.1.6 Detail of Reach 6	63
4.3.1.7 Detail of Reach 7	63
4.3.1.8 Detail of Reach 8	64
4.3.1.9 Detail of Reach 9	64
4.3.1.10 Detail of Reach 10	65
4.3.1.11 Detail of Reach 11	
4.3.1.12 Detail of Reach 12	66
4.3.1.13 Detail of Reach 13	66
4.3.1.14 Detail of Reach 14	67
4.3.1.15 Detail of Reach 15	67
4.3.1.16 Detail of Reach 16	68
4.3.1.17 Detail of Reach 17	68
4.3.1.19 Detail of Reach 19	
4.3.1.20 Detail of Reach 20	
4.3.1.21 Detail of Reach 21	70
4.3.1.22 Detail of Reach 22	71
4.3.1.23 Detail of Reach 23	71
4.3.1.24 Detail of Reach 24	72
4.3.1.25 Detail of Reach 25	72
4.4 Geomorphic Index	73
4.4.3 Widening rate of Channel width of Chi river	75
4.4.4 Migration Rate	76
4.4.5 Erosion area and Deposition area between 2006 and 2020	78

4.5 Hydromorphological condition	79
4.6 Asymmetry of Channel	81
4.6.1 Detail of cross-sectional shape	82
4.6.2.1 A* index	85
4.6.2.2 A1	86
4.6.2.3 A2	87
4.6.3 Asymmetry index from Das and Islam (2018)	87
4.6.3.1 A _w	87
4.6.3.2 A _a	88
4.6.3.2 A _{wa}	
Chapter 5: Discussion	90
5.1 Changing of flood boundary	90
5.1.1 Scope 1	90
5.1.2 Scope 2	92
5.1.3 Scope 3	92
5.1.4 Scope 4	94
5.2 The asymmetry of channel	94
5.3 The geomorphic index changes of the upstream area and downstream	95
5.3.1 Migration rate	95
5.3.1 Widening rate	96
5.3.3 Depositional area and erosional area of downstream of irrigation dam	۱
area	98
5.4 The relationship between MQI Score and geomorphic index changes	100
5.4.1 Reach 2	100

5.4.2 Reach 5	
5.4.3 Reach 10 and Reach 11	
5.4.4 Reach 16	
5.4.5 Reach 20 and Reach 21	
5.4.6 Reach 24	
Chapter 6: Conclusion & Suggestion	
6.1 Conclusion	
6.1.1 Geomorphological map	
6.1.2 Changing of maximum flood boundary	
6.1.4 Geomorphic Index	112
6.1.4.1 Relationship between MQI score and Geomorphic ir	
6.1.4.2 Comparison between upstream area and downstrea	am area of
irrigation dam	113
6.1.5 Asymmetry of channel	
6.2 Suggestion	
REFERENCES	115
Appendix	
Appendix A. MQI Evaluation form (Rinaldi et al., 2013)	
Appendix B Confinement condition and MQI	
Appendix C Classification of MQI indicator in Hydromorphological Qu	uality aspect
Appendix D Channel width of each station	
Appendix E Widening rate of each station	
Appendix F Migration rate of each station	170

	Appendix G Sinuosity index of each reach	. 190
	Appendix I Detail of each cross-sectional data	. 191
VI	ITA	. 193

LIST OF TABLES

	F	Page
Table	1 Table shows the details of river classification (Gurnell et al., 2014)	33
Table	2 Table shows the details of sub unit (Belleti et al., 2017)	38
Table	3 Table shows the details of each component (Rinaldi et al., 2013)	40
Table	4 Detail of data used in this thesis.	46
Table	5 Significant reach scale	. 100

CHULALONGKORN UNIVERSITY

LIST OF FIGURES

Pag	e
Figure 1 Study area: Chi river and riparian zone of chi river in mueang district, Khon	
Kaen province and adjacent	3
Figure 2 Geological Map of Study area: Mueang district, Khon Kaen province and	
	4
adjacent area. (Modified from DMR (2008))2	4
Figure 3 Cross-sectional line A-A' : Quaternary sediments overlain Phu Tok Formation	۱
(DMR, 2008)	5
Figure 4 Cross-sectional line B-B' : Quaternary sediments overlain Salt dome of	
Mahasarakham Formation (DMR, 2008)	5
Figure 5 Average of Runoff data from 2005 to 2020 at E.9.1.A station (Maha Sarakham	۱
Province)	6
Figure 6 Frequency of flood during 2005 to 2010 map of mueang district, Khon Kaen	
province and adjacent area (Gistda)2	7
Figure 7 The detail of sinuosity index (Nimnate, Choowong, Thitimakorn, & Hisada,	
2017)	8
จุฬาลงกรณ์มหาวิทยาลัย	
Figure 8 Figure shows the details of confinement type (Rinaldi et al., 2016)	0
Figure 9 The classification of river (Gurnell et al., 2014)	3
	,
Figure 10 Classification of 5 macro units (Google Earth, 2015)	6
Figure 11 The characterization of board level map and basic level map (Belleti et al.,	,
2017)	7
Figure 12 Definition of parameters of an asymmetrical channel (Das and Islam., 2018)).
	2
Figure 13 The hierarchical framework of this thesis	5
	~
Figure 14 The location of 670 stations that were measured geomorphic index 4	б

Figure 15 The location of 5 stations that were collected cross-sectional data	0
Figure 16 The Chi river's geomorphological board level map in Muang Khon Kaen district and adjacent areas in 1952	3
Figure 17 The Chi river's geomorphological board level map in Muang Khon Kaen district and adjacent areas in 2020	4
Figure 18 The Chi river's geomorphological basic level map in Muang Khon Kaen district and adjacent areas in 1952	5
Figure 19 The Chi river's geomorphological basic level map in Muang Khon Kaen district and adjacent areas in 2020	6
Figure 20 Confinement map of Chi rivermap in Muang Khon Kaen district and adjacent areas	7
Figure 21 The changing of flood boundary map of Muang Khon Kaen district and adjacent areas.	8
Figure 22 Segment scale of Chi river in Muang Khon Kaen district and adjacent areas.	
	9
Figure 23 Reach scale of Chi river in Muang Khon Kaen district and adjacent areas60	0
Figure 24 Close up air-photo and satellite image of Reach 160	0
Figure 25 Close up air-photo and satellite image of Reach 262	1
Figure 26 Close up air-photo and satellite image of Reach 362	1
Figure 27 Close up air-photo and satellite image of Reach 4	2
Figure 28 Close up air-photo and satellite image of Reach 562	2
Figure 29 Close up air-photo and satellite image of Reach 662	3
Figure 30 Close up air-photo and satellite image of Reach 762	3
Figure 31 Close up air-photo and satellite image of Reach 8	4
Figure 32 Close up air-photo and satellite image of Reach 964	4
Figure 33 Close up air-photo and satellite image of Reach 1065	5

Figure 34 Close up air-photo and satellite image of Reach 1165
Figure 35 Close up air-photo and satellite image of Reach 12
Figure 36 Close up air-photo and satellite image of Reach 13
Figure 37 Close up air-photo and satellite image of Reach 1467
Figure 38 Close up air-photo and satellite image of Reach 1567
Figure 39 Close up air-photo and satellite image of Reach 16
Figure 40 Close up air-photo and satellite image of Reach 1768
Figure 41 Close up air-photo and satellite image of Reach 18
Figure 42 Close up air-photo and satellite image of Reach 19
Figure 43 Close up air-photo and satellite image of 2070
Figure 44 Close up air-photo and satellite image of Reach 21
Figure 45 Close up air-photo and satellite image of Reach 2271
Figure 46 Close up air-photo and satellite image of Reach 2371
Figure 47 Close up air-photo and satellite image of Reach 2472
Figure 48 Close up air-photo and satellite image of Reach 2572
Figure 49 The graph of Sinuosity index of Chi river in Muang Khon Kaen district and adjacent areas
Figure 50 The graph of channel width of Chi river in Muang Khon Kaen district and adjacent areas
Figure 51 The graph of widening rate of Chi river in Muang Khon Kaen district and adjacent areas
Figure 52 The graph of migration rate of Chi river in Muang Khon Kaen district and adjacent areas
Figure 53 The graph of migration rate of Chi river in Muang Khon Kaen district and adjacent areas in three periods

Figure 54 The erosion area and deposition area between 2006 and 2020 in Muang
Khon Kaen district and adjacent areas78
Figure 55 The graph the percentage of artificiality of Chi river in Muang Khon Kaen
District and adjacent areas
Figure 56 The graph the percentage of channel adjustment in Muang Khon Kaen
District and adjacent areas
Figure 57 The graph the percentage of functionality in Muang Khon Kaen District and
adjacent areas
Figure 58 The graph of the MQI score of Chi river in Muang Khon Kaen District and
adjacent areas
Figure 59 The locations of 5 different bridge that collecting cross-sectional data82
Figure 60 The cross-section of Chi river at station 1
Figure 61 The cross-section of Chi river at station 2
Figure 62 The cross-section of Chi river at station 3
Figure 63 The cross-section of Chi river at station 4
Figure 64 The cross-section of Chi river at station 4 that was collected in January
2020
Figure 65 The cross-section of Chi river at station 5
Figure 66 The graph of A* of Chi river cross-section in Chi river in Muang Khon Kaen
district and adjacent areas
Figure 67 The graph of A1 of Chi river cross-section in Chi river in Muang Khon Kaen
district and adjacent areas
Figure 68 The graph of A2 of Chi river cross-section in Chi river in Muang Khon Kaen
district and adjacent areas
Figure 69 The graph of $A_{\!\scriptscriptstyle W}$ of Chi river cross-section in Chi river in Muang Khon Kaen
district and adjacent areas

Figure 70 The graph of A_a of Chi river cross-section in Chi river in Muang Khon Kaen
district and adjacent areas
Figure 71 The graph of A_{wa} of Chi river cross-section in Chi river in Muang Khon Kaen
district and adjacent areas
Figure 72 The changing of flood boundary of Muang Khon Kaen district and adjacent
areas
Figure 73 The changing of flood boundary of Scope 191
Figure 74 The artificial lake in Scope 191
Figure 75 The changing of flood boundary of Scope 292
Figure 76 The changing of flood boundary of Scope 3
Figure 77 The drainage system in Scope 3
Figure 78 The changing of flood boundary of Scope 494
Figure 79 The graph of average migration rate in the upstream area and downstream
area of an irrigation dam
Figure 80 The graph of average widening rate in the upstream area and downstream
area of an irrigation dam
Figure 81 The graph of widening rate in downstream area of an irrigation dam
Figure 82 The map of the depositional and erosional areas in downstream area of an
irrigation dam
Figure 83 The map of potential source of sediment in downstream area of an
irrigation dam
Figure 84 The graph of Sinuosity index of Chi River in reach 2101
Figure 85 boundary of the channel in reach 2 in 1952, 1992 and 2020
Figure 86 The graph of Sinuosity index of Chi river in reach 5
Figure 87 The boundary of the channel in reach 5 in 1952, 1992 and 2020102
Figure 88 The location of station 345 and 392104

Figure 89 The depositional and erosional map of station 345104
Figure 90 The erosional area of station 345 that was taken from a field survey in
October 2020
Figure 91 The depositional and erosional map of station 392105
Figure 92 The flow direction of the downstream area that nears the irrigation dam in
two different
Figure 93 Bank protection in reach 24
Figure 94 The location of section A, B, C in reach 25
Figure 95 The graph of Sinuosity index of section A
Figure 96 The boundary of the channel in scope A in 4 different periods: 1952, 1992,
2006, and 2020
Figure 97 The boundary of the channel in section B in 2 different periods: 2006 and
2020
Figure 98 The boundary of the channel in Section C in 4 different periods: 1952,
1992, 2006, and 2020
Figure 99 The location of recommendation location for making an artificial lake114
จุฬาลงกรณ์มหาวิทยาลัย

Chapter1: Introduction

1.1 Background

This study focused on the analysis in hydromorphological changes of the Chi River in Mueang district, Khon Kaen province, and the adjacent area. The hydromorphology represents a portmanteau word of "Hydrology" and "Geomorphology that is used for describing the interaction between hydrology, geomorphology, and river process (Vaughan et al., 2009). Hydromorphology considers river flow, river depth, river width, structure and substrate of the river bed, and floodplain structure. The hydromorphological condition affects the river's ecological status, such as the longitudinal connection of river effects to aquatic animal's migration in the breeding season. Moreover, hydromorphological degradation is one of the significant factors that cause poor ecological status in European rivers (Fehér et al., 2012).

It has many methods for assessing hydromorphological conditions depending on the study area's scale and purpose. The Morphological Quality Index (MQI) was applied to this work because it considers both rivers and areas affected by rivers. The MQI is applied to evaluate the degree of hydro-morphological alteration in terms of relative scores (from 0 to 1). Basically, in case the MQI score equals 1, it means the area has no any alteration. On the other hand, if the MQI score equals 0, the area has maximum alteration.

The Chi river is one of the main rivers in Khorat Plateau, Northeast of Thailand with more than 700 kilometers long. The Chi rises in the Phetchabun mountains then runs east through the central of northeast Thailand provinces: Chaiyaphum, Khon Kaen, and Maha Sarakham, then turns south in Roi Et, runs through Yasothon and joins the Mun in the Kanthararom district of Srisaket Province (Kuntiyawichai, Schultz, Uhlenbrook, & Suryadi, 2008). In rainy seasons during from May to October, there are often flash floods in the floodplain of the Chi River basin. The river was an 18thcentury migration route for the Khorat Plateau's re-peopling by ethnic Lao people from the left (east) bank of the Mekong resettling on the right bank (Keyes, 1976).

Khon Kaen province, one of the major provinces of the northeastern Thailand, is a sloped area that dips from west to east and south. The geography of Khon Kaen is composed of the mountain area, hill area, and floodplain area. Mountain area can be divided into two types: Mesa topography belonging to the Khorat Group and karst topography belongs to the Saraburi Group (limestone). The hill area is composed of colluvial deposits, terrace deposits, and aeolian deposits. Floodplain area shows meandering river, sand bar, levee, meander scar. Khon Kaen itself is bounded in the north by Phetchabun, Loei, Nong Bua Lamphu and Udonthani, south by Nakhon Ratchasima and Buriram, in the west by Chaiyaphum and in the east by Maha Sarakham and Kalasin. Khon Kaen Province is far approximately 450 Km from Bangkok. The study area covers part of the Chi River in Mueang district, Khon Kaen province, and the adjacent area (some parts of Kosum Phisai district, Maha Sarakham province) that lengths 67 kilometers. The study area has significant construction that is an irrigation dam constructed in 1988 and was operated in 1992. According to previous studies, dam affects downstream's sediment supply and downstream's channel geometry.

1.2 Objective

The prime objective of this research is as follows:

1. Assessing level of hydromorphological changing in chi river and riparian zone of chi river in Mueang district, Khon Kaen province and adjacent area by Morphological Quality Index (MQI)

2. Creating a geomorphological map of the chi river and riparian zone of chi river in Mueang district, Khon Kaen province, for analyzing the morphological changing pattern.

3. Describing River planform of chi river in Mueang district, Khon Kaen province in 5 different periods: 1952, 1988, 1992, 2006 and 2020 by a geomorphic index such as Sinousity Index (SI), Migration rate.

1.3 Scope

This research will mainly be concerned with the study of hydromorphological changing levels in the Chi River and riparian zone of the chi river in Mueang district, Khon Kaen province, and adjacent area evaluated by the Morphological Quality Index (MQI). The hydromorphological changes will be assessed by river continuity, channel pattern, cross-section configuration, bed structure and substrate, and vegetation in the riparian corridor (Rinaldi, Surian, Comiti, & Bussettini, 2013). Additionally, Geomorphic maps and other geomorphic indexes, including the Sinuosity Index (SI), the Migration rate of the river, widening rate, and degree of asymmetry channel, are interpreted with hydromorphological changing level.

This research's output is expected to comprehend of hydromorphological changing of the Chi river that contributes to illustrate geomorphology, hydrology, and river process of chi river in Muaeng Khon Kaen Province. The thesis will describe the relationship between the level of disturbance from artificial elements and Geomorphic index alteration.

1.4 The Study Area

This section describes the environmental setting of Mueang district, Khon Kaen province and adjacent area (Some area of Kosum Phisai district, Maha Sarakham province). The description will start with general topography, geology, climate conditions and historical flood. Figure 1 shows the boundary of study area.

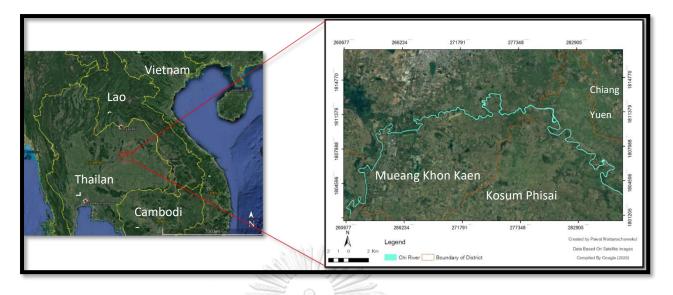


Figure 1 Study area: Chi river and riparian zone of chi river in mueang district, Khon Kaen province and adjacent.

1.4.1 Topography

Mueang district, Khon Kaen province, and adjacent area is the low-lying plain of the Chi river in Khorat plateau, Northeast Thailand. The study area appears in the reference topographic map at a scale of 1:50,000 series L7018 WGS 84 number 5541 I and 5641 IV.

1.4.2 Geology

According to geological map from DMR (2008a) and DMR (2008b), Geology of Mueang district, Khon Kaen province and adjacent area (Figure 2) consists of Cretaceous sedimentary rock and Quaternary sediment.

1.4.2.1 Cretaceous sedimentary rock

In study area has two cretaceous formations of Khorat group: Mahasarakham Formation and Phu Tok Formation.

1.4.2.1.1 Mahasarakham Formation

Mahasarakham Formation is a rock salt layer with a typical section as groundwater well at Mahasarakham province (Gardner, 1967). This formation cannot be found outcrop because it is covered by Quaternary sediments (Meesook, 2000). The thickness of the Mahasarakham formation ranges from 610-1,000 meters. The Maha Sarakham Formation can be divided into six members (Suwanich, 1985).The oldest member, the lower rock salt member, is the thickest rock salt layer. Moreover, this member found potash. The second oldest member, Lower mudstone, consists of mudstone, claystone, Reddish brown, massive, greenish mottle, carnallite, and halite veinlet sequence in ascending order. The third oldest member, Middle rock salt, consists of halite, gypsum, anhydrite. The fourth oldest member, Middle mudstone, consists of mudstone and claystone. This member does not have a carnallite veinlet. The second youngest member, Upper rock salt, does not have potash. The youngest member is an upper sedimentary rock. (Meesook, 2000) interpreted that the Mahasarakham formation was deposited in saline water in lakes and ponds in arid paleoclimate. The Mahasarakham formation age was given as Cenomanian (Lower Upper Cretaceous (Sattayarak, Srigulawong, & Patarametha, 1991).

1.4.2.1.2 Phu Tok Formation

Phu Tok Formation is thick massive reddish sandstone, claystone, and siltstone composed of three members (Meesook, 2000). The oldest member is Na Wah member, a thick bed to massive reddish-brown mudstone and claystone. The second oldest member, Kham Ta Kla, consists of cross-bedding sandstone, cross-bedding mudstone, and cross-bedding siltstone. The youngest member, Phu Tok Noi member is mega cross-bedding reddish sandstone. Meesook (2000) interpreted that Phu Tok formation was deposited in both occasional meandering rivers and semiarid winds to arid paleoclimate. The Age was given Age is given as Upper Cretaceous to Lower Tertiary (Meesook, 2000).

1.4.2.2 Quaternary Sediment

In study area has three sedimentary units. First, alluvial deposit unit consist of sediment particle size from sand to clay. Second, alluvial deposit with saline soil unit is similar with alluvial deposit unit but sedimentary in this unit contaminates with saline soil. Third, Low terrace deposit is consisted of gravel bed and laterite.

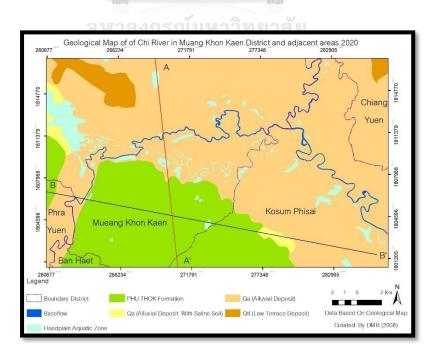


Figure 2 Geological Map of Study area: Mueang district, Khon Kaen province and adjacent area. (Modified from DMR (2008)).

1.4.2.3 Cross-Sectional line

According to the geological map (Figure 2), it has two cross-sectional lines: Line A-A' and Line B-B'. the Line A-A' orientates in North-South of study area While Line B-B' orientates in Northwest-Southeast direction.

1.4.2.3.1 Line A-A'

The Line A-A' crosses the central of study area in North-South direction. It can be seen from Figure 3 that Chi river flow on sedimentary alluvial deposit unit. This unit overlain on Ta Kla member, Phu Tok Formation and Mahasarakham Formation. In addition, this section has a fault plane. It implies that the chi river developed on fault plane.

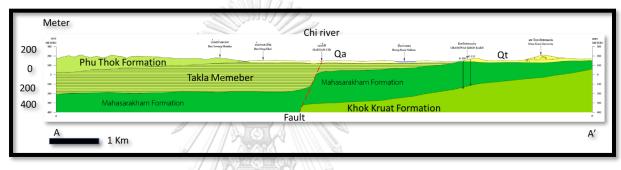


Figure 3 Cross-sectional line A-A' : Quaternary sediments overlain Phu Tok Formation (DMR, 2008).

1.4.2.3.2 Line B-B'

The Line B-B' crosses the Chi river segment that has channel planform as straight. It can be seen from Figure 4 that Chi river flows on sedimentary alluvial deposit unit that overlain on salt dome of Mahasarakham Formation. Thus, it may be assumed that the salt dome of the Mahasarakham Formation is structural control on river planform.

	Meter Chi river	
200 0	serversalisf shared by an and a serversalisf shared by a serversalis	BH1 METER: - 300 - 100 - 0
200 400	Mahasarakham Formation B 1 Km	- 100 - 200 - 300 B'

Figure 4 Cross-sectional line B-B': Quaternary sediments overlain Salt dome of Mahasarakham Formation (DMR, 2008).

1.5 Climate

The climate of Khon Kaen is a savanna that can be classified in Köppen Climate Classification as AW. The average temperature for the year in Khon Kaen is 81.0 °F (27.2 °C). The warmest month, on average, is April, with an average temperature of 87.0°F (30.6 °C). The coolest

month on average in January, with an average temperature of 72.0 °F (22.2 °C). For precipitation, the average amount of precipitation for the year in Khon Kaen is 49.6" (1259.8 mm). The month with the most precipitation on average is September with 11.0" (279.4 mm) of precipitation. The month with the least precipitation on average is December, with an average of 0.1" (2.5 mm).

The season in Khon Kaen can be classified in three seasons: summer, rainy and winter. The hot season ranges from February to April. The rainy season ranges from May to October. While, the cool season ranges from November to January.

1.6 Runoff data

The graph of average runoff data from E.9.1.A Station (RID station) in each month from 2005 to 2020 shows in figure 5. According to the graph, Y-axis is the average runoff data that was measured in cubic metre per sec while X-axis is month. The average run off data ranges from 77.07 cubic metre per sec (in April) to 1241.2 cubic metre per sec (in October). It can be seen that period from January to April has low runoff data while the period from September to November has high runoff data.

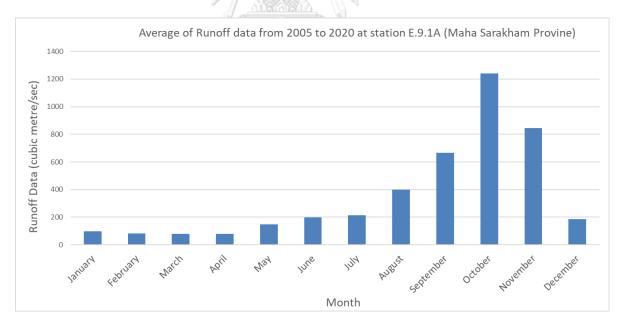


Figure 5 Average of Runoff data from 2005 to 2020 at E.9.1.A station (Maha Sarakham Province).

1.7 Historical Flood

The flood frequency from GISTDA (Figure 6) shows that the study area had been affected by flood average 2-4 times from 2005 to 2015. Thus, it can be concluded that the study area is a repeated flood area.

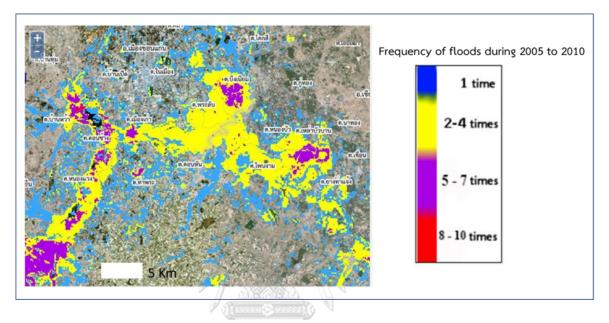
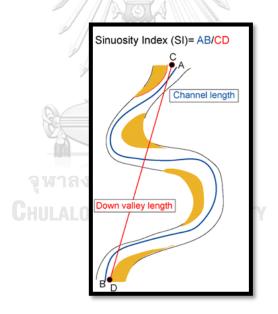


Figure 6 Frequency of flood during 2005 to 2010 map of mueang district, Khon Kaen province and adjacent area (Gistda).


Chapter2: Literature Review

In literature review section, the previous studies relating to this thesis will be described, for example, river geomorphic index, river classification, hydro morphological assessment, channel asymmetry and geomorphological effect on downstream of dam.

2.1 River geomorphic index

2.1.1 Sinuosity Index (SI)

Sinuosity Index (SI) is defined as the ratio between the channel length to down valley length (Leopold & Wolman, 1957; Mueller, 1968) (Figure 7). Sinuosity Index (SI) is usually used for characterized the intensity of meandering of the river and described river pattern (Lagasse, Zevenbergen, Spitz, & Thorne, 2004). Thus, SI implies river behavior because SI value can be altered by the river, such next cut off or chute cut off reduce SI. Moreover, Z. Li, Yu, Brierley, Wang, and Jia (2017) found that the lateral migration rate of the Tarim river does not only depend on local flow-sediment but also SI.

2.1.2 Braiding index (BI)

Braided is the term that is recognized as multiple channels of rivers that were separated by emergent sediment or unstable island. For measuring the degree of braiding, it has three systems for measuring: Bar indices that based on the length of the mid-channel bar. Channel length calculates the total sinuosity index and Count index that bases on the number of channels. Egozi and Ashmore (2008) suggested that the count index is preferred because it is not sensitive to variations in channel sinuosity and orientation. Moreover, the Count index has the smallest coefficients of variation and can be measured very quickly and reliably even from oblique photographs of reach. Therefore, the definition of braiding index that follows the definition from Egozi and Ashmore (2008) is the number of active channels at baseflow separated by emergent sediment. However, the calculation should be calculated at least ten different cross-sections because the braiding index depends on the water discharge flowing in the river, such some channels will merge or disappear in the dry season. For application, the braiding indices have been used in correlating braided channel patterns with the flow, stream power, sediment transport, morphology, and vegetation parameters.

2.1.3 Anabranching index (AI)

Anabranching rivers are recognized as multiple channels of rivers that were separated by vegetated islands or stable islands. The term of anabranching has resulted in two terms. The first term is anabranching that is used for describing multiple channels of rivers that have higher-energy and coarse-grained (North, Nanson, & Fagan, 2007). The second term is anastomosing that is used for describing river pattern that was associated with mostly fine-grained or organic sedimentation (Smith, 1983). However, either 'anabranching' or'anastomosing' isn't applied as the term for 'braided' (Nanson, 2013). For describing anabranching, Nanson (2013) created an index as the term of Anabranching index that calculated from the number of active channels at baseflow separated by vegetated islands. The calculation should be calculated at least from 10 different cross-sections.

2.1.4 Confinement

2.1.4.1 Definitions of Confinement

Confinement is a primary control river behavior that describes the degree to which bounding inactive floodplain features (such as hillslopes, alluvial fans, glacial moraines, and river terraces) limit the lateral extent of the valley floor and the floodplain along a rive (N. David, Buffington, Parkes, Wenger, & Goode, 2014).For application, Valley confinement is used to classify river patterns and estimate sediment flux (Fryirs, Wheaton, & Brierley, 2016).

2.1.4.2 Confinement types

Analyzing confinement types uses two parameters: Confinement degree and Confinement index. The first parameter, Confinement degree (CD), evaluates the lateral confinement in longitudinal valley direction that equals to the percentage of river length, banks both sides, that was abutted by inactive floodplain area such as hill, terrace (Brierley & Fryirs, 2005). The second parameter, Confinement index (CI), evaluates the ratio between floodplain width (including the channel) and channel width. This index is inversely proportional to confinement (Rinaldi et al., 2013). The minimum of the confinement index is 1 that indicates that this area does not have a floodplain. For the result, Rinaldi et al. (2013) classified confinement into 3 types: confined, partly confined, and unconfined (Figure 8). The first type, confined, means this section has a confinement index less than 1.5. The second type, partly confined means this section has a confinement degree between 10 to 90% and confinement index more than 1.5 or confinement degree less than 10 %, and confinement index less than 5 (for single thread). The last type, unconfined means this section has a confinement has a confinement degree less than 10 % and a confinement index less than 5 (for a single thread).

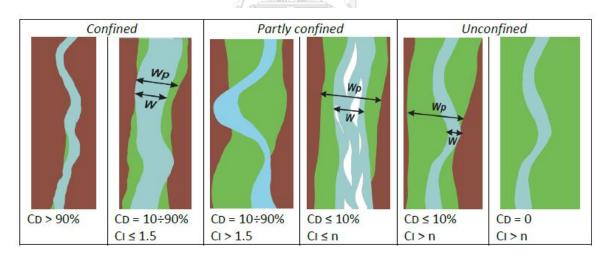


Figure 8 Figure shows the details of confinement type (Rinaldi et al., 2016).

2.1.5 Channel Width

Channel width means the width of the main channel that is measured from one side to another side of the channel. Channel width can be used for several investigations such Hooke (2007) used average channel width from several locations to investigate channel planform change, or Thayer (2017) used channel width to calculate specific stream power. Moreover, some hydrological models use channel width to calculate river power or shear stress (Finnegan, Roe, Montgomery, & Hallet, 2005).

2.1.6 Migration Rate

River migration is the geomorphological process that means the lateral migration of a river channel across its floodplain. This process is reflecting in the cutoff, erosion, and point bar deposition process (Bierman & Montgomery, 2014). Migration rate reveals the rate of lateral movement of the river that can be used for finding the trend of river movement and describing channel geometry. The lateral migration rate depends on many factors: the resistance of convex bank against erosion, the continuity and magnitude of flow, radius of curvature channel, and the flow capacity for sediment transport (Esfandiary & Rahimi, 2019). For measuring migration rate, it can be measured by remote-sensing data and GIS techniques (Nicoll & Hickin, 2010).

2.2 River Classification

The river can be classified into several types from its geometry and the processes operating within its reach (Raj & Bhandari, 2004). Traditionally, the river can be classified, by sinuosity index (SI), into three types: straight, meandering, and braiding types (Leopold & Wolman, 1957). But Gurnell et al. (2014) considered more factors: thread of channels, Braided index, and anabranching index. For partly confined and unconfined conditions, Gurnell et al. (2014) classified rivers into 6 types: Straight, Sinuous, Meandering, Wandering, Braided, and Anabranching (Figure 9). The details of each river type are shown in table 1.

พาสงกรณมหาวทยาลย

River classification can be divided into two conditions based on confinement type: confine condition and partly confined and unconfined condition.

1. Confined condition: This condition can be divided into three broad categories based on the number of threads: single thread, transitional zone, and multiple threads. However, a single thread is the most common type in this condition. For single thread confined, sinuosity index is not meaningful as it is determined by the valley rather than the channel planform. Therefore, single-thread confined channels are not further sub-divided at this stage because it is not possible to make accurate distinctions based on other characteristics, particularly the bed configuration, from remotely sensed sources. For transitional zone and multiple threads in confined condition, it uses the same criteria with partly confined and unconfined condition. In other case, river can be classification in three groups that based on number of threads: Single thread, Transitional zone and Multiple thread.

- 1.1 Single thread: It means river has only one channel that can be classified into three types base on degree of sinuous: Straight, Sinuous and Meandering.
 - 1.1.1 Straight river has sinuosity index value less than 1.05 at bank full condition. In nature, straight river is usually found as short river although long straight rivers seldom occur in nature. In dry season, alluvial bars exist on either side of the stream.
 - 1.1.2 Sinuous river has sinuosity index value between 1.05 to 1.5 at bank full condition.
 - 1.1.3 Meandering river has sinuosity index value more than 1.5 at bank full condition. The meandering rivers are asymmetrical river because the deepest part of river is outer bend. The flow at outer bend has faster than inner bend. Thus, sediment at outer bend is eroded and deposits at outer bend.
- 1.2 Transitional zone: Transitional zone shows intermediate characteristics between single thread and multiple threads. That means some area of the river has only one channel, but another area of the river has multiple channels. Moreover, the river width of the transitional zone is wider than a single thread. The transitional zone has one type of river that is called wandering.
 - 1.2.1 Wandering river

Wandering river is a wide and depth channel that is occupied by emergent sediment or active bar but Braiding index value and anabranching index are lower than 1.5.

- 1.3 Multi threads: Multi threads mean that river has more than one channel. It can be classified into two types: Braided and Anabranching.
 - 1.3.1 Braided river

Braided river is wide and shallow river and divided to branches by emergent sediment. The braided river has braiding index more than 1.5 and anabranching index lower than 1.5 The braided river is unstable river because some emergent sediment will be disappeared in flooded season while some branch channel will be disappeared in low flow stage. However, main channel of braided river is stable.

1.3.2 Anabranching river

Anabranching rivers are recognized as multiple channels of rivers that were separated by vegetated island or stable island. Anabranching river has anabranching index more than 1.5. Anabranching river is more stable than braided river because vegetate island is not disappeared in bankfull stage and Brach channel is not disappeared in low flow stage.

Thread	Sinousity Index	Braiding Index	Anabranching Index	Typology
	(Si)	(BI)	(Ai)	
Single	1 ≤ Si <1.05	1 ≤ Bi <1.5	1 ≤ Ai <1.5	Straight (ST)
	1.05 ≤ Si <1.5	1 ≤ Bi <1.5	1 ≤ Ai <1.5	Sinuous (S)
	Si ≥ 1.5	1 ≤ Bi <1.5	1 ≤ Ai <1.5	Meandering (M)
Transitional	Not applied	1 ≤ Bi <1.5	1 ≤ Ai <1.5	Wandering
Multiple	Not applied	Bi ≥ 1.5	1 ≤ Ai <1.5	Braided
	Not applied	1-1.5	Ai ≥ 1.5	Anabranching

Table 1 Table shows the details of river classification (Gurnell et al., 2014)

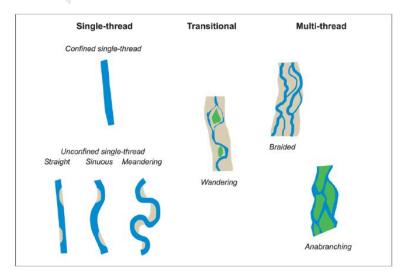


Figure 9 The classification of river (Gurnell et al., 2014).

2.3 Hydromorphological assessment

2.3.1 Types of hydromorphological assessment

Recently, hydromorphological assessment has been developed for applying with river management. It has many hydromorphological assessment methods with different countries, purposes, scales, and approaches. Hydromorphological assessment method had been categorized by B Belletti, Rinaldi, Buijse, Gurnell, and Mosselman (2015) into 4 categories: physical habitat assessment, riparian habitat assessment, morphological assessment, and flow regime alteration. The first method, physical habitat concerns only the physical properties of the water body of the river. The result from the physical habitat method can be applied in the ecological and biological study because this method concerns ecological and biological components. But this method has many limitations, such it can be applied to a small area. Moreover, this method consumes budget and time because this method interprets data only from field survey data. The next method, Riparian habitat assessment concerns an only area that has affected by a fluvial process such as a floodplain, meander scar. The limitation of this method is riparian zone has many factors that can affect such as a distribution from humans, vegetation, climate. Thus, if Assessor does not concern about all factors, result will be wrong. Next method, the Morphological assessment that is applied in reach scale concerns both of water body of the river and riparian zone. This method interprets data from remote sensing data. This method reduces time and budget. But this method lacks some information such as vertical continuity of river, biological and ecological data. The last method, flow regime alteration concerns river flow patterns and the trending of flow patterns under the assumption that the groundwater system is not alteration. Suppose the groundwater system alters from reference condition. The result will not be accurate. But this method has many strengths such a result can be applied on a large scale and can be predicted a flow alteration trend.

2.3.2 Delineation spatial scale unit for hydromorphological assessment

Hydromorphological assessment has many methods that are different in purposes, scales, and approaches. Thus, each method has appropriate spatial scales for investigation. González del Tánago, Gurnell, Belletti, and garcia de jalon (2015) summarized spatial scales that are used in hydromorphological assessment, from coarsest to finest scale, into 6 types: Catchment Scale, Landscape Scale or Physiographic Scale, Segment scale or Sector scale, Reach scale, Geomorphic Unit and Hydraulic Unit. The coarsest scale, catchment is an area of land that is drained by a river and its tributaries that can be defined boundary by topographic divided or watershed. The second coarsest scale, Landscape scale is portions of the catchment with similar morphological

characteristics that can be defined boundary by geological and geomorphological characteristics. The third coarsest scale, segment scale is portions of landscape with similar confinement conditions that can be defined boundary by confinement degree and confinement index. The fourth coarsest scale, reach scale is portions of section scale that has similar in degree of artificial elements and morphology of river such as floodplain features. This scale is usually applied in river management such as restoration river. The second finest scale, geomorphic unit, is area similar in geomorphology. The finest scale, Hydraulic unit is the area with similar flow condition.

2.3.3 Geomorphic unit for hydrological assessment

Some geomorphic units in the river are a physical habitat for the aquatic animal. The method of geomorphic survey units for physical habitat has been developed since 1980, but it has two limitations. The first limitation, many methods fixed the spatial scale of the study area (Belleti et al., 2015). The second limitation, many methods produced maximum morphological diversity for all types of rivers. This was leading to the problem that the geomorphic unit was very complex. It was hard to categorize, therefore, Barbara Belletti et al. (2017) created geomorphic units survey and classification system (GUS) to solve this problem. The GUS method can use in multiple scales because it produces geomorphic unit that has been categorized by spatial setting and appeared feature in three spatial scale level: macro unit, unit, and sub-unit. The coarsest spatial scale, macro unit is a group similar in water, sediment, vegetation, and setting. The macro unit has 5 types: baseflow unit, emergent sediment, channel vegetation, riparian zone and floodplain aquatic (Figure 10). The first macro unit, base flow unit is the water body of the main and branch channel of the river. The second macro unit, emergent sediment is sediment that emerges without vegetation in the river channel. The third macro unit, channel vegetation, is emergent sediment that has been covered by a plant. The next macro unit, the riparian zone is the area that has been affected by a fluvial process such as Levee, floodplain, terrace. The last macro unit, floodplain aquatic is a water body that displays in flood plain area such as a lake. The second coarsest spatial scale unit is portions of the macro unit that have distinctive in term of morphological characteristics and significant size such as floodplain, island. The size of the unit is available that depends on the setting of unit. Table 2 shows the detail of each unit. The finest scale, sub-unit, is the small patch with fairly homogeneous characteristics in terms of vegetation, sediment, or flow conditions located in unit scale. The size of the sub-unit is smaller than unit.

Figure 10 Classification of 5 macro units (Google Earth, 2015).

For analyzing, GUS analysis in terms of the geomorphological map has three levels: board level, basic level, and detailed level. The coarsest level, the board level corresponds to the delineation and a general characterization that shows the boundary of the macro unit. The board level is produced from the aerial photograph or satellite image by remote sensing and GIS technique. The second coarsest level, the basic level is complete delineation and the first level of characterization of all types of geomorphic units in terms of presence/absence, number, area, or length of macro-units. The board level is produced by data from remote sensing and GIS techniques and data from field surveys. Figure 11 shows the difference between the board level and the basic level. The finest level, the detailed level provides detailed information in terms of morphological, hydrological, vegetation, and sediment properties.

For the application, data that is produced from the GUS method can describe hydromorphological conditions. Moreover, it can make application in biology such as habitat of aquatic animals.

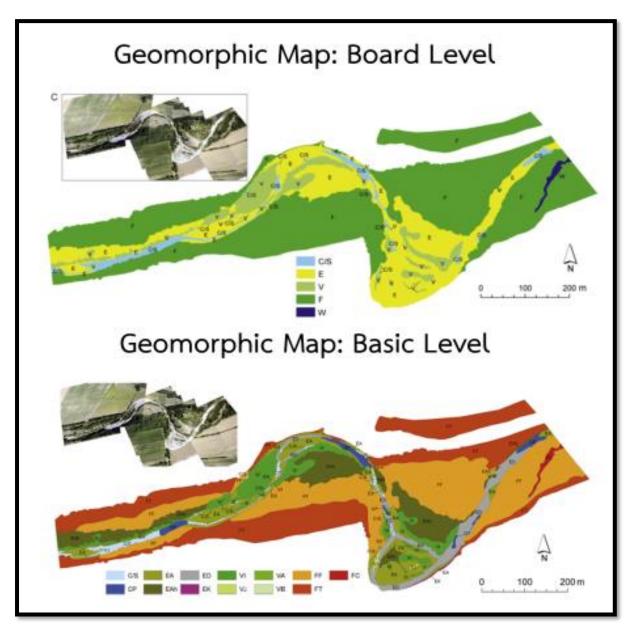


Figure 11 The characterization of board level map and basic level map (Belleti et al., 2017).

Macro Unit	Unit	Definition		
Base flow unit	Main Channel	The main channel of river		
	Secondary Channel	The branch river		
Emergent	Bank Attached Bar	The sediment, which has grain size lower than sand, attaches at river		
Sediment		bank.		
	Mid Channel Bar	The sediment, which has grain size lower than sand, emerges in mid		
		channel.		
	Bank-attached high	The sediment, which has grain size more than gravel, attaches at river		
	bar	bank.		
	Mid Channel high Bar	The sediment, which has grain size more than gravel, emerges in mid		
		channel.		
	Dry Channel	Channel has no water flow in dry season.		
	Bed rock outcrops	Outcrops emerge in mid channel.		
	River bank 🥢	River bank		
Channel	Island	Mid channel bar is covered by plant.		
Vegetation	Aquatic Vegetation	It has aquatic plant that grows in channel.		
	Large wood jam	It has tree log that accumulates in channel.		
	Vegetated bank	River bank is coved by plant.		
	Bench (Berm)	Edge of river bank is covered by plant.		
Riparian Zone	Modern Floodplain	Modern flat area of land next to a river.		
	Recent Terrace	A step-like landform.		
	Scarp	Area has been developed from floodplain to terrace.		
	Levee	Levees are natural embankments.		
	Overbank Deposit	Sediment deposits during overbank process.		
	Ridge and Swale	Dunal area in floodplain		
	Floodplain island	Floodplain in anabranch river system		
	Terrace island	Terrace in anabranch river system		
	Secondary Channel	Small stream does not connect to main channel.		
	(Within)			
Floodplain	Floodplain Lake	Surface water in floodplain		
aquatic zone	Wetland	Area is flooded by water, either permanently or seasonally, where		
		oxygen-free processes prevail.		

Table 2 Table shows the details of sub unit (Belleti et al., 2017).

2.3.4 Morphological Quality Index (MQI)

Rinaldi et al. (2013) created the Morphological Quality Index (MQI) which was a morphological assessment method for reach scale. The MQI describes the degree of hydromorphological alteration and distribution of current condition from reference condition that means river at 50-100 years ago. The evaluation is based on a relative score system, score range 0 to 1, from 28 indicators which are defined to assess river continuity, channel pattern, cross-section configuration, bed structure and substrate, and vegetation in the riparian corridor. The 28 indicators that are shown in table 3 can be classified into 3 categories: Artificiality, channel adjustment, and geomorphic functionality. The first category, artificiality, evaluates the number of artificial elements and intervention processes such as bank protection. The second category, channel adjustment, evaluates the degree of alteration of channel river in three topics: width, depth, and channel pattern. The final category, geomorphic functionality evaluates whether or not the river process and morphological conditions are altered by artificial element and channel adjustment. Before evaluating, confinement condition must be found because some indexes use only in specific confinement condition. After evaluating, the next step is calculating Morphological Quality Index (MQI) score that is calculated as follows equation 2.1.

MQI = 1 – (Stot / S max)

(Equation 2.1)

Where Stot is the sum of the scores and Smax is the maximum score that could be reached when all appropriate indicators are in maximum alteration condition.

For MQI Sore, Score ranges from 0 to 1, leading to a divide to 5 morphological quality classes: 1. High class, score ranges from 1 to 0.85, 2. Good class, score ranges from 0.7 to 0.85, 3. Moderate class, score ranges from 0.5 to 0.7, 4. Poor class, sore ranges from 0.3 to 0.5, 5. Bad Class, score below 0.3. The high class means this study area doesn't have alteration and distribution, although the bad class means this study area has maximum alteration and distribution.

MQI has many strengths, such it can be applied in small scale, or it can be compared with the different area but MQI has some limitations such as it cannot be used in an area that has been affected by the coastal process, and MQI does not concern factor about groundwater systems that connect to river systems.

Artificiality	Geomorphological Functionality	Channel Adjustment	
A1: Upstream alteration of flow	F1: Longitudinal continuity in sediment and	CA1: Adjustments in channel	
A2: Upstream alteration of sediment	wood flux	pattern	
A3: Alteration of flow (in reach)	F2: presence of a modern floodplain	CA2: Adjustments in channel	
A4: Alteration sediment discharge	F3: Hill Slop river corridor connectivity	width	
A5: Crossing Structure	F4: Process of bank retreat	CA3: Bed-level Adjustment	
A6: Bank Protection	F5: Presence of a potentially erodible corridor		
A7: Artificial Levees	F6: Bed onfiguration		
A8: Artificial change of river course	F7: From and process typical channel pattern		
A9: Other bed stabilization structures	F8: Presence of typical of channel pattern		
A10: Sediment removal	F9: Variability of the cross-section		
A11: Wood removal	F10: Structure of the channel bed		
A12: Vegetation management	F11: Presence of in-Channel large wood		
	F12: Width of functional vegetation		
	F13: Linear extension of functional vegetation		

Table 3 Table shows the details of each component (Rinaldi et al., 2013)

2.4 Analysis of Channel Asymmetry

The channel's cross-sectional shape depends on flow, sediment character, and composition of bed and bank material. About 90 % of the cross-sectional shape of the channel is asymmetry (Leopold & Wolman, 1957). Moreover, Majumder (2011) found that many cross-sectional shapes of the straight river are asymmetrical. The technique for measuring the degree of asymmetry has been developed since 1981. Knigthon (1981) created three indices for measuring the degree of asymmetry: A*, A1 and A2. A* is measuring the degree of asymmetry of river channel cross-sectional form that calculates from the other area differences in the area between the two parts of the channel and is defined as Equation 2.2. The range of A* is -1 to 1. If the channel is symmetrical, A* value is near 0. However, If the channel is in extreme symmetry, A* value is near -1 or 1.

 $A^* = (A \text{ left} - A \text{ right}) / \text{Total Area}$

(Equation 2.2)

A1 index considers the degree of horizontal asymmetry that is defined as Equation 2.3. However, A2 index considers the degree of vertical asymmetry that is expressed as Equation 2.4. If A1 and A2 equal to 0, it means this cross-sectional shape is symmetrical. However, If A1 and A2 don't look similar to 0, it means this cross-sectional isn't symmetrical. In contrast, X is the horizontal distance from the centreline to the centroid of maximum depth.

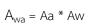
 $A_1 = (2 * X * maximum depth) / Area$

(Equation 2.3)

 $A_2 = (2 * X * (Maximum depth - Depth at center line) / Area$

(Equation 2.4)

Das and Islam (2018) developed a new three index for measuring the degree of asymmetry from Knigthon (1981) called Aa, Aw and Awa. These indices are calculated from the difference between the median area line (Lm) and the centerline of the channel (Lc). The median line means a line that halves cross-sectional area, and the centerline of the channel means a line that halves the cross-sectional area's width. Figure 12 shows the Definition of parameters of an asymmetrical channel. Aa considers the difference in area asymmetry, although that is defined as Equation 2.5 Aw considers the difference in area asymmetry that is defined as Equation 2.6. Awa is a product from Aw and Aa that is expressed as Equation 2.7. While A' is area between the median area line and the centerline of the channel and W' is the horizontal distance between the median area line and the channel's centerline. In this measure, if the value of these indices is '0', the channel is perfectly symmetrical and if it is 1, the channel is 100 % asymmetric in nature.


A_W= 2W' / Total Width of cross-sectional

 $A_a = 2A'$ / Total Area of cross-sectional

(Equation 2.6)

(Equation 2.5)

(Equation 2.7)

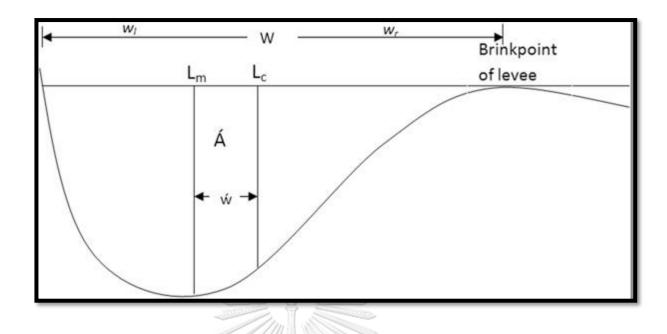


Figure 12 Definition of parameters of an asymmetrical channel (Das and Islam., 2018).

2.5 Geomorphological effect on downstream of dam

It has many purposes for construction dam such as irrigation, hydropower, flood mitigation (Richter & Thomas, 2007). Although construction dam has many advantages, it has many impacts on geomorphology in downstream area (Lai et al., 2017; D. Li, Lu, Chen, & Wasson, 2019; Makaske et al., 2012; Petts & Gurnell, 2005; Phillips, 2009; Williams & Wolman, 1984). Brandt (2000) classified the geomorphological effect on downstream area of dam into 9 types: Water discharge, Sediment discharge, Bank erosion, Channel depth, channel planform, Bedform, cross-sectional area, migration rate.

2.5.1 Water Discharge

The effect on hydrological characterization in downstream area is one of primary effect from dam because dam controls all hydrological characterization in downstream area such as: peak flow, sediment carrying capacity, stream power, water quality (Brandt, 200). Li et al. (2017) found that the peak flows of downstream area of three gorges dam has reduced more than 40 % after the dam operated.

2.5.2 Sediment supply

The dam directly impacts on sediment transportation because almost of upstream sediments are trapped at the gate of dam. According to previous study (Dai & Liu, 2013; Lai et al., 2017; Lyu, Chai, Xu, Qin, & Cao, 2019), they found that downstream's sediment supply has dramatically decreased after the dam operated. Williams and Wolman (1984) found that the sediment trap efficiency of downstream area that is the ratio of amount of sediment deposition in upstream area and amount of sediment inflow directly varies with the size of dam. In some case, the sediment trap efficiency is higher than 90 %. The decreases of sediment supply led to many problems such as planform alteration, channel degradation, alteration in bed from.

2.5.3 Bank erosion

According to the reduction of down stream's sediment supply, it leads to the bank erosion in downstream area in case that most of downstream's sediments come from main channel. Thus, the channel width in downstream area will increased. Wang et al. (2018) found that Channel width Yichang-Chenglingji Reach, downstream area of three gorges dam in china reduced about 4.5 % after the dam has operated.

2.5.4 Channel Depth

According to the reduction of down stream's sediment supply, it can lead to channel degradation in case that river does not have erodible corridor. Many channel depth of downstream area has increased after the dam operated such as Aswan Dam in Egypt (Biswas, 2002), Eildon Reservoir in Australia (Erskine, 1996) and Three gorges dam in China (Zhou, Xia, Lu, Deng, & Lin, 2017).

2.5.5 Cross-sectional area

According to the alteration in channel with and channel depth, the cross-sectional area will alter. Brandt (2000) concluded that the alteration in cross-sectional area influences to stream power and stability index.

2.5.6 Channel bed from

The dam always traps upstream sediment that influents to both of amount and size of downstream sediment (Brandt, 200). Schmidt and Wilcock (2008) found that the downstream channel bed has come to armoring status. The armoring means that the bed surface of gravel-bed rivers is coarsened relative to the sub-surface (Wilcock & DeTemple, 2005). The armoring condition influents to channel hydraulics, hydraulic roughness.

2.5.7 Slope alteration

Chien (1985) found that the slope of channel in downstream area has altered that is caused by the erosional process and alteration channel bed from. The slope alteration can impact on the transport capacity, shear stress and channel planform.

2.5.8 The Channel Planform

The channel planform depends on many factors: bed material, shear stress, slope, river energy. Brandt (2000) summarized that the alteration in channel width and channel depth causes the channel planform alteration. Sundborg (1956) found that the ratio of channel width and channel decreases. The channel will alter to meanders planform. For multiple channels, it found that many multiple channels in downstream area have altered to single channel such as Rio Grande in USA , Garone river in France (M. David, Labenne, Carozza, & Valette, 2016) and Tummel River in Scotland (Parsons & Gilvear, 2002). However, Słowik et al. (2018) found that downstream of Drava River in Hungary altered from sinuous (one channel) to anabranching pattern (multiple channels) after the dam had constructed.

2.5.9 Migration Channel

According to alteration in channel depth and channel width, migration rate of channel will be affected. Zhou et al. (2017) found that migration rate of downstream of Yangtze river has increased after the Three Gorges dam operated.

Chapter 3: Method

This thesis processing consists of 5 main steps: collecting data, creating a geomorphological map, delineation of reach, assessing the current river condition, and discussion & conclusion. Figure 13 shows the hierarchical framework of this thesis.

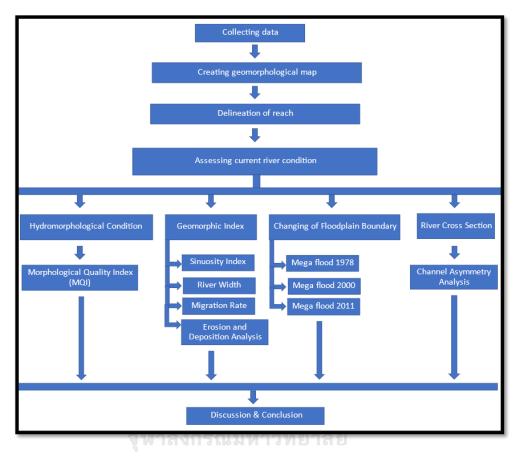


Figure 13 The hierarchical framework of this thesis.

3.1 Collecting data

The first Step is collecting data. The data that was used in the thesis is shown table 4. It consists of two main types: Remote Sensing data and Secondary data. First, Remote Sensing Data consists of Satellite image from Landsat 1-5 MSS in 1978, Landsat 4-5 TM in 1998, 2000, Google (Via Google Earth) in 2006 and 2020 and Aerial Photo taken by Royal Thai Survey in 1952 and 1992. The aerial photos in JPG version were rectified in ArcGIS 10.3 version. Each photos were rectified by using 12 ground control points from topographic map in UTM WGS 1984 zone 48N coordinated system. The ground control point means the points on the surface of the earth of known location such as the intersection of the road. The acquiring criteria for this study is the low value of Root Mean Square Error (RMSE). This thesis uses remote sensing data taken in both dry season and flood

season. The remote sensing data taken in the dry season was used for defining river boundary and calculating geomorphic index because the sky doesn't have more clouds, and water remains in the river (Gurnell, Downward, & Jones, 1994). The dry season remote sensing consists of five periods: 1952, 1988, 1992, 2006, and 2020. The remote sensing data taken in flood season was used to define the boundary of mega-flood. It consists of two periods: 1978 and 2000. Second, Secondary data consists of shapefile, geological map, topographic map, cross-sectional data, and run-off data. The shapefile is the boundary of mega-flood in 2011 that GISTDA created. The geological map was created on a scale of 1: 50,000 by the Department of Mineral Resource (Thailand) in 2008, consisting of two sheets: 5541 I and 5641 IV. Next, the topographic map was produced on a scale of 1: 50,000 by the Royal Thai Survey that consists of two sheets: 5541 I and 5641 IV. Next, runoff data was collected data by Royal irrigations at Ban Kuichaug bridge in January 2020. Finally, run off data has been collected data by Royal irrigations at Ban Kuichaug bridge since 2006.

	Remo	te Sensing Data	
Туре	Taken by	Date taken	Resolution of image
Aerial Photo	Royal Thai Survey	1952	0.6 meter
	A Ressee	1992	0.6 meter
Satellite Image	Landsat 1-5 MSS	10/30/1978	30 meters
	Landsat 4-5 TM	20/02/1988	30 meters
		10/10/2000	30 meters
	Google (Via Google Earth)	2006	1 meter
	CHULALONGKO	2020 NVER	1 meter
	Sec	ondary Data	
Туре	Created by	Sheet	Application Data
Shape File	GISTDA	Thailand	Defining flood event 2011 boundary
Geological Map	DMR (Thailand)	5541	Defining geological unit
(1:50,000)		5641 IV	Defining geological unit
Topographic Map	Royal Thai Survey	5541	Using in field survey
(1:50,000)		5641 IV	Using in field survey
River Cross section	Royal Irrigation Department	Station E9.1	Comparing with river cross section
(Jan 2020)			(October 2020)
Run off Data			Comparing run off in each month

Table 4 Detail of data used in this thesis.

3.2 Creating geomorphological map

This thesis created a geomorphological map in two periods: 1952 and 2020 because remote sensing taken in 1952 and 2020 has an appropriate resolution for crating detail maps. In each period map was produced in two spatial scales: Board level and Basic level. First, the board level shows the boundary of five macro units following GUS Method (Barbara Belletti et al., 2017): baseflow, Emergent sediment, Floodplain aquatic Zone, Riparian Zone, and Channel vegetation. Second, the basic level has more detail than the board level. It shows the boundary of the unit. The boundary of the Floodplain in the geomorphological map was based on the boundary of mega-flood in the study area that was cited from three mega-flood events: 1978, 2000, and 2011.

It has four steps for creating the geomorphological map. The first step is rectifying aerial photos and satellite images. The second step is mosaicing the image. The third step is defining the boundary of 5 macro units. Finally, it is determining the unit in each macro unit. The geomorphological map in 1952 used floodplain boundary from the boundary of 1978 mega-flood, while the geomorphological map in 2020 used floodplain boundary from the boundary of 2011 mega-flood. Every step is doing in ArcGIS program version 10.3. The third step is leading to Board level geomorphological map, and the result of the fourth step is leading to a basic geomorphic level.

For application, the geomorphological map will describe confinement conditions and geomorphological alteration of the Chi River in Muang Khon Kaen district and adjacent areas.

จุฬาลงกรณ์มหาวิทยาลัย

Chulalongkorn University

3.3 Delineation of reach

Delineation of reach is dividing the study area to reach scale. The reach scale means the small area that has a similar morphological channel. The delineation of reach delineates from Chi river in 2020 because this condition is the most current condition. These steps use many delineating criteria that consist of confinement condition, channel planform, geological condition, river's orientation, floodplain feature, and artificial element that affects the river and riparian zone such as bank protection.

3.4 Assessing current river condition

Assessment current river condition consists of four parts: hydromorphological condition, geomorphic index value, Changing of floodplain boundary, and degree of asymmetry.

The first part, changing flood boundary, compared the alteration of mega flood's boundary in three periods: 1978, 2000, and 2011.

The second part analyzes the geomorphic index that concludes: Sinuosity index, Channel width, Widening rate and Migration rate. The migration rate was calculated from mid channel's migration rate. These indices were calculated from aerial photos and satellite images that were taken in the dry season. The study area has significant construction that as the irrigation dam that was constructed in 1988 and was operated in1992. According to a previous study (e.g., Williams and Wolman 1984, Petts and Gurnell 2005), the dam construction affects the downstream channel geometry. Thus, the geomorphic index was measured in 1988 and 1992 for detecting geomorphic alteration during the construction of the Irrigation dam. The channel width and The Sinuosity index were measured in 5 periods: 1952, 1988, 1992, 2006, and 2020, while widening rate and migration rate were measured in 4 periods: 1952-1988, 1988-1992, 1992-2006, and 2006-2020. The channel width, the widening rate, and the migration rate was measured for every river length 100 meters. Thus, it has 670 stations that is shown in Figure 14.

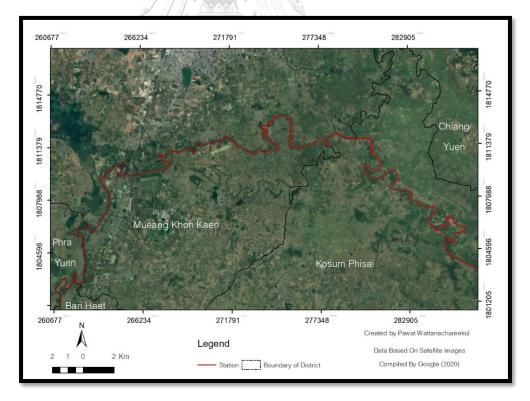
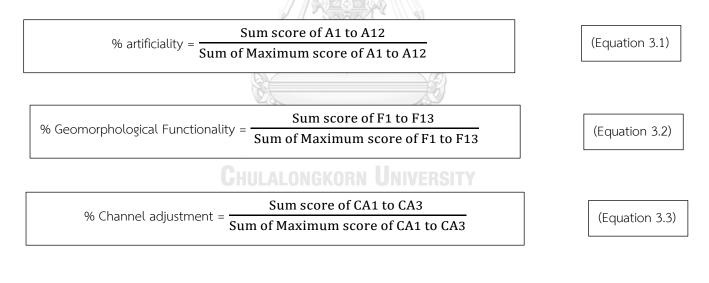



Figure 14 The location of 670 stations that were measured geomorphic index.

The third part, hydromorphological condition, was evaluated by the Morphological Quality Index (MQI) that described the degree of alteration and distribution of reach scale in terms of related score. The MQI consisted of 28 indicators that are shown in table 3 in chapter 2. These indicators can be classified into three elements: artificiality, channel adjustment, and geomorphic functionality. In each element can be calculated the percentage. If the percentage is high, it means the level of alteration in this topic is high. First, artificiality evaluates the number of artificial elements and intervention processes. The percentage of artificiality can be calculated the percentage that as follows equation 3.1. Next, the geomorphological functionality evaluates whether or not an artificial element and channel adjustment alter the river process and morphological conditions. The percentage of geomorphic functionality can be calculated the percentage that as follows equation 3.2. Finally, channel adjustment evaluates the degree of alteration of the channel river. The percentage of channel adjustment can be calculated the percentage that as follows equation 3.2. Finally, geomorphological functionality evaluates whether or not an artificial element and channel adjustment and be calculated the percentage that as follows equation 3.2. Finally, geomorphological functionality evaluates whether or not an artificial element and channel adjustment alter the river process and morphological conditions. The percentage of channel adjustment can be calculated the percentage that as follows equation 3.2. Finally, geomorphological functionality evaluates whether or not an artificial element and channel adjustment alter the river process and morphological conditions. The percentage of geomorphic functionality evaluates whether or not an artificial element and channel adjustment alter the river process and morphological conditions. The percentage of geomorphic functionality can be calculated the percentage that as follows equation 3.3. After calculation in each component, the MQI score can be calculated as follows equation 3.4. The detail of score in each indicator is shown in Appendix A.

MOL seers 1	Sum score of all indicators	
MQI score =1-	Sum of Maximum score of all indicators	

(Equation 3.4)

The fourth part is calculating the degree of asymmetry channel from cross-sectional shape that was collected from 5 bridges in Chi River that is shown in Figure 15. The cross-sectional shape was collected by dropping the rope with weighting every 10 meters in the horizontal distance.

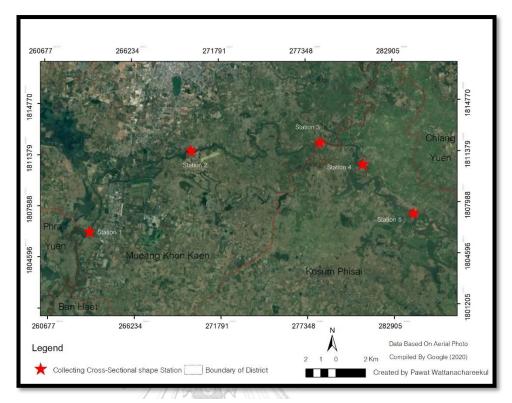


Figure 15 The location of 5 stations that were collected cross-sectional data.

LINER(O)ENALCI

The degree of asymmetry was calculated by six indices: A*, A1, and A2 from Knighton (1981) and Aa, Aw, and Awa from Das and Islam (2018). The A* calculates the degree of spatial asymmetry of channel that can be calculated as follows equation 2.2 in chapter 2. The A1 calculates the degree of horizontal asymmetry of channel that can be calculated as follows equation 2.3 in chapter 2. The A2 calculates the degree of vertical asymmetry of channel that can be calculated as follows equation 2.4 in chapter 2. Aa calculates the degree of spatial asymmetry that can be calculated as follows equation 2.5 in chapter 2. Aw calculates the degree of horizontal asymmetry that can be calculated as follows equation 2.6 in chapter 2. Finally, Awa is the product of Aw and Aa that can be calculated as follows equation 2.7 in chapter 2.

For the area of cross-sectional shape, it can be calculated by the area between two curves $(x_y_curve1 \text{ is cross-sectional shape and } x_y_curve2 \text{ is water level})$ in google colab. The code that was used for calculating the area of cross-sectional in google colab is following that

from shapely. Geometry import Polygon

x y curve1 = [(X1,Y1), (X2,Y2)]

x_y_curve2 = [(Xa, Ya), (Xb, Yb)]

polygon_points = [] #creates a empty list where we will append the points to create the polygon

for xyvalue in x_y_curve1:

polygon_points.append([xyvalue[0],xyvalue[1]])

for xyvalue in x_y_curve2[::-1]:

polygon_points.append([xyvalue[0],xyvalue[1]])

for xyvalue in x_y_curve1[0:1]:

polygon_points.append([xyvalue[0],xyvalue[1]])

polygon = Polygon(polygon_points)

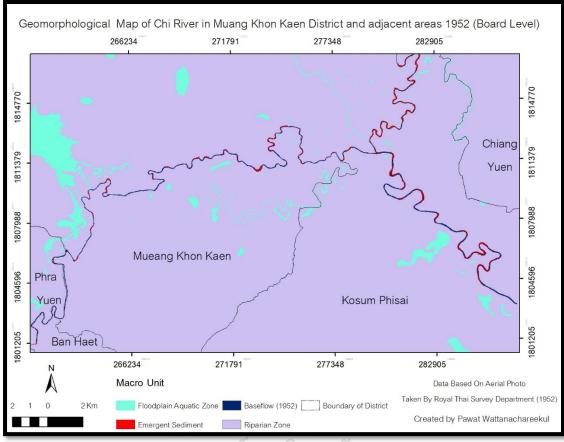
area = polygon.area

print(area)

3.5 Discussion and Conclusion

The discussion part discusses all results from remote sensing analyses and field surveys leading to assessing the Chi river's hydromorphological changes in Khon Kaen. It consists of four parts. The first part, changing of flood boundary, discusses the changing of mega-flood in thre0e periods: 1978, 200, and 2011. The second part, asymmetry of the channel, discusses the degree of asymmetry channel that was calculated from 6 indices: A*, A1, and A2 from (Knighton, 1981) and Aa, Aw, and Awa (Das and Islam, 2018). In addition, this part compares the cross-sectional data that was collected at Ban Kuichaug bridge between January 2020 and October 2020. The third part, the geomorphic index alteration, discusses the alteration of geomorphic index value in each period. In addition, this part compared the alteration of the geomorphic index in between downstream and upstream of an irrigation dam. The fourth part is the relationship between geomorphic index changes and MQI Score. This part compares geomorphic index alteration in the High MQI score area and Low MQI Score area.

The conclusion part is concluding interesting data from the thesis and giving some suggestions for future study and benefits from this study.

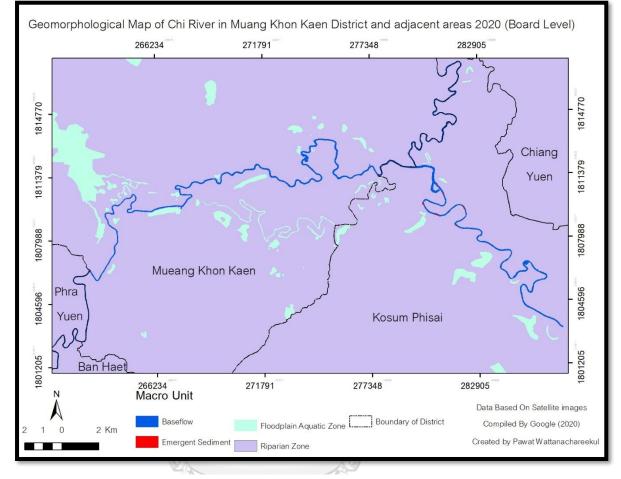

Chapter4: Results

This chapter provides the study results, including a geomorphological map, changing of mega floodplain boundary, hydromorphological condition, geomorphic index, and channel asymmetry. Results were divided into 6 parts, starting with the geomorphological map. As mentioned in the previous chapter, the geomorphological map was used to delineate the study area to reach scale. The geomorphological map was produced from aerial photos taken in 1952 and satellite images taken in 2020 because these data sets have appropriate resolutions for creating a geomorphological map. In this chapter, the changing of flood boundary was produced from megaflood boundary in a study area in different three periods: 1978, 2000, and 2011. The third part of this chapter, Delineation of reach divided all study areas into 25 reach scales based on the river's orientation, the planform of the river, and artificial elements in this area. The fourth part of this chapter, Geomorphic Index, consisted of Sinuosity Index, channel width, Migration Rate was measured in the dry season in five different periods: 1952, 1988, 1992, 2006, and 2020. Also, this part compared erosion areas and deposition areas of the Chi River in the study area between 2006 and 2020 that were collected data in the dry season. The fifth part of this chapter, Hydromorphological condition in 2020 was assessed by the Morphological Quality Index (MQI) (Rinaldi et al., 2013). MQI revealed the term of hydromorphological alteration in terms of relative scores. Last part of this chapter, Channel asymmetry was analyzed by two sets of asymmetry indices: A*, A1, and A2 from Knighton (1981) and Aa, Aw, and Awa from B. C. Das and Islam (2016) from a cross-sectional shape that was collected data from 5 locations in October 2020. All results will give essential information on hydrology coupled with geomorphology for river management in the study area.

4.1 Geomorphological map

This thesis has two spatial scales: board level and basic Level. The board level shows the boundary of Macro Unit in study area.

4.1.1 Geomorphological board level



4.1.1.1 Geomorphological Map board level in 1952

<u>າຮາວ.າດ</u>ແຫ່ງເຮົ້ອງ ເປັນຄະນາຍາວເຄ

Figure 16 The Chi river's geomorphological board level map in Muang Khon Kaen district and adjacent areas in 1952.

Figure 16 shows the Chi river's geomorphological board level map in Muang Khon Kaen district and adjacent areas in 1952. This map is produced from aerial photos that were taken in 1952. According to the figure, it can be seen that this geomorphic consists of 4 Macro Unit: Base Flow unit that displays as dark blue color, Emergent sediment that displays as red color in the map, Floodplain Aquatic Zone that displays as light blue color in the map and Riparian Zone that displays as purple color in the map.

4.1.1.2 Geomorphological map Board level in 2020

Figure 17 The Chi river's geomorphological board level map in Muang Khon Kaen district and adjacent areas in 2020.

ู้จั พ.เน*ก*มวภทท พ.เ.ามค.เนค

Figure 17 shows the geomorphological board level map of the Chi River in Muang Khon Kaen district and adjacent areas in 2020. This map is produced from satellite images that were taken in 2020. According to the figure, it can be seen that this geomorphic consists of 4 Macro Unit: Base Flow unit that displays as dark blue color, Emergent sediment that displays as red color in the map, Floodplain Aquatic Zone that displays as light blue color in the map and Riparian Zone that displays as purple color in the map.

4.1.2 Geomorphic basic level

4.1.2.1 Geomorphic basic level in 1952

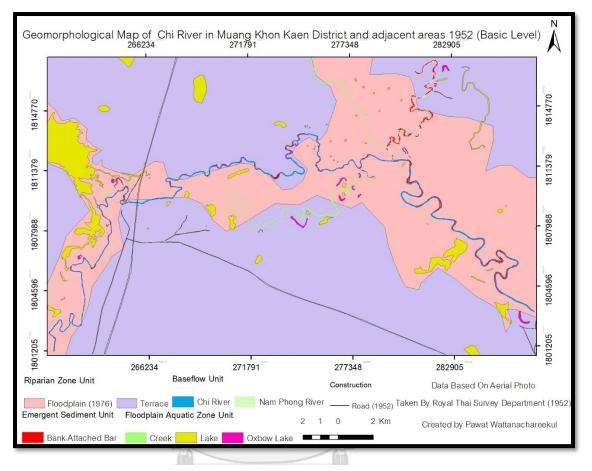
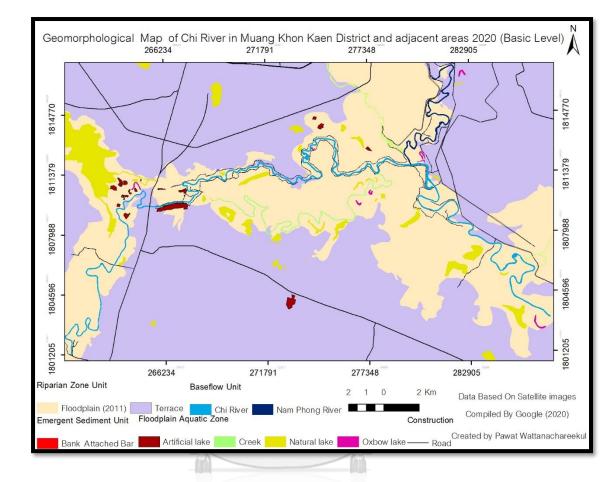



Figure 18 The Chi river's geomorphological basic level map in Muang Khon Kaen district and adjacent areas in 1952.

Figure 18 shows the geomorphological board-level map of the Chi River in Muang Khon Kaen district and adjacent areas. This map is produced from aerial photos that were taken in 1952. According to the map, the baseflow unit consists of 2 units: Chi river and Nam Phong river. The emergent sediment unit has only a bank attached bar. Next, Flood plain aquatic unit consists of three units: Creek, lake, and Oxbow lake. Finally, the Riparian unit consists of 2 units: terrace, and floodplain. The floodplain is cited from1978 mega-flood boundary.

4.1.2.1 Geomorphic basic level in 2020

Figure 19 The Chi river's geomorphological basic level map in Muang Khon Kaen district and adjacent areas in 2020.

Chulalongkorn University

Figure 19 shows the geomorphological basic level map of the Chi River in Muang Khon Kaen district and adjacent areas. This map is produced from satellite photos that were taken in 2020. According to the map, the Baseflow unit consists of 2 units: Chi river and Nam Phong river. For Emergent sediment unit, it consists of one unit: bank attached bar. Next, Flood plain aquatic unit consists of three units: Creek, lake, and Oxbow lake. Finally, Riparian unit consists of 3 units: Abandoned paleochannel, terrace, and floodplain. The floodplain was cited from the mega-flood boundary in 2011. For construction, this study area consists of Bank protection, Road, and Dam. Nowadays, the number of roads is more than in 1952.

4.1.3 Confinement index

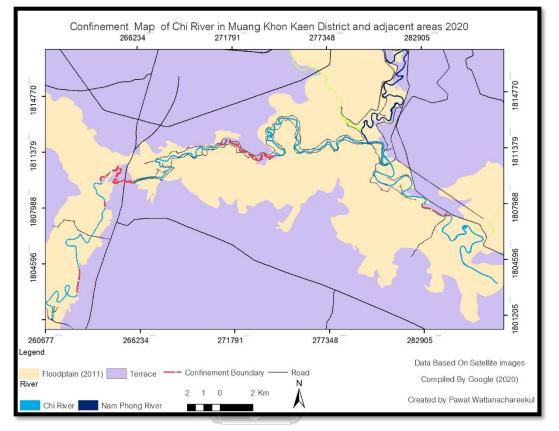


Figure 20 Confinement map of Chi rivermap in Muang Khon Kaen district and adjacent areas.

Figure 20 shows the boundary of confinement (the area is abutted by inactive floodplain area) in Chi River in Muang Khon Kaen district and adjacent areas. It can be calculated that the length of the Chi river in 2020 is 67,293.1 meters and the length of river that is abutted by inactive floodplain area is 11431.44 meters. Thus, the confinement index is 16.98 %. This study area is classified as the partly confined condition.

4.2 Changing of flood boundary

According to geomorphological maps, it can be seen that land uses and land cover in the study area have many alterations. Shrestha, Ye, and Khadka (2019) found that land use and land cover changes have impacts on flood hazards. Thus, this is a reason to produce the map of changing flood boundaries. This process is obtained data from the boundary of mega flooded in the study area in three different periods: 1978, 2000, 2011 that have many alterations. Figure X Shows the changing of flood boundary that can divide the changing boundary into 6 areas. The first area is grey color on the map that means this area was suffered from the flood in 1978. The second area is orange color on the map that means this area was suffered from the flood in 1978 and 2000.

The third area is green color on the map that means this area was suffered from the flood in 2000 and 2011. The fourth area is yellow color on the map that means this area was suffered from the flood in 2011. The fifth area is yellow color on the map that means this area was suffered from the flood in 1978, 2000 and 2011. The sixth area is red color on the map that means this area does not have suffered from the flood.

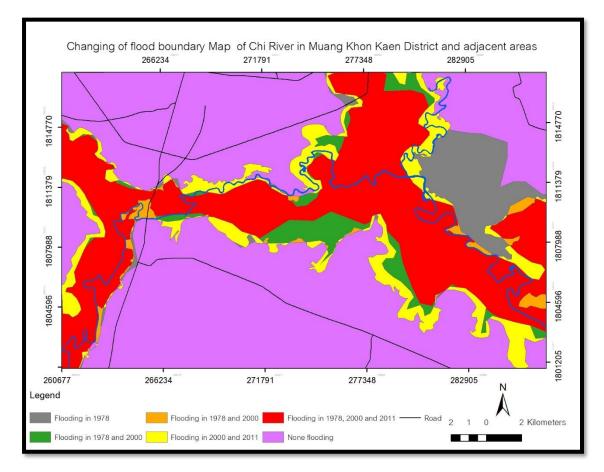


Figure 21 The changing of flood boundary map of Muang Khon Kaen district and adjacent areas.

4.3 Reach delineation

Reach delineation was divided by confinement condition, the orientation of river, channel planform, artificial elements. The first step is dividing the study area into segment scale. Segment scale is portions of landscape with similar confinement conditions that can be defined boundary by confinement degree and confinement index. However, the Geomorphological map of this thesis reveals that the study area has confinement conditions as unconfined. Thus, this step uses the orientation of the river to divide the study area into segment scale. It can divide into 3 segments (Figure 22). The first segment is the Chi river that orientates in the Northeast – Southwest direction. The second segment is the Chi river that orientates in the East-West direction. This segment is yet to meet Nam Pong River, branch river of Chi river. The last segment is the Chi river that orientates in North West- South East direction and meets the Nam Phong river.

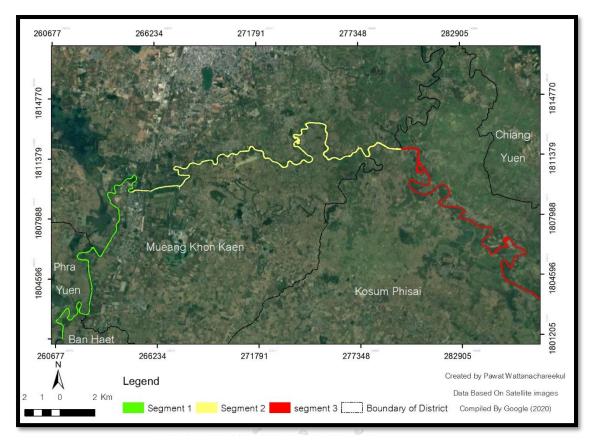


Figure 22 Segment scale of Chi river in Muang Khon Kaen district and adjacent areas.

UNULALUNUKUNN UNIVENJI I

After dividing river to segment scale, the next step is dividing each segment scale to reach scale. Reach scale means a small area that has a similar degree of artificial elements and morphology of river. The length of reach scale is from 100 meters to 10 kilometers. Segment 1 can divide into 10 reaches (Reach 1 -10), while segment 2 can be divided into 9 reaches (Reach 11-19), and Segment 3 can be divided into 6 reaches (Reach 20-25). Thus, it has 25 reaches. The Figure 23 shows boundary of each reach scale.

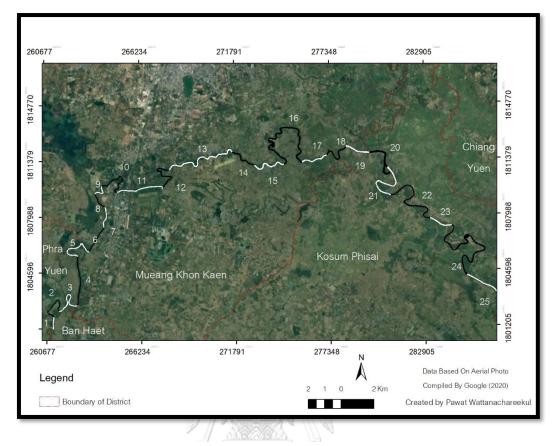


Figure 23 Reach scale of Chi river in Muang Khon Kaen district and adjacent areas.

4.3.1 Detail of each reach.

4.3.1.1 Detail of Reach 1

Figure 24 shows the condition of reach 1 in 1952 and 2020. Reach 1 is the straight river that orientates in the Northeast-Southwest direction. This reach is 747.54 meters long. For artificial elements, this reach has one bridge that crosses over the river.

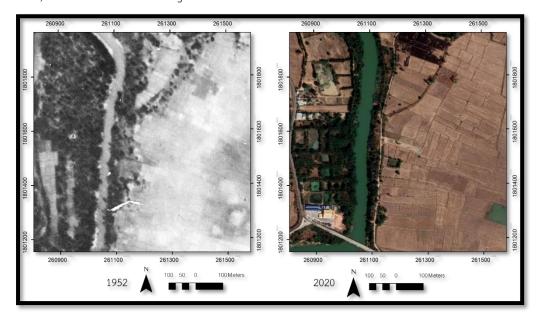


Figure 24 Close up air-photo and satellite image of Reach 1.

4.3.1.2 Detail of Reach 2

Figure 25 shows the condition of reach 2 in 1952 and 2020. Reach 2 is a meandering river that orientates in the Northeast-Southwest direction. This reach is 2190.79 meters long. This reach doesn't find any artificial element, but the riparian zone has changed from an abandoned channel to a lake.

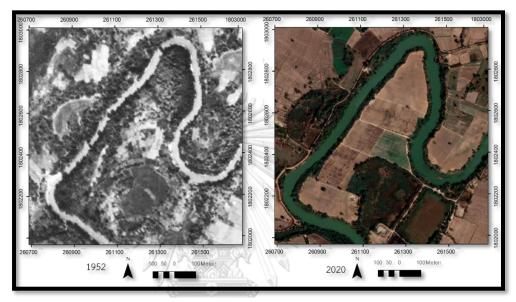


Figure 25 Close up air-photo and satellite image of Reach 2.

4.3.1.3 Detail of Reach 3

Figure 26 shows the condition of reach 3 in 1952 and 2020. Reach 3 is a meandering river that orientates in the East-West direction. This reach is 2494.64 meters long. This reach has a high probability of cutting off in the future.

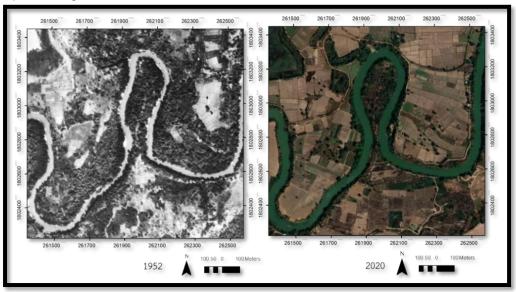


Figure 26 Close up air-photo and satellite image of Reach 3.

4.3.1.4 Detail of Reach 4

Figure 27 shows condition of reach 4 in 1952 and 2020. This reach is straight river that orientates in North-South direction. This reach is 3003.5 meters long. This reach has no any artificial element.

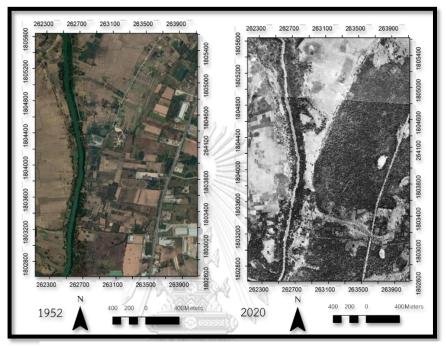


Figure 27 Close up air-photo and satellite image of Reach 4.

4.3.1.5 Detail of Reach 5

Figure 28 shows condition of reach 5 in 1952 and 2020. This reach is meandering river that orientates in East-West direction. This reach is 2509.16 meters long. This reach has no any artificial element but many vegetation areas have been removed.

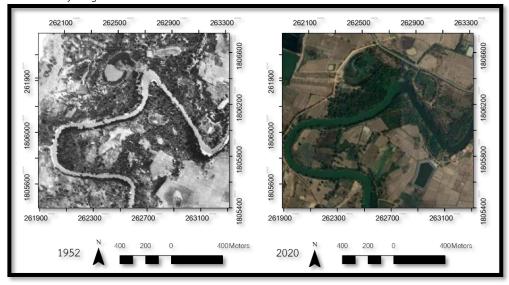


Figure 28 Close up air-photo and satellite image of Reach 5.

4.3.1.6 Detail of Reach 6

Figure 29 shows condition of reach 6 in 1952 and 2020. Reach 6 is straight river that orientates in Northeast-Southwest direction. This reach is 1685.72 meters long. This reach has one bridge and water supply powerplant.



Figure 29 Close up air-photo and satellite image of Reach 6.

4.3.1.7 Detail of Reach 7

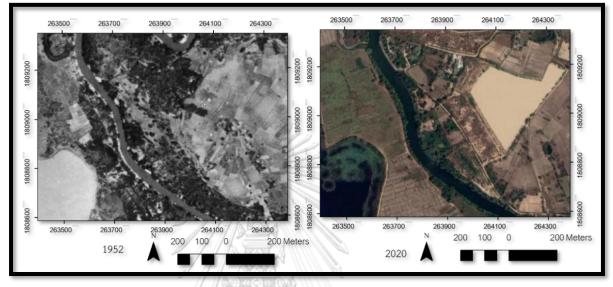

Figure 30 shows condition of reach 7 in 1952 and 2020. Reach 7 is sinuous river is sinuous river that orientates in North-South direction. This reach is 1329.84 meters long. The paleochannel of this reach has been changed to lake.

Figure 30 Close up air-photo and satellite image of Reach 7.

4.3.1.8 Detail of Reach 8

Figure 31 shows condition of reach 8 in 1952 and 2020. Reach 8 is straight river that orientates in Northeast-Southwest direction. This reach is 1003.59 meters long. Many vegetation areas of this reach have been removed. Moreover, the paleochannel has been changed to lake.

re 31. Close up air photo and catollito imag

Figure 31 Close up air-photo and satellite image of Reach 8.

4.3.1.9 Detail of Reach 9

Figure 32 shows condition of reach 9 in 1952 and 2020. Reach 9 is meandering river that orientates in Northeast-Southwest direction. This reach is 914.35 meters long. Many vegetation areas of this reach have been removed.

Figure 32 Close up air-photo and satellite image of Reach 9.

4.3.1.10 Detail of Reach 10

Figure 33 shows condition of reach 10 in 1952 and 2020. Reach 10 is meandering river that orientates in East-West direction. This reach is 2675.28 meters long. At present, this reach is a developed housing. Therefore, it has many artificial elements such as bridge, bank protection.



Figure 33 Close up air-photo and satellite image of Reach 10.

4.3.1.11 Detail of Reach 11

Figure 34 shows condition of reach 11 in 1952 and 2020. Reach 11 is straight river that orientates in East-West direction. This reach is 2749 meters long. For artificial elements, this reach has three bridges that cross over the river. Moreover, this reach doesn't find only artificial element but also many disturbance activities. First, paleochannel has been modified to artificial lake. Second, the channel has been modified. Finally, it has activity that pumps water out of river.

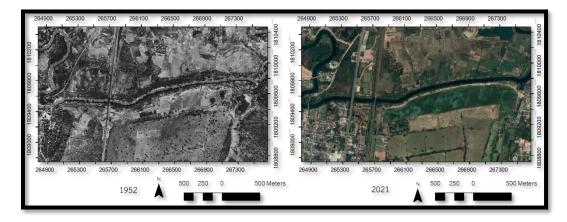


Figure 34 Close up air-photo and satellite image of Reach 11.

4.3.1.12 Detail of Reach 12

Figure 35 shows condition of reach 12 in 1952 and 2020. Reach 12 is meandering river that orientates in North-South direction. This reach is 2706.1 meters long. Many vegetation areas of this reach have been removed.

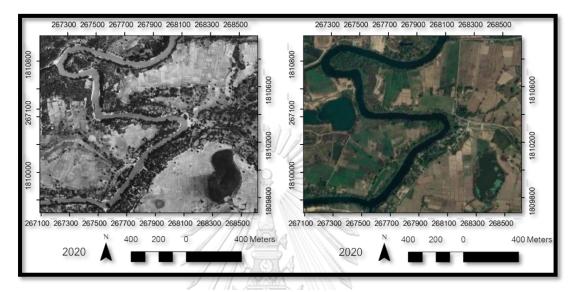


Figure 35 Close up air-photo and satellite image of Reach 12.

4.3.1.13 Detail of Reach 13

Figure 36 shows condition of reach 13 in 1952 and 2020. Reach 13 is meandering river that orientates in East-West direction. This reach is 4794.15 meters long. The vegetation areas of this reach have changed to urban area. It has many artificial elements such as bridge, roads that near the river bank. These roads are one factor that has reduced the potentially erodible corridor of river.

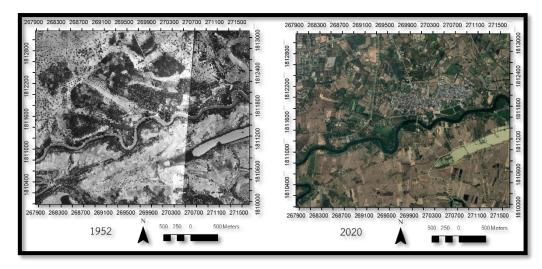


Figure 36 Close up air-photo and satellite image of Reach 13.

4.3.1.14 Detail of Reach 14

Figure 37 shows condition of reach 14 in 1952 and 2020. Reach 14 is meandering river that orientates in Northeast-Southwest direction. This reach is 1695.2 meters long. Many vegetation areas of this reach have been removed. Moreover, it has many roads that near the river bank. These roads are one factor that has reduced the potentially erodible corridor of river.

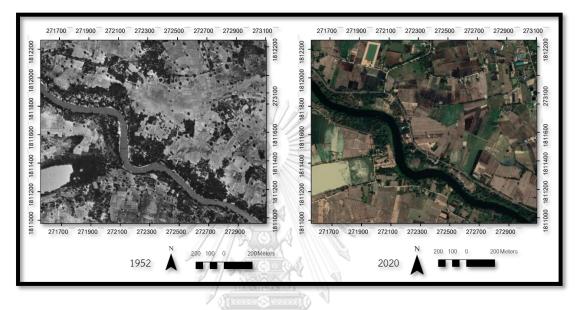


Figure 37 Close up air-photo and satellite image of Reach 14.

4.3.1.15 Detail of Reach 15

Figure 38 shows condition of reach 15 in 1952 and 2020. Reach 15 is meandering river that orientates in East-West direction. This reach is 222.36 meters long. The vegetation area has modified to urban area. Thus, it has some artificial elements such bridge, road that nears the river bank.

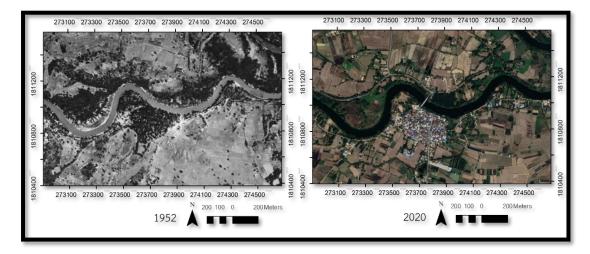


Figure 38 Close up air-photo and satellite image of Reach 15.

4.3.1.16 Detail of Reach 16

Figure 39 shows condition of reach 16 in 1952 and 2020. Reach 16 is a meander neck area that is 7109 meters long. According to the left bank, it has many roads that near the river bank. These roads are one factor that has reduced potentially erodible corridor. Moreover, many vegetation areas have been removed. It has drainage system nears the reach.

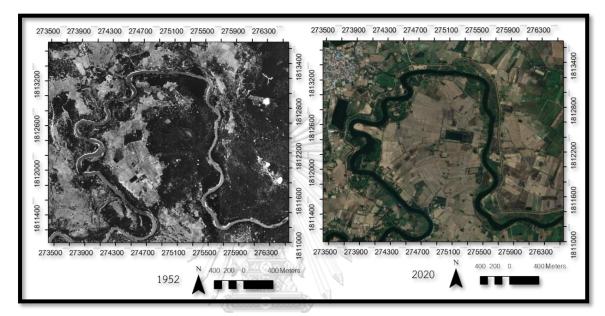


Figure 39 Close up air-photo and satellite image of Reach 16.

4.3.1.17 Detail of Reach 17

Figure 40 shows condition of reach 17 in 1952 and 2020. Reach 17 is the straight river that orientates in East-West direction. This reach is 1610.33 meters long. According to river bank, it has many roads that nears that near the river bank.

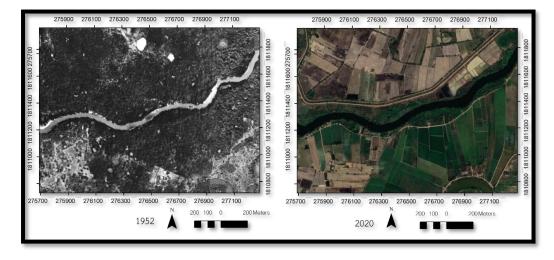


Figure 40 Close up air-photo and satellite image of Reach 17.

4.3.1.18 Detail of Reach 18

Figure 41 shows condition of reach 18 in 1952 and 2020. Reach 18 is the meandering river that orientates in East-West direction. This reach is 2072.63 meters long. Many vegetation areas of this reach have been removed. Moreover, it has drainage system near the reach.

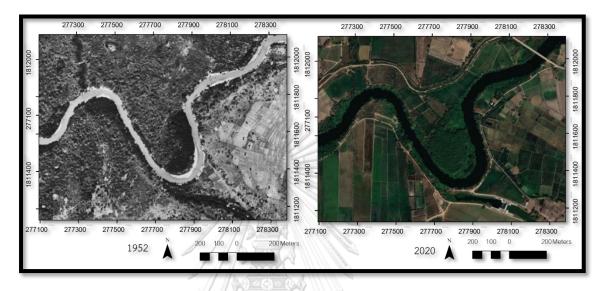


Figure 41 Close up air-photo and satellite image of Reach 18.

4.3.1.19 Detail of Reach 19

Figure 42 shows condition of reach 19 in 1952 and 2020. Reach 19 is the straight river that orientates in East-West direction. This reach is 1396.7 meters long. Many vegetation areas of this reach have been removed.

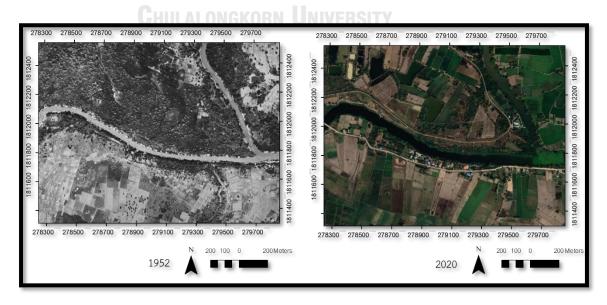


Figure 42 Close up air-photo and satellite image of Reach 19.

4.3.1.20 Detail of Reach 20

Figure 43 shows condition of reach 20 in 1952 and 2020. At present, reach 20 is sinuous river that orientates in Northwest-Southeast. However, this reach was meandering river until 1992. Because this reach has a dam that operated in 1992. This dam causes flow direction of river has been changed. In addition, it has many roads that near the river bank.

Figure 43 Close up air-photo and satellite image of 20.

4.3.1.21 Detail of Reach 21

Figure 44 shows condition of reach 21 in 1952 and 2020. Reach 21 is a downstream area of dam. This reach is meandering river that orientates in North-South direction. For river length, this reach is 3704.69 meters long. This reach has creek that may be a one of sediment source of Chi river. For artificial element, this reach has one bridge that crosses over the river.

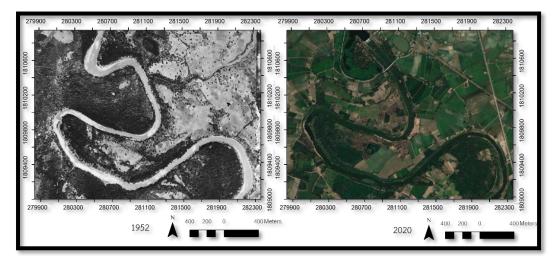


Figure 44 Close up air-photo and satellite image of Reach 21.

4.3.1.22 Detail of Reach 22

Figure 45 shows condition of reach 22 in 1952 and 2020. Reach 22 is a meandering river that orientates in Northeast-Southwest direction. This reach is 5077.35 meters long. Vegetation area of this reach has changed to urban area. In addition, it has road that nears the bank.

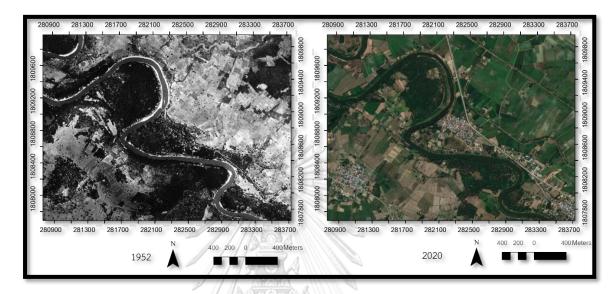


Figure 45 Close up air-photo and satellite image of Reach 22.

4.3.1.23 Detail of Reach 23

Figure 46 shows condition of reach 23 in 1952 and 2020. Reach 23 is straight river that orientates in East-West direction. This reach is 1346.22 meters long. For artificial element, it has one bridge that cross over the river. Moreover, many vegetation areas have been changed to urban area.

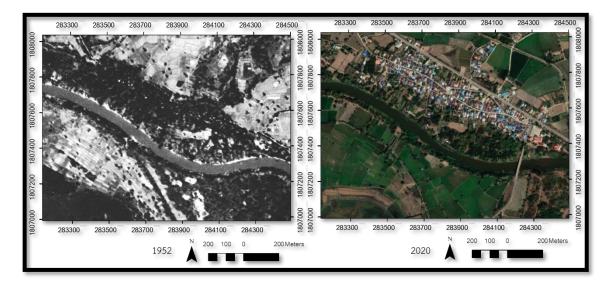


Figure 46 Close up air-photo and satellite image of Reach 23.

4.3.1.24 Detail of Reach 24

Figure 47 shows condition of reach 24 in 1952 and 2020. Reach 24 is meandering river that orientates in East-West direction. This reach is 3138.26 meters long. For artificial element, this reach has a bank protection. Vegetation area has been removed. Moreover, it has river sand mining in this reach.

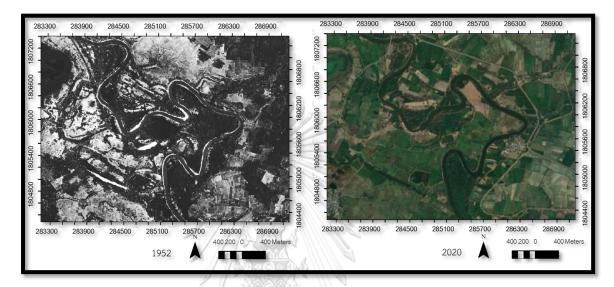


Figure 47 Close up air-photo and satellite image of Reach 24.

4.3.1.25 Detail of Reach 25

Figure 48 shows condition of reach 24 in 1952 and 2020. Reach 25 is straight river that orientates in Northwest-Southeast direction. This reach is 2188.23 meters long. Some vegetation areas have been changed to urban area.

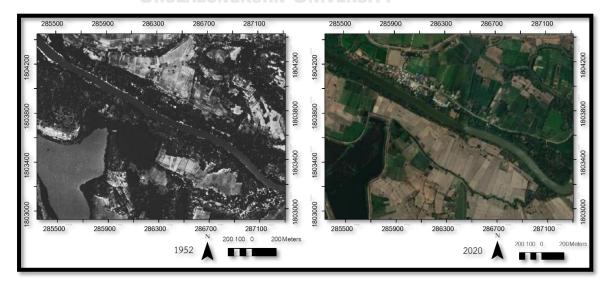
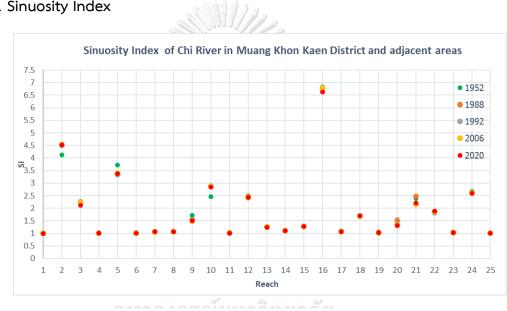



Figure 48 Close up air-photo and satellite image of Reach 25.

4.4 Geomorphic Index

This thesis uses 3 geomorphic indices: Sinuosity Index, Channel Width, and Migration rates. These indices were measured by remote sensing techniques in the dry season in 5 different periods: 1952, 1988, 1992, 2002, and 2020. The sinuosity index was measured in each reach scale that was divided. In comparison, Channel width and migration rate were measured for every 100 meters length of a river. Thus, it has 690 stations that were measured channel width and migration rate. Also, this chapter compares the erosion area and deposition area of the Chi River between 2006 and 2020.

4.4.1 Sinuosity Index

Figure 49 The graph of Sinuosity index of Chi river in Muang Khon Kaen district and adjacent areas.

Figure 49 shows the graph of the sinuosity index measured in 5 different periods in each reach. According to the graph, the Y-axis is the Sinuosity index value, and the X-axis is the number of reaches. The sinuosity index value varies from just 1.005 to 6.82. However, it has only 6 reaches that have significant changes of the sinuosity index value. First, reach, the Sinuosity index value of reach 2 increased from 2.11 in 1952 to 4.52 in 2020. Next, the Sinuosity index value of reach 5 decreased from 3.71 in 1952 to 3.37 in 2020. Next, the Sinuosity index value of reach 16 decreased from 6.82 in 1952 to 6.62 in 2020. Finally, the Sinuosity index value of reach 20 and 21 dramatically decreased from 1.50 in 1988 to 1.31 in 1992 and from 2.47 in 1988 to 2.21 in 1992. The dramatic alterations of the sinuosity index of reach 20 and 21 between 1988 to 1992 were caused by constructing an irrigation dam that has changed the Chi river's flow direction.

4.4.2 Channel Width

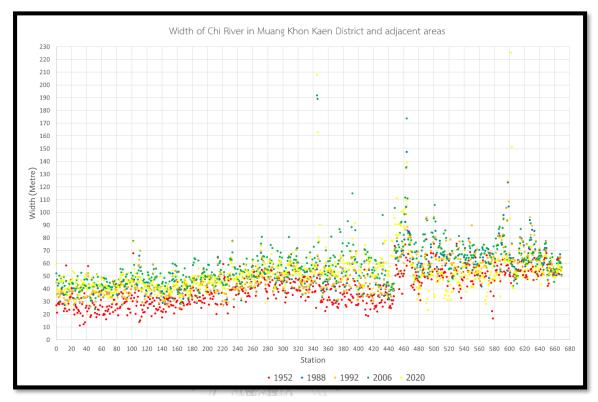
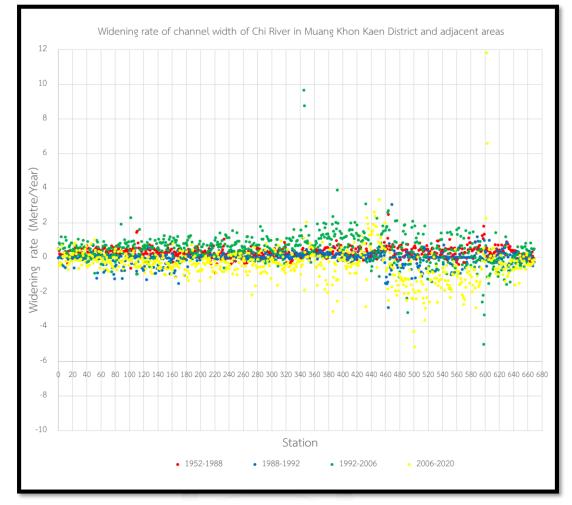
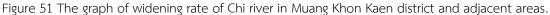




Figure 50 The graph of channel width of Chi river in Muang Khon Kaen district and adjacent areas.

Figure 50 shows the graph of Channel width measured in the dry season in 5 different periods: 1952, 1988, 1992, 2006, and 2020. According to the graph, Y-axis is the Channel width was measured in meters and the X-axis is the station. It can be seen that channel width varies from just 11.1 meters to more than 200 meters. Overall, the Width that was measured in 2020 is wider than the Width that was measured in 1952. It has significant changing width in 4 stations: station 345 and 392 in reach 16, station 464 in reach 20, and station 602 in reach 24.

4.4.3 Widening rate of Channel width of Chi river

Chulalongkorn University

Figure 51 shows the graph of widening rate that was measured in 4 different periods:1952-1988, 1988-1992, 1992-2006, 2006-2020. According to the graph, the X-axis is the station, and the Y-axis is widening rate that was measured in meters per year. Basically, widening rate is more than 1, which means the channel is wider than in the past. However, widening rate is less than 1, which means the channel is narrower than in the past. It can be seen that widening rate varies from -5.17 meters per year to 11.08 meters per year. It has a significant 4 widening rate. First, the widening rate at station 345 in 1992 - 2006 has a widening rate of 9.66 meters per year. Second, the widening rate at station 501 in 2006 – 2020 has a widening rate of -5.17 meters per year. Third, the widening rate at station 598 in 1992 – 2006 has a widening rate of -5.01 meters per year. Finally, the widening rate at station 602 in 2006 – 2020 has a widening rate of 11.8 meters per year.

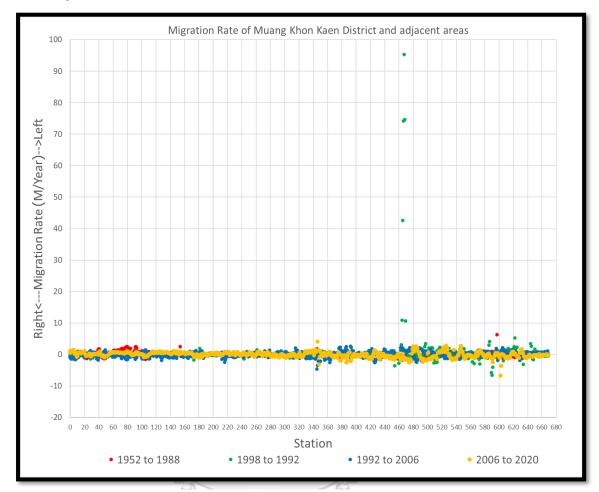


Figure 52 The graph of migration rate of Chi river in Muang Khon Kaen district and adjacent areas.

W 161 VII 6 160 PI 1 6 PI CI 161 CI

The migration rate was calculated by the changing of a mid-channel in each period. Figure 52 Shows the graph of the migration rate of the Chi river in 4 different periods: According to the graph, X-axis is a station that was measured migration rate, and Y-axis is the migration rate that was measured in meter per year. For Y-axis, if the migration rate is more than 0, it means mid-channel migrates to the left side (observed in direction upstream to downstream). On the other hand, if the migration rate is less than 0, it means mid-channel migrates to the right side (observed in direction upstream to downstream). On the other hand, if the migration rate is less than 0, it means mid-channel migrates to the right side (observed in direction upstream to downstream). It can be seen from figure 4.X that it has an anomaly migration rate from 1988 to 1992 at station 467 in reach 20 was more than 90 meters per year while another value was less than 10 meter per year. The migration rate of station 467 from 1988 to 1992 was an anomaly because it had constructed a dam from Royal Irrigation Department between 1988 to 1992. This dam didn't only effect on Channel planform but also the migration rate.

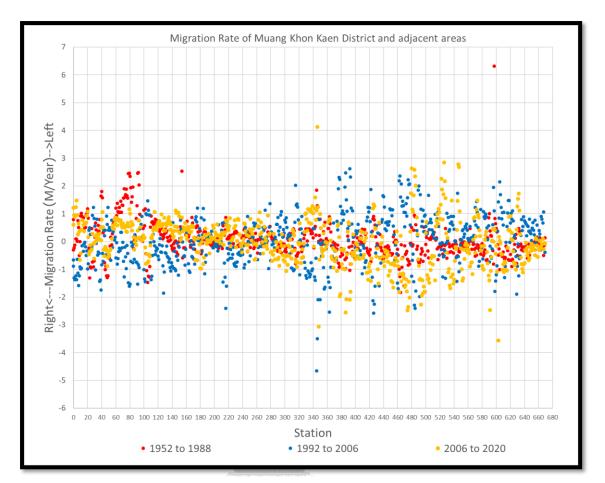
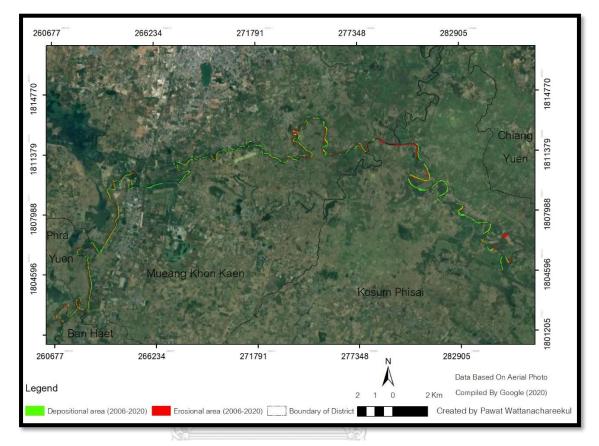



Figure 53 The graph of migration rate of Chi river in Muang Khon Kaen district and adjacent areas in three periods.

Figure 53 shows the graph of migration rate of Chi river in 3 different periods: 1952 to 1988, 1992 to 2006, and 2006 to 2020. This graph removes the migration rate from 1988 to 1992 because this period gives anomaly value. The component of this graph is similar to the previous migration rate graph. The range of migration rate of a new graph is narrower than the previous graph that ranges from -6.44 meter per year to just 4.12 meter per year. Overall, the migration rate from 2006 to 2020 was higher than in another period. According to the graph, it has 5 areas that have a significant migration rate. First, reach 4 and reach 5 have significant rates from station 70 to 85 in 1952 to 1988. Second, reach 16 has significant migration rates during 2006 to 2020 from station 345 to station 386. Third, reach 21 has significant migration rates during 2006 to 2020 from station 467 to station 484 in period 2006 to 2020. Fourth, reach 22 has significant migration rates during 2006 to 2020 from station 527 to 547. Finally, reach 24 has significant migration rates during 2006 to 2020 from station 2006 to 2020 from station 527 to 547. Finally, reach 24 has significant migration rates during 2006 to 2020 from station 527 to 547. Finally, reach 24 has significant migration rates during 2006 to 2020 from station 527 to 547. Finally, reach 24 has significant migration rates during 2006 to 2020 from station 527 to 547. Finally, reach 24 has significant migration rates during 2006 to 2020 from station 527 to 547. Finally, reach 24 has significant migration rates during 2006 to 2020 from station 527 to 547. Finally, reach 24 has significant migration rates during 2006 to 2020 from station 527 to 547. Finally, reach 24 has significant migration rates during 2006 to 2020 from station 527 to 547. Finally, reach 24 has significant migration rates during 2006 to 2020 from station 527 to 547.

4.4.5 Erosion area and Deposition area between 2006 and 2020

Figure 54 The erosion area and deposition area between 2006 and 2020 in Muang Khon Kaen district and adjacent areas.

It can be seen from the migration rate that the migration rate from 2006 to 2020 is higher than in another period. A comparison of erosional area and depositional area between 2006 and 2020 will help interpret data with changing rate of channel width and migration rate. Figure 54 shows the erosion area and deposition area of the Chi river between 2006 and 2020 with 2 symbols: red color that means erosion area, and green color that means deposition area.

4.5 Hydromorphological condition

The Morphological Quality Index (MQI) was chosen for assessing hydro-morphological conditions in 2020 that revealed the level of artificial and hydro-morphological alteration. The MQI consisted of three elements: artificiality, channel adjustment, and geomorphic functionality. First, artificiality evaluates the number of artificial elements and intervention processes. Next, channel adjustment evaluates the degree of alteration of the channel river. Finally, geomorphic functionality evaluates whether or not an artificial element and channel adjustment alter the river process and morphological conditions. These topics are evaluated in terms of percentage (from 0 to 100). Basically, in case that percentage equals 100, it means this area has maximum alteration. On the other hand, if the percentage equals 0, it means this area has no alteration.

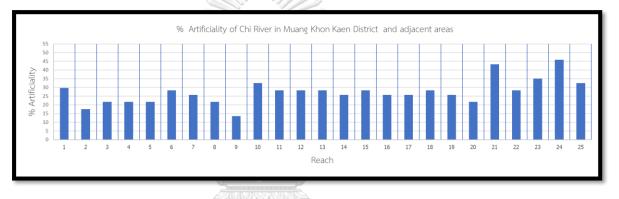


Figure 55 The graph the percentage of artificiality of Chi river in Muang Khon Kaen District and adjacent areas.

Figure 55 shows the graph of the percentage of artificiality of Chi river in Muang Khon Kaen district and adjacent areas. Y-axis is the percentage of artificiality while X-axis is reach. According to the graph, it has only four reaches with the percentage of artificiality more than 30 %. These reaches are reach 10, reach 21, reach 23 and reach 24 that have score 32.43%, 43.24 %, 31.13% and 45.94 %, respectively. First, reach 10, has many alterations in land use and land cover. It has developed from vegetation area to developed housing constructed artificial elements such as bank protection and bridge. Next, reach 21 is the downstream area of the dam. Next, reach 23 has removed many vegetation riparian area that is one of bed substrate. Finally, reach 24 has bank protection in the area. Moreover, it has river sand mining that removes sediment from the river in this area.

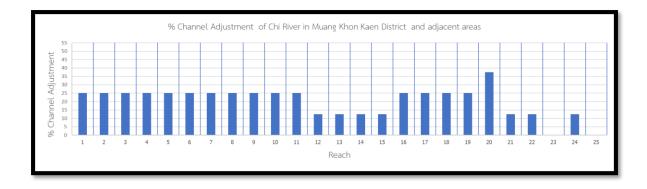


Figure 56 The graph the percentage of channel adjustment in Muang Khon Kaen District and adjacent areas.

Figure 56 shows the graph of the percentage of channel adjustment of Chi River in Muang Khon Kaen district and adjacent areas. Y-axis is the percentage of channel adjustment while X-axis is reach. Overall, almost reach has a percentage of channel adjustment less than 25 % because almost reach has the only alteration in channel width. However, reach 21 is the only reach that has an alteration in channel planform. Because this area has a dam that has altered the flow direction of the channel. Thus, the planform of the river has changed from meandering to the straight river. Moreover, it can be seen that it has two reaches that have the percentage of channel adjustment equals 0. These reaches are reach 23 and reach 25 because this area has a limited adjustment in channel width that has less than 15 % since 1952.

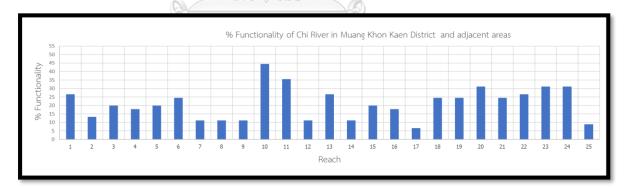
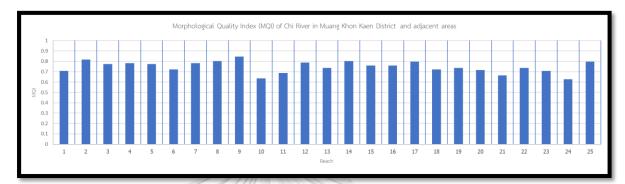


Figure 57 The graph the percentage of functionality in Muang Khon Kaen District and adjacent areas.

Figure 57 shows the graph percentage of functionality of Chi river in Muang Khon Kaen district and adjacent areas. Y-axis is the percentage of functionality while X axis is reach. Overall, it has 5 reaches that have a percentage of functionality of more than 30 %. These reaches are reach 10, reach 11, reach 20, reach 23 and reach 24 that have score 44.44 %, 35.55 %, 31.11%, 31.11 % and 31.11 %, respectively. First, reach 10, floodplain aquatic zone in this area has been modified. Moreover, the vegetation zone in the riparian area has been modified. Next, reach 11, this area has

an alteration in the riparian zone that abandoned paleo channel has been modified to the artificial lake. Moreover, the channel in this area has been modified by digging. Next, reach 20 is the upstream area of the irrigation dam. Many vegetation area of reach 20 has removed. Finally, reach 23 and reach 24, these areas have many structures such bridge, bank protection that affects the diversity of geomorphology.



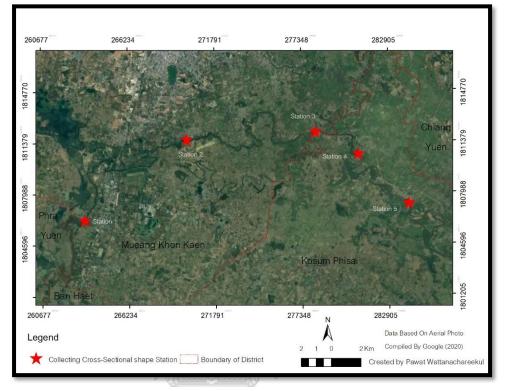

Figure 58 The graph of the MQI score of Chi river in Muang Khon Kaen District and adjacent areas.

Figure 58 shows the graph of the MQI score of Chi river in Muang Khon Kaen District and adjacent areas. Y-axis is the MQI score, while X-axis is reach. According to the graph, the MQI score ranges from 0.79 to 0.63. Thus, it can divide into two morphological quality classes: Good class and Moderate class. Almost all reaches are categorized in a good class, but it has only 4 reaches categorized in moderate class (MQI score below 0.70). These classes are reach 10, reach 11, reach 21 and reach 24 with MQI score of 0.63, 0.68, 0.66, and 0.64, respectively.

ู้จุฬาสงบว*ะ*แหน่งเวทยา

4.6 Asymmetry of Channel

Asymmetry indices of the channel's asymmetry was analyzed based on Knighton (1981), and Das and Islam (2018) from cross-sectional shape data. The cross-section data were collected every 10 meters in horizontal distance, and the elevation of the cross-sectional shape of the channel is normalized elevation. Basically, it means that elevation at 0 meters is the deepest point of the channel. This thesis collected cross-sectional shapes of the Chi river from 5 different bridge in Chi river (Figure 59) in October 2020. First, station 1 is the Tha Phra bridge in Khon Kaen that locates in reach 6. Second, station 2 is Tha Raj Chai Sri that locates in reach 13. Third, station 3 is Ladawan bridge that locates in reach 18. This station is the upstream area that nears the dam. Fourth, station 4 is Ban Kuichaug bridge that locates in reach 21. This station is downstream that nears the dam. Also, Royal Irrigation Department collected the Chi river's cross-sectional shape at this bridge in January 2020. So, this part compares the cross-sectional shape of the channel

between January 2020 and October 2020. Fifth, station 5 is Nong Phue-Phon Ngam that locates reach 23.

Figure 59 The locations of 5 different bridge that collecting cross-sectional data.

4.6.1 Detail of cross-sectional shape

The channel cross-sectional shape has 5 components. First, redline is the normalized elevation of the channel. The elevation at 0 meter represents the deepest point of each channel. Second, Blueline is a top surface of a water body in a channel. Third, the yellow line is the centerline of the channel width. Fourth, the orange line is the median area line of the channel. Fifth, the green line is the max depth line of the channel.

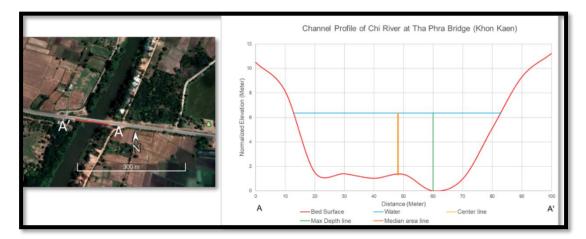


Figure 60 The cross-section of Chi river at station 1.

Figure 60 shows the cross-sectional of Chi river a river at station 1. X-axis is horizontal distance while Y-axis is normalized elevation. This section's channel width is 70 meters, while the area of a cross-sectional shape is 319.144 square meters. For depth, this section's maximum depth is 6.35 meters from the water's top surface, while the average depth is 4.55 meters from the top surface of the water, while the average depth is 4.55 meters from top surface of the water. According to the graph, it can be seen that the median area line is close together with the centerline. However, the maximum depth line nears the right bank. It far from right bank 23 meters.

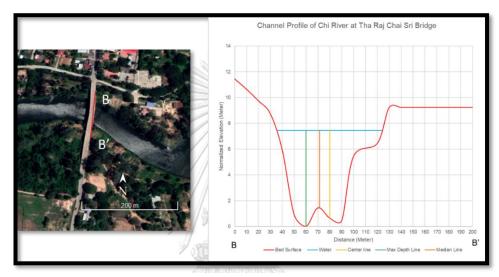


Figure 61 The cross-section of Chi river at station 2.

Figure 61 shows the cross-sectional of Chi river at station 2. X-axis is horizontal distance while Y-axis is normalized elevation. This section's channel width is 88 meters, while the area of the cross-sectional shape is 390.1 square meters. For depth, this section's maximum depth is 7.44 meters from the top surface of the water, while the average depth is 4.43 meters from the top surface of the graph, it can be seen that the median area line and the maximum depth line skew in the left direction from the centerline. The maximum depth is far from the left bank 20 meters while the median area line is far from the left bank 31.3 meters.

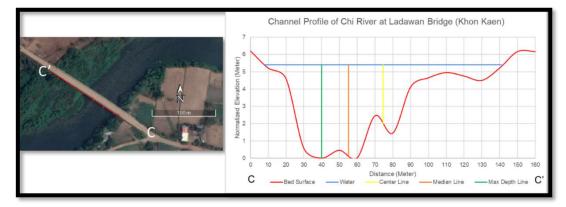


Figure 62 The cross-section of Chi river at station 3.

Figure 62 shows the cross-sectional of Chi river at station 3. X-axis is horizontal distance while Y-axis is normalized elevation. This section's channel width is 133 meters, while the cross-sectional shape area is 325.14 square meters. For depth, this section's maximum depth is 5.4 meters from the water's top surface, while the average depth is 2.44 meters from the top surface of the water. According to the graph, it can be seen that the median area line and the maximum depth line skew in the left direction from the centerline. The maximum depth is far from the left bank 32 meters, while the median area line is far from the left bank 47.2 meters.

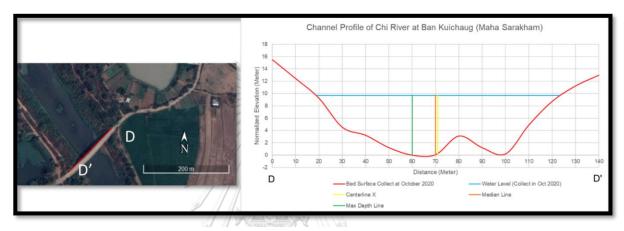


Figure 63 The cross-section of Chi river at station 4.

Figure 63 shows the cross-sectional of Chi river at station 4. X-axis is horizontal distance while Y-axis is normalized elevation. This section's channel width is 104 meters, while the cross-sectional shape area is 696.04 square meters. For depth, this section's maximum depth is 9.68 meters from the water's top surface, while the average depth is 8.37 meters from the top surface of the water. According to the graph, it can be seen that the median area line and the maximum depth line skew in the left direction from the centerline. The maximum depth is far from the left bank 43.5 meters.

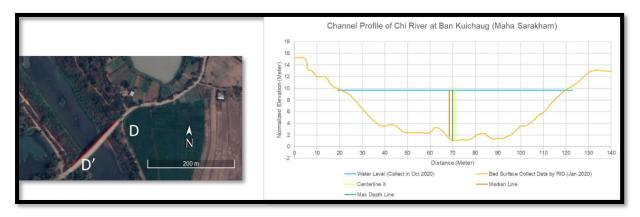


Figure 64 The cross-section of Chi river at station 4 that was collected in January 2020.

Also, this station was collected data by Royal Irrigation Department in January that is shown in Figure 64. This cross-section area that bases on the water level from November 2020 is 580.40 square meters. According to the graph, it can be seen that the median area line and the maximum depth are close to the centerline.

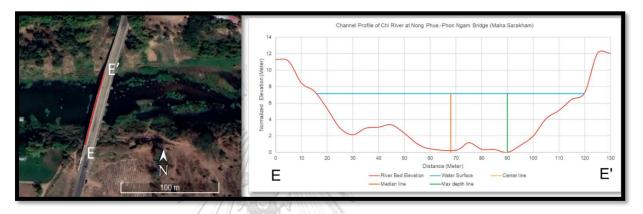
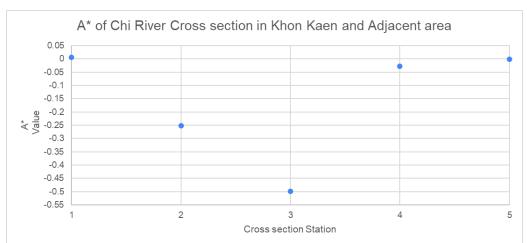
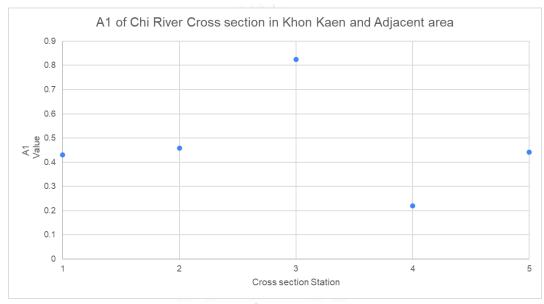



Figure 65 The cross-section of Chi river at station 5.

Figure 65 shows the cross-section of Chi river at station 5. X-axis is horizontal distance while Y-axis is normalized elevation. This section's channel width is 104 meters, while the cross-sectional shape area is 479.80 square meters. For depth, this section's maximum depth is 7.14 meters from the top surface of the water, while the average depth is 4.47 meters from the top surface of the water, while the average depth is 4.47 meters from the top surface of the water. According to the graph, it can be seen that the median area line is close together with the centerline. However, the maximum depth line nears the right bank that is far from the right bank 23 meters.

4.6.2 Asymmetry index from Knighton (1981)


4.6.2.1 A* index

85

Figure 66 The graph of A* of Chi river cross-section in Chi river in Muang Khon Kaen district and adjacent areas.

Figure 66 shows the graph of A* value. X-axis is the station that was collected cross-sectional shape of the channel, and Y is A* value. According to the graph, it can be seen that the most asymmetry channel is station 3 that has A* value of -0.5. The second asymmetry channel is station 4 that has A* value of -0.25. The third asymmetry channel is station 4 that has A* value of -0.025. Cross-sections from station 1 and station 5 are considered symmetry channels because their A* value is very close to 0.

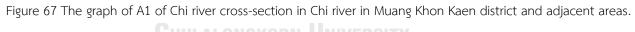


Figure 67 shows the graph of A1 value. X-axis is the station that was collected crosssectional shape of the channel, and Y is A1 value. According to the graph, station 3 is the most asymmetry channel that has A1 value of 0.82. The second asymmetry channel is station 2 that has A1 value of 0.45. The third asymmetry channel is station 5 that has an A1 value of 0.44. The fourth asymmetry channel is station 1, with an A1 value of 0.42, while station 1 is considered the most symmetry channel with an A1 value of 0.22.

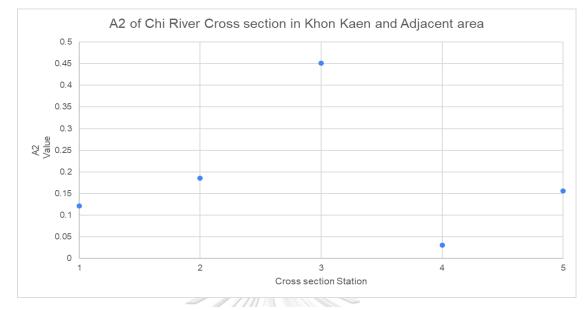
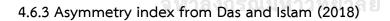



Figure 68 The graph of A2 of Chi river cross-section in Chi river in Muang Khon Kaen district and adjacent areas.

Figure 68 shows the graph of A2 value. X-axis is the station that was collected crosssectional shape of the channel, and Y is A2 value. According to the graph, station 3 is the most asymmetry channel that has A2 value of 0.45. The second asymmetry channel is station 2 that has A2 value of 0.18. The third and fourth asymmetry channels are station 4 and station 1, with A2 values as 0.15 and 0.12, respectively. While station 1 is considered as the most symmetry channel that has A2 value of 0.03.

4.6.3.1 A_w

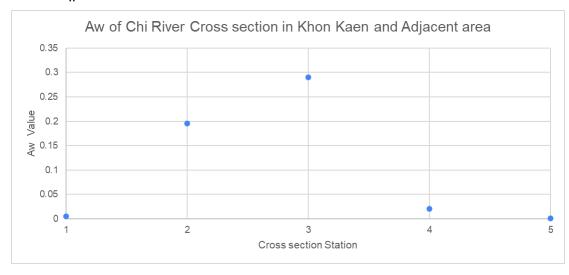


Figure 69 The graph of A_w of Chi river cross-section in Chi river in Muang Khon Kaen district and adjacent areas.

Figure 69 shows the graph of Aw value. X-axis is the station that was collected crosssectional shape of channel and Y is Aw value. According to the graph, station 3 is considered the most asymmetry channel because it has the highest Aw value of 0.30. The second asymmetry channel is station 2 that has Aw value of 0.2. The third asymmetry of the channel is station 4 that has Aw value of 0.025. While station 1 and station 5 are considered symmetry channels because their value is close to 0.

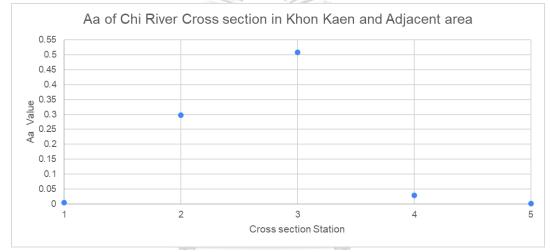


Figure 70 The graph of A_a of Chi river cross-section in Chi river in Muang Khon Kaen district and adjacent areas.

Figure 70 shows the graph of Aa value. X-axis is the station that was collected crosssectional shape of channel Y-axis is Aa value. According to the graph, station 3 is considered the most asymmetry channel because it has the highest Aa value as 0.508. The second asymmetry channel is station 2 that has Aw value of 0.297. The third asymmetry of the channel is station 4 that has Aa value of 0.025. The rest station is considered a symmetry channel because its value is close to 0.

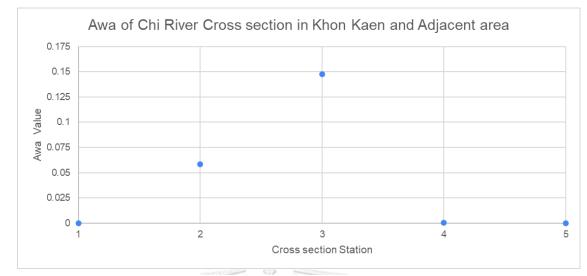
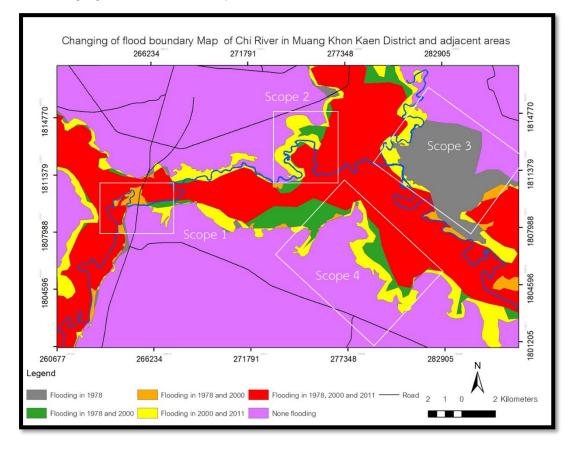



Figure 71 The graph of A_{wa} of Chi river cross-section in Chi river in Muang Khon Kaen district and adjacent areas.

Figure 71 shows the graph of Awa value. X-axis is the station that was collected crosssectional shape of channel, and Y is Awa value. According to the graph, station 3 is considered the most asymmetry channel because it has the highest Awa value as 0.147. The second asymmetry channel is station 2 that has Awa value of 0.05. The rest station is considered a symmetry channel because its value is close to 0.

Chapter 5: Discussion

This chapter provides the discussions of all results from remote sensing analyses and field surveys leading to the assessment of the Chi river's hydromorphological changes in Khon Kaen. Discussion consists of four parts: changing of flood boundary, the asymmetry of the channel, the geomorphic index changes area, and the relationship between geomorphic index changes and MQI score.

5.1 Changing of flood boundary

Figure 72 The changing of flood boundary of Muang Khon Kaen district and adjacent areas.

Figure 72 shows the map of changing of flood boundary. It has 4 scopes that has interested changing of flood boundary.

5.1.1 Scope 1

Figure 72 shows the changing of flood boundary in scope 1. This scope consists of 4 areas: Flooding in 2000 and 2011 area covering 220,751.42 square meters, flooding in 2011 area covering 251,344 square meters, flooding in 1978 and 2000 area covering 1,231,760 square meters and lake covering 423,558.98 square meters. Thus, the area of flooding in this scope decreased about 759,664.56 square meters. The field survey revealed that this scope has an artificial lake (Figure 74) that was modified from an abandoned channel. Therefore, it can be summarized that making an artificial lake is one way for flood mitigation. Moreover, this lake can be used for water management in the dry season.

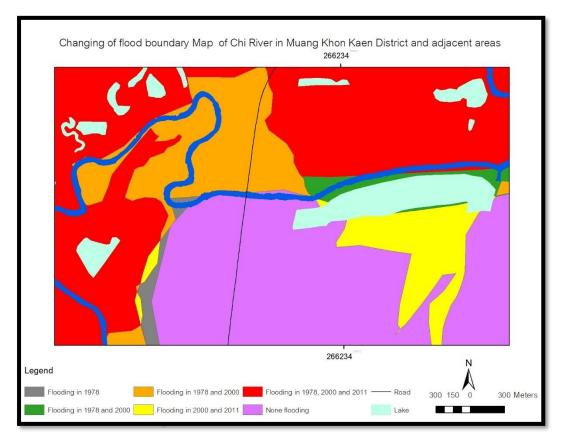


Figure 73 The changing of flood boundary of Scope 1.

Figure 74 The artificial lake in Scope 1.

5.1.2 Scope 2

Figure 75 shows the changing of flood boundary in scope 2. This scope consists of 2 Areas: Flooding in 2000 and 2011 area and Flooding in 2011 area. However, this scope has a road that has constructed after 1978. Thus, the extension of the flood boundary of this area will be caused by the meander belt extension.

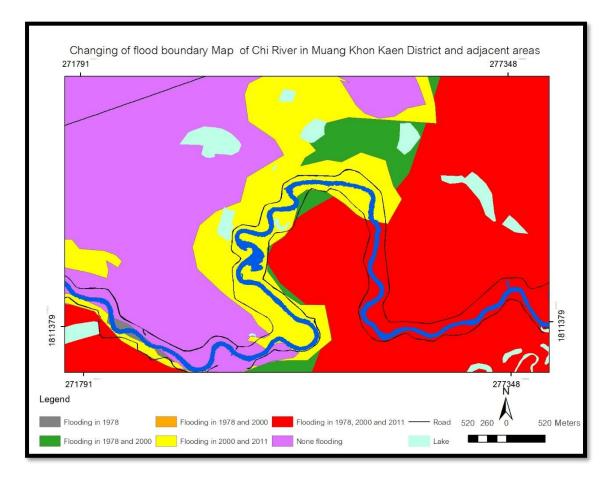


Figure 75 The changing of flood boundary of Scope 2.

5.1.3 Scope 3

Figure 76 shows the changing of flood boundary in scope 3. This scope consists of 2 areas: flooding in 2000 and 2011 area and flooding in 2011 area. Thus, the flooded area in this scope has increased since 2000. According to the field survey, it found that this area has a drainage system that is displayed in Figure 77. The drainage system alters the direction of overflow. Thus, the extension of the flood boundary may be caused by the drainage system.

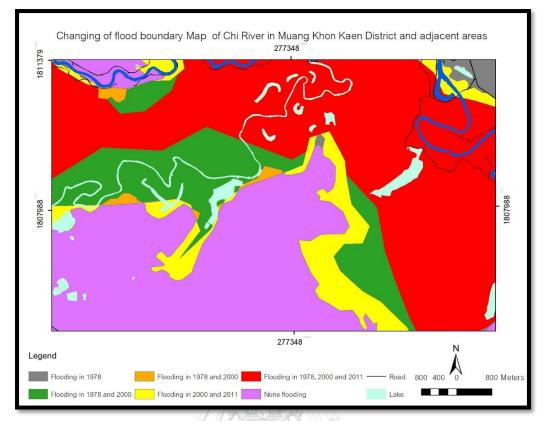


Figure 76 The changing of flood boundary of Scope 3.

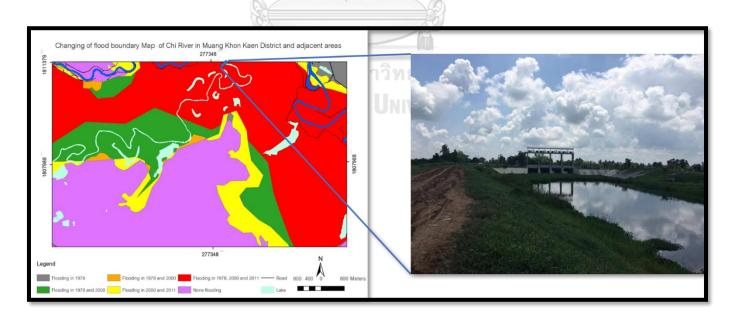


Figure 77 The drainage system in Scope 3.

5.1.4 Scope 4

Figure 78 shows the changing of flood boundary in scope 4. This scope consists large area of flooding in 1978 area . This area has the main road that was constructed after 1978. This road may be blocked the overflow. Thus, the flood area may be decreased from this road about 31,067,500 square meters.

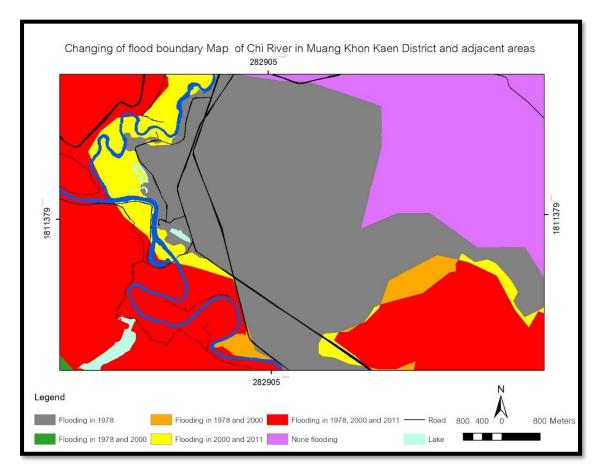


Figure 78 The changing of flood boundary of Scope 4.

5.2 The asymmetry of channel

The asymmetry of a channel is calculated from cross-sectional data with six asymmetry index that was collected in October 2020. Station 3, the upstream station that nears the irrigation dam has the most degree of asymmetry channel because this station has the most extreme value of all asymmetry indices. Station 2 that doesn't near the irrigation dam is the second most asymmetry channel. The most symmetry channel is station 1 and 5 because their value of almost asymmetry indices is strongly near to 0. However, their value of A1 and A2 is higher than station 4.

Because station 1 and 5 the distance between max depth line and the centerline of station 1 and station 5 are more than station 4.

According to the previous study, human intervention is the essential factor influencing the level of asymmetry of the channel (P. Das, Let, & Pal, 2013).But this study found that not only intervention but also location is the essential factor that affects the level of asymmetry. It can be seen that from station 4 that has the highest percentage of artificiality (about 45 %) doesn't have the most degree of channel asymmetry. However, station 3 that locates in upstream area and doesn't has the most percentage of artificiality (about 25 %) is the most asymmetry channel. Thus, it will be assumed that the station's location: upstream or downstream, is one of the most critical factors that impacts to the level of asymmetry channel. Also, station 2 has a percentage of artificiality only 30 % but has the second most asymmetry degree. In comparison, station 5 has a percentage of artificiality about 35 %, but this station is the most symmetry of channel.

5.3 The geomorphic index changes of the upstream area and downstream

This part discusses the geomorphic index changes of the upstream area and downstream area of an irrigation dam in three topics: migration rate, widening rate and depositional and erosional area of downstream.

5.3.1 Migration rate

Figure 79 shows the graph of the average migration rate of channel width in the upstream area and downstream area of an irrigation dam in four different periods: 1952 to 1988, 1988 to 1992, 1992 to 2006, and 2006 to 2020. According to the graph, the X-axis is the period, and the Y-axis is migration rate that was measured in meters per year. Overall, the average migration rate after the construction of the irrigation dam (1988) of the downstream area was higher than the upstream area. For the upstream area, the average migration rate increased from 0.463 meters per year in period 1952 to 1988 to 0.726 meters per year in period 1992 to 2006. Then, it decreased to 0.539 meters per year in the period 2006 to 2020. For downstream areas, the average migration rate dramatically increased from just 0.468 meters per year in period 1952 to 1988 to 2.26 meters per year in the period 1988 to 1992. The migration rate in downstream area dramatically increased because migration rate at dam construction in period 1988 to 1992 was 92 meters per year (Station 467). Then, it decreased to 0.726 meters per year in period 1992 to 2006. Finally, it increased to 0.908 meters per year in the period 2006 to 2020.

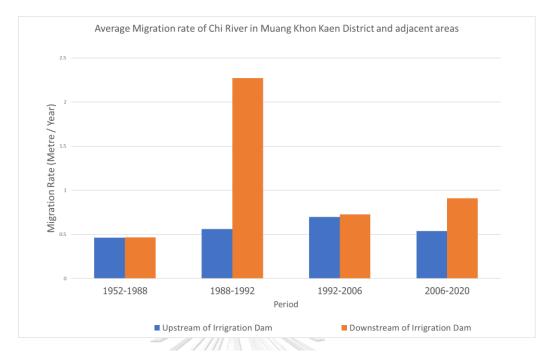


Figure 79 The graph of average migration rate in the upstream area and downstream area of an irrigation dam.

The migration rate in the study area is correspond to the previous study that the dam construction has an effect on geomorphological downstream (Lai et al., 2017; D. Li et al., 2019; Makaske et al., 2012; Petts & Gurnell, 2005; Phillips, 2009; Williams & Wolman, 1984). It can be seen from the downstream's migration rate dramatically increased in period 1988 to 1992 (Construction period) while up stream's migration rate didn't significantly alter.

จุฬาลงกรณ์มหาวิทยาลัย

5.3.1 Widening rate

CHULALONGKORN UNIVERSITY

Figure 80 shows the graph of the average widening rate in the upstream area and downstream area of an irrigation dam in four different periods: 1952 to 1988, 1988 to 1992, 1992 to 2006, and 2006 to 2020. According to the graph, the X-axis is the period, and the Y-axis is widening rate that was measured in meters per year. For the upstream area, the average widening rate decreased from 0.311 meters per year in period 1952 to 1988 to -0.02 meters per year in period 1988 to 1992. Then, it increased to 0.711 meters per year in period 2006 to 2020. For the downstream area, the widening rate decreased from 0.318 meters per year in period 2006 to 2020. For the downstream area, the widening rate decreased from 0.31 meters per year in period 1952 to 1988 to -0.06 meters per year in period 1988 to 1992. Then, it is up to 0.179 meter per year in the period 1992 to 2006. Finally, it decreased for 0.006. Finally, it decreased -0.90 meter per year

in period 2006 to 2020. The widening rate of downstream area has decreased after the dam operated that different with previous study (Wang et al., 2018).

Figure 80 The graph of average widening rate in the upstream area and downstream area of an irrigation dam.

The average widening rate of downstream area in period 2006 to 2020 is less than 0. It isn't corresponded with Wang et al. (2018) that the channel width has increased after the dam operated. Figure 81 shows the widening rate of downstream irrigation dam area in the period 2006 to 2020. According to the graph, the X-axis is the station, and the Y-axis is widening rate that was measured in meters per year. It can be seen that almost stations of downstream area (from station 647 to last station) has widening rate less than 0 in this period except the sand mining area (station 602) that has widening rate more than 0 in this period.

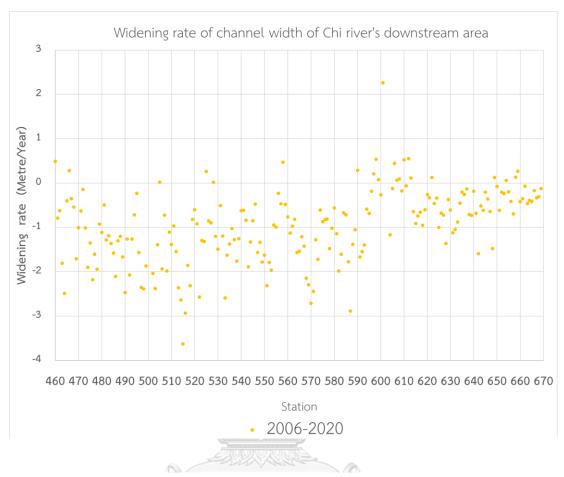


Figure 81 The graph of widening rate in downstream area of an irrigation dam.

5.3.3 Depositional area and erosional area of downstream of irrigation dam area

According to Figure 80, the widening rate of downstream area in period 2006 to 2020 is less than 0, which doesn't correspond with the previous study that the width of the channel in the downstream area has increased after the dam operated. It implies that this area doesn't have bank erosion process. Because bank erosion process increases channel width (Wang et al., 2018). Thus, investigation of depositional and erosional processes in the downstream area may be described the widening rate of downstream area in period 2006 to 2020.

Figure 82 that shows the depositional and erosional area of downstream area in period 2006 to 2020. Accroding to Figure 80, red color area presents the erosional area and green color area presents the depositional area. It can be seen that the depositional areas in downstream area have more than erosional areas. Thus, it can conclude that these depositional areas caused a narrow channel.

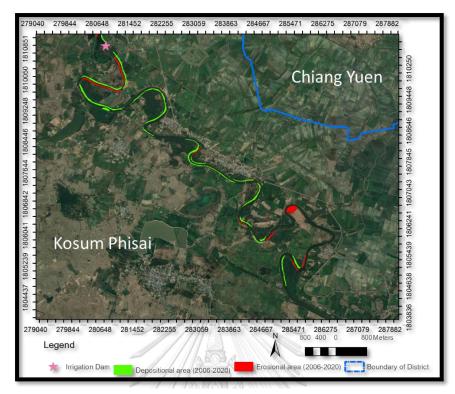


Figure 82 The map of the depositional and erosional areas in downstream area of an irrigation dam.

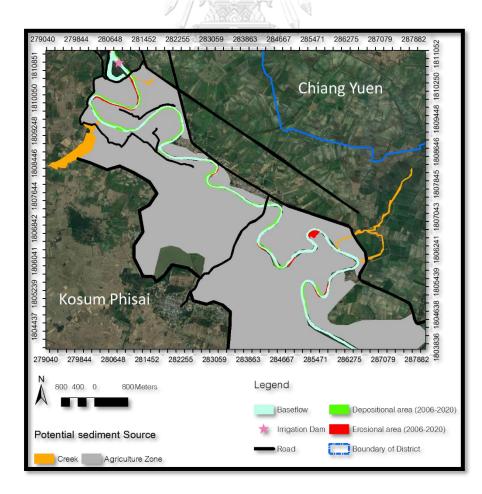


Figure 83 The map of potential source of sediment in downstream area of an irrigation dam.

It is different from previous studies that the downstream damming's sediment supply dramatically decreases (Dai & Liu, 2013; Lai et al., 2017; Lyu et al., 2019). However, it can describe in Figure 83 shows the potential sources of sediment in the downstream area. This study area has four creeks that connects to main river and the floodplain that nears river is an agriculture zone that has the activities such as plowing the surface. In addition, this floodplain often suffers from flooding that may be carried the sediment from surface of floodplain to the main river. Thus, it may imply that the sediment of the Chi river in downstream area may be come from creek that connects to river and agriculture zone.

5.4 The relationship between MQI Score and geomorphic index changes

This part discusses the relationship between MQI and geomorphic index changes that include sinuosity index, widening rate and migration rate. Table 5 shows reach scale that has significant geomorphic index changes.

Reach	Sinuosity Index	Widening rate	Migration rate	Morphological Quality: Moderate Class
2	Х			-
5	Х	N CONTRACTOR		-
10	Х	O THE	ALLER D	Х
11	-	China -	- 20	Х
16	-	X	X	-
20	X	หาลงกรณัม	เหาวิทยาลัย	-
21	- Сн	ULALONGKO	rn Universi	X X
24	-	Х	Х	Х

Table 5 Significant reach scale

5.4.1 Reach 2

Figure 84 shows the sinuosity index value of scope A in 5 different periods: 1952, 1988, 1992, 2006, and 2020. According to the graph, Y-axis is the Sinuosity index value, and X-axis is a year. The sinuosity index increased from 4.12 in 1952 to 4.55 in 2006. Then, it reduced to 4.52 in 2020. Thus, the sinuosity index increased 0.43 from 1952. According to the MQI score of this reach, it doesn't indicate that this reach has a high level of distribution from the artificial element. Thus, it may be concluded that the alteration of sinuosity index in this reach is caused by only natural processing.

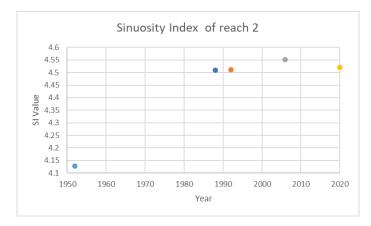


Figure 84 The graph of Sinuosity index of Chi River in reach 2.

Figure 85 shows the boundary of the channel in reach 2 in three different periods: 1952, 1992 and 2020. It can be seen that the channel width in black scope has extended that affects to channel planform in white scope. It altered from straight river to sinuous river. Thus, the Sinuosity index of reach 2 increased.

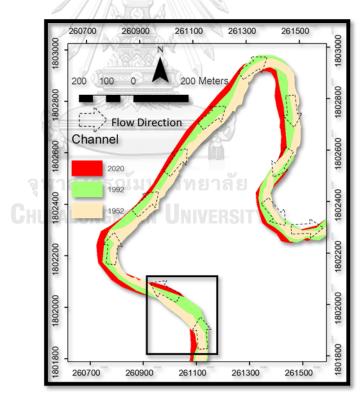
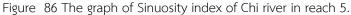



Figure 85 boundary of the channel in reach 2 in 1952, 1992 and 2020.

5.4.2 Reach 5

Figure 86 shows the sinuosity index value of reach 5 in 5 different periods: 1952, 1988, 1992, 2006, and 2020. According to the graph, Y-axis is the Sinuosity index value, and X-axis is a year. The sinuosity index decreased from 3.71 in 1952 to 3.32 in 1992. Then, it increased to 3.37 in 2020. According to the MQI score of this reach, it doesn't indicate that this reach has a high level of distribution from artificial elements. Thus, it may be concluded that the alteration of sinuosity index in this reach is caused by only natural processing.

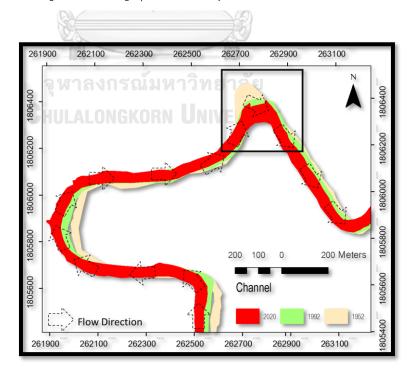


Figure 87 The boundary of the channel in reach 5 in 1952, 1992 and 2020.

Figure 87 shows the boundary of the channel reach 5 in two different periods: 1952, 1992 and 2020. It can be seen that in white scope has chute cut off process during 1952 to 1992. This process reduced overall of sinuosity index value of reach 5.

5.4.3 Reach 10 and Reach 11

The sinuosity index of reach 10 dramatically increased from 2.46 in 1952 to 2.87 in 1992. Then, it reduced to 2.84 in 2020. According to the MQI of this reach, it indicates that this reach has a high level of distribution from artificial elements because the percentage of artificiality is high. In this reach has artificial elements that affects to hydro morphology: bridge that affects to river continuity, bank protection that affects to river width and depth. Moreover, modification oxbow lake in this reach affects to floodplain. However, it may be assumed that the alteration of sinuosity index in this reach is caused by only natural processing because the percentage of artificiality is high from many constructions of developed housing that were constructed after 2000. But the sinuosity index value dramatically increased in the period 1952 to 1992.

According to reach 11, the MQI score is lower than other reaches because this reach has artificial elements and activates that affects to hydrogeomorphology such as many bridges in this reach affects to Longitudinal River continuity, modification river affects to river width and depth and modification abandoned channel affects to floodplain.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

5.4.4 Reach 16

Although the MQI score of reach 16 doesn't indicate that this reach has a high level of disturbance from artificial elements and hydromorphological alteration, it has two stations that have a significant migration rate and widening rate: station 345 and station 392. Figure 88 shows the location of two stations.

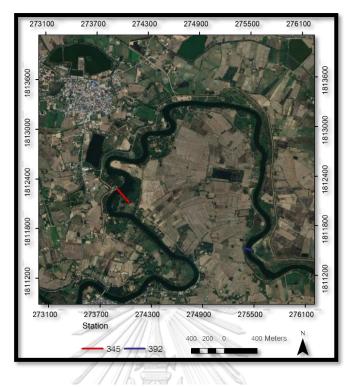


Figure 88 The location of station 345 and 392.

First, station 345 has a widening rate of 9.66 meters per year in the period 1992 to 2006 and a migration rate of 4.65 and 4.12 meters per tear in the period 1992 to 2006 and 2006 to 2020, respectively. According to the depositional area and erosional area map (Figure 89), it can be seen that the erosional area of this station has increased. Figure 90 shows the erosional area of station 345 that was taken from a field survey in October 2020.

Figure 89 The depositional and erosional map of station 345.

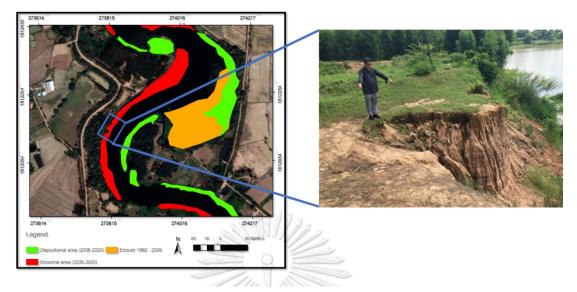


Figure 90 The erosional area of station 345 that was taken from a field survey in October 2020.

Second, station 392 has a widening rate of 3.88 meters per year in the period 1992 to 2006 and a migration rate of 2.62 meters per year in the period 1992 to 2006. Figure 91 shows the depositional area and erosional area map of station 392 in the period 1992 to 2006. It can be seen that it has a large erosional area that was eroded in period 1992 to 2006.

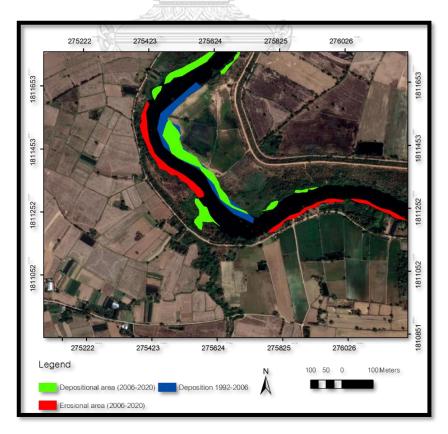


Figure 91 The depositional and erosional map of station 392.

According to the MQI Score, it doesn't indicate that this reach has a high level of disturbance from artificial elements. Thus, it may be concluded that the widening of the channel is natural processing.

5.4.5 Reach 20 and Reach 21

The channel planform of reached 20 has altered from meandering river to sinuous river that was measured by sinuosity index. The sinuosity index value of this reach dramatically decreased from 1.5368 in 1988 to just 1.34 in 1992.

For reach 21, the MQI score indicates this reach has a high level of disturbance from artificial elements. Moreover, stations 467 and 468 have a migration rate more than 70 meters per year in the period 1988 to 1992. The alteration in reach 20 and 21 caused by the irrigation dam. The irrigation dam changed the flow direction of the Chi River. Figure 92 shows the flow direction of the downstream area that nears the irrigation dam in two different periods: before and after the construction of the dam. It can be seen that the channel has migrated to the west from the previous flow direction. Thus, the migration rate during construction is anomaly higher than other stations and other periods. Moreover, this dam impact on hydromorphology in many topics: Quality and dynamic water flows, River Continuity, River width and depth and floodplain.

Figure 92 The flow direction of the downstream area that nears the irrigation dam in two different.

5.4.6 Reach 24

MQI score of reach 24 indicates that this reach has a high level of disturbance from artificial elements. According to the field survey in October, it was found that this reach has bank protection (Figure 93) and Sand mining in the Chi River. For discussion, this reach has 3 sections that have significant alteration: Section A, Section B, and Section C. Figure 94 shows the locations of these scopes in two different periods: 1952 and 2020.

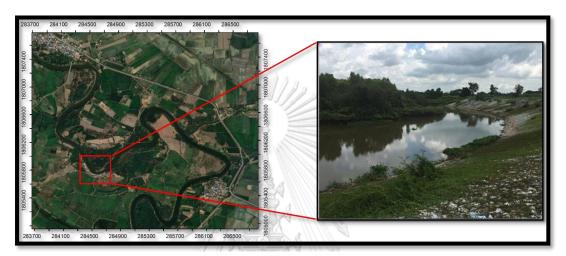


Figure 93 Bank protection in reach 24.

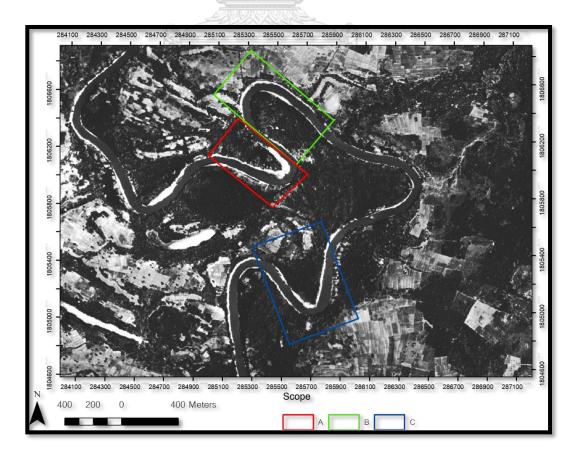
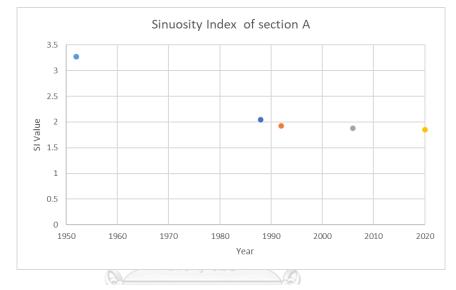



Figure 94 The location of section A, B, C in reach 25.

First, section A has an alteration in terms of sinuosity index. Figure 95 shows the sinuosity index value of scope A in 5 different periods: 1952, 1988, 1992, 2006, and 2020. According to the graph, Y-axis is the Sinuosity index value, and X-axis is a year. The sinuosity index dramatically decreased from 3.271 in 1952 to 2.04 in 1988. Then, it decreased to 1.85 in 2020. In addition, figure 96 shows the boundary of the channel in scope A in 4 different periods: 1952, 1992, 2006, and2020.

It can be seen that this meander loop had retracted to flood plain from 1952 to 2006. It has stable after 2006.

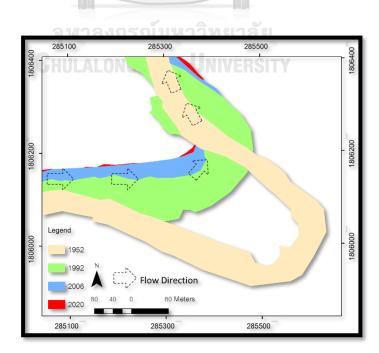


Figure 96 The boundary of the channel in scope A in 4 different periods: 1952, 1992, 2006, and 2020.

Second, section B that displayed in Figure 93, has sand mining in the Chi River. This sand mining has affected geomorphic index value that is measured by widening rate and migration rate and hydrogeomorphology in term of bed substrate. Station 602 has a widening rate of 11.8 meters per year in the period 2006 to 2020 and a migration rate that is measured about 6.64 meters per year in the period 2006 to 2020. Moreover, the sand mining bar has eroded a point bar about 32,336 square meter that was measured in 2020. In addition, figure 97 shows the boundary of the channel in scope B in 2 different periods: 2006 and 2020. It can be seen that channel width has extended.

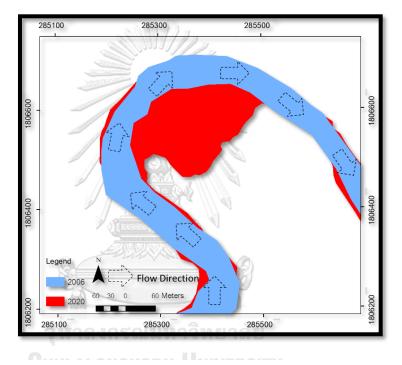


Figure 97 The boundary of the channel in section B in 2 different periods: 2006 and 2020.

Third, section c has meander loop changes. Figure 98 shows the boundary of this meander loop in 5 different periods: 1952, 1992, 2006, and 2020. It can be seen that the meander loop has migrated to the west.

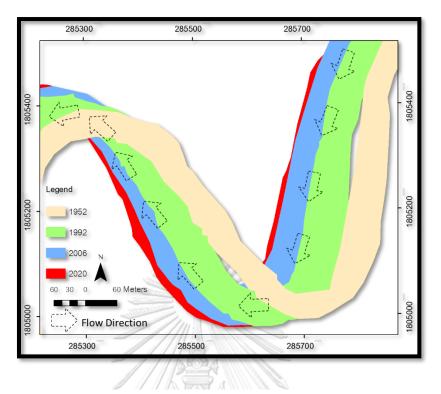


Figure 98 The boundary of the channel in Section C in 4 different periods: 1952, 1992, 2006, and 2020.

Chapter 6: Conclusion & Suggestion

6.1 Conclusion

The study of hydromorphological changes of Chi river in Khon Kaen and adjacent areas was carried out using the result from the analysis in remote sensing data and field investigation. Basically, the geomorphological map was the first step to evaluate the hydromorphological changes based on the aerial photograph interpretation. As a result, the change of flood boundary that analyzes three mega-flood events reveals that the study area has both flood extension and flood decreasing areas. Next, the geomorphic index measured three indices: Sinuosity index, channel width, and migration rate reveal that high geomorphic index alteration will correspond with areas with high artificial distribution levels. Next, the Morphological Quality Index used to evaluate hydromorphological conditions ranges from 0.84 to 0.63, indicating that the area owns a degree of alteration from minor to moderate alteration. Finally, the degree of asymmetry of the channel reveals that the station that has the extreme of asymmetry isn't the station that has the highest alteration. But it is the upstream station that nears the dam.

6.1.1 Geomorphological map

This thesis selects The GUS method (Belletti et al., 2015) for creating a geomorphological map. In study area has only four macro units: Baseflow, Emergent sediment, Riparian Zone, and Floodplain aquatic zone. This thesis produced geomorphological maps in two periods: 1952 and 2020. According to the map, it can be seen that these two maps have three significant differences: the number of emergent sediments, the number of artificial lakes, and the boundary of the maximum flood. First, the number of emergent sediments reduced from 158 bars in 1952 to 7 bars in 2020. Second, many abandoned channels in 1952 have been modified into artificial lakes. It has an artificial lake about lakes covering square meters. Finally, the changing of the maximum flood boundary will describe in 6.1.2

For the downstream area of the irrigation dam, the downstream damming's sediment supply comes from the main channel and the creek and agriculture zone.

6.1.2 Changing of maximum flood boundary

This thesis compared the boundary of maximum flood from three mega-flood events: 1978 mega-flood covering 189.09 square kilometers, 2000 mega-flood covering 164.66 square kilometers, and 2011 covering 193.79 square kilometers. It can be divided the changing flood boundary into six areas: Flooding in 1978 area covering 39.27 square kilometers, Flooding in 1978 and 2000 area covering 6.98 square kilometers, Flooding in 2000 and 2011 area covering 14.84 square kilometers, Flooding in 2011 covering 36.11 square kilometers, Flooding in 1978, 2000 and 2011area covering 94.61 square kilometers and None flooding area covering the rest of study area.

As a result, it may be concluded that the maximum flood boundary responds to man-made construction. The flooding area in scope 1 has reduced about 0.76 square kilometers after modification abandoned channel to an artificial lake. While, the flooding area in scope 3 has extended after installing a drainage system.

6.1.3 Hydromorphological condition

Hydromorphological condition was evaluated by the Morphological Quality Index (Rinaldi et al., 2013). The MQI score (Figure 58) ranges from 0.84 to 0.63, classified as a morphological quality class into 2 classes: Good class and Moderate class. The moderate class consists of only 4 reaches 10, 11, 21 and 24 while other reaches are classified as Good Class. The MQI score indicates the study area has minor to moderate alteration and disturbance from human activities.

6.1.4 Geomorphic Index

This thesis measured three geomorphic indices: channel width, widening rate, and migration rate. These indices were calculated in the dry season. First, channel width was measured in 5 periods: 1952, 1988, 1992, 2006, and 202 that ranges from 11.1 meters to about 225.32 meters. Next, the widening rate was measured in 4 periods: 1952-1988, 1988-1992, 2006-2020, and 2020 that ranges from -5.17 meters per year to 11.08 meters per year. Finally, the migration rate was measured from the middle channel in 4 periods: 1952-1988, 1988-1992, 1992-2006, and 2006 to 2020 that ranges from 0.001 meters per year to more than 90 meters per year.

6.1.4.1 Relationship between MQI score and Geomorphic index alteration.

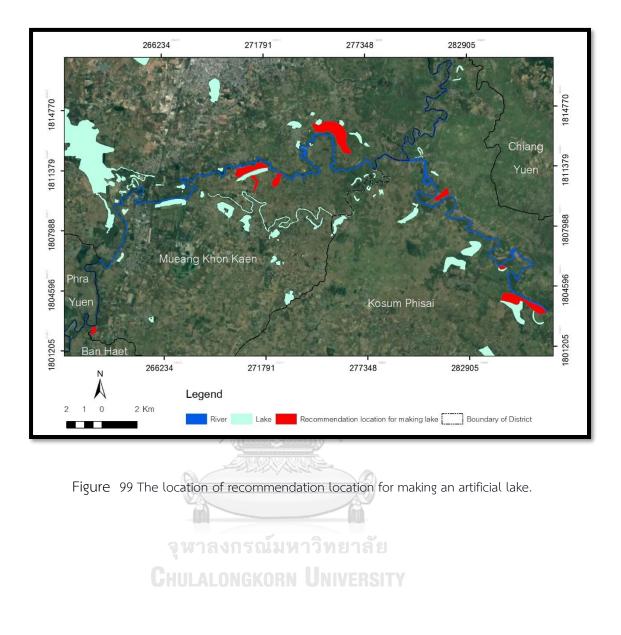
The results found that high geomorphic index alteration will correspond with many areas altered by artificial construction (low score of MQI). Station 602, sand mining, has a widening rate of 11.8 meters per year, while the average absolute widening rate was calculated by only 0.5023 meters per year. The average migration rate was just only 0.72 meters per year for migration rate, but station 467, that area has a dam across the Chi River, has a migration rate of more than 90 meters per year during construction. Moreover, this station's SI value had changed from 1.53 (in 1952) to 1.02 (in 2020).

6.1.4.2 Comparison between upstream area and downstream area of irrigation dam

For migration rate, the upstream area has no significant alteration. In contrast, the average migration rate of the downstream area dramatically increased from 0.46 meters per year from 1952 to 1988 to about 2.26 meters per year from 1988 to 1992 (construction period). Then, it decreased to 0.90 meters per year in the period from 2006 to 2020.

It does not have a significant alteration of the downstream area's widening rate construction period for widening rate. However, the downstream area's widening rate reduced after the dam had operated in 1992.

Thus, it may be concluded that the irrigation dam in the study area has influenced the migration rate of the upstream area in the dam construction period and has reduced the downstream's widening rate.


6.1.5 Asymmetry of channel

Asymmetry of channel was evaluated from the cross-sectional data collected from 5 different locations in Chi river. It can be seen that the downstream location that has the highest percentage of artificiality shows none of degree of asymmetry of the channel, while the upstream station that has no the highest percentage of artificiality has the most degree of asymmetry of the channel. Thus, it can be assumed that location: upstream and downstream of artificial elements is one of essential factors that influence the channel's asymmetry.

6.2 Suggestion CHULALONGKORN UNIVERSITY

Five suggestions arisen from this thesis are as follows:

- Making an artificial lake is one way to mitigate damage from the flood. Moreover, the lake can be used in the dry season. In addition, Figure 99 shows the recommended location that should be investigated in more detail of subsurface geology for making an artificial lake.
- 2. The erosional and depositional patterns of reach 24 should be investigated in more detail because the sand mining and the bank protection have alerted the bed substrate and the degree of erosion and deposition.
- 3. This study confirms the need for hydro-geomorphological research to be applied for future prediction and protection from flooding and river restoration.

REFERENCES

- Belletti, B., Rinaldi, M., Buijse, A., Gurnell, A., & Mosselman, E. (2015). A review of assessment methods for river hydromorphology. *Environmental Earth Sciences*, 73(5), 2079-2100.
- Belletti, B., Rinaldi, M., Bussettini, M., Comiti, F., Gurnell, A. M., Mao, L., . . . Vezza, P. (2017). Characterising physical habitats and fluvial hydromorphology: A new system for the survey and classification of river geomorphic units. *Geomorphology, 283*, 143-157.
- Bierman, P., & Montgomery, D. (2014). Hillslope. *Key Concepts in Geomorphology*, 145-178.
- Biswas, A. K. (2002). Aswan Dam Revisited the benefits of a much Maligned Dam. (6), 25-27.
- Brandt, S. A. (2000). Classification of geomorphological effects downstream of dams. *CATENA, 40*(4), 375-401.
- Brierley, G., & Fryirs, K. (2005). *Geomorphology and River Management: Applications of the River Styles Framework*.
- Chien, N. (1985). Changes in river regime after the construction of upstream reservoirs. 10(2), 143-159.
- Dai, Z., & Liu, J. T. (2013). Impacts of large dams on downstream fluvial sedimentation: An example of the Three Gorges Dam (TGD) on the Changjiang (Yangtze River). *Journal of Hydrology 480*, 10-18.
- Das, B. C., & Islam, A. (2016). Analysis of Channel Asymmetry: A Different Perspective. In *Neo-Thinking on Ganges-Brahmaputra Basin Geomorphology* (pp. 33-42): Springer.
- Das, P., Let, S., & Pal, S. (2013). Use of asymmetry indices and stability indices for assessing channel dynamics: a study on Kuya River, Eastern India. *Journal of Engineering, Computers Applied Sciences 2*(1), 24-31.
- David, M., Labenne, A., Carozza, J.-M., & Valette, P. (2016). Evolutionary trajectory of channel planforms in the middle Garonne River (Toulouse, SW France) over a

130-year period: Contribution of mixed multiple factor analysis (MFAmix). *Geomorphology, 258,* 21-39.

- David, N., Buffington, J. M., Parkes, S. L., Wenger, S., & Goode, J. (2014). A landscape scale valley confinement algorithm: Delineating unconfined valley bottoms for geomorphic, aquatic, and riparian applications. *USDA Forest Service - General Technical Report RMRS-GTR*.
- Dean, D. J., & Schmidt, J. C. (2011). The role of feedback mechanisms in historic channel changes of the lower Rio Grande in the Big Bend region. *126*(3-4), 333-349.
- DMR (Cartographer). (2008a). Geological Map F5541 1 sheet 5541 I CHANGWAT Khon Kaen
- DMR (Cartographer). (2008b). Geological Map F 5641 4 sheet 5641 4 Amphoe Chiang Yuen
- Egozi, R., & Ashmore, P. (2008). Defining and measuring braiding intensity. *Earth Surface Processes and Landforms, 33*(14), 2121-2138.
- Erskine, W. D. (1996). Downstream hydrogeomorphic impacts of Eildon Reservoir on the mid-Goulburn River, Victoria. *108*, 1-15.
- Esfandiary, F., & Rahimi, M. (2019). Analysis of river lateral channel movement using quantitative geomorphometric indicators: Qara-Sou River, Iran. *Environmental Earth Sciences, 78*. doi:10.1007/s12665-019-8478-7
- Fehér, J., Gaspar, J., Veres, K., Kiss, A., Kristensen, P., Künitzer, A., . . . Heiskanen, A.-S. (2012). Hydromorphological alterations and pressures in European rivers, lakes, transitional and coastal waters. Thematic assessment for EEA Water 2012.
- Finnegan, N., Roe, G., Montgomery, D., & Hallet, B. (2005). Controls on the channel width of rivers: Implications for modeling fluvial incision of bedrock. *Geology*, 33. doi:10.1130/G21171.1
- Fryirs, K. A., Wheaton, J. M., & Brierley, G. J. (2016). An approach for measuring confinement and assessing the influence of valley setting on river forms and processes. *Earth Surface Processes and Landforms, 41*(5), 701-710. doi:10.1002/esp.3893

- Gardner, L. S. (1967). Phichit gypsum deposit, central Thailand. *Report of Investigation -Thailand, Department of Mineral Resources, 9.*
- GISTDA. Thailand Flood Monitoring System. Retrieved 15th May 2020 http://flood.gistda.or.th/
- González del Tánago, M., Gurnell, A., Belletti, B., & garcia de jalon, D. (2015). Indicators of River System Hydromorphological Character and Dynamics: Understanding Current Conditions and Guiding Sustainable River management. *Aquatic Sciences, 78.* doi:10.1007/s00027-015-0429-0
- Google. Google Earth. Retrieved 15th May 2020 https://www.google.com/earth/
- Gurnell, A., del Tánago, M. G., Rinaldi, M., Grabowski, R., Henshaw, A., O'Hare, M., . . . Buijse, A. (2014). 71 Development and Application of Process-Based Framework for the Hydromorphological Assessment of European Rivers. *Engineering Geology for Society Territory 3: River Basins, Reservoir Sedimentation Water Resources* 339.
- Gurnell, A., Downward, S., & Jones, R. (1994). Channel planform change on the River Dee meanders, 1876–1992. *Regulated rivers: research management 9*(4), 187-204.
- Hooke, J. M. (2007). Complexity, self-organisation and variation in behaviour in meandering rivers. *Geomorphology*, *91*(3), 236-258. doi:<u>https://doi.org/10.1016/j.geomorph.2007.04.021</u>
- Keyes, C. F. J. C. t. A. S. (1976). In search of land: village formation in the Central Chi River Valley, Northeastern Thailand. *9*, 45-63.
- Knighton, A. (1981). Asymmetry of river channel cross-sections: Part I. Quantitative indices. *Earth Surface Processes and Landforms, 6*(6), 581-588.
- Kuntiyawichai, K., Schultz, B., Uhlenbrook, S., & Suryadi, F. (2008). *Delineation of flood hazards and risk mapping in the Chi River Basin, Thailand.* Paper presented at the Proceedings of the 10th International Drainage Workshop of ICID Working Group on Drainage, Helsinki/Tallinn, Finland/Estonia.
- Lagasse, P., Zevenbergen, L., Spitz, W., & Thorne, C. R. (2004). *Methodology for predicting channel migration*. Retrieved from

- Lai, X., Yin, D., Finlayson, B. L., Wei, T., Li, M., Yuan, W., . . . Chen, Z. (2017). Will river erosion below the Three Gorges Dam stop in the middle Yangtze? *Journal of Hydrology, 554*, 24-31. doi:<u>https://doi.org/10.1016/j.jhydrol.2017.08.057</u>
- Leopold, L. B., & Wolman, M. G. (1957). *River channel patterns: Braided, meandering, and straight* (282B). Retrieved from Washington, D.C.: <u>http://pubs.er.usgs.gov/publication/pp282B</u>
- Li, D., Lu, X. X., Chen, L., & Wasson, R. (2019). Downstream geomorphic impact of the Three Gorges Dam: With special reference to the channel bars in the Middle Yangtze River. *Earth Surface Processes Landforms 44*(13), 2660-2670.
- Li, Z., Yu, G.-A., Brierley, G. J., Wang, Z., & Jia, Y. J. G. (2017). Migration and cutoff of meanders in the hyperarid environment of the middle Tarim River, Northwestern China. *276*, 116-124.
- Lyu, Z., Chai, J., Xu, Z., Qin, Y., & Cao, J. (2019). A Comprehensive Review on Reasons for Tailings Dam Failures Based on Case History. *Advances in Civil Engineering, 2019*, 4159306. doi:10.1155/2019/4159306
- Majumder, T. (2011). Rajpat (in Bengali).
- Makaske, B., Maathuis, B. H., Padovani, C. R., Stolker, C., Mosselman, E., & Jongman, R. H. (2012). Upstream and downstream controls of recent avulsions on the Taquari megafan, Pantanal, south-western Brazil. *Earth Surface Processes Landforms 37*(12), 1313-1326.
- Meesook, A. (2000). Cretaceous environments of northeastern Thailand. In Developments in Palaeontology and Stratigraphy (Vol. 17, pp. 207-223): Elsevier.
- Mueller, J. E. (1968). An introduction to the hydraulic and topographic sinuosity indexes. Annals of the association of american geographers 58(2), 371-385.
- Nanson, G. (2013). Anabranching and anastomosing rivers.
- Nicoll, T., & Hickin, E. (2010). Planform geometry and channel migration of confined meandering rivers on the Canadian Prairies. *Geomorphology, 116*, 37-47. doi:10.1016/j.geomorph.2009.10.005

- Nimnate, P., Choowong, M., Thitimakorn, T., & Hisada, K. (2017). Geomorphic criteria for distinguishing and locating abandoned channels from upstream part of Mun River, Khorat Plateau, northeastern Thailand. *Environmental Earth Sciences 76*(9), 331.
- North, C. P., Nanson, G. C., & Fagan, S. D. (2007). Recognition of the sedimentary architecture of dryland anabranching (anastomosing) rivers. *Journal of Sedimentary Research,* 77(11), 925-938.
- Parsons, H., & Gilvear, D. (2002). Valley floor landscape change following almost 100 years of flood embankment abandonment on a wandering gravel-bed river. *River Research and Applications, 18*(5), 461-479.
- Petts, G. E., & Gurnell, A. M. (2005). Dams and geomorphology: research progress and future directions. *Geomorphology*, 71(1-2), 27-47.
- Phillips, J. D. (2009). Changes, perturbations, and responses in geomorphic systems. *Progress in Physical Geography: Earth and Environment, 33*(1), 17-30. doi:10.1177/0309133309103889
- Raj, R., & Bhandari, S. (2004). Channel shifting of a highly sinuous meandering river in alluvial plain, Vishwamitri River, Mainland Gujarat. *current science, 86*.
- Richter, B. D., & Thomas, G. (2007). Restoring environmental flows by modifying dam operations. *12*(1).
- Rinaldi, M., Surian, N., Comiti, F., & Bussettini, M. (2013). A method for the assessment and analysis of the hydromorphological condition of Italian streams: The Morphological Quality Index (MQI). *Geomorphology, 180*, 96-108.
- Sattayarak, N., Srigulawong, S., & Patarametha, M. J. G. V. A., Bangkok. (1991). Subsurface stratigraphy of the non-marine Mesozoic Khorat Group, northeastern Thailand. *36*.
- Schmidt, J. C., & Wilcock, P. R. J. W. R. R. (2008). Metrics for assessing the downstream effects of dams. *44*(4).
- Shrestha, B., Ye, Q., & Khadka, N. (2019). Assessment of Ecosystem Services Value Based on Land Use and Land Cover Changes in the Transboundary Karnali River Basin, Central Himalayas. *Sustainability, 11*(11), 3183.

- Słowik, M., Dezs**ő**, J., Marciniak, A., Tóth, G., Kovács, J. J. E. S. P., & Landforms. (2018). Evolution of river planforms downstream of dams: Effect of dam construction or earlier human-induced changes? *, 43*(10), 2045-2063.
- Sundborg, Å. (1956). The river Klarälven a study of fluvial processes. *Geografiska* annaler, 38(2-3), 125-316.
- Suwanich, P. (1985). *Potash and rock salt in Thailand*: Department of Mineral Resources.
- Thayer, J. (2017). Downstream Regime Relations for Single-Thread Channels. *33*(1), 182-186.
- Vaughan, I. P., Diamond, M., Gurnell, A., Hall, K., Jenkins, A., Milner, N., . . . Ormerod, S. J. (2009). Integrating ecology with hydromorphology: a priority for river science and management. *Aquatic Conservation: Marine Freshwater Ecosystems 19*(1), 113-125.
- Wang, J., Dai, Z., Mei, X., Lou, Y., Wei, W., & Ge, Z. (2018). Immediately downstream effects of Three Gorges Dam on channel sandbars morphodynamics between Yichang-Chenglingji Reach of the Changjiang River, China. *Journal of Geographical Sciences, 28*(5), 629-646.
- Wilcock, P. R., & DeTemple, B. T. (2005). Persistence of armor layers in gravel-bed streams. *Geophysical Research Letters, 32*(8).
- Williams, G. P., & Wolman, M. G. (1984). *Downstream effects of dams on alluvial rivers* (Vol. 1286): US Government Printing Office.
- Zhou, M., Xia, J., Lu, J., Deng, S., & Lin, F. (2017). Morphological adjustments in a meandering reach of the middle Yangtze River caused by severe human activities. *Geomorphology, 285*, 325-332.

Appendix

Appendix A. MQI Evaluation form (Rinaldi et al., 2013)

Class	Detail	Score
Artificiality	,	
A1: Upstrea	am alteration of flow	
A	No significant alteration (≤10%) of channel-forming discharges and with return interval>10 years	0
В	Significant alteration (>10%) of discharges with return interval>10 years or release of increased low flows downstream dams during dry seasons	3
С	Significant alteration (>10%) of channel-forming discharges	6
A2: Upstrea	am alteration of sediment	
A	Absence or negligible presence of structures for the interception of sediment fluxes (dams for drainage area ≤5% and/or check dams/abstraction weirs for drainage area ≤33%)	0
B1	Dams (area 5-33%) and/or check dams/weirs with total bedload interception (area 33-66%) and/or check dams/weirs with partial interception (area >66%)	3
B2	Dams (area 33-66%) and/or check dams/weirs with total bedload interception (area>66%)	6
C1	Dams for drainage area >66%	9
C2	Dam at the upstream boundary of the reach	12
A3: Alterat	ion of flow (in reach)	
A	No significant alteration (≤10%) of channel-forming discharges and with return interval>10 years	0
В	Significant alteration (>10%) of discharges with return interval>10 years	3
С	Significant alteration (>10%) of channel-forming discharges	6

A	Absence of structures for the interception of sediment fluxes (dams, check dams, abstraction weirs)	0
B	Channels with S≤1%:consolidation check dams and/or abstraction weirs ≤1 every 1000 m Steep channels (S>1%):consolidation check dams ≤1 every 200 m and/or open check dams	4
С	Channels with S≤1%:consolidation check dams and/or abstraction weirs >1 every 1000 m Steep channels (S>1%): consolidation check dams >1 every 200 m and/or retention check dams Or presence of a dam or artificial reservoir at the downstream boundary (any bed slope)	6
A5: Crossing Str	ucture	
A	Absence of crossing structures (bridges, fords, culverts)	0
В	Presence of some crossing structure (≤1 every 1000 m in average in the reach)	2
С	Presence of many crossing structure (>1 every 1000 m in average in the reach)	3
A6 Bank protect	tions	
A	Absence or localized presence of bank protections (≤5% total length of the banks)	0
В	Presence of protections for ≤33% total length of the banks (sum of both banks)	3
С	Presence of protections for >33% total length of the banks (sum of both banks)	6
A7: Artificial lev	ees	
A	Absent or set-back levees, or presence of close and/or bank- edge levees ≤5% bank length	0
В	Bank-edge levees ≤50%, or ≤33 in case of total of close and/or bank edge>90%	3

С	Bank-edge levees >50%, or >33% in case of total of close and/or bank edge>90%	6
A8: Artificial cha	anges of river course	
A	Absence of artificial changes of river course in the past (meanders cut-off, channel diversions, etc.)	0
В	Presence of changes of river course for ≤10% of the reach length	2
С	Presence of changes of river course for >10% of the reach length	3
A9: Other bed s	tabilization structures	
A	Absence of structures (bed sills/ramps) and revetments	0
В	Sills or ramps (≤1 every d) and/or revetments ≤25% permeable and/or ≤15% impermeable	3
C1	Sills or ramps (>1 every d) and/or revetments ≤50% permeable and/or ≤33% impermeable	6
C2	Revetments >50% permeable and/or >33% impermeable	8
A10: Sediment		
A	Absence of significant sediment removal activities during the last 20 years	0
В	Localized sediment removal activities during the last 20 years	3
С	Widespread sediment removal activities during the last 20 years	6
A11: Wood rem	oval	
A	Absence of removal of woody material at least during the last 20 years	0

В	Partial removal of woody material during the last 20 years	2
C	Total removal of woody material during the last 20 years	5
A12: Vegetation	i management	
A	No cutting interventions on riparian (last 20 years) and aquatic vegetation (last 5 years)	0
В	Selective cuts and/or clear cuts of riparian vegetation ≤50% of the reach and partial or no cutting of aquatic vegetation, or no cutting of riparian but partial or total cutting of aquatic vegetation	2
C	Clear cuts of riparian vegetation >50% of the reach, or selective cuts and/or clear cuts of riparian vegetation ≤50% of the reach but total cutting of aquatic vegetation	5
Geomophologic	cal Functionality	
F1: Longitudina	l continuity in sediment and wood flux	
A	Absence of alteration in the continuity of sediment and wood	0
В	Slight alteration (obstacles to the flux but with no interception)	3
С	Strong alteration (discontinuity of channel forms and interception of sediment and wood)	5
F2: Presence of	a modern floodplain	
A	Presence of a continuous (>66% of the reach) and wide modern floodplain	0
B1	Presence of a discontinuous (10÷66%) but wide modern floodplain or >66% but narrow	2
B2	Presence of a discontinuous (10÷66%) and narrow modern floodplain	3

С	Absence of a modern floodplain or negligible presence (≤10% of any width)	5
F3: Hillslope - ri	ver corridor connectivity	
A	Full connectivity between hillslopes and river corridor (>90%)	0
В	Connectivity for a significant portion of the reach (33÷90%)	3
с	Connectivity for a small portion of the reach (≤33%)	5
F4: Processes of	f bank retreat	
A	Bank erosion occurs for >10% and is distributed along >33% of the reach	0
В	Bank erosion occurs for ≤10%, or for >10% but is concentrated along ≤33% of the reach or significant presence (>25%) of eroding banks by mass failures	2
С	Complete absence (≤2%) or widespread presence (>50%) of eroding banks by mass failures	3
F5 : Presence of	a potentially erodible corridor	
A	Presence of a wide potentially erodible corridor (EC) for a length >66% of the reach	0
В	Presence of a potentially EC of any width for 33-66% of the reach or for >66% but narrow	2
С	Presence of a potentially EC of any width but for ≤33% of the reach	3
F6: Bed configu	ration - valley slope	
A	Bed forms consistent with the mean valley slope or not consistent for ≤33% of the reach	0
В	Bed forms not consistent with the mean valley slope for 33- 66% of the reach	3

С	Alteration of bed forms for >66% of the reach	5
F7 : Planform p	attern	
A	Absence (≤5%) of alteration of the natural heterogeneity of geomorphic units and channel width	0
В	Alterations for a limited portion of the reach (≤33%)	3
С	Consistent alterations for a significant portion of the reach (>33%)	5
F8: Presence of	typical fluvial landforms in the floodplain	
A	Presence of floodplain landforms (oxbow lakes, secondary channels, etc.)	0
В	Presence of traces of landforms (abandoned during the last decades) but with possible reactivation	2
С	Complete absence of floodplain landforms	3
F9 : Variability	of the cross-section	
A	Absence (≤5%) of alteration of the cross-section natural heterogeneity (channel depth)	0
В	Presence of alteration (cross-section homogeneity) for a limited portion of the reach (≤33%)	3
С	Presence of alteration (cross-section homogeneity) for a significant portion of the reach (>33%)	5
F10 : Structure	of the channel bed	
A	Natural heterogeneity of bed sediments and no significant armouring and/or clogging	0
В	Evident armouring or clogging for ≤50% of the reach	2

	Evident armouring or clogging (>50%), or burial (≤50%), or occasional substrate outcrops	5
	Evident burial (>50%), or substrate outcrops or alteration by bed revetments (>33% of the reach)	6
F11: Presence of	in-channel large wood	
A	Significant presence of large wood along the whole reach (or "wood transport" reach)	0
В	Negligible presence of large wood for ≤50% of the reach	2
C	Negligible presence of large wood for >50% of the reach	3
F12: Width of fur	nctional vegetation	
A	High width of functional vegetation	0
В	Medium width of functional vegetation	2
С	Low width of functional vegetation	3
F13: Linear exten macrophytes	sion of functional vegetation and presence of emergent aquat	ic
	Riparian vegetation >90% of maximum length, or riparian vegetation>33% and significant presence of emergent aquatic vegetation (low-energy channels)	0
	Riparian vegetation 33÷90%, or riparian vegetation >90% but very limited presence of aquatic vegetation, or riparian vegetation ≤33% but significant presence of aquatic vegetation	3
	Riparian vegetation ≤33%, or <90% but very limited presence of aquatic vegetation	5
Channel Adjustm	ent	

CA1: Adju	stment in channel pattern	
A	Absence of changes of channel pattern since 1930s - 1960s	0
В	Change to a similar channel pattern since 1930s - 1960s	3
C	Change to a different channel pattern since 1930s - 1960s	6
CA2 : Adju	ustments in channel width	
A	Absent or limited changes (≤15%) since 1930s - 1960s	0
В	Moderate changes (15÷35%) since 1930s - 1960s	3
С	Intense changes (>35%) since 1930s - 1960s	6
CA3: Bed-	level adjustments	
A	Negligible bed-level changes (≤0.5 m)	0
В	Limited to moderate bed-level changes (0.5÷3 m)	4
C1	Intense bed-level changes (>3 m)	8
C2	Very intense bed-level changes (>6 m)	12

Appendix B Confinement condition and MQI

Confined Condition	Partly-Unconfined condition
F3 F6	F2, F4, F5, F7, F8,A7, A8

Appendix C Classification of MQI indicator in Hydromorphological Quality aspect

		Functionality	Artificiality	Channel Adjustment
Hydrological regime	Quantity and dynamic of water flow	F1	A1 A2 A3 A4	
	Connection to ground water		None	
River Continuity	Longitudinal	F1	A1 A2 A3 A4 A5	
	Lateral	F3 F4 F5	A6 A7	
Morphological	River Depth and Width Variation	F6 F7 F10	A6 A8 A9	CA1 CA2 CA3
	Substrate	F10 F11	A9 A10 A11	
	Flood Plain	F2 F8	A8	
	Riparian Zone	F5 F9 F11 F12 F13	A12	

Station		Cha	annel Width (Me [.]	ter)	
	1952	1988	1992	2006	2020
0	26.97536	44.99935	44.9051	52.14185	59.13228
1	21.28372	35.6128	35.6264	47.28263	40.4379
2	28.38964	36.09855	36.2557	42.60878	38.8768
3	29.35545	33.55398	33.7244	44.34722	37.7918
4	27.92205	33.76546	33.7017	50.31911	46.03982
5	30.2115	35.44743	35.2769	29.44366	39.18858
6	37.18606	37.07384	37.3543	48.26225	49.09085
7	38.86869	40.46129	38.5064	45.68863	46.07949
8	28.23656	36.33744	37.5505	41.2745	45.2278
9	28.2692	36.4838	37.2156	44.87551	46.91429
10	22.52601	35.26652	32.8845	49.34556	50.35731
11	24.56558	27.22707	28.4533	42.32522	39.33613
12	24.3613	31.20807	31.2626	35.7172	36.88589
13	58.28546	45.72451	45.8508	46.20828	39.98211
14	22.43717	35.4041	34.9757	37.51214	27.71726
15	30.97195	31.44626	31.5278	40.11649	35.44944
16	28.28552	30.26344	30.3129	40.135	40.43958
17	23.63498	38.06932	38.0018	44.01928	41.84881
18	33.367	31.98667	31.7517	¥ 43.59212	46.06722
19	33.61426	34.79363	35.1534	46.94923	43.99128
20	40.58865	38.51059	38.8178	44.16405	46.37101
21	36.29519	38.50132	38.1583	44.83079	48.2015
22	32.83733	40.34368	37.9189	44.00188	53.8015
23	23.60547	27.72173	27.6133	32.47365	30.70527
24	19.86656	40.36314	40.3004	40.39657	52.26288
25	27.32678	28.39157	28.9123	38.42589	41.38575
26	26.12388	31.83397	31.7278	40.01047	45.50267
27	25.07511	41.22027	40.8905	46.87189	44.4696
28	21.25533	33.23455	35.3105	50.05712	47.5463
29	23.69652	42.97763	40.4	42.9851	34.16939

Appendix D Channel width of each station

30	22.4674	31.96325	32.1143	37.39434	43.09611
31	11.19581	29.23225	29.7836	37.8681	35.24063
32	20.88355	38.63081	38.9791	40.7958	39.67229
33	32.78034	41.73944	41.9684	52.62813	46.66442
34	28.047	38.70386	38.157	39.26489	42.636
35	18.6575	29.68815	29.2805	43.1287	44.53405
36	12.16114	33.3478	33.147	40.72325	45.14635
37	36.42067	44.19323	44.0497	47.30946	44.37337
38	13.7169	33.05424	33.4646	42.67436	49.36758
39	25.01435	42.07178	41.8653	42.43369	51.83054
40	26.75275	51.69672	51.7899	47.72929	40.91938
41	22.38014	33.82955	34.2781	47.19999	39.39398
42	57.85087	49.78774	50.0866	52.07055	51.7222
43	24.56789	43.6024	43.5507	40.66111	42.81921
44	26.50936	34.41236	34.6425	40.94073	34.64713
45	17.85394	25.93936	25.9877	32.95868	35.20618
46	19.22459	30.70941	31.9762	30.72528	41.82593
47	30.61004	36.23062	36.536	47.14704	48.73602
48	29.01956	37.06425	37.6736	41.86951	42.6628
49	35.27945	35.77956	38.5542	48.95626	44.28398
50	27.47404	41.84063	42.2613	44.74652	43.25433
51	21.1325	36.95298	36.7864	24.07228	38.4037
52	25.58128	30.03874	30.024	32.73355	38.51471
53	17.6946	37.37478	37.7202	43.40048	41.2848
54	20.32345	42.18004	37.3945	51.35139	50.95591
55	23.79618	40.55708	37.0108	49.45354	45.87363
56	23.48818	34.25797	34.8327	43.31614	43.33254
57	19.77864	37.54329	37.2597	38.02537	42.79797
58	26.97693	37.65256	38.5322	42.21373	33.77921
59	31.3495	35.43714	37.0471	41.81691	41.99258
60	38.55993	48.78279	48.9211	43.6435	47.76631
61	25.93107	41.48965	41.1208	42.54973	41.18934
62	19.59532	33.38162	33.9662	39.47622	36.14999
63	20.38022	41.13675	39.4528	48.55926	46.17564
L				•	

64	19.84383	38.60951	35.202	48.07767	38.65334
65	22.73431	42.25527	42.5742	40.96119	42.86443
66	16.08777	40.79811	37.8295	47.9309	42.77258
67	26.07167	37.1422	35.5345	45.39921	41.43392
68	22.49854	37.05168	37.6588	40.55282	40.86354
69	23.95238	35.99516	36.1308	42.36419	32.68376
70	26.61584	35.71431	35.7247	42.26028	40.12542
71	20.56964	37.26173	37.6755	44.7789	33.4969
72	33.36197	33.68396	33.946	41.25067	37.11743
73	25.57372	39.43954	39.3663	39.4747	36.58271
74	28.0273	33.48452	33.4619	41.45664	37.10341
75	21.86673	45.77283	46.4178	34.98163	29.24325
76	31.4473	45.42689	43.052	44.371	36.74605
77	31.51775	43.17231	42.4231	44.58209	44.56211
78	23.17415	43.69662	39.8187	46.39457	37.75866
79	27.6425	43.85521	38.9047	41.43647	46.26147
80	28.21858	41.48056	39.3788	35.76599	42.63493
81	24.61776	34.79111	33.0786	42.01897	41.70546
82	19.14929	43.03546	43.5691	41.47351	41.43933
83	36.01227	42.50446	42.4067	47.41291	37.5898
84	24.90554	41.15066	41.2647	43.02062	47.53426
85	26.10757	45.32173	45.3018	55.78921	48.58832
86	37.50844	45.09735	43.993	52.96235	50.68313
87	27.71651	33.92004	34.2242	45.7802	42.91782
88	36.3932	27.83216	28.1249	55.17464	51.19547
89	32.25897	46.20408	43.2019	47.26484	52.17457
90	28.78251	38.56294	33.6991	41.74812	38.09236
91	29.61543	42.13485	39.2542	42.3782	32.98496
92	32.30636	43.86468	41.7263	49.59277	47.79249
93	30.14535	40.03465	37.0352	51.30853	45.1301
94	19.27856	33.02675	32.2235	43.97036	46.95873
95	24.48295	41.3251	41.5106	52.58777	52.5584
96	36.89257	34.60251	34.7198	46.62413	45.56688
97	24.04433	37.11268	37.1059	45.23608	45.98032

98	21.3755	36.50525	36.5033	45.77443	43.95212
99	32.52647	39.979	40.0558	52.65231	46.43637
100	34.81643	42.0823	42.6179	48.21343	46.17964
101	30.33668	47.69212	47.9289	50.3824	48.80966
102	67.98159	45.58616	45.3903	77.60616	76.78828
103	32.89471	47.26697	45.9019	58.90692	55.75886
104	36.98052	40.89263	40.7196	43.0082	42.57567
105	20.36742	39.47839	40.0503	49.36029	52.18512
106	26.64006	30.95382	31.0344	44.33401	49.57806
107	29.8152	43.06017	41.3312	52.07719	45.2504
108	33.90753	40.06692	39.9893	47.33561	39.94229
109	38.39784	58.33498	58.7656	54.34943	49.79303
110	13.96448	66.06071	62.914	49.37911	45.5395
111	15.26647	69.97477	70.1298	56.67052	48.7983
112	27.22522	57.19047	57.3965	53.97407	46.70999
113	18.20228	37.89816	37.9718	40.6059	39.5186
114	23.63427	29.46038	29.3155	51.87913	44.18128
115	21.45846	39.92463	40.1432	46.5026	39.9305
116	27.00072	44.84054	44.8535	47.44067	40.34172
117	21.86819	34.24688	31.9323	44.76198	43.46858
118	29.21043	35.82756	35.9365	41.98661	42.63045
119	36.16593	38.80781	36.064	45.09611	41.80693
120	30.09351	37.33036	34.2066	41.73215	37.04048
121	25.03819	45.01855	42.927	53.02116	40.68456
122	33.4672	41.61251	41.4171	50.8562	48.65029
123	28.05419	41.93666	41.0895	47.8929	39.02194
124	31.9008	40.02918	34.9115	44.25908	39.60612
125	28.15499	35.7935	34.3166	46.42028	44.16529
126	18.64977	36.7276	38.9101	48.86686	43.65015
127	29.50278	46.30134	46.3244	43.08517	43.4404
128	32.80246	59.17349	59.4609	52.03836	46.08113
129	26.36786	41.05324	40.905	55.62291	52.82075
130	30.85657	38.65204	38.8462	47.29015	35.63086
131	20.69978	40.5762	40.6513	48.85165	40.31505
	•			•	

132	24.28051	48.61633	48.5912	55.86395	42.54668
133	33.13465	41.74933	41.8729	49.70367	43.74948
134	23.3024	42.74108	40.4453	39.36144	34.71876
135	23.79889	40.80727	40.6513	43.15865	40.45244
136	28.12794	32.67523	28.9438	42.87129	38.1993
137	25.5872	40.79275	37.1709	38.24926	40.54182
138	31.29679	41.05679	40.9508	52.0973	49.75432
139	22.5333	36.8201	34.2783	41.42001	41.12003
140	17.58817	38.21013	36.4984	44.17835	35.4324
141	21.7601	29.00623	30.7512	45.51631	42.56126
142	23.94223	33.39078	30.34	36.54035	31.53833
143	32.49205	35.93812	36.4114	48.61914	39.27079
144	28.06284	29.99966	30.4216	42.2098	34.11963
145	22.045	33.74173	33.4698	44.85338	40.54505
146	31.87454	37.74012	34.7669	40.17654	39.60097
147	28.29786	27.54877	27.2083	39.39125	41.7175
148	32.4128	30.91317	28.6363	43.50078	43.34178
149	26.00048	34.63436	35.1554	52.71717	39.06579
150	32.98312	35.9202	35.9202	45.78426	37.53815
151	30.12289	41.26148	39.8414	52.1509	38.29338
152	27.35086	33.2088	33.9393	40.18476	35.73567
153	27.02607	37.63544	37.4853	46.79343	37.31965
154	32.8256	52.16189	49.8347	59.84602	54.21031
155	26.92359	42.0528	41.9315	47.79187	42.87895
156	20.65803	32.00756	31.0498	45.7327	39.13249
157	32.40219	46.27368	42.5331	59.2172	50.43664
158	25.38751	54.02771	53.731	49.57828	41.72121
159	29.69343	47.01013	46.4531	57.93935	44.58284
160	30.86823	39.26661	40.1119	53.04374	43.06901
161	45.47404	35.97952	36.7834	37.64207	48.80045
162	39.35828	37.65449	37.5994	53.42848	45.71846
163	25.11587	36.88859	33.3002	40.90879	35.53013
164	24.34006	28.32771	25.3062	39.31065	34.2955
165	29.38248	39.46651	34.9783	47.12423	30.87041

166	23.90704	29.60741	28.3649	42.1444	35.38915
167	29.78646	36.28838	35.4814	45.27975	40.94508
168	28.78944	32.26059	33.8667	50.80869	44.36064
169	27.10704	44.47468	38.4787	43.95212	42.96723
170	39.75269	47.64265	46.6843	55.98215	47.84205
171	35.23974	44.63251	43.5747	39.14587	44.64004
172	42.3509	41.8216	41.8216	49.294	45.79719
173	27.57941	42.273	43.8908	40.54261	37.70008
174	28.23984	41.97493	41.5327	42.1005	43.30497
175	31.49406	32.84955	33.0662	32.62244	37.73159
176	29.88292	38.0743	38.0743	49.2703	35.21274
177	27.99473	38.67305	34.5541	42.2828	39.19425
178	40.01483	36.2389	36.2389	47.4412	37.52964
179	35.1292	40.70448	40.9986	46.52405	47.30855
180	31.57291	33.74362	33.1308	45.08747	49.7076
181	41.0814	48.16961	48.8287	58.72637	42.62354
182	38.64671	48.58812	46.4303	60.56177	49.91948
183	29.55835	46.89941	47.2407	64.09549	45.39183
184	34.68015	46.89625	47.0516	63.22326	50.27799
185	34.36776	40.44542	40.7064	46.86992	43.98787
186	29.28715	28.77339	29.9796	47.72023	44.85
187	33.1	33.19836	34.2376	38.6235	48.58
188	39.21	49.80681	49.6672	62.181	56.26
189	30.75	37.87301	37.9802	36.95591	42.65
190	33.54	36.63074	37.2495	39.78016	39.95
191	30.57	44.18524	44.2446	47.46816	42.78
192	25.14	45.62751	46.6434	49.00038	50.24
193	29.4	43.10119	43.4053	52.01329	44.77
194	34.94	45.46837	45.5227	52.69038	47.85
195	32.31	55.39236	54.683	56.19701	50.78
196	28.76	48.60096	48.9965	53.32911	42.14
197	32.71	47.81801	48.3973	50.36869	45.75
198	38.77	38.20734	38.7117	49.58886	38.84
199	37.94	42.53837	41.9646	55.04894	36.2

39.95	49.5181	43.8742	43.62651	41.19	200
48.37	58.96292	50.379	49.72871	37.48	201
49.01	58.73691	50.1346	50.09275	27.75	202
46.08	47.38634	45.0032	44.80416	35.47	203
45	49.36732	38.5106	38.57283	32.41	204
49.81	50.49264	48.6834	48.60688	37.06	205
47.11	52.88248	50.3841	50.08007	36.2	206
44.25	43.2375	42.7167	42.74268	31.88	207
43.61	43.92456	44.1845	44.19064	33.98	208
46.99	51.11457	41.2048	41.0554	38.64	209
48.51	50.46132	46.4265	46.23965	36.92	210
38.29	42.13752	36.9031	36.8156	28.39	211
44.02	44.49692	38.8353	38.60272	20.2	212
46.04	47.84247	38.3333	38.70586	27.65	213
49.07	65.13399	59.6087	58.88984	64.45	214
45.11	49.53706	38.2868	36.41485	49.77	215
51.98	60.29135	49.7581	47.24377	47.76	216
50.11	61.70131	54.0781	53.71472	51.68	217
43.81	54.85831	52.2516	51.80981	27.98	218
46.4	45.94314	45.1972	45.30163	36.78	219
41.54	44.49078	30.5236	30.34763	36.95	220
36.78	43.01153	26.9082	27.21944	59.4	221
40.76	53.1814	51.1609	50.96012	47.95	222
40.31	46.42527	36.2138	36.30889	49.27	223
45.65	43.05983	30.6611	31.02205	31.15	224
44.89	44.46381	36.0174	36.07703	29.15	225
48.03	43.48382	33.2535	31.6566	27.7	226
40.04	49.41166	29.5435	29.48263	20.7	227
51.7	58.90633	47.9721	47.81198	46.65	228
47.72	50.94366	42.5352	42.41331	47.6	229
52.32	63.55907	49.8853	50.1345	39.07	230
61.67	62.42182	64.3349	63.73004	47.73	231
60.12	62.60008	63.6144	62.59076	39.03	232
57.06	68.64559	77.1853	77.72318	39.75	233

47.87	51.3704	40.5567	41.0684	40.4	234
46.53	50.62948	32.3023	31.92991	25.7	235
47.51	57.09751	39.3438	39.18006	39.14	236
48.04	55.79989	39.9088	39.6832	41.17	237
47.91	52.0493	42.8102	42.79738	35.12	238
49.36	47.70235	43.3588	42.10711	43.9	239
46.33	55.46944	39.3622	39.3793	39.74	240
40.63	46.98334	41.2464	40.21376	35.86	241
48.78	46.11468	37.5215	36.54825	38.15	242
53.09	51.55417	45.2163	44.17688	57.66	243
51.55	54.79459	45.2958	43.94768	41.46	244
41	54.09203	32.4399	31.03081	40.66	245
48.11	45.24351	42.7502	42.22419	39.33	246
52.43	53.41759	48.3908	49.01941	38.1	247
49.48	59.39934	49.1346	48.75034	40.55	248
54.92	52.96009	40.694	40.7501	48.17	249
58.7	55.04771	43.7342	43.56918	36.64	250
44.85	58.8867	38.851	38.7248	29.82	251
54.29	63.77359	50.708	49.93985	44.92	252
53.65	53.58962	48.5995	48.24523	34.29	253
50.43	54.57627	41.311	41.35529	36.71	254
52.53	49.49762	49.7217	49.75181	34.78	255
48.3	47.5269	42.01	41.82638	34	256
51.21	47.71653	44.9805	44.75581	40	257
44.4	51.17258	42.1151	40.84201	45.42	258
54.2	57.15886	49.1915	49.33527	40.64	259
61.65	62.92058	57.4211	57.59755	58.1	260
54.63	54.92751	51.3174	49.83113	53.21	261
47.21	50.19949	41.5048	41.36767	53.45	262
42.31	49.28006	42.6431	42.61848	41.14	263
46.18	57.61854	44.7374	44.78332	34.54	264
57.53	53.77455	37.0864	37.77803	49.39	265
51.56	65.88283	48.8531	48.5176	45.73	266
58.77	62.01525	55.0882	55.37562	42.29	267

268	43.84	48.98604	49.0829	50.14564	53.49
269	50.04	43.85173	44.2517	56.73423	45.38
270	51.31	53.0265	52.4085	52.36654	50.52
271	44.95	68.22707	69.5129	75.52221	73.93
272	54.98	63.38125	64.7091	80.89287	50.77
273	48.87	48.73837	48.7882	58.83465	52.51
274	53.61	61.71549	61.4688	65.6369	63.83
275	48.73	53.02951	53.952	65.37052	61.01
276	47.26	55.87735	55.2902	51.73237	59.72
277	40.06	43.41817	43.0209	51.79026	28.8
278	38.27	46.63175	46.529	55.97812	49.34
279	37.49	54.87931	54.8266	64.93346	56.56
280	32.42	52.08012	52.0749	55.07615	53.59
281	43.41	49.18778	48.4331	53.80813	52.17
282	42.4	47.93205	47.5619	57.54495	61.27
283	45.3	63.13294	62.9697	60.3134	52.71
284	54.74	49.56436	49.454	74.45877	61.41
285	54.21	56.31314	56.3061	62.01336	67.52
286	46.99	57.0844	57.2101	71.94799	59.95
287	37.82	38.06526	37.9347	59.57036	51.86
288	35.29	40.81917	40.4748	55.36059	51.93
289	40.34	42.46296	42.3987	48.41266	41.4
290	43.49	41.82692	41.8789	51.56287	40.24
291	32.35	44.9761	45.8609	41.10031	47.07
292	49.12	48.00292	49.2251	46.6408	57.89
293	39.85	52.90101	52.7579	69.72808	56.98
294	37.6	49.72259	49.7283	58.39463	55.92
295	48.3	46.80467	47.3911	62.3987	62.69
296	43.09	52.65712	51.7273	65.15795	60.08
297	50.6	61.53507	60.9246	68.45109	61.71
298	45.86	51.74407	52.2641	58.86623	57.25
299	44.21	50.56279	50.5821	64.4856	47.44
300	38.65	46.95314	47.025	52.65149	52.41
301	40.46	40.91299	40.731	45.56377	41.77

52.2	54.00473	49.623	48.73129	46.74	302
43.63	36.98916	37.904	38.37287	29.4	303
52.52	56.34738	51.6905	52.22634	33.44	304
54.04	49.41718	46.5144	45.28565	36.33	305
58.49	61.96076	51.8371	52.5012	49.51	306
59.12	64.2909	49.8216	48.92212	36.91	307
58.18	80.64815	66.1213	65.57091	53.01	308
60.75	51.48262	58.5495	58.59668	47.57	309
60.22	64.63172	62.4469	61.55285	44.66	310
62.02	67.15313	59.4239	58.10471	40.37	311
51.21	47.59559	41.921	40.61796	40.86	312
68.22	54.7741	50.8069	50.72615	35.16	313
53.91	60.12475	58.1057	57.75983	45.61	314
53.66	62.86093	57.4402	57.31122	40.63	315
56.45	55.80319	57.6211	57.70296	45.12	316
52.1	62.71574	54.5074	53.99278	48.13	317
57.52	65.63188	70.6204	70.83753	39.28	318
59.28	71.99384	61.5948	60.24856	38.69	319
54.85	60.57711	54.0362	53.9311	47.16	320
50.53	55.94444	40.3744	40.14673	50.55	321
54.69	48.12379	41.9648	41.50715	38.62	322
52.51	56.48392	46.0618	45.91728	38.61	323
47.85	55.38422	44.8702	44.22498	33.67	324
50.31	57.48716	42.2337	42.55025	45.38	325
44.3	50.65895	36.3382	35.57921	47	326
44.21	54.5157	40.792	40.78123	49.17	327
57.81	54.54332	40.9385	41.20086	49.17	328
55.41	53.03511	45.8405	44.15474	49.75	329
48.18	53.17992	36.8229	36.49191	30.78	330
55.74	64.59862	42.0137	41.66383	39.31	331
49.72	60.21146	54.7075	53.41496	45.74	332
47.02	47.91465	38.6026	38.67184	33.67	333
41.94	47.41468	37.0559	37.04328	33.49	334
48.37	55.90154	42.7269	41.61386	39.67	335

65.31	68.67222	54.8996	54.29433	49.36	336
52.8	53.75379	44.166	43.68772	43.21	337
55.14	58.7244	48.6291	48.40969	46.32	338
59.86	63.07683	45.5309	45.2548	37.38	339
53.23	55.87517	45.761	44.84431	42.03	340
59.2	72.95586	50.6931	49.79159	50.57	341
57.04	64.24386	46.6682	45.94898	37.63	342
52.46	58.31442	54.4575	54.69396	38.37	343
58.28	60.58609	44.7985	44.4078	25.15	344
207.71	191.811	56.4717	55.41418	48.51	345
162.87	189.0795	66.302	65.83175	58.57	346
80.66	76.45529	63.7586	63.57415	50.97	347
77.63	77.41163	52.1316	51.62138	42.97	348
90.48	61.7678	49.7619	47.9298	41.99	349
54.48	54.35016	40.9711	41.15314	29.46	350
52.15	51.40597	39.8696	38.61616	31.03	351
50.16	52.38517	34.4927	33.51434	29.74	352
52.19	44.33669	36.3402	36.77574	39.28	353
56.74	45.14035	41.1641	40.36099	31.73	354
55.16	53.69862	57.5934	56.62996	38.04	355
60.23	51.48602	47.0071	46.00339	22.71	356
72.8	70.18195	60.5447	58.18285	42.93	357
54.97	47.52457	41.1425	39.52588	25.82	358
51.75	50.4946	47.0218	45.68912	31.18	359
63.67	61.51711	54.1477	52.75426	43.74	360
55.73	57.90563	47.9616	47.42601	33.41	361
54.63	61.84202	48.7311	47.96974	31.29	362
56.15	64.25844	52.8641	52.04994	39.46	363
58.47	81.01786	53.8631	54.27298	40.11	364
51.55	50.47906	42.3155	42.16237	29.55	365
52.56	58.43322	43.182	42.45036	27.62	366
50.98	66.22736	44.1495	42.93974	28.55	367
54.78	53.31476	43.5201	41.76536	31.04	368
60.9	64.90321	49.3499	48.10266	41.64	369

50.9	57.5196	39.7047	38.47	29.08	370
58.71	46.18635	45.3226	44.37807	30.79	371
48.99	49.93649	31.3989	30.34458	25.88	372
50.28	59.58872	31.6303	31.57086	25.03	373
53.12	62.05779	45.5506	45.18051	28.18	374
61.11	86.83538	62.7167	61.78628	41.92	375
66.17	84.61286	57.3564	57.00078	36.83	376
65	64.54982	45.7022	45.51587	47.82	377
47.56	69.22195	53.6757	52.44155	31.4	378
47.38	75.72496	56.5734	55.87191	35.5	379
62.63	66.19914	49.5646	49.58613	43.16	380
59.97	53.81539	38.3959	38.2299	36.57	381
53.57	53.45756	42.8311	41.49595	33.84	382
56.28	50.30379	43.2577	42.49633	27.32	383
60.17	53.44219	38.7527	38.79329	26.06	384
51.37	73.63689	46.6837	44.46207	36.6	385
49.41	93.02655	60.0024	59.87715	47.65	386
59.92	75.98526	54.7478	54.70778	31.67	387
55.23	59.96644	42.7514	42.67489	39.23	388
58.65	69.6928	50.9317	50.93299	30.88	389
63.47	69.56275	41.2766	40.49753	35.45	390
69.91	88.41878	65.2299	64.28963	29.26	391
79.59	114.9101	60.4637	59.62689	34.05	392
56.88	74.65475	47.0432	47.85583	32.95	393
64.37	65.10014	54.3422	54.75825	46.68	394
60.38	62.48321	55.2081	54.50569	45.9	395
91.74	85.98263	64.7136	63.61042	42.96	396
67.38	69.37697	53.5824	52.40287	27.35	397
69.08	60.92792	41.545	41.81407	35.75	398
48.44	46.32902	31.0382	31.24246	27.23	399
37.75	39.47421	33.4198	34.05818	28.22	400
54.77	50.39727	44.3175	44.36525	36.02	401
57.86	57.85184	41.6588	40.76497	33.69	402
54.31	57.35411	49.2542	48.75686	42.62	403

52.28	59.38102	42.4276	42.18664	34.3	404
43.32	52.49764	35.3506	35.08518	41.06	405
41.33	35.82669	33.6506	33.94482	30.58	406
43.02	50.38113	41.9663	42.57884	36.33	407
67.1	70.9704	60.442	61.66363	55.12	408
74.32	70.54158	48.5005	48.61582	23.83	409
54.49	67.14134	44.5418	44.47742	19.39	410
54.77	62.62933	34.6615	34.31721	28.69	411
63.36	68.95992	50.2839	51.45963	35.39	412
61.8	63.41282	41.0022	42.01826	18.69	413
59.65	64.57159	56.0537	54.75987	33.56	414
65.6	61.4124	43.9119	43.95941	39.94	415
61.66	49.5354	34.3527	34.86619	23.9	416
51.62	64.42026	36.1471	35.46868	30.72	417
49.73	54.83683	52.4093	52.70823	34.57	418
40.03	52.47618	32.9008	32.67092	28.54	419
50.57	56.7318	30.5619	30.69321	35.05	420
49.91	54.47271	36.5836	36.08601	24.5	421
56.31	62.81387	48.6489	48.27582	26.39	422
59.43	62.1429	44.8194	43.12743	25.69	423
55.85	59.43158	50.4322	50.30196	26.96	424
50.77	48.80183	42.7787	42.82779	22.09	425
56.47	51.31843	38.4759	38.34595	34.17	426
60.39	43.19873	41.2936	41.33671	35	427
59.31	48.26672	34.3068	33.59349	28.92	428
57.76	57.75422	36.7751	36.87724	42.64	429
64.18	60.44558	40.7515	39.69264	29.54	430
63.3	51.96527	36.0408	35.54548	31.07	431
58	97.88133	54.5239	55.17391	26.01	432
57.65	75.65336	60.3978	60.57012	42.58	433
75.81	43.54641	47.1704	47.37447	34.55	434
77.87	50.70066	36.0015	35.1028	29.32	435
77.75	54.31854	40.2083	39.74254	37.4	436
60.79	42.67598	44.199	43.24035	41.79	437

53.95	44.91258	35.6574	36.54157	35.98	438
51.49	45.22284	34.2598	34.62812	31.77	439
54.01	32.89571	43.6189	42.50655	35.51	440
50.05	31.71885	39.0871	38.21208	25.21	441
57.53	35.71218	38.527	38.39112	26.58	442
66.01	39.29901	34.2922	34.0623	24.89	443
77.94	41.21661	41.5929	41.93479	31.1	444
77.2	43.85839	42.3653	42.52322	28.16	445
65.43	40.10137	39.258	38.69357	30.89	446
69.36	44.21079	39.9709	38.75134	34.15	447
95.45	103.4219	71.6177	70.22804	73.71	448
90.68	72.2912	64.6745	63.50084	50.54	449
82.06	69.6607	69.9225	68.28292	58.73	450
111.2	64.41147	79.8442	77.37266	55.66	451
81.35	69.62861	65.0587	64.7456	51.42	452
90.65	74.67201	62.8827	61.97654	51.85	453
82.9	72.71735	54.0606	53.78822	39.81	454
90.95	83.9436	64.6474	65.21733	49.44	455
89.45	91.76114	66.3148	65.0384	54.03	456
100.35	92.68772	71.4412	69.68974	51.94	457
76.17	77.17927	67.9793	67.50419	36.19	458
101.11	73.13771	68.8986	70.10996	50.02	459
89.14	82.30388	60.3251	66.28033	51.87	460
87.51	98.5468	74.1768	78.7065	54.44	461
102.9	111.6342	86.5292	92.61053	74.83	462
109.8	135.0919	98.6694	104.3577	64.54	463
138.91	173.7492	135.879	147.4413	58.19	464
105.39	110.9411	88.8403	85.63912	62.4	465
82.57	78.63869	79.9225	83.82015	67.44	466
69.96	74.85547	81.974	84.31653	84.85	467
66.89	74.49214	80.3972	83.37371	61.38	468
58.47	82.35773	76.1934	63.93581	80.39	469
64.19	78.27359	69.6059	69.60589	42.47	470
59.91	68.69564	59.0176	59.01761	56.55	471

58.3	60.30656	64.809	63.30136	41.11	472
49.45	63.6406	50.8278	50.80046	43.5	473
48.46	75.09837	45.5504	45.5504	39.27	474
49.86	68.76958	56.4567	55.53635	47.84	475
45.87	76.39567	46.5243	48.23905	53.07	476
41.39	63.85721	67.0025	69.35731	50.3	477
31.54	58.74656	56.1442	56.92065	48.09	478
40.25	53.21333	69.0224	69.02239	46.39	479
34.39	49.94381	61.4234	60.46129	35.99	480
42.34	49.22742	40.6118	40.61181	45.31	481
39.97	57.93126	54.7531	57.08936	31.04	482
49.09	65.74289	57.9693	59.86317	42.45	483
50.91	70.00157	58.1392	59.64591	44.69	484
50.59	72.66823	51.5093	53.95039	52.65	485
53.29	82.74415	56.8498	56.84979	55.31	486
59.14	77.36414	50.9106	52.62878	50.2	487
66.02	82.83122	63.9257	65.47818	49.17	488
55.32	78.64846	67.8357	67.18764	55.22	489
28.66	63.23502	96.2132	94.77731	78.9	490
32.18	49.8277	94.4551	93.89207	66.51	491
23.54	52.55348	58.2668	58.26681	48.22	492
38.27	55.97625	55.3492	55.3492	61.41	493
49.92	59.94324	58.8193	58.81929	51.11	494
50.24	53.50279	58.9819	57.88035	57.22	495
53.03	74.95549	69.8553	72.64122	68.11	496
51.22	84.17967	59.8369	64.69122	47.38	497
50.68	84.13047	54.8676	54.86761	53.44	498
54.73	80.85622	76.6685	76.6685	67.76	499
35.64	95.37567	96.532	96.53199	75.38	500
33.37	105.8118	80.3782	79.70123	55.63	501
64.37	92.88	80.8452	85.54091	65.62	502
45.36	78.70822	62.94	62.94001	66.95	503
48.97	68.41977	55.7874	57.1994	53.61	504
52.82	52.58574	49.9955	52.10287	45.87	505

45.3	72.37406	53.0681	55.42909	50.27	506
63.56	73.65059	62.1111	64.91573	49.99	507
47.75	75.48367	75.7639	77.66699	47.72	508
52.45	67.95861	71.8945	72.35675	55.24	509
52.22	71.56532	63.602	66.9633	50.45	510
53.21	66.73271	58.1252	62.43817	55.51	511
47	68.66045	62.9639	66.67857	48.84	512
50.4	83.42581	64.472	65.11161	52.53	513
32.52	69.4636	69.0589	66.6505	53.29	514
35.11	85.88325	60.2779	58.27521	52.9	515
38.92	79.9922	77.8734	77.8734	59.9	516
37.98	63.9881	62.7075	65.25729	49.38	517
31.34	63.69725	66.8138	66.81379	42.15	518
34.55	46.013	63.587	63.587	46.35	519
46.99	55.39551	63.4729	62.0513	55.34	520
43.44	56.26983	63.5606	63.56061	67.47	521
31.24	67.18185	78.7694	78.76941	66.49	522
37.69	55.8334	60.0418	60.04181	52.07	523
51.33	69.78855	58.4995	58.49951	49	524
51.71	48.06833	67.7462	67.7462	50.46	525
38.05	49.92809	60.3775	60.3775	40.3	526
51.24	63.79334	56.5813	56.58129	54.72	527
57.61	57.30942	54.9223	54.9223	56.39	528
47.84	64.68016	65.1291	65.12909	54.78	529
52.68	73.5198	70.6206	73.75305	75.41	530
44.74	51.85046	56.8829	56.8829	54.24	531
54.25	70.9699	63.4992	66.21061	57.25	532
45.22	81.5212	71.9483	71.9483	37.65	533
44.32	67.07046	77.2304	77.2304	42.76	534
41.78	61.08451	63.2866	63.2866	39.87	535
41.65	56.00946	49.2157	49.2157	32.98	536
49.24	67.10399	52.6816	52.68159	47.54	537
52.59	77.23224	57.416	57.41599	46.71	538
57.22	74.83438	60.1867	60.18671	53.17	539

57.23	65.8933	65.7105	64.66418	49.06	540
58.09	66.65737	70.501	72.03304	60.48	541
51.06	62.78587	63.0743	60.17401	57.9	542
37.73	64.14695	57.9514	56.32748	58.9	543
47.64	66.29861	60.6234	60.62339	41.9	544
47.83	59.74113	53.6577	53.43581	54.24	545
57.65	64.30172	77.6055	79.50773	62.27	546
51.51	73.4262	53.3681	53.36809	58.82	547
53.12	71.85285	75.9056	76.31408	68.94	548
41.52	66.44749	63.2467	63.24671	46.02	549
41.89	64.62801	89.7547	89.75472	52.45	550
41.53	73.91905	53.4268	54.80205	45.95	551
41.51	66.53126	60.3631	64.32184	43.64	552
46.93	74.40544	55.6961	59.2063	56.9	553
52.36	65.60208	67.1766	68.86296	50.47	554
47.61	61.48125	68.3807	70.24823	64.49	555
56.03	59.23039	53.7424	53.51908	56.85	556
52.51	59.02396	71.006	71.00601	51.06	557
57.04	50.43594	58.9128	59.68725	51.83	558
53.15	59.9001	54.021	54.021	57.47	559
59.91	70.60284	48.0931	48.0931	58.28	560
48.96	64.75424	46.1767	46.17671	50.06	561
53.24	66.8591	60.5092	60.5092	43.03	562
56.4	67.85778	44.089	41.79619	56.14	563
50.76	72.66896	72.9035	72.13926	52.55	564
49.1	70.68446	60.9774	64.63549	62.4	565
57.71	74.63882	57.3884	57.38841	57.87	566
48.04	67.94782	58.3104	58.31041	49.09	567
31.34	61.36878	67.1866	69.93853	52.12	568
28.16	60.31011	57.6045	57.6045	50.09	569
34.14	72.05309	56.4161	56.4161	66.28	570
37.39	71.58779	64.1885	64.18849	53.81	571
42.64	60.53986	68.9458	71.22967	60.93	572
43.91	67.99821	46.4006	48.59792	60.01	573

50.86	59.35402	65.3033	66.36065	68.17	574
47.5	59.66333	64.7309	64.7309	37.96	575
53.16	64.71086	61.0112	61.0112	44.8	576
56.5	67.86242	62.9021	62.9021	22.5	577
46.53	67.26062	47.4742	47.47421	16.8	578
59.05	73.29557	65.2708	65.2708	34.39	579
49.96	57.8573	64.2463	64.2463	46.5	580
47.71	63.64441	62.4932	62.4932	60.76	581
51.75	79.54319	68.3865	68.38651	54.45	582
51.29	73.74342	52.9214	52.9214	54.82	583
61.9	71.23084	74.8669	74.86689	58.21	584
64.27	74.29422	82.0232	81.57887	62.02	585
62.16	87.01719	87.1766	83.66411	50.96	586
48.21	88.66304	80.5848	81.74354	62.07	587
34.06	53.41293	56.0646	55.00809	45.99	588
52.48	67.24954	80.7709	75.98266	59.2	589
80.32	76.3199	78.4078	74.61979	53.15	590
64.39	87.76263	82.7539	81.14496	62.87	591
73.09	94.7577	95.6864	97.93172	72.67	592
62.36	81.94091	69.1104	68.95658	53.66	593
61.24	69.46248	62.8219	63.45441	50.95	594
63.37	72.93299	66.5986	66.75326	52.47	595
64.83	67.40036	103.317	103.5862	58.4	596
65.61	62.71563	93.2534	93.71561	54.39	597
61.7	54.14533	124.332	123.5064	58.69	598
63.13	62.02757	108.586	104.5965	56.03	599
60.72	64.44445	68.1575	66.64231	51.12	600
95.39	63.73713	54.0419	52.85694	49.87	601
225.33	60.01286	62.175	64.19595	44.53	602
151.52	59.23201	75.0038	75.55979	61.37	603
41.38	57.68951	58.7133	58.26013	57.9	604
40.4	42.13918	63.1913	64.17974	49.94	605
52.68	46.44742	61.3331	57.33852	51.44	606
49.93	49.05374	62.3691	62.23511	51.8	607

52	50.70849	54.6654	55.84521	47.52	608
53.13	55.58306	48.4982	48.0361	48.76	609
51.49	44.16242	48.7036	49.30939	54.38	610
49.11	49.99122	59.7336	62.40131	60.14	611
61.67	53.97097	61.362	62.51379	55.13	612
69.72	68.12728	70.4651	71.74982	61.31	613
66.87	75.84576	79.8023	80.57767	53.93	614
74.2	87.01071	67.0733	66.71142	54.52	615
57.17	67.61823	78.4821	79.5994	61.43	616
53.88	63.01252	64.3954	62.685	57.38	617
49.02	62.3511	77.7181	76.92819	50.81	618
52.53	60.93259	73.1953	74.07251	62.6	619
60.22	63.82234	68.8575	68.96975	53.6	620
55.04	59.64853	59.0736	57.7489	48.86	621
64.28	62.50298	60.106	58.88461	50.9	622
58.3	64.70453	74.7223	75.10306	49.44	623
55.03	59.778	66.2617	64.24294	47.55	624
48.14	62.15178	65.6633	67.9697	54.1	625
63.24	72.74415	72.7189	71.77478	61.02	626
68.04	78.17513	96.1661	93.94831	70.97	627
72.36	91.4121	82.4725	80.14287	55.05	628
73.28	78.48363	61.8591	60.93444	55.74	629
59.27	67.79603	89.6552	86.38921	53.56	630
53.26	68.94554	66.5029	63.00273	57.39	631
53.6	68.28568	74.5418	74.41883	46.96	632
62.8	75.12045	82.3328	85.41574	64.36	633
56.59	62.94569	69.6848	71.08237	52.91	634
54.83	57.73151	77.6643	77.03019	53.89	635
48.22	51.84554	61.9352	63.44125	47.81	636
57.38	59.23755	62.6206	64.06479	51.5	637
53.09	63.02316	63.9888	64.46307	50	638
55.38	65.59639	68.7504	68.41862	53.58	639
61.12	63.69267	71.4707	70.44079	61.66	640
58.79	68.31705	67.1262	66.43123	55.37	641

642	50.71	65.00594	65.9374	66.06061	43.72
643	51.3	65.12505	64.9468	60.32256	53.09
644	52.64	58.5878	57.2278	59.38163	50.74
645	59.12	51.44209	52.7864	54.96487	52.12
646	62.9	60.60909	62.0042	70.72284	65.68
647	64.34	72.05932	70.9543	75.32677	66.32
648	69.97	77.41495	76.9844	75.91929	55.22
649	68.18	71.96635	70.5739	64.10209	65.89
650	59.07	56.48297	54.6857	51.05312	49.98
651	42.43	46.91232	45.7142	54.36575	45.78
652	44.08	50.91131	51.5423	59.31933	56.44
653	56.37	53.13581	53.1435	61.09118	57.76
654	59.4	61.23752	60.717	64.23894	65.04
655	54.62	61.94452	61.1807	53.93935	51.18
656	55.34	59.21344	58.757	67.62331	61.85
657	53.07	53.72138	53.4513	64.93732	55.19
658	51.23	50.30375	49.498	55.92357	57.82
659	52.01	50.32572	49.6549	45.45986	49.2
660	49.28	52.45468	53.9867	54.98991	49.09
661	54.31	53.31249	51.9121	53.87	48.92
662	52.86	50.60033	52.0219	55.62467	54.61
663	62.94	55.44391	55.921	59.92945	53.46
664	63.81	52.17093	52.9321	64.64889	59.18
665	63.44	55.45069	54.8621	62.13411	56.37
666	51.44	62.60425	62.509	60.33463	57.91
667	64.55	67.14567	65.2162	61.17261	56.51
668	56.73	55.28469	54.0191	60.20849	55.91
669	55.02	51.05945	49.9888	56.86634	55.15

Appendix E Widening rate of each station

Station	Widening Rate (M	eter per Year)		
	1952 - 1988	1988 - 1992	1992 - 2006	2006 - 2020
0	0.500666	-0.02356	0.516911	0.499316
1	0.39803	0.003399	0.832588	-0.48891
2	0.214137	0.039287	0.453791	-0.26657
3	0.116626	0.042605	0.758773	-0.46824
4	0.162317	-0.01594	1.186958	-0.30566
5	0.145442	-0.04263	-0.41666	0.696066
6	-0.00312	0.070116	0.779139	0.059185
7	0.044239	-0.48872	0.513017	0.027918
8	0.225024	0.303266	0.266	0.282379
9	0.228183	0.182949	0.547136	0.145627
10	0.353903	-0.5955	1.17579	0.072268
11	0.07393	0.306557	0.990852	-0.21351
12	0.190188	0.013633	0.318185	0.083478
13	-0.34892	0.031571	0.025534	-0.44473
14	0.360193	-0.1071	0.181174	-0.69963
15	0.013175	0.020385	0.613478	-0.33336
16	0.054942	0.012365	0.701578	0.021756
17	0.400954	-0.01688	0.42982	-0.15503
18	GHU -0.03834	-0.05874	RSITY 0.845744	0.176793
19	0.03276	0.089943	0.842559	-0.21128
20	-0.05772	0.076801	0.381875	0.15764
21	0.061281	-0.08576	0.476606	0.240765
22	0.20851	-0.6062	0.434499	0.699973
23	0.11434	-0.02711	0.347168	-0.12631
24	0.569349	-0.01568	0.006869	0.847593
25	0.029578	0.130183	0.679542	0.211418
26	0.158614	-0.02654	0.591619	0.3923
27	0.448477	-0.08244	0.427242	-0.17159
28	0.332756	0.518987	1.05333	-0.17934
29	0.535586	-0.64441	0.18465	-0.62969

0.407269	0.377146	0.037763	0.263774	30
-0.18768	0.577464	0.137838	0.501012	31
-0.08025	0.129764	0.087071	0.492979	32
-0.42598	0.76141	0.05724	0.248864	33
0.240793	0.079135	-0.13672	0.296024	34
0.100382	0.989157	-0.10191	0.306407	35
0.315936	0.541161	-0.0502	0.588518	36
-0.20972	0.23284	-0.03588	0.215904	37
0.478088	0.65784	0.102589	0.537148	38
0.671204	0.040599	-0.05162	0.473817	39
-0.48642	-0.29004	0.023295	0.692888	40
-0.55757	0.922992	0.112136	0.318039	41
-0.02488	0.141711	0.074715	-0.22398	42
0.15415	-0.2064	-0.01292	0.528736	43
-0.44954	0.449873	0.057534	0.219528	44
0.160536	0.497927	0.012085	0.224595	45
0.792904	-0.08935	0.316698	0.319023	46
0.113499	0.757931	0.076345	0.156127	47
0.056664	0.299708	0.152338	0.223464	48
-0.33373	0.743004	0.69366	0.013892	49
-0.10659	0.177516	0.105167	0.399072	50
1.023673	-0.90815	-0.04164	0.439458	51
0.41294	RSITY 0.193539	-0.00368	0.123818	52
-0.15112	0.405734	0.086354	0.546672	53
-0.02825	0.99692	-1.19638	0.607127	54
-0.25571	0.888767	-0.88657	0.46558	55
0.001171	0.60596	0.143681	0.299161	56
0.3409	0.054691	-0.0709	0.493462	57
-0.60247	0.262967	0.219909	0.296545	58
0.012548	0.340701	0.402489	0.113546	59
0.294486	-0.37697	0.034578	0.283968	60
-0.09717	0.102067	-0.09221	0.432183	61
-0.23759	0.393573	0.146147	0.382953	62
-0.17026	0.650462	-0.42099	0.57657	63

-0.67317	0.91969	-0.85188	0.521269	64
0.135946	-0.11522	0.079732	0.542249	65
-0.36845	0.721529	-0.74215	0.686398	66
-0.28324	0.704622	-0.40192	0.307515	67
0.022194	0.206716	0.151779	0.404254	68
-0.69146	0.445242	0.03391	0.334522	69
-0.15249	0.466827	0.002597	0.252735	70
-0.80586	0.507386	0.103441	0.463669	71
-0.29523	0.521762	0.06551	0.008944	72
-0.20657	0.007743	-0.01831	0.385162	73
-0.31094	0.571053	-0.00566	0.15159	74
-0.40988	-0.81687	0.161242	0.664058	75
-0.54464	0.094215	-0.59372	0.388322	76
-0.00143	0.154213	-0.1873	0.323738	77
-0.61685	0.469705	-0.96948	0.570069	78
0.344643	0.18084	-1.23763	0.450353	79
0.490639	-0.25806	-0.52544	0.368388	80
-0.02239	0.638598	-0.42813	0.282593	81
-0.00244	-0.14968	0.133409	0.663505	82
-0.70165	0.357586	-0.02444	0.180339	83
0.322403	0.125423	0.028511	0.451253	84
-0.51435	ດ້ຢ 0.749101	-0.00498	0.533727	85
-0.1628	RSITY 0.640668	-0.27609	0.210803	86
-0.20446	0.825429	0.07604	0.17232	87
-0.28423	1.932124	0.073184	-0.23781	88
0.350695	0.29021	-0.75054	0.387364	89
-0.26113	0.57493	-1.21596	0.271678	90
-0.67095	0.223143	-0.72016	0.347762	91
-0.12859	0.561891	-0.5346	0.321064	92
-0.44132	1.019524	-0.74986	0.274703	93
0.213455	0.839062	-0.20081	0.381894	94
-0.0021	0.791226	0.046374	0.467838	95
-0.07552	0.850309	0.029321	-0.06361	96
0.05316	0.580727	-0.0017	0.36301	97

-0.13016	0.662223	-0.00049	0.420271	98
-0.444	0.899751	0.019201	0.207015	99
-0.14527	0.399681	0.133899	0.20183	100
-0.11234	0.17525	0.059195	0.482096	101
-0.05842	2.301133	-0.04897	-0.6221	102
-0.22486	0.92893	-0.34127	0.399229	103
-0.0309	0.163471	-0.04326	0.10867	104
0.201773	0.664999	0.142978	0.53086	105
0.374575	0.949972	0.020144	0.119827	106
-0.48763	0.767571	-0.43224	0.367916	107
-0.52809	0.524736	-0.0194	0.171094	108
-0.32546	-0.31544	0.107656	0.553809	109
-0.27426	-0.96678	-0.78668	1.447117	110
-0.5623	-0.96138	0.038758	1.519675	111
-0.51886	-0.24446	0.051508	0.832368	112
-0.07766	0.18815	0.01841	0.547108	113
-0.54985	1.611688	-0.03622	0.161836	114
-0.46944	0.454243	0.054643	0.512949	115
-0.50707	0.184798	0.00324	0.49555	116
-0.09239	0.916406	-0.57864	0.343852	117
0.045988	0.432151	0.027234	0.183809	118
-0.23494	ด้ย 0.645151	-0.68595	0.073386	119
-0.33512	RSITY 0.537539	-0.78094	0.201024	120
-0.88119	0.721011	-0.52289	0.55501	121
-0.15757	0.674222	-0.04885	0.226259	122
-0.63364	0.485957	-0.21179	0.385624	123
-0.33235	0.667684	-1.27942	0.225788	124
-0.16107	0.864548	-0.36923	0.212181	125
-0.37262	0.711197	0.545625	0.502162	126
0.025373	-0.23137	0.005766	0.466627	127
-0.42552	-0.53018	0.071851	0.732529	128
-0.20015	1.05128	-0.03706	0.407927	129
-0.83281	0.603139	0.04854	0.216541	130
-0.60976	0.585739	0.018775	0.552123	131

-0.95123	0.519482	-0.00628	0.675995	132
-0.4253	0.559341	0.030892	0.239297	133
-0.33162	-0.07742	-0.57395	0.539964	134
-0.1933	0.179097	-0.03899	0.472455	135
-0.33371	0.994821	-0.93286	0.126314	136
0.163754	0.077026	-0.90546	0.422376	137
-0.16736	0.796178	-0.0265	0.271111	138
-0.02143	0.510122	-0.63545	0.396856	139
-0.62471	0.548568	-0.42793	0.572832	140
-0.21107	1.054651	0.436242	0.201281	141
-0.35729	0.442882	-0.76269	0.26246	142
-0.66774	0.871981	0.118321	0.095724	143
-0.57787	0.842014	0.105485	0.053801	144
-0.30774	0.813113	-0.06798	0.324909	145
-0.04111	0.386403	-0.74331	0.162933	146
0.166161	0.870211	-0.08512	-0.02081	147
-0.01136	1.061749	-0.56922	-0.04166	148
-0.9751	1.254412	0.13026	0.23983	149
-0.58901	0.704576	0	0.081585	150
-0.98982	0.87925	-0.35502	0.309405	151
-0.31779	0.446104	0.182624	0.162721	152
-0.6767	0.664866	-0.03754	0.294705	153
-0.40255	RSITY 0.715094	-0.5818	0.537119	154
-0.35092	0.418598	-0.03032	0.420256	155
-0.47144	1.048779	-0.23944	0.315265	156
-0.62718	1.191722	-0.93514	0.385319	157
-0.56122	-0.29662	-0.07418	0.795561	158
-0.95404	0.820447	-0.13926	0.481019	159
-0.71248	0.923703	0.211323	0.233288	160
0.797027	0.061334	0.200972	-0.26374	161
-0.55072	1.130648	-0.01377	-0.04733	162
-0.38419	0.543471	-0.8971	0.32702	163
-0.35822	1.000318	-0.75538	0.110768	164
-1.16099	0.867567	-1.12205	0.280112	165

-0.48252	0.98425	-0.31063	0.158344	166
-0.30962	0.699882	-0.20175	0.180609	167
-0.46058	1.210142	0.401527	0.096421	168
-0.07035	0.390959	-1.49899	0.482435	169
-0.58144	0.664132	-0.23959	0.219165	170
0.392441	-0.31635	-0.26445	0.26091	171
-0.24977	0.533743	0	-0.0147	172
-0.20304	-0.23916	0.404449	0.408155	173
0.086034	0.040557	-0.11056	0.38153	174
0.364939	-0.0317	0.054162	0.037652	175
-1.00411	0.799714	0	0.227538	176
-0.22061	0.55205	-1.02974	0.29662	177
-0.70797	0.800164	0	-0.10489	178
0.056036	0.394675	0.073529	0.154869	179
0.330009	0.854048	-0.15321	0.060298	180
-1.1502	0.706977	0.164773	0.196895	181
-0.76016	1.009391	-0.53945	0.27615	182
-1.33598	1.203914	0.085321	0.481696	183
-0.92466	1.155119	0.038837	0.339336	184
-0.20586	0.440251	0.065246	0.168824	185
-0.20502	1.267188	0.301554	-0.01427	186
0.711179	ด้ย 0.313278	0.259809	0.002732	187
-0.42293	RSITY 0.893843	-0.0349	0.294356	188
0.406721	-0.07316	0.026799	0.197861	189
0.012131	0.180762	0.154691	0.085854	190
-0.33487	0.230254	0.014839	0.378201	191
0.088544	0.168356	0.253972	0.569098	192
-0.51738	0.614856	0.076027	0.380589	193
-0.34574	0.511977	0.013583	0.292455	194
-0.38693	0.108144	-0.17734	0.641177	195
-0.79922	0.309473	0.098886	0.551138	196
-0.32991	0.140813	0.144821	0.419667	197
-0.76778	0.77694	0.12609	-0.01563	198
-1.34635	0.934596	-0.14344	0.127732	199

-0.68344	0.403136	0.061921	0.067681	200
-0.75664	0.613137	0.162573	0.340242	201
-0.69478	0.614451	0.010462	0.620632	202
-0.09331	0.170224	0.04976	0.259282	203
-0.31195	0.77548	-0.01556	0.17119	204
-0.04876	0.129231	0.019129	0.320747	205
-0.41232	0.178456	0.076008	0.385557	206
0.072322	0.0372	-0.00649	0.301741	207
-0.02247	-0.01857	-0.00153	0.283629	208
-0.29461	0.707841	0.037351	0.067094	209
-0.13938	0.288201	0.046713	0.258879	210
-0.27482	0.373887	0.021874	0.234045	211
-0.03407	0.404401	0.058146	0.511187	212
-0.12875	0.679226	-0.09314	0.307107	213
-1.14743	0.394664	0.179716	-0.15445	214
-0.31622	0.80359	0.467988	-0.37098	215
-0.59367	0.752375	0.628582	-0.01434	216
-0.82795	0.544515	0.090845	0.05652	217
-0.78917	0.186194	0.110448	0.661939	218
0.032633	0.053282	-0.02611	0.236712	219
-0.21077	0.997656	0.043991	-0.1834	220
-0.44511	เลีย 1.150238	-0.07781	-0.8939	221
-0.88724	RSITY 0.144321	0.050196	0.083614	222
-0.4368	0.729391	-0.02377	-0.36003	223
0.185012	0.885624	-0.09024	-0.00355	224
0.030442	0.603315	-0.01491	0.192417	225
0.324727	0.730737	0.399226	0.109906	226
-0.6694	1.419155	0.015218	0.243962	227
-0.51474	0.781017	0.040029	0.032277	228
-0.23026	0.600604	0.030472	-0.14407	229
-0.80279	0.976698	-0.0623	0.307347	230
-0.0537	-0.13665	0.151215	0.444446	231
-0.17715	-0.07245	0.25591	0.654466	232
-0.82754	-0.60998	-0.13447	1.054811	233

-0.25003	0.772407	-0.12792	0.018567	234
-0.29282	1.309084	0.093098	0.173053	235
-0.68482	1.268122	0.040936	0.001113	236
-0.55428	1.135078	0.0564	-0.0413	237
-0.29566	0.659935	0.003206	0.21326	238
0.118404	0.310254	0.312922	-0.0498	239
-0.65282	1.150517	-0.00427	-0.01002	240
-0.45381	0.409781	0.258159	0.120938	241
0.19038	0.613799	0.243313	-0.04449	242
0.109702	0.452705	0.259855	-0.37453	243
-0.23176	0.678485	0.337031	0.069102	244
-0.93514	1.54658	0.352271	-0.26748	245
0.204749	0.178094	0.131503	0.080394	246
-0.07054	0.359056	-0.15715	0.303317	247
-0.70852	0.733196	0.096066	0.227787	248
0.139994	0.876149	-0.01402	-0.20611	249
0.260878	0.808108	0.041255	0.192477	250
-1.00262	1.431121	0.031551	0.247355	251
-0.6774	0.933256	0.192037	0.13944	252
0.004313	0.356437	0.088566	0.387645	253
-0.29616	0.947519	-0.01107	0.129036	254
0.216599	เลีย -0.01601	-0.00753	0.415884	255
0.055221	RSITY 0.394065	0.045904	0.2174	256
0.249534	0.195431	0.056172	0.132106	257
-0.48376	0.646963	0.318271	-0.12717	258
-0.21135	0.569097	-0.03594	0.241535	259
-0.09076	0.39282	-0.04411	-0.01396	260
-0.02125	0.257865	0.371568	-0.09386	261
-0.21353	0.621049	0.034283	-0.33562	262
-0.49786	0.474069	0.006155	0.041069	263
-0.81704	0.920081	-0.01148	0.284537	264
0.268246	1.192011	-0.17291	-0.32255	265
-1.02306	1.21641	0.083875	0.077433	266
-0.2318	0.494789	-0.07186	0.363489	267

<u>г</u>		Γ		
268	0.142946	0.024215	0.07591	0.238883
269	-0.1719	0.099992	0.891609	-0.81102
270	0.047681	-0.1545	-0.003	-0.1319
271	0.646585	0.321457	0.429236	-0.11373
272	0.233368	0.331963	1.155984	-2.15163
273	-0.00366	0.012458	0.717603	-0.45176
274	0.225152	-0.06167	0.297722	-0.12906
275	0.119431	0.230623	0.815608	-0.31147
276	0.239371	-0.14679	-0.25413	0.570545
277	0.093283	-0.09932	0.626383	-1.64216
278	0.232271	-0.02569	0.674937	-0.47415
279	0.483036	-0.01318	0.721919	-0.5981
280	0.546114	-0.0013	0.214375	-0.10615
281	0.160494	-0.18867	0.38393	-0.11701
282	0.153668	-0.09254	0.713075	0.266075
283	0.49536	-0.04081	-0.18974	-0.5431
284	-0.14377	-0.02759	1.786055	-0.93205
285	0.058421	-0.00176	0.407662	0.393331
286	0.2804	0.031424	1.052707	-0.857
287	0.006813	-0.03264	1.545404	-0.55074
288	0.153588	-0.08609	1.063271	-0.24504
289	0.058971	-0.01607	ดัย 0.429569	-0.5009
290	-0.0462	0.012994	RSITY 0.691712	-0.80878
291	0.350725	0.2212	-0.34004	0.426407
292	-0.03103	0.305546	-0.18459	0.803514
293	0.362528	-0.03578	1.212155	-0.91058
294	0.336739	0.001427	0.619023	-0.17676
295	-0.04154	0.146609	1.071971	0.020807
296	0.265753	-0.23246	0.959332	-0.36271
297	0.303752	-0.15262	0.537606	-0.48151
298	0.163446	0.130007	0.471581	-0.11545
299	0.176466	0.004827	0.993107	-1.21754
300	0.230643	0.017966	0.401892	-0.01725
301	0.012583	-0.0455	0.345198	-0.27098

-0.12891	0.312981	0.222928	0.055314	302
0.474346	-0.06535	-0.11722	0.249246	303
-0.27338	0.332635	-0.13396	0.521843	304
0.330201	0.207342	0.307187	0.248768	305
-0.24791	0.723118	-0.16602	0.083089	306
-0.36935	1.033521	0.22487	0.33367	307
-1.60487	1.037632	0.137598	0.348914	308
0.661955	-0.50478	-0.0118	0.306297	309
-0.31512	0.156059	0.223512	0.469246	310
-0.36665	0.552088	0.329799	0.492631	311
0.258172	0.405328	0.325761	-0.00672	312
0.960421	0.283371	0.020189	0.432393	313
-0.44391	0.144218	0.086468	0.337495	314
-0.65721	0.387195	0.032246	0.463367	315
0.046201	-0.12985	-0.02046	0.349527	316
-0.75827	0.58631	0.128656	0.162855	317
-0.57942	-0.35632	-0.05428	0.876598	318
-0.90813	0.742789	0.33656	0.598849	319
-0.40908	0.467208	0.026276	0.188086	320
-0.38675	1.112146	0.056918	-0.28898	321
0.469015	0.439928	0.114412	0.080199	322
-0.28385	ด้ย 0.744437	0.03613	0.20298	323
-0.53816	RSITY 0.751002	0.161305	0.293194	324
-0.51265	1.089533	-0.07914	-0.0786	325
-0.45421	1.022911	0.189748	-0.31724	326
-0.73612	0.980264	0.002692	-0.23302	327
0.233334	0.971773	-0.06559	-0.22136	328
0.169635	0.513901	0.42144	-0.15542	329
-0.35714	1.168358	0.082747	0.158664	330
-0.63276	1.613208	0.087467	0.065384	331
-0.74939	0.39314	0.323135	0.213193	332
-0.0639	0.665147	-0.01731	0.13894	333
-0.39105	0.739913	0.003156	0.098702	334
-0.53797	0.941046	0.278259	0.053996	335

-0.24016	0.983759	0.151317	0.137065	336
-0.06813	0.684842	0.11957	0.01327	337
-0.25603	0.721093	0.054853	0.058047	338
-0.22977	1.253281	0.069024	0.218744	339
-0.18894	0.722441	0.229172	0.078175	340
-0.98256	1.590197	0.225377	-0.02162	341
-0.51456	1.255404	0.179805	0.231083	342
-0.41817	0.275494	-0.05912	0.453443	343
-0.16472	1.127685	0.097674	0.534939	344
1.135639	9.667096	0.26438	0.191783	345
-1.87211	8.769822	0.117562	0.201715	346
0.300336	0.906907	0.046113	0.350115	347
0.015598	1.805716	0.127554	0.240316	348
2.050871	0.857564	0.458026	0.164994	349
0.009274	0.955647	-0.04551	0.32481	350
0.053145	0.824026	0.31336	0.210727	351
-0.15894	1.278034	0.244591	0.104843	352
0.560951	0.571178	-0.10889	-0.06956	353
0.828546	0.284018	0.200777	0.23975	354
0.104384	-0.2782	0.240861	0.516388	355
0.62457	0.319923	0.250927	0.647039	356
0.187004	ดีย 0.688375	0.590463	0.42369	357
0.531817	RSITY 0.455862	0.404156	0.380719	358
0.089672	0.248057	0.33317	0.403031	359
0.153778	0.526386	0.348361	0.250396	360
-0.1554	0.710288	0.133898	0.389334	361
-0.51514	0.936494	0.19034	0.463326	362
-0.57917	0.813881	0.20354	0.349721	363
-1.61056	1.939626	-0.10247	0.393416	364
0.076496	0.583111	0.038281	0.350344	365
-0.41952	1.089373	0.182909	0.411955	366
-1.0891	1.57699	0.302441	0.399715	367
0.10466	0.699618	0.438685	0.297927	368
-0.28594	1.110951	0.31181	0.179518	369

-0.47283	1.272493	0.308676	0.260833	370
0.894546	0.061697	0.236134	0.377446	371
-0.06761	1.324114	0.263579	0.124016	372
-0.66491	1.99703	0.014861	0.18169	373
-0.63841	1.179085	0.092522	0.472236	374
-1.83753	1.722763	0.232606	0.551841	375
-1.31735	1.94689	0.088904	0.5603	376
0.032156	1.346258	0.046582	-0.064	377
-1.54728	1.110446	0.308537	0.584488	378
-2.02464	1.367969	0.175373	0.565886	379
-0.25494	1.188181	-0.00538	0.178503	380
0.439615	1.101392	0.041501	0.046108	381
0.008031	0.759033	0.333788	0.212665	382
0.426872	0.503292	0.190343	0.421565	383
0.480558	1.049249	-0.01015	0.353702	384
-1.59049	1.925228	0.555408	0.218391	385
-3.11547	2.358868	0.031313	0.339643	386
-1.14752	1.516961	0.010004	0.639938	387
-0.33832	1.229646	0.019127	0.095691	388
-0.78877	1.340078	-0.00032	0.557028	389
-0.4352	2.020439	0.194767	0.140209	390
-1.32206	1.656349	0.235066	0.973045	391
-2.52287	RSITY 3.889031	0.209202	0.710469	392
-1.26963	1.972254	-0.20316	0.414051	393
-0.05215	0.768424	-0.10401	0.224396	394
-0.15023	0.519651	0.175601	0.239047	395
0.411241	1.519216	0.275795	0.573623	396
-0.14264	1.128183	0.294883	0.695913	397
0.582291	1.384494	-0.06727	0.168446	398
0.150784	1.092201	-0.05106	0.111457	399
-0.12316	0.432458	-0.15959	0.162172	400
0.312338	0.434269	-0.01194	0.231812	401
0.000583	1.156645	0.223458	0.196527	402
-0.21744	0.578565	0.124335	0.170468	403

-0.50722	1.210958	0.06024	0.219073	404
-0.65555	1.224788	0.066356	-0.16597	405
0.393094	0.155435	-0.07356	0.093467	406
-0.5258	0.60106	-0.15314	0.173579	407
-0.27646	0.752028	-0.30541	0.181767	408
0.269887	1.574363	-0.02883	0.688495	409
-0.90367	1.614253	0.016096	0.696873	410
-0.56138	1.997702	0.086073	0.156311	411
-0.39999	1.334001	-0.29393	0.446379	412
-0.1152	1.600758	-0.25401	0.648007	413
-0.35154	0.608421	0.323458	0.588885	414
0.299114	1.250036	-0.01188	0.11165	415
0.866043	1.084478	-0.12837	0.304617	416
-0.9143	2.019512	0.169604	0.131908	417
-0.36477	0.173395	-0.07473	0.50384	418
-0.88901	1.398241	0.057468	0.114748	419
-0.44013	1.869279	-0.03283	-0.12102	420
-0.32591	1.277794	0.124396	0.321834	421
-0.46456	1.011784	0.09327	0.607939	422
-0.19378	1.237393	0.422993	0.484373	423
-0.25583	0.642813	0.03256	0.648388	424
0.140583	เลีย 0.430224	-0.01227	0.57605	425
0.36797	RSITY 0.917323	0.032486	0.115999	426
1.227948	0.136081	-0.01078	0.17602	427
0.788806	0.997137	0.178327	0.129819	428
0.000413	1.498508	-0.02553	-0.16008	429
0.266744	1.40672	0.264714	0.282018	430
0.809624	1.137462	0.123828	0.124319	431
-2.84867	3.096959	-0.1625	0.810109	432
-1.28595	1.089683	-0.04308	0.499726	433
2.304542	-0.25886	-0.05102	0.356235	434
1.940667	1.04994	0.224675	0.160633	435
1.673676	1.007874	0.11644	0.065071	436
1.293859	-0.10879	0.239664	0.040287	437

0.64553	0.661085	-0.22104	0.015599	438
0.447654	0.783074	-0.09208	0.079392	439
1.508164	-0.76594	0.278086	0.194349	440
1.309368	-0.5263	0.218756	0.361169	441
1.558416	-0.20106	0.033969	0.328087	442
1.907928	0.35763	0.057475	0.254786	443
2.623099	-0.02688	-0.08547	0.300966	444
2.381544	0.106649	-0.03948	0.398978	445
1.809188	0.060241	0.141107	0.216766	446
1.796372	0.302849	0.30489	0.127815	447
-0.56942	2.271732	0.347415	-0.09672	448
1.313485	0.54405	0.293415	0.360023	449
0.885664	-0.0187	0.409895	0.265359	450
3.342038	-1.10234	0.617885	0.603129	451
0.837242	0.326422	0.078276	0.370155	452
1.141285	0.842093	0.22654	0.281293	453
0.727332	1.332625	0.068095	0.388284	454
0.500457	1.3783	-0.14248	0.438259	455
-0.16508	1.817596	0.319099	0.305789	456
0.547306	1.517608	0.437864	0.493048	457
-0.07209	0.65714	0.118777	0.869839	458
1.998021	เลีย 0.302794	-0.30284	0.558054	459
0.488295	RSITY 1.569913	-1.48881	0.400287	460
-0.78834	1.740714	-1.13242	0.674069	461
-0.62387	1.793214	-1.52033	0.493903	462
-1.80657	2.60161	-1.42209	1.106048	463
-2.48852	2.705016	-2.89057	2.479203	464
-0.39651	1.578632	0.800295	0.645531	465
0.280808	-0.0917	-0.97441	0.455004	466
-0.34968	-0.50847	-0.58563	-0.01482	467
-0.54301	-0.42179	-0.74413	0.610936	468
-1.70627	0.44031	3.064398	-0.45706	469
-1.00597	0.61912	2.62E-06	0.753775	470
-0.62755	0.691288	-1.4E-06	0.068545	471

472	0.616427	0.376909	-0.3216	-0.14333
473	0.20279	0.006836	0.9152	-1.01361
474	0.174456	-2.4E-07	2.110569	-1.90274
475	0.213787	0.230088	0.879492	-1.35068
476	-0.13419	-0.42869	2.133669	-2.18041
477	0.52937	-0.5887	-0.22466	-1.6048
478	0.245296	-0.19411	0.185883	-1.94333
479	0.628678	1.43E-06	-1.12922	-0.92595
480	0.679758	0.240528	-0.81997	-1.11099
481	-0.13051	-1.2E-06	0.615402	-0.49196
482	0.723593	-0.58406	0.227012	-1.28295
483	0.483699	-0.47347	0.555257	-1.18949
484	0.415442	-0.37668	0.847312	-1.36368
485	0.036122	-0.61027	1.511352	-1.57702
486	0.042772	1.67E-06	1.849597	-2.10387
487	0.067466	-0.42954	1.889538	-1.30172
488	0.453005	-0.38812	1.350394	-1.2008
489	0.332434	0.162015	0.77234	-1.66632
490	0.441036	0.358973	-2.35558	-2.46964
491	0.760613	0.140758	-3.18767	-1.26055
492	0.279078	-1.9E-06	-0.40809	-2.07239
493	-0.16836	-7.2E-07	0.044789	-1.26473
494	0.214147	2.15E-06	RSITY 0.080281	-0.71595
495	0.018343	0.275387	-0.39136	-0.23306
496	0.125867	-0.69648	0.364299	-1.56611
497	0.480867	-1.21358	1.738769	-2.35426
498	0.039656	-1.9E-06	2.090205	-2.38932
499	0.247458	9.54E-07	0.299123	-1.86616
500	0.587555	1.19E-06	-0.08259	-4.26683
501	0.668645	0.169243	1.816685	-5.17441
502	0.553359	-1.17393	0.859629	-2.03643
503	-0.11139	-2.4E-06	1.126302	-2.38202
504	0.099706	-0.353	0.902312	-1.38927
505	0.173135	-0.52684	0.185018	0.016733

-1.93386	1.378997	-0.59025	0.143308	506
-0.72076	0.82425	-0.70116	0.414604	507
-1.98098	-0.02002	-0.47577	0.831861	508
-1.10776	-0.28114	-0.11556	0.475465	509
-1.38181	0.568808	-0.84032	0.458703	510
-0.96591	0.614822	-1.07824	0.192449	511
-1.54718	0.406896	-0.92867	0.495516	512
-2.35899	1.353843	-0.1599	0.349489	513
-2.63883	0.028907	0.6021	0.371125	514
-3.62666	1.828954	0.500672	0.149311	515
-2.93373	0.151343	4.77E-07	0.499261	516
-1.85772	0.091472	-0.63745	0.441036	517
-2.31123	-0.22261	2.15E-06	0.685105	518
-0.81879	-1.25529	1.43E-06	0.478805	519
-0.60039	-0.57696	0.355401	0.186425	520
-0.91642	-0.52077	-1.9E-06	-0.10859	521
-2.56727	-0.82768	-2.6E-06	0.341095	522
-1.29596	-0.3006	-2.9E-06	0.221439	523
-1.31847	0.806361	-3.1E-06	0.263875	524
0.26012	-1.40556	-7.2E-07	0.480172	525
-0.84843	-0.74639	-7.2E-07	0.557708	526
-0.89667	เลีย 0.515146	2.15E-06	0.051703	527
0.02147	RSITY 0.170509	2.38E-07	-0.04077	528
-1.20287	-0.03207	2.62E-06	0.287475	529
-1.48856	0.207086	-0.78311	-0.04603	530
-0.50789	-0.35946	-9.5E-07	0.073414	531
-1.19428	0.533622	-0.67785	0.248906	532
-2.59294	0.683778	4.77E-07	0.952731	533
-1.62503	-0.72571	9.54E-07	0.957511	534
-1.37889	-0.15729	4.77E-07	0.650461	535
-1.02568	0.485269	-2.4E-07	0.450992	536
-1.276	1.030171	9.54E-07	0.142822	537
-1.76016	1.415445	3.1E-06	0.297389	538
-1.25817	1.046263	-1.7E-06	0.194908	539

-0.61881	0.013057	0.261582	0.433449	540
-0.61196	-0.27454	-0.38301	0.320918	541
-0.83756	-0.0206	0.725073	0.063167	542
-1.88693	0.442539	0.405981	-0.07146	543
-1.33276	0.405372	2.15E-06	0.520094	544
-0.8508	0.434531	0.055472	-0.02234	545
-0.47512	-0.95027	-0.47556	0.478826	546
-1.56544	1.432722	2.62E-06	-0.15144	547
-1.33806	-0.28948	-0.10212	0.204836	548
-1.78054	0.228628	-2.1E-06	0.47852	549
-1.62414	-1.79476	-6E-06	1.036242	550
-2.3135	1.463732	-0.34381	0.24589	551
-1.78723	0.440583	-0.98969	0.574496	552
-1.96253	1.336382	-0.87755	0.064064	553
-0.94586	-0.11247	-0.42159	0.510916	554
-0.9908	-0.49282	-0.46688	0.159951	555
-0.2286	0.391999	0.05583	-0.09253	556
-0.46528	-0.85586	-2.6E-06	0.554056	557
0.471718	-0.60549	-0.19361	0.218257	558
-0.48215	0.419935	4.77E-07	-0.09581	559
-0.76377	1.607838	1.43E-06	-0.28297	560
-1.12816	เลีย 1.326967	-2.9E-06	-0.10787	561
-0.97279	RSITY 0.453564	KORN UNIV	0.485533	562
-0.81841	1.69777	0.573203	-0.39844	563
-1.56493	-0.01675	0.191061	0.544146	564
-1.54175	0.693362	-0.91452	0.062097	565
-1.2092	1.232173	-2.9E-06	-0.01338	566
-1.42199	0.688387	-2.6E-06	0.256122	567
-2.14491	-0.41556	-0.68798	0.494959	568
-2.29644	0.193258	-9.5E-07	0.208736	569
-2.70808	1.116928	2.38E-07	-0.274	570
-2.4427	0.52852	1.19E-06	0.288292	571
-1.27856	-0.60042	-0.57097	0.286102	572
-1.72059	1.542687	-0.54933	-0.317	573

574	-0.05026	-0.26434	-0.42495	-0.60672
575	0.743636	4.77E-07	-0.36197	-0.86881
576	0.450311	1.19E-06	0.264261	-0.82506
577	1.12228	4.77E-07	0.354308	-0.8116
578	0.852061	-2.4E-06	1.413316	-1.48076
579	0.8578	0	0.573198	-1.01754
580	0.492953	7.15E-07	-0.45636	-0.56409
581	0.048144	7.15E-07	0.082229	-1.13817
582	0.387125	-2.4E-06	0.796906	-1.98523
583	-0.05274	-4.8E-07	1.487287	-1.60382
584	0.462692	7.15E-07	-0.25972	-0.66649
585	0.543302	0.111084	-0.55207	-0.71602
586	0.908447	0.878123	-0.01139	-1.77551
587	0.546487	-0.28969	0.577017	-2.8895
588	0.250503	0.264127	-0.18941	-1.38235
589	0.466185	1.197059	-0.96581	-1.05497
590	0.596383	0.947001	-0.14914	0.285722
591	0.507638	0.402235	0.357767	-1.66947
592	0.701714	-0.56133	-0.06634	-1.54769
593	0.424905	0.038454	0.916466	-1.39864
594	0.347345	-0.15813	0.474327	-0.58732
595	0.396757	-0.03866	0.452456	-0.68307
596	1.255172	-0.0673	RSITY -2.56547	-0.1836
597	1.092378	-0.11555	-2.18127	0.206741
598	1.800457	0.206391	-5.01333	0.539619
599	1.349069	0.997379	-3.3256	0.078745
600	0.431175	0.378797	-0.26522	-0.26603
601	0.082971	0.29624	0.692517	2.260919
602	0.546276	-0.50524	-0.15444	11.80837
603	0.394161	-0.139	-1.12656	6.591999
604	0.010004	0.113292	-0.07313	-1.16496
605	0.395548	-0.24711	-1.50372	-0.12423
606	0.163848	0.998646	-1.06326	0.445185
607	0.289864	0.033497	-0.9511	0.06259

0.092251	-0.28264	-0.29495	0.231256	608
-0.17522	0.506062	0.115526	-0.02011	609
0.523398	-0.32437	-0.15145	-0.14085	610
-0.06294	-0.69588	-0.66693	0.062814	611
0.549931	-0.52793	-0.28795	0.205105	612
0.113765	-0.16699	-0.32118	0.289995	613
-0.64113	-0.28261	-0.19384	0.740213	614
-0.91505	1.4241	0.090472	0.33865	615
-0.7463	-0.77599	-0.27932	0.504706	616
-0.65232	-0.09878	0.4276	0.147361	617
-0.95222	-1.09764	0.197479	0.725505	618
-0.60019	-0.87591	-0.2193	0.318681	619
-0.25731	-0.35965	-0.02806	0.426937	620
-0.32918	0.041066	0.331175	0.246914	621
0.12693	0.171213	0.305346	0.221795	622
-0.45747	-0.71556	-0.09519	0.712863	623
-0.33914	-0.46312	0.50469	0.463693	624
-1.00084	-0.25082	-0.5766	0.385269	625
-0.67887	0.001803	0.236031	0.298744	626
-0.72394	-1.28507	0.554448	0.638286	627
-1.36086	0.638543	0.582408	0.697024	628
-0.37169	າລັຍ 1.187466	0.231164	0.14429	629
-0.609	RSITV -1.56137	0.816497	0.911922	630
-1.1204	0.174475	0.875041	0.155909	631
-1.04898	-0.44687	0.030743	0.762745	632
-0.88003	-0.51517	-0.77073	0.584882	633
-0.45398	-0.48137	-0.34939	0.504788	634
-0.20725	-1.42377	0.158528	0.642783	635
-0.25897	-0.72069	-0.37651	0.434201	636
-0.13268	-0.24165	-0.36105	0.349022	637
-0.70951	-0.06897	-0.11857	0.401752	638
-0.72974	-0.22529	0.082944	0.412184	639
-0.18376	-0.55557	0.257478	0.243911	640
-0.6805	0.085061	0.173741	0.307256	641

642	0.397109	0.232865	0.008801	-1.59576
643	0.384029	-0.04456	-0.3303	-0.51661
644	0.165217	-0.34	0.153845	-0.61726
645	-0.21328	0.336077	0.155605	-0.20321
646	-0.06364	0.348778	0.62276	-0.3602
647	0.214426	-0.27626	0.312319	-0.64334
648	0.206804	-0.10764	-0.07608	-1.47852
649	0.105177	-0.34811	-0.46227	0.127708
650	-0.07186	-0.44932	-0.25947	-0.07665
651	0.124509	-0.29953	0.617968	-0.61327
652	0.189759	0.157747	0.555502	-0.20567
653	-0.08984	0.001922	0.567691	-0.23794
654	0.051042	-0.13013	0.251567	0.057219
655	0.203459	-0.19096	-0.51724	-0.1971
656	0.107596	-0.11411	0.633308	-0.41238
657	0.018094	-0.06752	0.82043	-0.69624
658	-0.02573	-0.20144	0.458969	0.135459
659	-0.04679	-0.16771	-0.29965	0.267153
660	0.088186	0.383004	0.071658	-0.42142
661	-0.02771	-0.3501	0.13985	-0.35357
662	-0.06277	0.355391	0.257341	-0.07248
663	-0.20822	0.119273	(สีย 0.286318	-0.4621
664	-0.32331	0.190291	RSITY 0.836914	-0.39064
665	-0.22193	-0.14715	0.51943	-0.41172
666	0.310118	-0.02381	-0.15531	-0.17319
667	0.072102	-0.48237	-0.28883	-0.33304
668	-0.04015	-0.3164	0.442099	-0.30703
669	-0.11002	-0.26766	0.491253	-0.1226

Appendix F Migration rate of each station

Station	Migration Rate (M	eter per Year)		
	1952 - 1988	1988 - 1992	1992 - 2006	2006 - 2020
0	0.303885	0.062986	0.89145	1.221657
1	0.226336	0.179688	1.310161	0.96018
2	0.131556	0.042969	1.37684	0.89549
3	0.090778	0.190247	1.229415	1.247351
4	0.090446	0.121094	1.368812	1.476241
5	0.00626	0.082031	0.631345	0.951632
6	0.75376	0.271337	1.136422	0.257251
7	0.501409	1.179513	1.576803	0.648683
8	0.498466	0.662913	1.229103	0.363147
9	0.008427	0.226461	0.90531	0.656857
10	0.919953	1.1495	0.989638	0.424371
11	1.016118	0.724207	0.957319	0.43604
12	0.899287	0.103128	0.151724	0.765343
13	0.793602	0.15625	0.662162	0.606881
14	0.856473	0.080529	0.347012	0.590519
15	0.621993	0.145373	0.076163	0.371746
16	0.490678	0.234375	ດ ຢ 0.026127	0.675813
17	0.505196	KORN 0.100125	RSITY 0.1855	0.652534
18	0.946185	0.059626	0.499941	0.685192
19	1.020878	0.326353	0.340926	0.935255
20	1.174551	0.235187	0.985447	1.074496
21	0.840601	0.085671	0.796296	0.157303
22	0.236432	1.754185	0.413352	0.458336
23	1.30632	0.125061	0.490142	0.374842
24	0.912987	0.128847	0.25698	0.126269
25	0.951855	0.163177	0.25476	0.310781
26	0.474087	0.091443	0.18361	0.276389
27	0.73613	0.147406	0.939014	0.281252
28	0.90824	1.38456	1.231498	0.0742

29	0.695922	1.297587	0.836521	0.606765
30	0.153332	0.065481	0.553762	0.040441
31	0.674523	0.162568	1.024126	0.17796
32	0.421789	0.165774	0.063929	0.018973
33	0.251084	0.303207	0.810514	0.257368
34	0.282191	0.178324	0.483176	0.176667
35	0.579955	0.036851	0.371482	0.139687
36	0.365277	0.197642	0.427879	0.0864
37	0.796141	0.080529	1.431806	0.285158
38	0.515521	0.337862	1.387641	0.491766
39	1.642846	0.084143	1.742213	0.041159
40	1.796806	0.066406	0.834106	0.795357
41	1.575004	0.359905	0.427071	1.067194
42	0.326507	0.317249	0.715527	0.522552
43	0.740243	0.062986	0.406521	0.287957
44	0.755972	0.089844	0.21223	0.522971
45	1.014801	0.076944	0.406509	0.184692
46	0.891083	0.870524	0.470474	0.246712
47	1.235129	0.095043	0.91165	0.326506
48	1.295702	0.140245	0.621114	0.883941
49	1.232858	1.500834	1.229327	0.570421
50	0.560133	0.254357	0.412833	0.454833
51	0.612752	0.193271	RSITY 0.504464	0.506067
52	0.167804	0.032212	0.412077	0.318258
53	0.15731	0.375081	0.671608	0.259889
54	0.11258	2.500403	0.764423	0.097015
55	0.278996	1.89908	0.21762	0.514154
56	0.637406	0.272879	0.355023	0.580567
57	0.670791	0.09375	0.44118	0.461206
58	0.755039	0.430822	0.063135	0.790421
59	0.849784	0.81013	0.162946	0.65666
60	1.205546	0.179688	0.589662	0.850151
61	0.932817	0.395593	0.04334	0.845767
62	1.371929	0.164063	0.817297	0.581386

63	1.078062	0.902504	0.611562	0.781033
64	1.046333	2.578752	0.359652	0.792587
65	1.222741	0.174693	0.245018	0.738499
66	1.048519	1.834341	0.321622	0.71586
67	1.456291	0.829782	0.32964	0.769209
68	1.053785	0.056337	0.333666	0.606223
69	1.321207	0.084143	0.228258	0.512407
70	1.304859	0.023438	0.0325	0.660658
71	1.568224	0.032212	0.708121	0.598385
72	1.904102	0.088388	1.267889	0.571498
73	1.605669	0.069877	0.205551	0.511473
74	1.69078	0.146784	0.544716	0.551628
75	1.889847	0.265625	0.978995	0.353278
76	1.645757	0.399661	0.13877	0.347017
77	1.567802	0.515388	0.427833	0.662883
78	2.446833	2.070593	1.485098	0.541565
79	2.464596	2.531262	1.60532	1.161266
80	2.354186	1.039532	1.534755	1.00733
81	1.941978	0.867188	0.717018	0.553859
82	1.421045	0.076944	0.024554	0.707646
83	1.619355	0.044194	0.160962	0.397603
84	1.967299	0.146784	0.763171	0.609502
85	0.256606	0.015625	RSITY 0.0834	0.16073
86	0.032212	2.602313	0.634592	0.286767
87	0.076433	0.034939	0.251431	0.019965
88	0.168966	0.007813	0.028235	0.117437
89	0.83066	1.421188	0.732826	0.121442
90	1.295756	0.907941	0.765427	0.108827
91	2.459055	2.163883	1.536224	0.400583
92	2.481156	3.683776	0.841599	0.769053
93	2.033682	0.536793	0.938562	0.758538
94	0.982082	0.31986	0.451754	0.150703
95	0.070158	0.108535	0.499222	0.519629
96	0.493698	0.083048	0.618799	0.0625

97	0.157068	0.127178	0.910539	0.035714
98	0.011117	0.117188	0.091054	0.063174
99	0.472306	0.419263	0.139754	0.220519
100	1.134987	2.270953	1.006637	0.117628
101	0.575552	0.787514	1.35229	0.139469
102	1.173962	0.046875	1.441876	0.217528
103	0.440173	1.569049	1.007238	0.793918
104	1.047743	0.226563	0.969339	0.449903
105	1.476659	0.209631	1.463006	0.749099
106	1.245004	0.132583	1.12554	0.710877
107	1.267963	0.843786	0.952359	0.459388
108	0.893752	0.007813	0.950046	0.541119
109	0.52237	0.104816	0.035992	0.14459
110	0.913942	1.675904	1.368245	0.13109
111	0.689112	0.091443	1.247063	0.104124
112	0.723106	0.175564	0.503891	0.236607
113	0.639464	0.161059	0.255831	0.402405
114	0.594451	0.056337	0.006696	0.455729
115	0.676839	0.091443	0.153759	1.060869
116	0.809894	0.050024	0.463647	0.529282
117	0.697922	1.361439	0.341226	0.476927
118	0.75324	0.101563	ดัย 0.225004	0.425872
119	0.693002	1.6253	RSITY 0.262027	0.618847
120	0.69198	1.481988	0.524173	0.694652
121	0.602658	0.351128	0.643616	0.608192
122	0.368416	0.03125	0.110823	0.739348
123	0.570635	0.482165	0.102993	0.547713
124	0.255202	2.381275	0.378623	0.619829
125	0.483706	0.632764	0.386309	0.975079
126	0.23223	1.152125	0.150484	0.571642
127	0.094873	0.054688	0.871268	0.62602
128	0.159195	1.066628	1.852437	0.405593
129	0.267722	0.078125	1.100211	0.860542
130	0.441779	0.039063	0.405348	0.397303
•		•	•	

0.658089	0.419857	0.06675	0.316682	131
0.57077	0.166575	0.023438	0.383193	132
0.657873	0.542829	0.096635	0.145139	133
0.763341	0.578724	0.922405	0.019507	134
0.87441	0.73703	0.06675	0.00626	135
0.730784	0.62062	0.635891	0.017705	136
0.435359	0.941964	1.789335	0.190136	137
0.619077	1.063213	0.056337	0.040493	138
0.409554	0.764163	1.314359	0.146742	139
0.26834	0.888631	0.740994	0.371358	140
0.128324	0.687388	0.983382	0.323052	141
0.185483	0.959481	1.63257	0.077956	142
0.387243	0.347756	0.069877	0.24318	143
0.545155	0.987266	0.190247	0.008549	144
1.111204	1.048359	0.164063	0.027994	145
1.032267	0.51995	1.64384	0.375823	146
0.534019	0.048082	0.083048	0.508483	147
0.380513	0.669166	1.023646	0.463382	148
1.041493	1.211073	0.335938	0.165853	149
0.921291	0.206916	0	0.08674	150
0.305404	0.109807	1.367188	0.367966	151
0.062659	เลีย 0.76786	0.157998	0.534722	152
0.128324	RSITY 0.464463	0.101563	0.688035	153
0.868691	0.407328	0.69285	2.183686	154
0.375106	0.015625	0.136439	0.586195	155
0.515388	0.539422	0.985367	0.346206	156
0.456936	0.506986	0.034939	0.534553	157
0.665718	0.843221	0.132813	0.23014	158
0.42617	0.277729	0.112673	0.228251	159
0.20682	0.300743	0.31289	0.384306	160
0.080481	0.357254	0.722181	0.72661	161
0.532879	0.474019	0.062986	0.128847	162
0.470093	0.793466	1.787014	0.174617	163
0.353553	1.064383	1.6253	0.272807	164

165	0.007417	2.21171	1.107811	0.332192
166	0.206473	1.549319	0.126032	0.519284
167	0.130993	0.232282	0.037946	0.362797
168	0.464234	0.783746	0.540755	0.574836
169	0.142385	1.718768	0.571782	0.518549
170	0.18324	0.647307	0.262749	0.542222
171	0.902077	0.676221	0.101801	0.143761
172	0.696828	0	0.807385	0.076286
173	0.466928	0.815237	0.780063	0.667948
174	0.50224	3.395913	0.89842	0.663217
175	0.552308	0.03125	0.712138	0.382081
176	0.592215	0	1.206731	0.675219
177	0.340667	1.855777	0.036337	0.118871
178	0.375138	0	0.209405	0.385334
179	0.076092	0.349386	0.467899	0.100322
180	0.377599	0.372469	0.026127	0.966598
181	0.301969	0.32961	0.859375	0.96912
182	0.331997	1.258783	0.367077	0.019965
183	0.052437	0.100049	0.251431	0.137526
184	0.059034	0.272879	1.186694	0.805606
185	0.332166	0.054688	0.778301	0.572004
186	0.445021	0.378967	ลัย 1.153793	0.242103
187	0.344408	0.489701	RSITY 0.74579	0.47033
188	0.20848	0.159344	0.492171	0.21598
189	0.049904	0.062986	0.111607	0.083558
190	0.03844	0.248162	0.042116	0.054676
191	0.019038	0.190086	0.03036	0.00325
192	0.007158	0.469791	0.151851	0.277063
193	0.06945	0.03125	0.178697	0.4313
194	0.097412	0.032212	0.259544	0.019451
195	0.032012	0.46901	0.215445	0.15586
196	0.14951	0.062986	0.366507	0.068573
197	0.003579	0.157998	0.05431	0.143315
198	0.065237	0.191526	0.221343	0.576272
		•	•	

199	0.219218	0.283089	0.48285	0.499359
200	0.037558	0.278195	0.175929	0.132454
201	0.010737	0.288111	0.05893	0.33046
202	0.113646	0.064424	0.27693	0.27761
203	0.03294	0.062986	0.06715	0.023354
204	0.110079	0.336573	0.187088	0.622507
205	0.124471	0.078125	0.340524	0.218775
206	0.233817	0.015625	0.601706	0.019655
207	0.006998	0.095043	0.026879	0.204232
208	0.061289	0.032212	0.14967	0.05078
209	0.01098	0.095043	0.004464	0.105158
210	0.146205	0.098821	0.40337	0.314875
211	0.257419	0.015625	0.661679	0.219575
212	0.573085	0.06675	1.455646	0.107044
213	0.274428	0.101563	0.68121	0.110351
214	0.234085	0.587134	0.768687	0.281416
215	0.421922	0.712652	1.288501	0.328278
216	0.862008	0.682197	2.409624	0.756616
217	0.591471	0.314932	1.60914	0.566558
218	0.099433	0.076944	0.234067	0.735479
219	0.247822	0.083048	0.660956	0.439309
220	0.165179	0.046875	ดัย 0.432143	0.403817
221	0.096791	0.956098	RSITY 0.060721	0.55125
222	0.224384	0.083048	0.59903	0.845242
223	0.104297	0.06675	0.285793	0.163768
224	0.03155	0.282981	0.020089	0.031652
225	0.236882	0.151691	0.598252	0.064085
226	0.215285	0.339552	0.466219	0.12641
227	0.07735	0.190247	0.196745	0.161496
228	0.277995	0.286518	0.796675	0.487922
229	0.348716	0.138217	0.879161	0.768551
230	0.318718	0.234375	0.756591	0.570257
231	0.369482	0.182217	0.899362	0.207684
232	0.309851	0.212523	0.742791	0.017009

233	0.141536	0.267457	0.435588	0.814405
234	0.153115	0.249144	0.464908	0.785306
235	0.180631	0.318018	0.387963	0.258235
236	0.083735	0.138217	0.234874	0.228151
237	0.165259	0.386857	0.50008	0.118611
238	0.095915	0.363176	0.349956	0.18784
239	0.11641	0.150073	0.286559	0.384826
240	0.20548	0.331548	0.465058	0.058137
241	0.063742	0.171342	0.15633	0.087276
242	0.417548	0.450694	0.945459	0.653933
243	0.477782	1.437585	0.817857	0.628556
244	0.21886	0.235025	0.50764	0.365336
245	0.175819	0.268823	0.384862	0.12224
246	0.094151	0.375	0.348929	0.235876
247	0.359464	0.100049	0.899531	0.339623
248	0.067245	0.618126	0.015625	0.113253
249	0.270946	0.096635	0.72371	0.198177
250	0.128569	0.254357	0.398705	0.43969
251	0.211207	0.125973	0.509496	0.820828
252	0.006998	0.098821	0.011161	0.372412
253	0.03541	0.501524	0.233949	0.037736
254	0.00491	0.544022	0.144952	0.272377
255	0.063842	0.0625	RSITY 0.161472	0.462433
256	0.257788	0.056337	0.670847	0.092509
257	0.197919	0.174693	0.553936	0.654091
258	0.291472	0.399661	0.642919	0.624932
259	0.044812	0.218889	0.054494	0.081326
260	0.025054	0.282225	0.143136	0.134364
261	0.41015	1.435992	0.646628	0.562411
262	0.072049	0.09375	0.212054	0.778885
263	0.177389	0.151691	0.498088	0.549688
264	0.087639	0.1875	0.174522	1.050501
265	0.199587	0.279508	0.434122	0.257574
266	0.069444	0.03125	0.184067	0.696472

0.32833	0.172915	0.251946	0.03937	267
0.014879	0.063135	0.098821	0.015528	268
0.424542	0.5035	0.536964	0.137057	269
0.171699	0.394988	0.254357	0.125796	270
0.538051	0.10649	0.346931	0.079937	271
0.134792	1.134008	0.537248	0.500663	272
0.025238	0.050508	0.28395	0.048681	273
0.141319	0.163313	0.015625	0.063225	274
0.2579	0.016096	0.191526	0.019814	275
0.942578	0.928743	0.095043	0.350733	276
0.240463	0.973102	0.392262	0.336493	277
0.259025	0.519471	0.24407	0.226734	278
0.297681	1.367211	0.166096	0.546189	279
0.386605	0.682558	0.148438	0.264169	280
0.369127	0.348472	0.285129	0.166992	281
0.694751	0.117437	0.312598	0.080092	282
0.473952	0.019965	0.203125	0.028895	283
0.288549	0.060926	0.083048	0.031298	284
0.31822	0.226944	0.25243	0.115347	285
0.642938	0.154969	0.232282	0.034895	286
0.013426	0.044643	0.125	0.027994	287
0.030399	เลีย 0.61788	0.293255	0.272355	288
0.204904	RSITY 0.617884	0.0625	0.233778	289
0.631895	0.862936	0.150073	0.351005	290
0.57865	0.386025	0.056337	0.153132	291
0.873067	0.251946	0.125973	0.084483	292
0.350809	0.525692	0.151691	0.212551	293
0.010932	0.954984	0.21324	0.393378	294
0.149832	1.084812	0.151691	0.405791	295
0.254939	0.268452	0.306286	0.070398	296
0.485656	0.163481	0.317249	0.098794	297
0.659364	0.428129	0.235025	0.192264	298
0.166193	0.307874	0.279508	0.089271	299
0.728613	0.769775	0.455007	0.346753	300

301 0.281755 0.21324 0.690508 0.5360 302 0.37397 0.377029 0.854048 1.0638 303 0.176947 0.18815 0.507851 0.5123 304 0.102948 0.457749 0.134003 0.8401 305 0.056902 0.288217 0.227635 0.1350 306 0.168718 0.573674 0.269942 0.5115 307 0.29677 1.09375 0.451053 0.2008 308 0.059996 0.251946 0.226241 0.0708 309 0.386104 0.161059 0.95233 0.6664 310 0.085797 0.147406 0.178697 0.3544 311 0.32065 0.568759 0.986971 0.4151 312 0.461264 0.477586 1.049715 0.3434 313 0.381 0.125973 1.013973 0.2177 314 0.243483 0.219307 0.688427 0.3142
303 0.176947 0.18815 0.507851 0.5123 304 0.102948 0.457749 0.134003 0.8401 305 0.056902 0.288217 0.227635 0.1350 306 0.168718 0.573674 0.269942 0.5115 307 0.29677 1.09375 0.451053 0.2008 308 0.059996 0.251946 0.226241 0.0708 309 0.386104 0.161059 0.95233 0.6064 310 0.085797 0.147406 0.178697 0.3544 311 0.32065 0.568759 0.986971 0.4151 312 0.461264 0.477586 1.049715 0.3434 313 0.381 0.125973 1.013973 0.2177
304 0.102948 0.457749 0.134003 0.8401 305 0.056902 0.288217 0.227635 0.1350 306 0.168718 0.573674 0.269942 0.5115 307 0.29677 1.09375 0.451053 0.2008 308 0.059996 0.251946 0.226241 0.0708 309 0.386104 0.161059 0.95233 0.6064 310 0.085797 0.147406 0.178697 0.3544 311 0.32065 0.568759 0.986971 0.4151 312 0.461264 0.477586 1.049715 0.3434 313 0.381 0.125973 1.013973 0.2177
305 0.056902 0.288217 0.227635 0.1350 306 0.168718 0.573674 0.269942 0.5115 307 0.29677 1.09375 0.451053 0.2008 308 0.059996 0.251946 0.226241 0.0708 309 0.386104 0.161059 0.95233 0.6064 310 0.085797 0.147406 0.178697 0.3544 311 0.32065 0.568759 0.986971 0.4151 312 0.461264 0.477586 1.049715 0.3434 313 0.381 0.125973 1.013973 0.2177
306 0.168718 0.573674 0.269942 0.5115 307 0.29677 1.09375 0.451053 0.2008 308 0.059996 0.251946 0.226241 0.0708 309 0.386104 0.161059 0.95233 0.6064 310 0.085797 0.147406 0.178697 0.3544 311 0.32065 0.568759 0.986971 0.4151 312 0.461264 0.477586 1.049715 0.3434 313 0.381 0.125973 1.013973 0.2177
307 0.29677 1.09375 0.451053 0.2008 308 0.059996 0.251946 0.226241 0.0708 309 0.386104 0.161059 0.95233 0.6064 310 0.085797 0.147406 0.178697 0.3544 311 0.32065 0.568759 0.986971 0.4151 312 0.461264 0.477586 1.049715 0.3434 313 0.381 0.125973 1.013973 0.2177
308 0.059996 0.251946 0.226241 0.0708 309 0.386104 0.161059 0.95233 0.6064 310 0.085797 0.147406 0.178697 0.3544 311 0.32065 0.568759 0.986971 0.4151 312 0.461264 0.477586 1.049715 0.3434 313 0.381 0.125973 1.013973 0.2177
309 0.386104 0.161059 0.95233 0.6064 310 0.085797 0.147406 0.178697 0.3544 311 0.32065 0.568759 0.986971 0.4151 312 0.461264 0.477586 1.049715 0.3434 313 0.381 0.125973 1.013973 0.2177
310 0.085797 0.147406 0.178697 0.3544 311 0.32065 0.568759 0.986971 0.4151 312 0.461264 0.477586 1.049715 0.3434 313 0.381 0.125973 1.013973 0.2177
311 0.32065 0.568759 0.986971 0.4151 312 0.461264 0.477586 1.049715 0.3434 313 0.381 0.125973 1.013973 0.2177
312 0.461264 0.477586 1.049715 0.3434 313 0.381 0.125973 1.013973 0.2177
313 0.381 0.125973 1.013973 0.2177
314 0.243483 0.219307 0.688427 0.3142
315 0.795533 0.094075 2.019205 0.6498
316 0.507664 0.044194 1.305315 0.7630
317 0.525652 0.125973 1.354468 0.9169
318 0.442372 0.3763 1.243961 0.7458
319 0.397842 0.844329 0.782423 0.0377
320 0.047227 0.461996 0.011161 0.0967
321 0.445786 0.175564 1.195829 0.6612
322 0.017895 0.039063 0.056469 0.0593
323 0.187438 0.06675 0.46319 0.7801
324 0.362171 0.088388 0.906088 0.5858
325 0.132381 0.136439 0.301496 0.2793
326 0.180658 0.375081 0.571585 0.5447
327 0.11519 0.514025 0.152833 0.0772
328 0.247266 0.412512 0.753447 0.3399
329 0.360243 0.128847 0.962095 0.9977
330 0.463408 0.100049 1.219861 1.0232
331 0.420272 0.853531 1.324539 0.8063
332 0.024552 0.659219 0.127838 0.394
333 0.447588 0.338111 1.054517 1.1646
334 0.459138 0.153888 1.137614 0.6874

0.669554	1.271297	1.100529
		1.10002/
0.602374	1.179807	1.162299
9336 0.151691	0.759011	0.640268
4039 0.050024	1.041624	1.063336
0106 0.737526	0.982396	1.283369
5695 0.438127	0.473472	1.022822
5755 0.420716	0.464629	0.181961
0.194058	1.26604	1.195017
0.032212	1.397059	1.591881
3764 0.064424	0.595648	0.778704
5378 0.3271	4.651821	1.111832
0.654201	3.497631	4.121463
7881 0.062986	2.088791	1.236997
0.032212	0.036337	3.067233
0098 0.786894	0.787905	0.655358
9903 0.023438	2.089305	0.990373
4866 0.929129	0.099824	0.485984
4572 1.178238	0.528377	0.242683
9675 0.261923	0.331088	0.378238
7705 0.096635	0.017996	0.519481
9204 0.044194	0.936162	0.293819
3464 0.914597	าลัย 1.709915	0.578644
9661 0.532168	1.647321	0.290121
7683 0.088388	0.096397	0.014661
4666 0.159344	0.25001	0.188438
4367 0.46875	0.071568	0.057785
6669 0.307876	1.284287	0.703583
8029 0.902234	1.46054	0.746157
9474 0.877821	2.537978	0.755312
2448 0.039063	1.658398	0.821643
4509 0.127178	0.923546	0.036739
6445 0.472898	0.537057	0.542612
3024 0.46901	0.527088	0.639763
0.377918	0.162579	0.244203
	4039 0.050024 0106 0.737526 5695 0.438127 5755 0.420716 1309 0.194058 2114 0.032212 3764 0.064424 5378 0.3271 7542 0.654201 7881 0.062986 1117 0.032212 0098 0.786894 9903 0.023438 4866 0.929129 4572 1.178238 9675 0.261923 7705 0.096635 9204 0.044194 3464 0.914597 9661 0.532168 7683 0.088388 4666 0.159344 4367 0.46875 6669 0.307876 8029 0.902234 9474 0.877821 2448 0.039063 4509 0.127178 6445 0.46901	40390.0500241.04162401060.7375260.98239656950.4381270.47347257550.4207160.46462913090.1940581.2660421140.0322121.39705937640.0644240.59564853780.32714.65182175420.6542013.49763178810.0629862.08879111170.0322120.03633700980.7868940.78790599030.0234382.08930548660.9291290.09982445721.1782380.52837796750.2619230.33108877050.0966350.01799692040.0441940.93616234640.9145971.70991596610.5321681.64732176830.0883880.09639746660.1593440.2500143670.468750.07156866690.3078761.28428780290.9022341.4605494740.8778212.53797824480.0390631.65839845090.1271780.92354664450.4728980.53705730240.469010.527088

0.93628	0.672349	0.352516	0.222712	369
0.300362	0.607947	0.68821	0.159958	370
0.707314	0.352601	0.574577	0.073575	371
0.340487	0.67816	0.157029	0.2469	372
0.587737	0.664508	0.604801	0.32545	373
1.061213	0.725374	0.096635	0.275961	374
0.56612	0.425608	0.311326	0.13199	375
0.617841	1.898665	0.337388	0.775555	376
0.158005	2.312139	0.205069	0.920139	377
1.964152	2.23573	0.320598	0.834407	378
1.898627	1.269979	0.433295	0.541984	379
0.290419	0.651055	0.056337	0.247457	380
0.81143	1.009916	0.182217	0.410663	381
0.969244	1.109734	0.372469	0.472927	382
0.333512	0.764948	0.164063	0.31462	383
0.277736	0.992197	0.963823	0.278801	384
1.000983	1.96794	1.012164	0.652848	385
2.558032	2.473223	0.139754	0.977315	386
2.083002	1.499495	0.091443	0.593156	387
0.462971	1.091664	0.108535	0.418417	388
0.36386	0.467217	0.195313	0.197278	389
0.690155	เลีย 0.055804	0.449134	0.039589	390
0.638655	RSITY 0.579055	0.254357	0.197263	391
2.095885	2.622312	0.098821	1.030768	392
1.801271	2.32157	0.862671	0.807294	393
0.80808	1.204075	0.362503	0.427987	394
0.404917	0.628629	0.779412	0.158443	395
0.517354	1.110291	0.71261	0.352983	396
0.256229	0.153418	0.276103	0.03155	397
0.388708	0.374475	0.262505	0.172435	398
0.503197	0.604313	0.056337	0.23959	399
0.642237	0.232529	0.250122	0.062795	400
0.049516	0.386335	0.069877	0.145264	401
0.28298	0.277729	0.390625	0.064872	402

403	0.139865	0.601106	0.527017	0.123055
404	0.251203	0.094075	0.624334	0.544008
405	0.107558	0.391561	0.388322	0.589646
406	0.050861	0.821799	0.104124	0.62431
407	0.086806	0.35844	0.322736	0.109315
408	0.182814	0.076944	0.476237	0.367387
409	0.027994	0.278195	0.145962	0.123405
410	0.446259	0.03125	1.153914	0.332024
411	0.080804	0.182217	0.156457	0.581891
412	0.024445	0.635507	0.242883	0.478538
413	0.436262	0.634498	0.941022	0.013077
414	0.2527	0.341702	0.745268	0.3062
415	0.309234	0.360477	0.693044	0.136943
416	0.236814	0.471088	0.743518	1.117722
417	0.345918	0.122035	0.876877	1.117794
418	0.413895	0.573035	1.226162	1.375803
419	0.392132	0.223716	1.072193	0.914291
420	0.488637	0.139754	1.21731	0.802995
421	0.290768	0.117188	0.719415	1.077183
422	0.724422	0.127178	1.87448	1.416334
423	0.199887	0.580653	0.349728	0.613078
424	0.367352	1.202212	ลัย 1.287823	0.198329
425	0.822677	0.083048	RSITY 2.133005	1.185336
426	0.89991	0.940101	2.581905	1.338108
427	0.780451	0.853853	2.250443	1.275798
428	0.598181	0.245193	1.605083	0.48565
429	0.170148	0.098821	0.417285	0.461003
430	0.195282	0.225482	0.566542	0.541763
431	0.073247	0.127178	0.152195	0.253601
432	0.128578	0.096635	0.310461	1.003748
433	0.133333	0.166096	0.296606	1.51317
434	0.642961	0.232282	1.592048	0.682776
435	0.258944	0.343839	0.569542	0.602062
436	0.216116	0.767735	0.772002	0.08936

0.04655	0.699128	0.492683	0.325835	437
0.166297	0.790569	0.281684	0.337739	438
0.531864	1.656618	0.084143	0.644848	439
0.713156	1.618265	0.248162	0.601753	440
0.885044	1.235247	0.301769	0.447251	441
0.299326	0.453603	0.294812	0.207173	442
0.393388	0.68442	0.197642	0.244638	443
0.566085	0.393016	0.40331	0.195557	444
0.356527	0.705371	0.091443	0.278007	445
0.720853	0.598764	0.722983	0.153722	446
1.217158	0.589391	0.336573	0.195297	447
0.487242	0.715178	0.234375	0.298616	448
1.056455	1.184057	0.122035	0.470099	449
0.805076	1.140083	0.156445	0.426009	450
1.419547	1.153998	0.312598	0.483388	451
0.811552	0.929258	0.920981	0.461826	452
1.464746	1.144565	0.06675	0.438327	453
1.65383	0.554722	3.512568	0.174658	454
0.751508	0.245586	0.613965	0.027791	455
0.856179	0.680741	0.844365	0.358229	456
0.591306	0.125715	0.822059	0.043403	457
0.023126	ດ້ຢ 0.009982	0.42648	0.045272	458
0.366555	RSITY 0.442983	1.395466	0.017361	459
0.704712	1.500239	2.760644	0.277974	460
0.887745	1.699809	1.609375	0.482704	461
1.814607	2.187966	1.320313	0.995634	462
1.170158	2.360455	3.093592	1.260163	463
0.212115	1.600009	10.88043	1.826006	464
1.42978	2.080502	42.62425	5.543873	465
0.615847	1.282711	74.22622	8.745482	466
1.153417	1.453674	92.01017	10.78838	467
1.203033	1.285809	79.78713	9.363094	468
1.31917	1.053694	10.65709	1.591475	469
1.634372	0.534243	0.906284	0.158322	470

471	0.462165	1.000763	1.042169	1.570009
472	0.423472	0.951972	1.360611	1.357109
473	0.355865	0.395285	0.919253	1.791735
474	0.639787	1.006843	1.573217	2.4805
475	0.845945	1.117188	2.228269	2.3549
476	0.71554	1.176994	2.049627	1.446462
477	0.808819	0.41103	2.080376	2.021072
478	0.064025	1.887976	0.59561	0.355145
479	0.059543	0.968876	0.125973	1.734355
480	0.501962	0.1335	1.25263	2.633929
481	0.162343	1.032699	0.673889	1.155473
482	0.111115	0.606413	0.450782	1.073142
483	0.407957	1.401925	1.447808	1.664073
484	0.937384	0.577544	2.296363	2.589696
485	0.895608	0.375732	2.401939	2.344374
486	0.608036	0.875139	1.783151	2.016365
487	0.28169	1.143191	0.398305	0.870874
488	0.165125	2.184834	0.203994	0.252505
489	0.693133	0.352949	1.847141	0.634914
490	0.760987	0.533314	1.999507	0.868315
491	0.758055	0.422814	1.983068	1.368169
492	0.647998	0.470375	1.685019	1.351014
493	0.453909	0.069877	RSITY 1.166444	2.261277
494	0.246358	0.53148	0.546292	1.941882
495	0.355612	0.68821	0.729146	1.397651
496	0.705931	2.469356	1.13372	1.852825
497	0.520794	3.438388	0.359042	1.616098
498	0.356326	0.084143	0.915429	1.811331
499	0.494121	1.158886	0.957191	1.81227
500	0.099675	1.097761	0.538946	0.30608
501	0.142742	0.40745	0.252538	0.707488
502	0.336376	2.020781	0.287669	1.215185
503	0.33681	0.687678	0.669702	1.359233
504	0.591747	0.50492	1.665581	1.335968

506 0.083982 2.210648 0.698329 0.7 507 0.08043 2.101795 0.803571 1.0 508 0.170424 0.920285 0.687388 0.5 509 0.139582 2.611807 0.416999 0.5 510 0.250748 1.500081 0.249611 0.8 511 0.263009 1.245304 0.325809 0.5 512 0.328241 2.516547 0.125179 0.5 513 0.10739 2.446111 0.975015 1.4	78234 62826 26705 91099 18203 23852 20523 21838 00522
507 0.08043 2.101795 0.803571 1.0 508 0.170424 0.920285 0.687388 0.5 509 0.139582 2.611807 0.416999 0.5 510 0.250748 1.500081 0.249611 0.8 511 0.263009 1.245304 0.325809 0.5 512 0.328241 2.516547 0.125179 0.5 513 0.10739 2.446111 0.975015 1.4	26705 91099 18203 23852 20523 21838 00522
508 0.170424 0.920285 0.687388 0.5 509 0.139582 2.611807 0.416999 0.5 510 0.250748 1.500081 0.249611 0.8 511 0.263009 1.245304 0.325809 0.5 512 0.328241 2.516547 0.125179 0.5 513 0.10739 2.446111 0.975015 1.4	91099 18203 23852 20523 21838 00522
509 0.139582 2.611807 0.416999 0.5 510 0.250748 1.500081 0.249611 0.8 511 0.263009 1.245304 0.325809 0.5 512 0.328241 2.516547 0.125179 0.5 513 0.10739 2.446111 0.975015 1.4	18203 23852 20523 21838 00522
510 0.250748 1.500081 0.249611 0.8 511 0.263009 1.245304 0.325809 0.5 512 0.328241 2.516547 0.125179 0.5 513 0.10739 2.446111 0.975015 1.4	23852 20523 21838 00522
511 0.263009 1.245304 0.325809 0.5 512 0.328241 2.516547 0.125179 0.5 513 0.10739 2.446111 0.975015 1.4	20523 21838 00522
512 0.328241 2.516547 0.125179 0.5 513 0.10739 2.446111 0.975015 1.4	21838 00522
513 0.10739 2.446111 0.975015 1.4	00522
E14 0.05012 1.265401 0.541291 0.5	41204
514 0.03915 1.303401 0.341361 0.3	41384
515 0.136127 1.53127 0.097015 0.7	57776
516 0.263271 0.697416 0.817345 0.9	78653
517 0.654079 2.307004 1.058311 0.6	43957
518 0.207364 0.223716 0.541933 1.1	72814
519 0.190247 0.227503 0.489857 1.0	51328
520 0.177049 1.347107 0.075893 0.8	20754
521 0.097609 1.192526 0.089731 1.3	30793
522 0.159403 1.034205 0.28919 2.2	58746
523 0.084843 0.757933 0.04334 1.8	81761
524 0.451763 0.422814 1.26877 0.	78714
525 0.109595 1.033142 0.547144 1.7	00828
526 0.290802 0.311 0.906385 0.517703 2.8	50771
527 0.135553 0.106261 0.332791 2.1	77554
528 0.464312 0.532684 1.323967 1.5	68255
529 0.086567 0.687544 0.060721 0.3	00297
530 0.596273 1.891851 1.012303 0.3	98303
531 0.031358 0.307777 0.029018 0.1	31579
532 0.39793 0.614412 0.862301 1.1	12161
533 0.075919 0.687544 0.369971 0.9	85626
534 0.192624 0.225482 0.431376 1.5	83836
535 0.378488 1.125 0.651847 1.6	83435
536 0.368072 0.161059 0.901788 1.2	76025
537 0.149308 1.125976 0.705445 1.4	77201
538 0.114702 1.037034 0.589556 1.1	86455

539	0.413373	0.539459	0.910725	1.502114
540	0.231054	0.521568	0.445647	1.365755
541	0.104398	1.001951	0.017857	0.698517
542	0.020906	0.195313	0.020089	0.186562
543	0.098531	1.375355	0.578379	0.259155
544	0.529916	0.307777	1.427917	0.421922
545	0.516283	1.533819	1.737611	1.461662
546	0.268042	1.038798	0.537293	2.784164
547	0.361928	0.882813	1.089087	2.686519
548	0.375358	0.876255	0.771172	1.092226
549	0.07091	0.503891	0.125656	0.681361
550	0.06693	0.356305	0.071463	0.249882
551	0.225755	1.875146	0.045142	0.998147
552	0.229587	0.689096	0.393491	1.402369
553	0.132971	0.356305	0.437779	1.324855
554	0.022917	0.569884	0.153613	0.290488
555	0.009228	0.87224	0.272577	0.625595
556	0.213508	0.64504	0.549035	0.124253
557	0.132858	1.25022	0.496098	0.058145
558	0.320237	0.682197	0.629528	0.279273
559	0.205192	0.532168	0.413543	0.382247
560	0.03335	0.471088	ดัย 0.113642	0.138617
561	0.114587	0.939581	RSITY 0.033482	0.304895
562	0.006998	0.190086	0.06715	0.426511
563	0.46567	2.292473	0.544867	0.894135
564	0.053931	0.197642	0.135776	0.765002
565	0.281251	2.846496	0.097015	0.753522
566	0.003579	0.534057	0.143969	1.171701
567	0.097222	0.781289	0.026879	0.067034
568	0.086684	0.892815	0.216138	0.828132
569	0.281765	0.408945	0.742042	0.876012
570	0.52255	0.85081	1.226796	0.401648
571	0.220732	0.157998	0.596283	0.183345
572	0.48249	1.459077	1.444831	1.155321
566 567 568 569 570 571	0.003579 0.097222 0.086684 0.281765 0.52255 0.220732	0.534057 0.781289 0.892815 0.408945 0.85081 0.157998	0.143969 0.026879 0.216138 0.742042 1.226796 0.596283	1.171701 0.067034 0.828132 0.876012 0.401648 0.183345

			-	
573	0.11959	2.962421	1.054273	1.471479
574	0.128484	0.831251	0.511511	0.980154
575	0.247504	1.191195	0.889637	0.872013
576	0.314069	0.354329	0.715679	0.412148
577	0.196834	0.939094	0.301893	0.199724
578	0.454105	0.513549	1.150715	0.317972
579	0.122282	0.656994	0.254621	0.164277
580	0.082757	0.117188	0.179462	0.874052
581	0.154787	0.816247	0.624298	0.969221
582	0.496953	0.787824	1.079307	1.00855
583	0.394507	0.593801	0.894608	0.152795
584	0.303448	1.187603	0.828702	0.074747
585	0.398493	0.385988	0.991898	0.227839
586	0.677929	2.959896	0.897668	0.356714
587	0.651974	4.12645	0.497863	0.37141
588	0.129503	0.936067	0.065649	0.78991
589	0.853837	5.711066	0.563849	1.219147
590	1.008255	6.509758	0.736786	1.399249
591	0.385671	4.037914	0.161965	2.471187
592	0.215977	0.119253	0.543585	1.062994
593	0.199494	0.320313	0.600347	0.557904
594	0.010453	1.004385	0.260549	0.035498
595	0.326399	0.81265	RSITY 0.607147	0.458813
596	0.809035	0.437779	1.955403	0.004502
597	0.598921	1.513045	1.107793	0.459363
598	0.825075	1.162567	1.789929	0.406197
599	0.645358	0.85081	1.416637	0.436514
600	0.475949	0.117188	1.1986	0.153936
601	0.343399	0.069877	0.870616	1.08263
602	0.114214	0.257694	0.36705	6.644725
603	0.487439	0.60374	1.425219	3.565645
604	0.268813	0.535883	0.844116	0.166143
605	1.014745	1.602991	2.152102	0.031389
606	0.436345	2.00244	1.693448	0.060426

607	0.470887	0.098821	1.232307	0.434168
608	0.478632	1.449529	0.822205	0.466494
609	0.539526	1.201628	1.044032	1.013007
610	0.37144	1.282393	0.588782	0.82847
611	0.558899	1.326401	1.058892	1.103574
612	0.618925	1.027574	1.298332	0.719686
613	0.570143	1.983098	0.899598	0.774664
614	0.168914	1.432481	0.026879	1.012668
615	0.227399	0.161059	0.540529	1.049655
616	0.328198	0.651443	1.029637	0.221288
617	0.649032	0.689096	1.474325	0.41848
618	0.674801	0.915497	1.474068	0.89456
619	0.031262	0.348073	0.025254	0.39878
620	0.467663	1.878447	0.666425	0.918995
621	0.680569	2.571832	1.015318	0.086513
622	0.899028	5.299991	0.802678	0.304534
623	0.63472	1.84514	1.10556	0.050924
624	0.364378	0.676041	0.743893	0.346756
625	0.302264	2.232585	0.13954	0.75542
626	0.101648	0.119253	0.23607	0.845467
627	0.11959	0.139754	0.33908	0.828387
628	0.252843	0.373124	ด้ย 0.543562	1.008341
629	0.791804	0.502982	RSITY 1.892373	0.437704
630	0.505832	1.450203	0.887529	1.270848
631	0.195251	1.502602	0.087965	1.536242
632	0.466114	0.159344	1.239048	1.729234
633	0.364154	1.130223	0.615311	1.117724
634	0.139937	3.113259	0.529973	0.252952
635	0.093766	0.062986	0.223225	0.570791
636	0.30312	0.095043	0.798424	0.81028
637	0.202138	0.461996	0.391052	0.990051
638	0.185796	0.236449	0.544643	1.111448
639	0.344636	0.007813	0.888438	0.826108
640	0.196947	0.833415	0.744506	0.773375

641	0.186056	0.789063	0.698889	0.321125
642	0.304767	0.492683	0.647568	0.040281
643	0.080162	0.039063	0.202732	0.240549
644	0.598659	3.384688	0.572631	0.505367
645	0.500867	2.623744	0.539218	0.400057
646	0.090278	0.48914	0.37169	0.680612
647	0.486756	1.555159	0.80736	0.599182
648	0.323588	1.590549	0.377866	0.185861
649	0.197429	0.772174	0.287669	0.344051
650	0.20848	1.754806	0.036337	0.079863
651	0.182622	0.069877	0.486197	0.226193
652	0.304856	0.371402	0.679778	0.25549
653	0.258121	0.878481	0.412747	0.145245
654	0.024445	0.632764	0.242236	0.303067
655	0.298653	0.007813	0.767026	0.494091
656	0.06693	0.720954	0.055804	0.126924
657	0.049715	0.094075	0.102993	0.078538
658	0.15345	0.723869	0.59561	0.135943
659	0.033225	0.771818	0.135132	0.555762
660	0.100278	0.773082	0.046448	0.19678
661	0.195071	0.37443	0.395745	0.299222
662	0.136218	0.282981	ลัย 0.270458	0.025376
663	0.111814	0.032212	RSITY 0.296539	0.192301
664	0.279579	0.636035	0.900414	0.247499
665	0.266797	0.426265	0.806249	0.106509
666	0.241993	0.178324	0.671786	0.094874
667	0.494243	0.726856	1.063709	0.272606
668	0.145419	1.083462	0.072295	0.048803
669	0.135961	0.16313	0.393263	0.073898

Appendix G Sinuosity	index o	f each	reach
----------------------	---------	--------	-------

1952198819922006202011.0054071.0010011.0116551.0152831.00046824.1268794.5103474.5112574.5513924.52054132.2763572.2485272.239722.2266422.118541.0252631.0164141.0135971.0127951.00223653.7162553.3410473.3324723.4004383.37257261.0085321.0059331.0018131.0072331.00584471.0640351.0659451.0712791.057751.05942281.0607051.0663541.0669411.0583591.05990391.7122181.5435991.5233991.4954751.505549102.4667682.8800222.8730592.8689522.842203111.0290151.0201441.0173621.0235011.010327122.4981022.4325212.4531852.4647262.446214131.2814961.2581861.2667271.2592671.248035141.1302781.113051.112541.1074831.109061151.2932081.2838131.2767541.272281.26808166.8290196.7921326.7634346.7905986.628471151.0294251.0392591.0298921.0173411.06432166.8290196.7921326.7634346.7905986.628471171.0910551.0789251.0907661.3178641.318	Reach			Year		
2 4.126879 4.510347 4.511257 4.551392 4.520541 3 2.276357 2.248527 2.23972 2.226642 2.1185 4 1.025263 1.016414 1.013597 1.012795 1.002236 5 3.716255 3.341047 3.332472 3.400438 3.372572 6 1.008532 1.003593 1.001813 1.007223 1.005844 7 1.064035 1.065945 1.071279 1.05775 1.059422 8 1.060705 1.066354 1.066941 1.058359 1.059903 9 1.712218 4.543599 1.523399 1.495475 1.505549 10 2.466768 2.880022 2.873059 2.868952 2.842203 11 1.029015 1.02144 1.017362 1.023501 1.010327 12 2.498102 2.432521 2.453185 2.464726 2.446214 13 1.281496 1.258186 1.266727 1.259267 1.248035 14		1952	1988	1992	2006	2020
3 2.276357 2.248527 2.23972 2.226642 2.1185 4 1.025263 1.016414 1.013597 1.012795 1.002236 5 3.716255 3.341047 3.332472 3.400438 3.372572 6 1.008532 1.003593 1.001813 1.007223 1.005884 7 1.064035 1.065945 1.071279 1.05775 1.059422 8 1.060705 1.066354 1.066941 1.058359 1.059903 9 1.712218 1.543599 1.523399 1.495475 1.505549 10 2.466768 2.880022 2.873059 2.868952 2.842203 11 1.029015 1.020144 1.017362 1.023501 1.010327 12 2.498102 2.432521 2.453185 2.464726 2.446214 13 1.281496 1.258186 1.266727 1.259267 1.248035 14 1.130278 1.11305 1.112564 1.107483 1.109061 15	1	1.005407	1.001001	1.011655	1.015283	1.000468
41.0252631.0164141.0135971.0127951.00223653.7162553.3410473.3324723.4004383.37257261.0085321.0035931.0018131.0072231.00588471.0640351.0659451.0712791.057751.05942281.0607051.0663541.0669411.0583591.05990391.7122181.5435991.5233991.4954751.505549102.4667682.8800222.8730592.8689522.842203111.0290151.0201441.0173621.0235011.010327122.4981022.4325212.4531852.4647262.446214131.2814961.2581861.2667271.2592671.248035141.1302781.113051.1125641.1074831.109061151.2932081.2838131.2767541.272281.276096166.8290196.7921326.7634346.7905986.628847171.0910551.0789251.0907961.0719711.064632181.6994231.6901161.7037721.6723321.695236191.0292721.0392591.0298921.0138441.025177201.5368551.5024021.3468021.3178541.318113212.4063322.4712212.1559842.1473882.210699221.8134751.8483281.8692411.8691291.888762231.0418741.034711 <td< td=""><td>2</td><td>4.126879</td><td>4.510347</td><td>4.511257</td><td>4.551392</td><td>4.520541</td></td<>	2	4.126879	4.510347	4.511257	4.551392	4.520541
53.7162553.3410473.3324723.4004383.37257261.0085321.0035931.0018131.0072231.00588471.0640351.0659451.0712791.057751.05942281.0607051.0663541.0669411.0583591.05990391.7122181.5435991.5233991.4954751.505549102.4667682.8800222.8730592.8689522.842203111.0290151.0201441.0173621.0235011.010327122.4981022.4325212.4531852.4647262.446214131.2814961.2581861.2667271.2592671.248035141.1302781.113051.1125641.1074831.109061151.2932081.2838131.2767541.2722981.276096166.8290196.7921326.7634346.7905986.628847171.0910551.0789251.0907961.0719711.064632181.6994231.6901161.7037721.6723321.695236191.0292721.0392591.0298921.013841.025177201.5368551.5024021.3468021.3178541.318113212.4063322.4712212.1559842.1473882.210699221.8134751.8483281.8692411.8691291.888762231.0418741.0347111.0436291.0334411.033672242.671282.619535 <td< td=""><td>3</td><td>2.276357</td><td>2.248527</td><td>2.23972</td><td>2.226642</td><td>2.1185</td></td<>	3	2.276357	2.248527	2.23972	2.226642	2.1185
61.0085321.0035931.0018131.0072231.00588471.0640351.0659451.0712791.057751.05942281.0607051.0663541.0669411.0583591.05990391.7122181.5435991.5233991.4954751.505549102.4667682.8800222.8730592.8689522.842203111.0290151.0201441.0173621.0235011.010327122.4981022.4325212.4531852.4647262.446214131.2814961.2581861.2667271.2592671.248035141.1302781.113051.1125641.1074831.109061151.2932081.2838131.2767541.2722981.276096166.8290196.7921326.7634346.7905986.628847171.0910551.0789251.0907961.0719711.064632181.6994231.6901161.7037721.6723321.695266191.0292721.0392591.0298921.0193841.025177201.5368551.5024021.3468021.3178541.318113212.4063322.4712212.1559842.1473882.210699221.8134751.8483281.8692411.8691291.888762231.0418741.0347111.0436291.0334411.033672242.671282.6193552.6190822.609832.595152	4	1.025263	1.016414	1.013597	1.012795	1.002236
71.0640351.0659451.0712791.057751.05942281.0607051.0663541.0669411.0583591.05990391.7122181.5435991.5233991.4954751.505549102.4667682.8800222.8730592.8689522.842203111.0290151.0201441.0173621.0235011.010327122.4981022.4325212.4531852.4647262.446214131.2814961.2581861.2667271.2592671.248035141.1302781.113051.1125641.1074831.109061151.2932081.2838131.2767541.2722981.276096166.8290196.7921326.7634346.7905986.628847171.0910551.0789251.0907961.0719711.064632181.6994231.6901161.7037721.6723321.695236191.0292721.0392591.0298921.0193841.025177201.5368551.5024021.3468021.3178541.318113212.4063322.4712212.1559842.1473882.210699221.8134751.8483281.8692411.8691291.888762231.0418741.0347111.0436291.0334411.033672242.671282.6193552.6190822.609832.595152	5	3.716255	3.341047	3.332472	3.400438	3.372572
81.0607051.0663541.0669411.0583591.05990391.7122181.5435991.5233991.4954751.505549102.4667682.8800222.8730592.8689522.842203111.0290151.0201441.0173621.0235011.010327122.4981022.4325212.4531852.4647262.446214131.2814961.2581861.2667271.2592671.248035141.1302781.113051.1125641.1074831.109061151.2932081.2838131.2767541.2722981.276096166.8290196.7921326.7634346.7905986.628847171.0910551.0789251.0907961.0719711.064632181.6994231.6901161.7037721.6723321.695236191.0292721.0392591.0298921.0193841.025177201.5368551.5024021.3468021.3178541.318113212.4063322.4712212.1559842.1473882.210699221.8134751.8483281.8692411.8691291.888762231.0418741.0347111.0436291.0334411.033672242.671282.6195352.6190822.609832.595152	6	1.008532	1.003593	1.001813	1.007223	1.005884
91.7122181.5435991.5233991.4954751.505549102.4667682.8800222.8730592.8689522.842203111.0290151.0201441.0173621.0235011.010327122.4981022.4325212.4531852.4647262.446214131.2814961.2581861.2667271.2592671.248035141.1302781.113051.1125641.1074831.109061151.2932081.2838131.2767541.2722981.276096166.8290196.7921326.7634346.7905986.628847171.0910551.0789251.0907961.0719711.064632181.6994231.6901161.7037721.6723321.695236191.0292721.0392591.0298921.0193841.025177201.5368551.5024021.3468021.3178541.318113212.4063322.4712212.1559842.1473882.210699221.8134751.8483281.8692411.8691291.888762231.0418741.0347111.0436291.0334111.033672242.671282.6195352.6190822.609832.595152	7	1.064035	1.065945	1.071279	1.05775	1.059422
102.4667682.8800222.8730592.8689522.842203111.0290151.0201441.0173621.0235011.010327122.4981022.4325212.4531852.4647262.446214131.2814961.2581861.2667271.2592671.248035141.1302781.113051.1125641.1074831.109061151.2932081.2838131.2767541.2722981.276096166.8290196.7921326.7634346.7905986.628847171.0910551.0789251.0907961.0719711.064632181.6994231.6901161.7037721.6723321.695236191.0292721.0392591.0298921.0193841.025177201.5368551.5024021.3468021.3178541.318113212.4063322.4712212.1559842.1473882.210699221.8134751.8483281.8692411.8691291.888762231.0418741.0347111.0436291.0334411.033672242.671282.6195352.6190822.609832.595152	8	1.060705	1.066354	1.066941	1.058359	1.059903
111.0290151.0201441.0173621.0235011.010327122.4981022.4325212.4531852.4647262.446214131.2814961.2581861.2667271.2592671.248035141.1302781.113051.1125641.1074831.109061151.2932081.2838131.2767541.2722981.276096166.8290196.7921326.7634346.7905986.628847171.0910551.0789251.0907961.0719711.064632181.6994231.6901161.7037721.6723321.695236191.0292721.0392591.0298921.0193841.025177201.5368551.5024021.3468021.3178541.318113212.4063322.4712212.1559842.1473882.210699221.8134751.8483281.8692411.8691291.888762231.0418741.0347111.0436291.0334411.033672242.671282.6195352.6190822.609832.595152	9	1.712218	1.543599	1.523399	1.495475	1.505549
122.4981022.4325212.4531852.4647262.446214131.2814961.2581861.2667271.2592671.248035141.1302781.113051.1125641.1074831.109061151.2932081.2838131.2767541.2722981.276096166.8290196.7921326.7634346.7905986.628847171.0910551.0789251.0907961.0719711.064632181.6994231.6901161.7037721.6723321.695236191.0292721.0392591.0298921.0193841.025177201.5368551.5024021.3468021.3178541.318113212.4063322.4712212.1559842.1473882.210699221.8134751.8483281.8692411.8691291.888762231.0418741.0347111.0436291.0334411.033672242.671282.6195352.6190822.609832.595152	10	2.466768	2.880022	2.873059	2.868952	2.842203
131.2814961.2581861.2667271.2592671.248035141.1302781.113051.1125641.1074831.109061151.2932081.2838131.2767541.2722981.276096166.8290196.7921326.7634346.7905986.628847171.0910551.0789251.0907961.0719711.064632181.6994231.6901161.7037721.6723321.695236191.0292721.0392591.0298921.0193841.025177201.5368551.5024021.3468021.3178541.318113212.4063322.4712212.1559842.1473882.210699221.8134751.8483281.8692411.8691291.888762231.0418741.0347111.0436291.0334411.033672242.671282.6195352.6190822.609832.595152	11	1.029015	1.020144	1.017362	1.023501	1.010327
141.1302781.113051.1125641.1074831.109061151.2932081.2838131.2767541.2722981.276096166.8290196.7921326.7634346.7905986.628847171.0910551.0789251.0907961.0719711.064632181.6994231.6901161.7037721.6723321.695236191.0292721.0392591.0298921.0193841.025177201.5368551.5024021.3468021.3178541.318113212.4063322.4712212.1559842.1473882.210699221.8134751.8483281.8692411.8691291.888762231.0418741.0347111.0436291.0334411.033672242.671282.6195352.6190822.609832.595152	12	2.498102	2.432521	2.453185	2.464726	2.446214
151.2932081.2838131.2767541.2722981.276096166.8290196.7921326.7634346.7905986.628847171.0910551.0789251.0907961.0719711.064632181.6994231.6901161.7037721.6723321.695236191.0292721.0392591.0298921.0193841.025177201.5368551.5024021.3468021.3178541.318113212.4063322.4712212.1559842.1473882.210699221.8134751.8483281.8692411.8691291.888762231.0418741.0347111.0436291.0334411.033672242.671282.6195352.6190822.609832.595152	13	1.281496	1.258186	1.266727	1.259267	1.248035
166.8290196.7921326.7634346.7905986.628847171.0910551.0789251.0907961.0719711.064632181.6994231.6901161.7037721.6723321.695236191.0292721.0392591.0298921.0193841.025177201.5368551.5024021.3468021.3178541.318113212.4063322.4712212.1559842.1473882.210699221.8134751.8483281.8692411.8691291.888762231.0418741.0347111.0436291.0334411.033672242.671282.6195352.6190822.609832.595152	14	1.130278	1.11305	1.112564	1.107483	1.109061
171.0910551.0789251.0907961.0719711.064632181.6994231.6901161.7037721.6723321.695236191.0292721.0392591.0298921.0193841.025177201.5368551.5024021.3468021.3178541.318113212.4063322.4712212.1559842.1473882.210699221.8134751.8483281.8692411.8691291.888762231.0418741.0347111.0436291.0334411.033672242.671282.6195352.6190822.609832.595152	15	1.293208	1.283813	1.276754	1.272298	1.276096
181.6994231.6901161.7037721.6723321.695236191.0292721.0392591.0298921.0193841.025177201.5368551.5024021.3468021.3178541.318113212.4063322.4712212.1559842.1473882.210699221.8134751.8483281.8692411.8691291.888762231.0418741.0347111.0436291.0334411.033672242.671282.6195352.6190822.609832.595152	16	6.829019	6.792132	6.763434	6.790598	6.628847
191.0292721.0392591.0298921.0193841.025177201.5368551.5024021.3468021.3178541.318113212.4063322.4712212.1559842.1473882.210699221.8134751.8483281.8692411.8691291.888762231.0418741.0347111.0436291.0334411.033672242.671282.6195352.6190822.609832.595152	17	1.091055	1.078925	1.090796	1.071971	1.064632
201.5368551.5024021.3468021.3178541.318113212.4063322.4712212.1559842.1473882.210699221.8134751.8483281.8692411.8691291.888762231.0418741.0347111.0436291.0334411.033672242.671282.6195352.6190822.609832.595152	18	1.699423	1.690116	1.703772	1.672332	1.695236
212.4063322.4712212.1559842.1473882.210699221.8134751.8483281.8692411.8691291.888762231.0418741.0347111.0436291.0334411.033672242.671282.6195352.6190822.609832.595152	19	1.029272	1.039259	1.029892	1.019384	1.025177
22 1.813475 1.848328 1.869241 1.869129 1.888762 23 1.041874 1.034711 1.043629 1.033441 1.033672 24 2.67128 2.619535 2.619082 2.60983 2.595152	20	1.536855	1.502402	1.346802	1.317854	1.318113
23 1.041874 1.034711 1.043629 1.033441 1.033672 24 2.67128 2.619535 2.619082 2.60983 2.595152	21	2.406332	2.471221	2.155984	2.147388	2.210699
24 2.67128 2.619535 2.619082 2.60983 2.595152	22	1.813475	1.848328	1.869241	1.869129	1.888762
	23	1.041874	1.034711	1.043629	1.033441	1.033672
25 1.009858 1.01664 1.001564 1.010728 1.005667	24	2.67128	2.619535	2.619082	2.60983	2.595152
	25	1.009858	1.01664	1.001564	1.010728	1.005667

Appendix I Detail of each cross-sectional data

Index	Station				
	1	2	3	4	5
Width (Meter)	70	88	133	104	104
Cross-sectional	319.144	390.1	325.14	696.24	479.8079
area (Square					
Meter)					
Maximum Depth	6.35	7.44	5.4	9.68	7.14
(Meter)		111113	1		
Average Depth	4.552282	4.432954545	2.444662	8.337797	4.613537
(Meter)	4				
Depth at center	5.064	7.376	3.4	9.305147	6.854
line (Meter)	1	////			
Depth at median	5.058429	6.110936	5.174088	9.610747	6.853368
line (Meter)					
X Value (Meter)	-12	20	34.5	11	-22
W' Value (Meter)	-0.17408	8.6133	19.28865	1.045	0.036
A' Value	0.881056	58.08351292	82.69129	9.883554	0.246733
(Square Meter)	No.		5		
Aw value	0.004974	0.195756818	0.290055	0.020096	0.000692
Aa value	0.005521	0.297787813	0.50865	0.028391	0.001028
Awa value	2.75E-05	0.058293995	0.147537	0.000571	7.12E-07
A1 value	0.429926	0.45848945	0.823972	0.22006	0.440731
A2 value	0.121714	0.185308954	0.450947	0.030513	0.155951
Area of right	160.453	146	81.3625	338.2497	239.6631
(Square Meter)					
Area of left	158.691	244.1	243.7775	357.9903	240.1448
(Square Meter)					
A*	0.005521	-0.251473981	-0.49952	-0.02835	-0.001

VITA

NAME

Pawat Wattanahareekul

DATE OF BIRTH 14 August 1996

PLACE OF BIRTH Khon Kaen

INSTITUTIONS ATTENDED

High School: Demonstration School Khon Kaen University (Suksasart)

Bachelor's degree (B.Sc. in Geology) : Chulalongkorn University Master's degree (M.Sc. in Geology) : Chulalongkorn University

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University