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1. Introduction 

1.1 Introduction 
 

Dynamical systems are useful models for wide-ranging natural 

phenomena from population expansion (Strogatz, 2018) and bug 

outbreaks (Acebrón et al., 2005) to synchronized flashing of fireflies 

(Rodrigues et al., 2016). Indeed carefully designed dynamical systems, 

such as recurrent neural networks (RNN), have proved highly successful 

in modeling temporal data (Elsaraiti & Merabet, 2021; Muncharaz, 2020). 

However, tuning the parameters of large dynamical systems can be a 

challenge (Boedecker et al., 2012; Gupta et al., 2021; Nakajima & 

Fischer, 2021) ,especially because the interactions among microscopic 

elements can result in complex, high-dimensional dynamics. 

Recurrent neural networks (RNNs) are a class of artificial neural 

networks (Schneidman et al., 2003). Such models are among the most 

widely used methods for predicting temporal data sequences and have 

been shown to excel in a diverse range of applications, including 

forecasting financial time series (Sako et al., 2022) ,sentimental analysis 

(Tangpanitanon et al., 2022) or text translation (Lipton, 2015). Deeper 

understanding of how RNNs achieve their performance is of both 

fundamental and practical interest. This requires a quantitative analysis of 

the interplay between nonlinearity and interactions between the building 

blocks of the dynamical systems on which RNNs are based. 

However, the interaction between microscopic constituents of large 

nonlinear dynamical system is difficult to analyze. Here, I consider a 

simplified model of nonlinear dynamical systems that allows for an 

exploration of how system size, interactions and heterogeneity give rise 

to the ability to memorize and predict. More specifically, I consider the 

Kuramoto model, interacting phase oscillators system, because this model 

exhibits a number of interesting emergent behaviors (Acebrón et al., 

2005; Rodrigues et al., 2016). The emergent properties of Kuramoto 

model used to explain in many physical system, including 

synchronization of metronomes placed on a freely moving base 

(Pantaleone, 2002), or neuron activities (Breakspear et al., 2010; Cumin 

& Unsworth, 2007; Schmidt et al., 2015). Consequently, I analyze the 

memory and predictive capabilities of the system through the principled 

lens of mutual information according to the brain functions. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

Nevertheless, the Kuramoto model is too complicated to 

understand the interaction of microscopic elements due to the number of 

units. As a result, I consider two interacting phase oscillators based on 

Kuramoto model because it is the smallest system with complete system 

components. My model can be easily generalized to incorporate more 

units, different nonlinearity as well as nonreciprocal interactions. My 

results offer a first step towards more complete understanding of how 

computation emerges from interactions. 

The thesis is divided into five chapters. Chapter two explains the 

background knowledge, including interacting phase oscillator systems 

and information theory. Chapter three presents the methodology, system 

overview, and how to quantify the performance of the system. Chapter 

four describes my findings and discusses the physical intuitions behind 

my numerical observations. Chapter five concludes the thesis and 

highlights directions for future work. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

 

2. Background Knowledge 
 

This chapter provides the necessary background information for 

understanding this thesis. The author divides this chapter into two 

sections. The theoretical examination of the interacting phase oscillators 

system is in the first section. This data describes the relationship between 

the system and its performance. Another section is information theory, 

which is the knowledge we use to quantify the information encoding 

capabilities of a system. 

 

2.1 Interacting Phase Oscillators 

The interacting phase oscillators system (see Figure 1) that we 

investigated is adapted from the “Kuramoto model” (Kuramoto & 

Nishikawa, 1987; Rodrigues et al., 2016). The system is constructed with 

𝑁 coupled phase oscillators (𝜃𝑖(𝑡)) that have their natural frequency (𝜔𝑖) 

drawn from a distribution 𝑔(𝜔). The following equation governs the 

dynamics of the system 

 𝑑𝜃𝑖

𝑑𝑡
= 𝜔𝑖 + ∑ 𝐾𝑖𝑗

𝑁

𝑗=1

sin(𝜃𝑗 − 𝜃𝑖) (1) 

 

where 𝐾𝑖𝑗 denotes the coupling strength between oscillator 𝑖 and 𝑗. 

Intuitively, each oscillator runs with its frequency individually (𝜃𝑖(𝑡 +
𝛥𝑡) = 𝜃𝑖(0) + 𝜔𝑖𝛥𝑡), but (positive) couplings encourage their phases to 

align. For weak couplings, each oscillator behaves as if they are 

independent. On the other hand, strong (positive) couplings align the 

phases of oscillators and all oscillators share the same dynamics. This is 

the advantage that we tend to use to determine this thesis. 
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Each circular arrow represents the time evolution of the phase of each oscillator. Blue 

dot line illustrates the interaction between oscillators. 

 

2.1.1 Mean-field coupling model and Phase transition 
 

Mean-field coupling model is the interacting phase oscillators 

system in the limit of infinite oscillators, 𝑁 → ∞, and identical coupling 

strength, 𝐾𝑖𝑗 = 𝐾/𝑁 > 0. The classical analysis of synchronization was 

in the form of time-dependent order parameter 𝑟(𝑡) ∈ [0,1], defined as 

 

𝑟(𝑡)𝑒𝑖𝜓(𝑡) =
1

𝑁
∑ 𝑒𝑖𝜃𝑗(𝑡)

𝑁

𝑗=1

, (2) 

where 𝜓(𝑡) is the average phase of the system and the order parameter 

𝑟(𝑡) denotes order parameter, 0 ≤ 𝑟(𝑡) ≤ 1. If 𝑟(𝑡) = 0, it means 

oscillators does not align the average phase 𝜓(𝑡). So, 𝑟(𝑡) = 0 implies 

that oscillators act incoherently. In contrast, 𝑟(𝑡) = 1 indicates that 

oscillators run with the same phase as average phase. As a result, 𝑟(𝑡) =
1 implies that oscillators are coherence. We can rearrange Equation 1 into 

 
𝜃𝑖̇ = 𝜔𝑖 + 𝐾𝑟sin(𝜓 − 𝜃𝑖) ;  𝑖 = 1,2,3, . . . , 𝑁 (3) 

and then the system is coupled to the average phase with coupling 

strength 𝐾𝑟. In thermodynamic limit, we can use the probability 

distribution of phase of oscillator𝜌(𝜃, 𝜔, 𝑡) to find the order parameters, 

through the following equation averaged over phase and frequency. 

Figure 1 Illustration of interacting phase oscillators 
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𝑟𝑒𝑖𝜓 = ∫ ∫ 𝑒𝑖𝜃

+∞

−∞

𝜋

−𝜋

𝜌(𝜃, 𝜔, 𝑡)𝑔(𝜔)𝑑𝜃𝑑𝜔 (4) 

where 𝜌(𝜃, 𝜔, 𝑡) can be obtained from the continuity equation with an 

angular or drift velocity 𝑣 = 𝜔 + 𝐾𝑟sin(𝜓 − 𝜃), 

 ∂𝜌

∂𝑡
+

∂

∂𝜃
[𝜔 + 𝐾𝑟sin(𝜓 − 𝜃)]𝜌. (5) 

Consequently, we can determine the system’s behavior using the order 

parameter and show it in the phase transition. 

(a) Theoretical results (b) simulation results of 200 oscillators and natural frequency 

drawn from Gaussian distribution. 

As the coupling strength increases, the system will change from 

incoherence into partial coherence and then completely coherence. The 

transition happened at critical point point at 𝐾𝑐 = 2/[𝜋𝑔(0)] which 

depends on the distribution of natural frequency, 𝑔(𝜔) (Kuramoto & 

Nishikawa, 1987), (Acebrón et al., 2005). In a system with finite number 

of units (see Figure 2), the sharp phase transition manifests as a smooth 

crossover. 

 

2.1.2 Mean-field coupling with white noise and phase transition 

This section focuses on an alternative model of mean-field 

coupling oscillators by adding white noise into the system and specifying 

the natural frequency distribution. The natural frequency is drawn from 

Figure 2 Phase transition of Mean-field model 

(a) (b) 
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the discrete bimodal distribution, which limits the value to ±𝜔0 where 

𝜔0 ∈ ℝ. The dynamics of this system is governed by the following 

equation 

 

𝜃𝑖̇ = 𝜔𝑖 +
𝐾

𝑁
∑ sin

𝑁

𝑗=1

(𝜃𝑗 − 𝜃𝑖) + 𝜂𝑖(𝑡),  𝑖 = 1,2,3, . . . 𝑁. (6) 

where 𝜂𝑖
(𝑡) is the independent white-noise from stochastic process with 

expectation value; D is Diffusion coefficient 

 
⟨𝜂𝑖(𝑡)⟩ = 0, ⟨𝜂𝑖(𝑡)𝜂𝑗(𝑡′)⟩ = 2𝐷𝛿(𝑡 − 𝑡′)𝛿𝑖𝑗 ,  . (7) 

In addition to order parameter analysis, we can reformulate eq. 6 into the 

following equation 

 
𝜃𝑖̇ = 𝜔𝑖 + 𝐾𝑟sin(𝜓 − 𝜃𝑖) + 𝜂𝑖(𝑡),  𝑖 = 1,2,3, . . . 𝑁,  . (8) 

The presence of the noise term means that we have to analyze the 

Fokker-Planck equation instead of the continuity equation to compute the 

probability distribution of phase oscillators. However, it is not easy to 

analyze the Fokker-Planck equation of a large system. Fortunately, we 

can study the probability distribution of one oscillator as the following 

equation to understand the dynamic of system. 

 𝜕𝜌

𝜕𝑡
= 𝐷

𝜕2𝜌

𝜕𝜃2
−

𝜕

𝜕𝜃
(𝑣𝜌) (9) 

 
𝑣(𝜃, 𝜔, 𝑡) = 𝜔 + 𝐾𝑟𝑠𝑖𝑛(𝜓 − 𝜃) (10) 
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Consequently, the behavior analysis shifts to focus on the state of 

probability distribution instead because once we find the phase 

distribution, we can express the behavior of the system. 

(a) Stability analysis of probability distribution ((Bonilla et al., 1998)) (b) simulation 

results of 30 oscillators. 

The stability analysis of phase probability distribution for 

incoherent initialization (𝜌0 = 1/2𝜋) is illustrated in fig.3(a).  (Bonilla et 

al., 1998) separate the stable and unstable with the line 𝐾/𝐷 =
2[1 + (𝜔0/𝐷)2]. The stable indicates that probability distribution of the 

phase is uniformly distributed over time. The stable probability 

distribution leads to an incoherent system because there is no change in 

population density. The unstable probability distribution evolves into 

high density at a specific phase, which means they are coherent. A 

simulation of 30 oscillators demonstrated the similar properties of the 

system that variate the behavior from incoherence to coherence while 

changing the parameters, see Figure 3(b) 

In this thesis, I investigated the mean-field coupling model with 

white noise because it reduces the number of control parameters and it is 

consistent with the natural frequency distribution. 

2.2 Information Theory 

Information theory is a study of quantifying information in 

delivered messages for communication. It can be used to quantify how 

much information is in an event or in a random variable. Information 

theory was proposed and developed by Claude Shannon (MacKay, 2002). 

Quantifying information is the concept of measuring how much surprise 

the occurrence is. If it hardly happens, it has high information because we 

(a) (b) 

Figure 3 Phase transition of Mean-field model with white noise 

file:///C:/Users/xman_/Downloads/thesis_latest/res_word_doc.docx%23fig:theo_mf_noise
file:///C:/Users/xman_/Downloads/thesis_latest/res_word_doc.docx%23fig:rosc_noise
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are surprised when the event occurred, and vice versa. Consequently, we 

can determine the information through the probability of an event. 

 
𝐼(𝑥) = −log2(𝑝(𝑥)). (11) 

Equation (11) demonstrates the quantifying of information of an 

event 𝑥 through the probability that the event 𝑥 will occur. The minus 

sign restricts the value in the domain [0, ∞). Zero information means that 

there is no surprise in the event because it certainly happens. The base-2 

logarithm is used to represent the information in “bit” unit. 

Example: Consider the information of tossing coin experiment 

In the previous topic, the tossing coin experiment is one of a 

stochastic process. Tossing coin provides the random variable with 

“head" and “tail" values. A fair coin says that it has a probability of 

facing “head" and “tail" at 0.5. So, we can determine the information in a 

fair coin. 

𝐼(𝑓𝑎𝑖𝑟 𝑐𝑜𝑖𝑛) = −log2
(0.5) = −log2 (

1
2

) = 1.00 𝑏𝑖𝑡𝑠 

Information in a fair coin is 1 bit. It shows that a fair coin has two 

representations that could face up. 

2.2.1 Shannon Entropy 

Shannon entropy or information entropy (𝐻(𝑥)) quantifies information 

uncertainty in a random variable (MacKay, 2002). Intuitively, 

information entropy is the average information of available states in the 

random variable. The previous topic shows the information value 

expressing how rare the event is. So, the information entropy explains the 

average number of information required to represent the random variable. 

Information entropy of a random variable 𝑋 can be calculated with 𝑁 

discrete states from the following equation. 

 

𝐻(𝑋) = − ∑ 𝑝

𝑁

𝑖=1

(𝑥𝑖)log2(𝑝(𝑥𝑖)) ;  𝑥𝑖 ∈ 𝑋. (12) 
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2.2.2 Joint Entropy and Conditional Entropy 

From Equation 12, we can substitute with joint probability or 

conditional probability. So, we obtain the information entropy that 

express the uncertainty about the correlation between two random 

variables instead. The joint entropy and conditional entropy can be 

calculated from the following equations. 

 

𝐻(𝑋, 𝑌) = − ∑ ∑ 𝑝

𝑀

𝑗=1

𝑁

𝑖=1

(𝑥𝑖, 𝑦𝑗)  log2 (𝑝 (𝑥𝑖, 𝑦𝑗))  ;  𝑥𝑖 ∈ 𝑋, 𝑦𝑗 ∈ 𝑌

𝐻(𝑋|𝑌) = − ∑ 𝑝

𝑀

𝑗=1

(𝑦𝑗) ∑ 𝑝

𝑁

𝑖=1

(𝑥𝑖|𝑦𝑗) log2
(𝑝 (𝑥𝑖|𝑦𝑗))

= − ∑ ∑ 𝑝

𝑀

𝑗=1

𝑁

𝑖=1

(𝑥𝑖, 𝑦𝑗) log2
(𝑝 (𝑥𝑖|𝑦𝑗))  ;  𝑥𝑖 ∈ 𝑋, 𝑦𝑗 ∈ 𝑌

 

 

(13) 

 

(14) 

 

(15) 

Equation 13 is the calculation of joint entropy, which use the joint 

probability between discrete random variables 𝑋 and 𝑌. Another 

equation, Equation 14, is the general form of conditional entropy. 

Equation 14 can be written in an alternative form as Equation 15. 

2.2.3 Mutual Information 

In the previous topic, conditional entropy can measure the 

uncertainty about the correlation between two random variables. We can 

say that conditional entropy is information that 𝑌 does not know about 𝑋, 

referred to as Equation 14 because we already knew information about 𝑌 

in the condition. Still, there is uncertainty about knowing 𝑋. 

In the context of Equation 14, if we know the information entropy 

of 𝑋 and the conditional entropy of 𝑋 given 𝑌, then we can determine the 

information that 𝑌 knows about 𝑋. We define the term information when 

two random variables know information about each other as “mutual 

information" (𝐼(𝑋; 𝑌)), where the information entropy of 𝑋 is called 

output entropy, and the conditional entropy is called noise entropy. 

 
𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌). (16) 

file:///C:/Users/xman_/Downloads/thesis_latest/res_word_doc.docx%23eq:jointen
file:///C:/Users/xman_/Downloads/thesis_latest/res_word_doc.docx%23eq:conen
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Figure 4 illustrates the relation between information entropy and 

mutual information. There are two random variables, 𝑋, and 𝑌, sharing 

the mutual information that both random variables know about each 

other. 

 

  

Figure 4 Entropy-Mutual Information Relation in Venn Diagram 
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3. Methodology 

In this thesis, I used an information-theoretic framework to 

investigate the impact of interacting phase oscillator characteristics on 

memory and predictive capability (Palmer et al., 2015a). According to the 

interacting phase oscillator model, we have three parameters to 

experiment: natural frequency, coupling constant, and input coupling 

constant, which is the strength of external signals. Consequently, we must 

vary the system parameters and investigate the memory and predictive 

capability. This section will provide the approach and hypothesize the 

results. 

3.1 System Overview 

According to the interacting phase oscillators, a system was built 

from the natural frequency of each oscillator, coupling terms, and white 

noise. The system will be able to encode terms based on the external 

input. Consequently, the external input-driven terms, 𝐾𝑖𝑛sin(𝜃𝑖 − 𝑥𝑖𝑛), 

were then added to the system, Equation 17. 

 𝑑𝜃𝑖

𝑑𝑡
= 𝜔𝑖 +

1

𝑁
∑ 𝐾𝑖𝑗

𝑁

𝑗=1

sin(𝜃𝑗 − 𝜃𝑖) + 𝐾𝑖𝑛sin(𝜃𝑖 − 𝑥𝑖𝑛) + 𝜂𝑖(𝑡) (17) 

where 𝜃𝑖 and 𝜔𝑖 denote the phase and natural frequency of each 

oscillator, 𝑁 number of oscillators, 𝐾𝑖𝑗 coupling constant between 

oscillator 𝑖𝑡ℎ
 and 𝑗𝑡ℎ

, 𝐾𝑖𝑛 input-coupling constant, 𝑥𝑖𝑛 external input 

signal, and 𝜂𝑖
(𝑡) Gaussian white noise. The input-coupling term will 

assign the external signal, which will be coupled with oscillators 𝑖𝑡ℎ
, 

whose strength will be controlled by 𝐾𝑖𝑛. In this work, we focused on two 

interacting phase oscillators and binary signal input drawn from the 

Poisson process. Consequently, the Equation 17 will be reduced to 

Equation 18. 

 𝑑𝜃1

𝑑𝑡
= 𝜔1 +

1
2

𝐾12sin(𝜃2 − 𝜃1) + 𝐾𝑖𝑛sin(𝜃1 − 𝑥𝑖𝑛) + 𝜂1
(𝑡)

𝑑𝜃2

𝑑𝑡
= 𝜔2 +

1
2

𝐾21sin(𝜃1 − 𝜃2) + 𝐾𝑖𝑛sin(𝜃2 − 𝑥𝑖𝑛) + 𝜂2
(𝑡)

 (18) 

file:///C:/Users/xman_/Downloads/thesis_latest/res_word_doc.docx%23eq:2oscsys1
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The system is illustrated in the following figure, Figure 5. 

Two oscillators are interacting with each other and coupling to the external signal. 

Variable in the system relied on Equation 18 

Next, we computed the time-evolution of the phases of oscillators 

through stochastic integration method (Rößler, 2010). 

3.2 Estimation Mutual Information between phases of 

oscillators and inputs 

To estimate mutual information between two variables required a 

collection of the event for both variables. Consequently, we collected the 

time evolution of oscillator’s phases from each setup’s parameters with 

5000 realizations of input signal. Then we can estimate the mutual 

information between the phases of oscillators and inputs to quantify 

memory and predictive capability. 

3.2.1 Oscillator phase discretization 

The phases of oscillators are continuous variables. It is not easy to 

compute mutual information with a binary state, a discrete variable. So, 

we propose discretizing the phases of oscillators into a finite number of 

states. The procedure for discretizing is done through the following steps. 

1. Re-scale phase in the domain [0,2𝜋] since the phase obtained from 

the dynamical equation is a continuous variable in real space, so 

the phase still goes around in circle. 

2. Discretize re-scaled phase by using bins over a circle. For example, 

if we need to separate phases into four states, then  we binned 

phase on the circle into four parts, ([0,
𝜋

2
] , [

𝜋

2
, 𝜋] , [𝜋,

3𝜋

2
] , [

3𝜋

2
, 2𝜋]). 

Next, we labeled the phases of oscillators according to the label 

that each phase fell in. (Methodology Figure) 

Figure 5 Illustration of two interacting phase oscillators 

file:///C:/Users/xman_/Downloads/thesis_latest/res_word_doc.docx%23fig:sysov


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 13 

In this thesis, we focused on four discretization states because they can 

capture the activity that occurred and support computational efficiency. 

3.2.2 Estimating Mutual Information 

We estimated the collection of the phases of oscillators and input 

signal at different times to quantify the memory and predictive capability 

of the system. The estimation is done through the following equation. 

 
𝐼(𝜃1(𝑡), 𝜃2(𝑡); 𝑥𝑖𝑛(𝑡′)) = ∑ ∑ 𝑝

𝑥𝑖𝑛𝜃1,𝜃2

(𝜃1, 𝜃2|𝑥𝑖𝑛)𝑝(𝑥𝑖𝑛)log2 [
𝑝(𝜃1, 𝜃2|𝑥𝑖𝑛)

𝑝(𝜃1, 𝜃2)
] (19) 

According to Equation 19, this is the mutual information between 

the system state (the phases of two oscillators) at time 𝑡 and the input 

signal at time 𝑡′. Consequently, we quantified memory by estimating 

mutual information of the collection of the input signal in the past (𝑡′ <
𝑡). The predictive capability, on the other hand, is estimated with the 

input signal collection in the future (𝑡′ > 𝑡), (Palmer et al., 2015b) . 

3.3 Effect of three parameters on the system characteristic 

The setup of parameters varies the system characteristics. So, we 

aim to show how each parameter affects memory and predictive 

capability based on behavior analysis. Here, we adjust three parameters to 

one at a time investigated their effects. 

3.3.1 Input-Coupling Constant 

The first parameter that we investigate is the input-coupling 

constant (𝐾𝑖𝑛) because its strength could show how strongly the external 

signal affects the system. Thus, we hypothesized that the amount of 

memory and predictive capability would increase as 𝐾𝑖𝑛 was increased. 

However, if 𝐾𝑖𝑛 is too strong, the system will track the input rather 

than encoding any information about it. So, we would see the mutual 

information between the phases of oscillators and input signal as the same 

information between input and input signal. 

3.3.2 Coupling Constant 

The coupling constant (𝐾𝑖𝑗) is the next parameter we looked at. 

This thesis only determined the fully connected scheme (𝐾12 = 𝐾21 = 𝐾) 

because we could readily link back to the behavior of the broader system. 

file:///C:/Users/xman_/Downloads/thesis_latest/res_word_doc.docx%23eq:calMIdifftime
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The effect of the coupling constant is to adjust the dynamics of oscillators 

to be synchronized. Intuitively, this means each oscillator interacted with 

each other and shared information. So, we hypothesized that interaction 

between oscillators helps the system increase memory and predictive 

capability. 

Nevertheless, coupling constant could help increasing information. 

Coupling constant also drives the system into the synchronized state 

where all the oscillators behave the same. Consequently, this scheme 

would decrease memory and predictive capability when 𝐾 was too strong 

because both oscillators acted like one. 

3.3.3 Natural Frequency 

The natural frequency (𝜔𝑖) is the last parameter we considered. 

Natural frequency is the characteristic of an oscillator. In this experiment, 

𝜔𝑖 is drawn from set {1, −1}. So, there are only three combinations: 

{1,1}, {1, −1}, {−1, −1}. 

We hypothesized that the setup of {𝜔1, 𝜔2} as {1, −1} could help 

the system increasing memory and predictive capability because this 

structure sets each oscillator to have different character. That means both 

oscillators would behave differently and could encode other parts of the 

input. 

3.4 Methodology Conclusion 

We start the process by collecting the response from the dynamical 

equation with the different realization of inputs. After that, we discretize 

the state of oscillators and estimate the mutual information between 

oscillators and inputs at different times. Consequently, we variate the 

setup parameter of the system, including input-coupling constant (𝐾𝑖𝑛), 

coupling constant (𝐾), and natural frequency configuration, to 

demonstrate the relationship between the system’s characteristic and 

encoding efficiency. 
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4. Results 

In this chapter, we investigated the memory and predictive 

capabilities for noninteracting and interacting systems with homogeneous 

and heterogeneous natural frequencies. 

4.1 Effect of Input-Coupling Constant 

4.1.1 Estimation Mutual Information at Different Time 

First, we estimated mutual information between the phases of both 

oscillators and the external signals. The result is shown in Figure 6. 

This results compared different setup of input coupling constant. The solid black 

(𝐼(𝑥𝑖𝑛(𝑡); 𝑥𝑖𝑛(𝑡′))) label is mutual information estimated from probability 

distribution of input compared at different times. The input’s mutual information 

maximize at 1 bits because of binary signal. It demonstrates that strength of external 

signal help increasing both memory and predictive capability, referred to the area 

under curves. 

The results reveal that memory and predictive capability improve 

as the input-coupling constant increases. Similarly, as the input-coupling 

constant increases, so do the memory and predictive capabilities. 

Consequently, we used equal time mutual information 

(𝐼(𝜃1, 𝜃2; 𝑥𝑖𝑛)[𝛥𝑡 = 0]) to show memory and predictive capability as 

encoded information in the system in the next sections. 

 

 

Figure 6 Mutual information compared at different times 

file:///C:/Users/xman_/Downloads/thesis_latest/res_word_doc.docx%23fig:mountcurve
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4.1.2 Equal Time Mutual Information Without Interaction Between 

Oscillators 

Figure 6 shows the equal time mutual information changed in the 

input-coupling constant with respect to . 

When 𝐾𝑖𝑛 is closed to zero, memory and predictive capability are 

approximately zero because the system encodes noise instead of the 

external signal. Next, the encoded information increases along with the 

strength of the external signal until it reaches the maximum value at one 

bit because 𝐾𝑖𝑛 increases the signal to noise ratio. 

4.1.3 State Space Efficiency 

Next, we compared the information about external input in one and 

two oscillators to show how effectively the system uses state-space to 

encode information. Intuitively, two oscillators would encode more 

information than one oscillator because we increased statistical 

independence. However, 𝐾𝑖𝑛 caused both oscillators to act similarly, and 

therefore two oscillators behave like one instead. 

Figure 7 Equal time mutual information without interaction 
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(a) Ratio between mutual information estimated from two oscillators and one 

oscillator. (b) Mutual information between oscillators’ phases versus 𝐾𝑖𝑛  

Figure 8(a) shows two main points at the extreme limit. First, the 

two oscillators behaved differently in a noise-dominated domain with a 

low input-coupling constant because Gaussian white noise disrupted the 

system ability to encode information. As a result, two oscillators can use 

their state-space to encode information more efficiently than one 

oscillator because noise increases the statistical independence between 

oscillators. We can inspect the mutual information between oscillators as 

shown in Figure 8(b). It demonstrates that both oscillators know almost 

nothing about each other, which means they do not correlate with each 

other. 

On the other hand, the oscillators were likely to behave similarly as 

the input-coupling constant was increased until they behaved identically 

in the input-dominated regime. However, as seen in Figure 8(b) the 

mutual information between oscillator phases approached one, which 

means the system replicates input. As a result, the oscillators were 

inefficient in using state-space in this regime. 

4.1.4 Output and Noise Entropy 

This section inspects the result in Figure 7 by using the extraction 

of mutual information, output entropy, and noise entropy. Because we 

used the combination of four discretization states of both oscillators, one 

and two oscillators have output entropy maximum at 2 and 4 bits. 

(a) (b) 

Figure 8 How system without interaction using state space to encode 
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(a)Two oscillators’ response compare with input (b) One oscillators’ response 

compare with input 

Figure 9(a) and 9(b) showed that noise entropy, or the input 

information that oscillators were unaware of, was very high when the 

system was set up in a noise-dominated regime. Then noise entropy 

decreased while the input-coupling constant increased until saturated at 

the input-dominated regime. Output entropy also performed the same 

trends, but the gap between output and noise entropy indicateds that the 

system gains information depending on the external input strength. 

4.2 Effect of Coupling Constant 

We still investigated the system performance in the same scheme, 

but we now added the coupling constant and interaction between 

oscillators. 

4.2.1 Equal Time Mutual Information With Interaction Between 

Oscillators 

Two oscillators can share their present state simultaneously 

because of their interaction. This activity demonstrated how two 

oscillators share information. As a result, the ability to encode data is 

improved, see Figure 10. 

As expected, the interaction aids the system in encoding more data. 

On the other hand, the encoding performance depends on the strength of 

the external signal, referred to as the system with interaction, which is not 

significantly different from the system without interaction. 

 

 

 

(a) (b) 

Figure 9 Output and Noise entropy of system without interaction 
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Red line and Black line are the results from the systems with and without interaction. 

The results are estimated from the phase of two oscillators and inputs. 

 

4.2.2 State Space Efficiency 

Now we can see how effectively a system with interaction use 

state-space to encode external signal.  

(a) Efficiency ratio between estimation of two and one oscillator. (b) Mutual 

information between oscillators’ phases while changing 𝐾𝑖𝑛 

Trends for a system with interaction were similar to the system 

without interaction, but the ratio was lower, as shown in Figure 11(a). It 

signified that the interaction caused both oscillators to behave more 

similarly. As same as results in Figure 11(b), mutual information between 

both oscillators also showed that both oscillators act equally with each 

other. Then the similarity of the phases of oscillators caused the system 

uses less state space to encode information. However, both oscillators 

performed the same as the system without interaction in an input-

dominated regime. 

Figure 11  Comparing Encoding efficiency between systems with and without 

interaction 

(a) (b) 

Figure 10 Equal time mutual information with interaction 
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4.2.3 Output and Noise Entropy 

According to the results of the system without interaction, we will 

investigate output and noise entropy, comparing previous results with a 

system with interaction through the following figure.  

(a) Output and noise entropy for two oscillators (b) Output and noise entropy 

estimated from one oscillators’ response 

We can see that the output entropy of the system with interaction 

decreases because the system uses less state space than the system 

without interaction. However, the noise entropy lowered when the system 

added the interaction. This result revealed that the interaction helps 

oscillators share information and decrease noise. 

4.3 Effect of Setup of Natural Frequency 

This section will look at the impact of different natural frequency 

setups on encoding efficiency and compare our findings to prior ones. 

4.3.1 Equal Time Mutual Information 

First, we considered equal time mutual information set up with 

different natural frequency compared with previous results through the 

following figure, Figure 13. 

(a) (b) 

Figure 12 Output and noise entropy comparing the system with and without interaction 

Figure 13  Equal time mutual information with interaction and differentiate natural frequency 
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The results revealed similar tendencies to previous findings, 

although it gets more information than in the system with interaction in 

the noise-dominated regime. Because of increasing heterogeneity of the 

system, oscillators with different characteristic helps to suppress noise 

even more. However, the trend converged to the maximum value in an 

input-dominated regime. 

4.3.2 Input Response Efficiency 

The interesting point is around noise-dominated regimes as in 

Figure 14(a) and 14(b). In both natural frequency with interaction 

configurations, the trend of the ratio of mutual information calculated 

from two and one oscillators is almost identical. 

 

(a) Ratio between mutual information estimated from two oscillators and one 

oscillator (b) Mutual information between oscillators’ phases while changing 

Figure 14(b) indicates that both oscillators in a system with 

different natural frequency configurations act differently in a noise-

dominated regime. Surprisingly, the system with the same natural 

frequency in the center of the trend of mutual information between 

oscillators behaves more like both oscillators with distinct natural 

frequency configurations. The cause of this occurrence is that the noise 

was not only disturb the system, but it also perturbed the system into 

other state. Hence, the interacting phase oscillators reached the 

undercover state to encode the information. However, each oscillators 

shared information together and then oscillator acted similar to one 

oscillator because they shared state together. 

 

(a) (b) 

Figure 14 Input responded efficiency of the system with different natural frequency configuration 
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4.3.3 Output and Noise Entropy 

We compared output and noise entropy between a system with 

different natural frequency configurations and prior results in this topic. 

We illustrate the results through Figure 15. 

(a) Output and noise entropy for two oscillators (b) Output and noise entropy for one 

oscillator 

Natural frequency configurations enhanced output entropy, as 

expected because the varied features of oscillators promote statistical 

independence. However, as statistical independence increased, noise 

entropy increased as well. Noise entropy was low and significant in 

noise-dominated regimes because of the external input response of the 

system. Furthermore, we found that the different natural frequency 

configurations increase output entropy in one oscillator more than the 

system without interaction, followed by the increase of noise entropy in 

an input-dominated regime. The results indicate that systems with 

interaction and different natural frequency configurations can 

simultaneously reduce noise effects and respond to the external signal. 

(a) (b) 

Figure 15 Output and noise entropy of system with different configurations 
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5. Summary 

5.1 Summary 

The purpose of this graduation thesis, titled Performance of 

Memory Function Based on the Naturalistic Data, is to examine 

responses to the external input of a simplified system of interacting phase 

oscillators at various system parameters. Dynamical systems, and 

recurrent neural network in particular, have proven to be powerful for 

memorizing and predicting temporal data. However, the performance of 

these systems relies heavily on carefully tuned parameters. Finding the 

right operating point is a challenging problem especially for large 

dynamical systems, required for complex, high-dimensional data. To 

understand how system parameters affect performance, I consider a 

minimal model of two interacting oscillators and investigate its memory 

and predictive capabilities, quantified with mutual information. 

The first exploration is an effect of the strength of coupling to 

external input signals. It indicated that the input-coupling constant affects 

encoding efficiency because the amount of encoded information depends 

on this value. The second exploration is the effect of the coupling 

strength between oscillators. It demonstrates that sharing information 

between oscillators help increases encoded information, but reduce of 

statistical independence. The last exploration is an effect of natural 

frequency configuration. The natural frequency is a characterization of 

each oscillator. Difference in natural frequency configuration helps 

increase the possible encoding state of the system and actively respond to 

the input. If we combine the different configuration of the natural 

frequency with interaction, we can increase the encoding capability of the 

system. 

These results illustrate the computational performance of dynamic 

systems, which emerges from the collective behavior. Even though the 

current study focuses on a simple system, it is easy to generalize to larger, 

more complex systems. 
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5.2 Future Work 

There are available points to study this simple system. First, this 

thesis examines only the fully connected interacting phase oscillator 

system. We can adjust the interaction strength and arrangement to check 

the system’s efficiency. Next, we aim to study this system with other 

external input to express the encoding efficiency. After that, we then 

experiment with a larger system to determine the memory and predictive 

capabilities. 
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Methodology Figure 

Discretization phases of oscillators 

Re-scaling phases of oscillators 

(a) Raw phase collected from each oscillator (b) Re-scaled phases 

Phase discretization 

(a) Re-scaled phases of oscillators (b) Discretizing phases into 4 states  

 

(a) (b) 

(a) (b) 
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