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CHAPTER 1  

INTRODUCTION  

The motivation and significance begins first and then the background and review of 

relevant literature concerning modeling and analysis of fractures in linear elastic 

media constituting dissimilar materials are presented. Next, the research objective, 

scope of work, methodology, and research procedure are briefly addressed. Finally, 

the outcome and key contribution of the present work are concluded. 

1.1 MOTIVATION AND SIGNIFICANCE 

Bi-materials or multi-materials are examples of advanced materials combining 

advantages of two or more constituents joining at the interface. These materials have 

been increasingly and widely employed in various applications in both engineering 

and industrial sectors due to their desirable mechanical properties, high strength to 

weight ratio, and high resistance to severe environmental conditions such as 

temperature rises, high humidity, corrosions and chemical attacks. With such 

positive features, this class of materials can therefore be commonly found in the 

fabrication of either modern structures such as components and parts of aerospace 

structures and automobiles or conventional structures such as dissimilar metal 

welded joints in steel structures and pavement layers of roads and highways (see 

Figure 1.1). Besides their advantages, understanding of the damage and failure 

mechanism of those materials has been found an essential component in the design 

to ensure the integrity and safety of the components and parts throughout their 

lifespan usage. Most of bi-materials and multi-materials have been found prone to 

fractures especially in regions near the material interfaces. For instance, fiber 

reinforced ceramics, which are commonly used under the high temperature 

condition, possess the brittle failure characteristic and low fracture toughness. 

During applications, cracks can initiate in the ceramic matrix near the material 

interface, then propagate towards the interface, and finally induce the interfacial 

delamination and fracture of fibers (see Figure 1.2). Another example is welded 
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joints in steel structures. The high temperature induced during the welding process 

can cause the high residual stress and cracking developed within the welding zone, 

and it generally leads to the brittle failure mechanism. To simulate the fracture-

induced failure mechanism of bi-materials and multi-materials especially near the 

material interface, it still requires the development of physically sound governing 

physics capable of modeling complexity involved and the efficient and powerful 

solution procedures to ensure the applications of the mathematical model in a broad 

setting.   

 

 

     (a)                  (b) 

 

     (c)                        (d) 

Figure 1.1: Application of bi-materials and multi-materials: (a) components and 

parts of aircrafts, (b) welded joints of steel structures, (c) pavement layers, and (d) 

automobiles 

 

Studies of fracture characteristics of dissimilar media have been recognized in 

a wide range, both in terms of experimental investigations and mathematical 

simulations. While results obtained from laboratory tests offer the best data for 

inferring actual responses and behavior of physical phenomena, required resources 
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especially those associated with the preparation of test specimens, control of 

experimental settings, testing facilities, and time consumptions are quite significant 

and commonly pose the limitation on the testing scenarios. The mathematical 

modeling and simulations become an attractive alternative and have been 

extensively employed due to the advances of numerical analysis of computational 

technology. Applications of more sophisticated governing physics to capture 

complicated situations in a broader and larger scale have been increasingly found. 

The enhancement of solution procedures in terms of their computational efficiency 

and capability to handle problems in a general framework is therefore obligatory.  

 

 

Figure 1.2: Schematics indicating the cracking behavior and failure in ceramic 

matrix composite (Liu, 2015) 

  

Within the framework of linear elastic fracture mechanics (LEFM), the stress 

intensity factors are essential parameters providing the measure of the dominant 

elastic fields in a local region surrounding the crack edge. Various researchers 

employed the concept of LEFM to develop solution techniques for determining the 

stress intensity factors for cracks in dissimilar media (e.g., Lee et al., 1987; Huang 

and Kardomateas, 2001; Chang and Wu, 2003; Chen et al., 2005; Xiao et al., 2005; 

Hao, 2006; Noda et al., 2006; Rungamornrat, 2006; Chang and Xu, 2007; Yue et al., 

2007; Marsavina and Sadowski, 2008; Chen et al., 2010; Tu et al., 2013; Liu, 2015). 

The stress intensity factors have been often utilized, as parameters in the fracture 

models, in the prediction the crack initiation and propagation direction. Based upon 

the past evidences, the influence of the non-singular part of the near-front elastic 
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field (e.g., T-stress representing a constant stress at the crack front) on the fracture 

process has also been found significant. For instance, the size and shape of the 

inelastic zone vicinity the crack tip affected from the T-stress, the stability of the 

crack growth path, and the direction of crack growth (Chen et al., 2003; Profant et 

al., 2008; Ševeček et al., 2012; Yu et al., 2012; Zhou et al., 2013). As a consequence, 

two-parameter fracture models, integrating both the stress intensity factors and the 

T-stress, have been increasingly used, in the past two decades, to predict the behavior 

and responses of the cracked media.  

 Boundary integral equation methods (BIEMs) have proven to be one of the most 

efficient numerical techniques for performing the stress analysis and determining the 

associated fracture data of cracks in linear elastic media. The primary advantage of 

this method results directly from that the key governing equations contain only 

unknowns on the domain boundary and crack surface. Therefore, the discretization 

in the solution procedure is required on a solution space of a reduced dimension. 

While applications of BIEMs to the analysis of cracks in a homogeneous elastic 

medium have been well established, work related to the modeling of cracks in 

dissimilar solids is relatively few. Enhancement of the techniques to be capable of 

handling problems in a general and broad context (e.g., material anisotropy, multi-

material domains, general configurations of cracks and material interfaces, efficient 

and accurate post-process for various types of fracture data, etc.) still require 

extensive investigations. 

1.2 BACKGROUND AND REVIEW 

In this section, results from a careful literature survey are briefly presented not only 

to provide the historical breakthrough on the development of the solution procedures 

for obtaining both of the stress intensity factors and the T-stress for cracks in 

dissimilar materials but also to indicate the originality and merit of the present study. 

Only past studies within the framework of the classical linear elasticity and linear 

elastic fracture mechanics are summarized. In addition, the review focuses mainly 

on sub-interface cracks (i.e., cracks buried with the material near the material 

interface) whereas the interfacial cracks (i.e., cracks locating along the material 
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interface) and the cracks terminating at the materials interface are out of scope of 

the present study.    

1.2.1 Analysis for Stress Intensity Factors 

Previous researches concerning the development and use of both analytical methods 

and numerical schemes for determining the stress intensity factors of near interface 

cracks for numerous scenarios can be summarized as follows. Lee et al. (1987) 

analyzed an arbitrary shape of planar crack near the bi-material interface of a three 

dimensional, isotropic, linear elastic infinite domain. Results of the stress intensity 

factor were expressed in a compact form. Later, Huang and Kardomateas (2001) 

applied the dislocation solutions to obtain the stress intensity factors for a straight 

crack parallel to the material interface and the interfacial crack in an anisotropic bi-

material half-plane under the crack-face traction. In their study, the free boundary 

normal and parallel to the material interface were considered. In the half plane with 

the free boundary parallel to the material interface, the mode-mixity is much smaller 

than that of the near interface crack whereas for the free boundary perpendicular to 

the material interface, the mode-I stress intensity factor is dominated and exhibits 

the slight dependence on the material properties. In addition, the mode-I stress 

intensity factor is subjected to the rapid change across the material interface. Chang 

and Wu (2003) proposed a modified path-independent integral and the relation 

between the stress intensity factors and the J-integral for determining the solution 

for a two-dimensional, isotropic, bi-material finite body containing a surface-

breaking crack normal to and terminating at the material interface. They found that 

the stress intensity factors are more applicable than J-integrals because values of the 

integrals either vanish or approach infinity when the crack tip terminates normally 

at the bi-material interface. Next, Xiao et al. (2005) utilized the multi-region scheme 

to solve an elliptical crack normal to the material interface of a transversely isotropic, 

infinite, bi-material. The traction-singular elements were used in the solution 

procedure to capture the singularity at the crack front and the field in the surrounding 

region. The orientations of the elliptical crack with the major and minor axes normal 

to the plane of isotropy were investigated. In addition, a finite cube containing an 

elliptical crack was analyzed and results were then compared with the solution of 
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the infinite case. They also pointed out that the stress intensity factors in a finite cube 

are significantly larger than those in the infinite domain. Hao (2006) reported the 

analytical solution of the stress intensity factors for a straight crack normal to the 

material interface of a two-dimensional, isotropic, infinite bi-material under the 

plane-strain condition. In the same year, Noda et al. (2006) applied the body force 

technique to examine an inclined elliptical crack near a bi-material interface in a 

three-dimensional whole space under a uniform far-field loading. The body was 

made from two isotropic materials and the unknown body force densities were 

approximated in terms of the product between fundamental densities and 

polynomials. In their work, the influence of the crack aspect ratio, the material 

contrast and the distance from cracks to the material interface on both the value and 

variation of the stress intensity factors were also investigated. Rungamornrat (2006) 

established a regularized boundary element method to solve cracks in a three-

dimensional multi-material domain. The attractive feature of his technique results 

from the weakly singular property of all involved integrals, the symmetry of the 

weak formulation, and the use of special crack-tip elements along the crack edge to 

discretize the near-front field. Results obtained revealed that the method can yield 

very accurate stress intensity factors along the crack boundary even relatively coarse 

meshes were employed in the simulations. Later, Chang and Xu (2007) applied the 

extrapolation method to solve a two-dimensional, isotropic, bi-material finite body 

containing an inclined, straight crack terminating at the material interface. The effect 

of the crack orientation with respect to the material interface was also explored. In 

the same year, Yue et al. (2007) established a dual boundary element method 

(DBEM) for analysis of a square crack contained in three-dimensional, transversely 

isotropic, finite and infinite bi-materials. The orientation of the square crack with 

respect to the plane of material isotropy was assumed arbitrary. The jump in the 

crack-face displacements was treated as primary unknowns on the crack face. Such 

unknowns obtained from the DBEM were then used to extract the stress intensity 

factors along the crack boundary. They found that the ordinary boundary of the 

cracked bi-material can have the strong influence on the value of the stress intensity 

factors but has insignificant effect on the variation pattern of the stress intensity 

factors along the crack front. Marsavina and Sadowski (2008) reported the 
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asymptotic stress field near the tip of an inclined straight crack terminating at the bi-

material interface. The numerical simulations were carried out using the analysis 

software FRANC2D/L and the stress intensity factors were calculated based on the 

extrapolation technique. For a crack inclined to the material interface, it was shown 

that the singular stress field can be written as a linear combination of various modes 

with unequal exponents. Both Chen et al. (2010) and Tu et al. (2013) examined the 

near interface cracks within two-dimensional, anisotropic, infinite and finite bi-

materials using a single-domain boundary integral equation method. The stress 

intensity factors were obtained from the near-tip displacement together with the 

extrapolation method. The obtained solution was then utilized together with the 

maximum tensile stress failure criterion to predict the crack propagation direction 

and path under mixed-mode loadings. Recently, Liu (2015) proposed the enriched 

finite element procedure to analyze a crack terminating at the material interface with 

an arbitrary oriented angle. The two materials were assumed homogeneous and 

isotropic and perfectly bonded at the material interface. The enriched crack-tip 

elements were developed and utilized to accurately capture the stress intensity 

factors along the crack edge. 

1.2.2 Analysis for T-stress 

Compared with those concerning the stress intensity factors, studies involving the 

development of solution methodology for determining the T-stress of cracks in bi-

materials or multi-materials is relatively few. Some of those relevant to the present 

investigation are briefly summarized below. Chen et al. (2003) employed the 

technique based on the dislocation mechanics to investigate a crack normal to the 

material interface of an isotropic, finite bi-material under the traction on the outer 

surface. A series of Chebyshev polynomials of the first kind was employed to 

represent the dislocation density. They pointed out that when the crack is contained 

in a stiffer material, the stress intensity factor is larger than that embedded in a 

homogenous domain and the crack path is always stable if the T-stress is negative. 

Later, Profant et al. (2008) applied the method of dislocation-array to determine the 

T-stress of a straight crack normal to and terminating at the material interface of a 

bi-material. The technique was established in a general framework allowing the 
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material anisotropy to be considered and then further specialized to the case of the 

orthotropic symmetry. First, the M-type integral from the far-field deformation 

along with an auxiliary solution was calculated. Then the near-tip data was extracted 

directly from the far-field deformation to determine the T-stress. Their model 

offered a basis for the application of the fracture criterion at the material interface 

when both the deflection and the penetration at the material interface must be 

considered. Yu et al. (2012) employed the method of interaction integrals to obtain 

the T-stress of an interfacial crack in the bi-material with the complex material 

interface and under the traction on the outer boundary. In the same year, Ševeček et 

al. (2012) applied the concept of the finite fracture mechanics and the matched 

asymptotic expansions to study the effect of the higher-order terms in the expansion 

of the near-front field on the competition between the delamination at the bi-material 

interface between two aligned orthotropic brittle materials and the crack penetration. 

The crack was assumed to be oriented arbitrary to the material interface. They 

pointed out that the T-stress significantly affects the influence of the delamination 

and the penetration. In addition, it was found that the crack penetration was favored 

by the positive T-stress. Recently, Zhou et al. (2013) presented a set of analytical 

solutions for an interfacial edge crack contained in a two-dimensional, isotropic, 

finite bi-material. A set of Hamiltonian dual equations was derived using the 

Hamiltonian principle of mixed energies and the final system was solved by the 

method of separation of variables. The symplectic expansion method was then 

applied to determine both the stress intensity factors and the T-stress.  

 On the basis of an extensive literature survey, most of existing and relevant 

investigations focused principally on the calculations of the stress intensity factors. 

Studies regarding to the development of analytical or numerical techniques capable 

of calculating the T-stress along the crack front for sub-interface or near-interface 

cracks in three-dimensional dissimilar materials has not been well recognized. In 

particular, the enhancement of the weakly singular boundary integral equation 

method similar to that proposed by Rungamornrat (2006) to compute the T-stress of 

cracks in bi-materials or multi-materials has not been found and this significant gap 

of knowledge motivates the present investigation.   
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1.3 OBJECTIVE  

The objectives of this research are (1) to develop a numerical technique based on the 

weakly singular boundary integral equation method for determining the stress 

intensity factors and the T-stress of near-interface cracks in a three-dimensional bi-

material domain and (2) to investigate the influence of the material contrast and the 

distance from cracks to the material interface on the value and variation of both the 

stress intensity factors and T-stress along the crack front. 

1.4 SCOPE OF WORK 

The research is conducted within the following scope: (1) a medium occupies a finite 

region in a three-dimensional space and can be partitioned into several regions made 

of homogeneous, generally anisotropic, linearly elastic materials and perfectly 

bonded along the interface; (2) only bodies with pre-existing cracks located near the 

material interface and without intersecting the material interface is considered; (3) 

the process of crack initiation and crack growth is not considered; (4) the boundary 

of the domain including the crack surface and the material interface is assumed 

piecewise smooth (i.e., the set of points whose normal vector is not well-defined is 

of measure zero); and (5) the non-overlapping crack and body force are not 

considered.  

1.5 METHODOLOGY AND PROCEDURE 

The key focus of the present work is the development of a numerical procedure and 

its applications to the analysis of near-interface cracks in bi-material media. A 

particular numerical scheme based upon the weakly singular boundary integral 

equation method is developed following the scope of work indicated above and its 

computational performance including the accuracy and convergence is fully 

investigated. A brief summary of the key methodology and research procedure is 

given below.   

(1) Basis field equations are taken from a classical theory of linear elasticity and 

responses of cracked bodies follow the small-scale yielding assumption in 

classical linear elastic fracture mechanics (e.g., Anderson, 2005). 
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(2) A set of completely regularized boundary integral equations governing the 

unknown data on the ordinary boundary and crack surface (e.g., displacements, 

tractions, jump in the crack-face displacements, and sum of the crack-face 

displacements) of a homogeneous cracked body is established following the 

work of Rungamornrat and Mear, 2008a and Rungamornrat and Senjuntichai, 

2009. 

(3) A domain decomposition technique is employed to partition the multi-material 

domain along the material interface into several homogeneous sub-domains. A 

set of weakly singular weak-form boundary integral equations for both the 

displacement and traction is then applied to obtain a set of weak-form equations 

governing unknown data on the boundary, the crack surface and the material 

interface for each sub-domain. 

(4) Continuity of the displacements and equilibrium conditions along the material 

interfaces are enforced, in a strong sense, to combine all sets of governing 

equations for each sub-domain. The final set of governing integral equations for 

the entire domain is in a symmetric form and involves only unknown data on 

the boundary, unknown displacements and tractions on the material interfaces, 

and unknown jump in the crack-face displacement on the crack surface. 

(5) A weakly singular boundary integral equation governing the sum of the crack-

face displacements for cracks embedded within each sub-domain is established 

by choosing a proper choice of the test functions appearing in the weak-form 

displacement integral equation. This integral equation involves only the 

unknown data within the sub-domain. 

(6) A standard procedure of weakly singular symmetric Galerkin boundary element 

method (e.g., Rungamornrat and Mear, 2008b) along with the special near-front 

approximation and the conforming discretization along the material interface (to 

maintain the satisfaction of the continuity and equilibrium along the material 

interface in a strong sense) is adopted to solve a set of governing equations 

established in (4). An efficient numerical quadrature for weakly singular and 

nearly singular double surface integrals and the evaluation of kernels for general 

anisotropic materials are also implemented. 
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(7) A set of weak-form equations established in (5) is discretized using standard 

Galerkin technique along with the finite element procedure to form the 

elementwise approximation and then solved for the sum of the crack-face 

displacements. 

(8) The sum of and jump in the crack-face displacements on elements containing 

the crack front are directly post-processed to obtain the stress intensity factors 

and T-stresses along the crack front using formula proposed by Rungamornrat 

and Mear, 2008b and Pham et al., 2015a; Pham et al., 2015b. 

(9) Computational procedure is implemented in a form of an in-house computer 

code and various scenarios are employed to verify and investigate the 

computational performance of the implemented code. 

(10) A parametric study is carried out to study the influence of material parameters 

and the distance from cracks to the material interface on the values and 

distribution of the stress intensity factors and the T-stress along the crack front.   

1.6 OUTCOME AND CONTRIBUTION 

The present study offers an accurate, efficient, fully verified numerical procedure 

for the analysis of near interface cracks in elastic multi-material domains. The 

technique implemented is quite general in the sense that the general geometry of 

cracks, material interface and bodies, general loading conditions, and general 

material anisotropy are considered in the underlying formulation. In addition, both 

the stress intensity factors (directly related to the singular part of the near-front stress 

field) and the T-stress (measured of non-zero, non-singular stress along the crack 

front) can be obtained by the proposed technique. The proposed technique of this 

high capability should be a potentially useful tool in the simulations of crack growth 

and fracture-based fatigue and failure analysis causing by near interface cracks. 
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CHAPTER 2   

PROBLEM FORMULATION 

This chapter briefly presents the problem description, a set of basic field equations 

governing all involved field quantities, a set of completely regularized integral 

representations of the displacements, stresses, and tractions for homogeneous, linear 

elastic, cracked bodies, and the symmetric formulation of the key governing 

equations for a bi-material domain containing cracks. 

2.1 PROBLEM DESCPRITION  

A Cartesian coordinate system 1 2 3{ ; , , }x x xO  with the origin O and the orthonormal 

basis 
1 2 3{ , , }e e e  is introduced for further reference in the development presented 

below (i.e., ix  denotes the coordinate of any point x  in the direction ie  for 1, 2,3i 

) and, in what follows, a standard indicial notation applies for all lower case 

subscripts. In addition, a comma notation 
,if  is used throughout to represent a partial 

derivative of the function f  with respect to the coordinate ix , i.e., / if x  . 

  

 

 

 

 

 

 

 

Figure 2.1: Schematic of cracked body comprising two regions made from different 

homogeneous linear elastic materials 
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Now, consider a three-dimensional, linear elastic, finite body   as shown in 

Figure 2.1. The body consists of two regions, denoted by 1  and 2 , in which the 

region   ( 1, 2  ) is made from a homogeneous, generally anisotropic, linear 

elastic material with the prescribed elastic constants 
ijklE  and they are perfectly 

bonded along the interface denoted by 
IS . Here and in what follows, the superscript 

  takes the value 1 and 2 and the summation is not implied for this repeated 

superscript. In the present study, the body is assumed to be free of the body force 

and only sub-interface cracks are considered (i.e., cracks intersecting or aligning 

with the interface 
IS  are not of interest). The geometry of cracks embedded in the 

region  are represented by two geometrically identical, smooth surfaces 
CS    and 

CS   . The outward unit normal vector at any point 
CS  ξ  and its coincident point 

CS  ξ  are denoted, respectively, by 
 

n  and 
 

n  and they clearly satisfy 

   n n . On both crack surfaces 
CS    and 

CS   , the traction t  is fully prescribed 

(i.e., ( ) ( ) CS    t x t x x  and ( ) ( ) CS    t x t x x  where 
 

t  and 
 

t  are 

given functions). The ordinary boundary of the body, denoted by 0S , can be 

decomposed into 1 2

0 0 0S S S   where 
0S   is the boundary of the region  . The 

boundary 
0S   can be further divided into a surface 

TS   on which the traction t  is 

fully prescribed (i.e., 0( ) ( ) TS   t x t x x ) and a surface 
US   on which the 

displacement u  is fully prescribed (i.e., 0( ) ( ) US   u x u x x ).   

A statement of the research problem is to develop an efficient computational 

procedure for determining numerical solutions of the boundary value problem 

described above. In particular, the stress intensity factors and the T-stress along the 

crack front are of primary interest. In addition, the influence of the material 

parameters and the distance between the crack and the material interface on such 

fracture data along the crack front is also explored in the present study. 

2.2 BASIC FIELD EQUATIONS  

Mechanical responses of a three dimensional, linearly elastic body (commonly 

described by the displacement, strain and stress measures) can be theoretically 
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modeled by a classical theory of linear elasticity. From the conservation of linear 

and angular momentum in the absence of the body force, linear kinematics based on 

an infinitesimal strain theory, and linear constitutive relations, the displacement field 

( )u u x , the strain field ( ) x   and the stress filed ( )σ σ x  are governed by 

  

( ) ( ),ij jix x   , ( ) 0ij j x                                                                              (2.1) 

( ) ( )ij ijkl klx E x                    (2.2) 

, ,( ) ( ) / 2ij i j j ix u u                    (2.3) 

 

where iu , 
ij  and 

ij  denotes components of the displacement, strain and stress 

referring to the coordinate system 1 2 3{ ; , , }x x xO , respectively, and 
ijklE  represents 

the prescribed elastic constants of a constituting material. Note that 
ijklE  are spatially 

independent in the current development and essentially satisfy following symmetries 

ijkl ijlk jikl klijE E E E   . For the special case of isotropic materials, 
ijklE  can be fully 

described by only two independent material parameters and admits a concise form 

 

2

1 2
ijkl ik jl il jk ij klE


      



 
   

 
               (2.4) 

 

where   is the elastic shear modulus,   is Poisson’s ratio, and 
ij  denotes a 

Kronecker-delta symbol. At any point x  on a smooth surface (i.e., a surface with 

the well-defined unit normal vector), the traction vector, denoted by t , can be related 

to the stress at the same point by  

 

( ) ( ) ( )i ij jt x x n x                                                               (2.5) 

 

where it  and 
jn  are components of the traction t  and a unit normal vector n , 

respectively. A set of linear partial differential equations (2.1) and (2.3) and a set of 

linear algebraic equations (2.2) form the complete basic equations governing the 

unknown elastic fields ( )u u x , ( ) x   and ( )σ σ x  for a body made of a 

homogeneous linearly elastic material and free of the body force. 
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2.3 REGULARIZED INTEGRAL EQUATIONS FOR HOMOGENEOUS 

DOMAIN  

  

 

 

 

 

 

 

 

Figure 2.2 : Schematic of homogeneous, anisotropic, linearly elastic finite body 

containing crack 

Consider a finite cracked body   that is made of a homogeneous, linearly elastic 

material and free of the body force as shown in Figure 2.2. The total boundary of the 

body consists of the ordinary boundary 0S  and two geometrically identical surfaces 

CS 
 and CS 

. By following the work of Rungamornrat and Mear (2008a), the boundary 

integral representations for the displacement and stress at any interior point x  

take the form  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

         ( ) ( ) ( )

p p

p j j ij i j

S S

p

mj m j

S

u U dA H x n v dA

G D v dA

       

 

 



  

  

x x

x
            (2.6) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

          ( ) ( ) ( )

p tk

lk lrt tk j mj m j

r S S

j

lk j

S

G dA C D v dA
x

H dA

  



 
    

  

 

 



x x x

x

     

  

           (2.7) 

CS   

  CS   


n  


n  

0S  
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where 
0 CS S S   ; ism  denotes the alternating tensor; ( ) ( )/m i ism sD n        stands for 

the differential operator; and the boundary and crack-face data 
j  and 

jv  are defined 

by 

 

0( ),                                
( )

( ) ( ) ( ),      

j

j

j j j C

t S

t t t S


  


 

   

 


   
                                    (2.8) 

0( ),                                  
( )

( ) ( ) ( ),      

j

j

j j j C

u S
v

u u u S  


 

   

 


  y
              (2.9) 

 

in which ( )jt   and ( )ju   are traction and displacement components at any point 

CS   where as  ( )jt   and ( )ju   are traction and displacement components at its 

coincident point on the other crack surface 
CS  . Explicit expressions for the 

fundamental solutions ( )p

ijH x  , ( )p

jU  x , ( )p

mjG  x  and ( )tk

mjC  x  appearing 

in (2.8) and (2.9) for general anisotropic, linear elastic materials are given by (see 

Rungamornrat and Mear (2008a) for details of derivation).  

 

 
3

1
( )

4

i i jpp

ij

x
H

r

 




  x               (2.10) 

1

2

0

1
( ) ( , ) ( )

8

p

j jpU ds
r



 

  
z r

x z z z                     (2.11) 

1

2

0

1
( ) ( , ) ( )

8

p

ij abm ajdc b c dpG E z z ds
r






 

  
z r

x z z z             (2.12) 

1

2

0

1 1
( ) ( , ) ( ),    

8 3

tk tkoe tkoe

mj mjdn o d en mjdn pam pbt bknd ajeo ajkb dneoC A z z ds A E E E E
r

 




 

 
    

 


z r

x z z z     (2.13) 

 

where  r ξ x ; r  r ; z  denotes a unit vector defined on a plane perpendicular to 

the position vector r ; ( , )z z  is a matrix whose entries are defined by ( , ) jp i ijpl lz E zz z

; 
1( , )z z  is the inverse of ( , )z z ; and the line integrals appearing in (2.11)-(2.13) are 

defined along a unit circle on the plane 0 z r . It is evident from above expressions 

that the function ( )p

ijH x   is independent of the material properties and singular 
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only at ξ x  of 
2( )rO  whereas ( )p

jU  x , ( )p

mjG  x  and ( )tk

mjC  x  are material 

dependent and singular only at ξ x  of 
1( )rO . For the special case of isotropic 

materials, the functions ( )p

jU  x , ( )p

mjG  x  and ( )tk

mjC  x  admit the following 

closed-form expressions (also see the work of Li et al. (1998) and Rungamornrat and 

Mear (2008a))   

 

2

( )( )1
( ) (3 4 )

16 (1 )

p p j jp

j pj

x x
U v

v r r

 


 

  
    

  
 x           (2.14) 

2

( )( )1
( ) (1 2 )

8 (1 )

p p a ap

mj mpj ajm

x x
G v

v r r

 
 



  
    

  
 x           (2.15) 

2

( )( )
( ) (1 ) 2

4 (1 )

k k j jtk

mj tk mj km tj kj tm tm

x x
C v v

v r r

 
      



  
      

  
 x  (2.16) 

 

where   and v  are elastic shear modulus and Poisson ratio, respectively, and ij  

denotes a standard Kronecker-delta symbol. The boundary integral relations (2.6) 

and (2.7) can be employed to post-process for the displacement and stress at any 

point within the body provided that the unknown data on the boundary and crack 

surface are determined. 

 To form a set of boundary integral equations governing all unknown 

information on the total boundary of the whole body, a procedure similar to that 

proposed by Rungamornrat and Mear (2008a) is utilized. For instance, the 

displacement boundary integral equation is established by first taking limit 

S x y  of (2.6) and then establishing the weak form via the standard weighted 

residual technique. Similarly, the traction boundary integral equation is formed by 

first using (2.7) to form a product ( ) ( )lk ln x y  and taking the limit S x y  to 

obtain the traction boundary integral equation, then casting the weak form via the 

standard weighted residual technique, and finally performing the integration by parts 

to regularize all integrals containing strongly singular kernels. A final pair of weak-

form displacement and traction boundary integral equations is given by 
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1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

                                 ( ) ( ) ( ) ( ) ( ) ( )

                                 ( ) ( ) ( ) ( ) ( )

p

p p p j j

S S S

p

p ij i j

S S

p

p mj m j

S S

t v dA t U dA dA

t H n v dA dA

t G D v dA dA

 

 

 

  

 

 

  

   

  

y y y y y y

y y y

y y y

         (2.17) 

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

                                    ( ) ( ) ( ) ( ) ( )

                                    ( ) ( ) ( ) ( ) (

tk

k k t k mj m j

S S S

j

t k tk j

S S

j

k ik i j

v dA D v C D v dA dA

D v G dA dA

v H n dA







  

 

 

  

 

  

  

  

y y y y y y

y y y

y y y ) ( )
S S

dA  y

         (2.18) 

 

where pt  and kv  are sufficiently smooth test functions rendering the integrability of 

all involved integrals and  pv  and k  are data on the boundary and crack surface 

defined by 

 

0( ),                                  
( )

( ) ( ) ( ),      

j

j

j j j C

u S
v

u u u S  


 

   

y y
y

y y y y
            (2.19) 

0( ),                                 
( )

( ) ( ) ( ),      

j

j

j j j C

t S

t t t S


  


 

   

y y
y

y y y y
            (2.20) 

 

It is important to remark that both the displacement and traction integral equations 

(2.17) and (2.18) contain only weakly singular kernels of  
1( )rO  and all involved 

integrals are integrable in the sense of Riemann. In addition, the displacement 

integral equation (2.17) contains the displacement ju  and traction jt  on the ordinary 

boundary 0S , the sum of the crack-face displacement ju , relative crack-face 

displacement ju , and the sum of the crack-face traction jt  whereas the traction 

integral equation (2.18) contains the displacement ju  and traction jt  on the ordinary 

boundary 0S , the sum of the crack-face traction jt , the jump in the crack-face 

traction jt , and the relative crack-face displacement ju .   .    
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2.4 SYMMETRIC FORMULATION FOR CRACKS IN BI-MATERIAL 

DOMAIN 

A pair of weak-form displacement and traction boundary integral equations obtained 

in the previous section is utilized along with the domain decomposition technique 

and continuity along the material interface to form the governing integral equations 

for a bi-material domain containing cracks as shown in Figure 2.1. The procedure 

utilized here follows directly those proposed by  Rungamornrat (2006) 

 First, the body   is partitioned along the material interface IS  into two sub-

regions 1 and 
2  as shown in Figure 2.3. The total boundary of each sub-region 

 ( 1, 2)    consists of the crack surfaces ,C CS S  
 and the ordinary boundary 

including the surface TS 
 on which the traction is fully prescribed, the surface 

0U TS S S     on which the displacement is fully prescribed, and the interface IS 
 

on which both the displacement and traction are unknown a priori. Remark in 

particular that the interfaces 
1

IS  and 
2

IS  resulting from the partition have the same 

geometry as that of the material interface IS  but possess the opposite outward unit 

normal vector (i.e., 
1 2

I I n n ). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Schematic of two sub-regions resulting from partitioning of bi-material 

domain containing cracks shown in Figure 2.1 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 

 To establish the governing integral equations for each sub-region  ( 1, 2)   , 

the weak-form displacement boundary integral equation (2.17) is utilized along the 

interface IS 
 and the boundary on which the displacement is fully prescribed whereas 

the weak-form traction boundary integral equation (2.18) is employed along the 

interface IS 
 and the boundary and crack surface on which the traction is known. 

More specifically, following procedures are employed: (i) apply (2.17) to US 
 with 

0pt   on T I CS S S     , (ii) apply (2.18) to TS 
 with 0kv   on U I CS S S     , (iii) 

apply (2.18) to CS  
 with 0kv   on U T IS S S    , (iv) apply (2.17) to IS 

 with 

0pt   on T U CS S S     , and (v) apply (2.18) to IS 
 with 0kv   on U T CS S S    

. A final set of weak-form boundary integral equations is given by 

 

( , ) ( , ) ( , ) ( , ) ( , ) ( )

( , ) ( , ) ( , ) ( , ) ( , ) ( )

( , ) ( , ) ( , ) (

UU UT UC UI I UI I U

UT TT TC IT I TI I T

UC TC CC IC I

                

                

          

     

     

   

t t t u t u t t t u t

t v v u v u t v v u v

t v v u v u t

A B B A B R

B C C B C R

B C C B , ) ( , ) ( )

( , ) ( , ) ( , ) ( , ) ( , ) ( ) ( , )

( , ) ( , ) ( , ) ( , ) ( , )

CI I C

I

IU I IT I IC I II I I II I I U I I I I

UI I TI I CI I II I I II I I T

     

                   

              

 

      

     

v v u v

t t t u t u t t t u t t u

t u u u u u t u u u

C R

A B B A B R D

B C C B C R ( ) ( , )I

I I I I

    u u tD

 (2.21) 

 

where all involved bilinear and linear integral operators, with , { , , , }p q T U C I  and 

{1, 2}  , are defined by 

 

( , ) ( ) ( ) ( ) ( ) ( )
p q

j

pq j i i
S S

X U Y dA dA
 

      X Y y y yA            (2.22) 

( , ) ( ) ( ) ( ) ( ) ( )

                ( ) ( ) ( ) ( ) ( ) ( )

p q

p q

k

pq k mj m j
S S

k

k m mj j
S S

X G D Y dA dA

X n H Y dA dA

 

 

  

 

 

 

  

   

X Y y y y

y y y

B
          (2.23) 

( , ) ( ) ( ) ( ) ( ) ( )
p q

yk

pq t k mj m j
S S

D X C D Y dA dA
 

      X Y y y yC           (2.24) 

1
( , ) ( ) ( ) ( )

2 p
p i i

S
X Y dA



  X Y y y yD              (2.25) 

( ) ( , ) ( , ) ( , ) ( , )U U UT UC UU

                 t t u t t t t t uR D A A B           (2.26) 

( ) ( , ) ( , ) ( , ) ( , )T T TT CT TU

                  v v t t v t v v uR D B B C           (2.27) 

( ) ( , ) ( , ) ( , ) ( , )C C TC CC CU

                   v v t t v t v v uR D B B C          (2.28) 
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( ) ( , ) ( , ) ( , )I r

U I IT I IC I IU I

             t t t t t t uR A A B            (2.29) 

( ) ( , ) ( , ) ( , )I

T I TI I CI I TU I

              u t u t u u uR B B C            (2.30) 

 

By combining the boundary integral equations (2.21) for each sub-region 

 ( 1, 2)    and then enforcing the continuity conditions of the displacement, 

traction, and test functions along the interface, i.e.,  

 
1 2 1 2,    I I I I I Iu u u u u u                   (2.31) 

1 2 1 2,    I I I I I It t t t t t                     (2.32) 

 

it yields a final system of boundary integral equations governing the unknown data 

on the boundary, the material interface, and the crack surface of cracked bi-material 

domains 

 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

( , ) ( , ) ( , )     0             0               0         ( , ) ( , ) ( )

( , ) ( , ) ( , )      0              0               0

UU UT UC UI I UI I U

UT TT TC

        

     

t t t u t u t t t u t

t v v u v u

A B B A B R

B C C 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

          ( , ) ( , ) ( )

( , ) ( , ) ( , )     0              0               0          ( , ) ( , ) ( )

       0             0        

IT I TI I T

UC TC CC IC I CI I C

  

        

 

t v v u v

t v v u v u t v v u v

B C R

B C C B C R
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2

        0     ( , ) ( , ) ( , ) ( , ) ( , ) ( )

       0             0                0     ( , ) ( , ) ( , ) ( , ) ( ,

UU UT UC UI I UI I U

UT TT TC IT I TI I

      

       

t t t u t u t t t u t

t v v u v u t v v u

A B B A B R

B C C B C 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 2 2 2

) ( )

       0             0                0     ( , ) ( , ) ( , ) ( , ) ( , ) ( )

( , ) ( , ) ( , ) ( , ) ( , )

T

UC TC CC IC I CI I C

IU I IT I IC I IU I IT I IC

 



        

     

v

t v v u v u t v v u v

t t t u t u t t t u

R

B C C B C R

A B B A B B 2 2 * *

1 1 1 1 1 1 2 2 2 2 2 2 * *

( , ) ( , ) ( , ) ( )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( )

I

I II I I II I I U I

I

UI I TI I CI I UI I TI I CI I II I I II I I T I

   

         

t u t t t u t

t u u u u u t u u u u u t u u u u

A B R

B C C B C C B C R

  (2.33) 

 

where additional bilinear and linear operators appearing in (2.33) are defined by 

 
* 1 2( , ) ( , ) ( , )II I I II I I II I I t t t t t tA A A               (2.34) 

* 1 2( , ) ( , ) ( , )II I I II I I II I I t u t u t uB B B              (2.35) 

* 1 2( , ) ( , ) ( , )II I I II I I II I I u u u u u uC C C              (2.36) 

1 2( ) ( ) ( )I I I

U I U I U I t t tR R R               (2.37) 

1 2( ) ( ) ( )I I I

T I T I T I u u uR R R               (2.38) 

 

It should be evident from (2.33) that the boundary integral equations are in a 

symmetric form. It is worth noting that while the formulation presented above is 

developed specifically for a bi-material domain, the extension to multi-material 
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domain can be readily established and results for that general case is not included 

here for brevity.  

2.5 INTEGRAL EQUATION FOR SUM OF CRACK-FACE 

DISPLACEMENTS 

The weak-form boundary integral equation for the sum of crack-face displacement 

in each sub-region can be readily established from the weak-form displacement 

integral equation (2.17) via the proper choice of test functions. Specifically, by 

choosing 0pt   on T U IS S S     in the weak-form equation (2.17), it gives rise to   

 

( , ) ( , ) ( , ) ( , ) ( , )

                   ( , ) ( , ) ( , ) ( , )

C CU CT CC CI I

CU CT CC CI I

              

           

     

    

t u t t t t t t t t

t u t u t u t u

D A A A A

B B B B
         (2.39) 

 

It should be remarked that integrals appearing on the right hand side of (2.39) 

involve the prescribed displacement and traction on the boundary, the known sum 

of the crack-face traction, the unknown relative crack-face displacement, and 

unknown displacement and traction along the material interface. Clearly, once the 

system of boundary integral equations (2.33) is solved, all unknowns on the right 

hand sided of (2.39) are determined and (2.39) can be then used to post-process for 

the sum of the crack-face displacement in each sub-region.    

2.6 NEAR-FRONT STRESS FIELD 

In linear elastic fracture analysis, two essential fracture parameters, commonly 

termed the stress intensity factors and the T-stresses, are of primary interest in 

addition to the elastic field induced within the domain. The former is known to 

sufficiently describing the singular part of the near-front stress field whereas the 

latter represents the non-zero nonsingular part of stress along the crack front. By 

following the primitive work of  admits the Williams, 1957, the near-front stress 

field in a region surrounding a point cx  representation (see also the work of 

Rungamornrat and Pinitpanich, 2016) 

3
( ) /2 ( )

1 1

1
( ; , ) ( ) ( ) ( ) ( ; )

2

K n m m

ij c n c ij ij c ij c

n m

r K T r
r

     




 

   x x x x          (2.40) 
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where all quantities appearing in (2.40) are referred to the local Cartesian coordinate 

system  1 2 3; , ,c x x xx  with origin at point cx  and a set of orthonormal basis vectors 

 1 2 3e ,e ,e  shown in Figure 2.4 (in particular, 1e  is normal to the crack front and 

contained in the tangent plane of the crack surface at cx , 2 ( )c

 e n x , and 

3 1 2 e e e ); ( , )r   are polar coordinates associated with the local two-dimensional 

Cartesian coordinate system  1 2; ,c x xx ; 1( )cK x , 2 ( )cK x , 3( )cK x  are mode-I, 

mode-II, and mode-III stress intensity factors at point cx ; ( )ij cT x  are components of 

the T-stress tensor; and 
( )K n

ij  and 
( )m

ij  are angular-dependent functions that can be 

completely obtained from the near-front eigen-analysis. It is apparent from the 

expansion (2.40) that the first term is singular at cx  of 
1/2( )rO , the second term is 

independent of  the coordinates r  and  , and all remaining terms identically vanish 

along the crack front. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Local coordinate system utilized in determination of stress intensity 

factors and T-stress components 
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Based on the representation (2.40) and the known information of the angular 

dependent functions 
( )K n

ij , the stress intensity factors 1( )cK x , 2 ( )cK x  and 3( )cK x  

can be related to the stress field in the neighborhood of cx  by 

 

1 22
0

( ) lim 2 ( ; , 0)c c
r

K r r  


 x x              (2.41) 

2 12
0

( ) lim 2 ( ; , 0)c c
r

K r r  


 x x              (2.42) 

3 23
0

( ) lim 2 ( ; , 0)c c
r

K r r  


 x x              (2.43) 

 

While the relations (2.41)-(2.43) can be used to post-process for the stress intensity 

factors, the requirement of the complete stress field within the cracked body renders 

them not suitable to be employed in the present study. This is due mainly to that the 

primary unknowns chosen in the formulation of boundary value problems 

correspond directly to quantities on the boundary, the crack surface and the material 

interface, and that the post-process for stress at any interior point using the stress 

integral relation along with the limiting process is non-trivial and can be 

computationally inefficient. To circumvent this issue, an alternative formula for the 

stress intensity factors, proposed by Barnett and Asaro, 1972 and Xu, 2000, is 

employed. Such expression allows 1( )cK x , 2 ( )cK x  and 3( )cK x  to be calculated 

directly in terms of the relative crack-face displacements in the vicinity of the crack 

front as follows    

 

1 0 ,
1

( )2
( ) lim

4 c

j

i c ij
x

u
k B

x


 

 
  

  
x x

x
x              (2.44) 

 

where 1 2( ) ( )c ck Kx x , 2 1( ) ( )c ck Kx x , 3 3( ) ( )c ck Kx x , ju  are components of 

the relative crack-face displacements referring to the local coordinate system 

 1 2 3; , ,c x x xx ; and ijB  are material-dependent constants defined by 

 

2
1

0

1
[( ) ( ) ( ) ( ) ]

2
ij ij im mn njB d






  , , , ,a a a b b b b a             (2.45) 
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in which a  and b  are orthonormal vectors contained in the plane 3 0x  ;   is the 

angle between a  and 1e  as indicated in Figure 2.4; and ( )ij m mijn na E b,a b . 

  From the continuity of the finite part of stress at any point cx  along the crack 

front, it can be readily verified that the three components 22T , 12T  and 23T  of the T-

stress tensor can be obtained in terms of the prescribed crack-face traction at the 

limiting point cx  on the crack surface, i.e., 

 

22 2( ) lim ( )
c

cT t 


 

x x
x x                (2.46) 

12 1( ) lim ( )
c

cT t 


 

x x
x x                (2.47) 

23 3( ) lim ( )
c

cT t 


 

x x
x x                (2.48) 

 

where it


 are components of the prescribed crack-face traction referring to the local 

coordinate system  1 2 3; , ,c x x xx . From the symmetry of the T-stress tensor, the 

remaining three components 11T , 33T  and 13T  must be determined to obtain the 

complete description of the second term in the expansion (2.40) and such three 

components are referred to the T-stress components. From the structure of the near-

front stress field (2.40) along with standard differentiation and limiting process, the 

T-stress components can be obtained from   

 

11 11
0

( ) 2lim ( ; , 0)c c
r

T r r r
r

 


      
x x             (2.49) 

33 33
0

( ) 2lim ( ; , 0)c c
r

T r r r
r

 


      
x x             (2.50) 

13 13
0

( ) 2lim ( ; , 0)c c
r

T r r r
r

 


      
x x             (2.51) 

 

If the expressions (2.49)-(2.51) are utilized to post-process for the T-stress 

components, the computational cost associated with the calculation of stresses at 

interior points and the numerical differentiations and limits must be paid. To avoid 

such difficulty, an alternative scheme based upon the boundedness of the T-stress 
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tensor is introduced. It can be seen from the representation (2.40) that ( )ij cT x  

represents, in fact, the local components of a finite part of the stress at a point cx  

along the crack front. As a direct consequence, ( )ij cT x  can be related to a finite part 

of the strain at a point cx  via the following constitutive relation  

 
*( ) ( )ij c ijkl kl cT E x x                (2.52) 

 

where ijklE  are elastic moduli referring to the local coordinate system and 
* ( )kl c x  

denote local components of the finite part of the strain at cx . From the closure 

condition at the point cx  (i.e., ( ) 0i cu x ), the local in-plane components 
*

11( )c x , 

*

13( )c x , and 
*

33( )c x  can be related to the sum of the crack-face displacements in the 

neighborhood of the point cx  by 

 

* 1 1
11

1 1

( )1 1
( ) lim ( )

2 2c
c c

u u

x x




 
 

 x x

x
x x              (2.53) 

* 3 31 1
13

3 1 3 1

( )( )1 1
( ) lim ( ) ( )

4 4c
c c c

u uu u

x x x x




     
      

      
x x

xx
x x x          (2.54) 

* 3 3
33

3 3

( )1 1
( ) lim ( )

2 2c
c c

u u

x x




 
 

 x x

x
x x              (2.55) 

 

From the prescribed conditions (2.46)-(2.48) along with the relations (2.53)-(2.55), 

a system of linear algebraic equations (2.52) is sufficient for determining the T-stress 

components 11( )cT x , 33( )cT x  and 13( )cT x  in terms of the sum of the crack-face 

displacements. This methodology for determining the T-stress along the crack front 

can also be found in the work of Pham et al. (2015a).  

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27 

CHAPTER 3  

SOLUTION PROCEDURE  

This chapter presents the numerical procedure for constructing approximate 

solutions of the system of boundary integral equations (2.33) and the weak-form 

integral equation for the sum of the crack-face displacement (2.39). The 

discretization of both geometry and solution and other essential components such as 

the quadrature and evaluation of kernels are briefly discussed. Finally, the post 

process for the stress intensity factors and the T-stress components are addressed.  

3.1 DETERMINATION OF JUMP IN CRACK-FACE DISPLACEMENTS  

A system of boundary integral equations (2.33) involves three sets of unknown 

functions including the displacement and traction on the ordinary boundary, the 

displacement and traction on the material interface, and the jump in the crack-face 

displacement, and two sets of prescribed data including the known displacement and 

traction on the ordinary boundary and the sum of and jump in the crack-face 

tractions. 

 A well-known, weakly singular, symmetric Galerkin boundary element method 

(SGBEM) is utilized to construct approximate solutions of (2.33). Standard Galerkin 

approximation together with the finite element procedure is utilized in the 

discretization of the unknown data, test functions, and geometries of the ordinary 

boundary 0S , the material interface IS  and the crack surfaces 
1

CS 
 and 

2

CS 
. In 

particular, all unknown data and test functions for each sub-region 
  and on the 

material interface are approximated by    

 

( ) , ( )   on  T T t

t t tS       u U v V                 (3.1) 

( ) , ( )   on  T T

u u uS       t T t T                 (3.2) 

( ) , ( )   on  T T c

c c CS          u U v V                 (3.3) 

( ) , ( )   on  T T

I I I I I I IS u U u U                 (3.4) 

( ) , ( )   on  T T

I I I I I I IS t T t T                  (3.5) 
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where t

 , u

 , c

 , and I  are vectors of nodal basis functions defined on the 

surfaces TS 
, US 

, CS 
, and IS , respectively; 


U , 

T ,
U , IU , and IT  are vectors of 

unknown nodal quantities associated with the displacement on TS 
, the traction on 

US 
, the relative crack-face displacement on CS  

, the displacement on IS , and the 

traction on IS , respectively; 
t

V , 
T , 

c
V , IU  and IT  are vectors of arbitrary nodal 

quantities; and ( )T  denotes the transpose operator. Due to the weakly singular nature 

of all involved integrals, all nodal basis functions are constructed locally on each 
0C

-element in a finite element mesh using standard finite element procedure. In 

addition, to enhance the near-front approximation, special local 
0C -interpolation 

functions defined over special crack-tip elements (see details in the work of Xiao, 

1998 and Rungamornrat and Mear (2008b)) are employed to discretize the relative 

crack-face displacement in all elements adjacent to the crack front. 

 Substituting the approximations (3.1)-(3.5) into the system of governing 

equations (2.33) and then exploiting the arbitrariness of 
t

V , 
T , 

c
V , IU  and IT  

lead to the following system of linear algebraic equations 

 
1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

2 2 2 2 2

I

2 2 2 2 2

2 2 2 2 2

1 1 1 2 2 2

I

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )
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T T

UT TT TC IT TI

T T T
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T T T
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T T

UI IT IC UI T IC I
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A B B A B B A

1 1

1 1

1 1

2 2

2 2

2 2

* *

1 1 1 2 2 2 * *
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U
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I
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T T T T T T T I
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     
     
     
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     
     
     
     
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R

U R

U R

T R
=

U R

U R

B T R

B C C B C C B C U R

T

       (3.6) 

 

where the sub-matrices pq


A , pq


B , pq


C , 

*

IIA , 
*

IIB  and 
*

IIC  for , { , , , }p q T U C I  are 

obtained from the discretization of the bilinear integral operators pq

A , pq

B , pq

C , 

*

IIA , 
*

IIB  and 
*

IIC , respectively and the sub-vectors p


R  and 

I

pR  for { , , , }p T U C I  

are obtained from the discretization of the linear integral operators p

R  and 
I

pR , 

respectively. To construct the involved coefficient matrix and know vector, two 

computational issues, one associated with the numerical integration of weakly 
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singular and nearly singular double surface integrals and the other corresponding to 

the numerical evaluation of kernels for general anisotropy, must be properly treated. 

In the present study, the former is achieved by adopting the special quadrature 

combining a series of variable transformations and Gaussian quadrature proposed 

by Xiao, 1998 whereas the latter is handled by utilizing the interpolation technique 

based on a finite element interpolant proposed by Rungamornrat and Mear (2008b) 

to mainly avoid the direct integration of the closed contour integral. The system of 

linear equations (3.6) is essentially symmetric resulting from the symmetry of the 

formulation and is solved numerically using selected indirect linear solvers such as 

a conjugate gradient method. The relative crack-face displacement for cracks in each 

sub-region is then obtained once 
U  is determined. 

3.2 DETERMINATION OF SUM OF CRACK-FACE DISPLACEMENTS  

After the solution of the system of boundary integral equations (2.33) is obtained, 

the weak-form integral equation (2.39) contains only one unknown associated with 

the sum of the crack-face displacement and is then solved by using standard finite 

element procedure. 

  First, the additional approximation of the sum of the crack-face displacements 

u  and the test function 


t  on the crack surface CS  
 is introduced  

 

( ) ,   ( )T T     

    u U t T                 (3.7) 

 

where 


  denotes a vector of nodal basis functions constructed locally on standard 

two-dimensional elements by the finite element procedure; 
U is a vector of 

unknown nodal quantities associated with the sum of the crack-face displacements; 

and 


T  is a vector of arbitrary nodal quantities. By applying (3.7) along with results 

from solving the system (2.39), the weak-from equation (2.39) for each sub-region 

can be discretized into 

 

C CU CI I CT CC CI I

          

       D U R A T A T B U B U B U             (3.8) 

where the matrices C


D , CU


A , CI


A , CT


B , CC


B  and CI


B  result directly from the 

discretization of the bilinear integral operators C

D , CU

A , CI

A , CT

B , CC

B  and CI

B
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, respectively, and the vector 


R  is obtained from the discretization of the combined 

linear operator CT CC CU

   A A B . Again, the same procedure of numerical integration 

and evaluation of kernels is applied to construct all involved matrices and vectors. 

From the symmetry of the bilinear integral operator C

D , the coefficient matrix C


D  

is clearly symmetric and the system of linear algebraic equations (3.8) can be solved 

for 
U  for each sub-region. 

3.3 POST PROCESS FOR STRESS INTENSITY FACTORS AND T-

STRESSES  

To post process for the stress intensity factors and T-stress components along the 

crack front, the relative crack-face displacement and the sum of the crack-face 

displacements obtained in Section 3.1 and Section 3.2 are employed, respectively. 

 By employing the formula (2.44) along with the near-front approximation of the 

relative crack-face displacement on special 9-node crack-tip elements (see Li and 

Mear, 1998 and Rungamornrat and Mear (2008b)) and Taylor series expansion, the 

explicit expression for the stress intensity factors takes the form  

 

ˆ( ) ( )
2

i c ij c jk B



   x u x e                 (3.9) 

 

where all involved parameters are defined by 

 

1 ( , 1)c
cξ




   



r
e                (3.10) 

9
( ) ( )

1

( , )i i

c c

i

  


 r x x                (3.11) 

( ) ( )ˆ( ) ( , 1)i i

c c   u x u               (3.12) 

 

in which ( , ) [ 1,1] [ 1,1]       are natural coordinates used to define the master 

element; ( )i
x  denotes the ith nodal point of the crack-tip element; 

( ) ( , )i    are 

shape functions associated with the ith node of a standard 9-node quadratic element; 

( )iu  denotes the extra degree of freedom associated with the ith node of the crack-

tip element located along the crack front; and the summation appearing in (3.12) is 

taken only for nodes along the crack front. It is apparent from (3.9) that once U  
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for each sub-region is obtained, the information ( )iu  can be readily obtained and 

used to directly post-process the stress intensity factor without carrying out the 

limiting process. 

 For the T-stress components, once the unknown U  for each sub-region is 

solved from (3.8), the sum of the crack-face displacements u  on elements 

adjacent to the crack front is first computed. Then, its components referring to the 

local coordinate system defined in Figure 2.4 (i.e., iu  ) are obtained and 

substituted into (2.53)-(2.55) to calculate the finite part of the strain 
*

11 ( )c

 x , 

*

13 ( )c

 x , 
*

33 ( )c

 x  at any point cx . Finally, the T-stress components at any point cx  

are obtained by solving a system of six linear algebraic equations (2.52) along with 

the prescribed conditions (2.46)-(2.48) and the computed finite part of the strain.    
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CHAPTER 4  

NUMERICAL RESULTS AND DISCUSSION  

The convergence and accuracy of numerical results obtained from the implemented 

numerical procedure are first verified by a set of reference solutions for problems 

associated with cracked multi-material bodies. Both isotropic and anisotropic 

materials are considered in the numerical experiments. A series of meshes with 

different levels of refinement is adopted and used in the numerical study to ensure 

the convergence of numerical solutions. The solution on ordinary boundary (e.g., 

unknown displacements and tractions), on the material interface (e.g., unknown 

displacements and tractions), and on the majority of the crack surface (e.g., jump in 

and sum of the crack-face displacements) are discretized using standard, two-

dimensional, isoparametric, quadratic elements. For the solution along the crack 

front, the jump in the crack-face displacements is approximated by special 9-node 

crack-tip elements whereas the sum of the crack-face displacements is approximated 

by standard 9-node quadratic elements. After the implemented technique is fully 

tested, a preliminary parametric study is conducted to investigate the influence of 

the material stiffness and the distance between the crack and the material interface 

on the stress intensity factors and the T-stress. In such investigation, a sufficiently 

fine mesh is employed to ensure the convergence of numerical results. 

4.1 VERIFICATION  

In this section, results for two particular problems associated with a three-layer 

cylinder containing an elliptical crack parallel to the material interface and a three-

layer cube containing a penny-shape crack parallel to the material interface are 

obtained and then compared with existing reference solutions for both stress 

intensity factors and T-stress. 

4.1.1 Elliptical Crack in Three-layer Cylinder 

Consider a three-layer cylinder of radius R  and length 6d  as shown schematically 

in Figure 4.1. Each layer has the same length 2d  and they are fully bonded with the 

material interface perpendicular to the axis of the cylinder. All three layers are made 

of transversely isotropic, linear elastic materials with the axis of material symmetry 
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directing along the axis of the cylinder. An elliptical crack with the major semi-axis 

a  and the minor semi-axis b  is embedded in the center of the middle layer and 

oriented parallel to the material interface as shown in Figure 4.1. For convenience, 

a reference Cartesian coordinate system is chosen such that its origin coincides with 

the center of the crack, the 3x -axis directs along the axis of the cylinder, and the 1x

-axis and 2x -axis direct along the major and minor axes of the crack, respectively. 

With this choice of the coordinate system, the crack front can be parameterized by   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Schematic of three-layer cylinder containing elliptical crack in the middle 

layer with its orientation parallel to material interface 

 

1 2 3cos ,  cos ,  0x a x b x                   (4.1) 

 

where [0, 2 ]   denotes the angular position of point along the crack front. In the 

analysis, three meshes of the ordinary boundary, the material interfaces, and the 

crack surface are adopted as shown in Figure 4.2. To allow the comparison with the 

reference solution generated by a single domain boundary integral equation method 

proposed by Rungamornrat and Mear (2008b), the material constants of all layers 

are chosen to be identical to those of transversely isotropic-1 shown in Table 4.1. 
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The discretization of the ordinary boundary and the crack surface obtained from the 

Mesh-3 is used to generate the reference solution. In addition, the ratios 

/ 2, / 2, / 1, / 1d a a b R d h d     are employed in the numerical study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Three meshes adopted in the analysis of three-layer cylinder containing 

elliptical crack; mesh of the crack surface is shown below that of the boundary and 

mesh for the material interface is taken to be identical to that of the top surface.  

 

 

Table 4.1 Elastic moduli for two transversely isotropic, linear elastic materials sued 

in numerical study. 

 

Material type 
1111E  

910 Pa 

1122E  

910 Pa 

1133E  

910 Pa 

3333E  

910 Pa 

1313E  

910 Pa 

Transversely Isotropic 1 126.00 55.00 53.00 117.00 35.30 

Transversely Isotropic 2 139.00 77.80 74.30 113.00 25.60 

 

Mesh-1 Mesh-2 Mesh-3 
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The normalized mode-I stress intensity factor IK  and the non-zero T-stress 

components 11 33,T T  obtained from proposed technique for all three meshes are 

reported as a function of angular position   along the crack front in Figures 4.3, 4.4 

and 4.5, respectively. The reference solutions generated by the technique proposed 

by Rungamornrat and Mear (2008b) with the Mesh-3 are also reported in those 

figures. It is seen from this set of results that the implemented technique yields the 

converged numerical solution which is generally in good agreement with the 

reference solution. In particular, meshes required to achieve such accurate stress 

intensity factors are relatively coarse; only few elements employed to discretize the 

solution along the crack front can accurately capture the fracture data. This is due 

mainly to the use of special crack-tip element to approximate the near-front relative 

crack face displacement and the explicit formula used to post-process for the stress 

intensity factors and the T-stress. 
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Figure 4.3 Normalized stress intensity factor of elliptical crack contained in three-

layer cylinder under uniformly distributed normal traction 0t  at the top and bottom 

surfaces 
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Figure 4.4 Normalized T-stress 11T  of elliptical crack in three-layer cylinder under 

uniformly distributed normal traction 0t  at the top and bottom surfaces 
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Figure 4.5 Normalized T-stress 33T  of elliptical crack in three-layer cylinder under 

uniformly distributed normal traction 0t  at the top and bottom surfaces 
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4.1.2 Penny-shaped Crack in Three-layer Cube 

Consider a three-layer prism with dimensions 2 2 6l s d   as shown schematically 

in Figure 4.6. Each layer has the same thickness 2d  and they are fully bonded at the 

material interface perpendicular to the cross section of the cube. Each layer is made 

of either an isotropic material with given Young modulus and Poisson ratio or a 

transversely isotropic material with the axis of material symmetry perpendicular to 

the material interface. The crack contained in the center of the middle layer assumes 

an elliptical shape with the major semi-axis a  and the minor semi-axis b  and is 

oriented parallel to the material interface with the major and minor semi-axes normal 

to the side face of the prism as shown in Figure 4.6. Again, a reference Cartesian 

coordinate system is chosen such that its origin coincides with the center of the 

crack, the 3x -axis directs normal to the material interface, and the 1x -axis and 2x -

axis direct along the major and minor axes of the crack, respectively. With this 

choice of the coordinate system, the crack front can be parameterized by (4.1). The 

prism is subjected to uniformly distributed normal tractions 3t  on the top and bottom 

surfaces and uniformly distributed normal tractions 11t , 12t , 13t  on the two side faces 

of each layer. Three meshes for the outer boundary, the material interfaces and the 

crack surface shown in Figure 4.7 and the following geometric data 

/ 3, / 1d a h d   are employed in the simulations. 

4.1.2.1 Three identical material layers under  

First, consider the case that each layer is made of the same isotropic material with 

Young modulus 1 E GPa  and Poisson ratio 0.3  , the prism is subjected to the 

uniform normal traction 11 12 13 0t t t t   , 3 0t  , and the crack is of a penny shape 

(i.e., / 1a b  ). For this particular case, the jump in the crack-face displacements 

identically vanishes and, as the result, all the stress intensity factors vanish for the 

entire crack front whereas the closed-form solution of the T-stress components can 

be readily obtained and used, here, as the benchmark solutions. Numerical results 

for the stress intensity factors obtained from all three meshes agree very well with 

the reference solution; in particular, results are nearly zero up to several digits. For 

the T-stress components, the computed solutions from the three meshes after 

11 12 13t t t 
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normalized by the applied load, are reported along with the exact solution in Figures 

4.8, 4.9 and 4.10 for 11 33 13, ,T T T , respectively.    

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 4.6 Schematic of three-layer cube containing elliptical crack parallel to 

material interface under uniformly distributed normal tractions 10t  and 20t . 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Three meshes adopted in the analysis of three-layer prism containing 

elliptical crack; mesh of the crack surface is shown below that of the side faces and 

mesh for the top and bottom faces and the material interface is shown at the top.  

 
 

  
 

 

 
 

 
 

 
 

 

 

 

 

   

 

 

 

 

 
 

 

 

  

 

         

 

 

 

 

 

Mesh-1 Mesh-2 Mesh-3 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39 

0.0 0.2 0.4 0.6 0.8 1.0
-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Benchmark Solution 

Mesh 1

Mesh 2

Mesh 3

 

 

Figure 4.8 Normalized T-stress 11T  of penny-shaped crack in three-layer isotropic 

prism under uniform normal traction 0t  at the two side faces 
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Figure 4.9 Normalized T-stress 33T  of penny-shaped crack in three-layer isotropic 

prism under uniform normal traction 0t  at the two side faces 
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Figure 4.10 Normalized T-stress 13T  of penny-shaped crack in three-layer isotropic 

prism under uniform normal traction 0t  at the two side faces 

 

Next, consider the same prism as indicated above except that each layer is made of 

the same transversely isotropic material (i.e., transversely isotropic 1 with material 

constant shown in Table 4.1). Similar to the previous case, the jump in the crack-

face displacements identically vanishes and all the stress intensity factors are zero 

for the entire crack front whereas the closed-form solution of the T-stress 

components can be obtained in the same manner. Again, the computed stress 

intensity factors from the proposed technique are nearly zero up to several digits and 

results are not presented here for brevity. Figures 4.11, 4.12 and 4.13 report the T-

stress components for the three meshes along with the exact solutions. 

 It can be seen for both cases of isotropic and transversely isotropic that results 

obtained exhibit the good convergence behavior; in particular, the T-stress 

components are slightly dependent on the level of refinement. In addition, the 

convergence of the solution shows the excellent agreement with the exact solution. 

The coarsest mesh with only few elements can also capture the solution with 

sufficient accuracy.  
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Figure 4.11 Normalized T-stress 11T  of penny-shaped crack in three-layer 

transversely isotropic prism under uniform normal traction 0t  at the two side faces 
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Figure 4.12 Normalized T-stress 33T  of penny-shaped crack in three-layer 

transversely isotropic prism under uniform normal traction 0t  at the two side faces 
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Figure 4.13 Normalized T-stress 13T  of penny-shaped crack in three-layer 

transversely isotropic prism under uniform normal traction 0t  at the two side faces 

 

4.1.2.2 Different material layers under  and  

Next, consider the case that the top and bottom layers are made of the same materials, 

either the isotropic material with Young modulus 1 E GPa  and Poisson ratio 

0.3   or the transversely isotropic material with material constants identical to the 

transversely isotropic 1 reported in Table 4.1, whereas the middle layer is made from 

the different material. The prism is subjected to the uniform normal traction 

11 13 0 12 02 ,t t t t t   , and contained the penny-shaped crack (i.e., / 1a b  ). As the 

purpose of verification, the material constituting the middle layer is chosen such that 

the crack is completely closed under the applied traction and the T-stress 

components can be readily obtained in a closed-form. For the isotropic case, Young 

modulus 2 E GPa  and Poisson ratio 0.3   are chosen whereas for the 

transversely isotropic case, the material constants are chosen such that 1111 252E   

GPa, 1122 110E   GPa, 1133 106E   GPa, 3333 234E   GPa, 1313 35.3E   GPa. As 

expected, the computed stress intensity factors from all three meshes for both the 

isotropic and transversely isotropic cases are nearly zero up to several digits. For the 
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T-stress components, results for 11 33 13, ,T T T  along the crack front obtained from the 

three meshes are normalized and then reported along with the analytical solution in 

Figures 4.14-4.16 for the isotropic case and Figures 4.17-4.19 for the transversely 

isotropic case. Again, this set of results confirms both the convergence and accuracy 

of the numerical solutions obtained from the proposed boundary integral equation 

method and the post-process for determining the T-stress components from the sum 

of the crack-face displacement data. In particular, the obtained solutions are highly 

accurate and almost indistinguishable from the reference solutions. The coarse mesh 

containing only few elements can also capture the solution slightly different from 

the exact solution. This finding confirms the advantage of using special crack-tip 

elements to approximate the near-front jump in the crack-face displacement.    
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Figure 4.14 Normalized T-stress 11T  of penny-shaped crack in three-layer isotropic 

prism under 11 13 0 12 02 ,t t t t t    at the two side faces 

11

0

T

t
 

/2   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

44 

0.0 0.2 0.4 0.6 0.8 1.0
-0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Benchmark Solution

Mesh 1

Mesh 2 

Mesh 3 

 

 

Figure 4.15 Normalized T-stress 33T  of penny-shaped crack in three-layer isotropic 

prism under 11 13 0 12 02 ,t t t t t    at the two side faces 

 

0.0 0.2 0.4 0.6 0.8 1.0
-0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Benchmark Solution 

Mesh 1 

Mesh 2

Mesh 3

 

 

Figure 4.16 Normalized T-stress 13T  of penny-shaped crack in three-layer isotropic 

prism under 11 13 0 12 02 ,t t t t t    at the two side faces 
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Figure 4.17 Normalized T-stress 11T  of penny-shaped crack in three-layer 

transversely isotropic prism under 11 13 0 12 02 ,t t t t t    at the two side faces 
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Figure 4.18 Normalized T-stress 33T  of penny-shaped crack in three-layer 

transversely isotropic prism under 11 13 0 12 02 ,t t t t t    at the two side faces 
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Figure 4.19 Normalized T-stress 13T  of penny-shaped crack in three-layer 

transversely isotropic prism under 11 13 0 12 02 ,t t t t t    at the two side faces 

 

4.1.2.3 Three identical material layers under   

Finally, consider the case that all three layers are made of the same materials, either 

the isotropic material with Young modulus 1 E GPa  and Poisson ratio 0.3   or 

the transversely isotropic material with material constants identical to the 

transversely isotropic 1 reported in Table 4.1. The prism is subjected only to the 

uniform normal traction 3 0t t  with 11 12 13 0t t t    and contained the elliptical 

crack with aspect ratio / 2a b  . Due to the symmetry with respect to the crack 

plane, only the mode-I stress intensity factor IK  and the two T-stress components 

11 33,T T  are non-zero along the crack front. Results for IK  and 11 33,T T  obtained from 

the three meshes shown in Figure 4.8 are reported in Figures 4.20-4.22 for the 

isotropic case and Figures 4.23-4.25 for the transversely isotropic case. Computed 

solutions are compared with the reference solutions generated by the technique 

proposed by Rungamornrat and Mear (2008b) using the single domain formulation. 
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Figure 4.20 Normalized stress intensity factor IK  for elliptical crack in three-layer 

isotropic prism under uniform normal traction 3 0t t  at top and bottom surfaces 
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Figure 4.21 Normalized T-stress 11T  for elliptical crack in three-layer isotropic 

prism under uniform normal traction 3 0t t  at top and bottom surfaces 
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Figure 4.22 Normalized T-stress 33T  for elliptical crack in three-layer isotropic 

prism under uniform normal traction 3 0t t  at top and bottom surfaces 
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Figure 4.23 Normalized IK  for elliptical crack in transversely isotropic three-layer 

prism under uniform normal traction 3 0t t  at top and bottom surfaces 
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Figure 4.24 Normalized T-stress 11T  for elliptical crack in three-layer prism under 

uniform normal traction 3 0t t  at top and bottom surfaces 
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Figure 4.25 Normalized T-stress 33T  for elliptical crack in three-layer prism under 

uniform normal traction 3 0t t  at top and bottom surfaces 
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Again, it can be concluded from the last set of results that implemented technique 

yields the converged numerical solutions and they are in excellent agreement with 

the benchmark solution for both stress intensity factors and T-stress components.  

4.1.3 Elliptical Crack in Two-layer Cube 

Consider a two-layer cube occupying the region      2 ,2 2 ,2 2 ,2d d d d d d      as 

shown in Figure 4.26. The two layers are of the same height 2d , made of 

transversely isotropic, linear elastic materials with the axis of material symmetry 

along the 3x -axis,  and fully bonded with the material interface perpendicular to the 

3x -axis. An elliptical crack with the major semi-axis  and the minor semi-axis  

is embedded in the bottom layer and oriented perpendicular to the material interface 

as shown in Figure 4.26. In particular, the crack front can be described by 

 

               (4.2) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26 Two-layer cube containing elliptical crack perpendicular to interface 

under uniform traction on ordinary boundary in direction. 

 

where  is the distance from the crack center to the material interface and 

 denotes the angular position of point along the crack front. The body is 

free of the body force and loaded by a uniformly distributed normal traction  on 

the two side faces normal to the 1x -axis. Meshes used in the analysis are indicated 

in Figure 4.27, the material constants of all layers are chosen to be identical to those 
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of transversely isotropic-1 shown in Table 4.1. The discretization of the ordinary 

boundary and the crack surface obtained from the Mesh-3 is used along with the 

technique proposed by Rungamornrat and Mear (2008b) to generate the reference. 

In particular, the ratios / 1, / 2, / 1d a a b h d    are employed in the numerical 

study. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27 Three meshes adopted in the analysis of two-layer cube containing 

elliptical crack; mesh of the crack surface is shown below that of the side faces 

whereas mesh for the top and bottom faces and the material interface is shown at the 

top.  

 

The normalized mode-I stress intensity factor  and the non-zero normalized T-

stress components  obtained from proposed technique for all three meshes 

are reported as a function of the angular position  along the crack front in Figures 

4.28-4.30, respectively. It is seen from these results that the computed solutions 

show the good agreement with the reference solutions; in particular, the numerical 

solutions generated by the Mesh-2 and the Mesh-3 are almost indistinguishable from 

the reference solution whereas only slight difference is observed for those generated 

from the Mesh-1. 
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Figure 4.28 Normalized mode-I stress intensity factor for elliptical-shaped crack in 

two-layer cube under uniform normal traction  0t  at two side faces 
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Figure 4.29 Normalized T-stress  of elliptical crack in two-layer cube under 

uniformly distributed normal traction 0t  at two side faces 

11T

/2   

0

IK

t a
 

/2   

11

0

T

t
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

53 

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

Benchmark solution

Mesh 1

Mesh 2

Mesh 3 

 
 

Figure 4.30 Normalized T-stress 33T  of elliptical crack in two-layer cube under 

uniformly distributed normal traction 0t  at two side faces 

4.2 PARAMETRIC STUDY  

After the proposed technique is fully tested, it is then used to investigate the 

influence of material stiffness and the distance between the crack and the material 

interface on the stress intensity factors and the T-stress along the crack front. 

Sufficiently fine meshes suggested from the verification process are employed to 

ensure the convergence of numerical solutions.  

4.2.1 Elliptical Crack in Three-layer Cylinder 

To investigate the influence of the contrast between the material stiffness 

constituting a region containing the crack and those containing no crack on the two 

essential fracture data (i.e., the stress intensity factors and the T-stress components), 

the three-layer cylinder containing an elliptical crack as shown schematically in 

Figure 4.1 is considered as the representative problem. In the numerical study, the 

top and bottom layers are made of the same material with Young modulus 1E  and 

Poisson ratio 0.3   whereas the middle layer is made of the different isotropic 

material with Young modulus 2E  and Poisson ratio 0.3  . The elliptical crack is 
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located at the center of the middle layer (i.e., / 1h d  ) and the cylinder is subjected 

to the uniformly distributed tractions at the top and bottom surfaces. 

 First, the stress intensity factors and the T-stress components are generated for 

the case of a penny-shaped crack ( / 1, / 0.5a b a d  ) for various values of the 

Young modulus ratio 1 2/E E . Results of the mode-I stress intensity factor IK  and 

the non-zero T-stress 11 33,T T  are reported as a function of 1 2/E E  in Figures 4.31 and 

4.32, respectively. It is seen that as the stiffness of the material for the top and bottom 

layers decreases relative to that of the material for the layer containing crack, both 

the stress intensity factor and the magnitude of the both T-stress components 

decreases monotonically. Results are also established for the case of an elliptical 

crack with / 1, / 0.5a b a d   for various values of 1 2/E E . The stress intensity 

factors and the non-zero T-stress components are reported along the crack front for 

different values of the Young modulus ratio in Figures 4.33-4.35.  
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Figure 4.31 Normalized mode-I stress intensity factor for penny-shaped crack in 

three-layer cylinder under uniform normal traction 0t  as function of 1 2/E E  
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Figure 4.32 Normalized T-stress components 11 33,T T  for penny-shaped crack in 

three-layer cylinder under uniform normal traction 0t  as function of 1 2/E E  
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Figure 4.33 Normalized mode-I stress intensity factor for elliptical crack in three-

layer cylinder under uniform normal traction 0t  for various values of 1 2/E E  
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Figure 4.34 Normalized T-stress 11T  for elliptical crack in three-layer cylinder under 

uniform normal traction 0t  for various values of 1 2/E E  
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Figure 4.35 Normalized T-stress 33T  for elliptical crack in three-layer cylinder under 

uniform normal traction 0t  for various values of 1 2/E E  
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57 

 

It is seen that as the material of the layer containing crack becomes stiffer relative to 

that of the top and bottom layers, the stress intensity factors and the T-stress 

decreases. While the observed results have the same trend as that for case of the 

penny-shaped crack, the behavior strongly depends on the location along the crack 

front. 

4.2.2 Penny-shaped Crack in Two-layer Prism 

To further investigate the influence of the distance between the crack and the 

material interface on the stress intensity factors and the T-stress along the crack 

front, a two-layer prism containing a penny-shaped crack shown in Figure 4.36 is 

considered. The whole body occupies the region       2 ,2 2 ,2 8 ,2d d d d d d      

where its upper part (occupying the region      2 ,2 2 ,2 0,2d d d d d    ) is made 

of an isotropic material with Young’s modulus  and Poisson’s ratio  and 

the remaining part occupying the region      2 ,2 2 ,2 8 ,0d d d d d     ) is made of 

an isotropic material with Young’s modulus  and Poisson’s ratio . A 

penny-shaped crack of radius a  is embedded within the bottom layer and oriented 

perpendicular to the material interface with the crack front parameterized by (4.2). 

In the numerical study, a mesh shown in Figure 4.37 with / 2d a   is used.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.36 Two-layer prism containing penny shaped crack perpendicular to 

material interface under uniform traction at two side faces 

1E 0.3 

2E 0.3 
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Figure 4.37 Mesh of boundary and crack surface adopted in the analysis of penny-

shaped crack in two-layer prism 

 

First, the influence of the distance h  on the stress intensity factor and the T-

stress components is investigated for 1 2/ 2E E  . Computed results for non-zero 

stress intensity factors and T-stress are reported along the crack front in Figures 4.38-

4.40 for various values of /2h a  (i.e., /2 0.6,0.8,1.0,1.2,1.4,3.0,4.0h a  ). Results 

obtained indicate that when the distance from the crack center to the material 

interface increases, the mode-I stress intensity factor increases whereas the T-stress 

components are negative and increase in magnitude for the entire crack front. Both 

the stress intensity factor and the T-stress components achieves the maximum and 

minimum values at 3 /2    and  /2  , respectively.  Clearly, the influence of 

the material contrast on the value and distribution of the two fracture parameters is 

significant when crack is located relatively close to the material interface, and such 

the influence decays as the normalized distance from the material interface /2h a  

increases. Both the stress intensity factor and the T-stress components tend to 

converge asymptotically to the solution of the same crack embedded in a sufficiently 

long prism made of a single material with Young’s modulus 2E  and Poisson’s ratio 

 . Quantitatively, when the distance from the material interface is greater than about 

three times of the size of the crack, the influence of the material contrast can be 

neglected in the modeling without loss of the accuracy.    

 

Top face and material interface Side face Crack 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

59 

 0.0 0.2 0.4 0.6 0.8 1.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0

 
 

 

Figure 4.38 Normalized mode-I stress intensity factor for penny-shaped crack in 

two-layer isotropic prism under uniform normal traction 0t  for 1 2/ 2E E   and 

various values of / 2h a  
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Figure 4.39 Normalized T-stress component  for penny-shaped crack in two-

layer isotropic prism under uniform normal traction 0t  for 1 2/ 2E E   and various 

values of / 2h a  
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Figure 4.40 Normalized T-stress components  for penny-shaped crack in two-

layer isotropic prism under uniform normal traction 0t  for 1 2/ 2E E   and various 

values of / 2h a  

 

The influence of the distance h  on the stress intensity factor and the T-stress 

components is also investigated for the different material contrast 1 2/ 0.5E E  . 

Results for the mode-I stress intensity factors and T-stress components are reported 
along the crack front in Figures 4.41-4.43 for various values of /2h a  (i.e., 

/2 0.6,0.8,1.0,1.2,1.4,3.0,4.0h a  ). It is seen that when the crack is contained in a 

layer made of a stiffer material, both the stress intensity factor and the T-stress 

components decrease in magnitude as the normalized distance /2h a  increases. In 

addition, the locations along the crack front where the stress intensity factor and the 

T-stress components achieve their maximum and minimum values switch from the 

case of 1 2/ 2E E  . Similar to the previous case, it is observed that the presence of 

the material contrast shows the strong influence on both the variation and value of 

the two fracture data along the crack front when cracks are close to the material 

interface relative to the crack size and when the normalized distance /2 3h a  , such 

influence seems insignificant and the obtained solutions are nearly identical to the 

same crack embedded in a long prism without the material contrast. 
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Figure 4.41 Normalized mode-I stress intensity factor for penny-shaped crack in 

two-layer isotropic prism under uniform normal traction 0t  for 1 2/ 0.5E E   and 

various values of / 2h a  
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Figure 4.42 Normalized T-stress component  for penny-shaped crack in two-

layer isotropic prism under uniform normal traction 0t  for 1 2/ 0.5E E   and various 

values of / 2h a  
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Figure 4.43 Normalized T-stress component  for penny-shaped crack in two-

layer isotropic prism under uniform normal traction 0t  for 1 2/ 0.5E E   and various 

values of / 2h a  

 

Results for the stress intensity factors and the T-stress components at certain 

points along the crack front (i.e., at 0, 2,3 2   )  are also reported as a function 

of / 2h a  in Figure 4.44-4.52 for four values of the material contrast (i.e.,  

1 2/ 0.1,0.5,2.0,10.0E E  ). It is seen that for small / 2h a  (i.e., / 2 2h a  ), both the 

mode-I stress intensity factor and the T-stress components decrease in magnitude for 

1 2/ 1E E   and increase in magnitude for 1 2/ 1E E 
 
as the normalized distance / 2h a  

increases. Results also indicate that the rate of change of 11 33, ,IK T T  with respect to 

/ 2h a  for the small value of / 2h a  depends strongly on the material contrast 1 2/E E

; for instance, the rate of decrease and increase in 11 33, ,IK T T  increases as 1 2/E E  

decreases and increases, respectively. This set of results also confirms that as the 

normalized distance / 2h a  is larger than three the influence of the material contrast 

is insignificant. 
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Figure 4.44 Normalized mode-I stress intensity factor at 0   for penny-shaped 

crack in two-layer isotropic prism under normal traction 0t   
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Figure 4.45 Normalized mode-I stress intensity factor at / 2   for penny-shaped 

crack in two-layer isotropic prism under normal traction 0t  
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Figure 4.46 Normalized mode-I stress intensity factor at 3 / 2   for penny-

shaped crack in two-layer isotropic prism under normal traction 0t  
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Figure 4.47 Normalized T-stress component  at 0   for penny-shaped crack in 

two-layer isotropic prism under normal traction 0t  

11T

0

IK

t a
 

/ 2h a  

1 2

1 2

1 2

1 2

0.1

0.5

2.0

10.0

E E

E E

E E

E E









 

1 2

1 2

1 2

1 2

0.1

0.5

2.0

10.0

E E

E E

E E

E E









 

11

0

T

t
 

/ 2h a  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

65 

0 1 2 3 4
-3

-2

-1

0

1

 
 

Figure 4.48 Normalized T-stress component  at / 2   for penny-shaped 

crack in two-layer isotropic prism under normal traction 0t  
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Figure 4.49 Normalized T-stress component  at / 2   for penny-shaped 

crack in two-layer isotropic prism under normal traction 0t  
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Figure 4.50 Normalized T-stress component 33 0T    at 0   for penny-shaped 

crack in two-layer isotropic prism under normal traction 0t  
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Figure 4.51 Normalized T-stress component 33 0T   at / 2   for penny-shaped 

crack in two-layer isotropic prism under normal traction 0t  
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Figure 4.52 Normalized T-stress component 33 0T   at 3 / 2   for penny-shaped 

crack in two-layer isotropic prism under normal traction 0t  
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CHAPTER 5  

CONCLUSION AND REMARKS  

An efficient and robust numerical technique, based upon the weakly singular 

boundary integral equation method, has been successfully implemented for the 

analysis of near interface or sub-interface cracks in multi-material finite bodies. The 

formulation has been established within a general framework allowing general data 

such as the body and crack geometries, general material anisotropy, general loading 

and boundary conditions to be treated. Both of the weakly-singular weak-form 

displacement and traction boundary integral equations is employed along with the 

domain decomposition technique to obtain a system of equations governing the 

unknown data on the ordinary boundary (i.e., the displacements and tractions), the 

material interfaces (i.e., the displacements and tractions) and the crack surface (i.e., 

jump in and sum of the crack-face displacements) for cracks in multi-material 

domains. The positive feature of the governing integral equations, in addition to its 

symmetry and applicability to treat material anisotropy and general crack 

configuration and loading conditions, is the weakly singular nature of all integral 

involved. 

 Standard Galerkin scheme has been utilized to discretize the resulting system of 

equations. The accuracy of the proposed technique has been further enhanced by 

exploiting special interpolations along the crack front to capture the dominant near-

front field. In addition, all involved weakly singular and nearly singular integrals 

over pairs of elements resulting from the discretization have been carefully treated 

via the special numerical quadrature and the interpolation technique has been 

adopted to evaluate kernels for general anisotropic materials. Results from the 

present study have indicated that the integration of the special type of elements in 

the solution discretization significantly reduces the requirement of exploiting very 

fine mesh to accurately capture the near-front field. In addition, it also provides the 

direct means to post-process for the stress intensity factors from the jump in the 

crack-face displacement and for the T-stress components from the sum of crack-face 

displacement in the vicinity of the crack front. It is remarked also that the 

implemented technique yields highly accurate converged results as compared with 
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the reliable benchmark solutions and, in particular, the weak dependence on the level 

of mesh refinement has been observed for various scenarios. 

 Results from a parametric study have indicated that the contrast of the material 

stiffness and the distance between the crack and the material interface has the strong 

effect on both the magnitude and variation of the stress intensity factors and the T-

stress components along the crack front. For examples considered, when the material 

containing no crack is stiffer than that containing crack, the stress intensity factors 

and the magnitude of the T-stress increase as the crack moves away from the material 

interface. In addition, as the material containing crack becomes stiffer than that 

containing no crack, both the stress intensity factor and the magnitude of the T-stress 

decreases monotonically. It can be concluded also that as the distance from the 

material interface is about three times greater than the size of the crack, the presence 

of the material contrast show the insignificant influence on the value and variation 

of the two fracture data along the crack front. This implies that the treatment of the 

material contrast in the modeling is essential only when cracks are relatively close 

to the material interface in comparison with the characteristic size of the crack. 

 Finally, it is remarked that the ingredients presented in this study provide an 

essential and sufficient basis for the extension of the technique to be capable of 

treating more complex multi-material domains such as cracks in piezoelectric layers.  
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