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Image restoration, such as single image super-resolution (SISR), is a long-

established low-level vision issue that intends to regenerate high-resolution (HR) 

images from low-resolution (LR) input counterparts. While state-of-the-art image 

super-resolution models are based on the well-known convolutional neural network 

(CNN), many self-attention-based or transformer-based experiment attempts have 

been conducted. They have shown promising performance on vision problems. A 

powerful baseline model based on the swin transformer adopts the shifted window 

approach. It enhances the capability by restricting the model to compute the self-

attention function only on non-superimpose local windows while enabling cross-

window relations. However, the architecture design is manually fixed. Therefore, the 

results are not achieving optimal performance. This work presents a genetic 

algorithm-based deep multi-route self-attention network for single image super-

resolution (GA-MRSA). The genetic algorithm (GA) is introduced to discover the 

more suitable number of filters and layers. Experimental results demonstrate that the 

proposed optimization technique can produce an SR image with a maximum 

progressive PSNR of 0.14 dB and an average of 0.06 dB in the testing datasets 

compared to the state-of-the-art. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Motivation and Problem Statement 

Recently, multimedia application has gained more interest in daily life, 

including video streaming, face recognition, image filtering, and machine-to-machine 

translation. In addition, image processing and computer vision are two core components 

of multimedia applications, such as image segmentation, image recognition, object 

detection, anomaly detection, image analysis, etc. Besides, image super-resolution (SR) 

has been used in those multimedia applications in order to generate image enlargement 

for the human visual system. Precisely, image resolution is among the most crucial 

factors that influence how well an image is perceived. The image with higher resolution 

offers finer details of the scene and constituent object. High-resolution (HR) images are 

also fatal for many modern devices, e.g., huge electronic visual displays, high-

definition television sets, and portable gadgets like smartphones, tablets, cameras, etc. 

 

 

 

 

 

 

 

Figure  1: Baboon image in different resolutions 

(a) 123 × 120, (b) 164 × 160, (c) 246 × 240, (d) 500 × 480. 
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However, low-resolution (LR) images are more frequently gathered in 

contemporary culture, owing to shortcomings in imaging technology and storage space 

constraints. Consequently, the techniques for image enlargement are highly sought 

after. The procedure that gives input as an LR image with sparse details, aiming to 

reconstruct an HR image counterpart with improved perceptual quality, is referred to 

as single image super-resolution (SISR). SR models have attained exceptional 

achievement in many specialties, e.g., medical image processing [1], face [2], security 

and surveillance imaging [3], remote sensing [4], compressed image and video 

enhancement [5], object detection [6], and more. 

The two primary ways to achieve HR images are hardware-based and software-

based approaches. Hardware-based approach’s immediate solution to increasing the 

resolution level is to manufacture sensors with decreased pixel size. The higher-

resolution image is thus obtained by raising the pixel density or the number of pixels 

per unit area. The disadvantage of this method is a reduction in the amount of light 

coming from each pixel. Shot noise, which significantly lowers the image quality, is 

produced as the light intensity decreases. Increasing the chip size while retaining the 

pixel size constant is an alternative way to solve the issue of resolution level escalation. 

The chip capacitance rises as a consequence of this solution. It is commonly known that 

a huge capacitance prevents the charge transfer rate from being accelerated. The poor 

rate of charge transfer severely hampers the creation of images. All hardware solutions 

to this issue are typically constrained by the price of the necessary image sensors and 

high-preciseness optics. 

 

 

 

 

 

Figure  2: Single Image Super-Resolution 
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For a software-based technique to increase the resolution level, more precise 

and quicker algorithms must be designed. The software-based technique is practical 

because of extensively advanced computation units like the image signal processor 

(ISP) and graphic processing unit (GPU). The deep learning (DL) technique's 

computationally demanding goal of attempting to enhance the perceptual quality of LR 

images has surpassed the traditional techniques. DL is a subset of machine learning 

(ML) based on straightly learning various data representations. DL-based algorithms 

intend to automatically discover insightful hierarchical features and utilize them to 

reach the desired goal. The well-known convolutional neural network (CNN) has long 

dominated modeling in computer vision, including SISR. It began after AlexNet [7] 

was introduced to the ImageNet image classification challenge. Its extraordinary 

capability led to important advancements that greatly affected the discipline as a whole. 

Meanwhile, the network structure's development in the sector of natural 

language processing (NLP) has evolved differently, with the transformer [8] emerging 

as the preeminent standard. The recurrent and convolution layers are replaced by a 

straightforward network design that relies mainly on attention mechanisms. 

Researchers tried extending the transformer to address vision-related issues after 

experiencing remarkable success in the language area [9, 10]. SwinIR [11] is currently 

one of the most effective transformer-based vision models. It is a strong backbone 

model with the basis of swin transformer [12] that employs the shifted window strategy. 

Increases efficiency by constraining self-attention processing to non-overlapping 

regional windows while permitting cross-window association. The performance is 

satisfactory, but the hyperparameter design is still fixed manually. This implies that the 

hyperparameters can be adjusted to anticipate even better outcomes. Optimization aims 

to identify the best values among all feasible options. An uncomplicated yet effective 

optimizer like the genetic algorithm (GA) can be employed to solve this optimization 

issue. 

We introduce a genetic algorithm based deep multi-route self-attention network 

for single image super-resolution in order to address the optimization problem and 

improve performance. Utilize the resilience of the genetic algorithm as an optimization 

technique to optimize the existing self-attention-based model, SwinIR. We are 
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attempting to search for a more suitable number of filters and layers. In addition, to 

examine each network design’s more suitable hyperparameters. 

 

1.2 Objectives 

1. Apply genetic algorithm in single image super-resolution (SISR) in order to 

improve the quality of reconstructed SR image. 

2. Perform super-resolution in different scale factors. 

3. Evaluate the performance of the proposed model with the state-of-the-art SISR 

model. 

 

1.3 Scope of Work 

1. Examine genetic algorithm to optimize transformer-based single image super-

resolution model. 

2. Investigate the proposed method at least on two different scale factors. 

3. Assess the performance of the proposed algorithm with the referenced baseline 

model using subjective and objective image quality assessments. 

 

1.4 Research Procedure 

1. Review literature related to single image super-resolution, optimization 

techniques, and genetic algorithm. 

2. Study the methodology of single image super-resolution and select the datasets. 

3. Design and develop the architecture of the proposed genetic algorithm network. 

4. Train the baseline network with the selected image datasets. 

5. Run the proposed genetic algorithm method. 

6. Test performance of the proposed method compared with the baseline. 

7. Conclude and analyze the experimental results of the proposed algorithm. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 5 

1.5 Expected Outcome 

1. Achieve a more suitable set of hyperparameters of the referenced baseline 

model. 

2. Reconstruct a better high-resolution output image compared to the original 

model, in terms of both quantitatively and qualitatively. 

 

1.6 Outline of Thesis 

Including chapter I, this thesis consists of a total of five chapters. The rest of the 

contents are provided with descriptions as follows: 

Chapter II: describes the background and literature review related to 

frameworks and modern techniques of single image super-resolution, such as super-

resolution with deep learning and transformer. Moreover, optimization techniques and 

genetic algorithms in super-resolution are also included. 

Chapter III: describes the proposed method that explains the overall structure, 

chromosome design, fitness function, genetic algorithm operators, and termination 

criteria. 

Chapter IV: demonstrates and analyzes the experimental results compared with 

the baseline. 

Chapter V: comprises of conclusion and future work.  
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CHAPTER II 

BACKGROUND AND LITERATURE REVIEW 

 

2.1 Background 

2.1.1 Single Image Super-Resolution 

Single Image Super-Resolution (SISR) is a process of reconstructing one 

corresponding HR image from one LR input image. LR input image 𝐼𝑥 is generally 

modeled as the outcome of the following degradation: 

 𝐼𝑥  =  𝐷(𝐼𝑦;  𝛿), (2.1) 

where 𝐼𝑦 is the ground truth HR image, 𝐷 denotes a degradation mapping function and 

𝛿  is the parameters of the degradation procedure (e.g., noise or scaling factor). 

However, the degradation procedure (i.e., 𝐷 and 𝛿) is normally unknown and only LR 

images are collected. This case also referred to as blind SISR. Given the LR input image 

𝐼𝑥, a super-resolved or approximately reconstructed image 𝐼𝑦 of the ground truth HR 

image 𝐼𝑦 needed to be restored as follows: 

 𝐼𝑦  =  𝑆𝑅(𝐼𝑥;  𝜃), (2.2) 

where 𝑆𝑅 is the super-resolution model and 𝜃 indicates the parameters of 𝑆𝑅. 

Even though the degradation procedure is unacquainted and can formed due to 

many factors (e.g., sensor noise and speckle noise, compression artifacts, anisotropic 

degradations), researchers are attempting to predict the degradation mapping. The 

majority of models directly represent the degradation as a single downsampling step, 

as in: 

 𝐷(𝐼𝑦;  𝛿)  =  (𝐼𝑥) ↓𝑠, {𝑠} ⊂ 𝜃), (2.3) 
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where ↓𝑠  is a downsampling operation with the scaling factor 𝑠 . Practically, most 

generic SR datasets are created according to this pattern, and the most widely used 

downsampling method is bicubic interpolation with antialiasing. 

 Presently, SR algorithms can be categorized into three groups based on the 

approaches employed. They are interpolation-based, reconstruction-based, and 

machine learning-based SR. 

 Interpolation-based SISR methods. The most commonly known are nearest 

neighbor interpolation, bilinear interpolation, and bicubic interpolation. They are 

straightforward and rapid but have a limited capacity for detail improvement. 

 Reconstruction-based SISR methods, such as edge sharpening, regularization, 

and deconvolution. As a matter of fact, these algorithms can generate high-resolution 

images clear and vivid since they frequently require complicated prior information. 

Which needs prior knowledge to define constraints for the target HR image. However, 

many reconstruction-based methods quickly decrease in performance as the scaling 

factor rises, and these techniques are usually time-consuming. 

Learning-based SISR methods. This category of SISR algorithms obtains 

approximate HR images with the use of machine learning techniques. Due to its fast 

speed and outstanding performance, the SISR based on machine learning techniques 

has attracted significant interest. Typically, the approaches employ learning-based 

algorithms to extract statistical correlations between LRs and their HRs counterparts 

from a large number of training datasets. Some examples of early learning-based SISR 

methods are Markov Random Field (MRF), neighborhood embedding, and sparse 

coding. In addition, a lot of work combines reconstruction and machine learning-based 

techniques to lessen artifacts brought about by external training data. Recent studies 

have demonstrated the superiority of SISR algorithms based on deep learning (DL) over 

previous reconstruction-based and other machine-learning-based methods. 
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2.1.2 Deep Learning-Based Super-Resolution 

Deep learning is a subbranch of the machine learning method based on different 

representations of direct learning data. When compared to conventional algorithms, 

deep learning algorithms strive to automatically learn the rich hierarchical 

representation of the content in order to accomplish the goal; the entire learning process 

can be viewed as a whole. Deep learning in SR can come in two broad categories: 

supervised learning and unsupervised learning. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  3: Taxonomy of Supervised Deep Learning-based SR 

 

2.1.2.1 Sampling Framework 

SISR is inherently an ill-posed problem since there are multiple solutions that 

exist for the same LR input image. Thus, the main concern is on how to execute 

upsampling stage. Even though the frameworks of existing models differ greatly, four 

model frameworks can be identified corresponding to the upsampling operation used 

and where they are located inside the model. 
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• Pre-upsampling Super-resolution 

Since it is challenging to learn the representation from low-dimensional space 

to high-dimensional space explicitly, a simple solution is to use conventional 

upsampling techniques to acquire higher-resolution images and afterward refine them 

through deep neural networks. Dong et al. [13] introduce SRCNN to generate an end-

to-end mapping from interpolated LR images to HR images by first implementing the 

pre-upsampling SR approach.  

 

 

 

 

Figure  4: Structure of Pre-upsampling Super-Resolution Framework 

To be specific, the LR images are upsampled using interpolation-based methods 

to obtain HR images with coarse features at the aspire image size. Following that, 

reconstructed super-resolved images with refined details are produced by employing 

deep CNNs. Therefore, this framework has steadily risen to be one of the most widely 

known. Nevertheless, most operations are carried out in high-dimensional space, and 

negative consequences such as noise or blurring generally occur from the 

predetermined upsampling. Compared to alternative frameworks, the expense of time 

and space is substantially higher. 

 

• Post-upsampling Super-resolution 

With the aim of better computational efficiency and fully utilizing deep learning 

techniques for image resolution increment, researchers suggest performing the majority 

of computation in low-dimensional space. It is done by displacing the predetermined 

upsampling with end-to-end learnable layers merged at the hindmost stage of the model. 

This concept is recognized as a post-upsampling SR framework. 
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In the early studies [14, 15], as illustrated in Figure 5, the LR input images are 

passed through deep CNNs without enhancing resolution, and the end-to-end learnable 

upsampling layers are applied at the end of the network. Given that the feature 

extraction task that requires high computational expense takes place in low-dimensional 

space and the resolution only rises at the very end, the computation and spatial 

complexity are greatly decreased. Accordingly, this framework has also developed as 

one of the most widely used frameworks in SR [16-18]. Ensuing models diverge the 

most with different learnable upsampling layers, DL networks design, and learning 

tactics. 

 

 

 

 

Figure  5: Structure of Post-upsampling Super-Resolution Framework 

 

• Progressive Upsampling Super-resolution 

Albeit the computational cost of the post-upsampling SR approach has been 

significantly decreased, it still has a number of drawbacks. Since upsampling is done at 

a single pace, it makes the learning procedure become more challenging for huge 

scaling factors. Moreover, it is not suitable for a multi-scale SR model due to the need 

to train an individual model for every scaling factor. To deal with these limitations, 

Laplacian pyramid SR network (LapSRN) [19] introduces a progressive upsampling 

framework. The architecture is presented in Figure 6. In particular, the models 

implementing this framework gradually generate higher-resolution images based on a 

succession of CNNs. The images are improved by CNNs and upsampled to better 

resolution at each stage. 

 

 

 

 

Figure  6: Structure of Progressive Upsampling Super-Resolution Framework 
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The models under this approach effectively reduce the learning difficulties, 

large factors for the most part, and also handle the multi-scale SR without adding an 

excessive amount of spatial and temporal cost. The complicated model design for 

several stages and the training stability are two issues that these models also run into. 

Therefore, additional modeling guidance and more sophisticated training techniques 

are required. 

 

• Iterative Up-and-down Sampling Super-resolution 

For the purpose of improving the acquisition of the mutual dependencies 

between LR and HR image pairings, back-projection, an effective iterative process, is 

integrated into SR. Figure 7 displays the structure of this framework, iterative up-and-

down sampling. It aims to recursively use back-projection refinement by evaluating the 

reconstruction error and then combining it back to adjust the HR image intensity. Based 

on the idea, a proposal by Haris et al. [20] for DBPN makes use of iterative up-and-

down sampling layers. The model reproduces the eventual HR outcome incorporating 

all of the intermediate reconstructions by interchangeably joining upsampling and 

downsampling layers. Comparable to this, the SRFBN [21] uses a more compact skip 

connection iterative up-and-down sampling feedback block to learn stronger 

representations. 

 

 

 

 

 

Figure  7: Structure of Iterative Up-and-down Sampling Super-Resolution Framework 

However, the back-projection modules' design considerations remain 

ambiguous. Since this approach is relatively new to deep learning-based SR, additional 

research is necessary to understand its capabilities fully. 
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2.1.2.2 Network Architecture 

Network architecture is one of the most crucial components of deep learning 

these days. Scholars in the super-resolution discipline build the final networks utilizing 

a variety of network design methodologies on the basis of the four SR frameworks. In 

the following part, these networks are broken down into the fundamental concepts or 

tactics for network design, explained, and discussed their benefits and drawbacks 

individually. 

• Linear Network 

Linear networks have a straightforward architecture that includes just one input 

movement track, no skip connections, and no multiple branches. SRCNN [22] is an 

example of a linear network. Multiple convolutional layers are piled on top of one 

another in such network topologies, and the input passes sequentially from the first to 

the last layers. Different linear networks vary by the location the upsampling operation 

is executed, e.g., pre-upsampling or post-upsampling scheme. 

• Residual Learning 

Global residual learning and local residual learning are two broad categories for 

residual learning network design. 

Global Residual Learning: Take into account that SISR is a task that 

transforms image to image, where the given image feeding in is strongly associated 

with the desired output image. Thus, the researcher strives to comprehend just the 

residuals among the two images. This network architecture is known as global residual 

learning. In this instance, it merely necessitates on training a residual map to restore the 

omitted high-frequency information rather than learning a complex translation from an 

entire image to another. The model complication and learning difficulties are 

significantly reduced because the residuals are barely detectable in vast areas. That 

being so, SR models frequently employ it [23-25]. 

Local Residual Learning: Inspired by the deep residual learning for image 

recognition (ResNet) [26], local residual learning is employed to mitigate the 

degradation problem brought on by continuously expanding network depths, lessen the 
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complexity of training, and enhance learning capacity. It is also popular for SR models 

[27, 28]. 

The difference between the two implementation methods is that the first 

forthrightly links the input and output images, whereas the second typically escalates 

multifarious shortcuts between layers of varying depths within the network. Practically, 

the aforementioned designs are both actualized by skip connections and element-wise 

summation. 

 

 

 

Figure  8: Residual Learning Network Architecture 

• Recursive Learning 

Recursive learning, which involves adopting the identical modules numerous 

times in a recursive fashion, is proposed in SR with the goal to acquire higher-level 

characteristics without presenting overpowering parameters. DRCN [29] with 16 

recursive layers, yields a receptive field of 41×41 by utilizing a single convolutional 

layer as the recursive unit. The DRRN [25] achieves even greater performance than the 

17-ResBlock baseline by using a ResBlock [26] as the recursive unit for 25 recursions. 

More recently, Li et al. [21] presented a feedback network based on recursive learning 

and used an iterative up-and-down sampling SR approach. In this network, the whole 

network’s weights are allocated covering all recursions. 

 

 

 

 

 

Figure  9: Recursive Learning Network Architecture 
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Recursive learning can generally learn increasingly complex characterizations 

without introducing a large number of extraneous parameters, but it still cannot present 

considerable computational costs. Additionally, it has intrinsic difficulties with 

inflating or vanishing gradients. 

 

• Dense Connection 

Dense connection gradually became more famous in vision applications ever 

since Huang et al. [30] proposed DenseNet based on dense blocks. Each layer in a dense 

block receives input from all layers that came before it, and its own feature maps are 

fed as inputs into all successive layers. By using a small growth rate and compressing 

channels after appending all of the input feature maps, the dense connections 

significantly decrease the model size while also relieving gradient vanishing, 

strengthening signal propagation, and inspiring the reuse of features. Dense connections 

are inserted into the SR field with the purpose of combining low-level and high-level 

features to offer greater characteristics for restoring high-quality features. 

 

 

 

 

 

Figure  10: Dense Connection Network Architecture 

 

• Attention Mechanism 

Channel Attention: In order to increase learning capacity by expressly 

modeling channel interdependence, Hu et al. [31] present a "squeeze-and-excitation" 

block. The block considers the interdependence and interaction of the feature 

representations between various channels. Global average pooling (GAP) is used in the 

block to compress each input channel into a channel descriptor, which is then supplied 

into two dense layers to provide channel-wise scaling factors for input channels. 
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Consequently, Zhang et al. [27] amalgamate the channel attention mechanism with SR 

and propose RCAN, which revolutionized the model correlation capability and SR 

efficiency. A second-order channel attention (SOCA) module is subsequently 

introduced by Dai et al. [32] with the intend of learning the characteristic 

representations better. The SOCA allows for the extraction of more illuminating and 

discriminative representations by dynamically rescaling the channel-wise features 

using second-order feature statistics rather than GAP. 

Non-local Attention: The preponderance of SR models in present use has 

relatively small local receptive fields. Nonetheless, some far-off objects or textures 

could be essential for creating local patches. To pull out features that preserve the long-

range dependencies across pixels, Zhang et al. [33] present local and non-local attention 

blocks. They particularly imply a trunk branch for feature extraction and a (non-)local 

mask branch for dynamically rescaling trunk branch features. The non-local branch 

uses the embedded Gaussian function to assess pairwise associations between each pair 

of position indices in the feature maps in order to forecast the scaling weights. In 

contrast, the local branch uses an encoder-decoder architecture to learn the local 

attention. The proposed method effectively catches spatial attention through this 

mechanism, strengthening the capacity for representation. The non-local attention 

mechanism is also employed by Dai et al. [32] to capture long-distance spatial 

contextual data. 

 

2.1.2.3 Loss Function 

Loss functions are employed in the super-resolution discipline to quantify 

reconstruction error and lead model optimization. Researchers initially used the 

pixelwise 𝐿2 loss to evaluate reconstruction quality, but they eventually realized that 

this method was not particularly reliable. To better measure the reconstruction error and 

provide more accurate and high-quality results, a variety of loss functions, such as 

adversarial loss [16] and content loss [34], are used. These loss functions have become 

increasingly significant in recent years. 

Pixel Loss. Pixel loss measures the pixel-wise difference between two images. 

It primarily contains 𝐿1 loss (mean absolute error) and 𝐿2 loss (mean square error): 
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 ℒ𝑝𝑖𝑥𝑒𝑙_𝐿1
(𝐼, 𝐼)  =  

1

ℎ𝑤𝑐
∑|𝐼𝑖,𝑗,𝑘 − 𝐼𝑖,𝑗,𝑘|,

𝑖,𝑗,𝑘

 (2.4) 

 ℒ𝑝𝑖𝑥𝑒𝑙_𝐿2
(𝐼, 𝐼)  =  

1

ℎ𝑤𝑐
∑(𝐼𝑖,𝑗,𝑘 −  𝐼𝑖,𝑗,𝑘)

2
,

𝑖,𝑗,𝑘

 (2.5) 

where the height, width, and channel number are represented as ℎ , 𝑤 , and 𝑐 , 

respectively. Additionally, another variation of the pixel 𝐿1 loss is called Charbonnier 

loss [19]., denoted as: 

 ℒ𝑝𝑖𝑥𝑒𝑙_𝐶ℎ𝑎𝑟(𝐼, 𝐼)  =  
1

ℎ𝑤𝑐
∑ √(𝐼𝑖,𝑗,𝑘 − 𝐼𝑖,𝑗,𝑘)

2
+  𝜖2,

𝑖,𝑗,𝑘

 (2.6) 

The reconstructed HR image is constrained by the pixel loss to be sufficiently 

near to the actual ground truth pixel values. In contrast to 𝐿1 loss, 𝐿2 loss penalizes 

larger errors but is more forgiving of tiny errors, leading to outcomes that are frequently 

too smooth. In actual use, 𝐿1 loss outperforms 𝐿2 loss in terms of performance and 

convergence [17, 35]. The pixel loss progressively emerges as the most used loss 

function since the definition of PSNR is significantly associated with a pixel-wise 

difference and decreasing pixel loss directly maximizes PSNR. Nevertheless, because 

the pixel loss truly ignores image quality, such as textures and perceptual quality, the 

results frequently lack high-frequency details and have textures that are perceptually 

unpleasant due to over-smoothing [16, 34, 36]. 

Content Loss. The content loss is added to SR [34] with the aim of assessing 

the perceptual quality of the images. Specifically, it makes use of an image 

classification network that has already been trained to measure semantic distinctions 

between images. The Euclidean distance between two high-level representations of two 

images serves as a marker for content loss, given by: 

 ℒ𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝐼, 𝐼;  𝜙, 𝑙)  =  
1

ℎ𝑙𝑤𝑙𝑐𝑙
√∑ (𝜙𝑖,𝑗,𝑘

(𝑙)
(𝐼) − 𝜙𝑖,𝑗,𝑘

(𝑙)
(𝐼))

𝑖,𝑗,𝑘

2

 (2.7) 
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In essence, the content loss conveys the classification network's learned 

understanding of hierarchical image features to the SR network. The content loss, as 

opposed to pixel loss, promotes the output image to be perceptually similar to the target 

image rather than requiring exact pixel matching. 

Texture Loss. The texture loss or style reconstruction loss is incorporated into 

SR due to the need for the reconstructed image to have the same style as the target 

image (e.g., colors, textures, contrast), which is driven by the style representation [37]. 

Following [37], the image texture is defined as the Gram matrix and is viewed as the 

correlations between various feature channels. 

 𝐺𝑖,𝑗
(𝑙)(𝐼) = 𝑣𝑒𝑐 (𝜙𝑖

(𝑙)(𝐼)) ∙  𝑣𝑒𝑐 (𝜙𝑗
(𝑙)(𝐼)) (2.8) 

 ℒ𝑝𝑖𝑥𝑒𝑙_𝐿2
(𝐼, 𝐼)  =  

1

ℎ𝑤𝑐
∑(𝐼𝑖,𝑗,𝑘 −  𝐼𝑖,𝑗,𝑘)

2
,

𝑖,𝑗,𝑘

 (2.9) 

It provides textures that are far more realistic and results in results that are more 

pleasing to the eye. Even yet, choosing the patch size to match textures is still an 

empirical process. Because texture statistics are averaged over regions with various 

textures, too little or too large of a patch might create artifacts in textured sections or 

the entire image. 

Adversarial Loss. A growing number of vision tasks have been introduced to 

GANs [38] in recent years due to their strong learning capabilities. To put it more 

specifically, the GAN is made up of a generator that performs generation such as text 

generation or image transformation and a discriminator that accepts as inputs the 

generated results and instances drawn from the target distribution and determines 

whether or not each input is from the target distribution. In SR, can adopt adversarial 

loss by treating the SR model as a generator and defining an extra discriminator to judge 

whether the input is generated or not. Ledig et al. [16] first proposed SRGAN using 

adversarial loss based on cross entropy as in the equation below. Where images that are 

randomly sampled from the ground truth denote as 𝐼𝑠 . ℒ𝑔𝑎𝑛_𝑐𝑒_𝑔  and ℒ𝑔𝑎𝑛_𝑐𝑒_𝑑 

represent the adversarial loss of the SR model and the discriminator 𝐷, respectively. 
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 ℒ𝑔𝑎𝑛_𝑐𝑒_𝑔(𝐼; 𝐷)  =  − log 𝐷(𝐼), (2.8) 

 ℒ𝑔𝑎𝑛_𝑐𝑒_𝑑(𝐼, 𝐼𝑠; 𝐷)  =  − log 𝐷(𝐼𝑠) −  log (1 −  𝐷(𝐼)) , (2.9) 

 

2.1.3 Transformer 

In recent years, transformer models [8] have displayed outstanding performance 

on a variety of language tasks, including machine translation, question answering, and 

text categorization. BERT (bidirectional encoder representations from transformers) 

[39], GPT (generative pre-trained transformer) [40], and T5 (text-to-text transfer 

transformer) [41] are the most well-established models among them. The potential of 

transformer models to scale up to very large capacity models has made their tremendous 

impact more obvious. Despite the fact that attention models have been widely employed 

in both feed-forward and recurrent networks, transformers are based purely on the 

attention mechanism and have a novel implementation optimized for parallelization, 

namely multi-headed self-attention. Additionally, transformers are generally pre-

trained via pretext tasks on large-scale datasets because they require a less preexisting 

understanding of the architecture of the topic than convolutional and recurrent. A pre-

training like this saves costs by avoiding time-consuming manual annotations and 

encoding highly expressive and generalizable representations that model complex 

relationships between the elements in a given dataset. In order to achieve successful 

outcomes, the learned representations are then improved on the downstream tasks in a 

supervised way. 

The key concept that developed the traditional transformer models is self-

attention which discovers the connections among sequence's elements. Transformers 

enable them to concentrate on whole sequences, which allows them to capture long-

range relationships in contrast to recurrent networks, which can only pay attention to 

short-term context and handle sequence elements iteratively. 
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❖ Self-Attention 

Scaled Dot-Product Self-Attention: The transformer uses a scaled dot-product 

self-attention that functions similarly to the general attention mechanism that existed 

earlier. The scaled dot-product self-attention, as the title implies, calculates a dot 

product for every query, 𝑞 , using all of the keys, 𝑘 first. After that, it divides each result 

by √𝑑𝑘 and then applies a softmax activation function. This allows it to acquire the 

weights needed to scale the values, 𝑣. Practically, the scaled dot-product attention's 

calculations can be applied quickly and effectively to the complete set of queries at 

once. The attention function is given the matrices 𝑄, 𝐾, and 𝑉 as inputs in order to 

accomplish this: 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 (2.10) 

The structure of a scaled dot-product self-attention is depicted in Figure 11. 

 

 

 

 

 

 

 

 

 

Figure  11: Scaled Dot-Product Self-Attention Function 

Multi-Headed Self-Attention: They then proposed a multi-head self-attention 

mechanism that linearly extends the keys, values, and queries ℎ  times, utilizing a 

unique learned projection each time. Following this, the single self-attention function 

is parallelly employed to each of the ℎ projections to generate ℎ outcomes, which are 
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then concatenated and projected once more to yield the final output. The goal of multi-

head attention is to enable information extraction from various representational 

subspaces, which is impossible with a single self-attention head alone. Figure 12 

illustrates the structure of a multi-head self-attention mechanism. Which can be defined 

below: 

 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 (2.11) 

 Where ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄, 𝐾𝑊𝑖

𝐾, 𝑉𝑊𝑖
𝑉)  

 

 

 

 

 

 

Figure  12: Multi-Headed Self-Attention Function 

Self-attention differs from convolution since its filters are dynamically 

constructed as opposed to convolution's static filters. Furthermore, self-attention is 

unaffected by input point variations and permutations. Additionally, this could work 

with unpredictable sources without difficulties unlike normal convolution, which 

demands a grid system. In essence, self-attention offers the potential to learn both global 

and local properties, as well as explicitly to understand both the receptive field and 

kernel weights in an adaptive manner. 
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2.1.4 Optimization Techniques 

2.1.4.1 Overview of Optimization Techniques 

When referring to issues in computer science and mathematics, optimization 

techniques imply a computational context where the objective is to arrive at the best 

possible choice by repeatedly assessing all reasonable choices. It is a useful method for 

investigating the suitable performing requirements and the desired design parameters. 

The optimization approaches utilized to handle the issue are specifically designed to 

meet the specific issue's nature in order to deliver trustworthy optimal solutions. 

Technology has progressed to the point that optimization is now a necessary part of 

many application fields. For example, in the case, a hospital's primary aim would be to 

minimize the amount of time patients must wait in the emergency unit before being 

examined by a professional. In this scenario, the assets would comprise doctors, nurses, 

facilities, tools, and so forth. In business, the intention may be to boost sales by 

concentrating on the potential consumers while taking practical and financial 

restrictions into consideration. Without efficient design and operations optimization, 

production and engineering operations will not be as effective as they are now. It is 

conceivable to observe how various natural species develop over time and adapt to their 

surroundings. This comprehension can also inspire human ingenuity. For example, the 

submersible was motivated by fish, the theory that makes birds fly was used to construct 

the plane, and radar progressed from bats. Therefore, numerous optimization 

techniques draw inspiration from nature. 

 

 

 

 

 

 

 

Figure  13: Hierarchy-structured Overview of Optimization Techniques 
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Before it can be solved, an optimization problem must first be modeled, which 

entails that it must be expressed mathematically with the use of variables. To discover 

the most effective answer to these issues across a variety of domains, optimization 

techniques are needed. Even though small dimension problems can be solved without 

the aid of computers, larger and more complicated problems often demand specialized 

techniques and computer simulation. The mathematical summary of the two-step 

iterative optimization procedure is as follows: 

  𝑥𝑞 =  𝑥𝑞−1 + 𝛼⋆𝑆𝑞 (2.12) 

The initial stage is to utilize gradient information to determine the search direction S. 

The next phase is to continue on this path until no more advancement is possible. The 

optimum step size, 𝛼⋆, is obtained in the second step, which is referred to be a one-

dimensional or line search. Note that there are also gradient-based algorithms that do 

not rely on a one-dimensional search. 

There are various ways to classify optimization techniques depending on their 

purpose and properties. Since there could be a large number of possible configurations 

and using exact methods to arrive at the optimized solution is not feasible, it is necessary 

to use intelligent tools to handle these issues. The use of metaheuristic algorithms to 

address complex optimization issues has been proven to be successful. The appropriate 

compatibility of these algorithms with many engineering optimization issues is evident. 

2.1.4.2 Evolutionary Algorithm 

Evolutionary algorithm (EA) [42] is a meta-heuristic optimization method 

influenced by the evolution of nature organisms. As a method for tackling optimization 

problems, EAs have drawn a great deal of attention. These techniques have the 

advantage of being incredibly resilient and are generally inspired by occurrences in 

nature. They are simple to use, have a higher probability of discovering a global or 

nearly global optimal, and are well suited for discrete optimization problems. These 

methods have several significant limitations, including high computational cost, 

ineffective constraint handling, problem-specific parameter adjustment, and restricted 

problem size. The evolutionary representation, implementation specifications, and 
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essence of the particular applicable task vary amongst different types of EA approaches. 

Two of the most well-known EAs are the more established genetic algorithm (GA) [43] 

and particle swarm optimization (PSO) [44]. Other algorithms that fall into this 

category include differential evolution (DE) [45], simulated annealing (SA), tabu 

search, ant colony optimization (ACO), harmony search (HS), and more. Charles 

Darwin's theory of evolution serves as the basis for the following three characteristics 

that define EAs: 

Population-based: Once the present answers are inadequate, EAs are employed 

to optimize the process to provide further effective solutions. The population is the 

collection of currently employed solutions from which offspring are to be generated. 

Fitness-oriented: A fitness value computed from a fitness function is given to 

each solution. This fitness value assesses the effectiveness of the solution and shows 

which is preferable. 

Variation-driven: Going to consider that none of the existing population's 

solutions have come close to achieving the stated objective, which corresponds to each 

chromosome's fitness value. As a consequence, there ought to be an occasion where a 

new and improved collection of solutions can be established. Thus, new solutions have 

resulted after some modifications individually. 

❖ Simulated Annealing (SA) 

The inspiration and name of simulated annealing [46] come from the annealing 

process in metallurgy, a technique that entails heating and controlled cooling of a 

material to enlarge its crystals’ size and lessen their flaws. The slow cooling increases 

the likelihood that the atoms will find configurations with lower internal energy than 

the initial one because the heat causes them to become dislodged from their initial 

positions, a local minimum of internal energy, and wander randomly through states of 

higher energy. The function to be minimized is regarded as the internal energy of the 

system in that state in the simulated annealing method, where each point in the search 

space is compared to a state of some physical system. As a result, the objective is to 

move the system from any initial state to the state that requires the least amount of 

energy. 
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❖ Particle Swarm Optimization (PSO) 

Particle swarm optimization (PSO) [44] is one of the optimization techniques 

belonging to EAs. The technique was created by the modeling of streamlined social 

models. PSO was inspired by the behavior of organisms like fish schooling and bird 

flocking and integrates socio-cognition human agents with social psychology 

principles. The findings of the research conducted on a flock of birds indicate that they 

obtain food by congregating in groups, not individually. PSO simulates behaviors such 

as a swarm of bees looking for food, for instance. The population, or swarm, converges 

on the optimal solution utilizing information obtained from both the collective 

knowledge of the swarm as a whole and from each individual, also mentioned to as a 

particle. An initial population that is randomly distributed across the design space 

serves as the starting point of the algorithm. Then, from one design iteration to the next, 

position of each particle is updated utilizing the equation below: 

  𝑥𝑖
𝑞+1 =  𝑥𝑖

𝑞 +  𝑣𝑖
𝑞∆𝑡 (2.13) 

where 𝑞  denotes the 𝑞𝑡ℎ  iteration, 𝑖  denotes the 𝑖𝑡ℎ  individual, and 𝑣𝑖
𝑞

 denotes the 

velocity of 𝑖𝑡ℎ individual at 𝑞𝑡ℎ iteration. ∆𝑡 is the time increment which is generally 

represented as unity. Each particle is first defined as a random velocity vector that will 

be updated with Equation (2.14) after every iteration. 

  𝑣𝑖
𝑞+1 =  𝑤𝑣𝑖

𝑞 + 𝑐1𝑟1

(𝑝𝑖 −  𝑥𝑖
𝑞)

∆𝑡
+ 𝑐2𝑟2

(𝑝𝑔 −  𝑥𝑖
𝑞)

∆𝑡
 (2.14) 

❖ Genetic Algorithm (GA) 

Genetic algorithm (GA) is one of the most well-known EA methods. 

Essentially, it was theoretically validated [47] and also exhibited captivating benefits 

while manipulating a diversity of optimization problems. John Holland from the 

University of Michigan [48] first presented the concept of a genetic algorithm in 1975. 

Fig. 2.10 depicts the typical flowchart of GA. 
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GA can address complex tasks with various variables and a broad assortment of 

possible outcomes by replicating the evolutionary process of nature to reach a particular 

goal. Chromosomes are used in GA as a metaphor for the solutions. Each chromosome's 

fitness value is evaluated using the fitness function, and the values are then sorted from 

best to worst. In GA, generating new solutions resembles the dynamics of natural 

selection and genetic inheritance that take place in living creatures. Different nature-

inspired operators are repetitively employed in this stage. They are, namely, selection, 

crossover, and mutation [49]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  14: Flowchart of the typical GA 

A number of the fittest chromosomes are first selected as parents before 

producing a new collection of chromosomes. To imitate the survival of the fittest, the 

chromosomes with higher fitness are chosen more frequently compared to those with 
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lower fitness. Different selection procedures may call for different ways of probability 

assignment in order to maintain a favorable balance among the diversification of the 

new population and the evolution of chromosomes. There have been many selection 

techniques introduced, but the two that are most commonly applied are the tournament 

selection and the roulette wheel selection. The crossover operator unites the parent 

chromosomes after identifying the parent chromosomes to generate new offspring. 

There are several crossover methods put forth, including multi-point and uniform 

crossover. After a few generations, it is plausible that the new solutions may not alter 

much because stronger individuals are being chosen more often, which could lead to 

population stagnation. A mutation operation is a method used to preserve population 

variation and avoid stagnation. 

On the account of the GA's high degree of parallelism and adaptability, global 

optimization nature, and ability to handle challenging search spaces even with limited 

prior knowledge. Hence, this optimization method has found broad use in a variety of 

domains, including design and scheduling, system control, function optimization, 

power systems, image processing, etc. There are many GA software tools available 

from various suppliers. One that is more contemporary is PyGAD, a Python 3 open-

source package that can be integrated with Keras and PyTorch to establish GA and 

optimize machine learning models. Users can rapidly construct a representation, genetic 

operations, and a fitness function to address a problem through GA with the aid of these 

packages. 

 

2.2 Literature Review 

2.2.1 Transformer as Vision Backbone 

Intrigued by the breathtaking byproduct produced from transformer models in 

the natural language processing (NLP) community, it is adapted for vision and 

multimodal learning tasks. Transformer models and their variations have thus been 

effectively applied to a variety of tasks, e.g., image recognition [9, 50], image 

segmentation [51], image super-resolution [52], image generation [10], object detection 

[53], text-to-image synthesis [54], video understanding [55], visual question answering 

[56], etc. 
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The first study to demonstrate how transformers can completely displace 

traditional convolutions in deep neural networks on large-scale image datasets is Vision 

Transformer (ViT) [9]. It registered the initial transformer model [8] to a series of image 

patches that had been flattened as vectors. It was pre-trained using a huge dataset and 

then adjusted for recognition standards such as ImageNet classification. The model has 

drawn significant interest, and many new methods that expand on ViT have 

subsequently been developed. 

Following high-level vision tasks, many transformer-based approaches have 

been developed for low-level vision tasks like image SR, deraining, denoising, and 

colorization. The image processing transformer (IPT) [10] introduced by Chen et al. is 

a pre-trained model built with the principle of transformer. IPT’s general framework 

includes a joint encoder-decoder transformer core as well as multi-heads and multi-tails 

that can independently handle distinct tasks. Yang et al. [52] presented a transformer 

network for super-resolution (TTSR). It utilizes LR-HR image pairings along with 

reference images with material resembling that of LR images to train the model. More 

effective transformer-based techniques have been introduced due to the high 

computational complexity of the original self-attention mechanism. One of those is 

SwinIR [11] (our reference model) which is based on the swin transformer [12] that 

employs the shifted window approach. 

 

 

 

 

 

 

 

 

 

Figure  15: Overall architecture of SwinIR 
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2.2.2 Genetic Algorithm in Deep Learning 

2.2.2.1 Genetic Algorithm for Hyperparameters Optimization 

GA has been applied extensively in search problems and optimization problems 

[57, 58]. It is employed to optimize the parameters of the deep learning model. GA has 

already been used in a number of earlier studies to discover the weights [59] or the 

structure [60] of artificial neural networks (ANN). 

In [61], Xie et al. optimize the architectures of CNN with the use of GA. The 

main concept behind their study is that encoding network state to a fixed-length binary 

string. Populations are then formed in accordance with the binary string. Additionally, 

every individual receives training on a reference dataset. After that, the selection stage 

would then be carried out after evaluating all of them. Researchers execute the GA on 

the CIFAR-10 dataset and observe that the yielding structures perform reasonably well. 

These structures have the capability to be used for image recognition tasks on a greater 

scale than CIFAR-10, such as the ILSVRC2012 dataset. 

Cartesian genetic programming encoding is applied by Suganuma et al. [62] to 

optimize CNN structures for vision classification automatically. They develop tensor 

concatenation modules and convolutional blocks into a node function for Cartesian 

genetic programming. The objective of Cartesian genetic programming is recognition 

accuracy. The connectivity between the CNN architecture and Cartesian genetic 

programming is optimized. In their research, CNN architectures are developed using 

CIFAR-10 as the reference dataset to validate the approach. Their method is 

demonstrated to be capable of constructing a CNN model that is comparable to state-

of-the-art models through validation. 

Baldominos et al. [63] adopted GA and grammatical evolution to decrease the 

manual process of trial and error when defining the parameters of ConvNet 

(GAConvNet and GEConvNet). The ConvNet architecture and hyperparameters are 

determined through the evolutionary algorithm. Both the GAConvNet and GEConvNet 

are assessed on the benchmark dataset. According to the results, the GAConvNet and 

GEConvNet improve the efficiency of the conventional ConvNet. 
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Han et al. [64] came up with another study of applying GA to address the 

hyperparameter optimization issue.  The fitness function in [64] combines the 

verification time together with the validation accuracy. The model is compacted to a 

single convolution layer and a single fully connected layer. The authors examine the 

performance of their approach with two datasets, the MNIST dataset, and the motor 

fault diagnosis dataset. They demonstrate how the approach can take both accuracy and 

the efficiency into account. 

Another work introduced by Young et al. [65] is a GA-based method to select 

networks on multi-node clusters. They conduct the experiment of the GA to optimize 

the hyperparameter of a 3-layer CNN. The process of finding for hyperparameters can 

be substantially accelerated by the distributed GA. Real et al. [66] developed an 

evolutionary algorithm that only considers mutation. The deep learning model evolves 

over time to identify a suitable set of combinations. Due to the nature of mutation alone, 

the evolutionary process moves slowly. In order to optimize the hyperparameters in 

CNNs, Xiao et al. present a variable length GA [67]. They do not restrict the depth of 

the model in their work. According to experimental outcomes, they can efficiently 

develop hyperparameter combinations that are desirable. 

 

2.2.2.2 Genetic Algorithm in Super-resolution 

The method should make use of all relevant prior knowledge in order to 

overcome the super-resolution problem as efficiently as possible. For instance, 

balancing a flattening condition and a data quality condition was difficult. The high-

frequency content will be restricted if a smoothing condition is too severe. One of the 

earliest studies of GA in SR is presented by Ahrens [68]. GA is implemented in two 

phases. The best set of registration parameters is first discovered using a GA. The point 

spread function parameter and the super-resolved image are then generated by another 

GA utilizing the registration parameters. A new SISR approach that relies on a GA and 

regularization prior model was proposed by Li et al. [69]. A regularization prior model 

that includes the non-local means (NLMs) filter, total variation (TV) and the adaptive 

sparse domain selection (ASDS) method for sparse representation is used to create the 

optimization problem. The authors integrated the GA with the iterative shrinkage 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 30 

approach to handle the regularization prior model and prevent local optimization. It 

outperforms a number of previous state-of-the-art algorithms in terms of both numerical 

analysis and aesthetic effect. In [70], Kawulok et al. introduce GA-SRR, a framework 

with the capacity to employ a GA to tune the super-resolution reconstruction (SRR) 

hyperparameters. A well-known SRR algorithm [71] was optimized using average 

SSIM as the fitness function implemented in C++. The outcome revealed that the 

reconstruction process' hyperparameters are sensitive, which proves that figuring out 

their optimal solutions is not an easy operation.  
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CHAPTER III 

PROPOSED METHOD 

 

3.1 Overview of Proposed Method 

SwinIR showed improvement over earlier studies, notwithstanding, the 

hyperparameter layout can be optimized to obtain a more suitable solution. An 

optimization algorithm for self-attention based SISR leveraging GA is presented in this 

section. Figure 16 illustrates the flowchart of the genetic algorithm-based deep multi-

route self-attention for single image super-resolution (GA-MRSA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  16: Flowchart of the Proposed Algorithm  
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3.2 Chromosome Design 

The collection of genes that make up our hypothetical chromosome are 

hyperparameters that the SwinIR model will utilize as input to assess each individual's 

fitness value. The gene in this work is represented by a completely arbitrary decimal 

whole number. 𝐷 is the problem dimensions size or the number of hyperparameters that 

the algorithm requires to reach the target result. A chromosome with multiple genes is 

derived as: 

 𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 = {𝐺𝑒𝑛𝑒1, 𝐺𝑒𝑛𝑒2, … , 𝐺𝑒𝑛𝑒𝐷} (3.1) 

Every chromosome represents a capable solution. In order to form the first population, 

𝑁 chromosomes are initialized. 

 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = {𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒1, … , 𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑁},  (3.2) 

SwinIR [11], an image restoration model based on the swin transformer [12], 

serves as our reference baseline. Three modules build up the model architecture which 

comprises the shallow feature extraction, the deep feature extraction, and the 

upsampling modules. The deep feature extraction module is constructed of multiple 

residual swin transformer blocks (RSTB). SwinIR has shown outstanding promise since 

it integrates the benefits of CNN and Transformer. It exploits the shifted window 

approach to enable long-range relationships while constraining the self-attention 

mechanism to operate on non-superimpose regional windows. 

According to the ablation experiment of the referenced paper, it can be noticed 

that the key parameters which are the essential determinants to impact the performance 

are the number of channels and the RSTB number. Consequently, we decide to tune 

three hyperparameters by utilizing GA. First, is the number of filters, 𝐺𝑒𝑛𝑒𝑓1
, that is 

used in the upsampling module. Second, 𝐺𝑒𝑛𝑒𝑙, the RSTB number or the number of 

layers in the deep feature extraction module. Last, the number of channels, 𝐺𝑒𝑛𝑒𝑓2
, 

which appeared in all three modules across the entire model. Therefore, our proposed 

chromosome can be defined as: 

 𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 =  {𝐺𝑒𝑛𝑒𝑓1
, 𝐺𝑒𝑛𝑒𝑙, 𝐺𝑒𝑛𝑒𝑓2

} (3.3) 
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3.3 Fitness Function 

A fitness function should be specifically described if it is expected to address 

any issue. After each repetition, the fitness function produces a single quantitative 

number that represents the utility of each chromosome. The fitness function for this 

proposed SISR optimization approach is based upon the primary objective function, 

peak signal-to-noise ratio (PSNR) of the RGB channels. 

By providing LR image 𝐼𝐿𝑅  as an input, 𝐻𝑆𝐹𝐸(∙)  is the convolution layer 

function applied to extract low-frequency information 𝐹𝑆𝐹. 

 𝐹𝑆𝐹 = 𝐻𝑆𝐹𝐸(𝐼𝐿𝑅) (3.4) 

Next, the deep feature extraction function 𝐻𝐷𝐹𝐸(∙) is used to preserve higher 

frequency details 𝐹𝐷𝐹. 

 𝐹𝐷𝐹 = 𝐻𝐷𝐹𝐸(𝐹𝑆𝐹) (3.5) 

After the summation of the shallow feature 𝐹𝑆𝐹 and the deep feature 𝐹𝐷𝐹, we 

generate the reconstructed super-resolved image 𝐼𝑆𝑅 in (3.6). 

 𝐼𝑆𝑅 = 𝐻𝑈𝑃(𝐹𝑆𝐹 + 𝐹𝐷𝐹), (3.6) 

at which the upsampling module function is denoted by 𝐻𝑈𝑃(∙). The model is trained 

by minimizing the pixel-wise 𝐿1 loss function during the training procedure (mentioned 

in section 2.1.2.3). 

 ℒ𝐿1
= ‖𝐼𝑆𝑅 −  𝐼𝐺𝑇‖, (3.7) 

where 𝐼𝐺𝑇 is the original HR image before downsampled, or in other words, the ground 

truth image. 
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PSNR [36] is among the most popular reconstruction performance evaluation. 

The unit is in decibels or dB. The mean squared error (MSE) across images is a key 

component in the definition of PSNR for SISR. The MSE between 𝐼  and 𝐼  can be 

calculated with Equation (3.8), given that 𝐼 stands for the reconstructed SR image and 

𝐼 is the HR ground truth image. 

 𝑀𝑆𝐸 =  
1

𝑚𝑛
∑ ∑[𝐼(𝑖, 𝑗) −  𝐼(𝑖, 𝑗)]

2
,

𝑛−1

𝑗=0

𝑚−1

𝑖=0

 (3.8) 

Where 𝑛  and 𝑚  represent the height and width of the image, respectively. 

Provided 𝐿 as the maximum pixel value, usually employed 255 in the incident of using 

the 8-bit description. The PSNR value is then denoted as follows: 

 𝑃𝑆𝑁𝑅 =  10 ×  log10 (
𝐿2

𝑀𝑆𝐸
) (3.9) 

PSNR typically underperforms when striving to portray the reconstruction 

efficiency in a real-world scenario because it only focuses on differences between 

correlated pixels and not the visual experience. Although there are currently no 

perfectly accurate perceptual metrics, PSNR persists to be the most commonly used 

assessment criterion for SR methods since it is vital for comparison to other scientific 

research. 

 

3.4 Selection, Crossover, and Mutation 

Selection: Subsequent to evaluating the solution to attain the fitness value, 

PSNR will be arranged from the best to the worst. The higher PSNR value indicates 

better performance. As a result, the best 𝑃  chromosomes are chosen as parents to 

construct the new children. 

 𝑃𝑎𝑟𝑒𝑛𝑡𝑠 = {𝑃𝑎𝑟𝑒𝑛𝑡1, 𝑃𝑎𝑟𝑒𝑛𝑡2, … , 𝑃𝑎𝑟𝑒𝑛𝑡𝑃} (3.10) 

 𝐵𝑒𝑠𝑡𝐺 =  𝑃𝑎𝑟𝑒𝑛𝑡1  

Better solutions are retained, whereas inferior ones are eliminated under the principle 

of natural selection. 
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Crossover: In a process known as a crossover, more than one parents unite their 

genetic characteristics to produce a new offspring possessing their traits. Strong 

chromosome crossover may not always lead to a better outcome, but the likelihood of 

it being great is large. To create (𝑁 − 𝑃) new offspring, we crossover all genes of the 

parents. 

 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝐼𝑛𝑑𝑒𝑥 = 𝑟𝑎𝑛𝑑(0, 𝑃 − 1) (3.11) 

𝐶 =  {

𝑃𝑎𝑟𝑒𝑛𝑡1, 𝑖𝑓 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝐼𝑛𝑑𝑒𝑥 = 0
𝑃𝑎𝑟𝑒𝑛𝑡2, 𝑖𝑓 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝐼𝑛𝑑𝑒𝑥 = 1

𝑃𝑎𝑟𝑒𝑛𝑡𝑃, 𝑖𝑓 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝐼𝑛𝑑𝑒𝑥 = 𝑃 − 1 
 

𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 =  {𝐶ℎ𝑖𝑙𝑑1, 𝐶ℎ𝑖𝑙𝑑2, … , 𝐶ℎ𝑖𝑙𝑑(𝑁−𝑃)} 

𝐶ℎ𝑖𝑙𝑑 =  {𝐶1, 𝐶2, … , 𝐶𝐷} 

 

Mutation: To sustain the diversity of the population in a new generation, the 

genes in the offspring are purposefully altered by random solution space with a 

mutation index. A new population with the same number of chromosomes is generated 

by merging parents and the offspring achieved after the mutation process. 

 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 = 𝑟𝑎𝑛𝑑(0, 𝐷 − 1) (3.12) 

𝑀 =  {

𝐶ℎ𝑎𝑛𝑔𝑒 1 𝑔𝑒𝑛𝑒, 𝑖𝑓 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 = 0
𝐶ℎ𝑎𝑛𝑔𝑒 2 𝑔𝑒𝑛𝑒𝑠, 𝑖𝑓 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 = 1

𝐶ℎ𝑎𝑛𝑔𝑒 𝐷 𝑔𝑒𝑛𝑒𝑠, 𝑖𝑓 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 = 𝐷 − 1 
 

 

3.5 Termination Criteria 

In GA, a variety of termination criteria are commonly utilized. We propose a 

procedure in which the GA will end once the fitness value of the best chromosome of 

the current generation is higher than the fitness value of the best chromosome of the 

previous generation by less than 𝑋, it will halt. 

 Stop if (|𝐵𝑒𝑠𝑡𝐺 −  𝐵𝑒𝑠𝑡𝐺−1| < 𝑋) (3.13) 
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3.6 Genetic Algorithm-Based Deep Multi-Route Self-Attention Network 

In correspondence to Figure 16, the algorithm starts by initializing the 

population of the first generation. The population of generation 𝐺 is derived in Equation 

(3.14). 

 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐺 =  {𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒1, … , 𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑁} (3.14) 

Subsequently, each random chromosome should be injected into the fitness 

function to assess the performance separately. SwinIR will be trained using E epochs, 

and its fitness will be evaluated using the PSNR evaluation metric. This could be 

expressed as 

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 =  𝑃𝑆𝑁𝑅 (𝐻𝑆𝑤𝑖𝑛𝐼𝑅𝑖
(𝐼𝐿𝑅)). (3.15) 

Given that the SwinIR and PSNR function of the 𝑖 -th chromosome ( 𝑖 =

1, 2, … , 𝑁) is denoted by 𝐻𝑆𝑤𝑖𝑛𝐼𝑅𝑖
(∙) and 𝑃𝑆𝑁𝑅𝑖(∙), respectively. The maximum PSNR 

of that specific generation was then acquired, and the termination criteria were 

subsequently inspected. If the highest PSNR fails the requirement, the loop will keep 

proceeding. The successive phase is selection, where each chromosome is sorted 

depending on its PSNR value, and the best 𝑃 chromosomes are chosen as the parents. 

Provided that the current generation is indicated by 𝐺, it can be denoted in Equation 

(3.16). 

 𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝐺 = 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐺 , 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐺), (3.16) 

After employing crossover to the parents and accompanied by mutation, (𝑁 −

𝑃) offspring are produced. 

 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝐺 = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝐺)) (3.17) 

The new population of size 𝑁 is acquired by concatenating the current 𝑃 parents 

and (𝑁 − 𝑃) children.  

 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐺+1 = 𝑃𝑎𝑟𝑒𝑛𝑡𝑠𝐺 + 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝐺  (3.18) 
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Eventually, the novel population is taken as the input to evaluate the fitness 

value of the subsequent generation. The repetitive procedure would continue 

incessantly unless the termination condition were met. As an outcome, we were able to 

obtain a set of hyperparameters that achieved our objective aim.  
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CHAPTER IV 

EXPERIMENTS AND RESULTS 

 

4.1 Experimental Setup 

4.1.1 Genetic Algorithm 

All three of the hyperparameters of the chromosome are constructed with 

constraints. It is important to narrow down the search scope with the use of all available 

information. Thus, it benefits in avoiding populations from becoming trapped at local 

minima with incorrect features and quickens the investigation process. 𝐺𝑒𝑛𝑒𝑓1
 and 

𝐺𝑒𝑛𝑒𝑓2
 are the numbers of filters in the upsampling and deep feature extraction module, 

where random searches are restricted from 32 to 128 and 60 to 240, respectively. The 

original model’s RSTB number 𝐺𝑒𝑛𝑒𝑙 was determined as 6. We set the search from 3 

to 6 layers. The assigned values for the number of chromosomes 𝑁 and the number of 

parents 𝑃  in a population are 30 and 5, in the particular order. Therefore, every 

generation produces 25 new children. 

 

4.1.2 Single Image Super-Resolution 

4.1.2.1 SISR Settings 

In the phase of the fitness function, 30 chromosomes must be passed through 

the SwinIR model one by one to train for 𝐸 epochs. Following that, assess individual 

performance with PSNR. This step is the principal reason that causes the proposed 

method to consume a considerably high computational time. Taking the time required 

and whether the outcomes are comparable into account, we assign the number of epochs 

𝐸 to 100. Consequently, we also utilize the training seed. The way computers random 

a value distinct from a typical random method; they can always produce the same value 

using a seed. Every time we retrain a model, the model's initial parameters—which are 

random—change. Determining the seed help operating the trained result always to 

complete the same. In a longer duration of the training, it does not affect much. 

Nevertheless, a fixed seed is required for a fair comparison because we only train each 

model for 100 epochs. 
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The number of swin transformer layers (STL), attention head number, and 

window size for SwinIR is set to 6, 6, and 8, respectively. 8 LR image patches of 48 × 

48 are inputs for each training mini-batch. Train by using the ADAM optimizer [72] 

with 𝛽1  = 0.9 and 𝛽2  = 0.99. The initial learning rate is set to 2e-4. The proposed 

method is implemented with Python 3.9 as the programming language and PyTorch 

v1.11.0 library on an NVIDIA GeForce RTX 3090 Ti. 

 

4.1.2.2 Datasets 

❖ Training 

Following [17, 27, 73], the training is performed on the DIV2K [74]. DIV2K or 

DIVerse 2K resolution image dataset is a PNG image dataset that served as a 

benchmark for the NTIRE 2017 challenge. It includes 800 training, 100 validation, and 

100 testing images with an average resolution (1972, 1437). Some example images 

from the DIV2K dataset are shown in Figure 17. For this study, we only used 800 HR 

images as the ground truth and bicubically downscaled them by a scale factor of 2, 3, 

and 4 to get the LR input images. 

 

 

 

 

 

 

 

 

 

Figure  17: Example images from the DIV2K dataset 
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❖ Testing 

First, we test on the freely accessible Set5 [75], which is a standard benchmark 

dataset comprising five images: baby, bird, butterfly, head, and woman.  

 

 

 

 

 

 

 

 

 

 

Figure  18: Images from the Set5 dataset 

 

Additionally, the performance is also evaluated on the Set14 testing datasets 

[76]. Set14 consists of 14 images which cover more categories than the Set5 dataset. 

 

 

 

 

 

 

 

Figure  19: Images from the Set14 dataset 
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4.1.2.3 Evaluation Metrics 

The reconstructed results are evaluated using quantitative evaluation metrics, 

peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). Both 

PSNR and SSIM for the testing are on the luminance (Y) channel of the image. PSNR 

is mentioned in section 3.3 and derived as in Equations (3.8) and (3.9). 

Take into consideration that our human visual system is greatly suitable for 

drawing out image's structure information. The structural similarity index measure 

(SSIM) [36] is introduced for evaluating the structural similarity between images based 

on three distinct comparisons, i.e., in terms of brightness, contrast, and structures. 𝑥 and 

𝑦 are images with 𝑁 pixels, SSIM can be computed as: 

 SSIM(x, y) =  
(2𝜇𝑥𝜇𝑦 +  𝑐1)(2𝜎𝑥𝑦 +  𝑐2)

(𝜇𝑥
2 +  𝜇𝑦

2 +  𝑐1)(𝜎𝑥
2 +  𝜎𝑦

2  +  𝑐2)
 (4.1) 

Where the brightness 𝜇𝑥, 𝜇𝑦 and contrast 𝜎𝑥, 𝜎𝑦 are approximated as the mean average 

and the standard deviation of 𝑥 , 𝑦 , respectively. In addition, 𝜎𝑥𝑦  is the covariance 

between 𝑥 and 𝑦, 𝑐1 and 𝑐2 are terms of constant. SSIM values are in the range of 0 to 

1. Closer to 1 indicates that the reconstructed image has a higher similarity to the ground 

truth image. 

 

 

4.2 Experimental Results 

In order to maximize the validation PSNR, GA is applied to the SwinIR. As 

previously stated, when the PSNR of the best chromosome in that current generation is 

higher than the best chromosome of the previous generation by less than 0.02 dB, the 

recursive process will come to an end. The three chromosome characteristics (𝐺𝑒𝑛𝑒𝑓1, 

𝐺𝑒𝑛𝑒𝑙 , and 𝐺𝑒𝑛𝑒𝑓2 ) and the RGB PSNR of the SwinIR and the model from the 

proposed method (GA-MRSA) at a scale factor of 2 after training for 100 epochs on 

Set5 are shown in Table 1. 
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Table  1: Chromosome Characteristics and PSNR of SwinIR and the Proposed 

Method on Set5 at Scale Factor 2 

 

 

A model with 110 filters in the upsampling module, 6 RSTB blocks, and 168 

channels across the entire network is the more suitable outcome from the proposed GA 

approach. The average RGB channel PSNR of the default SwinIR at a scale factor of 2 

after training for 100 epochs and testing on the Set5 dataset is 34.78 dB. A 34.99 dB 

RGB channel PSNR on the Set5 dataset was attained from the comparable proposed 

GA-MRSA. It can be seen that the PSNR of the proposed method outperformed that of 

the reference model by 0.21 dB, where all five images in the Set5 dataset achieved 

higher.  

 

 

Model 

Chromosome 

Set5 images PSNR Avg PSNR 
𝑮𝒆𝒏𝒆𝒇𝟏

 𝑮𝒆𝒏𝒆𝒍 𝑮𝒆𝒏𝒆𝒇𝟐
 

SwinIR [11] 64 6 180 

baby 36.73 

34.78 

bird 38.65 

butterfly 32.12 

head 32.03 

woman 34.36 

GA-MRSA 110 6 168 

baby 36.99 

34.99 

bird 39.04 

butterfly 32.43 

head 32.14 

woman 34.37 
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Table 2 depicts a quantitative comparison of PSNR and SSIM values (both on 

the luminance channel) between the reference model and the solution of the proposed 

optimization technique at a scale factor of 2 on the Set5 and Set14 testing datasets. After 

400 epochs of training, the average PSNR of the reference SwinIR at a scale factor of 

2 on the Set5 testing dataset is 37.60 dB. We can notice that the average PSNR on Set5 

and Set14 increases by 0.14 and 0.09 dB in respectful order. 

 

Table  2: Quantitative Comparison of SwinIR and Proposed Method at Scale Factor 2 

 

The visual comparison of the original HR, after upsampling with bicubic 

interpolation, SwinIR, and the proposed method solution at a scale factor of 2 

performing on a crop section of Set5’s butterfly and Set14’s coastguard is presented in 

Figure 20 and Figure 21, respectively. 

 

 

 

 

 

 

 

 

Figure  20: Visual Comparison of SwinIR and Proposed Method at Scale Factor 2 on 

Set5’s butterfly 

Model 

Set5 Set14 

PSNR_Y SSIM_Y PSNR_Y SSIM_Y 

SwinIR [11] 37.60 0.9598 33.29 0.9166 

GA-MRSA 37.74 0.9596 33.38 0.9167 
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Figure  21: Visual Comparison of SwinIR and Proposed Method at Scale Factor 2 on 

Set14’s coastguard 

 

In Figure 21, the model from the proposed method can better preserve the wave 

ridge on the left side of the coastguard crop patch from the ground truth image 

compared to the SwinIR. 

The quantitative comparison of SwinIR and the model from the proposed 

method at a scale factor of 3 on Set5 and Set14 is displayed in Table 3. The performance 

increases by 0.04 dB and 0.02 dB in terms of PSNR on Set5 and Set14, respectively. 

 

Table  3: Quantitative Comparison of SwinIR and Proposed Method at Scale Factor 3 

 

 

Model 

Set5 Set14 

PSNR_Y SSIM_Y PSNR_Y SSIM_Y 

SwinIR [11] 33.90 0.9240 30.10 0.8396 

GA-MRSA 33.94 0.9240 30.12 0.8396 
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The qualitative comparisons of the HR, bicubic interpolation, SwinIR, and 

model from the proposed method at the scale factor of 3 on Set5’s baby, Set5’s bird, 

and Set14’s zebra are presented in Figure 22, Figure 23, and Figure 24, respectively. 

We can notice that the model from our proposed method reconstructed finer edges and 

details 

 

 

 

 

 

 

 

 

Figure  22: Visual Comparison of SwinIR and Proposed Method at Scale Factor 3 on 

Set5’s baby 

 

 

 

 

 

 

 

 

 

Figure  23: Visual Comparison of SwinIR and Proposed Method at Scale Factor 3 on 

Set5’s bird  
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Figure  24: Visual Comparison of SwinIR and Proposed Method at Scale Factor 3 on 

Set14’s zebra 

 

From the visual comparison, it can be pointed out that a high number of 

upsampling filters leads to an insightful view of various varieties of changes in the 

scene for a better human visual system. 

Table 4 shows the numerical comparison of SwinIR and the model from the 

proposed method at a scale factor of 4 on Set5 and Set14 testing datasets. The model 

from our proposed method outperformed the SwinIR by 0.02 dB and 0.07 dB in terms 

of PSNR on Set5 and Set14, in the proper order. 

Table  4: Quantitative Comparison of SwinIR and Proposed Method at Scale Factor 4 

 

 

Model 

Set5 Set14 

PSNR_Y SSIM_Y PSNR_Y SSIM_Y 

SwinIR [11] 31.63 0.8878 28.25 0.7755 

GA-MRSA 31.65 0.8877 28.32 0.7762 
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It is obviously noticeable that the GA-MRSA can generate more correct 

information when compared to the SwinIR. GA-MRSA can reconstruct clearer and 

sharper edges of the text “How” in the Set14’s ppt3 than the SwinIR. 

 

 

 

 

 

 

 

 

 

Figure  25: Visual Comparison of SwinIR and Proposed Method at Scale Factor 4 on 

Set5’s bird 

 

 

 

 

 

 

 

 

 

Figure  26: Visual Comparison of SwinIR and Proposed Method at Scale Factor 4 on 

Set14’s ppt3 
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Figure 27 and Figure 28 demonstrate the visual comparison of the HR, after 

bicubic interpolation, SwinIR, and GA-MRSA performed on Set14’s zebra crop 

patches of size 60 × 60 and 100 × 100, respectively. In Figure 27, GA-MRSA 

reconstructed the white strips on the zebra’s leg in the correct direction, while SwinIR 

reconstructed them in the wrong direction. 

 

 

 

 

 

 

 

 

Figure  27: Visual Comparison of SwinIR and Proposed Method at Scale Factor 4 on 

Set14’s zebra (60 × 60) 

 

 

 

 

 

 

 

 

 

Figure  28: Visual Comparison of SwinIR and Proposed Method at Scale Factor 4 on 

Set14’s zebra (100 × 100) 
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4.3 Results Discussion 

We can notice that the number of parameters of the model from the proposed 

method also decreases from the number of parameters of the baseline model. Table 5 

shows the comparison of the overall number of parameters between SwinIR and our 

proposed method at a scale factor of 2. It is reduced from 11.7 million parameters to 

10.6 million parameters, which is around 1.1 million parameters or approximately 

9.5 %. This proves to us that by modifying these three hyperparameters, it is possible 

to achieve higher performance with fewer number of parameters. 

Table  5: Comparison of Overall Parameters between SwinIR and Proposed Method at 

Scale Factor 2 

 

 

 

 

 From the experimental setup, the upper boundary of the model is constrained to 

limit the size of the random search space. The chromosome characteristics of the Upper 

bound are 128, 6, and 240 for 𝐺𝑒𝑛𝑒𝑓1
, 𝐺𝑒𝑛𝑒𝑙, and 𝐺𝑒𝑛𝑒𝑓2

, respectively. The models are 

shown with their corresponding chromosome characteristics and the number of 

parameters in Table 6. The Upper bound has around 10 million more parameters than 

the SwinIR, which more parameters are also indicating more computational cost. 

Table  6: Chromosome Characteristics and Total Parameters of SwinIR and Upper 

bound at Scale Factor 3 

Model Number of Parameters 

SwinIR [11] 11,752,487 

GA-MRSA 10,633,747 

Model 

Chromosome 
Number of 

Parameters 𝑮𝒆𝒏𝒆𝒇𝟏
 𝑮𝒆𝒏𝒆𝒍 𝑮𝒆𝒏𝒆𝒇𝟐

 

SwinIR [11] 64 6 180 11,937,127 

Upper bound 128 6 240 21,978,923 
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The quantitative comparison of SwinIR and the Upper bound that is mentioned 

above at a scale factor of 3 in terms of PSNR and SSIM on Set5, and Set14 testing 

datasets are shown in Table 7. Regarding PSNR, the Upper bound is less than SwinIR 

for 1.32 dB and 0.97 dB on Set5 and Set14. While also worse than SwinIR for 0.0164 

and 0.0197 in terms of SSIM. This shows us that a model with a higher number of 

parameters does not guarantee better performance. The graph of PSNR comparison 

between SwinIR and the Upper bound at a scale factor of 3 on Set5 is illustrated in 

Figure 29. 

Table  7: Quantitative Comparison of SwinIR and Upper bound at Scale Factor 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  29: PSNR of SwinIR and Upper bound at Scale Factor 3 for 400 Epochs  

Model 

Set5 Set14 

PSNR_Y SSIM_Y PSNR_Y SSIM_Y 

SwinIR [11] 33.90 0.9240 30.10 0.8396 

Upper bound 32.58 0.9076 29.18 0.8199 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion 

The proposed GA-MRSA is a genetic algorithm-based transformer-based 

optimization method for single-image super-resolution that aims to focus on three core 

components in SwinIR to generate reconstructed high-resolution images with the higher 

visual quality compared to the baseline method. Besides, the stochastic hyperparameter 

approach is applied to form the population of GA in this work within the restricted 

search space. The proposed framework performs hyperparameter optimization while 

minimizing the loss function to obtain a feasible network structure. Experimental 

results clearly indicate that our GA-MRSA achieves a higher PSNR of up to 0.14 dB 

and an average of 0.06 dB in the test sets compared to the state-of-the-art. Additionally, 

the proposed method can produce insightful views of various changes in the scene and 

smooth output images for the human visual system. Moreover, the proposed GA-

MRSA provides lower computational complexity and number of parameters than 

SwinIR. 

 

5.2 Future Work 

According to current performance, the proposed method can be further 

enhanced in the future to integrate the inception hyperparameter optimization in the 

network structure design of SISR models. This design can obtain high-and-low-level 

feature sharing in successive layers to construct a good reconstructed image. 

Furthermore, the computational complexity should be considered by assembling the 

evolutionary algorithm with the multi-model above. 
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