

Job-Candidate Classifying and Ranking System with Machine Learning Method

Miss Thapanee Boonchob

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Computer Science

Department of Computer Engineering
FACULTY OF ENGINEERING
Chulalongkorn University

Academic Year 2022
Copyright of Chulalongkorn University

ระบบจำแนกและจัดอันดับผู้สมัครงานและงานที่สมัครด้วยการเรียนรู้ของเครื่อง

น.ส.ฐาปณีย์ บุญชอบ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาวิทยาศาสตร์คอมพิวเตอร์ ภาควิชาวิศวกรรมคอมพิวเตอร์

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2565

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title Job-Candidate Classifying and Ranking System with

Machine Learning Method
By Miss Thapanee Boonchob
Field of Study Computer Science
Thesis Advisor NUENGWONG TUAYCHAROEN, Ph.D.

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn University in
Partial Fulfillment of the Requirement for the Master of Science

Dean of the FACULTY OF
ENGINEERING

 (Professor SUPOT TEACHAVORASINSKUN, D.Eng.)

THESIS COMMITTEE

Chairman
 (PITTIPOL KANTAVAT, Ph.D.)

Thesis Advisor
 (NUENGWONG TUAYCHAROEN, Ph.D.)

External Examiner
 (Ratthaslip Ranokphanuwat, D.Eng.)

 iii

ABSTRACT (THAI) ฐาปณีย์ บุญชอบ : ระบบจำแนกและจัดอันดับผู้สมัครงานและงานที่สมัครด้วยการเรียนรู้

ของเครื่อง. (Job-Candidate Classifying and Ranking System with Machine
Learning Method) อ.ที่ปรึกษาหลัก : ดร.เนื่องวงศ ์ทวยเจริญ

การคัดเลือกผู้สมัครงานที่เหมาะสมสำหรับตำแหน่งงานที่บริษัทเปิดรับอาจเป็นงานที่

ซ้ำซากและใช้เวลานาน โดยเฉพาะอย่างยิ่งจากงานที่มีผู้สมัครจำนวนมาก นอกจากนี้ งานนี้อาจทำ
ให้การคัดกรองและการคัดเลือกอย่างยุติธรรมเป็นเรื่องที่น่าเบื่อหน่าย การสูญเสียโอกาสในการจ้าง
ผู้สมัครงานที่มีความสามารถระดับสูงเนื่องจากกระบวนการคัดกรองที่ช้าหรือการเลือกผิดโดยความ
ผิดพลาดของมนุษย์เป็นสิ่งที่ยอมรับไม่ได้ เอกสารนี้นำเสนอวิธีการสำหรับฝ่ายทรัพยากรบุคคลใน
การจำแนกและคัดเลือกผู้สมัครงานที่มีความสามารถอันดับต้นๆ สำหรับงานที่เปิดรับสมัคร ระบบที่
นำเสนอจะจำแนกผู้สมัครงานจากการเรียนรู้ของเครื่องออกเป็นกลุ ่ม i) เหมาะสม และ ii) ไม่
เหมาะสม โดยวิธีการประมวลผลข้อมูลที่มีประสิทธิผลของงานที่เกี่ยวข้องจะถูกนำมาประยุกต์ใช้ใน
งานนี้ด้วย 8 แบบจำลองจะถูกนำมาเปรียบเทียบเพื่อหารูปแบบการจำแนกที่เหมาะสมที่สุด ดังนี้
ต้นไม่ตัดสินใจ (Decision Tree) ซัพพอร์ตเวกเตอร์แมทชีน (Support Vector Machine) การ
จำแนกแบบเบย์ด้วยการแจกแจงแบบปกติ (Gaussian Naive Bayes) การสุ ่มป่าไม้ (Random
Forest) การหาเพื่อนบ้านใกล้ที่สุด (K Nearest Neighbor) แคทบูสท์ (CatBoost) เอกซ์จีบูสท์
(Extreme Gradient Boosting) และโครงข่ายประสาทเทียมแบบคอนโวลูชัน (Convolution
Neural Network) จากนั้นระบบจะจัดอันดับผู้สมัครในกลุ่มเหมาะสมจากมากไปหาน้อย ระบบที่
นำเสนอมีค่าความถูกต้อง 83.5% ค่ามัชฌิมฮาร์มอร์นิกถ่วงน้ำหนัก 86% และค่าการจำได้ 79%
จากแบบจำลองซัพพอร์ตเวกเตอร์แมทชีน ระบบที่นำเสนอนี้จะช่วยให้ธุรกิจสามารถระบุผู้สมัคร
งานที่เหมาะสมสำหรับตำแหน่งใดตำแหน่งหนึ่ง และตัดสินใจได้จากการวิเคราะห์ข้อมูลว่าควร
คัดเลือกใครเข้ารับการสัมภาษณ์งาน

สาขาวิชา วิทยาศาสตร์คอมพิวเตอร์ ลายมือชื่อนิสิต ..
ปีการศึกษา 2565 ลายมือชื่อ อ.ที่ปรึกษาหลัก

 iv

ABSTRACT (ENGLISH) # # 6470167221 : MAJOR COMPUTER SCIENCE
KEYWORD: candidate classifying, candidate ranking, cosine similarity, machine

learning
 Thapanee Boonchob : Job-Candidate Classifying and Ranking System with

Machine Learning Method. Advisor: NUENGWONG TUAYCHAROEN, Ph.D.

Finding suitable candidates for an open job position could be a repetitive
and time-consuming task, especially from a large pool of candidates. Besides, this
task could truly make fair screening and shortlisting tedious. Losing the opportunity
to hire top talent candidates due to the slow screening process or the wrong
selection by human error is unacceptable. This paper presented a method for
human resources to categorize and select the top candidates for job opening they
applied for. The proposed system directed to alter a machine learning algorithm to
classify the candidate into groups i) shortlist and ii) not-suitable. The productive
preprocessing data approaches of many works were applied. The Decision Tree,
Support Vector Machine, Gaussian Naive Bayes, Random Forest, k-Nearest Neighbour,
CatBoost, Extreme Gradient Boosting, and Convolution Neural Network were
compared to find the most suitable classification model. Then, the system ranked
the candidates in a shortlist group in descending order. The proposed system
operates an accuracy of 83.5%, weighted f1-score of 86%, and recall of 79% from
the Support Vector Machine classifier. This enables the business to identify suitable
candidates for a certain position and make more informed decisions about who to
invite for an interview.

Field of Study: Computer Science Student's Signature
Academic Year: 2022 Advisor's Signature

 v

ACKNOWLEDGE MENTS

ACKNOWLEDGEMENTS

We would like to express our appreciation to the Faculty of Engineering for
approving this work. Additionally, we would like to extend their gratitude to the
STelligence Company Limited for their assistance with data preparation. Last but not
least, we would like to thank everyone who was involved in this work, whether directly
or indirectly.

Thapanee Boonchob

TABLE OF CONTENTS

 Page
 .. iii

ABSTRACT (THAI) ... iii

 .. iv

ABSTRACT (ENGLISH) .. iv

ACKNOWLEDGEMENTS ..v

TABLE OF CONTENTS ... vi

LIST OF TABLES .. x

LIST OF FIGURES .. xii

INTRODUCTION .. 1

1.1 Background and Motivation .. 1

1.2 Objective ... 4

1.3 Scope of Work ... 4

1.4 Contributions .. 5

1.5 Research Methodology .. 5

1.6 Thesis Organization ... 5

THEORETICAL BACKGROUND .. 6

2.1 Machine Learning .. 6

2.1.1 Supervised Learning ... 6

2.1.1.1 Decision Tree (DT) ... 7

2.1.1.2 Support Vector Machine (SVM) ... 8

2.1.1.3 Gaussian Naive Bayes (GNB) ... 8

 vii

2.1.1.4 Random Forest (RF) ... 9

2.1.1.5 k-Nearest Neighbor (k-NN) .. 10

2.1.1.6 Catboost .. 11

2.1.1.7 Extreme Gradient Boosting (XGBoost) ... 11

2.1.2 Unsupervised Learning ... 12

2.1.2.1 Clustering ... 12

2.1.2.2 Anomaly Detection ... 13

2.1.2.3 Association Rule Learning .. 13

2.1.3 Semi-supervised Learning .. 14

2.1.4 Reinforcement Learning .. 14

2.2 Deep Learning .. 14

2.2.1 Convolution Neural Network (CNN) .. 15

2.3 Cross-validation ... 16

2.4 Classification Model Evaluation .. 17

2.4.1 Confusion Matrix ... 17

2.4.2 Classification Report ... 18

LITERATURE REVIEW ... 19

3.1 Matching Applicants with Positions for Better Allocation of Employees in the
Job Market .. 19

3.2 Feature Selection for Job Matching Application using Profile Matching Model. 20

3.3 Design and Development of Machine Learning based Resume Ranking System
 .. 22

3.4 A Machine Learning Approach for Automation of Resume Recommendation
System ... 23

3.5 Machine Learned Resume-Job Matching Solution ... 25

 viii

3.6 Embedding-based Recommender System for Job to Candidate Matching on
Scale .. 26

3.7 Comparing BERT against traditional machine learning text classification 27

PROPOSED METHOD ... 30

4.1 Data Scraping .. 31

4.2 Data Preprocessing .. 31

4.2.1 Natural Language Processing (NLP) Process .. 32

4.2.2 Feature Engineering .. 33

4.2.3 Missing Value Handling .. 33

4.2.4 Dealing with Categorical Features ... 34

4.2.5 Feature Scaling .. 35

4.2.6 Handling Imbalance Class ... 36

4.3 Data Prediction .. 36

4.3.1 Split Training and Testing Set ... 36

4.3.2 Define Models and Hyperparameter Tuning ... 37

4.3.2.1 Decision Tree (DT) ... 37

4.3.2.2 Suport Vector Machine (SVM) ... 38

4.3.2.3 Gaussian Naive Bayes (GNB) ... 39

4.3.2.4 Random Forest (RF) ... 39

4.3.2.5 k-Nearest Neighbour (k-NN) ... 40

4.3.2.6 CatBoost .. 41

4.3.2.7 Extreme Gradient Boosting (XGBoost) ... 41

4.3.2.8 Convolution Neural Network (CNN) ... 42

4.3.3 Evaluate Metrics for Classification Model .. 43

 ix

4.3.3.1 Accuracy .. 43

4.3.3.2 Weighted F1-score ... 43

4.3.3.3 Recall ... 44

4.3.3.4 Computation Time .. 44

4.3.4 Similarity Computation and Ranking Suggestion .. 45

RESULT AND DISCUSSION .. 46

5.1 Experimental Dataset Preparation ... 46

5.2 Modeling ... 48

5.3 Model Performance Comparison ... 56

5.4 Summary of Model Comparison .. 68

5.5 The Most Suitable Model Training ... 69

5.6 The Most Suitable Model Testing .. 72

5.7 Ranking Suggestion .. 76

5.8 Discussion .. 77

SUMMARY AND FUTURE WORK .. 79

6.1 Summary ... 79

6.2 Recommendation for Future Work .. 79

REFERENCES ... 80

VITA .. 85

LIST OF TABLES

 Page
Table 1 - Method comparisons ... 29

Table 2 - Parameters and values that will be tested in the DT model 38

Table 3 - Parameters and values that will be tested in the SVM model 38

Table 4 - Parameters and values that will be tested in the GNB model 39

Table 5 - Parameters and values that will be tested in the RF model 40

Table 6 - Parameters and values that will be tested in the k-NN model 40

Table 7 - Parameters and values that will be tested in the CatBoost model 41

Table 8 - Parameters and values that will be tested in the XGBoost model 42

Table 9 - Parameters and values that will be tested in the CNN model 42

Table 10 – The feature details .. 46

Table 11 - The most proper parameter value for the DT model 49

Table 12 - The most proper parameter value for the SVM model 50

Table 13 - The most proper parameter value for the GNB model.................................. 51

Table 14 - The most proper parameter value for the RF model 52

Table 15 - The most proper parameter value for the k-NN model................................. 53

Table 16 - The most proper parameter value for the CatBoost model 54

Table 17 - The most proper parameter value for the XGB model 55

Table 18 - The most proper parameter value for the CNN model 56

Table 19 - The DT evaluation of the training set .. 58

Table 20 - The SVM evaluation of the training set .. 59

Table 21 - The GNB evaluation of the training set .. 61

 xi

Table 22 - The RF evaluation of the training set ... 62

Table 23 - The k-NN evaluation of the training set ... 64

Table 24 - The CatBoost evaluation of the training set ... 65

Table 25 - The XGB evaluation of the training set .. 66

Table 26 - The CNN evaluation of the training set .. 67

Table 27 - Summary of model comparison for candidates who filled in the
experience .. 68

Table 28 - Summary of model comparison for candidates who did not fill in the
experience .. 69

Table 29 - A threshold value in each fold of the SVM model for candidates who
filled in the experience ... 70

Table 30 - The best threshold value of the SVM model for candidates who filled in
the experience .. 71

Table 31 - A threshold value in each fold of the DT model for candidates who did
not fill in the experience .. 71

Table 32 - The best threshold value of the DT model for candidates who did not fill
in the experience .. 71

LIST OF FIGURES

 Page
Figure 1 - Example of classification in supervised learning .. 7

Figure 2 - Hyperplane, support vectors, and margin ... 8

Figure 3 - How Gaussian Naive Bayes classifier works ... 9

Figure 4 - The example of random forest classification ... 10

Figure 5 - Majority vote of random forest classification ... 10

Figure 6 - The example of k-Nearest Neighbor classification .. 11

Figure 7 - Example of clustering in unsupervised learning .. 12

Figure 8 - Chest radiographs anomaly detection [20] ... 13

Figure 9 - Convolution neural network layers .. 15

Figure 10 - 5-fold cross-validation ... 16

Figure 11 - Stratified 5-fold cross-validation ... 17

Figure 12 - Confusion matrix .. 17

Figure 13 - Recommendation system... 20

Figure 14 - Profile matching framework ... 21

Figure 15 - Machine learning-based resume ranking system ... 23

Figure 16 - Recommendation system... 24

Figure 17 - Example of the manual, cluster, and semantic features 26

Figure 18 - Embedding-based recommender system ... 27

Figure 19 – Overview of the proposed system .. 30

Figure 20 - Example of candidate data .. 31

Figure 21 - Example of job opening data .. 31

 xiii

Figure 22 - The examples of translation using the Google Translate API 32

Figure 23 - Missing value handling techniques ... 34

Figure 24 - Example of nominal and ordinal feature .. 35

Figure 25 - Split training and testing set .. 37

Figure 26 - The candidates ranking approach ... 45

Figure 27 - The percentage of the target group for candidates who filled in the
experience .. 48

Figure 28 - The percentage of the target group for candidates who did not fill in the
experience .. 48

Figure 29 – The ROC curve in each fold of the SVM model for candidates who filled
in the experience .. 70

Figure 30 - The ROC curve in each fold of the DT model for candidates who did not
fill in the experience .. 72

Figure 31 - Classification report of the RBF SVM model for candidates who filled in
the experience .. 73

Figure 32 - Confusion matrix of the RBF SVM model for candidates who filled in the
experience .. 73

Figure 33 - ROC curve of the RBF SVM model for candidates who filled in the
experience .. 73

Figure 34 - Classification report of the DT model for candidates who did not fill in the
experience .. 75

Figure 35 - Confusion matrix of the DT model for candidates who did not fill in the
experience .. 75

Figure 36 - ROC curve of the DT model for candidates who did not fill in the
experience .. 75

Figure 37 - Ranking of the HR manager and senior HR officer .. 76

 xiv

Figure 38 - Ranking of the senior accountant and senior HR officer 77

Figure 39 - The final ranking of the senior HR officer ... 77

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

 Early on in the pandemic coronavirus disease 2019 (COVID-19), there is a significant
turnover rate. In April 2020 [1], The workforce noticed an increase in the number of
unemployed people with an unemployment rate of more than 15%. This percentage
has dropped to 5.2 percent as of August 2021, indicating that most employees are no
longer at risk of losing their jobs, but recruitment and personnel retention are now
pressing concerns for many businesses.

 The voluntary quit rate was increasing as the work-from-home lengthens due to
the COVID-19 pandemic. In April 2021, 4 million employees voluntarily quit their
employment. Another 3.9 million workers voluntarily left the company in June 2021,
bringing the total to 3.9 million. Due to the large number of open roles created by this
massive migration, business executives are scrambling to retain their finest and most
difficult-to-replace employees.

 According to job seeker jobsDB statistics from January to March 2020 [2], the
website was seen more than 3.6 million times, with more than 1.6 million unique
visitors, over 31.4 million page views, and an average of more than 20 minutes per
person of website traffic.

 From the preceding paragraph, this can be observed in the increased number of
employment applications. The process of selecting persons to interview becomes
more time-consuming. It also poses the risk that good people will leave because of
the longer processes and the loss of skilled people leading to the cost of working
chances rising. This is since other businesses are also competing for talent.

 According to the Interview Success Formula [3], 80% of job applicants who submit
resumes will not be invited for an interview. As can be seen, Human Resources (HR)
must carefully analyze the selection of candidates to be invited for an interview out
of the entire number of job applicants. This requires a significant amount of time and

 2

consideration. There are many factors HR must consider, the Jobvite 2021 Recruiter
Nation Report [4] explores what HR considers about a resume, including technical
skills, experience, salary background, education history or degrees, and grade point
average (GPA). In addition, HR may consider additional certificates, special training
courses, languages, computer, and technology skills, etc.

 In its 2018 Eye-Tracking Study [5], Ladders Inc. revealed that recruiters now scan
resumes for an average of 7 seconds, compared to just 6 seconds in 2012. Recruiters
today just skim at resumes for an average of 7.4 seconds. However, is it too rapid to
choose people for a job interview from a resume in 7.4 seconds? It would have been
possible if they had taken 7.4 seconds, but only for the first qualifying round. If the
number of applicants who pass the first round of selection outnumbers the number
of calls for interviews. Of course, there will be a second round of qualifying that is
more comprehensive.

 Experienced human resources professionals were questioned by Mark Slack, a
certified professional resume writer, regarding resume screening, how long they
typically spend looking at a resume and their opinions of the "6-second" rule. The
responses are listed below: [6]

1. “…Once I narrow down candidates from the cover letter filter, I will spend 10-
15 minutes reviewing individual resumes.” by Kim Kaupe, Co-Founder, ZinePak
/ The SuperFan Company.

2. “The 6-second rule? It varies from company to company. Here’s what I’ll say.
Recruiters will spend less time reading a résumé for an entry or junior-level
role. Positions that are more senior will be reviewed quite carefully by HR
before they pass them on to the hiring manager.” by Glen Loveland, HR
Manager, CCTV.

3. “Initially, an average resume takes 2-3 minutes for me to scan.” by Heather
Neisen, HR Manager, Technology Advice.

 It may be concluded that, depending on the company and its HR, considering
inviting people to interview takes more or less time. However, it is a repetitious task
that is subject to human error or bias. If the procedure takes a lengthy period, it will

 3

also have an impact on other processes of recruiting certainly. Statistics from Glassdoor
indicate that each company's job offer attracts 250 resumes [7]. Four to six of those
candidates will be contacted for interviews, but only one will be chosen for the
position. This is another example of how all resumes might take a long time to be
considered for one position, and this may make the process of recruiting people to
work more time-consuming. The Jobvite 2021 Recruiter Nation Report found that only
16% of recruiters are filling jobs in less than 14 days, but more than 54% and 21% of
recruiters are filling jobs in 14-30 days and 31-60 days respectively.

 Consequently, we will explore a system to classify candidates who apply for a job
into 2 groups: shortlist items and not-suitable items and rank the score of candidates
in the shortlist group for an interview to work for HR. Before making a final choice, the
system is separated into two parts, with the results of both parts being used to rank
the candidates who should be invited for an interview in descending order. The first
part will be to provide demographic data into the supervised learning model, such as
gender, age, education, and so on, for the model to learn whether to invite for an
interview or not. This research will not use personally identifiable information, such as
name, surname, and identification card number. The second part is to input skills and
experiences data into the similarity function, which will rank candidates who have
similar skills and experiences to the job description for the position the company
wants to fill. The first part's findings will be used to categorize candidates, while the
second part's results will be used to rank scores for each candidate invited to an
interview.

 This research aims to create an automated job-candidate classifying and ranking
system that will help to shorten the amount of time it takes to classify the list of
candidates to interview and select the right candidates for the desired position based
on both skills, experiences, and demographics.

 4

1.2 Objective

 The primary goals of this research are

1. Develop an automated job-candidate classifying and ranking system using
supervised learning techniques.

2. Find the most relevant resume with job posting-based similarity functions.
3. Study supervised learning techniques for structure data.
4. Study neural network techniques for structure data.

1.3 Scope of Work

 This research focuses on developing an automated job-candidate classifying and
ranking system as a case study on 3 aspects, supervised learning, neural network, and
similarity function.
 For the supervised learning and neural network, focus on the demographic of
candidates to predict who should be called for a job interview. The results of these
aspects classified applicants into two classes: those who were called for a job interview
and those who were not. The expected model accuracy rate is 90%.
 For the Similarity function, focus on skills and experiences that are most related to
the job description. The result of this aspect was to rank candidates with similar skills
and experiences as the job description for the position the company was looking for.
 STelligence Company Limited’s data was extracted for the research, with a total of
2027 job applicants and 36 job openings. There were 1040 applicants who filled out
the experience information and 987 applicants who did not fill out the experience
information. The following are the examples of information from the candidate's side,
such as previous job title, skills, experience, year of experience, education, major,
university, gender, age, certificate, language, and expected salary. The following are
the examples of information from the company such as job title, job description,
qualifications, and work location. The programming language in this research is python
3.8.

 5

1.4 Contributions

1. A proposed system for determining which candidates should be contacted for

an interview.

2. Job-candidate classifying and ranking algorithm by using a supervised model,

convolutional neural network, and a cosine similarity algorithm.

1.5 Research Methodology

1. Study relevant materials and existing research.

2. Data understanding by exploring the data.

3. Study the supervised learning process to create a model for classifying

candidates by using candidates' demographic.

4. Study the neural network process to create a model for classifying candidates

by using candidates' demographic.

5. Study the similarity function to rank candidates using candidates’ skills and

experiences.

6. Design a preliminary process including measurements to evaluate the ability

and efficiency of the training models.

7. Develop the job-candidates classifying and ranking system.

8. Evaluate the system from the test set.

9. Conclusion of research results.

10. Compile and prepare academic articles.

1.6 Thesis Organization

 The rest of the research is organized as follows. Chapter 2 presents the theoretical
background. Chapter 3 describes the literature review, followed by a proposed method
in Chapter 4. Chapter 5 contains the result and discussion. Section 6 is about the
conclusion and future work.

 6

CHAPTER 2

THEORETICAL BACKGROUND

2.1 Machine Learning

 Machine learning is the science and art of teaching computers to recognize patterns
in data. Here is a definition that might be more common: “Machine Learning is the
field of study that gives computers the ability to learn without being explicitly
programmed.” by Arthur Samuel, 1959 [8], and a more engineering-oriented one: “A
computer program is said to learn from experience E with respect to some task T and
some performance measure P, if its performance on T, as measured by P, improves
with experience E.” by Tom Mitchell, 1997 [7].
 Machine learning systems come in a wide variety, which is helpful to categorize
target data into categories. They can be divided into four types depending on whether
they receive training under human supervision.

2.1.1 Supervised Learning

 In supervised learning, the algorithm gets a training set that contains labels for the
desired target. Classification is a classic supervised learning task. For example, if we
want to educate kindergarten children on how to classify cats and dogs, children
should be taught by showing them pictures of a cat and dog and telling them what
picture is a cat and what picture is a dog. Continue to teach in this manner until the
children can accurately respond, as shown in Figure 1.
 Regression is a common activity that involves predicting a desired numerical
number, like the cost of a car, using a set of factors like miles, age, brand, etc. You
must provide the model with several examples of cars, together with their labels and
features, to train it. Here are a few of the well-known supervised learning algorithms:

 7

Figure 1 - Example of classification in supervised learning

2.1.1.1 Decision Tree (DT)

 A non-parametric supervised learning technique for classification and regression is
the decision tree (DT). The purpose is to create a model that predicts the value of a
target variable using basic decision rules discovered from the features of the data. The
decision tree has a tree structure similar to a flow diagram, where each internal node
is a trial on the remaining features, each branch is an experiment result, and each leaf
node is a class label. The root node is selected from the highest information gain
feature [9], which is a method to calculate how much information a feature provides
about classes. The equation of information gain is shown in Equation 1.

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 = 𝐸𝑝𝑎𝑟𝑒𝑛𝑡 − 𝐸𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (1)

 Where 𝐸 in Equation 1 means entropy, a measure to estimate how impurity of
observations is. It controls the way a decision tree chooses how to split data. The
equation of entropy is shown in Equation 2 where pi means the probability of selecting
an example in class i.

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖
𝑁
𝑖=1 (2)

 8

2.1.1.2 Support Vector Machine (SVM)

 SVM uses hyperplane to classify multidimensional data with the support of kernel
functions. There are different types of kernels in SVM such as polynomial, radial, and
linear kernels. Another data tuning parameter is called regularization (C), which allows
for the decision of how strongly to penalize misclassified points. If we assign C to a
large value that has the same meaning as a low-margin hyperplane, this means that
we want the least amount of misclassification in the training set which could lead to
overfitting [8]. On the other hand, If we assign C to a lower value that has the same
meaning as a high-margin hyperplane, this means that we accept the amount of
misclassification in the training set that could lead to underfitting. Therefore, for the
model to be effective, we should define the C properly. The kernel function's width is
specified by a gamma parameter. When the gamma value is low, the decision boundary
is quite broad so far-away data points are also considered. Alternatively, when the
gamma value is high, the decision boarder is quite narrow so only nearby data points
are considered. Figure 2 shows a sample illustration to understand SVM in its entirety
[10].

Figure 2 - Hyperplane, support vectors, and margin

2.1.1.3 Gaussian Naive Bayes (GNB)

 The Gaussian normal distribution is supported by and followed by the Naive Bayes
variant GNB. This enables the conversion of each z-score distance into a p-value. The
GNB predicts the likelihood that a specific data item will fall under a certain category

 9

for each class in the dataset. The most likely class of data points is the one with the
highest membership probability [11]. Figure 3 shows how the GNB classifier works [12].

Figure 3 - How Gaussian Naive Bayes classifier works

 Where 𝜇 and σ are the mean and variance of predictor distribution while 𝑃(𝑥|𝑦)
can be calculated from Equation 3.

 𝑃(𝑥𝑖|𝑦) =
1

√2𝜋𝜎2
exp (−

 (𝑥𝑖− 𝜇𝑦)
2

2𝜎2
) (3)

2.1.1.4 Random Forest (RF)

 Random Forest is a compilation or assemblage of classification and regression trees
produced via resampling at random from the training set. By sampling with
replacement to construct unique trees, it employs bootstrap aggregating, often
referred to as bagging, to produce subsets of the training data [13] as shown in Figure
4 [14]. To categorize incoming input data, each tree predicts one class, and the forest
chooses the class with the most votes [15] as shown in Figure 5.

 10

Figure 4 - The example of random forest classification

Figure 5 - Majority vote of random forest classification

2.1.1.5 k-Nearest Neighbor (k-NN)

 k-NN classifies new data by its neighbor’s majority vote. The neighbors were
selected from the top k nearest distance between that new data and its neighbors. A
distance function that uses the Minkowski distance method, Manhattan distance, or
Euclidean distance measures the distance. The number of neighbors is represented by
the k value that will be used as references in the majority vote to classify data points.
The results will be less stable if the k value is very low. On the other hand, the error

 11

can be increased by increasing the k value, but stable results will be obtained. Figure
6 shows an example of the k-NN algorithm [9]. If we choose k = 1, the new data point
will be predicted to be class 1 because its nearest neighbor is in class 1. On the other
hand, if we choose k = 3, class 2 will be predicted for the new data point because its
top nearest neighbor is in class 1, but the next nearest 2 neighbors are in class 2 so
this majority vote is class 2.

Figure 6 - The example of k-Nearest Neighbor classification

2.1.1.6 Catboost

 Another machine learning method that is effective at classifying category features
is CatBoost [16]. The name "CatBoost" is a combination of the phrases "Category" and
"Boosting". CatBoost works well with many other data “categories”, such as audio,
historical data, image, and text data. And “boosting” came from an implementation of
gradient boosting which employs base predictors that are binary decision trees [17].
This learning task's purpose is to promote a function that discovers the minimal
expected loss. The obvious difference between CatBoost and other algorithms is the
data do not need to be converted to any specific formats to use CatBoost.

2.1.1.7 Extreme Gradient Boosting (XGBoost)

 XGBoost is a boosted tree algorithm that follows the gradient boosting principle
through parallel processing, tree-pruning, handling missing values, and regularization

 12

to prevent overfitting and bias [16]. In XGBoost, decision trees are generated
sequentially. Before being fed into the decision tree that forecasts the result, each
independent variable is given a weight. In addition, before being placed into the second
decision tree, variables that the tree mistakenly anticipated are given extra weight.
These unique classifiers are then combined to produce an accurate and robust model,
so XGBoost is one of the efficient gradient-boosting algorithms.

2.1.2 Unsupervised Learning

 The training data in unsupervised learning is not labeled. Without a teacher, the
system tries to teach itself as shown in Figure 7.

Figure 7 - Example of clustering in unsupervised learning

 The most significant unsupervised learning algorithms are listed here:

2.1.2.1 Clustering

 Dividing the population or set of data points into various groups is the goal of
clustering. Each group's data points are more similar to one another and distinct from
those in the other groups. Clustering clusters objects based on how similar and
dissimilar they are to one another. Data analysis, consumer segmentation,
recommender systems, search engines, image segmentation, and other applications
benefit greatly from clustering [18]. Two popular clustering algorithms are k-Means and
Density-Based Spatial Clustering of Applications with Noise (DBSCAN).

 13

2.1.2.2 Anomaly Detection

 Finding data samples that are notably different from the majority of data instances
is the process of anomaly detection. Other names for it include novelty discovery or
outlier detection. Finding abnormalities in the data may be helpful immediately or as
a starting point for new knowledge discovery. In many applications, anomaly detection
is essential including applications for security, critical infrastructure, and health [19].
Figure 8 shows an example of an anomaly detection application for health that detects
diseases or anomalies in chest radiographs.

Figure 8 - Chest radiographs anomaly detection [20]

2.1.2.3 Association Rule Learning

 Association rule learning is one of the very important concepts of machine learning.
It is a machine-learning technique that uses rules to find important connections among
variables. It is not only for retail and supermarkets but includes the field of web
analytics such as tracking, learning, and predicting user behavior on websites [18].
Examples of association rule algorithms are Apriori and Equivalence Class Clustering
and bottom-up Lattice Traversal (ECLAT).

 14

2.1.3 Semi-supervised Learning

 There will be a data set that has numerous unlabeled occurrences and few labeled
ones because data labeling is often time-consuming and costly. Data that is only
partially labeled can be handled by some algorithms, and semi-supervised learning is
the term for this type of learning. We can apply semi-supervised learning with many
use cases such as image and speech analysis because audio and image files typically
lack labels. Labeling is a laborious task that is expensive as well. You can label a limited
set of data using human skills. Once the data has been trained, we may use semi-
supervised learning to label the remaining audio and image files, which will enhance
the speech and image analytic models.

2.1.4 Reinforcement Learning

 Reinforcement learning is referred to as an agent that can study its surroundings,
choose and carry out activities, and receive rewards or punishments in the form of
unfavorable rewards in return. It must determine for itself the appropriate course of
action, or policy, for maximizing reward. A protocol defines the plan of action the agent
should take [18]. Examples of reinforcement learning applications in real life such as
self-driving cars, AlphaGo, and robot motion control.

2.2 Deep Learning

 Deep Learning (DL) is an execution of Artificial Intelligence (AI). The main goal of AI
is to act and think as humans do in all aspects. It enhances computers' ability to
perform tasks automatically by leaning on previous cases of experience. Deep Learning
(DL) consists of three groups of layers. The first group is the input layer, which is
responsible for receiving data to be processed. The second group is the hidden layer.
A noticeable difference between deep learning and machine learning about the hidden
layer is deep learning has more than one hidden layer for more complex processing,
while machine learning has only one hidden layer. The last group is the output layer,
which is causing the showing of the result after being processed. Deep learning is often

 15

applied with the development of software that can gather data and use that data for
learning [21].

2.2.1 Convolution Neural Network (CNN)
 CNN is a type of deep learning model. This mathematical construction typically
consists of three different kinds of layers: convolution, pooling, and fully connected
layer. Layers of convolution and pooling extract features that can increasingly and
hierarchically become more complex. The output of one layer is fed onto the next
layer, whereas the retrieved features are mapped into the output using a fully
connected layer as shown in Figure 9. The core of the CNN architecture is the
convolution layer, which updates learnable parameters by backpropagation with a
gradient descent optimization technique after feature extraction using forward
propagation on a training dataset, such as kernels and weights. The dimensionality of
the feature is decreased via a pooling layer to extract only important parts of the data,
optimize processing faster, and lower the number of subsequently learnable
parameters. The last convolution or pooling layer's output is often flattened, or
changed into a one-dimensional array of integers, and connected to a fully connected
layer, also known as a dense layer. After that, the final fully connected layer is mapped
to output such as the likelihoods of each class in challenges involving classification
[22].

Figure 9 - Convolution neural network layers

 16

2.3 Cross-validation

 A resampling approach called cross-validation is used to assess machine learning
models on a collection of data. The k parameter of the process determines how many
groups should be formed from a specific sample of data. Consequently, the process is
sometimes referred to as “k-fold cross-validation”. When a k value is established, it
can be used in place of k in the reference of the model, such as when k=5 denotes 5-
fold cross-validation.
 The two main processes in cross-validation are folding the data and cycling
between training and evaluation on each fold as shown in Figure 10. Each fold is
roughly the same size, allowing for stratification, which means each fold has the same
proportion of observations with a given label as shown in Figure 11. On the other hand,
you can split the data by random selection. All folds are used to train the model,
except for one that will be rotated as a validation fold, so that each fold has only ever
behaved as a validation fold once. The accuracy of each fold will be calculated as the
average accuracy for the entire data.

Figure 10 - 5-fold cross-validation

 17

Figure 11 - Stratified 5-fold cross-validation

2.4 Classification Model Evaluation

2.4.1 Confusion Matrix

 When we solve classification problems, both for binary classification and multiclass
classification, a confusion matrix is a common measurement to describe the
performance of a model with testing data as shown in Figure 12.

Figure 12 - Confusion matrix

 The counts between actual and expected values are displayed in the confusion
matrix. The outcome “TN” stands for the true negative and displays the quantity of
accurately predicted negative class cases. Like this, how many positive classes were
predicted with accuracy cases is shown by the abbreviation “TP”, which stands for
true positive. The number of genuine negative cases for which erroneous positive

 18

predictions were made is indicated by the letter “FP”, which appears as a false
positive, while “FN” implies a false negative, which means the number of real positive
cases that were mistakenly predicted as negative [23].

2.4.2 Classification Report

 A classification report is a performance evaluation metric report in machine
learning. Precision, recall, F1-score, and support in each class are the main 4 metrics
that are presented.
 Its correctness can be evaluated by its precision. It is described as the proportion
of true positives to all true and false positives for each class. The other way refers to
the percentage of all samples that were predicted to be positive. The equation of
precision is shown in Equation 4.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4)

 A recall gauges a classifier's ability to correctly predict each positive sample. It is
defined as the ratio of true positives to the total of true positives and false negatives
for each class. The other way means what percentage of all samples that were positive
were accurately predicted. The equation of precision is shown in Equation 5.

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5)

 The F1-score, with 1.0 representing the best result and 0.0 the worst, is a weighted
harmonic mean of recall and precision. The equation of precision is shown in Equation
6.

 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (6)

 Support in a dataset is the proportion of real samples in each class. In the training
data, the necessity for stratified sampling or rebalancing may be suggested by
imbalanced support which may point to structural problems in the model [24].

 19

CHAPTER 3

LITERATURE REVIEW

 Related literature for this research is focused on resume-job matching to locate
the best candidates for the open position. Each relevant study employs a different
approach to analyze and identify potential candidates. In any case, they significantly
shorten the time spent selecting a candidate for HR.

3.1 Matching Applicants with Positions for Better Allocation of Employees in the

Job Market

 The main processes in this system architecture are depicted in Figure 13, divided
into five sections. First, data collection, data about resumes was gathered from various
sources and job postings were collected from indeed.com. Second, all important
information was taken from both resumes and job postings by using the SpaCy NLP
library. Third, all letters were converted to lowercase, unnecessary words and spaces
were removed, certain special characters were mapped, and others were removed.
Fourth, by matching and scoring by using the SpaCy similarity function, it was
determined how similar each resume category was to its corresponding one in the job
offer. The last one is ranking and reporting, the results are used to put the candidates
who are best qualified at the top and the candidates who are least qualified at the
bottom. System accuracy was 83 percent overall [25].
 We then use the same method for collecting job postings and job applicant data
from this paper, but we choose to retrieve from different job sites, using jobsdb.co.th
instead of indeed.com.

 20

Figure 13 - Recommendation system

3.2 Feature Selection for Job Matching Application using Profile Matching Model

 This research aims to choose the key features required for job matching. Using the
candidate profile and company profile factors results in the development of match-
related people and positions. The system works by gathering data, which are age,
gender, military status, highest education level, experience, and years of experience
for the candidate data. On the other hand, the researchers collected job titles, the
minimum highest education level, age, gender, military status, experience, and years
of experience for job posting data. Processing integration involved information
extraction, which included cleaning and integrating all obtained data to create a
profile-matching model and data categorization. To determine whether a candidate's
performance is appropriate for a certain group, the company's information and the
candidate's information are combined and grouped into several clusters. For analysis,

 21

the proposed approach calculated scores of similarity between the two profiles. The
resulting similarity scores are then adjusted to have more accurate values that account
for the weighting given to each attribute. In decision-making, whether the two profiles
being compared are the same is what is returned by computing the weighted similarity
scores. According to the ranking of the selected features, age and gender are ranked
lower than a job title, work experience, highest education level, and military status,
which each have an attribute value of 58.33. Which age and gender got only 41.66.
Only openings that are present in large clusters will be eligible for matching by the
matching algorithm, which will be able to identify these clusters. The recommendation
of candidates to the company is executed when the matching is completed [26], as
shown in Figure 14.

Figure 14 - Profile matching framework

 We will choose to select high-attribute-value features from this paper for the data
preparation process of this research. This includes job title, work experience, highest
education level, age, and gender information, as well as key features that HR considers
about a resume from the Jobvite 2021 Recruiter Nation Report.

 22

3.3 Design and Development of Machine Learning based Resume Ranking

System

 Finding the topmost qualified candidates for a certain job position is the purpose
of this research based on two factors: (1) the candidate's abilities will be used to
evaluate the test, and (2) The candidate's resume's experience must align with the
company's criteria.
 This research proposed a system, shown in Figure 15, that comprises two major
sections. The first part is the candidate screening part, used to evaluate the candidate's
qualifications using the multiple-choice question (MCQ) test. Candidates can submit
resumes once they reach a minimal score. But, if they fall short of a minimal score,
they will not be permitted to submit a resume.
 Second, in the resume screening and ranking part, white spaces, digits, and stop
words, e.g., and, etc. are removed from resumes. The words in the resumes are then
converted to vectors using term frequency-inverse document frequency (TF-IDF)
vectorization. TF-IDF vectorizer is also used to transform the text in the job description
(JD) into vectors. The next step is to find resumes that closely match the JD provided
by the recruiters using the k-nearest neighbors (k-NN) technique after the cosine
distance is used to gauge how similar the resume and the JD offered are to one
another.
 To begin, this system used “Gensim”, an open-source library, to summarize the JD
and resumes. Within the word limit, the information provided was summarized by this
library. Before calculating the cosine similarity between the JD and resumes, the model
combined the JD and the cleaned resume data into a single data set. Ranking resumes
according to the job description following the similarity score achieved. The cosine
similarity value of k-NN was utilized to get resumes that intimately matched the
specified JD. Recruiters are given recommendations for the top-n ranked resumes
based on assigned ranks. The system's scoring accuracy averages 92 percent and
parsing accuracy is 85 percent [27].

 23

Figure 15 - Machine learning-based resume ranking system

 We will take some steps from this research, which is to remove space, numbers,
and stop words in the document parsing and preparation process respectively, and to
find similarities between JD and resume using cosine similarity.

3.4 A Machine Learning Approach for Automation of Resume Recommendation

System

 The goal of this research is to choose from a broad pool of resumes the finest
candidates. The proposed model primarily operated in two steps: (1) prepare and (2)
deploy and inference. It can be seen in Figure 16.
 In the preprocessing part, The inputted resumes will be cleaned to get rid of any
special or unnecessary characters. Additionally, during cleaning, all special characters,
numerals, and words that consist of only a single letter are eliminated. For the next
step, stop words like and, the, was, etc. that commonly appear in the text but are
useless for prediction are consequently removed. Stemming, which distills word
morphology to its basic forms, and lemmatization, dropping the s, es, or ing at the end
of a word to confirm that the word has nothing to do with it, are the next steps. The

 24

final step is feature extraction, which the researchers accomplished with the TF-IDF. As
a result, the texts are converted to the desired vector length using the scikit-learn
library to construct a TF-IDF vector, they calculate TF-IDF for each term in their dataset.

Figure 16 - Recommendation system

 In the deploy and inference part, The model would provide resumes that were
relevant to the JD after comparing the tokenized resumes data with the JD. On the
cleansed data, two models have been developed: (1) classification, the model was
created to place the resume into the relevant category. (2) recommendation, based
on the JD supplied by HR and the resume's comparability.
 For the classification model, A selection of the most relevant resumes was
produced by the model, which included defined a summary of the CV and JD. Using
10-fold cross-validation, the average accuracy score of the linear support vector
classifier was calculated to be 78.53 percent, which is higher than that of random
forest, multinomial naive bayes, and logistic regression.
 A job description and resumes were input into the recommendation algorithm,
which then created a list of resumes that most closely matched the job description.

 25

Two methods are used to do this: (1) Use of cosine similarity for content-based
recommendations: the model combined the JD and cleansed resume data into a single
data set before calculating the cosine similarity between them. (2) k-NN: the provided
text was summarized by the “Gensim” library within the word limit, and then the
purpose system used k-NN to find closely matched resumes with the provided JD [28].
 The cleaning, tokenization, and preparation in preprocessing part will be applied in
this proposed research. This research includes using cosine similarity to calculate a
similarity between JD and resumes in the deploy and inference part. The classification
model is another step that will be used in this research as in this paper, but with
different purposes. In this paper, the classification model is used to divide resumes
into working categories (multiclass classification), such as accounting groups, computer
groups, engineering groups, etc., while this research will build a classification model to
predict whether the candidates are suitable for being called in for a job interview or
not (binary classification).

3.5 Machine Learned Resume-Job Matching Solution

 The information extraction from the resume is the first step in this paper which can
be categorized into 3 types of features. First, manual features, which are gender, age,
major, the details and alterations of prior employment, the age at which one was hired,
the highest salary, and so on. Numerical keys were used during training instead of the
character feature values that were entered into a dictionary. The authors used the
entire text of the résumé to train a Word2Vec model for cluster features. Additionally,
a phrase's semantic meaning can now be represented via a phrase's typical word
embeddings. Using the K-mean algorithm, sentences were divided into 64 and 128
clusters. The writers turned a resume's previous work experience into an ordered list
of phrases for the final feature category, the semantic feature. Each phrase would be
presented by a vector of 10 dimensions and then calculated with the similarity of
vectors. An example of all features is shown in Figure 17.

 26

Figure 17 - Example of the manual, cluster, and semantic features

 This research using the IBagging method improved from the Bagging method by
voting based on the overall probability of each option [29].
 We will take some features in the manual and semantic features from this paper
to prepare for the research such as gender, age, major, and so on. In addition, we will
look at three models that the authors used to train data for this paper: XGBoost,
Random Forest, and Convolutional Neural Network and apply them to train the data
for this research.

3.6 Embedding-based Recommender System for Job to Candidate Matching on

Scale

 This research proposed a candidate matching system which is a two-stage
recommendation process made up of two main parts. In the first stage retrieval
component, hundreds of candidates were selected from a pool of millions using a
two-tower embedding structure. The second stage reranked components based on
various contextual factors. The applicants were whittled down to a few dozen at this
point. The authors proposed a fused embedding technique to learn representations
from raw text, parsed text, and geolocation for both applicants and jobs in the first
component, as shown in Figure 18.

 27

Figure 18 - Embedding-based recommender system

 For the deep-learning embedding model, the word2vec model is used to express
words in vectors from job-candidate text pairs, which are subsequently sent to the
convolutional neural network with the attention layer. The outcome is a context
vector, which is then used to generate an embedding vector through the dropout layer,
fully connected layer, and RELU activation. Job-skill information graph is used to learn
the depiction of job title and skill, respectively. They converted the latitude and
longitude indicated in spherical coordinates to cartesian coordinates in the spherical
coordinate calculator part [30].
 In this research, the method for training a convolutional neural network and
calculating distance will be applied.

3.7 Comparing BERT against traditional machine learning text classification

 This research compares classic machine learning methods that train machine
learning algorithms in features derived from the data by the TF-IDF algorithm with

 28

bidirectional encoder representations from transformers (BERT) from 4 datasets on text
classification, both binary and multiclass. For TF-IDF, the authors used TfidfVectorizer
from the sklearn library to preprocess the text, then predicted the data using Predictor
from the auto_ml module and H2OAutoML from the h2o module respectively to find
the best model for that data. For BERT, they used the pre-trained BERT model from
the pre-trained module. The conclusions drawn from the comparison in this research
found that BERT achieves higher accuracy than traditional methods in every dataset
[31].
 For the proposed method, BERT will be applied to the vectorization process for
similarity computation and ranking suggestions to see if BERT can do better on this
dataset than TF-IDF.
 According to the research, the majority of solutions have their limitations or can
only be used in certain situations to complete a particular goal. In this thesis, we aim
to demonstrate the combination of those methodologies so that the proposed system
can be generalized and more effective.
 The proposed method will extract data from a website, JobsDB, then clean the
data before processing. Auto-filling is one step in the processing stage to handle missing
data. After that, we will convert the experience text data to vectors using the
bidirectional encoder representations from transformers (BERT) pre-trained model and
calculate the similarity between the experience and the responsibilities of the job that
the candidates applied for. On the other hand, we will classify the target group using
a supervised learning model into 2 groups which are not-suitable items and shortlist
items. The similarity score will be used to rank the candidates from the shortlist group
in descending order. Finally, we will explore features that have an impact on target
prediction. Table 1 summarizes the similarities and differences between the methods
used by the authors in previous papers including the proposed method.

 29

Table 1 - Method comparisons

Step [25] [26] [27] [28] [29] [30] [31]
Proposed
method

Crawler data ✓ ✓ ✓
Clean data ✓ ✓ ✓ ✓ ✓ ✓ ✓
Vectorization ✓ ✓ ✓ ✓ ✓
Similarity
computation

✓ ✓ ✓ ✓ ✓

✓

Work type
classification

 ✓

Target group
classification

✓

Candidates
ranking

✓ ✓ ✓ ✓ ✓

✓

Features
ranking

 ✓

✓

 30

CHAPTER 4

PROPOSED METHOD

 This proposed method aims to develop an automated job-candidate classifying
and ranking system using supervised learning techniques. The method, as shown in
Figure 19, starts with scraping candidate and job data from the JobsDB website, then
proceeds to preprocess using multiple techniques, and the result from the
preprocessing stage will be sent to the prediction stage.

Figure 19 – Overview of the proposed system

 31

4.1 Data Scraping

 Data was collected from JobsDB.com excluding personally identifiable data, such
as name, surname, and identification card number. The data is divided into two parts
containing 2027 job applicants who applied for 36 job postings at STelligence Company
Limited. There were 1040 applicants who filled out the experience information and
987 applicants who did not. The data is presented in both Thai and English, so we
need to convert all Thai text into English before using these data in the following step.
Figure 20 and Figure 21 showed the example of candidate and job posting data
respectively.

Figure 20 - Example of candidate data

Figure 21 - Example of job opening data

4.2 Data Preprocessing

 The most time-consuming process is data preprocessing or data cleaning. When
high-quality data is entered into the model, the model's output is also of high quality.
However, if the data fed to the model is of bad quality, the model's output will be

 32

poor as well. As quoted in “Garbage in, garbage out”, by Nick Harkaway, The Gone-
Away World.

4.2.1 Natural Language Processing (NLP) Process

 Before stepping into the NLP process, we need to translate Thai to English text for
the data that candidates fill in the form in the Thai language first by using The Google
Translate Application Program Interface (API) in Python. This API is well-known and
trustworthy whether it is used for translating short or long text messages. The examples
of translation from Thai to English text are shown in Figure 22.

Figure 22 - The examples of translation using the Google Translate API

 The next step is summarization, we will summarize the candidate's experience and
the job opening description using the “Gensim” library. After that, we will go through
the NLP process. This process contains 2 steps: stop word removal and lemmatization.

 33

In the first step, stop word removal, we will delete the word that does not have
significant meaning such as a, an, the, etc. For the second step, lemmatization, we are
going to transform the word to its root word by cutting its postfix or changing its form.
For example, the word “go”, “went”, “gone”, and “going” will be transformed to
“go”.

4.2.2 Feature Engineering

 From already existing features, we can create new ones using business knowledge
and data understanding. For example, the distance between home and workplace can
be calculated. Long-distance may affect a candidate's journey, making it take longer
and cost more. This may affect the decision to hire employees.
 Another undeniable factor that most Thai organizations consider is the university
ranking from where job applicants graduated. So, we will create a new feature by
calculating the score from the university that the candidate graduated from by using
Quacquarelli Symonds (QS) world university rankings. The candidate will obtain a higher
score if the university he or she graduated from is ranked in the university ranking. The
higher the university they graduated from was ranked, the higher the candidate's score.
On the other hand, if the candidate graduates from a university that has a low ranking,
they will receive a lower score. They will get a zero if the university where they studied
is not included in the rankings.

4.2.3 Missing Value Handling

 There are a lot of techniques for dealing with missing values ranging from simple
to complex. Figure 23 summarizes the techniques, including deletion and imputation.
We can delete or impute missing data depending on how many missing values and
what effect deleting data has on predictions. The first technique is data deletion which
can be divided into 3 more ways: pairwise deletion, listwise deletion, and dropping
entire columns. Pairwise deletion is the way to delete only missing values. Listwise
deletion is a technique for deleting the row containing the missing value, and dropping
entire columns means deleting the column containing the missing value. However,

 34

pairwise and listwise techniques are not suitable for our data because some columns
have missing values of more than 50% so we will use the dropping entire columns
technique.

Figure 23 - Missing value handling techniques

 The other way to handle missing value is imputations. According to the complexity
of the technique, it can be divided into 2 groups: general and advanced. For general
techniques, if the data is not a time series, missing data can be filled with any value
such as mean, median, mode, etc. If the data is a time series, the appropriate method
is forward fill, backward fill, or linear interpolation. For advanced techniques, k-NN
Based and Multivariate Imputation by Chained Equations (MICE) are some examples.
 We design to use both general and advanced techniques. We will drop the entire
column. If the columns are categorical and have a lot of unique values, missing values
are imputed with mode value for that column such as nationality feature because 90%
of all values are Thailand, so imputation by mode is the appropriate way. A k-NN-based
method is used to handle the remaining columns with missing values.

4.2.4 Dealing with Categorical Features

 For the nominal feature, a feature that consists of a finite number of discrete values
with no relationship between them, we will use the one-hot-encoder technique even

 35

though there is some natively supported categorical feature model. The caution of this
method is it could lead to a massive amount of dimensionality.
 For the ordinal feature, a feature indicating a variable has a finite set of discrete
values that can be ranked, we will use the label encoder technique. The example of
nominal and ordinal features is shown in Figure 24.

Figure 24 - Example of nominal and ordinal feature

4.2.5 Feature Scaling

 We want to rescale the value of all columns. There are 2 ways to do this:
normalization and standardization. Normalization is the technique to rescale the value
into a range of 0 to 1. This method is useful when all parameters need to have the
same positive scale. The equation of normalization is shown in Equation 7.

𝑥 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (7)

 On the other hand, standardization is a technique to rescale the data to have a
mean of 0 and a deviation of 1. The distribution produced by setting the feature's
mean to zero has a value of standard deviation equal to one. The values are not
limited to a specific range. The equation of standardization is shown in Equation 8.

 𝑥 =
𝑥− 𝜇

𝜎
 (8)

 36

 To get the best results, we will fit the model to raw, normalized, and standardized
data, then compare the results to determine the best ones.

4.2.6 Handling Imbalance Class

 An imbalanced classification problem is one where samples are distributed
unevenly throughout the identified classes. The distribution can vary from a bias to a
major imbalance. This problem causes a challenge for predictive modeling because
most machine learning methods for classification assume that each class has an equal
number of examples. Subsequently, models can have higher prediction accuracy in
the train set, particularly for the majority class. But, lower prediction accuracy in the
test set. In a nutshell, we need to deal with this problem by ensuring that all target
classes have the same number of rows.
 To get the best results, we will fit the model to raw, over-sampling, and under-
sampling data, then compare the results to determine the best ones. For over-
sampling, we decide to use the Synthetic Minority Oversampling Technique (SMOTE).
It is the less time-consuming step of oversampling methods because It generates
oversampled datasets that enable supervised classifier training to provide classification
outcomes that are statistically comparable to those from other approaches, but in
much less runtime [32]. For over-sampling, we select a random-under-sampling
technique.

4.3 Data Prediction

 In the data prediction part, the data will be divided into training and testing sets.
The training data is used to train and evaluate the models using the cross-validation
technique whereas the testing data is used to apply the most appropriate model to
make predictions and finally evaluate unseen data.

4.3.1 Split Training and Testing Set

 We will segment the data into two groups based on their experience data: a group
of job applicants who fill their experience and a group who don’t. After that, we will

 37

divide the data in each group into 90% of the training data and 10% of the testing data
as shown in Figure 25 using the same label ratio in both training and testing data.
Model learning and model validation will be done using data from the training set
using 5-fold cross-validation, while data from the testing set will be utilized to test the
model's results with unseen data and display the proposed system's output.

Figure 25 - Split training and testing set

4.3.2 Define Models and Hyperparameter Tuning
 We will train a variety of classification models to see which one gives the best
performance with this dataset. Moreover, we decide to find the appropriate value of
each variable that will be used with models using the GridSearch technique. The
following are the models that will be experimented with:

- Decision Tree (DT)
- Suport Vector Machine (SVM)
- Gaussian Naive Bayes (GNB)
- Random Forest (RF)
- k-Nearest Neighbour (k-NN)
- CatBoost
- Extreme Gradient Boosting (XGBoost)
- Convolution Neural Network (CNN)

 The next section provides a description of these techniques' specifics as well as
the parameter values.

4.3.2.1 Decision Tree (DT)

 The decision Tree is the first supervised learning technique that we will experiment
with classification to find the most appropriate value for 4 parameters. The detail of
each parameter that we will experiment with is shown in Table 2 [33].

 38

Table 2 - Parameters and values that will be tested in the DT model

parameter description experiment value

criterion The function for evaluating a split

efficiency

entropy, gini,

log_loss

splitter The method for choosing the split best, random

max_depth The tree's maximum depth 1, 2, 3, 4, 5, 6, 7, 8,

9, 10

min_samples_

split

The minimum number of samples

required to split an internal node

1, 2, 3, 4, 5, 6, 7, 8,

9, 10

4.3.2.2 Suport Vector Machine (SVM)

 A Support Vector Machine (SVM) is a powerful and flexible machine learning model
that can perform linear or nonlinear classification, regression, and outlier detection.
 There are 3 parameters that we will experimentally adjust values for the Support
Vector Machine model which are C, kernel, and gamma as shown in Table 3 [34].

Table 3 - Parameters and values that will be tested in the SVM model

parameter description experiment value

C Regularization parameter 0.05, 0.03, 0.01,

0.5, 1, 3, 5

kernel The type of kernel to employ in the

algorithm

linear,

precomputed,

poly, rbf, sigmoid

gamma Kernel coefficient auto, scale

 39

4.3.2.3 Gaussian Naive Bayes (GNB)

 The Naive Bayes variant known as Gaussian Naive Bayes supports continuous data
and conforms to the Gaussian normal distribution. We will demonstrate and change
the value of just one parameter, var_smoothing, as shown in Table 4 [35].

Table 4 - Parameters and values that will be tested in the GNB model

parameter description experiment value

var_smoothing A fraction of all features' biggest

deviations that are contributed to

variances for computation stability

10-10, 10-9, 10-8,

10-7, 10-6, 10-5

4.3.2.4 Random Forest (RF)

 In Random Forest, a collection or ensemble of classification, there are 4 tuning
parameters, 3 of these are as same as the decision tree model parameters which are
criterion, max_depth, and min_samples_split, with only one difference parameter
being n_estimators as shown in Table 5 [36].

 40

Table 5 - Parameters and values that will be tested in the RF model

parameter description experiment value

n_estimators How many trees there are in the forest 50, 60, 70, 80, 90,

100

criterion The function for evaluating a split

efficiency

entropy, gini,

log_loss

max_depth The maximum depth of the tree 1, 2, 3, 4, 5, 6, 7, 8,

9, 10

min_samples_split The minimum number of samples

required to split an internal node

1, 2, 3, 4, 5, 6, 7, 8,

9, 10

4.3.2.5 k-Nearest Neighbour (k-NN)

 The k-NN model is one of many models to be turned for the proper parameter
value by changing the value of n_neighbors, weights, algorithm, and p to optimize the
model's performance as shown in Table 6 [37].

Table 6 - Parameters and values that will be tested in the k-NN model

parameter description experiment value

n_neighbors How many neighbors to utilize 1, 3, 5, 7, 9, 11, 13,

15

weights What weight function is needed distance, uniform

algorithm The algorithm for calculating the nearest

neighbors

auto, ball_tree,

brute, kd_tree

p Power parameter for the Minkowski metric 1, 2, 3

 41

4.3.2.6 CatBoost

 Another machine learning method that is successful at forecasting categorical
features is the CatBoost classifier, 4 parameters which are iterations, learning rate,
depth, and l2-leaf-reg will have their values experimentally changed as shown in Table
7 [38].

Table 7 - Parameters and values that will be tested in the CatBoost model

parameter description experiment value

iterations The maximum number of trees that can

be constructed

100, 200, 300, 400,

500, 1000, 1500,

2000

Learning_rate The method for choosing the split at

each node

0.001, 0.01, 0.02,

0.03, 0.04, 0.5, 0.1

depth The trees' highest point in depth 1, 2, 3, 4, 5, 6, 7, 8,

9, 10

l2_leaf_reg Cost function coefficient at the L2

regularization term

1, 2, 3, 4, 5, 6, 7, 8,

9, 10

4.3.2.7 Extreme Gradient Boosting (XGBoost)

 To determine the optimal value of parameters for the XGBoost model, one of the
gradient-boosting boosted tree methods that uses parallel processing, tree-pruning,
handling missing values, and regularization to prevent bias and overfitting, we will
experimentally adjust 5 parameters which are booster, eta, max_depth, lambda, and
alpha as shown in Table 8 [39].

 42

Table 8 - Parameters and values that will be tested in the XGBoost model

parameter description experiment value

booster The booster to use in prediction dart, gblinear,

gbtree

eta Minimum loss reduction is needed to

create a new division on a tree leaf node

0, 0.1, 0.2, 0.3, 0.4,

0.5, 1

max_depth The tree's maximum height 1, 2, 3, 4, 5, 6, 7, 8,

9, 10

lambda L2 regularization term on weights 0, 0.05, 0.03, 0.01,

0.5, 1, 3, 5

alpha L1 regularization term on weights 0, 0.05, 0.03, 0.01,

0.5, 1, 3, 5

4.3.2.8 Convolution Neural Network (CNN)

 The structure of a CNN in this research composes of the convolution layer that has
32 filters with a 3x3 kernel size. Max-pooling of size 2x2 is then used to reduce the
dimensions of the output and flatten the output to 1 dimension. Next to a flattened
layer is 2 dense layers, 100 units with the relu activation function and 10 units with
the relu activation function, alternate with a dropout layer. The output layer will
contain 2 nodes of classification with a sigmoid activation function and categorical
cross-entropy will be used as the loss function [22].
 The optimizer and dropout parameter will be tuned for the neural network model
while batch_size and epoch value will be adjusted in the model training process as
shown in Table 9.

Table 9 - Parameters and values that will be tested in the CNN model

 43

parameter description experiment value

batch_size The number of training examples utilized

in one iteration

16, 32, 64

dropout The ratio that nullifies the contribution of

some neurons towards the next layer

0.1, 0.2, 0.3, 0.4,

0.5

epoch The number of times the algorithm has

iterated through the training dataset

100, 200, 300, 400,

500, 1000

optimizer The methods used to minimize an error

function

Adam, SGD

4.3.3 Evaluate Metrics for Classification Model

 We compare the performance of each model with 4 measures to get the most
suitable model in terms of accuracy and productivity.

4.3.3.1 Accuracy

 The overall performance of this proposed method will be measured by accuracy.
We are going to calculate the average accuracy from all iterations of cross-validation
for the training set. The equation of accuracy is shown in Equation 9.

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (9)

4.3.3.2 Weighted F1-score

 We want a model that balances precision and recall because we want to minimize
total errors, which means low bias and low variance. Low variance algorithms (high
bias) will be less complex and consistent, but inaccurate on average which can lead
to underfitting. On the other hand, low bias algorithms (high variance) will be more
complex and accurate on average, but inconsistent which can lead to overfitting. The

 44

equation of weighted F1-score is shown in Equation 10 when W represents the weight
of each class, and the equation of F1-score is shown in Equation 6.

 𝐹1𝑐𝑙𝑎𝑠𝑠1𝑊1 + 𝐹1𝑐𝑙𝑎𝑠𝑠2𝑊2 + ⋅⋅⋅ + 𝐹1𝑐𝑙𝑎𝑠𝑠𝑁𝑊𝑁 (10)

4.3.3.3 Recall

 We want the FN to be as low as possible for this classification problem. This means
that we do not want any potential candidates predicted as not-suitable, leading to the
shortlisted candidate being dismissed from the interview call. That is because we do
not want to lose someone who could be effective for a job interview and join the
company. On the other hand, we want the TP to be as high as possible as well. This
means that we want the model to be able to predict the candidates to be shortlisted
as accurately as possible for the effectiveness of the system results. Consequently, to
be able to evaluate both FN and TP simultaneously, recall value will be used to
evaluate system performance. The higher the recall value, the better. The equation of
recall is shown in Equation 5.

4.3.3.4 Computation Time

 Another factor to consider is the computation time. Since time is valuable in
practice, the proposed method should reduce the amount of time spent on human
work. The computer used in this research is a 64-bit operating system with an Intel(R)
Core (TM) i7-10510U CPU @ 1.80GHz 2.30GHz and 16.0 gigabytes (GB) of random-access
memory (RAM).
 These 4 measures will give the proper model with high reliability and require less
computation time. After we get the most suitable model and parameters. We will
retrain the model with the training set through the 5-fold cross-validation technique
to find the optimal threshold for each iteration, then take those thresholds to calculate
the median to determine the final optimal threshold for the testing set.

 45

4.3.4 Similarity Computation and Ranking Suggestion

 After the model can predict who should be in the shortlist group, we will rank the
candidates in this group. There are two ways to rank depending on whether the
candidate fills in his or her experience information as shown in Figure 25.
 Applicants who fill out their experience data will have their experience data
converted to vectors of numbers, as well as job description data. The two vectors are
then calculated for the cosine similarity value. Finally, the computed value by the sum
of cosine similarity and predict probability will be used to display the candidates
ranking in descending order that grouping them according to the job title that they
apply for.

Figure 26 - The candidates ranking approach

 On the other hand, candidates who do not fill out their experience are ranked by

combining the probability of predicting as a shortlist group from the 3 best models

and sorted by the sum in descending order that grouping them according to the job

title that they apply for. The final ranking suggestion will order candidates who fill in

experience data first, then those who do not.

 46

CHAPTER 5

RESULT AND DISCUSSION

 This research compares the classification of data with 8 methods to select the most
appropriate one. The following part will provide an explanation of the procedure's
details.

5.1 Experimental Dataset Preparation

 After data was collected from JobsDB.com, the data was put through many data
preparation processes, such as converting Thai to English text, creating new columns
from existing columns, missing value handling, categorical features handling, feature
scaling, and handling imbalance class. The data after being transformed through the
preparation step will be put into the models. The feature details are shown in Table
10.

Table 10 – The feature details
Feature name Description

age Candidate's age

can_speak_en Can the candidate communicate in English?
cosine_sim The similarity between the candidate's experience

data and the job description of the position applied
for

count_certificates The number of certificates that the candidate has

count_extract_skills The number of candidate’s skills that match the skills
of the position applied for

count_lang The number of languages the candidate can
communicate

count_same_keyword The number of important keywords extracted from
candidates' work experience data that match the

 47

important keywords extracted from the job opening
data

fill_expr_in_en Does the candidate fill in the information in JobsDB in
English?

filter_age Does the candidate’s age meet the qualification of
the job the candidate applied for?

filter_minimum_degree Does the candidate’s minimum education level meet
the qualification of the job the candidate applied for?

filter_minimum_exp Does the candidate’s year of experience meet the
qualification of the job the candidate applied for?

filter_national_only Does the candidate’s nationality meet the
qualification of the job the candidate applied for?

gender_Female Is the applicant a female?
gender_Male Is the applicant a male?

haversine_distance The distance between the candidate's residence and
the workplace

highest_edu The highest education level of the candidate

ins_in_topu_score The total score of the university where the candidate
has graduated

nice_to_have_major_scores The total score of the major where the candidate has
graduated

similar_job_title The similarity between the candidate’s recent job
title and the position applied for

thai_nationality Is the applicant a Thai national?

year_of_experiences Total years of work experience
target The classification target (1 = shortlist, 0 = not suitable)

 The difference between the data that we took into the model for those who filled
in experience data and those who did not is the cosine_sim column. The candidates
who filled in the experience data will have this column in the model, while those who

 48

did not fill in the experience data will not have it. The 2027 candidates consist of 1218
who fill in experience data and 809 who did not. Figures 27 and 28 show the
percentage of candidates in different groups for candidates who filled in experience
and did not respectively.

Figure 27 - The percentage of the target group for candidates who filled in the
experience

Figure 28 - The percentage of the target group for candidates who did not fill in the
experience

5.2 Modeling

 We did hyperparameter tuning with 5 StratifiedKFold using the GridsearchCV
technique by separating the data between those who filled in the experience and

 49

those who did not. Moreover, we experimented with normalization and imbalance
class handling. For normalization, we experimented in 3 ways, which are without
normalization, min-max scaler, and standard scaler. For imbalance class handling, we
experimented in 3 ways, which are without imbalance class handling, oversampling,
and undersampling.
 Table 11 shows the most proper parameter value for the Decision Tree model
using the GridsearchCV technique for the data with experimental normalization and
imbalance class handling.

Table 11 - The most proper parameter value for the DT model
Experience
data

Normalization Imbalance class
handling

Parameters
criterion splitter max_

depth
min_samples_

split

Fill - - gini best 10 2
oversampling entropy random 7 9

undersampling entropy random 4 6
min-max
scaler

- entropy best 10 3

oversampling entropy best 5 4

undersampling gini random 2 6
standard
scaler

- entropy best 10 2

oversampling gini random 9 6
undersampling gini random 2 9

Not fill - - gini best 10 2
oversampling entropy best 10 7

undersampling entropy random 9 1
min-max
scaler

- entropy best 10 2

oversampling gini best 10 10
undersampling entropy random 2 5

standard
scaler

- gini best 10 2

oversampling gini best 10 10
undersampling gini random 8 8

 50

 Table 12 shows the most proper parameter value for the Support Vector Machine
model using the GridsearchCV technique for the data with experimental normalization
and imbalance class handling.

Table 12 - The most proper parameter value for the SVM model
Experience
data

Normalization Imbalance class
handling

Parameters
C gamma kernel

Fill - - 0.01 scale linear
oversampling 1 scale rbf

undersampling 0.01 scale linear
min-max
scaler

- 3 scale rbf

oversampling 3 scale rbf
undersampling 1 auto linear

standard
scaler

- 0.5 auto poly
oversampling 5 scale rbf

undersampling 0.5 scale rbf
Not fill - - 0.01 scale linear

oversampling 3 scale poly

undersampling 0.03 auto linear
min-max
scaler

- 0.5 auto poly

oversampling 5 scale poly
undersampling 1 scale rbf

standard
scaler

- 3 scale poly
oversampling 5 scale rbf

undersampling 0.05 scale rbf

 Table 13 shows the most proper parameter value for the Gaussian Naïve Bay model
using the GridsearchCV technique for the data with experimental normalization and
imbalance class handling.

 51

Table 13 - The most proper parameter value for the GNB model
Experience
data

Normalization Imbalance class
handling

Parameters
var_smoothing

Fill - - 1e-06
oversampling 1e-10

undersampling 1e-09
min-max
scaler

- 1e-05

oversampling 1e-05
undersampling 1e-05

standard
scaler

- 1e-05

oversampling 1e-05
undersampling 1e-05

Not fill - - 1e-06
oversampling 1e-10

undersampling 1e-09
min-max
scaler

- 1e-05

oversampling 1e-05
undersampling 1e-06

standard
scaler

- 1e-05
oversampling 1e-05

undersampling 1e-05

 Table 14 shows the most proper parameter value for the Random Forest model
using the GridsearchCV technique for the data with experimental normalization and
imbalance class handling.

 52

Table 14 - The most proper parameter value for the RF model
Experience
data

Normalization Imbalance class
handling

Parameters
criterion max_

depth

min_samples
_split

n_estimators

Fill - - entropy 3 1 100
oversampling gini 6 1 100

undersampling gini 1 1 80
min-max
scaler

- entropy 2 1 100

oversampling entropy 5 1 80
undersampling gini 8 1 60

standard
scaler

- entropy 4 1 100
oversampling entropy 1 1 50

undersampling entropy 8 1 80

Not fill - - entropy 1 1 60
oversampling entropy 5 1 90

undersampling entropy 9 1 80
min-max
scaler

- entropy 2 1 90

oversampling entropy 2 1 90
undersampling entropy 2 1 60

standard
scaler

- entropy 5 1 60
oversampling entropy 2 1 80

undersampling entropy 2 1 70

 Table 15 shows the most proper parameter value for the k-Nearest Neighbors
model using the GridsearchCV technique for the data with experimental normalization
and imbalance class handling.

 53

Table 15 - The most proper parameter value for the k-NN model
Experience
data

Normalization Imbalance class
handling

Parameters
algorithm n_neighbors p weights

Fill - - auto 15 1 uniform
oversampling auto 1 1 distance

undersampling auto 1 1 distance
min-max
scaler

- auto 13 1 distance

oversampling auto 1 1 distance
undersampling auto 11 3 distance

standard
scaler

- auto 1 2 distance

oversampling auto 1 1 distance
undersampling auto 13 3 distance

Not fill - - auto 5 2 uniform
oversampling auto 1 1 distance

undersampling auto 1 1 distance
min-max
scaler

- auto 9 1 uniform

oversampling auto 1 1 distance
undersampling auto 3 1 uniform

standard
scaler

- entropy 5 1 60
oversampling entropy 2 1 80

undersampling entropy 2 1 70

 Table 16 shows the most proper parameter value for the CatBoost model using
the GridsearchCV technique for the data with experimental normalization and
imbalance class handling.

 54

Table 16 - The most proper parameter value for the CatBoost model
Experience
data

Normalization Imbalance class
handling

Parameters
iterations learning_rate depth l2_leaf_reg

Fill - - 100 0.1 3 6
oversampling 2000 0.1 4 2

undersampling 400 0.03 1 10
min-max
scaler

- 100 0.1 3 6

oversampling 2000 0.03 4 5
undersampling 400 0.03 1 10

standard
scaler

- 100 0.1 3 6

oversampling 1500 0.1 3 3
undersampling 400 0.03 1 10

Not fill - - 1500 0.1 1 3
oversampling 2000 0.05 7 10

undersampling 500 0.01 2 8
min-max
scaler

- 2000 0.03 7 3

oversampling 1500 0.1 5 1
undersampling 2000 0.1 3 8

standard
scaler

- 1500 0.1 1 3
oversampling 2000 0.04 5 1

undersampling 2000 0.1 3 8

 Table 17 shows the most proper parameter value for the XGBoost model using the
GridsearchCV technique for the data with experimental normalization and imbalance
class handling.

 55

Table 17 - The most proper parameter value for the XGB model
Experience
data

Normalization Imbalance class
handling

Parameters
booster eta max_depth lambda alpha

Fill - - dart 0.1 6 0 5
oversampling dart 0 1 0 0

undersampling dart 0 1 0 0
min-max
scaler

- dart 0.1 6 0 5

oversampling dart 0 1 0 0
undersampling dart 0 1 0 0

standard
scaler

- dart 0.1 6 0 5
oversampling dart 0 1 0 0

undersampling dart 0 1 0 0
Not fill - - dart 1 1 0.05 0.05

oversampling dart 0 1 0 0
undersampling dart 0 1 0 0

min-max
scaler

- dart 1 1 0.05 0.05

oversampling dart 0 1 0 0
undersampling dart 0 1 0 0

standard
scaler

- dart 1 1 0.05 0.05
oversampling dart 0 1 0 0

undersampling dart 0 1 0 0

 Table 18 shows the most proper parameter value for the Convolutional Neural
Network model using the GridsearchCV technique for the data with experimental
normalization and imbalance class handling. The learning rate we use is initialed from
0.001 then multiple that learning rate with 0.1 when running over 80% epoch.

 56

Table 18 - The most proper parameter value for the CNN model
Experience
data

Normalization Imbalance class
handling

Parameters
batch_size dropout epoch optimizer

Fill - - 16 0.4 1000 Adam
oversampling 16 0.5 1000 SGD

undersampling 32 0.3 1000 Adam
min-max
scaler

- 32 0.4 1000 Adam

oversampling 32 0.2 1000 Adam
undersampling 32 0.1 300 Adam

standard
scaler

- 64 0.2 1000 Adam

oversampling 16 0.4 1000 SGD
undersampling 64 0.3 1000 SGD

Not fill - - 16 0.5 100 Adam
oversampling 16 0.5 100 Adam

undersampling 16 0.1 100 Adam
min-max
scaler

- 16 0.5 100 Adam

oversampling 16 0.2 100 Adam
undersampling 16 0.1 100 Adam

standard
scaler

- 16 0.5 100 Adam
oversampling 16 0.1 100 Adam

undersampling 16 0.5 100 Adam

5.3 Model Performance Comparison

 After we knew the best parameter value of each model, we trained the models
with the 5-StratifiedKFold cross-validation technique again to calculate average
accuracy, average weighted f1-score, average recall, and average computation time.
Where the higher the values of average accuracy, average weighted f1-score, and
average recall, the better. However, the lower the value of the average computation
time, the better. The value is highlighted in bold, denoting the best value, whereas
underlined indicates the second-best value.

 57

 For the Decision Tree model, the data that the candidates filled the experience
without normalization and imbalance class handling gained the best average accuracy
but obtained low recall also. The data with normalization using a min-max scaler but
without imbalance class handling gets the 2nd highest average accuracy. While
oversampling gets the 2nd highest average weighted f1-score. But these 2 ways acquired
a low recall which is less than 0.5. The data with imbalance class handling using
undersampling get a high recall. By not normalizing, the highest average accuracy and
recall are obtained. So, the data without normalization but undersampling gave the
best performance for the Decision Tree model. Although it was not the least time-
consuming, the time it took is considered less. It took an average of 0.01076
milliseconds per person.
 On the other hand, the data that the candidates did not fill the experience with
min-max scaler normalization and imbalance class handling using oversampling
technique gained the best average accuracy and average weighted f1-score. But it also
obtained a less average recall. While the data without normalization but with
imbalance class handling using undersampling acquired the highest recall. But its
average accuracy is less than 0.5. The data with normalization using a min-max scaler
and imbalance class handling using undersampling is the 3rd highest average recall,
while average accuracy and average weighted f1-score were higher than 0.6. So, the
data with min-max scaler and undersampling gave the best performance for the
Decision Tree model. Although it was not the least time-consuming, the time it took is
considered less. It took an average of 0.09072 milliseconds per person as shown in
Table 19.
 For the Support Vector Machine model, the data that the candidates filled the
experience with normalization using a standard scaler and oversampling imbalance
class handling gained the best average accuracy and average weight f1-score. But its
average recall is less than 0.5. While the data with min-max scaler and oversampling
obtained the second-best average accuracy and average weight f1-score. But its
average recall is also not too high. The data with min-max scaler normalization but
without imbalance class handling acquired average accuracy and weighted f1-score
slightly lower, but the average recall is higher, making all 3 values close. So, the data

 58

with min-max scaler normalization but without imbalance class handling gave the best
performance for the Support Vector Machine model. Although it is not the least time-
consuming, the time it took is considered less. It took an average of 0.10262
milliseconds per person.

Table 19 - The DT evaluation of the training set
Experience
data

Normalization Imbalance class
handling

Evaluation (average) of the training set
Accuracy Weighted

f1-score
Recall Computation

time (sec)

Fill - - 0.86314 0.87060 0.47787 0.05253

oversampling 0.83577 0.85291 0.52332 0.12475
undersampling 0.77829 0.81760 0.76601 0.01180

min-max
scaler

- 0.86040 0.86509 0.39684 0.13660
oversampling 0.85858 0.86760 0.46917 0.07019

undersampling 0.77280 0.81201 0.74822 0.01038
standard
scaler

- 0.85675 0.86170 0.38775 0.04764

oversampling 0.82299 0.84431 0.55059 0.01699
undersampling 0.76275 0.80549 0.77549 0.03088

Not fill - - 0.85711 0.87058 0.24000 0.02474
oversampling 0.85299 0.87194 0.34000 0.07340

undersampling 0.46965 0.53360 0.66000 0.07129
min-max
scaler

- 0.85444 0.87037 0.28000 0.05377

oversampling 0.85989 0.87294 0.24000 0.05207

undersampling 0.69991 0.75352 0.60000 0.06605
standard
scaler

- 0.85436 0.86692 0.20000 0.09499

oversampling 0.84342 0.86336 0.26000 0.08645
undersampling 0.59347 0.69074 0.56000 0.06579

 On the other hand, the data that the candidates did not fill the experience with
min-max scaler normalization but without imbalance class handling gained the best
average accuracy and average weighted f1-score. But it also obtained the least average
recall. While the data without normalization but with imbalance class handling using

 59

undersampling acquired the highest recall. But its average accuracy is between 0.5 and
0.6. The data with normalization using a standard scaler and imbalance class handling
using undersampling is the 4th highest average recall, while average accuracy and
average weighted f1-score were higher than 0.72. So, the data with standard scaler and
undersampling gave the best performance for the Support Vector Machine model.
Although it was not the least time-consuming, the time it took is considered less. It
took an average of 0.05655 milliseconds per person as shown in Table 20.

Table 20 - The SVM evaluation of the training set
Experience
data

Normalization Imbalance class
handling

Evaluation (average) of the training set
Accuracy Weighted

f1-score
Recall Computation

time (sec)

Fill - - 0.73995 0.7889 0.77549 0.65038

oversampling 0.75201 0.75846 0.70853 days
undersampling 0.71167 0.76761 0.81107 0.37538

min-max
scaler

- 0.80474 0.83563 0.71186 0.12500

oversampling 0.82846 0.85086 0.62134 0.25400
undersampling 0.78010 0.81884 0.76640 0.01793

standard
scaler

- 0.82484 0.84659 0.65810 0.06298
oversampling 0.84307 0.85728 0.49526 0.13091

undersampling 0.79380 0.82777 0.70316 0.01667
Not fill - - 0.49991 0.60857 0.62000 0.28426

oversampling 0.53657 0.57680 0.58000 days
undersampling 0.51923 0.62613 0.64000 0.03435

min-max
scaler

- 0.93132 0.89820 0.00000 0.19317
oversampling 0.74596 0.80323 0.50000 0.20869

undersampling 0.62768 0.71876 0.58000 0.05233
standard
scaler

- 0.77332 0.81958 0.36000 0.08343

oversampling 0.78574 0.82658 0.28000 0.18506

undersampling 0.72378 0.78954 0.52000 0.04575

 60

 For the Gaussian Naïve Bay model, the data that the candidates filled the
experience without normalization and imbalance class handling gained the best
average accuracy and average weighted f1-score, but it also obtained the worst average
recall. While the data without normalization but with imbalance class handling using
oversampling acquired the second-best average accuracy and average weighted f1-
score. Its recall was not the highest but not too less. So, the data without normalization
but oversampling gave the best performance for the Gaussian Naïve Bay model.
Although it was not the least time-consuming, the time it took is considered less. It
took an average of 0.02228 milliseconds per person.
 On the other hand, the data that the candidates did not fill the experience without
normalization but imbalance class handling using oversampling gained the best
average accuracy and average weighted f1-score. While its average recall was the worst.
The data with a min-max scaler but without imbalance class handling obtained the
best average recall. Its average accuracy and weighted f1-score were not too bad. While
the data with standard scaler normalization and imbalance class handling using
oversampling acquired better average accuracy and average weighted f1-score. Its
recall is almost the same. So, the data with standard scaler normalization and
oversampling imbalance class handling gave the best performance for the Gaussian
Naïve Bay model. Although it was not the least time-consuming, the time it took is
considered less. It took an average of 0.07557 milliseconds per person as shown in
Table 21.
 For the Random Forest model, the data that the candidates filled the experience
with min-max scaler normalization but without imbalance class handling gained the
best average recall. Which is equal to the data with standard scaler and handling
imbalance class handling using the undersampling technique. But they obtained low
average accuracy and weighted f1-score. The 2nd highest average recall gave the highest
average accuracy and weighted f1-score for the data with min-max scaler and
imbalance class handling using the oversampling technique. So, the data with min-max
scaler normalization and oversampling gave the best performance for the Random
Forest model. Although it was not the least time-consuming, the time it took is
considered less. It took an average of 0.01491 milliseconds per person.

 61

Table 21 - The GNB evaluation of the training set
Experience
data

Normalization Imbalance class
handling

Evaluation (average) of the training set
Accuracy Weighted

f1-score
Recall Computation

time (sec)

Fill - - 0.89873 0.85079 0.00000 0.01120
oversampling 0.77645 0.81347 0.63913 0.02442

undersampling 0.69255 0.75270 0.75692 0.02060
min-max
scaler

- 0.34764 0.41461 0.92846 0.02028

oversampling 0.41517 0.49623 0.84743 0.02428
undersampling 0.35672 0.42076 0.89249 0.01737

standard
scaler

- 0.2345 0.25533 0.94625 0.01248

oversampling 0.35493 0.42422 0.89209 0.01798

undersampling 0.30017 0.34681 0.91028 0.01147

Not fill - - 0.93132 0.89820 0.00000 0.02638
oversampling 0.59347 0.69168 0.58000 0.04907

undersampling 0.49991 0.61004 0.70000 0.05591
min-max
scaler

- 0.51368 0.62295 0.72000 0.06667

oversampling 0.52192 0.63038 0.70000 0.07816
undersampling 0.53933 0.61958 0.58000 0.03805

standard
scaler

- 0.52037 0.62406 0.72000 0.05022
oversampling 0.53275 0.63621 0.70000 0.05502

undersampling 0.53522 0.61683 0.60000 0.07189

 On the other hand, the data that the candidates did not fill the experience with
min-max scaler normalization but without imbalance class handling gained the best
average accuracy and average weighted f1-score, it also gained the worst average recall.
While the data with standard scaler normalization and imbalance class handling using
the undersampling technique obtained the best average recall, it also obtained less
average accuracy and average weighted f1-score. The data without normalization but
imbalance class handling using the undersampling technique acquired the 2nd highest
average recall. Its average accuracy and average weighted f1-score were not bad. So,
the data without normalization but with imbalance class handling using the

 62

undersampling technique gave the best performance for the Random Forest model.
Although it was not the least time-consuming, the time it took is considered less. It
took an average of 0.44833 milliseconds per person as shown in Table 22.

Table 22 - The RF evaluation of the training set
Experience
data

Normalization Imbalance class
handling

Evaluation (average) of the training set
Accuracy Weighted

f1-score
Recall Computation

time (sec)

Fill - - 0.73891 0.68406 0.20000 0.23730

oversampling 0.57909 0.51734 0.40000 0.16046

undersampling 0.74054 0.68554 0.20000 0.08486
min-max
scaler

- 0.42091 0.35208 0.60000 0.25862

oversampling 0.58073 0.51881 0.40000 0.16350
undersampling 0.57909 0.51734 0.40000 0.22978

standard
scaler

- 0.89873 0.85079 0.20000 0.34378
oversampling 0.57909 0.51734 0.40000 0.13513

undersampling 0.41927 0.41927 0.60000 0.32541
Not fill - - 0.75890 0.72042 0.20000 0.31989

oversampling 0.58611 0.58611 0.40000 0.55462
undersampling 0.41370 0.36454 0.60000 0.32639

min-max
scaler

- 0.75890 0.72042 0.20000 0.64001

oversampling 0.58630 0.54248 0.40000 0.55260
undersampling 0.41370 0.36454 0.60000 0.36580

standard
scaler

- 0.41370 0.36454 0.60000 0.34394
oversampling 0.58630 0.54248 0.40000 0.53638

undersampling 0.24128 0.18677 0.80000 0.41088

 For the k-Nearest Neighbors model, the data that the candidates filled the
experience with standard scaler normalization and undersampling gained the best
average recall. While its average accuracy and weighted f1-score were high even though
there was not the highest. So, the data with standard scaler normalization and
undersampling gave the best performance for the k-Nearest Neighbors model.

 63

Although it was not the least time-consuming, the time it took is considered less. It
took an average of 0.02496 milliseconds per person.
 On the other hand, the data that the candidates did not fill the experience without
normalization and imbalance class handling gained the best average accuracy and
average weighted f1-score, it also obtained a less average recall. While the data with
standard normalization and imbalance class handling using the undersampling
technique acquired the best average recall. Its average accuracy and average weighted
f1-score were not bad. So, the data with standard scaler normalization and imbalance
class handling using the undersampling technique gave the best performance for the
k-Nearest Neighbors model. Although it was not the least time-consuming, the time it
took is considered less. It took an average of 0.07359 milliseconds per person as shown
in Table 23.
 For the CatBoost model, the data that the candidates filled the experience without
normalization but imbalance class handling using the oversampling technique gained
the best average recall. Its average accuracy and average weighted f1-score were in
the range of 0.79 to 0.82. So, the data without normalization but with imbalance class
handling using the oversampling technique gave the best performance for the
CatBoost. Although it was not the least time-consuming, the time it took is considered
less. It took an average of 0.05275 milliseconds per person.
 On the other hand, the data that the candidates did not fill the experience without
normalization and imbalance class handling gained the best average accuracy and
average weighted f1-score, it also obtained a less average recall. Which are the same
result as the data with standard scaler but without imbalance class handling us. While
The data without normalization but with imbalance class handling using the
undersampling technique acquired the best average recall. Its average accuracy and
average weighted f1-score were not bad. So, without normalization but imbalance
class handling using the undersampling technique gave the best performance for the
CatBoost model. Although it is not the least time-consuming, the time it took is
considered less. It took an average of 0.09793 milliseconds per person as shown in
Table 24.

 64

Table 23 - The k-NN evaluation of the training set
Experience
data

Normalization Imbalance class
handling

Evaluation (average) of the training set
Accuracy Weighted

f1-score
Recall Computation

time (sec)

Fill - - 0.90200 0.85562 0.00000 0.01484
oversampling 0.84123 0.85047 0.36957 0.16422

undersampling 0.60125 0.67848 0.66759 0.09547
min-max
scaler

- 0.90147 0.88106 0.20711 0.09533

oversampling 0.86586 0.86809 0.37787 0.14983
undersampling 0.41370 0.36454 0.60000 0.32639

standard
scaler

- 0.86769 0.86666 0.33281 0.02655
oversampling 0.86315 0.86380 0.34190 0.03524

undersampling 0.74269 0.79041 0.72134 0.02736

Not fill - - 0.93133 0.90066 0.02000 0.02599
oversampling 0.84065 0.85924 0.02000 0.05389

undersampling 0.52751 0.63440 0.58000 0.06408
min-max
scaler

- 0.93132 0.89820 0.00000 0.06847

oversampling 0.87778 0.87779 0.12000 0.05166
undersampling 0.57267 0.67551 0.54000 0.07512

standard
scaler

- 0.89557 0.88855 0.10000 0.06358
oversampling 0.87636 0.87877 0.14000 0.05168

undersampling 0.59889 0.69656 0.58000 0.05358

 For the Extreme Gradient Boosting model, the data that the candidates filled the
experience without imbalance class handling gained the same best average recall no
matter what technique of normalization. The score of average accuracy, average
weighted f1-score, and average recall are the same for every normalization technique
without imbalance class handling. The only difference is the average computation
time, which the min-max scaler obtained the least. So, the data with min-max scaler
normalization but without imbalance class handling gave the best performance for the
Extreme Gradient Boosting model. Although it was not the least time-consuming, the
time it took is considered less. It took an average of 0.33688 milliseconds per person.

 65

Table 24 - The CatBoost evaluation of the training set
Experience
data

Normalization Imbalance class
handling

Evaluation (average) of the training set
Accuracy Weighted

f1-score
Recall Computation

time (sec)

Fill - - 0.91333 0.89081 0.21581 0.04466
oversampling 0.90148 0.89928 0.46917 1.36063

undersampling 0.78013 0.81631 0.77470 0.05782
min-max
scaler

- 0.91333 0.89081 0.21581 0.04681

oversampling 0.89873 0.89397 0.40593 1.67562
undersampling 0.79013 0.82631 0.77470 0.06921

standard
scaler

- 0.91333 0.89081 0.21581 0.04966
oversampling 0.89873 0.89531 0.43241 0.97947

undersampling 0.79013 0.82631 0.77470 0.06757

Not fill - - 0.93404 0.91710 0.18000 0.33639
oversampling 0.91620 0.91031 0.26000 2.33214

undersampling 0.67718 0.74643 0.74000 0.07130
min-max
scaler

- 0.91893 0.90632 0.16000 1.49103

oversampling 0.88874 0.89459 0.32000 1.06017
undersampling 0.54948 0.65344 0.74000 0.34659

standard
scaler

- 0.93404 0.91710 0.18000 0.33493
oversampling 0.88186 0.88970 0.32000 1.54922

undersampling 0.55085 0.65460 0.74000 0.35240

 On the other hand, the data that the candidates who did not fill the experience
without imbalance class handling gained the same best average recall no matter what
technique of normalization. The score of average accuracy, average weighted f1-score,
and average recall are the same for every normalization technique without imbalance
class handling. The only difference is the average computation time, which those
without normalization acquired the least. So, the data without normalization and
imbalance class handling gave the best performance for the Extreme Gradient Boosting
model. Although it was not the least time-consuming, the time it took is considered
less. It took an average of 0.33635 milliseconds per person as shown in Table 25.

 66

Table 25 - The XGB evaluation of the training set
Experience
data

Normalization Imbalance class
handling

Evaluation (average) of the training set
Accuracy Weighted

f1-score
Recall Computation

time (sec)

Fill - - 0.86499 0.87355 0.55798 0.60949
oversampling 0.89873 0.85079 0.00000 0.44505

undersampling 0.89873 0.85079 0.00000 0.24371
min-max
scaler

- 0.86499 0.87355 0.55798 0.41033

oversampling 0.89873 0.85079 0.00000 0.65710
undersampling 0.89873 0.85079 0.00000 0.20964

standard
scaler

- 0.86499 0.87355 0.55798 0.45088
oversampling 0.89873 0.85079 0.00000 0.44562

undersampling 0.89873 0.89873 0.00000 0.63732

Not fill - - 0.93405 0.91693 0.18000 0.27211
oversampling 0.93132 0.89820 0.00000 0.29285

undersampling 0.93132 0.89820 0.00000 0.23296
min-max
scaler

- 0.93405 0.91693 0.18000 0.36774

oversampling 0.93132 0.89820 0.00000 0.41885
undersampling 0.93132 0.89820 0.00000 0.34206

standard
scaler

- 0.93405 0.91693 0.18000 0.37007
oversampling 0.93132 0.89820 0.00000 0.92105

undersampling 0.93132 0.89820 0.00000 0.31987

 For the Convolutional Neural Network model, the data that the candidates filled
the experience without normalization and imbalance class handling gained the best
average accuracy, average weighted f1-score, and average recall. So, the data without
normalization and imbalance class handling using the oversampling technique gave
the best performance for the Extreme Gradient Boosting model. Although it was not
the least time-consuming, the time it took is considered less. It took an average of
121.83199 milliseconds per person.
 On the other hand, the data with all experiments gained the same average
accuracy, average weighted f1-score, and average recall. The difference is computation

 67

time. The data with standard scaler normalization but without imbalance class
handling took the least computation time. So, the data with standard scaler
normalization but without imbalance class handling gave the best performance for the
Convolutional Neural Network model as shown in Table 26.

Table 26 - The CNN evaluation of the training set
Experience
data

Normalization Imbalance class
handling

Evaluation (average) of the training set
Accuracy Weighted

f1-score
Recall Computation

time (sec)

Fill - - 0.90056 0.86121 0.05415 148.5132

oversampling 0.89237 0.85246 0.05415 142.9685
undersampling 0.89599 0.85888 0.05415 86.70492

min-max
scaler

- 0.89508 0.85235 0.01818 90.75551
oversampling 0.89416 0.85797 0.05415 103.4803

undersampling 0.89963 0.85294 0.00870 25.77450
standard
scaler

- 0.89873 0.85079 0.01779 63.46495

oversampling 0.89416 0.85503 0.03597 156.5284
undersampling 0.89873 0.85405 0.01818 57.02587

Not fill - - 0.93132 0.89820 0.00000 11.55358
oversampling 0.93132 0.89820 0.00000 9.28251

undersampling 0.93132 0.89820 0.00000 11.12407
min-max
scaler

- 0.93132 0.89820 0.00000 11.32896

oversampling 0.93132 0.89820 0.00000 10.81690

undersampling 0.93132 0.89820 0.00000 11.32815
standard
scaler

- 0.93132 0.89820 0.00000 8.42467

oversampling 0.93132 0.89820 0.00000 10.97375
undersampling 0.93132 0.89820 0.00000 8.69763

 There are several reasons why CNN takes much longer time to train than other
models. The appropriate epoch value was determined via hyperparameter turning to
1000 for the data that the candidate filled in experience and 100 for the candidate
who did not, which required CNN time to finish the epoch training. Another reason is

 68

CNN is more complex in terms of Big O notation because they share their parameters
within the network. This implies that even if they have fewer parameters, they are still
used frequently.

5.4 Summary of Model Comparison

 Table 27 shows the best data preparation way for each model for the data that
candidates filled in experience. Each model is suitable for different data preprocessing
ways. According to average accuracy, weighted f1-score, recall, and computation time,
the most suitable model for our data is the SVM. A suitable data preparation way for
the SVM is min-max scaler normalization without imbalance class handling.

Table 27 - Summary of model comparison for candidates who filled in the
experience

Model Normalization Imbalance class
handling

Evaluation (average)

Standard
scaler

Min-max
scaler

Over
sampling

Under
sampling

Accuracy Weighted
f1-score

Recall Computation
time (sec)

DT ✓ 0.77829 0.81760 0.76601 0.01180

SVM ✓ 0.80474 0.83563 0.71186 0.12500

GNB ✓ 0.77645 0.81347 0.63913 0.02442

RF ✓ ✓ 0.58073 0.51881 0.40000 0.16350

k-NN ✓ ✓ 0.74269 0.79041 0.72134 0.02736

CatBoost ✓ 0.78013 0.81631 0.77470 0.05782

XGBoost ✓ 0.86499 0.87355 0.55798 0.41033

CNN 0.90056 0.86121 0.05415 148.5132

 Table 28 shows the best data preparation for each model for the data that
candidates did not fill experience. 4 of 8 models show that the standard scaler
normalization technique is the best way compared to without normalization, standard
scaler normalization, and min-max scaler normalization. While 5 of 8 models show
that the undersampling technique is the best way, compared without imbalance class

 69

handling, oversampling, and undersampling. According to average accuracy, weighted
f1-score, recall, and computation time, the most suitable model is the DT. The 2nd and
3rd best models are the CatBoost and SVM respectively.

Table 28 - Summary of model comparison for candidates who did not fill in the
experience

Model Normalization Imbalance class
handling

Evaluation (average)

Standard
scaler

Min-max
scaler

Over
sampling

Under
sampling

Accuracy Weighted
f1-score

Recall Computation
time (sec)

DT ✓ ✓ 0.69991 0.75352 0.60000 0.06605

SVM ✓ ✓ 0.72378 0.78954 0.52000 0.04575

GNB ✓ ✓ 0.53275 0.63621 0.70000 0.05502

RF ✓ 0.41370 0.36454 0.60000 0.32639

k-NN ✓ ✓ 0.59889 0.69656 0.58000 0.05358

CatBoost ✓ 0.67718 0.74643 0.74000 0.07130

XGBoost 0.93405 0.91693 0.18000 0.27211

CNN ✓ 0.93132 0.89820 0.00000 8.42467

5.5 The Most Suitable Model Training

 After we gained the most suitable model on the data that candidates filled in
experience, SVM, we trained the models again to find the best threshold used for the
testing set. The best threshold will then be compared between 0.5, an average of
threshold values from a 5-fold cross-validation, and a median of threshold values from
a 5-fold cross-validation. Table 29 showed a threshold value in each fold for the data
that candidates filled in experience. Figure 29 shows the receiver operating
characteristic (ROC) curve in each fold with the best threshold value in the training set.
The average area under the ROC curve (AUC) is 0.82764. The best threshold is 0.13229
as shown in Table 30.

 70

Table 29 - A threshold value in each fold of the SVM model for candidates who
filled in the experience

Model A threshold value in each fold

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
SVM 0.10058 0.17399 0.16123 0.17196 0.05369

Figure 29 – The ROC curve in each fold of the SVM model for candidates who filled

in the experience

 71

Table 30 - The best threshold value of the SVM model for candidates who filled in
the experience

Threshold Evaluation (average)

Type Value Accuracy Weighted f1-score Recall
 Default 0.50000 0.89689 0.85456 0.02687

 Mean 0.13229 0.80655 0.83696 0.71185

 Median 0.16123 0.82207 0.84806 0.69407

 On the other hand, after we acquired the most suitable model on the data that
candidates did not fill in experience, DT, we trained the models again to find the best
threshold used for the testing set. The best threshold will then be compared between
0.5, an average of threshold values from a 5-fold cross-validation, and a median of
threshold values from a 5-fold cross-validation. Table 31 showed a threshold value in
each fold for the data that candidates filled in experience.

Table 31 - A threshold value in each fold of the DT model for candidates who did

not fill in the experience

Model A threshold value in each fold

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
DT 0.48837 0.53125 0.90476 0.50000 0.47500

Table 32 - The best threshold value of the DT model for candidates who did not fill

in the experience

Threshold Evaluation (average)
Type Value Accuracy Weighted f1-score Recall

 Default 0.50000 0.67613 0.73194 0.46000
 Mean 0.57987 0.81586 0.84165 0.24000

 Median 0.50000 0.67613 0.73194 0.46000

 72

 Figure 30 shows the ROC curve in each fold with the best threshold value in the
training set. The average AUC is 0.61363. The best threshold is 0.5 as shown in Table
32. The DT, CatBoost, and SVM will be used to predict the target probability. Each
model’s probability will be then used for candidate ranking by sum as well.

Figure 30 - The ROC curve in each fold of the DT model for candidates who did not
fill in the experience

5.6 The Most Suitable Model Testing

 For the data that the candidate filled in the experience, the RBF SVM model with
min-max scaler normalization but without imbalance class handling was used to
classify the testing set into 2 groups. The parameter value used consists of C equal to
3, scale gamma, and RBF kernel. Figure 30 shows the classification report of the SVM

 73

model for candidates who filled in the experience. The “0” means the not-suitable
class and “1” means the shortlist class. From all 122 testing data, we obtained 97 TN,
13 FP, 3 FN, and 9 TP as shown in Figure 31. The recall is 75% while the weighted f1-
score is 88%.

Figure 31 - Classification report of the RBF SVM model for candidates who filled in
the experience

Figure 32 - Confusion matrix of the RBF SVM model for candidates who filled in the
experience

Figure 33 - ROC curve of the RBF SVM model for candidates who filled in the
experience

 74

 The Receiver Operating Characteristic (ROC) curve for the RBF SVM is shown in
Figure 33 which is more similar to the ideal clinical discriminator curve than the no-
predictive curve (45-degree line). The Area Under the curve (AUC) of not-suitable and
shortlist classes are equal, 88%. The AUC of micro average ROC is 97% while the AUC
of macro average ROC is 89%. In the False Positive Rate (FPR) range of 0 to 0.2, the
True Positive Rate (TPR) of the shortlist class increases significantly. Thereafter, it slows
to 1 as the FPR approaches 0.4. The ROC curve for the not-suitable class is similar, but
on the other side, the FPR value rises sharply when the TPR is between 0.6 and 0.9,
after which it rises steadily.
 For the data that the candidate did not fill in the experience, the DT model with
min-max scaler normalization and undersampling imbalance class handling, the
CatBoost model without normalization but undersampling imbalance class handling,
and the SVM model with standard scaler normalization and undersampling imbalance
class handling is used to classify the testing set into 2 groups. For the DT, the parameter
value used consists of entropy criterion, splitter by random, max_depth equal to 2,
and 5 min_samples_split. For the CatBoost, the parameter value used consists of
iterations equal to 500, 0.01 learning rate, depth is 2, and 8 l2_leaf_reg. For the RBF
SVM, the parameter value used consists of C equal to 0.05, scale gamma, and RBF
kernel. Figure 34 shows the classification report of the DT model for candidates who
did not fill in the experience. The DT acquired an accuracy of 80% and a weighted f1-
score of 84%. Figure 35 shows the confusion matrix of the DT model for candidates
who did not fill in the experience. From all 122 testing data, We acquired 60 TN, 15
FP, 1 FN, and 5 TP from the DT model. The DT’s recall is 83%. We obtained 26 TN, 49
FP, 3 FN, and 3 TP from the SVM model. The SVM’s recall is 50%. For the Catboost,
we gained 46 TN, 29 FP, 1 FN, and 5 TP. The CatBoost’s recall is 83%. The ROC curve
for the DT model is shown in Figure 36. The AUC of not-suitable and shortlist classes
are equal, 61%. The AUC of micro average ROC is 69% while the AUC of macro average
ROC is 61%.

 75

Figure 34 - Classification report of the DT model for candidates who did not fill in
the experience

Figure 35 - Confusion matrix of the DT model for candidates who did not fill in the
experience

Figure 36 - ROC curve of the DT model for candidates who did not fill in the
experience

 76

5.7 Ranking Suggestion

 From the previous section, we already classify the candidates into 2 groups: the
shortlist group and the not-suitable group. The candidates who fill experience will be
ranked in descending order based on the similarity between their experience and the
job description they applied for. Figure 37 shows the example ranking of the HR
manager and senior HR officer positions that candidates applied for. If anyone has the
same cosine similarity value, the system will sort from predicted probability instead.
The system can sort candidates in the shortlist group in descending order satisfactorily.

Figure 37 - Ranking of the HR manager and senior HR officer

 The candidates who did not fill experience will be ranked in descending order
based on a summarization of the predicted probability of the best 3 models, which
are the DT, CatBoost, and SVM. The ranking suggestion will be ranked from the
candidates who fill experience first. Because this group of candidates shows their
intention to apply for a job more than those who did not fill their experience. The
ranking will be displayed separately according to the job title the candidates applied
for. Figure 38 shows the example ranking of the HR manager and senior HR officer
positions that candidates applied for. The predict column is the result of the DT
classification. The system can sort candidates in the shortlist group in descending order
satisfactorily even though some rows are not perfectly correct.

 77

Figure 38 - Ranking of the senior accountant and senior HR officer

Figure 39 - The final ranking of the senior HR officer

 Figure 39 previews the results of the ranking suggestion of candidates for the senior
HR officer position. Candidates 1st through 5th have filled their experience on
JobsDB.com, while candidates 6th and lower are those who did not. The ranking after
classification will help the efficiency of the system in recruiting people for job
interviews better.

5.8 Discussion

 A direct comparison of any existing approaches presented in various publications
may not be fair due to the lack of a sizable dataset, the limitation of some tasks, or
the difference in the effectiveness of methods. Our work focuses on considering which
candidates to invite for an interview for a certain job opening while taking into
consideration both general information and experience. Techniques are used in the
proposed method at each step deriving from the fusion of interesting and effective
techniques from related works. The results compared with other methods are based
on the overall accuracy mentioned therein.

 78

 P. K. Roy et al. (2020) [28] used linear SVM to classify candidates into job function
groups which is a different objective from our work. They serve the same purpose in
recommending top candidates and obtained an accuracy of 78%. Z. Elgammal et al.
(2021) [25] made use of the SpaCy library to calculate the similarity between jobs and
candidates and then rank candidates to arrive at an accuracy of 83%. The method
described by Tejaswini et al. (2021) [27] gives an accuracy of 92% using a smaller
dataset and the accuracy significantly decreased as the number of candidates
increased. The accuracy decreases by an average of 7.5% when there are 5 more
candidates.
 The proposed method got an average accuracy of 83.5%, a weighted F1 score of
86%, and a recall of 79%. Compared to other existing works by accuracy score, our
work has higher accuracy than some and less than some. The cause of our lower
accuracy due to the imbalance of data for the two classes. As mentioned in the
previous section, we got the shortlist group data in just 10%, compared to up to 90%
of the not-suitable group data. Further, our approach focuses on precisely classifying
the shortlist group because we do not want to miss the chance to schedule interviews
with qualified candidates with which we have this class data for ML to learn less.
 The similarity between the experience of the candidates and the job description
of the position they are applying for is one of the most important features used in
considering candidates for interviews. This is because companies will always require
employees who are knowledgeable about the types of positions that the company
opens to be immediately workable with little training needed. Other features should
always be taken into consideration, such as years of experience, the similarity between
a previous job title and a job title they applied for, the distance between residence
and workplace (in case of work from the office), and the highest education level, etc.

 79

CHAPTER 6

SUMMARY AND FUTURE WORK

6.1 Summary

 The procedure of screening candidates for job interviews from among all job
applicants is a repetitive task that takes a lot of time and resources. This could be
caused by human error also. To address this issue, we have proposed a job-candidate
classifying and ranking system-based machine learning method that recommends
suitable candidates to human resources (HR) based on the job description and
candidate profile. The NLP approach which consists of summarization, stop word
removal, and lemmatization is used in our work for preprocessing the job opening and
experience data. The Decision Tree (DT), Support Vector Machine (SVM), Gaussian Naïve
Bay (GNB), Random Forest (RF), k-Nearest Neighbors (k-NN), CatBoost, Extreme Gradient
Boosting (XGB), and Convolutional Neural Network (CNN) were compared. As the result,
the RBF SVM classifier is the most suitable for our objective and for the data that
candidates fill in experience. This part yielded an accuracy of 87%. On the other hand,
the DT classifier is the most suitable for our objective and for the data that candidates
did not fill in experience and acquire an accuracy of 80%. Resulting in an overall
accuracy of 83.5%. Involving domain experts, and HR professionals, assist in developing
a more accurate model, and their feedback helps to enhance the model repeatedly.

6.2 Recommendation for Future Work

 For future work, the work can (a) add more training data from the candidate and
company, (b) compare with another classification model, and (c) perform an end-to-
end classification and ranking software.

REFERENCES

REFERENCES

[1] E. Paulsen, "Retaining Talent in a New World of Work," ed: Quantum Workplace,
2021.

[2] "ข้อมูลสถติิของผู้หางาน JobsDB ประเทศไทย เดือนมกราคม - มนีาคม 2565." [Online]. Available:
https://th.jobsdb.com/th-th/cms/employer/home/candidate-fact-sheet/

[3] I. S. Formula, "The Job Search Today," ISF-JobSearchToday972, Ed., ed.
[4] "2021 Recruiter Nation Report." [Online]. Available: https://www.jobvite.com/wp-

content/uploads/2021/09/Jobvite-RecruiterNation-Report-WEB-2.pdf
[5] "Eye-Tracking Study." [Online]. Available:

https://www.theladders.com/static/images/basicSite/pdfs/TheLadders-
EyeTracking-StudyC2.pdf

[6] M. Slack, "5 Problems with The Ladders' 6 Second Resume Study," ed: Resume
Genius, 2014.

[7] "50 HR & Recruiting Stats That Make You Think," ed: Glassdoor, 2015.
[8] R. K. Mariette Awad, Efficient Learning Machines. Apress Berkeley, CA, 2015, pp.

XIX, 268.
[9] M. P. S. Shovan Chowdhury, "Research Paper Classification using Supervised

Machine Learning Techniques," presented at the 2020 Intermountain
Engineering, Technology and Computing (IETC), Orem, UT, USA, 2020.

[10] J. K. A. Intisar Shadeed Al-Mejibli, Dhafar Hamed Abd, "The effect of gamma
value on support vector machine performance with different kernels,"
International Journal of Electrical and Computer Engineering (IJECE), vol. 10, pp.
5497-5506, 2021, doi: 10.11591/ijece.v10i5.pp5497-5506.

[11] B. J. Shikha Agarwal, Tisu Kumar, Manish Kumar, Prabhat Ranjan, "Hybrid of Naive
Bayes and Gaussian Naive Bayes for Classification: A Map Reduce Approach,"
International Journal of Innovative Technology and Exploring Engineering
(IJITEE), vol. 8, no. 6S3, 2019.

https://th.jobsdb.com/th-th/cms/employer/home/candidate-fact-sheet/
https://www.jobvite.com/wp-content/uploads/2021/09/Jobvite-RecruiterNation-Report-WEB-2.pdf
https://www.jobvite.com/wp-content/uploads/2021/09/Jobvite-RecruiterNation-Report-WEB-2.pdf
https://www.theladders.com/static/images/basicSite/pdfs/TheLadders-EyeTracking-StudyC2.pdf
https://www.theladders.com/static/images/basicSite/pdfs/TheLadders-EyeTracking-StudyC2.pdf

 81

[12] Y. S. L. Rajeev Raizada, "Smoothness without Smoothing: Why Gaussian Naive
Bayes Is Not Naive for Multi-Subject Searchlight Studies," PloS one, vol. 8, 2013,
doi: 10.1371/journal.pone.0069566.

[13] R. K. Jehad Ali, Nasir Ahmad, Imran Maqsood, "Random Forests and Decision
Trees," IJCSI International Journal of Computer Science Issues (IJCSI), vol. 9, no.
5, 2012.

[14] O. A. Eric Guérin, Ali Mahdavi-Amiri, "Artificial Intelligence," in Manual of Digital
Earth, 2019, ch. 10.

[15] C. A. Sarica Alessia, Quattrone Aldo, "Random Forest Algorithm for the
Classification of Neuroimaging Data in Alzheimer's Disease: A Systematic Review,"
Frontiers in Aging Neuroscience, vol. 9, 2017, doi: 10.3389/fnagi.2017.00329.

[16] R. L. R. Abdullahi A. Ibrahim, Muhammed M. Muhammed, Rabiat O. Abdulaziz,
Ganiyu A. Saheed, "Comparison of the CatBoost Classifier with other Machine
Learning Methods," International Journal of Advanced Computer Science and
Applications (IJACSA), vol. 11, no. 11, 2020, doi: 10.14569/IJACSA.2020.0111190.

[17] L. Ostroumova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush and
Andrey Gulin, "CatBoost: unbiased boosting with categorical features," in 32nd
Conference on Neural Information Processing Systems (NeurIPS), Montréal,
Canada., vol. 31: Curran Associates, Inc.

[18] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow.
1005 Gravenstein Highway North, Sebastopol, CA 95472: O'Reilly Media, Inc.,
2019.

[19] F. X. Patrick Schneider, Anomaly Detection and Complex Event Processing over
IoT Data Streams. Elsevier Inc., 2022.

[20] S. H. Takahiro Nakao, Yukihiro Nomura, Masaki Murata, Tomomi Takenaga,
Soichiro Miki, Takeyuki Watadani, Takeharu Yoshikawa, Naoto Hayashi, Osamu
Abe, "Unsupervised Deep Anomaly Detection in Chest Radiographs," Journal of
Digital Imaging, vol. 34, pp. 418–427, 2021, doi: 10.1007/s10278-020-00413-2.

[21] S. Sunitha, "An Overview of Deep Learning," International Journal of Engineering
Research & Technology (IJERT), vol. 9, no. 5, 2021.

 82

[22] M. N. Rikiya Yamashita, Kaori Togashi, Rikiya Yamashita, Richard Kinh Gian Do,
Mizuho Nishio, "Convolutional neural networks: an overview and application in
radiology," Insights into Imaging, vol. 9, pp. 611–629, 2018, doi: 10.1007/s13244-
018-0639-9.

[23] D. C. Ajay Kulkarni, Feras A. Batarseh, "Foundations of data imbalance and
solutions for a data democracy," in Data Democracy: Elsevier Inc., 2020, ch. 5,
pp. 83-106.

[24] Yellowbrick. "Classification Report." https://www.scikit-
yb.org/en/latest/api/classifier/classification_report.html (accessed.

[25] A. B. Z. Elgammal, H. Hassan, K. Elgammal, T. Özyer and R. Alhajj, "Matching
Applicants with Positions for Better Allocation of Employees in the Job Market,"
presented at the 22nd International Arab Conference on Information
Technology (ACIT), Muscat, Oman, 2021.

[26] E. P. C. Leah G. Rodriguez, "Feature Selection for Job Matching Application using
Profile Matching Model," presented at the 2019 IEEE 4th International
Conference on Computer and Communication Systems (ICCCS), Singapore, 2019.

[27] U. V. Tejaswini K, Shashank M Kadiwal, Sanjay Revanna, "Design and
Development of Machine Learning based Resume Ranking System," in Global
Transitions Proceedings, 2021: ScienceDirect, doi: 10.1016/j.gltp.2021.10.002.

[28] S. S. C. Pradeep Kumar Roy, Rocky Bhatia, "A Machine Learning approach for
automation of Resume Recommendation system," Procedia Computer Science,
vol. 167, pp. 2318-2327, 2020, doi: 10.1016/j.procs.2020.03.284.

[29] H. L. Yiou Lin, Prince Clement Addo, and Xiaoyu Li, "Machine Learned Resume-
Job Matching Solution," 2016.

[30] J. W. Jing Zhao, Madhav Sigdel, Bopeng Zhang, Phuong Hoang, Mengshu Liu,
Mohammed Korayem, "Embedding-based Recommender System for Job to
Candidate Matching on Scale," 2021, doi: 10.48550/ARXIV.2107.00221.

[31] S. González-Carvajal, Garrido-Merchán, Eduardo, "Comparing BERT against
traditional machine learning text classification," 2020. [Online]. Available:
https://arxiv.org/pdf/2005.13012.pdf.

https://www.scikit-yb.org/en/latest/api/classifier/classification_report.html
https://www.scikit-yb.org/en/latest/api/classifier/classification_report.html
https://arxiv.org/pdf/2005.13012.pdf

 83

[32] D. K. Sotiris Kotsiantis, Panayiotis Pintelas, "Handling imbalanced datasets: A
review," GESTS International Transactions on Computer Science and
Engineering, vol. 30, pp. 25-36, 2006.

[33] "sklearn.tree.DecisionTreeClassifier." scikit-learn. https://scikit-
learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
(accessed.

[34] "sklearn.svm.SVC." scikit-learn. https://scikit-
learn.org/stable/modules/generated/sklearn.svm.SVC.html (accessed.

[35] "sklearn.naive_bayes.GaussianNB." scikit-learn. https://scikit-
learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
(accessed.

[36] "sklearn.ensemble.RandomForestClassifier." scikit-learn. https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.h
tml (accessed.

[37] "sklearn.neighbors.KNeighborsClassifier." scikit-learn. https://scikit-
learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
(accessed.

[38] "Training Parameters Overview." CatBoost.
https://catboost.ai/en/docs/references/training-parameters/ (accessed.

[39] "XGBoost Parameters." dmlc XGBoost.
https://xgboost.readthedocs.io/en/stable/parameter.html (accessed.

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://catboost.ai/en/docs/references/training-parameters/
https://xgboost.readthedocs.io/en/stable/parameter.html

VITA

VITA

NAME Thapanee Boonchob

DATE OF BIRTH 28 August 1996

PLACE OF BIRTH Samutprakan

INSTITUTIONS ATTENDED Bachelor of Engineering Program in Computer Engineer,
King Mongkut’s Institute of Technology Ladkrabang

HOME ADDRESS 1561 Moo.4 Soi.Sriboonrueang, Theparak Road,
Samutprakan 10270

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	1.1 Background and Motivation
	1.2 Objective
	1.3 Scope of Work
	1.4 Contributions
	1.5 Research Methodology
	1.6 Thesis Organization

	THEORETICAL BACKGROUND
	2.1 Machine Learning
	2.1.1 Supervised Learning
	2.1.1.1 Decision Tree (DT)
	2.1.1.2 Support Vector Machine (SVM)
	2.1.1.3 Gaussian Naive Bayes (GNB)
	2.1.1.4 Random Forest (RF)
	2.1.1.5 k-Nearest Neighbor (k-NN)
	2.1.1.6 Catboost
	2.1.1.7 Extreme Gradient Boosting (XGBoost)

	2.1.2 Unsupervised Learning
	2.1.2.1 Clustering
	2.1.2.2 Anomaly Detection
	2.1.2.3 Association Rule Learning

	2.1.3 Semi-supervised Learning
	2.1.4 Reinforcement Learning

	2.2 Deep Learning
	2.2.1 Convolution Neural Network (CNN)

	2.3 Cross-validation
	2.4 Classification Model Evaluation
	2.4.1 Confusion Matrix
	2.4.2 Classification Report

	LITERATURE REVIEW
	3.1 Matching Applicants with Positions for Better Allocation of Employees in the Job Market
	3.2 Feature Selection for Job Matching Application using Profile Matching Model
	3.3 Design and Development of Machine Learning based Resume Ranking System
	3.4 A Machine Learning Approach for Automation of Resume Recommendation System
	3.5 Machine Learned Resume-Job Matching Solution
	3.6 Embedding-based Recommender System for Job to Candidate Matching on Scale
	3.7 Comparing BERT against traditional machine learning text classification

	PROPOSED METHOD
	4.1 Data Scraping
	4.2 Data Preprocessing
	4.2.1 Natural Language Processing (NLP) Process
	4.2.2 Feature Engineering
	4.2.3 Missing Value Handling
	4.2.4 Dealing with Categorical Features
	4.2.5 Feature Scaling
	4.2.6 Handling Imbalance Class

	4.3 Data Prediction
	4.3.1 Split Training and Testing Set
	4.3.2 Define Models and Hyperparameter Tuning
	4.3.2.1 Decision Tree (DT)
	4.3.2.2 Suport Vector Machine (SVM)
	4.3.2.3 Gaussian Naive Bayes (GNB)
	4.3.2.4 Random Forest (RF)
	4.3.2.5 k-Nearest Neighbour (k-NN)
	4.3.2.6 CatBoost
	4.3.2.7 Extreme Gradient Boosting (XGBoost)
	4.3.2.8 Convolution Neural Network (CNN)

	4.3.3 Evaluate Metrics for Classification Model
	4.3.3.1 Accuracy
	4.3.3.2 Weighted F1-score
	4.3.3.3 Recall
	4.3.3.4 Computation Time

	4.3.4 Similarity Computation and Ranking Suggestion

	RESULT AND DISCUSSION
	5.1 Experimental Dataset Preparation
	5.2 Modeling
	5.3 Model Performance Comparison
	5.4 Summary of Model Comparison
	5.5 The Most Suitable Model Training
	5.6 The Most Suitable Model Testing
	5.7 Ranking Suggestion
	5.8 Discussion

	SUMMARY AND FUTURE WORK
	6.1 Summary
	6.2 Recommendation for Future Work

	REFERENCES
	VITA

