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The problem of scheduling a set of dependent tasks from a user mobile device to several 
servers in communication cells while the user is moving along these cell in various speed is studied 
in this thesis. The challenging issue is the execution speed of each server and the speed of user’s 
movement are not compatible.  This leads to the difficulty of assigning and finishing the subset of 
scheduled dependent tasks to each server within the limitation of execution time during passing a 
cell. Another concern involved this study is the constraints on the length of makespan in terms of 
minimum communication time among servers in the same cell and the energy consumed by the 
servers as well as the energy spent by user’s mobile device. This study proposed a new algorithm 
to schedule a set of dependent tasks under the constraints from these issues. Three new concepts 
of ( 1)  selecting cells for executing scheduled tasks proposed algorithm, ( 2)  partitioning and 
scheduling tasks to be assigned to the servers in the selected cell, and (3) shuffling the tentatively 
assigned tasks of all servers to minimize the makespan and energy consumption were proposed in 
this study.  The experimental results were compared with the current practically used algorithms, 
i.e.  HEFT, PEFT, HETS based on several complex synthetic task flow graphs.  The obtained results 
showed that the most of makespan lengths found by our algorithm are shorter than those found 
by the other algorithms. But in terms of energy consumption, all results scheduled by our algorithm 
significantly consume less energy than those from the other algorithms.  
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CHAPTER 1 
 

INTRODUCTION 

 

In Mobile Edge Computing (MEC)[1], Mobile Cloud Computing (MCC)[2], Small 
Cell Cloud ( SCC) [ 3]  Wireless network architecture, and Vehicular Network, non-
stationary mobile users can send the task flow from their devices to processing on the 
nearby heterogeneous servers provided by the service provider, within the SCC wireless 
network.  The task flow is described by a directed acyclic graph (DAG)  of application 
tasks.  The question is how user task flow can operate over a small cells wireless 
network with limited service boundaries and can guarantee all assigned task is 
completed in time before leaving the network with minimal power required.  This 
requires a robust algorithm to handle the tasks.  In addition, research issue on the 
heterogeneous environment scheduling is still being studied extensively. 

Most available scheduling algorithms such as HEFT[4], PEFT[5], CPOP[4] often 
choose the task from the queue that is optimized for server processing, this increases 
server utilization and minimizes the makespan. However, they do not take into account 
some of the critical constraints described below. 

 Firstly, with the advantage of mobile cloud computing technology and small 
cell wireless network, the environment has changed from a processor node with no 
time limited to a processed cell through a wireless network having limited time to stay 
in the network cell.  Moreover, the server in the network may not be able to connect 
to the servers in another network.  To prepared the suitable environment, network 
cells selection must be performed.  Unfortunately, most of the existing network cell 
selection mechanisms [ 6]  consider only the signal strength and data rate of the 
network without taking the computation capability into account. 
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 Secondly, most of the existing heterogeneous scheduling algorithms focus on 
makespan. PEFT[5], PHTS[7], MOHEFT[8], and  HVS[9] focus on execution time. CEAS[10] 
focuses on execution time, energy, and deadline constraints.  Researchers on Genetic 
Algorithm (GA)[11], Particle Swarm Optimization (PSO)[12], and Ant Colony Optimization 
(ACO) [13]  are applied to scheduling on the cloud system with energy consumption 
constraint.  However, the time complexity is too high.  Other energy- aware mobile 
scheduling techniques are offloading algorithm [14] that focus on offload by decision 
policy to save energy on mobile devices.  However, they do not take care of task 
dependency. 

 Bearing the uncertainty of the processing and transmission performance of the 
server, along with modified by the congestion of the application in mind, it may happen 
that the task submitted may not get processed before the user leaves the network. 
New algorithms that can adjust the time to stay on the network longer without 
affecting the user experience must be developed to help ensure successful processing 
of tasks. 

Motivated by the above aspects, this dissertation addresses the problem of 
non-stationary mobile task flow scheduling constrained using energy-aware offloading 
tasks with dependency onto the limited- time access stationary servers that are 
connected to the small- cell wireless network.  The energy- aware offload scheduling 
algorithms will be proposed while the focusing on the overall energy consumption 
and the time to finish the task before the deadline. 

 

1.1 Objectives 

The objectives of this study are as follows: 

 To derive a scheduling algorithm for offloading tasks from non- stationary user 
to a stationary service provider under low energy stipulation. 

 To derive an objective function for task scheduling on the mobile edge 
computing environment. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 

1.2 Scope of Work 

In this dissertation, the scope of work is constrained as follows: 

 The wireless network architecture requires that the user stay connected to the 
server inside the network, having a level of service confined to the strength of 
the signal.  

 The performance of the network depends on the volume of congestion of the 
communication channel at that time. 

 Each server can send data to another server within the same network but 
cannot send across the network.  Before leaving the network, the server must 
send the data back to the user's device. 

 Each server is different in terms of execution speed, and speed of data transfer. 
It can process all type of tasks sent by a user.  They also consume different 
levels of energy. 

 A user's mobile device can be connected to one wireless network at a time. 
The device can receive information about the network from the route planning 
and communication protocols. System performance, and energy consumption 
rate, and data transfer efficiency are known. 

 The tasks of user's mobile device to be offloaded are organized in the form of 
a task flow graph. The device can use this graph to evaluate the time spent on 
the processing and transmission of data. 

 

1.3 Contribution 

This dissertation proposes an objective function for reducing the energy 
consumption of the whole system under the conditions that the user travels through 
a network having limited service boundaries in order to minimize the overall energy 
consumption. The amount of energy consumption encompasses user device, network 
equipment, and the server.  The processor is diverse in processing power and data 
transmission capabilities.  The time spent on processing and transmitting data is 
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converted into energy as a condition of the decision.  This work also proposes three 
relating algorithms as follows. 

The first algorithm is to select a network cell including server within a given 
travel route. To provide the service range consistent with the type of work to be sent 
and makes it is possible to utilize the network efficiently with low energy consumption. 

The second algorithm is a grouping of interrelated tasks and manages the time 
to gather and send data to reduce the amount of traffic and overhead, which directly 
affects the energy consumption for users and system devices. 

The third algorithm is to adjust the user's movement speed to correspond to 
the workload exported to the server.  It still maintains the minimum travel time by 
using minimal energy and can guarantee the completion of the work, thus increasing 
the satisfaction of the system. 

 

1.4 Dissertation Organization 

This dissertation is organized as follows.  Chapter 2 describes the related 
backgrounds.  Problems formulation and scope are described in Chapter 3.  Chapter 4 
provides the detail of the proposed method.  Experiments and results are presented 
in Chapter 5, Discussion and future work concluded in Chapter 6. 
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CHAPTER 2 
 

LITERATURE 

 

This chapter presents the background of mobile scheduling with energy 

awareness on mobile edge computing environment. The existing algorithms and 

architecture are reviewed and discussed.  

 

2.1 Task Scheduling Algorithm 

Scheduling problem has been proved to be NP- complete in the general case 

as well as several limitations.  Heterogeneous-Earlies-Finish-Time(HEFT) [4]  algorithm 

and the Critical-Path-on-a-Processor (CPOP) algorithm [4]are two well know algorithms 

for scheduling on heterogeneous computing environment. HEFT algorithm selects the 

highest ranking jobs on each level and determines the options to be processed.  It 

reduces the earliest finish time using the insertion-base method.  On the other hand, 

CPOP algorithm uses up and down priority to prioritize tasks.  They differ in processor 

selection which schedules essential tasks to the processor so as to reduce the overall 

running time of critical tasks. Path-Based-Heuristic-Task-Scheduling (PHTS)[7] algorithm 

focuses on reducing the production process. PHTS consists of three steps: (1) The path 

priority to select all possible paths from the given graph and to sort by descending 

order; (2) Task selection select the tasks from the sorted paths; (3) Processor selection 

to assign tasks to the processor by reducing the completion time.  All algorithms run 

on processors with unlimited service times and do not focus on energy saving. 

The enhancing of HEFT and CPOP algorithm called, EHEFT and ECPOP [ 15]  are 

proposed to address the time and energy efficient task flow scheduling.  Both 
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algorithms use RE performance metric to identify inefficient processors and shut them 

down to reduce energy consumption. 

There are several algorithms to solve multi-objective task flow scheduling by 

metaheuristic optimization techniques, for example Particle Swarm Optimization (PSO) 

[16] , Ant Colony Optimization (ACO)  [13] , and Genetic Algorithms (GA)  [11] , while 

maintaining user QoS[17] requirements. However, one disadvantage of these methods 

is long computational time due to slow convergence. 

 

2.2 Mobile Cloud Computing and Network Architecture 

 Satyanarayanan[ 18]  showed the VM- based cloudlet that could improve 

usability on the user interaction between the mobile device and cloudlet with the low 

latency. Simanta et al.[19] to prototyped a reference architecture for the mobile device 

code offloading to cloudlet VM within the single-hop proximity. They applied to face 

recognition to revises to offload the resource- intensive execution and provided the 

rapid delivery and rapid application active time. 

Fesehaye et al.[20] studied the impact of cloudlet in interactive mobile cloud 

application such as file editing, video streaming, and collaborative chatting. The result 

found that cloudlet could reduce the data transfer delay and increased the throughput 

of content delivery.  Suggestions from the experimental were the maximum cloudlet 

number should not over than two hops. 

Lui et al. [21]  introduced mobile cloud architecture and the state of the art of 

mobile cloud computing with offloading technology.  The applications are mobile 

computing on augmented reality (AR) , Remote HealthCare, and web.  That showed 

opportunities for comprehensive energy- saving interaction, the overhead of virtual 

machine migration, privacy, and security. 
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Duo and Heinzelman[22] demonstrated the utilization of edge-server (cloudlet) 

in the mobile cloud hybrid architecture ( MOCHA)  and set up network latency 

measurements. The result showed that dynamic profiling and random server selection 

approach could utilize cloudlet and provide acceptable latency with high redundancy. 

Di Valerio and Lo Presti [23]  used Markov Decision Process (MDP)  to improve 

the mobile user experience with the optimization of virtual machines (VMs) allocation 

across the femtocell mobile cloud computing.  The system overhead, network delay, 

and migration cost were taking into account and benchmarked with the efficient 

heuristics. 

Vondra and Becvar [17]  proposed the computing cells selection algorithm to 

increase user's satisfaction with the transmission and computation delay experienced 

in small cells could network ( SCeNBs) .  The simulation results of the proposed 

algorithm could provide higher satisfaction compared to the competitive approaches 

for all type of backhauls (ADSL, GPON). 

Lobillo et al. [24]  introduced a Small Cell Manager (SCM)  to optimizes the 

cloud- enabled small cells operation.  The concepts could be deployed in an LTE 

environment at the centralized entity (Gateway) to decrease complexity and provided 

greater control. 

Barbarossa et al.[25] showed the distributed cloud scenario on the 5G network 

to integrated Cloud, Femtocloud, Microcell, and Small cell to provide the Quality of 

Experience (QoE)  and Quality of Service (QoS)  with minimum transmit energy under 

computational constraint and minimum transmit power under delay constraint. 

Liu et al. [26]  proposed the converged edge infrastructure for future called CONCERT 

based on control/data plane decoupling various physical resources. The radio interface 

equipment, computational resources are controlled and presented as virtual resources 

which software-defined services. 
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Luan et al.[27] showed the concepts and main features of Fog computing, the 

use case scenario to be deployed at the shopping center, parkland, inter- state bus, 

and vehicular fog computing networks. The main features were wireless, local services, 

and distributed management.  The concepts showed the environment of computing 

shifted to the streets or shopping malls.  Its opened the research issues on network 

management and service delivery. 

Kaur et al. [28]  presented the architecture for task selection and scheduling 

using container-as-a-service (CoaaS). The cooperative game theory and multi-objective 

function were developed to reduce an energy consumption and makespan by 

memory, CPU, and user budget, lightweight containers on virtual machines were used 

to reduce the overhead and response time and overall energy consumption on fog 

computing device. 

 

2.3 Code Offloading Techniques 

Kaur[ 29]  compared the transmission technique to offloading code and the 

method of application partition on mobile cloud computing.  The route based 

techniques were selecting the best cloud-path for offloading work. The resource-based 

techniques selected the best resource based on following criteria:  energy cost, 

bandwidth, reliability, service quality, and dependency level.  Techniques such as 

depth- first search ( DFS) , game theory, min- cut maximum flow.  Cloudlet based 

techniques showed that multi-threaded applications could send messages to a nearby 

server. An application partitioning method showed that graph-based partition algorithm 

could be applied offloading technique according to CPU load, network condition, and 

user input.  The adaptive bandwidth partitioning used weighted graph object relation 

to avoid the overhead of dynamic partitioning. Moreover, combining static analysis and 

dynamic profiling required bandwidth to minimize the time saving and energy 

consumption. 
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Flores et al. [ 30]  proposed the solution to migrate the limitation of code 

offloading, code profiling, integration complexity, dynamic configuration of the system, 

offloading scalability.  The result of evaluation by offloading an NQueens algorithm 

from smartphone to cloud calculated how to place n queens on and n x n chessboard. 

That showed offloading as a service was a primary challenge and limitation. Zhang et 

al.[31] developed the optimal offloading algorithm to make an offloading decision by 

using a Markov Decision Process (MDP) with intermittent connectivity to minimize the 

computation and offloading the cost of the task flow as a job queue with the threshold 

policy.  

 

2.4 Comparative Algorithms Analysis 

 Many existing heterogenous scheduling algorithms have different tasks priority 

and processor assignments.  In this work, HEFT[4] , PEFT[5] , HETS[32] , CEAS[10] , and 

DGES[33] are selected to compare with one cell scenario benchmark. For the multiple 

cells scenario, this dissertation has enhanced the feature of the candidate to supported 

the intermitted processing architecture. 

 

2.4.1 Selected Algorithms 

Heterogeneous Earlies-Finish-Time (HEFT): This state of the art scheduling has 

two-step of the process. First is sorting the task with the priority of upward rank value 

base on computation and communication cost. Second is selected processor to assign 

the task that has lower earliest available time by using the insertion method. 

 

Predict Earliest Finish Time (PEFT) :  The algorithm uses optimistic cost table 

(OCT)  to indicate the maximum optimistic processing time of the child task. The task 
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priorities use the average of OCT upward rank and the optimistic  EFT to forecast the 

finish time of the next steps. 

Heterogeneous Edge and Task Scheduling (HETS) :   This algorithm focuses on 

the minimization of communication overhead, which calculates the edge priority as 

well as node priority. 

 

Cost and Energy Aware Scheduling (CEAS) :  The algorithm uses the method to 

sequence and parallel tasks merging to reduce the execution cost and reduce the 

energy consumption while meeting the deadline constraint.  The VM reuse policy is 

proposed to utilize the slack time to save energy of leased VM instance. 

 

Global DVFS-enable Energy-efficient Scheduling (GDES): This energy awareness 

algorithm generates minimum dynamic energy consumption by reassigning tasks to 

processor slack.  

 

All of the above algorithms cannot directly support multi-cell operation. In comparing 

cases with multiple cell travel, the policy needs to be modified to stop processing and 

return the result to user devices, then sending data to the next cell. Time and energy 

are taken into account from the first cell until the finish. The network cell is viewed as 

a processing environment, and the processor is represented by a server capability 

inside the cell. 
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CHAPTER 3 
 

PROBLEM FORMULATION 

 

The main problem is scheduling a task flow from a mobile user device to process 

on a server that connects to a wireless network with limited coverage service time. 

However, low-efficiency selection of network cells and servers are affected by the 

power consumption to complete the task flow. An algorithm for Energy Aware Mobile 

Scheduling for Heterogeneous Edge Computing (EAMS-HEC)  selecting the appropriate 

network cells for continuous processing is proposed. Details are described below. 

 

3.1 User Task Flows 

The task flow of on the user's device is represented by a Directed Acyclic Graph 
(DAG) that can estimate the processing time and data transmission time. The selected 
tasks are assigned to the stationary server under the wireless network that the user's 
device can connect to when they reach the service coverage area while moving at a 
fixed average speed. 

 

Definition 1:  A user task flow graph 𝑮 =  (𝑽, 𝑫, 𝑬) is a DAG representing the 
relationship between tasks to be processed by several servers. 𝑽 =  {𝑣1, … , 𝑣𝑛} is a set 
of tasks; 𝑫 = {𝑑1, … , 𝑑𝑛} is a set of executed data and instructions corresponding for 
each 𝑣𝑖 ; and 𝑬 = {(𝑣𝑖, 𝑣𝑗)|𝑣𝑖, 𝑣𝑗 ∈ 𝑽} is a set of directed edges connecting dependent 
tasks. An edge (𝑣𝑖  , 𝑣𝑗 ) implies that task 𝑣𝑖 must be processed before 𝑣𝑗 . 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 

 
Figure 3.1: An example of the user task flow graph. 

 

Figure 3. 1 shows an example of a task graph.  There are eight tasks, 𝑣1 to 𝑣8, 
and three sets of independent tasks which are {𝑣1, 𝑣2, 𝑣3}, {𝑣4, 𝑣5}, and {𝑣6, 𝑣7, 𝑣8}.  

 

Definition 2:  The estimated processing time of each 𝑣𝑖 at user’ s device, denoted as 
𝑝(𝑑𝑖), is the estimated time to execute 𝑣𝑖 based on the processing speed of user’ s 
device.  

 

Definition 3:  The sending time  𝜏(𝑠𝑒𝑛𝑑)(𝑑𝑖) is the time to send the data of size 𝑑𝑖 
from user’s device to a server. 

 

Definition 4: Result data 𝑑𝑜is the amount of data generated by a server as the result 
of processing the received input data 𝑑𝑖 from user’s device. 

 

Definition 5:  The receiving time 𝜏(𝑟𝑒𝑐𝑒𝑖𝑣𝑒)(𝑑𝑜) is the waiting time of user’ s device or 
other server for receiving the result of size 𝑑𝑜 from a processing server. 
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3.2 Studied Wireless Network Cell Architecture 

The studied wireless network cell architecture consists of a set of server 
clusters.  In, each server cluster is called a cell.  The number of servers in each cell is 
not equal. Let 𝑪 = {𝑐1, … , 𝑐𝑘} denote a set of cells. Some of them are connected as 
shown in Figure 3. 2.  For example, 𝑐1 is connected to 𝑐2  and 𝑐2  is connected to 
𝑐3.But, 𝑐1is not connected to 𝑐4 and 𝑐5. We assume that a user’s vehicle must drive 
along a path passing through some of connected cell.  One possible path is driving 
through 𝑐1 → 𝑐8 → 𝑐3 → 𝑐2 → 𝑐4 → 𝑐7 → 𝑐6.  The shape of each cell is assume 
to be circular. The radius of each cell is not equal. However, the region of cell 𝑐𝑖  may 
overlap with the connected cell 𝑐𝑗 due to the signal strength.  

 
Figure 3.2: An example of cell architecture. There are eight cells. 

 

In each cell region, there is a set of servers located at different positions inside 
the region.  Furthermore, the distribution of servers within the region is already pre-
determined by the service provider. The scheduling algorithm obtains the information 
of server location from the service provider.  The servers in each cell region can 
communicate with each other, but they cannot communicate with the servers in other 
cells. At cell 𝑐𝑖 , let 𝑺𝑖 = {𝑠𝑖,1, … , 𝑠𝑖,𝑚} be a set of servers in cell 𝑐𝑖 .  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14 

 
Figure 3.3: An example server cluster in each cell. 

 

Figure 3. 3 shown an example of the server cluster in each cell.  The black 
square is representing to the server. In cell 𝑐1, there are three servers, 𝑠1,1 , 𝑠1,2, and 
𝑠1,3. 

 

Definition 6:   User’ s device processing speed 𝑢  is the amount of data of size 𝛿 

processed in one unit time.  

 

Definition 7:  Server processing speed 𝑝𝑖,𝑗  of server 𝑠𝑖,𝑗  is the amount of data of size 
𝑘𝑖,𝑗𝛿 process in one unit time. 𝑘𝑖,𝑗 is a constant defined for server 𝑠𝑖,𝑗 . 

 

Definition 8:  Processing time 𝑡𝑖,𝑗  to process data 𝑑𝑎 from task 𝑣𝑎on server 𝑠𝑖,𝑗  is 
computed by the following equation. 

𝑡𝑖,𝑗 = 
𝑑𝑎

𝑘𝑖,𝑗𝛿
 (3.1) 

 

Definition 9:  Processing energy constant  𝛼𝑖,𝑗 is the amount of energy consumed by 
the server 𝑠𝑖,𝑗 for processing data in one unit time.    
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Definition 10: Transmission energy constant  𝜆𝑖,𝑗 is the amount of energy consumed 
by the server 𝑠𝑖,𝑗 for transmitting the processed data back to user or other server in 
one unit time.    

 

Definition 11: Transmission energy constant  𝛾 is the amount of energy consumed by 
user’s device for transmitting data to the server in one unit time.    

 

Definition 12: Transmission energy constant  𝛽𝑖,𝑗 is the amount of energy consumed 
by cell 𝑐𝑖 for transmitting the data between user’s device to server and server to other 
server in one unit time.    

 

Definition 13:  Cell capability 𝜌𝑖  of cell 𝑐𝑖  is the summation of server processing 
speed measured in terms of user’s device speed as follows 

𝜌𝑖 =  ∑ 𝑝𝑖,𝑗

𝑛𝑖

𝑗=1

= ∑ 𝑘𝑖,𝑗𝛿

𝑛𝑖

𝑗=1

 (3.2) 

 
where 𝑛𝑖 is a number of servers in cell 𝑐𝑖 . 

For example in cell 𝑐1 if server 𝑠1,1 has processing speed 𝑝1,1 = 2𝛿 ,server 
𝑠1,2has processing speed 𝑝1,2 = 3𝛿, and server 𝑠1,3has processing speed 𝑝1,3 = 1𝛿 . 
From equation 3.2 the cell capability 𝜌1 of cell 𝑐1 is 6𝛿. 
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3.3 Energy Model 

The amount of energy consumed in this study determined by converting the 
processing time and transmission time into the energy form.  

 

Definition 14:  Server processing energy consumption 𝑒𝑖,𝑗  is the summation of time 

to processing assigned tasks from task flow 𝐺 multiply by processing energy constant 
𝛼𝑖,𝑗 show as follow equation. 

𝑒𝑖,𝑗 =  ∑ 𝛼𝑖,𝑗  𝑡𝑖,𝑗

𝑛𝑘

𝑘=1

(𝑑𝑘) (3.3) 

 

Where 𝑛𝑘 is number of vertices from task flow 𝐺 assigned to server 𝑠𝑖,𝑗 . 

 

Definition 15: The server sending time  𝜋𝑖,𝑗
(𝑠𝑒𝑛𝑑)(𝑏) is the time to send the data of size 

𝑏 from processing server 𝑠𝑖,𝑗 to other servers. 

 

Definition 16:  The server receiving time 𝜋𝑖,𝑗
(𝑟𝑒𝑐𝑒𝑖𝑣𝑒)(𝑏) is the waiting time of server 

𝑠𝑖,𝑗  for receiving the result of size 𝑏 from a processing server. 

 

Definition 17:  Server sending energy consumption 𝑟𝑖,𝑗
(𝑠𝑒𝑛𝑑)

(𝑏) is the energy to send 
the data of size 𝑏 from processing server 𝑠𝑖,𝑗 to other servers show as follow equation. 

𝑟𝑖,𝑗
(𝑠𝑒𝑛𝑑)

(𝑏) = 𝜆𝑖,𝑗 ⋅ π𝑖,𝑗
(send)(b)  (3.4) 

 

Definition 18:  Server receiving energy consumption 𝑟𝑖,𝑗
(𝑟𝑒𝑐𝑒𝑖𝑣𝑒)

(𝑏) is the energy of 

server 𝑠𝑖,𝑗  for receiving the result of size 𝑏 from a processing server.  show as follow 
equation. 
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𝑟𝑖,𝑗
(𝑟𝑒𝑐𝑒𝑖𝑣𝑒)

(𝑏) = 𝜆𝑖,𝑗 ⋅ π𝑖,𝑗
(𝑟𝑒𝑐𝑒𝑖𝑣𝑒)(b)  (3.5) 

 

Definition 19:  Total server energy consumption 𝛤𝑠  is the summation of 𝑒𝑖,𝑗  and 
𝑟𝑖,𝑗  from all selected server to processing task flow 𝐺. Can find by follow equation. 

Γ𝑆 =  ∑ ∑ (𝑒𝑖,𝑗 + 𝑟𝑖,𝑗
(𝑟𝑒𝑐𝑒𝑖𝑣𝑒)(𝑏) + 𝑟𝑖,𝑗

(𝑠𝑒𝑛𝑑)
(𝑏))

𝑛𝑗

𝑗=1

𝑚𝑖

𝑖=1

 (3.6) 

 

where 𝑚𝑖 is number of selected cell from the user path, 𝑛𝑗 is the number of selected 
server in each cell 𝑐𝑖 . 

 

Definition 20:  The cell sending time  𝛱𝑖
(𝑠𝑒𝑛𝑑)(𝑏) is the time to send the data of size 

𝑏 from network cell equipment  to the processing server and user’s device. 

 

Definition 21: The cell receiving time 𝛱𝑖
(𝑟𝑒𝑐𝑒𝑖𝑣𝑒)(𝑏) is the waiting time of network cell 

equipment  for receiving the result of size 𝑏 from a processing server. 

 

Definition 22: Total cells energy consumption 𝛤𝐶 is the summation of communication 
time between user’s device and server multiply by  𝛽𝑖 . 

 

Γ𝐶 =  ∑ 𝛽𝑖 (Πi
(𝑟𝑒𝑐𝑒𝑖𝑣𝑒)(b)  +  τΠi

(send)(b))

 𝑚𝑖

𝑖=1

 (3.7) 

 

Where 𝑚𝑖 is number of selected cell from the user path. 
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Definition 23:  Total user’ s device energy consumption 𝛤𝑈  is the summation of 
communication time between user’s device to the server multiply by  𝛾. 

Γ𝑈 = ∑ 𝛾 ⋅

𝑛𝑖

𝑖=1

𝜏(𝑠𝑒𝑛𝑑)(𝑑𝑖) + ∑ 𝛾 (  τ(receive)(𝑑𝑜))

 𝑛𝑜

𝑜=1

 (3.8) 

 

where 𝑛𝑖 is number of tasks in task flow graph 𝐺 sent to the servers, 𝑛𝑜 is number of 
tasks returned form the servers to user’s device after processing. 

 

Definition 24:  Total energy consumption in the system 𝛤𝐺  is the summation of the 
total user’ s device energy consumption Γ𝑈 , total cells energy consumption Γ𝐶  , and 
total server energy consumption Γ𝑆 show as follow equation. 

Γ𝐺 = ΓU + Γ𝐶 + Γ𝑆 (3.9) 

 

3.4 Studied of User Speed Control and Condition 

The minimum speed limit determines the speed of the user's movement. The 
definition of variable 𝐴1 and the maximum speed are defined in variable 𝐴2.  If the 
user moves slower than the minimum speed, they will not be able to reach their 
destination on time. And if the user moves faster than the maximum speed, they will 

not be able to connect and access the network cell.  The variable 𝜐 is the average 
speed of the user's movement. The equation can be written as follows. 

𝜐 ∈ [𝐴1, 𝐴2] (3.10) 

 

Definition 22: Cell service length 𝜙𝑖 is the distance of user path through cell 𝑐𝑖 . 

 

Definition 23: Duration time 𝑇𝑖 is the time to stay on cell 𝑐𝑖 , depends on user moving 
speed 𝜐 and distance of each cell 𝜙𝑖 . As shown by the following equation: 
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𝑇𝑖 =  
𝜙𝑖

𝜐
 (3.11) 

The speed of the user device is inversely proportional to the time it is 
connected to the wireless network, which affects the amount of workload that can be 
sent out to the servers. It was done by starting from the time spent processing on the 
network  shown by the variable 𝑇𝑖

′′  , the new speed can be obtained by the following 
equation. 

υ′ =  
𝜙𝑖

𝑇𝑖
′  (3.12) 
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CHAPTER 4 
 

PROPOSED METHOD 

 

 

This dissertation proposes an algorithm for scheduling task flows from non-
stationary user’s device to processed on stationary servers connected to wireless cells 
network. This work is divided into three main steps, which are related to the algorithm 
presented.  The first step is to select the appropriate cell for processing as shown in 
Algorithm 1.  The second step is to group and assigning the task flow into each server 
by considering the task dependency and transmission overhead that affects to energy 
consumption as shown in Algorithm 2.  Finally, the user's speed adjustment algorithm 
is proposed to guarantee the success of the processing before disconnecting from the 
network as shown in Algorithm 3. This work aims to reduce the overall system energy 
consumption and maintain user experience that allows users to reach their destination 
in time. 

 

4.1 Cell Selection Algorithm 

The decision to select the appropriate cell user path that defines in Section 3.2 
for this dissertation is focused on the cell capability 𝜌𝑖 that define in Definition 13, 
which is related to the server processing speed 𝑝𝑖,𝑗 in definition 7 . Cell information is 
provided by the service provider. The example of cell information from Figure 3.3 are 
shown by the following format [𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒, 𝑇𝑖 , 𝜌𝑖, 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑖,𝑗]. For example of cell 𝑐1 

, The information is [ 0, 130, 6𝛿, { 3𝛿, 1𝛿, 2𝛿}]. 𝑐1 has 𝑐𝑖
(𝑠𝑡𝑎𝑟𝑡)

= 0; duration to stay on the 
cell 𝑇𝑖 = 130; Cell performance 𝜌1 = 6𝛿 that is calculated from the summation of 
processing speed of each server. 𝑠1,1 has 𝑝1,1 = 3𝛿,  𝑠1,2 has 𝑝1,2 =  1𝛿 , and 𝑠1,3 has 
𝑝1,3 = 2𝛿 .  
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When the user’s start the trip passes through the cells service region, they will 
give the information from the service provider for all possible connected cells. 

 
Figure 4.1: Cell structure and user path moving time line. 

 

Figure 4. 1 shows cell structure when user start to moving pass through cell 

𝑐1, 𝑐2, and 𝑐3.  𝑐1
(𝑠𝑡𝑎𝑟𝑡) is the time point that user first enters the region of cell 𝑐1. 

Cell end service time 𝑐1
(𝑒𝑛𝑑) is the time point that user leave the region of cell 𝑐1.  

And θ is the constant to reserve transition time between any neighboring cells.  From 
the cell structure the cell selection algorithm is show as follow: 
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Algorithm 1 Cell Selection. 

Input: A set of all cell 𝑪′ on the user path. 

Output: A selected cell in set 𝑪. 

1: 

2: 

3: 

4: 

Sorting 𝑪′ by the start time to connecting. 

Let 𝑐𝑥 be the first cell to be connecting. 
Let 𝑪 be an empty set. 
𝑪 = {𝑐𝑥} ∪  𝑪 

5: For 𝑐𝑖 ∈ 𝐶′ do 

6: If  𝑐𝑖
(𝑠𝑡𝑎𝑟𝑡)equal to 𝑐𝑥

(𝑠𝑡𝑎𝑟𝑡)then 
7: If (𝜌𝑖 × 𝑇𝑖) > (𝜌𝑥 × 𝑇𝑥) then 

8: 

9: 

Replace 𝑐𝑥 in 𝑪 with 𝑐𝑖 . 

Let 𝑐𝑥 = 𝑐𝑖 . 

10: EndIf 

11: Else 

12: If 𝑐𝑖
(𝑠𝑡𝑎𝑟𝑡)

≥  (𝑐𝑥 (𝑒𝑛𝑑) − 𝜃) and 𝑐𝑖
(𝑠𝑡𝑎𝑟𝑡)

< 𝑐𝑥
(𝑒𝑛𝑑)then 

13: 

14: 

𝐶 = {𝑐𝑖} ∪  𝑪 . 
Let 𝑐𝑥 = 𝑐𝑖 . 

15: EndIf 

16: EndIf 

17: 

18: 

End For 
return 𝑪 
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The following is an example of how the algorithm works by simulating a cell 
through 10 cells from the following information table. 

 

Table 4.1: An example cell information in a set of 𝑪′. 
𝑐𝑖  Start time 𝑇𝑖  𝜌𝑖  𝑇𝑖 × 𝜌𝑖  Set of 𝑝𝑖,𝑗 
𝑐1 0 130 3𝛿 390 {1𝛿, 2𝛿} 

𝑐2 0 120 6𝛿 720 {3𝛿, 3𝛿} 

𝑐3 100 160 4𝛿 640 {1𝛿, 2𝛿, 1𝛿} 

𝑐4 100 190 4𝛿 760 {2𝛿, 2𝛿} 

𝑐5 120 150 5𝛿 750 {2𝛿, 2𝛿, 1𝛿} 

𝑐6 290 130 6𝛿 780 {2𝛿, 2𝛿, 1𝛿, 1𝛿} 

𝑐7 320 100 5𝛿 500 {3𝛿, 2𝛿} 

𝑐8 350 150 2𝛿 300 {1𝛿, 1𝛿} 

𝑐9 400 100 4𝛿 400 {2𝛿, 2𝛿} 

𝑐10 400 120 6𝛿 720 {2𝛿, 2𝛿, 2𝛿} 

 

The following steps show how to select a cell from Table 4.1 by setting 𝜃 = 20 .  

 

Table 4.2: Steps of the cell selection algorithm to process the provider information 
𝐶′from Table 4.1. 

Cell 𝒄𝒊
(𝒔𝒕𝒂𝒓𝒕) 𝒄𝒊

(𝒆𝒏𝒅) 𝒄𝒙
(𝒔𝒕𝒂𝒓𝒕) 𝒄𝒙

(𝒆𝒏𝒅) 𝒄𝒙
(𝒆𝒏𝒅)

− 𝜽 𝑪 

Initial step set 𝑐𝑥 = 𝑐1 and put 𝑐1 in 𝑪 

𝑐1 0 130 0 130 110 {𝑐1} 

Start to get each cell 𝑐𝑖 from 𝑪′ 

𝑐2
(𝑠𝑡𝑎𝑟𝑡)

𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑐𝑥
(𝑠𝑡𝑎𝑟𝑡) , but  𝑐2 has 𝑇𝑖 × 𝜌𝑖 greater than 𝑐𝑥 , replace 𝑐1 by  

𝑐2 in 𝑪, set 𝑐𝑥 = 𝑐2. 

𝑐2 0 120 0 130 110 {𝑐2} 

𝑐3
(𝑠𝑡𝑎𝑟𝑡)

𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑐𝑥
(𝑠𝑡𝑎𝑟𝑡)  and𝑐3

(𝑠𝑡𝑎𝑟𝑡)
≥ 𝑐𝑥

(𝑒𝑛𝑑)
− 𝜃, add 𝑐3 to 𝑪, set 𝑐𝑥 = 𝑐3. 

𝑐3 100 260 0 120 100 {𝑐2,𝑐3} 
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𝑐4
(𝑠𝑡𝑎𝑟𝑡)

𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑐𝑥
(𝑠𝑡𝑎𝑟𝑡) , but  𝑐4 has 𝑇𝑖 × 𝜌𝑖 greater than 𝑐𝑥 , replace 𝑐3 by  𝑐4 

in 𝑪, set 𝑐𝑥 = 𝑐4. 

𝑐4 100 290 100 260 240 {𝑐2,𝑐4} 

𝑐5
(𝑠𝑡𝑎𝑟𝑡)

𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑐𝑥
(𝑠𝑡𝑎𝑟𝑡)  and 𝑐5

(𝑠𝑡𝑎𝑟𝑡)
≤ 𝑐𝑥

(𝑒𝑛𝑑)
− 𝜃,  skip this cell. 

𝑐5 120 270 100 290 270 {𝑐2,𝑐4} 

𝑐6
(𝑠𝑡𝑎𝑟𝑡)

𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑐𝑥
(𝑠𝑡𝑎𝑟𝑡)  and𝑐6

(𝑠𝑡𝑎𝑟𝑡)
≥ 𝑐𝑥

(𝑒𝑛𝑑)
− 𝜃, add 𝑐6 to 𝑪,  set 𝑐𝑥 = 𝑐6. 

𝑐6 290 420 100 290 270 {𝑐2,𝑐4, 𝑐6} 

𝑐7
(𝑠𝑡𝑎𝑟𝑡)

𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑐𝑥
(𝑠𝑡𝑎𝑟𝑡)  and 𝑐7

(𝑠𝑡𝑎𝑟𝑡)
≤ 𝑐𝑥

(𝑒𝑛𝑑)
− 𝜃,  skip this cell. 

𝑐7 320 420 290 420 400 {𝑐2,𝑐4, 𝑐6} 

𝑐8
(𝑠𝑡𝑎𝑟𝑡)

𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑐𝑥
(𝑠𝑡𝑎𝑟𝑡)  and 𝑐8

(𝑠𝑡𝑎𝑟𝑡)
≤ 𝑐𝑥

(𝑒𝑛𝑑)
− 𝜃,  skip this cell. 

𝑐8 350 500 290 420 400 {𝑐2,𝑐4, 𝑐6} 

𝑐9
(𝑠𝑡𝑎𝑟𝑡)

𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑐𝑥
(𝑠𝑡𝑎𝑟𝑡)  and𝑐9

(𝑠𝑡𝑎𝑟𝑡)
≥ 𝑐𝑥

(𝑒𝑛𝑑)
− 𝜃, add 𝑐9 to 𝑪,  set 𝑐𝑥 = 𝑐9. 

𝑐9 400 500 290 420 480 {𝑐2,𝑐4, 𝑐6, 𝑐9} 

𝑐10
(𝑠𝑡𝑎𝑟𝑡)

𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑐𝑥
(𝑠𝑡𝑎𝑟𝑡) , but  𝑐10 has 𝑇𝑖 × 𝜌𝑖 greater than 𝑐𝑥 , replace 𝑐9 by  

𝑐10 in 𝑪, and set 𝑐𝑥 = 𝑐10. 

𝑐10 400 520 400 420 480 {𝑐2,𝑐4, 𝑐6, 𝑐10} 

 

The result of an algorithm are ready in set 𝐶 = {𝑐2, 𝑐4, 𝑐6, 𝑐10}, with  capabilities 
{6𝛿, 4𝛿, 6𝛿, 6𝛿} ,And detail information of each cell is: 

𝑐2 = { 𝑠2,1, 𝑠2,2} , with processing speed {3𝛿, 3𝛿}. 

𝑐4 = { 𝑠4,1, 𝑠4,2} , with processing speed {2𝛿, 2𝛿}. 

𝑐6 = { 𝑠6,1, 𝑠6,2, 𝑠6,3, 𝑠6,4} , with processing speed {2𝛿, 2𝛿, 1𝛿, 1𝛿}. 

𝑐10 = { 𝑠10,1, 𝑠10,2, 𝑠10,3} , with processing speed {2𝛿, 2𝛿, 2𝛿}. 
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4.2 Task Assignment Algorithm 

User’ s device can be sending task flow which in a group to processing on the server 
cluster that connected to the cell.  The primary energy consumes in the wireless 
network system is the communication power, which this assumption the objective 
function is proposed to reduce overall energy consumption in the system and 
guarantee the task flow processing is complete on time. From the difference processing 
speed and communication capability of each server, an algorithm is developed to 
assign task flow into the cluster server in the cell within the path. 

 

 
Figure 4.2: An example of task assignment in difference processing speed servers and 

algorithm parameters. 
 

Figure 4.2 shows an example of assigned task 𝑣1with data size 𝑑1 = 6 from user task 
flow 𝑮 = (𝑽, 𝑫, 𝑬) to the different processing speed servers 𝑠𝑖,𝑗 .  The server 𝑠1,1 has 
processing speed 𝑝1,1 = 1𝛿 and server 𝑠1,2  has 𝑝1,2 = 2𝛿 that is the server cluster 
connected to cell 𝑐1that have the duration time 𝑇1 = 10 .  When the task 𝑑1 assign 

to the difference processing speed server the time point of 𝑠𝑖,𝑗
(𝑖𝑛𝑑𝑒𝑥) is also different. 
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From an example, If 𝑑1 assign to 𝑠1,1 the 𝑠1,1
(𝑖𝑛𝑑𝑒𝑥)is point to 6/1 = 6, On the other 

hand, if 𝑑1 assign to 𝑠1,2 the 𝑠1,2
(𝑖𝑛𝑑𝑒𝑥)is point to 6/2 = 3 because of the server has 

difference processing speed. 𝑠𝑖,𝑗
(𝑠𝑡𝑎𝑟𝑡) is the time that server 𝑠𝑖,𝑗  starts to process the 

receive data from user’s device. Server end service time 𝑠𝑖,𝑗
(𝑒𝑛𝑑) is the time that server 

𝑠𝑖,𝑗  stops processing the user’s data.  
 

Algorithm 2 Task Flow Assignment Algorithm. 

Input: Given User’s device task flow in set 𝑮(𝑽, 𝑫, 𝑬). 

             Set of cell 𝑪 from Algorithm 1.  

Output: Scheduling of 𝑮(𝑽, 𝑫, 𝑬) on cluster servers 𝑠𝑖,𝑗 . 

1: Leveling and sorting tasks in 𝑮 by the size of �̃�(𝑑𝑖) in each level into set 
𝑾. 

2: For 𝑐𝑖 ∈ 𝑪 do 

3: 

4: 

5: 

Set 𝑠𝑖,𝑗
(𝑖𝑛𝑑𝑒𝑥)

= 𝑐𝑖
(𝑠𝑡𝑎𝑟𝑡) for all 𝑗. 

Set 𝑠𝑖,𝑗
(𝑒𝑛𝑑)

=  𝑐𝑖
(𝑒𝑛𝑑) for all 𝑗. 

Set   𝑡𝑖𝑚𝑒 =  𝑐𝑖
(𝑠𝑡𝑎𝑟𝑡). 

6: While 𝑡𝑖𝑚𝑒 <  𝑐𝑖
(𝑒𝑛𝑑) do 

7: 

8: 

Get the first element 𝑣𝑘 from 𝑾  
𝑾 = 𝑾 − {𝑣𝑘}  

9: Let 𝑠𝑖,𝑗 = arg min
𝑠𝑖,𝑥 ∈𝑐𝑖

(𝑠𝑖,𝑥
(𝑖𝑛𝑑𝑒𝑥) + 𝑡𝑖,𝑥(𝑑𝑘) ) 

10: 

11: 

Assign 𝑣𝑘to 𝑠𝑖,𝑗  

Update 𝑠𝑖,𝑗
(𝑖𝑛𝑑𝑒𝑥) = 𝑠𝑖,𝑗

(𝑖𝑛𝑑𝑒𝑥) + 𝑡𝑖,𝑗(𝑑𝑘)  

12: If 𝑣𝑙 is a child of 𝑣𝑘 such that 𝑣𝑙 does not have data dependency 
from other 𝑣𝑎 .  then 

13: Assign 𝑣𝑙 to 𝑠𝑖,𝑗 server. 

14: EndIf 

15: EndWhile 

16: EndFor 
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An example of how algorithm two works.  The user task flow is a large workload that 
cannot be processed in a single cell.  By simulating a small circle, each task is a task 
that needs to be processed, and the link is the relationship between tasks.  

 

 
Figure 4.3: An example of user task flow for demonstrate algorithm. 

 

Figure 4.1 shows the task flow from user’s device 𝑮 = (𝑽, 𝑫, 𝑬) which have 17 tasks 
from 𝑣1to 𝑣17. 𝑣1 have data 𝑑1= 1, which mean there has three level of 
independent tasks. The edge 𝐸 represents the relation between tasks. For example 
𝑣7 is depends on {𝑣1, 𝑣2, 𝑣3} it can’t start to processing if the dependent tasks not 
complete processed. 

Level 1 has tasks {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6} with corresponding data sizes of 
{1,2,7,8,7,5}. 

Level 2  has tasks {𝑣7,  𝑣8, 𝑣9, 𝑣10, 𝑣11} with corresponding data sizes of 
{10, 14, 6, 9, 8}. 

Level 3 has tasks {𝑣12, 𝑣13, 𝑣14, 𝑣15, 𝑣16, 𝑣17} with corresponding data sizes of 
{6, 4, 6, 3, 5, 7}. 
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Assume that the result of Algorithm 1 is shown as follows. 

𝑐1 = (0, 10, 3𝛿, {1𝛿, 2𝛿 }).  

𝑐2 = (10, 10, 6𝛿, {2𝛿, 2𝛿, 2𝛿}).  

𝑐3 = (25, 10, 4𝛿, {2𝛿, 2𝛿}).  

 

The information from the cell is explained in detail as follows: 

 𝑐1has start service at time 0, service length 𝑇𝑖 = 10 , cell capability 𝜌1 = 3𝛿 , 
and connects to servers 𝑠1,1 and  𝑠1,2 with processing speeds of 1𝛿 and 2𝛿 , 

respectively. 

 𝑐2 has start service at time 10, service length 𝑇𝑖 = 10 , cell capability 𝜌2 = 6𝛿, 
and connects to servers 𝑠2,1,  𝑠2,2, and 𝑠2,3, with processing speeds 2𝛿, 2𝛿, 
and 2𝛿, respectively. 

 𝑐3 has start service at time 25, service length 𝑇𝑖 = 10 , cell capability 𝜌3 = 4𝛿, 
and connects to servers 𝑠3,1and  𝑠3,2  , with processing speeds 2𝛿 and 2𝛿 , 

respectively. 

 

After leveling and sorting level 1 task set by task size, the sorted tasks are  
{𝑣4, 𝑣3, 𝑣5, 𝑣6, 𝑣2, 𝑣1} with corresponding data sizes of {8, 7, 7, 5, 2, 1}. Table 4.2  
shows the steps to assign the first level of user task flow 𝑮 into servers in cell 𝑐1. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29 

Table 4.3: Step to assign task set level 1 from user’s task flow into server in cell 𝑐1, 
which duration time 𝑇𝑖  = 10, 𝑐1

(𝑠𝑡𝑎𝑟𝑡)
= 0, 𝑐1

(𝑒𝑛𝑑)
= 10, 𝑝1,1 = 1𝛿, and 𝑝1,2 = 2𝛿. 

Tasks 𝑣𝑘  𝑑𝑘  𝑠1,1
(𝑖𝑛𝑑𝑒𝑥) 𝑠1,2

(𝑖𝑛𝑑𝑒𝑥) Assign to 

Initial step - 0 0 - 

𝑣4 8 0 8/2 = 4 𝑠1,2 

𝑣3 7 0 4 𝑠1,1 

𝑣5 7 7/1 = 7 4 𝑠1,2 

𝑣6 5 7 7.5 + (5/2) = 10 𝑠1,2 

𝑣2 2 7 10 𝑠1,1 

𝑣1 1 (7+2) = 9 10 𝑠1,1 

Final step - 10 10 All server are 
fully assign 

 

The result of all step is shown in the following figure: 

 

 
Figure 4.4: The result of task assignment to cell 𝑐1. 
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All tasks is processed on servers 𝑠1,1 and 𝑠1,2 have returned the result to user 
before user exit the cell and disconnect. Next step is provided example of assign task 
set level 2 and 3 to next cell. 

 

The new sorting of task set in level 2 is  { 𝑣8, 𝑣7, 𝑣10, 𝑣11, 𝑣9} with corresponding 
data sizes of {14, 10, 9, 8,6}.  Task set Level 3 is {𝑣17, 𝑣12, 𝑣14, 𝑣13, 𝑣16, 𝑣15} with 
corresponding data sizes of {7, 6, 6, 5, 4, 3}. 

 

Table 4.4: Step to assign task set level 1 from user’s task flow into server in cell 𝑐2, 
which service time = 10, and  𝑝2,1 = 1𝛿, 𝑝2,2 = 2𝛿. and 𝑝2,3 = 2𝛿. 
 

Tasks 𝑣𝑘 𝑑𝑘 𝑠2,1
(𝑖𝑛𝑑𝑒𝑥) 𝑠2,2

(𝑖𝑛𝑑𝑒𝑥) 𝑠2,2
(𝑖𝑛𝑑𝑒𝑥) Assign to 

Initial step - 0 0 0 - 
𝑣8 14 14/2=7 0 0 𝑠2,1 

𝑣7 10 7 0 0 𝑠2,2 

Found 𝑣12 that is a dependent task of 𝑣7. 𝑣12 and does not have data dependency 
from other tasks Assign  𝑣12 to the same server 𝑠2,2. 

𝑣12 6 7 (10/2)=5 10 𝑠2,2 

𝑣10 9 7 5 + (6/2)=8 0 𝑠2,3 

𝑣11 8 7 8 9/2 = 4.5 𝑠2,3 

Found 𝑣17 that is a dependent task of 𝑣11 and does not have data dependency from 
other tasks .Assign  𝑣17 to the same server 𝑠2,3. 

𝑣17 7 7 8 4.5+(4/2)=6.5 𝑠2,3 

Server 𝑠2,3 are full processing capability 
𝑣9 6 7 8 6.5+(7/2)=10 𝑠2,2 

All tasks in task set level 2 already setting the remaining task is 

{  𝑣14, 𝑣16, 𝑣13, 𝑣15} which data { 6, 5, 4, 3}. 
𝑣14 6 7 + (6/2) =10 7 10 𝑠2,2 
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Final step - 10 7+(6/2)=10 10 - 

The remaining tasks are {𝑣13, 𝑣16, 𝑣15} the scheduler can alarm to user or notify to 
the automatic smart car to reduce speed to extends time to stay on cell 𝑐2 rather 

than go to process on next cell. 

 

The benefit of the proposed algorithm is to reduce the transmission cost by process 
layer by layer and enhance merging the child that without dependent parent 
processing task. That provides low transmission cost between server. 

 

4.3 Speed Adjustment 

The speed adjustment algorithm was developed to guarantee the success of 
the process, using the principle of stretching or shrinking time from the speed at which 
it changes into the more extended service area of the network. The speed adjustment 
will be in the limited speed range by considering the speed of the following case. 

 

Case 1 :  When it cannot be processed at the scheduled time, in order not to have to 
throw a job and re-do it in the next cell, it must be slowed down. That allows all jobs 
to be processed and sent back to the user's device. 

 

 
Figure 4.5:  Simulation case of slow down speed adjustment 
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Case 2: When performance results are shorter than service times or due to slowdowns. 
During processing, there are two options: allocating new workgroups by considering the 
cost of re-scheduling or speeding up user movement to compensate for lost time. 

 

 
Figure 4.6: Simulation case of speed up adjustment to exit cell before the deadline. 

 

Case 3: In case of passing through the cell while in progress, it is advised that 
performance is down due to user congestion. Accelerate this range to maintain 
overall efficiency of processing. Rush into cells with higher processing power (note 
may also be considered in the cell selection process). 

 

 
Figure 4.7: Simulation case of no changing speed. 

From all of three cases, we can create the speed adjustment algorithm as follow. 
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Algorithm 3 Algorithm for Speed adjust. 

Input: Information on cell  𝑐𝑖 . 

Output: The new recommended speed for 𝑐𝑖 . 

1: 

2: 

3: 

4: 

5: 

Let 𝐴1 and 𝐴2 be the limit speed form eq. (3.10). 

Let 𝑇𝑖 be the estimated service time of 𝑐𝑖 from eq. (3.11). 

Let 𝑇𝑖
′ be the new service time for cell 𝑐𝑖 . 

Let 𝑣 be the the average speed of the user's movement 

Let 𝜙𝑖 be the distance  of user path through cell 𝑐𝑖 . 

6: If 𝑇𝑖
′′ >  𝑇𝑖 then 

7: Calculate new speed 𝑣′ from eq. (3.11). 

8: If new 𝑣 ′ > 𝐴1 and 𝑣 ′ < 𝐴2 then  

9: Decrease speed by set 𝑣 to 𝑣′. 

10: Else 

11: Don’t change speed and notify the user. 

12: EndIf 

12: EndIf 

13: Return new speed 𝑣 
 

The example to use the benefit of algorithm 3 can be explained continuously 
from the output of algorithm 2.  We have the remaining task {𝑣13, 𝑣16, 𝑣15} need 

more time to process all of them in 𝑐2. The remaining time to process is {4, 5, 3} and 
current 𝑇𝑖 =  10, the new time we need to process the whole task set including the 
remaining task is 10 + (5/2) = 12.5 . Assume that the distance that user moving in cell 
𝑐2is 𝜙2 = 200𝑚 , speed limit 𝐴1 = 50 𝐾𝑚/ℎ, and 𝐴2 = 60 𝐾𝑚/ℎ.  The new speed 
is calculating from equation (3.12).  
 

𝑣′ =  
200

12.5
 =  16 m/s  =  57.6 Km/h 

The new speed 𝑣′ are in the range [50, 60] that makes possible to process the whole 
task flow finished in 𝑐2. 
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CHAPTER 5 
 

EXPERIMENTS AND RESULTS 

 

This section is describing the experimental setup, the evaluation measure, and the 
result, comparison of the proposed EAMS-HEC algorithm with other scheduling 
methods. The simulation is set by the control parameters, and the result shows the 
performance of makespan, transmission cost, and overall energy consumption.   

 
5.1 Experimental Setup 

 This dissertation controls an experimental environment by defining the 
variable for the user task flow and the structure of the network cell as follow. 

 
5.1.1 Random User Task Flow Generator 

To evaluate the relative performance of the proposed algorithm, compare with others 
candidate. The DAG generation program was developed for the simulation which 
follows parameters. 

 n: number of tasks (𝑣𝑖) in user task flow (𝑮). 

 shape: this parameter affects the high (number of levels) and the width 
(number of tasks in each level), can find by the number of levels divided by 
the average number of tasks in all level.  

 dep: this is a number of child dependent task that relate to set 𝑬 of task 
flow 𝑮 = (𝑽, 𝑫, 𝑬). 

 CCR: Communication to computation ratio. That affect to size of data 𝑑𝑖  ,It is 
the ratio of the average communication cost to the average computation 
cost. If CCR value is too high, its mean that DAG is communication intensive. 
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The setting of parameters of user task flows for this experiment is show as follow: 

 n = [20, 40, 60, 100, 200, 400]; 

 shape = [0.5, 1.0, 2.0]; 

 dep = [ 1, 2, 3, 4, 5]; 

 CCR = [0.1, 0.5, 1.0, 5.0, 10.0]; 

 

The example of generated task flow with the different parameters condition as 
shown in this section. From Figure 5.1,each task shows in rectangle and assume that 
𝑣1 = 𝑇01, , and assuming the direction of task flow is only top to bottom relation. 
The number on the right hand side of each rectangle is the estimated processing time 
�̃�(𝑑𝑖) from definition 2.  

 
Figure 5.1: An example of task flow random generator with size n=10, shape=1.0: (a) 
low dependency dep=1, (b) medium dependency dep=2, and (c) high dependency 

dep=3. 
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Figure 5.1 shows the three examples of different random user task flow with 
various of dep parameter that use to evaluate the performance of loosely and tight 
dependency. 

 

 
Figure 5.2: An example of task flow random generator with size n=10: (a) thin task 
flow shape=0.5, (b) symmetry task flow shape=1, and (c) fat task flow shape=2. 

 

Figure 5. 2 shows the difference values for the shape parameter that affect the task 
flow processing. From Figure 5.2a shows an average number of tasks in all level is 2, 
and the number of levels without start and end task is 4.  Thus, shape is obtained 
from the ratio between 2 and 4 so shape is equal to 0.5.  Figure 5.2b and Figure 5.2b 
obtain shape as 1.0 and 2.0 in respectively. 
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In addition, this experiment is evaluated on an application task flow that had multiple 
starts and multiple ends task which presented by the following figure.  

  

 

 
Figure 5.3: An example of generated task flow size n = 40, (a) task flow with one 

start and one end, (b) task flow with multiple starts and multiple end tasks. 
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5.1.2 Random Cells Generator 

This dissertation separated the environment into two parts; the first part is 
described above in the section 5.1.1, the user task flow random generator. The 
computation environment is provided by the multiple hop small-cell networks, and 
each cell is connected by the different capability servers. The control parameters are 
defined as follows: 

 𝑛𝑖 : number of cells 𝑐𝑖 that user passes through the path. 

 𝑚𝑗 : number of servers  𝑠𝑖,𝑗 in each cell. 

 𝑇𝑖 : service length of each cell, to simulate the coverage area for the mobile 
user which upon the signal strength of the network device. 

 𝑝𝑖,𝑗: computation ratio that compares the server performance with the user 
device. 

 comm_ratio: communication bandwidth for each server that affects the time 
to transmit data between user device and servers. 

The setting parameters for network cell structure for this environment are shown as 
follow: 

 𝑛𝑖= [2, 3, 4, 5, 6, 8, 10]; 

 𝑚𝑖 = [2, 3, 4, 5, 6]; 

 𝑇𝑖 = [50, 100, 150, 200, 250, 300]; 

 𝑝𝑖,𝑗 = [1𝛿, 2𝛿, 3𝛿] 

 

Follow example shows the result of generated network cells architecture with the 
different setting parameters. 
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Figure 5.4: An Example of cells and servers random generator with 𝑇𝑖 = 50, 𝑛𝑖=4, 
𝑝𝑖,𝑗 = 1𝛿, number of servers (a) 𝑚𝑗=2, (b)  𝑚𝑗 = 2 to 3, and (c) 𝑚𝑗 = 2 to 4. 
 

The random generator tolls are created three different cells architecture for the 
environment as shown in Figure 5.4. All of them has four cells in the trips.  

(a) has 𝑐1= [1, 1] , 𝑐2=[1, 1], 𝑐3=[1, 1], and 𝑐4=[1, 1].  

(b) has 𝑐1= [1, 1] , 𝑐2=[1, 1, 1], 𝑐3=[1, 1], and 𝑐4=[1, 1]. 

(c) has 𝑐1= [1, 1, 1] , 𝑐2=[1, 1], 𝑐3=[1, 1, 1, 1], and 𝑐4=[1, 1]. 

 

Denote that in cell architecture ( b)  cell 𝑐1 has two servers with performance 

𝑠1,1has processing speed 𝑝1,1 = 1𝛿 and 𝑠1,2 has processing speed 𝑝1,2 = 1𝛿  then 

the total performance of 𝑐1 is 2𝛿.  While cells 𝑐2, 𝑐3, and  𝑐4  get 3𝛿, 2𝛿, and 3𝛿, 

respectively. 
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Figure 5.5: An example of cells and servers random generator with 𝑇𝑖 = 100, 𝑛𝑖=2, 

number of servers (a) 𝑚𝑗=2, (b) 𝑚𝑗 = 2 to 3, and (c) 𝑚𝑗 = 2 to 4. 

 

From figure 5.5 the random generator tolls are created three different cells 
architecture for the environment. All of them has four cells in the trips.  

(a) has 𝑐1= [1, 1] , 𝑐2=[3, 2, 1].  

(b) has 𝑐1= [1, 2, 3] , 𝑐2=[2, 3]. 

(c) has 𝑐1= [3, 1, 3] , 𝑐2=[1, 1, 2, 3]. 

 

Denote that in cell architecture (c) cell 𝑐1 has three servers with different 
performance 𝑠1,1 = 3𝛿, 𝑠1,2 = 1𝛿,and 𝑠1,3 = 3𝛿 then the total performance of 𝑐1 

is 7𝛿. 𝑐2 has four servers with different performance 𝑠2,1 = 1𝛿, 𝑠2,2 = 1𝛿, 𝑠2,3 = 2𝛿, 
and 𝑠2,4 = 3𝛿 then total performance of 𝑐2 is 7𝛿. 
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5.2 Comparison Metrics 

The performance of the proposed algorithm is evaluated by comparing with the 
other candidate algorithms are defined as follows. 

 

1. Makespan: Makespan is the completion time of the whole user task flow from 
the start of the first tasks to the end of the last task in the task flow. The 
shortest makespan is considered as the best result.  

2. Communication link: the number of communication between server to 
server in the same cell, and between server to the mobile user device that 
affects the transmission overhead. The lower number of the link is the best 
result. 

3. Communication cost: the total cost of transmission in the time domain 
defined as a summation of all time use to send and receive data between 
server to server, and between servers to the mobile user device. 

4. Total energy: The total conversion of energy usage for the whole system in 
one trip can calculate by using the equation in section 3.3. 

 
5.3 Performance Evaluation Results 

The performance evaluation on the environment is separated into two 
scenarios; one cell and multiple cells scenario. The performance of the one cell 
scenario is measured on the environment of data without the deadline constraint. On 
the other hand, in the situation of  multiple cells used to determine the time given 
in each cell by allowing the user to move at  constant speed. 
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5.3.1 One cell scenario 

This experiment is conducted with very long service length cells with difference server 
number and combination of user task flow size n = 20, shape= [0.5, 1, 2], dep= [1, 2, 
3], and CCR = [0.1, 1.0, 10], the total is 27 type of random task flows. The result 
compares with HEFT, PEFT, and HETS is shown as follow. 

 
Table 5.1: The parameters for randomly generated task flow on one cell scenario 
performance evaluation. 

 
Table 5.1 shows the task flows 1-9 is the thin shape task flow that has many 

chain tasks, task flow 10-18 is the symmetry shape task flow, and task flow 19-27 is 
the large task flow that has too many parallel tasks. 
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From the setting, environment follows this is the results of the proposed algorithm 
HAMS-HEC compare to HEFT and PEFT, HETS.  Table 5. 2 show the part of result of 
comparison between HAMS- HEC and HEFT, Other result for PEFT and HETS are 
compare in the same metrics. 

 
Table 5.2: Comparison of makespan, links, communication cost and energy for 
HAMS-HEC and HEFT with 27 random task flows. 

 
 

Table 5.2 shows the performance comparison between the proposed algorithm and 
HEFT in the term of makespan, links, communication cost and energy. The result of 
performance evaluations is described with Better, Equal, and Worse, respectively. By 
which means the lowest value is the better 
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Figure 5.6: Comparison of quality of (a) makespan, (b) number of links, (c) 

communication cost, and (d) total energy 

 

Figure 5.6 shows the performance of the proposed algorithm compare to three well-
known heterogeneous algorithms HEFT, PEFT, and HETS. The result shows that the 
proposed algorithm is a kindly low performance in term of makespan compare with 
HEFT and higher performance than two other algorithms. From the result of a number 
of a communication link between server to server the proposed algorithm is a high 
performance to reduce communication link than HEFT and PEFT, But it nearly 
performance compare with HETS, because of its focus on the edges between tasks. 
The result of communication cost comparison the propose is higher performance 
than HEFT and PEFT related to the number of the communication link. The last chart 
is the compared to overall energy consumption; the proposed algorithm is a higher 
performance in the average on one cell scenario. 
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5.3.2 Multiple cells scenario 

The next experiment is multiple cells scenario.  This research generated eight types 
of task flow dataset which the random in 100 user task flow for each type. The cells 
architecture is also randomly generated into eight types of cells structure with the 
100 randomly structure for each type.  The number of simulation of one task flow 
type to multiple cells architecture is 100 x 800 = 8,000 scheduling. All of simulation 
of 8x8 is 8 x 8,000 = 64,000 case. 

The structure of generated of user task flow is shown as follow tables. 

 
Table 5.3: Setting parameter for the random generated of user task flow. 

Symbol �̃�(𝒅𝒊) Number of 
edges 𝑬 

 

𝒅𝒊 Amount of 
dataset 

SLL Low Low Low 100 

SLH Low Low High 100 

STL Low High Low 100 

STH Low High High 100 

LLL High Low Low 100 

LLH High Low High 100 

LTL High High Low 100 

LTH High High High 100 

 

Table 5.3 shows the parameter to set the generated task flow   𝑮 = (𝑽, 𝑫, 𝑬) .The 

low   �̃�(𝒅𝒊) is mean each task is not the processing intensive task.  And the low 
number of edge 𝑬 is mean this task flow is low dependency task.  When if the 
dependency to high it will affect the communication intensive task set due to the 
overhead of transmission and will giving high energy consume on the transmission. 
The low 𝑑𝑖 is claimed that the task 𝑣𝑖  is not the communication intensive. Can imply 
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that we can control the CCR rate by control the ratio of �̃�(𝒅𝒊)  and 𝑑𝑖 . For example, 
the task set SLH, STH, LLH, LTH are generated by the high CCR rate and all of them 
is communication intensive task flow, Otherwise, is the computation- intensive task 
flow. 

 
Table 5.4: Setting parameter for the random generated of cell architecture. 

Symbol 𝑻𝒊 Variety of 
𝒑𝒊,𝒋 

Variety of  

𝑻𝒊 

Amount of 
dataset 

SSS Low Low Low 100 

SSV Low Low High 100 

SMS Low High Low 100 

SMV Low High High 100 

LSS High Low Low 100 

LSV High Low High 100 

LMS High High Low 100 

LMV High High High 100 

 

Table 5.4 shows the parameter for the randomly generated cell architecture including 
the server cluster.  The control parameter 𝑇𝑖 provides to control the service length 
of each cell that user’ s device pass through, The notation Low is mean that cell are 
very short time to service the processing for user’ s device.  The variety of  𝑝𝑖,𝑗 is 
setting the difference processing speed on each server 𝑠𝑖,𝑗 in each cell the High value 
mean that the high different in term of processing speed.  The variety of 𝑇𝑖 provides 
the control of different service length of cell in the user path, High value means some 
cell may be had too short service length, and some cell are too long service length. 

  

The simulation is running on 64,000 cases to compare the performance in term of 
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makespan, overall energy consumption, communication number, communication 
cost, number of a gap ( the remaining gap on each server) , slack, and the average 
performance, respectively.  The result is scheduling base on each cell structure by 
eight type of user’s task flow structure. 

 

 
Figure 5.7: The comparison of 100 cell structure type SSS to 8x100 task flow types. 

 

Figure 5. 7 shows the result of the evaluation algorithm performance in comparison 
with candidate algorithms while scheduling the random generated eight types x 100 
data set into the arbitrary cell structure type SSS.  The SSS type is defined for short 
service length, low variety of processing speed and all cell is quite same service 
length. For this kind of cell structure, it affects to the energy consumption that related 
to the communication number and communication cost. Because the service time is 
too short, that can’t assign that much task to the server in each cell that is generated 
many transmission overheads. The task flow type LTL also affect this type of structure 
because this task structure is high computation consume on each task and to many 
dependency tasks to wait before process the child task. 
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Figure 5.8: The comparison of 100 cell structure type SSV to 8x100 task flow types. 

 

Figure 5. 8 shows the result of the algorithm performance compares with candidate 
algorithms while scheduling the random generated eight types x 100 data set into the 
arbitrary cell structure type SSV.  The SSS type defined for the short service length, 
low variety of processing speed but all cell is different the service length.  For this 
kind of cell structure, it has affected the overall energy consumption due to the 
variety of service length. The service time is hard to schedule that also affects to the 
high computing intensive and high dependency task flow LTL. 
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Figure 5.9: The comparison of 100 cell structure type SMS to 8x100 task flow types. 

 

Figure 5. 9 shows the result of the algorithm performance compares with candidate 
algorithms while scheduling the random generated eight types x 100 data set into the 
arbitrary cell structure type SMS.  The SMS type define for the short service length, 
too high different of processing speed but all cell has the same service length.  For 
this kind of cell structure, it affects the overall energy consumption due to the variety 
of service length and processing speed of the server cluster. The user’s task flow that 
affects to this cell structure is LLL because it is a computation intensive task flow 
type, to scheduling on the cell structure that short service length and variety of 
processing speed is not getting the good result. 

 

 

 

 

 

 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

makespan energy commNum commCost gapNum slack Average

Cells Type: SMS

SLL SLH STL STH LLL LLH LTL LTH



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50 

 
Figure 5.10: The comparison of 100 cell structure type SMV to 8x100 task flow types. 

 

Figure 5. 10 shows the result of the algorithm performance compares with candidate 
algorithms while scheduling the random generated eight types x 100 data set into the 
arbitrary cell structure type SMV.  The SMV type define for the short service length, 
too high different of processing speed and diffident of service length. For this kind of 
cell structure, it has affected the overall energy consumption due to the variety of 
service length and processing speed of the server cluster.  The user’ s task flow that 
affects to this cell structure is LLL because it is a computation intensive task flow 
type, to scheduling on the cell structure that short service length and variety of 
processing speed is not getting the good result. 
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Figure 5.11: The comparison of 100 cell structure type LSS to 8x100 task flow types. 

 

Figure 5. 11 shows the result of the algorithm performance compares with candidate 
algorithms while scheduling the random generated eight types x 100 data set into the 
arbitrary cell structure type LSS. The LSS type define for the long service length, with 
the same processing speed and service length.  For this kind of cell structure, it has 
long duration time to stay in the cell. The result show that the scheduling on average 
are the get the result nearly to the candidate algorithm.  Except for the task flow 
structure type LLL gives lower than 70 percent win in term of energy.  The LLL task 
flow is the high computation intensive task type and hard to use the balance of server 
index to scheduling. It also affects other candidate algorithms too.  
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Figure 5.12: The comparison of 100 cell structure type LSV to 8x100 task flow types. 

 

Figure 5. 12 shows the result of the algorithm performance compares with candidate 
algorithms while scheduling the random generated eight types x 100 data set into the 
arbitrary cell structure type LSV.  The LSV type is the long service length, with the 
same processing speed but to a variety of service length. For this kind of cell structure, 
it has long duration time to stay in the cell.  The result is the lowest overall 
performance, especially to the energy consumption. The task flow type LLL is getting 
impact too. From the chart, the LLL type win in percentage is lower than 60 percent. 
However, another candidate also gets this effect too.  
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Figure 5.13: The comparison of 100 cell structure type LMS to 8x100 task flow types. 

 

Figure 5. 13 shows the result of the algorithm performance compares with candidate 
algorithms while scheduling the random generated eight types x 100 data set into the 
arbitrary cell structure type LMS.  The LMS type is the long service length, with the 
different processing speed but has same service length. For this kind of cell structure, 
it has long duration time to stay in the cell. The average result is too high due to we 
have the time to balance the server load with the server index, and the task can 
complete immediately.  The task flow structure type LLL is also getting the impact, 
but the result is better than other cell structures. 
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Figure 5.14: The comparison of 100 cell structure type LMV to 8x100 task flow types. 

 

Figure 5. 14 shows the result of the algorithm performance compares with candidate 
algorithms while scheduling the random generated eight types x 100 data set into the 
arbitrary cell structure type LMV.  The LMS type is the long service length, with the 
different processing speed and variety of service length. For this kind of cell structure, 
it gets the best result compared to other seven cell structure. The task flow type LLL 
and LTL.  

it has long duration time to stay in the cell. The average result is too high due to we 
have the time to balance the server load with the server index, and the task can 
complete immediately.  The task flow structure type LLL is also getting the impact, 
but the result is better than other cell structures. 

 

In summary concludes, Short service duration affects overall performance, the 
different of processing speed effect to the overall energy consumption, and the 
variety of length affect to makespan and the overall energy consumption. 
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5.3.3 Energy saving comparison 

The performance value in term of energy consumption can explain by downscale of 
the randomly generated task flow and cell structures.  The simulation is setting the 
control parameter from section 5.11, and 5.12, to point the benefit of the proposed 
algorithm in the energy consumption reduction. The setting is set as follow: 

1) Compare one random generated user’s task flow to 20 random generated cell 
structure. The example that, scheduling 𝑮 to 𝑪𝟏, 𝑮 to 𝑪𝟐 until 𝑮 to 𝑪𝟐𝟎. 

2) Compare 50 random generated user’s task flow to one random cell structure. 
Explain that assign 𝑮𝟏 to 𝑪 , 𝑮𝟐 to 𝑪 , until 𝑮𝟓𝟎 to 𝑪. 

3) Compare 50 random generated user’ s task flow to 50 random cell structure, 
which schedules one to one.  It means that assign 𝑮𝟏 to 𝑪𝟏, and 𝑮𝟐 to 𝑪𝟐 
until 𝑮𝟓𝟎 to 𝑪𝟓𝟎. 

The result of the simulation is shown as follow: 

 
Figure 5.15: The energy consumption results from scheduling by assign one task flow 

to 20 random cell structure. 
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Figure 5. 15 shows an average energy consumes on the server Γ𝑆  of the 
proposed algorithm is 284.65 compared to the heuristic algorithm HEFT is 310.1. That 
means an algorithm EAMS-HEC can save 8.2% of processing energy consumption. In 
the cell structure 12, the result is very closet value, its mean that the generated 
structure provides the best effect for heuristic scheduling at the same situation of the 
proposed algorithm, explain that it cannot be grouping, swapping and manage the 
communication channel too much.  Apparently, the average total energy 

consumption Γ𝐺  of the propose algorithm is 1133. 05 and significantly less than 
heuristic algorithm 1417. 95.  Imply that, we can save 20%  of the overall energy 
consumption. 

 

The result of compared 50 random generated user’ s task flow to one random cell 
structure is shown as follow. 

 
Figure 5.16: The energy consumption results of scheduling by assign 50 random 
generated user’s task flow to one random cell structure. 

 

Figure 5.16 shows the benefit of the proposed algorithm in case of the multi-
structure of user’ s task flow on the repeat usage structure that implies to the end 
user run the different application which generated the different shape of the task 
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flow and scheduling on the cell structure that they pass through every day. The result 
shows that an average of total energy consumption can save more than 40% 
compared to the heuristic algorithm. The proposed algorithm is mainly saved energy 
from the communication overhead. In the other word, this algorithm can reduce the 
transmission latency between user’s device and servers that can improve the quality 
of services, and provide the best quality of experience to the end users. 

 

The last comparison is to random generated 50 user’s task flow to 50 random 
cell structure; the result is shown as follow. 

 

 
Figure 5.17: The energy consumption results from scheduling by assign 50 random 

generated user’s task flow to 50 random cell structure. 

 

Figure 5. 17 shows the result the proposed algorithm in the situation of the 
scheduling a random user’ s task flow to the arbitrary cell structure.  The simulates 
scenario of the user use the different application that generated different task flow 
and schedule to the cell structure that provides on the different path. The result also 
claims that the proposed algorithm can save the overall energy for the multiple 
random situations more than 20% compared to the heuristic algorithm.  
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CONCLUSION 

The result of simulation presented the proposed algorithm with the scenario 
of a smart car, and smart city environment is outperformed in perspective of energy 
consumption and communication latency. The direct effect is it can help to increase 
the quality of service and quality of experience. It can be applying to the next future 
application development to utilize the edge computing to handle high energy 
consume work and make the more powerful application and service without 
interrupting the user experience. 
 

 Choosing a wireless network for processing by taking into account the overall 
performance and cutting off a low-efficient server can help reduce overall 
power consumption by enabling interoperability.  There are no gaps and 
waiting times. 

    Grouping by transverse cutting can help reduce waiting times in parallel 
processing.  Continuous processing of workloads and consideration of 
workload relationships in processing schedules can reduce the number of 
data transfers resulting in reduced power consumption. 

 Speed adjust method can be used to compensate for the processing time and 
is suitable for use with intelligent car systems, automatic robots, or unmanned 
aerial vehicles. 

   The combination of all three algorithms:  Cell selection, Task Assignment, 
and Speed adjustment is more powerful and can guarantee all work can be 
complete. 

   All datasets of the user task flow and cell structure constructed from the 
devices used in this study can be used to simulate the mobile edge computing 
research environment. The research is planned to be open source to develop 
this field further. 
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   Based on the EAMS-HEC algorithm, all data sets have an average winning 
rate of 75% for both the makespan, energy consumption, communication 
overhead, and all work guaranteed to complete processing. 

   To compare with the state-of-the-art scheduling EAMS-HEC are outperform 
on energy saving to 20%. 

 
Discussion and Future Works 

The mobile edge computing and energy-aware scheduling are many topics that so 
interesting and practical for the mobile network and IoT industry shows as follow. 

 

 scheduling for multiple user's devices that connect to the same cell. 

 scheduling for a non-stationary server with the different service length. 

 The offloading framework for micro-service on mobile edge computing 
architecture. 
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