

ENERGY AWARE SCHEDULING FOR HETEROGENEOUS MOBILE TASK COMPUTING

Mr. Vittayasak Rujivorakul

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Computer Science and

Information Technology
Department of Mathematics and Computer Science

Faculty of Science
Chulalongkorn University

Academic Year 2017
Copyright of Chulalongkorn University

การจัดตารางงานโดยค านึงถึงพลังงานส าหรับการค านวณภารกิจเคลื่อนที่แบบวิวิธพันธุ์

นายวิทยาศักดิ์ รุจิวรกุล

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต
สาขาวิชาวิทยาการคอมพิวเตอร์และเทคโนโลยีสารสนเทศ ภาควิชาคณิตศาสตร์และวิทยาการ

คอมพิวเตอร์
คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2560
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title ENERGY AWARE SCHEDULING FOR
HETEROGENEOUS MOBILE TASK COMPUTING

By Mr. Vittayasak Rujivorakul
Field of Study Computer Science and Information Technology
Thesis Advisor Professor Chidchanok Lursinsap, Ph.D.
Thesis Co-Advisor Associate Professor Peraphon Sophatsathit, Ph.D.

 Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Doctoral Degree

 Dean of the Faculty of Science

(Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

 Chairman

(Atchara Mahaweerawat, Ph.D.)

 Thesis Advisor

(Professor Chidchanok Lursinsap, Ph.D.)

 Thesis Co-Advisor

(Associate Professor Peraphon Sophatsathit, Ph.D.)

 Examiner

(Assistant Professor Saranya Maneeroj, Ph.D.)

 Examiner

(Assistant Professor Suphakant Phimoltares, Ph.D.)

 External Examiner

(Assistant Professor Saichon Jaiyen, Ph.D.)

 iv

THAI ABSTRACT

วิทยาศักดิ์ รุจิวรกุล : การจัดตารางงานโดยค านึงถึงพลังงานส าหรับการค านวณภารกิจ
เ คลื่ อนที่ แบบวิ วิ ธ พันธุ์ (ENERGY AWARE SCHEDULING FOR HETEROGENEOUS
MOBILE TASK COMPUTING) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ศ. ดร.ชิดชนก เหลือ
สินทรัพย์, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: รศ. ดร.พีระพนธ์ โสพัศสถิตย์ {, 66 หน้า.

ปัญหาของการจัดล าดับการส่งชุดของงานที่มีความสัมพันธ์กันจากโทรศัพท์มือถือของผู้ใช้ไป
ยังเครื่องที่ให้บริการหลายตัวที่เชื่อมต่อกับเซลล์เครือข่ายขณะที่ผู้ใช้ก าลังเคลื่อนที่ไปตามเซลล์เหล่านี้
ด้วยความเร็วต่าง ๆ ได้รับการศึกษาในวิทยานิพนธ์ฉบับนี้ ปัญหาที่ท้าทายคือความเร็วในการท างาน
ของแต่ละเครื่องที่ให้บริการและความเร็วในการเคลื่อนที่ของผู้ใช้ท าให้ไม่สามารถท างานร่วมกันได้
อย่างลงตัวซึ่งจะน าไปสู่ความยากในการก าหนดก าหนดกลุ่มงานที่มีความสัมพันธ์กันให้กับแต่ละเครื่อง
ที่ให้บริการ โดยต้องใช้เวลาในการประมวลผลกลุ่มงานพร้อมกันกับการใช้พลังงานในการสื่อสาร
ระหว่างเครื่องที่ให้บริการภายในเซลล์เดียวกันและพลังงานที่ใช้ในอุปกรณ์ของผู้ใช้ให้น้อยที่สุด
การศึกษาครั้งนี้น าเสนอขั้นตอนวิธีใหม่ในการจัดตารางงานที่มีความสัมพันธ์กันภายใต้ข้อ จ ากัด จาก
ปัญหาเหล่านี้ สามแนวคิดใหม่เกี่ยวกับ (1) การเลือกเซลล์เพ่ือด าเนินการตามขั้นตอนที่ก าหนดให้กับ
อัลกอริทึม (2) การแบ่งและก าหนดล าดับงานให้กับเครื่องที่ให้บริการในเซลล์ที่เลือกและ (3) สลับ
ล าดับงานที่ก าหนดไว้เบื้องต้นเพ่ือให้ความยาวของการประมวลผลสั้นที่สุดและใช้พลังงานน้อยที่สุด
ได้ถูกน าเสนอในการศึกษานี้ จากผลการทดลองเปรียบเทียบกับขั้นตอนวิธีที่ใช้ในปัจจุบันเช่น HEFT,
PEFT, HETS จากกราฟการท างานของงานสังเคราะห์ที่ซับซ้อนหลายแบบ ผลลัพธ์ที่ได้แสดงให้เห็นว่า
ส่วนใหญ่ของความยาวของการประมวลผลที่พบโดยขั้นตอนวิธีที่น าเสนอจะสั้นกว่าที่พบในขั้นตอนวิธี
อ่ืน ๆ แต่ในแง่ของการใช้พลังงานผลลัพธ์ทั้งหมดที่ก าหนดโดยขั้นตอนวิธีที่น าเสนอจะใช้พลังงานน้อย
กว่าที่ได้จากข้ันตอนวิธีอ่ืน ๆ อย่างมีนัยส าคัญ

ภาควิชา คณิตศาสตร์และวิทยาการ
คอมพิวเตอร์

สาขาวิชา วิทยาการคอมพิวเตอร์และเทคโนโลยี
สารสนเทศ

ปีการศึกษา 2560

ลายมือชื่อนิสิต

ลายมือชื่อ อ.ที่ปรึกษาหลัก

ลายมือชื่อ อ.ที่ปรึกษาร่วม

 v

ENGLISH ABSTRACT

5473106723 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
KEYWORDS: ENERGY AWARE SCHEDULING / MOBILE EDGE COMPUTING / MOBILE SCHEDULING

VITTAYASAK RUJIVORAKUL: ENERGY AWARE SCHEDULING FOR HETEROGENEOUS MOBILE
TASK COMPUTING. ADVISOR: PROF. CHIDCHANOK LURSINSAP, Ph.D., CO-ADVISOR: ASSOC.
PROF. PERAPHON SOPHATSATHIT, Ph.D.{, 66 pp.

The problem of scheduling a set of dependent tasks from a user mobile device to several
servers in communication cells while the user is moving along these cell in various speed is studied
in this thesis. The challenging issue is the execution speed of each server and the speed of user’s
movement are not compatible. This leads to the difficulty of assigning and finishing the subset of
scheduled dependent tasks to each server within the limitation of execution time during passing a
cell. Another concern involved this study is the constraints on the length of makespan in terms of
minimum communication time among servers in the same cell and the energy consumed by the
servers as well as the energy spent by user’s mobile device. This study proposed a new algorithm
to schedule a set of dependent tasks under the constraints from these issues. Three new concepts
of (1) selecting cells for executing scheduled tasks proposed algorithm, (2) partitioning and
scheduling tasks to be assigned to the servers in the selected cell, and (3) shuffling the tentatively
assigned tasks of all servers to minimize the makespan and energy consumption were proposed in
this study. The experimental results were compared with the current practically used algorithms,
i.e. HEFT, PEFT, HETS based on several complex synthetic task flow graphs. The obtained results
showed that the most of makespan lengths found by our algorithm are shorter than those found
by the other algorithms. But in terms of energy consumption, all results scheduled by our algorithm
significantly consume less energy than those from the other algorithms.

Department: Mathematics and Computer
Science

Field of Study: Computer Science and
Information Technology

Academic Year: 2017

Student's Signature

Advisor's Signature

Co-Advisor's Signature

 vi

ACKNOWLEDGE MENTS

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor Professor Chidchanok
Lursinsap for the continuous support and guidance though out the course of my
study. I would also like to thank my co- advisor Associate Professor Peraphon
Sophatsathit for the helpful suggestion on the research. Also, the dissertation
committee: Associate Professor Soranya Maneeroj, Associate Professor Suphakant
Phimoltares, Dr Atchara Mahaweerawat, and Associate Professor Saichon Jaiyen
whose useful suggestions and penetrating analysis help shape this study.

Finally, I would like to thank the Office of the Higher Education Commission
for financial support of this research under the Higher Education Research
Promotion Scholarship

CONTENTS
 Page

THAI ABSTRACT ... iv

ENGLISH ABSTRACT ...v

ACKNOWLEDGEMENTS ... vi

CONTENTS ... vii

LIST OF TABLES ... ix

LIST OF FIGURES .. x

CHAPTER 1 INTRODUCTION .. 1

1.1 Objectives ... 2

1.2 Scope of Work ... 3

1.3 Contribution ... 3

1.4 Dissertation Organization ... 4

CHAPTER 2 LITERATURE... 5

2.1 Task Scheduling Algorithm .. 5

2.2 Mobile Cloud Computing and Network Architecture .. 6

2.3 Code Offloading Techniques .. 8

2.4 Comparative Algorithms Analysis ... 9

2.4.1 Selected Algorithms ... 9

CHAPTER 3 PROBLEM FORMULATION ... 11

3.1 User Task Flows ... 11

3.2 Studied Wireless Network Cell Architecture .. 13

3.3 Energy Model ... 16

3.4 Studied of User Speed Control and Condition ... 18

 viii

 Page

CHAPTER 4 PROPOSED METHOD ... 20

4.1 Cell Selection Algorithm .. 20

4.2 Task Assignment Algorithm ... 25

4.3 Speed Adjustment .. 31

CHAPTER 5 EXPERIMENTS AND RESULTS ... 34

5.1 Experimental Setup .. 34

5.1.1 Random User Task Flow Generator .. 34

5.1.2 Random Cells Generator .. 38

5.2 Comparison Metrics .. 41

5.3 Performance Evaluation Results .. 41

5.3.1 One cell scenario .. 42

5.3.2 Multiple cells scenario ... 45

5.3.3 Energy saving comparison ... 55

CONCLUSION ... 58

Discussion and Future Works ... 59

REFERENCES ... 60

VITA .. 66

ix

LIST OF TABLES

Table Page

Table 4.1: An example cell information in a set of 𝑪′. ... 23

Table 4.2: Steps of the cell selection algorithm to process the provider
information 𝐶′from Table 4.1. .. 23

Table 4.3: Step to assign task set level 1 from user’s task flow into server in cell 29

Table 4.4: Step to assign task set level 1 from user’s task flow into server in cell 30

Table 5.1: The parameters for randomly generated task flow on one cell scenario
performance evaluation. ... 42

Table 5.2: Comparison of makespan, links, communication cost and energy for
HAMS-HEC and HEFT with 27 random task flows. ... 43

Table 5.3: Setting parameter for the random generated of user task flow. 45

Table 5.4: Setting parameter for the random generated of cell architecture. 46

x

LIST OF FIGURES

Figure Page

Figure 3.1: An example of the user task flow graph. .. 12

Figure 3.2: An example of cell architecture. There are eight cells. 13

Figure 3.3: An example server cluster in each cell. .. 14

Figure 4.1: Cell structure and user path moving time line. ... 21

Figure 4.2: An example of task assignment in difference processing speed servers
and algorithm parameters. ... 25

Figure 4.3: An example of user task flow for demonstrate algorithm. 27

Figure 4.4: The result of task assignment to cell 𝑐1.. 29

Figure 4.5: Simulation case of slow down speed adjustment ... 31

Figure 4.6: Simulation case of speed up adjustment to exit cell before the
deadline. ... 32

Figure 4.7: Simulation case of no changing speed. ... 32

Figure 5.1: An example of task flow random generator. .. 35

Figure 5.2: An example of task flow random generator. .. 36

Figure 5.3: An example of generated task flow. ... 37

Figure 5.4: An Example of cells and servers random generator 39

Figure 5.5: An Example of cells and servers random generator. 40

Figure 5.6: Comparison of quality ... 44

Figure 5.7: The comparison of 100 cell structure type SSS to 8x100 task flow 47

Figure 5.8: The comparison of 100 cell structure type SSV to 8x100 task flow 48

Figure 5.9: The comparison of 100 cell structure type SMS to 8x100 task flow 49

Figure 5.10: The comparison of 100 cell structure type SMV to 8x100 task flow. 50

xi

Figure 5.11: The comparison of 100 cell structure type LSS to 8x100 task flow 51

Figure 5.12: The comparison of 100 cell structure type LSV to 8x100 task flow 52

Figure 5.13: The comparison of 100 cell structure type LMS to 8x100 task flow 53

Figure 5.14: The comparison of 100 cell structure type LMV to 8x100 task flow 54

Figure 5.15: The energy consumption results from scheduling by assign one task
flow to 20 random cell structure. ... 55

Figure 5.16: The energy consumption results of scheduling by assign 50 random
generated user’s task flow to one random cell structure. .. 56

Figure 5.17: The energy consumption results from scheduling by assign 50
random generated user’s task flow to 50 random cell structure. 57

1

CHAPTER 1

INTRODUCTION

In Mobile Edge Computing (MEC)[1], Mobile Cloud Computing (MCC)[2], Small
Cell Cloud (SCC) [3] Wireless network architecture, and Vehicular Network, non-
stationary mobile users can send the task flow from their devices to processing on the
nearby heterogeneous servers provided by the service provider, within the SCC wireless
network. The task flow is described by a directed acyclic graph (DAG) of application
tasks. The question is how user task flow can operate over a small cells wireless
network with limited service boundaries and can guarantee all assigned task is
completed in time before leaving the network with minimal power required. This
requires a robust algorithm to handle the tasks. In addition, research issue on the
heterogeneous environment scheduling is still being studied extensively.

Most available scheduling algorithms such as HEFT[4], PEFT[5], CPOP[4] often
choose the task from the queue that is optimized for server processing, this increases
server utilization and minimizes the makespan. However, they do not take into account
some of the critical constraints described below.

 Firstly, with the advantage of mobile cloud computing technology and small
cell wireless network, the environment has changed from a processor node with no
time limited to a processed cell through a wireless network having limited time to stay
in the network cell. Moreover, the server in the network may not be able to connect
to the servers in another network. To prepared the suitable environment, network
cells selection must be performed. Unfortunately, most of the existing network cell
selection mechanisms [6] consider only the signal strength and data rate of the
network without taking the computation capability into account.

2

 Secondly, most of the existing heterogeneous scheduling algorithms focus on
makespan. PEFT[5], PHTS[7], MOHEFT[8], and HVS[9] focus on execution time. CEAS[10]
focuses on execution time, energy, and deadline constraints. Researchers on Genetic
Algorithm (GA)[11], Particle Swarm Optimization (PSO)[12], and Ant Colony Optimization
(ACO) [13] are applied to scheduling on the cloud system with energy consumption
constraint. However, the time complexity is too high. Other energy- aware mobile
scheduling techniques are offloading algorithm [14] that focus on offload by decision
policy to save energy on mobile devices. However, they do not take care of task
dependency.

 Bearing the uncertainty of the processing and transmission performance of the
server, along with modified by the congestion of the application in mind, it may happen
that the task submitted may not get processed before the user leaves the network.
New algorithms that can adjust the time to stay on the network longer without
affecting the user experience must be developed to help ensure successful processing
of tasks.

Motivated by the above aspects, this dissertation addresses the problem of
non-stationary mobile task flow scheduling constrained using energy-aware offloading
tasks with dependency onto the limited- time access stationary servers that are
connected to the small- cell wireless network. The energy- aware offload scheduling
algorithms will be proposed while the focusing on the overall energy consumption
and the time to finish the task before the deadline.

1.1 Objectives

The objectives of this study are as follows:

 To derive a scheduling algorithm for offloading tasks from non- stationary user
to a stationary service provider under low energy stipulation.

 To derive an objective function for task scheduling on the mobile edge
computing environment.

3

1.2 Scope of Work

In this dissertation, the scope of work is constrained as follows:

 The wireless network architecture requires that the user stay connected to the
server inside the network, having a level of service confined to the strength of
the signal.

 The performance of the network depends on the volume of congestion of the
communication channel at that time.

 Each server can send data to another server within the same network but
cannot send across the network. Before leaving the network, the server must
send the data back to the user's device.

 Each server is different in terms of execution speed, and speed of data transfer.
It can process all type of tasks sent by a user. They also consume different
levels of energy.

 A user's mobile device can be connected to one wireless network at a time.
The device can receive information about the network from the route planning
and communication protocols. System performance, and energy consumption
rate, and data transfer efficiency are known.

 The tasks of user's mobile device to be offloaded are organized in the form of
a task flow graph. The device can use this graph to evaluate the time spent on
the processing and transmission of data.

1.3 Contribution

This dissertation proposes an objective function for reducing the energy
consumption of the whole system under the conditions that the user travels through
a network having limited service boundaries in order to minimize the overall energy
consumption. The amount of energy consumption encompasses user device, network
equipment, and the server. The processor is diverse in processing power and data
transmission capabilities. The time spent on processing and transmitting data is

4

converted into energy as a condition of the decision. This work also proposes three
relating algorithms as follows.

The first algorithm is to select a network cell including server within a given
travel route. To provide the service range consistent with the type of work to be sent
and makes it is possible to utilize the network efficiently with low energy consumption.

The second algorithm is a grouping of interrelated tasks and manages the time
to gather and send data to reduce the amount of traffic and overhead, which directly
affects the energy consumption for users and system devices.

The third algorithm is to adjust the user's movement speed to correspond to
the workload exported to the server. It still maintains the minimum travel time by
using minimal energy and can guarantee the completion of the work, thus increasing
the satisfaction of the system.

1.4 Dissertation Organization

This dissertation is organized as follows. Chapter 2 describes the related
backgrounds. Problems formulation and scope are described in Chapter 3. Chapter 4
provides the detail of the proposed method. Experiments and results are presented
in Chapter 5, Discussion and future work concluded in Chapter 6.

5

CHAPTER 2

LITERATURE

This chapter presents the background of mobile scheduling with energy

awareness on mobile edge computing environment. The existing algorithms and

architecture are reviewed and discussed.

2.1 Task Scheduling Algorithm

Scheduling problem has been proved to be NP- complete in the general case

as well as several limitations. Heterogeneous-Earlies-Finish-Time(HEFT) [4] algorithm

and the Critical-Path-on-a-Processor (CPOP) algorithm [4]are two well know algorithms

for scheduling on heterogeneous computing environment. HEFT algorithm selects the

highest ranking jobs on each level and determines the options to be processed. It

reduces the earliest finish time using the insertion-base method. On the other hand,

CPOP algorithm uses up and down priority to prioritize tasks. They differ in processor

selection which schedules essential tasks to the processor so as to reduce the overall

running time of critical tasks. Path-Based-Heuristic-Task-Scheduling (PHTS)[7] algorithm

focuses on reducing the production process. PHTS consists of three steps: (1) The path

priority to select all possible paths from the given graph and to sort by descending

order; (2) Task selection select the tasks from the sorted paths; (3) Processor selection

to assign tasks to the processor by reducing the completion time. All algorithms run

on processors with unlimited service times and do not focus on energy saving.

The enhancing of HEFT and CPOP algorithm called, EHEFT and ECPOP [15] are

proposed to address the time and energy efficient task flow scheduling. Both

6

algorithms use RE performance metric to identify inefficient processors and shut them

down to reduce energy consumption.

There are several algorithms to solve multi-objective task flow scheduling by

metaheuristic optimization techniques, for example Particle Swarm Optimization (PSO)

[16] , Ant Colony Optimization (ACO) [13] , and Genetic Algorithms (GA) [11] , while

maintaining user QoS[17] requirements. However, one disadvantage of these methods

is long computational time due to slow convergence.

2.2 Mobile Cloud Computing and Network Architecture

 Satyanarayanan[18] showed the VM- based cloudlet that could improve

usability on the user interaction between the mobile device and cloudlet with the low

latency. Simanta et al.[19] to prototyped a reference architecture for the mobile device

code offloading to cloudlet VM within the single-hop proximity. They applied to face

recognition to revises to offload the resource- intensive execution and provided the

rapid delivery and rapid application active time.

Fesehaye et al.[20] studied the impact of cloudlet in interactive mobile cloud

application such as file editing, video streaming, and collaborative chatting. The result

found that cloudlet could reduce the data transfer delay and increased the throughput

of content delivery. Suggestions from the experimental were the maximum cloudlet

number should not over than two hops.

Lui et al. [21] introduced mobile cloud architecture and the state of the art of

mobile cloud computing with offloading technology. The applications are mobile

computing on augmented reality (AR) , Remote HealthCare, and web. That showed

opportunities for comprehensive energy- saving interaction, the overhead of virtual

machine migration, privacy, and security.

7

Duo and Heinzelman[22] demonstrated the utilization of edge-server (cloudlet)

in the mobile cloud hybrid architecture (MOCHA) and set up network latency

measurements. The result showed that dynamic profiling and random server selection

approach could utilize cloudlet and provide acceptable latency with high redundancy.

Di Valerio and Lo Presti [23] used Markov Decision Process (MDP) to improve

the mobile user experience with the optimization of virtual machines (VMs) allocation

across the femtocell mobile cloud computing. The system overhead, network delay,

and migration cost were taking into account and benchmarked with the efficient

heuristics.

Vondra and Becvar [17] proposed the computing cells selection algorithm to

increase user's satisfaction with the transmission and computation delay experienced

in small cells could network (SCeNBs) . The simulation results of the proposed

algorithm could provide higher satisfaction compared to the competitive approaches

for all type of backhauls (ADSL, GPON).

Lobillo et al. [24] introduced a Small Cell Manager (SCM) to optimizes the

cloud- enabled small cells operation. The concepts could be deployed in an LTE

environment at the centralized entity (Gateway) to decrease complexity and provided

greater control.

Barbarossa et al.[25] showed the distributed cloud scenario on the 5G network

to integrated Cloud, Femtocloud, Microcell, and Small cell to provide the Quality of

Experience (QoE) and Quality of Service (QoS) with minimum transmit energy under

computational constraint and minimum transmit power under delay constraint.

Liu et al. [26] proposed the converged edge infrastructure for future called CONCERT

based on control/data plane decoupling various physical resources. The radio interface

equipment, computational resources are controlled and presented as virtual resources

which software-defined services.

8

Luan et al.[27] showed the concepts and main features of Fog computing, the

use case scenario to be deployed at the shopping center, parkland, inter- state bus,

and vehicular fog computing networks. The main features were wireless, local services,

and distributed management. The concepts showed the environment of computing

shifted to the streets or shopping malls. Its opened the research issues on network

management and service delivery.

Kaur et al. [28] presented the architecture for task selection and scheduling

using container-as-a-service (CoaaS). The cooperative game theory and multi-objective

function were developed to reduce an energy consumption and makespan by

memory, CPU, and user budget, lightweight containers on virtual machines were used

to reduce the overhead and response time and overall energy consumption on fog

computing device.

2.3 Code Offloading Techniques

Kaur[29] compared the transmission technique to offloading code and the

method of application partition on mobile cloud computing. The route based

techniques were selecting the best cloud-path for offloading work. The resource-based

techniques selected the best resource based on following criteria: energy cost,

bandwidth, reliability, service quality, and dependency level. Techniques such as

depth- first search (DFS) , game theory, min- cut maximum flow. Cloudlet based

techniques showed that multi-threaded applications could send messages to a nearby

server. An application partitioning method showed that graph-based partition algorithm

could be applied offloading technique according to CPU load, network condition, and

user input. The adaptive bandwidth partitioning used weighted graph object relation

to avoid the overhead of dynamic partitioning. Moreover, combining static analysis and

dynamic profiling required bandwidth to minimize the time saving and energy

consumption.

9

Flores et al. [30] proposed the solution to migrate the limitation of code

offloading, code profiling, integration complexity, dynamic configuration of the system,

offloading scalability. The result of evaluation by offloading an NQueens algorithm

from smartphone to cloud calculated how to place n queens on and n x n chessboard.

That showed offloading as a service was a primary challenge and limitation. Zhang et

al.[31] developed the optimal offloading algorithm to make an offloading decision by

using a Markov Decision Process (MDP) with intermittent connectivity to minimize the

computation and offloading the cost of the task flow as a job queue with the threshold

policy.

2.4 Comparative Algorithms Analysis

 Many existing heterogenous scheduling algorithms have different tasks priority

and processor assignments. In this work, HEFT[4] , PEFT[5] , HETS[32] , CEAS[10] , and

DGES[33] are selected to compare with one cell scenario benchmark. For the multiple

cells scenario, this dissertation has enhanced the feature of the candidate to supported

the intermitted processing architecture.

2.4.1 Selected Algorithms

Heterogeneous Earlies-Finish-Time (HEFT): This state of the art scheduling has

two-step of the process. First is sorting the task with the priority of upward rank value

base on computation and communication cost. Second is selected processor to assign

the task that has lower earliest available time by using the insertion method.

Predict Earliest Finish Time (PEFT) : The algorithm uses optimistic cost table

(OCT) to indicate the maximum optimistic processing time of the child task. The task

10

priorities use the average of OCT upward rank and the optimistic EFT to forecast the

finish time of the next steps.

Heterogeneous Edge and Task Scheduling (HETS) : This algorithm focuses on

the minimization of communication overhead, which calculates the edge priority as

well as node priority.

Cost and Energy Aware Scheduling (CEAS) : The algorithm uses the method to

sequence and parallel tasks merging to reduce the execution cost and reduce the

energy consumption while meeting the deadline constraint. The VM reuse policy is

proposed to utilize the slack time to save energy of leased VM instance.

Global DVFS-enable Energy-efficient Scheduling (GDES): This energy awareness

algorithm generates minimum dynamic energy consumption by reassigning tasks to

processor slack.

All of the above algorithms cannot directly support multi-cell operation. In comparing

cases with multiple cell travel, the policy needs to be modified to stop processing and

return the result to user devices, then sending data to the next cell. Time and energy

are taken into account from the first cell until the finish. The network cell is viewed as

a processing environment, and the processor is represented by a server capability

inside the cell.

11

CHAPTER 3

PROBLEM FORMULATION

The main problem is scheduling a task flow from a mobile user device to process

on a server that connects to a wireless network with limited coverage service time.

However, low-efficiency selection of network cells and servers are affected by the

power consumption to complete the task flow. An algorithm for Energy Aware Mobile

Scheduling for Heterogeneous Edge Computing (EAMS-HEC) selecting the appropriate

network cells for continuous processing is proposed. Details are described below.

3.1 User Task Flows

The task flow of on the user's device is represented by a Directed Acyclic Graph
(DAG) that can estimate the processing time and data transmission time. The selected
tasks are assigned to the stationary server under the wireless network that the user's
device can connect to when they reach the service coverage area while moving at a
fixed average speed.

Definition 1: A user task flow graph 𝑮 = (𝑽, 𝑫, 𝑬) is a DAG representing the
relationship between tasks to be processed by several servers. 𝑽 = {𝑣1, … , 𝑣𝑛} is a set
of tasks; 𝑫 = {𝑑1, … , 𝑑𝑛} is a set of executed data and instructions corresponding for
each 𝑣𝑖 ; and 𝑬 = {(𝑣𝑖, 𝑣𝑗)|𝑣𝑖, 𝑣𝑗 ∈ 𝑽} is a set of directed edges connecting dependent
tasks. An edge (𝑣𝑖 , 𝑣𝑗) implies that task 𝑣𝑖 must be processed before 𝑣𝑗 .

12

Figure 3.1: An example of the user task flow graph.

Figure 3. 1 shows an example of a task graph. There are eight tasks, 𝑣1 to 𝑣8,
and three sets of independent tasks which are {𝑣1, 𝑣2, 𝑣3}, {𝑣4, 𝑣5}, and {𝑣6, 𝑣7, 𝑣8}.

Definition 2: The estimated processing time of each 𝑣𝑖 at user’ s device, denoted as
𝑝(𝑑𝑖), is the estimated time to execute 𝑣𝑖 based on the processing speed of user’ s
device.

Definition 3: The sending time 𝜏(𝑠𝑒𝑛𝑑)(𝑑𝑖) is the time to send the data of size 𝑑𝑖
from user’s device to a server.

Definition 4: Result data 𝑑𝑜is the amount of data generated by a server as the result
of processing the received input data 𝑑𝑖 from user’s device.

Definition 5: The receiving time 𝜏(𝑟𝑒𝑐𝑒𝑖𝑣𝑒)(𝑑𝑜) is the waiting time of user’ s device or
other server for receiving the result of size 𝑑𝑜 from a processing server.

13

3.2 Studied Wireless Network Cell Architecture

The studied wireless network cell architecture consists of a set of server
clusters. In, each server cluster is called a cell. The number of servers in each cell is
not equal. Let 𝑪 = {𝑐1, … , 𝑐𝑘} denote a set of cells. Some of them are connected as
shown in Figure 3. 2. For example, 𝑐1 is connected to 𝑐2 and 𝑐2 is connected to
𝑐3.But, 𝑐1is not connected to 𝑐4 and 𝑐5. We assume that a user’s vehicle must drive
along a path passing through some of connected cell. One possible path is driving
through 𝑐1 → 𝑐8 → 𝑐3 → 𝑐2 → 𝑐4 → 𝑐7 → 𝑐6. The shape of each cell is assume
to be circular. The radius of each cell is not equal. However, the region of cell 𝑐𝑖 may
overlap with the connected cell 𝑐𝑗 due to the signal strength.

Figure 3.2: An example of cell architecture. There are eight cells.

In each cell region, there is a set of servers located at different positions inside
the region. Furthermore, the distribution of servers within the region is already pre-
determined by the service provider. The scheduling algorithm obtains the information
of server location from the service provider. The servers in each cell region can
communicate with each other, but they cannot communicate with the servers in other
cells. At cell 𝑐𝑖 , let 𝑺𝑖 = {𝑠𝑖,1, … , 𝑠𝑖,𝑚} be a set of servers in cell 𝑐𝑖 .

14

Figure 3.3: An example server cluster in each cell.

Figure 3. 3 shown an example of the server cluster in each cell. The black
square is representing to the server. In cell 𝑐1, there are three servers, 𝑠1,1 , 𝑠1,2, and
𝑠1,3.

Definition 6: User’ s device processing speed 𝑢 is the amount of data of size 𝛿

processed in one unit time.

Definition 7: Server processing speed 𝑝𝑖,𝑗 of server 𝑠𝑖,𝑗 is the amount of data of size
𝑘𝑖,𝑗𝛿 process in one unit time. 𝑘𝑖,𝑗 is a constant defined for server 𝑠𝑖,𝑗 .

Definition 8: Processing time 𝑡𝑖,𝑗 to process data 𝑑𝑎 from task 𝑣𝑎on server 𝑠𝑖,𝑗 is
computed by the following equation.

𝑡𝑖,𝑗 =
𝑑𝑎

𝑘𝑖,𝑗𝛿
 (3.1)

Definition 9: Processing energy constant 𝛼𝑖,𝑗 is the amount of energy consumed by
the server 𝑠𝑖,𝑗 for processing data in one unit time.

15

Definition 10: Transmission energy constant 𝜆𝑖,𝑗 is the amount of energy consumed
by the server 𝑠𝑖,𝑗 for transmitting the processed data back to user or other server in
one unit time.

Definition 11: Transmission energy constant 𝛾 is the amount of energy consumed by
user’s device for transmitting data to the server in one unit time.

Definition 12: Transmission energy constant 𝛽𝑖,𝑗 is the amount of energy consumed
by cell 𝑐𝑖 for transmitting the data between user’s device to server and server to other
server in one unit time.

Definition 13: Cell capability 𝜌𝑖 of cell 𝑐𝑖 is the summation of server processing
speed measured in terms of user’s device speed as follows

𝜌𝑖 = ∑ 𝑝𝑖,𝑗

𝑛𝑖

𝑗=1

= ∑ 𝑘𝑖,𝑗𝛿

𝑛𝑖

𝑗=1

 (3.2)

where 𝑛𝑖 is a number of servers in cell 𝑐𝑖 .

For example in cell 𝑐1 if server 𝑠1,1 has processing speed 𝑝1,1 = 2𝛿 ,server
𝑠1,2has processing speed 𝑝1,2 = 3𝛿, and server 𝑠1,3has processing speed 𝑝1,3 = 1𝛿 .
From equation 3.2 the cell capability 𝜌1 of cell 𝑐1 is 6𝛿.

16

3.3 Energy Model

The amount of energy consumed in this study determined by converting the
processing time and transmission time into the energy form.

Definition 14: Server processing energy consumption 𝑒𝑖,𝑗 is the summation of time

to processing assigned tasks from task flow 𝐺 multiply by processing energy constant
𝛼𝑖,𝑗 show as follow equation.

𝑒𝑖,𝑗 = ∑ 𝛼𝑖,𝑗 𝑡𝑖,𝑗

𝑛𝑘

𝑘=1

(𝑑𝑘) (3.3)

Where 𝑛𝑘 is number of vertices from task flow 𝐺 assigned to server 𝑠𝑖,𝑗 .

Definition 15: The server sending time 𝜋𝑖,𝑗
(𝑠𝑒𝑛𝑑)(𝑏) is the time to send the data of size

𝑏 from processing server 𝑠𝑖,𝑗 to other servers.

Definition 16: The server receiving time 𝜋𝑖,𝑗
(𝑟𝑒𝑐𝑒𝑖𝑣𝑒)(𝑏) is the waiting time of server

𝑠𝑖,𝑗 for receiving the result of size 𝑏 from a processing server.

Definition 17: Server sending energy consumption 𝑟𝑖,𝑗
(𝑠𝑒𝑛𝑑)

(𝑏) is the energy to send
the data of size 𝑏 from processing server 𝑠𝑖,𝑗 to other servers show as follow equation.

𝑟𝑖,𝑗
(𝑠𝑒𝑛𝑑)

(𝑏) = 𝜆𝑖,𝑗 ⋅ π𝑖,𝑗
(send)(b) (3.4)

Definition 18: Server receiving energy consumption 𝑟𝑖,𝑗
(𝑟𝑒𝑐𝑒𝑖𝑣𝑒)

(𝑏) is the energy of

server 𝑠𝑖,𝑗 for receiving the result of size 𝑏 from a processing server. show as follow
equation.

17

𝑟𝑖,𝑗
(𝑟𝑒𝑐𝑒𝑖𝑣𝑒)

(𝑏) = 𝜆𝑖,𝑗 ⋅ π𝑖,𝑗
(𝑟𝑒𝑐𝑒𝑖𝑣𝑒)(b) (3.5)

Definition 19: Total server energy consumption 𝛤𝑠 is the summation of 𝑒𝑖,𝑗 and
𝑟𝑖,𝑗 from all selected server to processing task flow 𝐺. Can find by follow equation.

Γ𝑆 = ∑ ∑ (𝑒𝑖,𝑗 + 𝑟𝑖,𝑗
(𝑟𝑒𝑐𝑒𝑖𝑣𝑒)(𝑏) + 𝑟𝑖,𝑗

(𝑠𝑒𝑛𝑑)
(𝑏))

𝑛𝑗

𝑗=1

𝑚𝑖

𝑖=1

 (3.6)

where 𝑚𝑖 is number of selected cell from the user path, 𝑛𝑗 is the number of selected
server in each cell 𝑐𝑖 .

Definition 20: The cell sending time 𝛱𝑖
(𝑠𝑒𝑛𝑑)(𝑏) is the time to send the data of size

𝑏 from network cell equipment to the processing server and user’s device.

Definition 21: The cell receiving time 𝛱𝑖
(𝑟𝑒𝑐𝑒𝑖𝑣𝑒)(𝑏) is the waiting time of network cell

equipment for receiving the result of size 𝑏 from a processing server.

Definition 22: Total cells energy consumption 𝛤𝐶 is the summation of communication
time between user’s device and server multiply by 𝛽𝑖 .

Γ𝐶 = ∑ 𝛽𝑖 (Πi
(𝑟𝑒𝑐𝑒𝑖𝑣𝑒)(b) + τΠi

(send)(b))

 𝑚𝑖

𝑖=1

 (3.7)

Where 𝑚𝑖 is number of selected cell from the user path.

18

Definition 23: Total user’ s device energy consumption 𝛤𝑈 is the summation of
communication time between user’s device to the server multiply by 𝛾.

Γ𝑈 = ∑ 𝛾 ⋅

𝑛𝑖

𝑖=1

𝜏(𝑠𝑒𝑛𝑑)(𝑑𝑖) + ∑ 𝛾 (τ(receive)(𝑑𝑜))

 𝑛𝑜

𝑜=1

 (3.8)

where 𝑛𝑖 is number of tasks in task flow graph 𝐺 sent to the servers, 𝑛𝑜 is number of
tasks returned form the servers to user’s device after processing.

Definition 24: Total energy consumption in the system 𝛤𝐺 is the summation of the
total user’ s device energy consumption Γ𝑈 , total cells energy consumption Γ𝐶 , and
total server energy consumption Γ𝑆 show as follow equation.

Γ𝐺 = ΓU + Γ𝐶 + Γ𝑆 (3.9)

3.4 Studied of User Speed Control and Condition

The minimum speed limit determines the speed of the user's movement. The
definition of variable 𝐴1 and the maximum speed are defined in variable 𝐴2. If the
user moves slower than the minimum speed, they will not be able to reach their
destination on time. And if the user moves faster than the maximum speed, they will

not be able to connect and access the network cell. The variable 𝜐 is the average
speed of the user's movement. The equation can be written as follows.

𝜐 ∈ [𝐴1, 𝐴2] (3.10)

Definition 22: Cell service length 𝜙𝑖 is the distance of user path through cell 𝑐𝑖 .

Definition 23: Duration time 𝑇𝑖 is the time to stay on cell 𝑐𝑖 , depends on user moving
speed 𝜐 and distance of each cell 𝜙𝑖 . As shown by the following equation:

19

𝑇𝑖 =
𝜙𝑖

𝜐
 (3.11)

The speed of the user device is inversely proportional to the time it is
connected to the wireless network, which affects the amount of workload that can be
sent out to the servers. It was done by starting from the time spent processing on the
network shown by the variable 𝑇𝑖

′′ , the new speed can be obtained by the following
equation.

υ′ =
𝜙𝑖

𝑇𝑖
′ (3.12)

20

CHAPTER 4

PROPOSED METHOD

This dissertation proposes an algorithm for scheduling task flows from non-
stationary user’s device to processed on stationary servers connected to wireless cells
network. This work is divided into three main steps, which are related to the algorithm
presented. The first step is to select the appropriate cell for processing as shown in
Algorithm 1. The second step is to group and assigning the task flow into each server
by considering the task dependency and transmission overhead that affects to energy
consumption as shown in Algorithm 2. Finally, the user's speed adjustment algorithm
is proposed to guarantee the success of the processing before disconnecting from the
network as shown in Algorithm 3. This work aims to reduce the overall system energy
consumption and maintain user experience that allows users to reach their destination
in time.

4.1 Cell Selection Algorithm

The decision to select the appropriate cell user path that defines in Section 3.2
for this dissertation is focused on the cell capability 𝜌𝑖 that define in Definition 13,
which is related to the server processing speed 𝑝𝑖,𝑗 in definition 7 . Cell information is
provided by the service provider. The example of cell information from Figure 3.3 are
shown by the following format [𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒, 𝑇𝑖 , 𝜌𝑖, 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑖,𝑗]. For example of cell 𝑐1

, The information is [0, 130, 6𝛿, { 3𝛿, 1𝛿, 2𝛿}]. 𝑐1 has 𝑐𝑖
(𝑠𝑡𝑎𝑟𝑡)

= 0; duration to stay on the
cell 𝑇𝑖 = 130; Cell performance 𝜌1 = 6𝛿 that is calculated from the summation of
processing speed of each server. 𝑠1,1 has 𝑝1,1 = 3𝛿, 𝑠1,2 has 𝑝1,2 = 1𝛿 , and 𝑠1,3 has
𝑝1,3 = 2𝛿 .

21

When the user’s start the trip passes through the cells service region, they will
give the information from the service provider for all possible connected cells.

Figure 4.1: Cell structure and user path moving time line.

Figure 4. 1 shows cell structure when user start to moving pass through cell

𝑐1, 𝑐2, and 𝑐3. 𝑐1
(𝑠𝑡𝑎𝑟𝑡) is the time point that user first enters the region of cell 𝑐1.

Cell end service time 𝑐1
(𝑒𝑛𝑑) is the time point that user leave the region of cell 𝑐1.

And θ is the constant to reserve transition time between any neighboring cells. From
the cell structure the cell selection algorithm is show as follow:

22

Algorithm 1 Cell Selection.

Input: A set of all cell 𝑪′ on the user path.

Output: A selected cell in set 𝑪.

1:

2:

3:

4:

Sorting 𝑪′ by the start time to connecting.

Let 𝑐𝑥 be the first cell to be connecting.
Let 𝑪 be an empty set.
𝑪 = {𝑐𝑥} ∪ 𝑪

5: For 𝑐𝑖 ∈ 𝐶′ do

6: If 𝑐𝑖
(𝑠𝑡𝑎𝑟𝑡)equal to 𝑐𝑥

(𝑠𝑡𝑎𝑟𝑡)then
7: If (𝜌𝑖 × 𝑇𝑖) > (𝜌𝑥 × 𝑇𝑥) then

8:

9:

Replace 𝑐𝑥 in 𝑪 with 𝑐𝑖 .

Let 𝑐𝑥 = 𝑐𝑖 .

10: EndIf

11: Else

12: If 𝑐𝑖
(𝑠𝑡𝑎𝑟𝑡)

≥ (𝑐𝑥 (𝑒𝑛𝑑) − 𝜃) and 𝑐𝑖
(𝑠𝑡𝑎𝑟𝑡)

< 𝑐𝑥
(𝑒𝑛𝑑)then

13:

14:

𝐶 = {𝑐𝑖} ∪ 𝑪 .
Let 𝑐𝑥 = 𝑐𝑖 .

15: EndIf

16: EndIf

17:

18:

End For
return 𝑪

23

The following is an example of how the algorithm works by simulating a cell
through 10 cells from the following information table.

Table 4.1: An example cell information in a set of 𝑪′.
𝑐𝑖 Start time 𝑇𝑖 𝜌𝑖 𝑇𝑖 × 𝜌𝑖 Set of 𝑝𝑖,𝑗
𝑐1 0 130 3𝛿 390 {1𝛿, 2𝛿}

𝑐2 0 120 6𝛿 720 {3𝛿, 3𝛿}

𝑐3 100 160 4𝛿 640 {1𝛿, 2𝛿, 1𝛿}

𝑐4 100 190 4𝛿 760 {2𝛿, 2𝛿}

𝑐5 120 150 5𝛿 750 {2𝛿, 2𝛿, 1𝛿}

𝑐6 290 130 6𝛿 780 {2𝛿, 2𝛿, 1𝛿, 1𝛿}

𝑐7 320 100 5𝛿 500 {3𝛿, 2𝛿}

𝑐8 350 150 2𝛿 300 {1𝛿, 1𝛿}

𝑐9 400 100 4𝛿 400 {2𝛿, 2𝛿}

𝑐10 400 120 6𝛿 720 {2𝛿, 2𝛿, 2𝛿}

The following steps show how to select a cell from Table 4.1 by setting 𝜃 = 20 .

Table 4.2: Steps of the cell selection algorithm to process the provider information
𝐶′from Table 4.1.

Cell 𝒄𝒊
(𝒔𝒕𝒂𝒓𝒕) 𝒄𝒊

(𝒆𝒏𝒅) 𝒄𝒙
(𝒔𝒕𝒂𝒓𝒕) 𝒄𝒙

(𝒆𝒏𝒅) 𝒄𝒙
(𝒆𝒏𝒅)

− 𝜽 𝑪

Initial step set 𝑐𝑥 = 𝑐1 and put 𝑐1 in 𝑪

𝑐1 0 130 0 130 110 {𝑐1}

Start to get each cell 𝑐𝑖 from 𝑪′

𝑐2
(𝑠𝑡𝑎𝑟𝑡)

𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑐𝑥
(𝑠𝑡𝑎𝑟𝑡) , but 𝑐2 has 𝑇𝑖 × 𝜌𝑖 greater than 𝑐𝑥 , replace 𝑐1 by

𝑐2 in 𝑪, set 𝑐𝑥 = 𝑐2.

𝑐2 0 120 0 130 110 {𝑐2}

𝑐3
(𝑠𝑡𝑎𝑟𝑡)

𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑐𝑥
(𝑠𝑡𝑎𝑟𝑡) and𝑐3

(𝑠𝑡𝑎𝑟𝑡)
≥ 𝑐𝑥

(𝑒𝑛𝑑)
− 𝜃, add 𝑐3 to 𝑪, set 𝑐𝑥 = 𝑐3.

𝑐3 100 260 0 120 100 {𝑐2,𝑐3}

24

𝑐4
(𝑠𝑡𝑎𝑟𝑡)

𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑐𝑥
(𝑠𝑡𝑎𝑟𝑡) , but 𝑐4 has 𝑇𝑖 × 𝜌𝑖 greater than 𝑐𝑥 , replace 𝑐3 by 𝑐4

in 𝑪, set 𝑐𝑥 = 𝑐4.

𝑐4 100 290 100 260 240 {𝑐2,𝑐4}

𝑐5
(𝑠𝑡𝑎𝑟𝑡)

𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑐𝑥
(𝑠𝑡𝑎𝑟𝑡) and 𝑐5

(𝑠𝑡𝑎𝑟𝑡)
≤ 𝑐𝑥

(𝑒𝑛𝑑)
− 𝜃, skip this cell.

𝑐5 120 270 100 290 270 {𝑐2,𝑐4}

𝑐6
(𝑠𝑡𝑎𝑟𝑡)

𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑐𝑥
(𝑠𝑡𝑎𝑟𝑡) and𝑐6

(𝑠𝑡𝑎𝑟𝑡)
≥ 𝑐𝑥

(𝑒𝑛𝑑)
− 𝜃, add 𝑐6 to 𝑪, set 𝑐𝑥 = 𝑐6.

𝑐6 290 420 100 290 270 {𝑐2,𝑐4, 𝑐6}

𝑐7
(𝑠𝑡𝑎𝑟𝑡)

𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑐𝑥
(𝑠𝑡𝑎𝑟𝑡) and 𝑐7

(𝑠𝑡𝑎𝑟𝑡)
≤ 𝑐𝑥

(𝑒𝑛𝑑)
− 𝜃, skip this cell.

𝑐7 320 420 290 420 400 {𝑐2,𝑐4, 𝑐6}

𝑐8
(𝑠𝑡𝑎𝑟𝑡)

𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑐𝑥
(𝑠𝑡𝑎𝑟𝑡) and 𝑐8

(𝑠𝑡𝑎𝑟𝑡)
≤ 𝑐𝑥

(𝑒𝑛𝑑)
− 𝜃, skip this cell.

𝑐8 350 500 290 420 400 {𝑐2,𝑐4, 𝑐6}

𝑐9
(𝑠𝑡𝑎𝑟𝑡)

𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑐𝑥
(𝑠𝑡𝑎𝑟𝑡) and𝑐9

(𝑠𝑡𝑎𝑟𝑡)
≥ 𝑐𝑥

(𝑒𝑛𝑑)
− 𝜃, add 𝑐9 to 𝑪, set 𝑐𝑥 = 𝑐9.

𝑐9 400 500 290 420 480 {𝑐2,𝑐4, 𝑐6, 𝑐9}

𝑐10
(𝑠𝑡𝑎𝑟𝑡)

𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑐𝑥
(𝑠𝑡𝑎𝑟𝑡) , but 𝑐10 has 𝑇𝑖 × 𝜌𝑖 greater than 𝑐𝑥 , replace 𝑐9 by

𝑐10 in 𝑪, and set 𝑐𝑥 = 𝑐10.

𝑐10 400 520 400 420 480 {𝑐2,𝑐4, 𝑐6, 𝑐10}

The result of an algorithm are ready in set 𝐶 = {𝑐2, 𝑐4, 𝑐6, 𝑐10}, with capabilities
{6𝛿, 4𝛿, 6𝛿, 6𝛿} ,And detail information of each cell is:

𝑐2 = { 𝑠2,1, 𝑠2,2} , with processing speed {3𝛿, 3𝛿}.

𝑐4 = { 𝑠4,1, 𝑠4,2} , with processing speed {2𝛿, 2𝛿}.

𝑐6 = { 𝑠6,1, 𝑠6,2, 𝑠6,3, 𝑠6,4} , with processing speed {2𝛿, 2𝛿, 1𝛿, 1𝛿}.

𝑐10 = { 𝑠10,1, 𝑠10,2, 𝑠10,3} , with processing speed {2𝛿, 2𝛿, 2𝛿}.

25

4.2 Task Assignment Algorithm

User’ s device can be sending task flow which in a group to processing on the server
cluster that connected to the cell. The primary energy consumes in the wireless
network system is the communication power, which this assumption the objective
function is proposed to reduce overall energy consumption in the system and
guarantee the task flow processing is complete on time. From the difference processing
speed and communication capability of each server, an algorithm is developed to
assign task flow into the cluster server in the cell within the path.

Figure 4.2: An example of task assignment in difference processing speed servers and

algorithm parameters.

Figure 4.2 shows an example of assigned task 𝑣1with data size 𝑑1 = 6 from user task
flow 𝑮 = (𝑽, 𝑫, 𝑬) to the different processing speed servers 𝑠𝑖,𝑗 . The server 𝑠1,1 has
processing speed 𝑝1,1 = 1𝛿 and server 𝑠1,2 has 𝑝1,2 = 2𝛿 that is the server cluster
connected to cell 𝑐1that have the duration time 𝑇1 = 10 . When the task 𝑑1 assign

to the difference processing speed server the time point of 𝑠𝑖,𝑗
(𝑖𝑛𝑑𝑒𝑥) is also different.

26

From an example, If 𝑑1 assign to 𝑠1,1 the 𝑠1,1
(𝑖𝑛𝑑𝑒𝑥)is point to 6/1 = 6, On the other

hand, if 𝑑1 assign to 𝑠1,2 the 𝑠1,2
(𝑖𝑛𝑑𝑒𝑥)is point to 6/2 = 3 because of the server has

difference processing speed. 𝑠𝑖,𝑗
(𝑠𝑡𝑎𝑟𝑡) is the time that server 𝑠𝑖,𝑗 starts to process the

receive data from user’s device. Server end service time 𝑠𝑖,𝑗
(𝑒𝑛𝑑) is the time that server

𝑠𝑖,𝑗 stops processing the user’s data.

Algorithm 2 Task Flow Assignment Algorithm.

Input: Given User’s device task flow in set 𝑮(𝑽, 𝑫, 𝑬).

 Set of cell 𝑪 from Algorithm 1.

Output: Scheduling of 𝑮(𝑽, 𝑫, 𝑬) on cluster servers 𝑠𝑖,𝑗 .

1: Leveling and sorting tasks in 𝑮 by the size of �̃�(𝑑𝑖) in each level into set
𝑾.

2: For 𝑐𝑖 ∈ 𝑪 do

3:

4:

5:

Set 𝑠𝑖,𝑗
(𝑖𝑛𝑑𝑒𝑥)

= 𝑐𝑖
(𝑠𝑡𝑎𝑟𝑡) for all 𝑗.

Set 𝑠𝑖,𝑗
(𝑒𝑛𝑑)

= 𝑐𝑖
(𝑒𝑛𝑑) for all 𝑗.

Set 𝑡𝑖𝑚𝑒 = 𝑐𝑖
(𝑠𝑡𝑎𝑟𝑡).

6: While 𝑡𝑖𝑚𝑒 < 𝑐𝑖
(𝑒𝑛𝑑) do

7:

8:

Get the first element 𝑣𝑘 from 𝑾
𝑾 = 𝑾 − {𝑣𝑘}

9: Let 𝑠𝑖,𝑗 = arg min
𝑠𝑖,𝑥 ∈𝑐𝑖

(𝑠𝑖,𝑥
(𝑖𝑛𝑑𝑒𝑥) + 𝑡𝑖,𝑥(𝑑𝑘))

10:

11:

Assign 𝑣𝑘to 𝑠𝑖,𝑗

Update 𝑠𝑖,𝑗
(𝑖𝑛𝑑𝑒𝑥) = 𝑠𝑖,𝑗

(𝑖𝑛𝑑𝑒𝑥) + 𝑡𝑖,𝑗(𝑑𝑘)

12: If 𝑣𝑙 is a child of 𝑣𝑘 such that 𝑣𝑙 does not have data dependency
from other 𝑣𝑎 . then

13: Assign 𝑣𝑙 to 𝑠𝑖,𝑗 server.

14: EndIf

15: EndWhile

16: EndFor

27

An example of how algorithm two works. The user task flow is a large workload that
cannot be processed in a single cell. By simulating a small circle, each task is a task
that needs to be processed, and the link is the relationship between tasks.

Figure 4.3: An example of user task flow for demonstrate algorithm.

Figure 4.1 shows the task flow from user’s device 𝑮 = (𝑽, 𝑫, 𝑬) which have 17 tasks
from 𝑣1to 𝑣17. 𝑣1 have data 𝑑1= 1, which mean there has three level of
independent tasks. The edge 𝐸 represents the relation between tasks. For example
𝑣7 is depends on {𝑣1, 𝑣2, 𝑣3} it can’t start to processing if the dependent tasks not
complete processed.

Level 1 has tasks {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6} with corresponding data sizes of
{1,2,7,8,7,5}.

Level 2 has tasks {𝑣7, 𝑣8, 𝑣9, 𝑣10, 𝑣11} with corresponding data sizes of
{10, 14, 6, 9, 8}.

Level 3 has tasks {𝑣12, 𝑣13, 𝑣14, 𝑣15, 𝑣16, 𝑣17} with corresponding data sizes of
{6, 4, 6, 3, 5, 7}.

28

Assume that the result of Algorithm 1 is shown as follows.

𝑐1 = (0, 10, 3𝛿, {1𝛿, 2𝛿 }).

𝑐2 = (10, 10, 6𝛿, {2𝛿, 2𝛿, 2𝛿}).

𝑐3 = (25, 10, 4𝛿, {2𝛿, 2𝛿}).

The information from the cell is explained in detail as follows:

 𝑐1has start service at time 0, service length 𝑇𝑖 = 10 , cell capability 𝜌1 = 3𝛿 ,
and connects to servers 𝑠1,1 and 𝑠1,2 with processing speeds of 1𝛿 and 2𝛿 ,

respectively.

 𝑐2 has start service at time 10, service length 𝑇𝑖 = 10 , cell capability 𝜌2 = 6𝛿,
and connects to servers 𝑠2,1, 𝑠2,2, and 𝑠2,3, with processing speeds 2𝛿, 2𝛿,
and 2𝛿, respectively.

 𝑐3 has start service at time 25, service length 𝑇𝑖 = 10 , cell capability 𝜌3 = 4𝛿,
and connects to servers 𝑠3,1and 𝑠3,2 , with processing speeds 2𝛿 and 2𝛿 ,

respectively.

After leveling and sorting level 1 task set by task size, the sorted tasks are
{𝑣4, 𝑣3, 𝑣5, 𝑣6, 𝑣2, 𝑣1} with corresponding data sizes of {8, 7, 7, 5, 2, 1}. Table 4.2
shows the steps to assign the first level of user task flow 𝑮 into servers in cell 𝑐1.

29

Table 4.3: Step to assign task set level 1 from user’s task flow into server in cell 𝑐1,
which duration time 𝑇𝑖 = 10, 𝑐1

(𝑠𝑡𝑎𝑟𝑡)
= 0, 𝑐1

(𝑒𝑛𝑑)
= 10, 𝑝1,1 = 1𝛿, and 𝑝1,2 = 2𝛿.

Tasks 𝑣𝑘 𝑑𝑘 𝑠1,1
(𝑖𝑛𝑑𝑒𝑥) 𝑠1,2

(𝑖𝑛𝑑𝑒𝑥) Assign to

Initial step - 0 0 -

𝑣4 8 0 8/2 = 4 𝑠1,2

𝑣3 7 0 4 𝑠1,1

𝑣5 7 7/1 = 7 4 𝑠1,2

𝑣6 5 7 7.5 + (5/2) = 10 𝑠1,2

𝑣2 2 7 10 𝑠1,1

𝑣1 1 (7+2) = 9 10 𝑠1,1

Final step - 10 10 All server are
fully assign

The result of all step is shown in the following figure:

Figure 4.4: The result of task assignment to cell 𝑐1.

30

All tasks is processed on servers 𝑠1,1 and 𝑠1,2 have returned the result to user
before user exit the cell and disconnect. Next step is provided example of assign task
set level 2 and 3 to next cell.

The new sorting of task set in level 2 is { 𝑣8, 𝑣7, 𝑣10, 𝑣11, 𝑣9} with corresponding
data sizes of {14, 10, 9, 8,6}. Task set Level 3 is {𝑣17, 𝑣12, 𝑣14, 𝑣13, 𝑣16, 𝑣15} with
corresponding data sizes of {7, 6, 6, 5, 4, 3}.

Table 4.4: Step to assign task set level 1 from user’s task flow into server in cell 𝑐2,
which service time = 10, and 𝑝2,1 = 1𝛿, 𝑝2,2 = 2𝛿. and 𝑝2,3 = 2𝛿.

Tasks 𝑣𝑘 𝑑𝑘 𝑠2,1
(𝑖𝑛𝑑𝑒𝑥) 𝑠2,2

(𝑖𝑛𝑑𝑒𝑥) 𝑠2,2
(𝑖𝑛𝑑𝑒𝑥) Assign to

Initial step - 0 0 0 -
𝑣8 14 14/2=7 0 0 𝑠2,1

𝑣7 10 7 0 0 𝑠2,2

Found 𝑣12 that is a dependent task of 𝑣7. 𝑣12 and does not have data dependency
from other tasks Assign 𝑣12 to the same server 𝑠2,2.

𝑣12 6 7 (10/2)=5 10 𝑠2,2

𝑣10 9 7 5 + (6/2)=8 0 𝑠2,3

𝑣11 8 7 8 9/2 = 4.5 𝑠2,3

Found 𝑣17 that is a dependent task of 𝑣11 and does not have data dependency from
other tasks .Assign 𝑣17 to the same server 𝑠2,3.

𝑣17 7 7 8 4.5+(4/2)=6.5 𝑠2,3

Server 𝑠2,3 are full processing capability
𝑣9 6 7 8 6.5+(7/2)=10 𝑠2,2

All tasks in task set level 2 already setting the remaining task is

{ 𝑣14, 𝑣16, 𝑣13, 𝑣15} which data { 6, 5, 4, 3}.
𝑣14 6 7 + (6/2) =10 7 10 𝑠2,2

31

Final step - 10 7+(6/2)=10 10 -

The remaining tasks are {𝑣13, 𝑣16, 𝑣15} the scheduler can alarm to user or notify to
the automatic smart car to reduce speed to extends time to stay on cell 𝑐2 rather

than go to process on next cell.

The benefit of the proposed algorithm is to reduce the transmission cost by process
layer by layer and enhance merging the child that without dependent parent
processing task. That provides low transmission cost between server.

4.3 Speed Adjustment

The speed adjustment algorithm was developed to guarantee the success of
the process, using the principle of stretching or shrinking time from the speed at which
it changes into the more extended service area of the network. The speed adjustment
will be in the limited speed range by considering the speed of the following case.

Case 1 : When it cannot be processed at the scheduled time, in order not to have to
throw a job and re-do it in the next cell, it must be slowed down. That allows all jobs
to be processed and sent back to the user's device.

Figure 4.5: Simulation case of slow down speed adjustment

32

Case 2: When performance results are shorter than service times or due to slowdowns.
During processing, there are two options: allocating new workgroups by considering the
cost of re-scheduling or speeding up user movement to compensate for lost time.

Figure 4.6: Simulation case of speed up adjustment to exit cell before the deadline.

Case 3: In case of passing through the cell while in progress, it is advised that
performance is down due to user congestion. Accelerate this range to maintain
overall efficiency of processing. Rush into cells with higher processing power (note
may also be considered in the cell selection process).

Figure 4.7: Simulation case of no changing speed.

From all of three cases, we can create the speed adjustment algorithm as follow.

33

Algorithm 3 Algorithm for Speed adjust.

Input: Information on cell 𝑐𝑖 .

Output: The new recommended speed for 𝑐𝑖 .

1:

2:

3:

4:

5:

Let 𝐴1 and 𝐴2 be the limit speed form eq. (3.10).

Let 𝑇𝑖 be the estimated service time of 𝑐𝑖 from eq. (3.11).

Let 𝑇𝑖
′ be the new service time for cell 𝑐𝑖 .

Let 𝑣 be the the average speed of the user's movement

Let 𝜙𝑖 be the distance of user path through cell 𝑐𝑖 .

6: If 𝑇𝑖
′′ > 𝑇𝑖 then

7: Calculate new speed 𝑣′ from eq. (3.11).

8: If new 𝑣 ′ > 𝐴1 and 𝑣 ′ < 𝐴2 then

9: Decrease speed by set 𝑣 to 𝑣′.

10: Else

11: Don’t change speed and notify the user.

12: EndIf

12: EndIf

13: Return new speed 𝑣

The example to use the benefit of algorithm 3 can be explained continuously
from the output of algorithm 2. We have the remaining task {𝑣13, 𝑣16, 𝑣15} need

more time to process all of them in 𝑐2. The remaining time to process is {4, 5, 3} and
current 𝑇𝑖 = 10, the new time we need to process the whole task set including the
remaining task is 10 + (5/2) = 12.5 . Assume that the distance that user moving in cell
𝑐2is 𝜙2 = 200𝑚 , speed limit 𝐴1 = 50 𝐾𝑚/ℎ, and 𝐴2 = 60 𝐾𝑚/ℎ. The new speed
is calculating from equation (3.12).

𝑣′ =
200

12.5
 = 16 m/s = 57.6 Km/h

The new speed 𝑣′ are in the range [50, 60] that makes possible to process the whole
task flow finished in 𝑐2.

34

CHAPTER 5

EXPERIMENTS AND RESULTS

This section is describing the experimental setup, the evaluation measure, and the
result, comparison of the proposed EAMS-HEC algorithm with other scheduling
methods. The simulation is set by the control parameters, and the result shows the
performance of makespan, transmission cost, and overall energy consumption.

5.1 Experimental Setup

 This dissertation controls an experimental environment by defining the
variable for the user task flow and the structure of the network cell as follow.

5.1.1 Random User Task Flow Generator

To evaluate the relative performance of the proposed algorithm, compare with others
candidate. The DAG generation program was developed for the simulation which
follows parameters.

 n: number of tasks (𝑣𝑖) in user task flow (𝑮).

 shape: this parameter affects the high (number of levels) and the width
(number of tasks in each level), can find by the number of levels divided by
the average number of tasks in all level.

 dep: this is a number of child dependent task that relate to set 𝑬 of task
flow 𝑮 = (𝑽, 𝑫, 𝑬).

 CCR: Communication to computation ratio. That affect to size of data 𝑑𝑖 ,It is
the ratio of the average communication cost to the average computation
cost. If CCR value is too high, its mean that DAG is communication intensive.

35

The setting of parameters of user task flows for this experiment is show as follow:

 n = [20, 40, 60, 100, 200, 400];

 shape = [0.5, 1.0, 2.0];

 dep = [1, 2, 3, 4, 5];

 CCR = [0.1, 0.5, 1.0, 5.0, 10.0];

The example of generated task flow with the different parameters condition as
shown in this section. From Figure 5.1,each task shows in rectangle and assume that
𝑣1 = 𝑇01, , and assuming the direction of task flow is only top to bottom relation.
The number on the right hand side of each rectangle is the estimated processing time
�̃�(𝑑𝑖) from definition 2.

Figure 5.1: An example of task flow random generator with size n=10, shape=1.0: (a)
low dependency dep=1, (b) medium dependency dep=2, and (c) high dependency

dep=3.

36

Figure 5.1 shows the three examples of different random user task flow with
various of dep parameter that use to evaluate the performance of loosely and tight
dependency.

Figure 5.2: An example of task flow random generator with size n=10: (a) thin task
flow shape=0.5, (b) symmetry task flow shape=1, and (c) fat task flow shape=2.

Figure 5. 2 shows the difference values for the shape parameter that affect the task
flow processing. From Figure 5.2a shows an average number of tasks in all level is 2,
and the number of levels without start and end task is 4. Thus, shape is obtained
from the ratio between 2 and 4 so shape is equal to 0.5. Figure 5.2b and Figure 5.2b
obtain shape as 1.0 and 2.0 in respectively.

37

In addition, this experiment is evaluated on an application task flow that had multiple
starts and multiple ends task which presented by the following figure.

Figure 5.3: An example of generated task flow size n = 40, (a) task flow with one

start and one end, (b) task flow with multiple starts and multiple end tasks.

38

5.1.2 Random Cells Generator

This dissertation separated the environment into two parts; the first part is
described above in the section 5.1.1, the user task flow random generator. The
computation environment is provided by the multiple hop small-cell networks, and
each cell is connected by the different capability servers. The control parameters are
defined as follows:

 𝑛𝑖 : number of cells 𝑐𝑖 that user passes through the path.

 𝑚𝑗 : number of servers 𝑠𝑖,𝑗 in each cell.

 𝑇𝑖 : service length of each cell, to simulate the coverage area for the mobile
user which upon the signal strength of the network device.

 𝑝𝑖,𝑗: computation ratio that compares the server performance with the user
device.

 comm_ratio: communication bandwidth for each server that affects the time
to transmit data between user device and servers.

The setting parameters for network cell structure for this environment are shown as
follow:

 𝑛𝑖= [2, 3, 4, 5, 6, 8, 10];

 𝑚𝑖 = [2, 3, 4, 5, 6];

 𝑇𝑖 = [50, 100, 150, 200, 250, 300];

 𝑝𝑖,𝑗 = [1𝛿, 2𝛿, 3𝛿]

Follow example shows the result of generated network cells architecture with the
different setting parameters.

39

Figure 5.4: An Example of cells and servers random generator with 𝑇𝑖 = 50, 𝑛𝑖=4,
𝑝𝑖,𝑗 = 1𝛿, number of servers (a) 𝑚𝑗=2, (b) 𝑚𝑗 = 2 to 3, and (c) 𝑚𝑗 = 2 to 4.

The random generator tolls are created three different cells architecture for the
environment as shown in Figure 5.4. All of them has four cells in the trips.

(a) has 𝑐1= [1, 1] , 𝑐2=[1, 1], 𝑐3=[1, 1], and 𝑐4=[1, 1].

(b) has 𝑐1= [1, 1] , 𝑐2=[1, 1, 1], 𝑐3=[1, 1], and 𝑐4=[1, 1].

(c) has 𝑐1= [1, 1, 1] , 𝑐2=[1, 1], 𝑐3=[1, 1, 1, 1], and 𝑐4=[1, 1].

Denote that in cell architecture (b) cell 𝑐1 has two servers with performance

𝑠1,1has processing speed 𝑝1,1 = 1𝛿 and 𝑠1,2 has processing speed 𝑝1,2 = 1𝛿 then

the total performance of 𝑐1 is 2𝛿. While cells 𝑐2, 𝑐3, and 𝑐4 get 3𝛿, 2𝛿, and 3𝛿,

respectively.

40

Figure 5.5: An example of cells and servers random generator with 𝑇𝑖 = 100, 𝑛𝑖=2,

number of servers (a) 𝑚𝑗=2, (b) 𝑚𝑗 = 2 to 3, and (c) 𝑚𝑗 = 2 to 4.

From figure 5.5 the random generator tolls are created three different cells
architecture for the environment. All of them has four cells in the trips.

(a) has 𝑐1= [1, 1] , 𝑐2=[3, 2, 1].

(b) has 𝑐1= [1, 2, 3] , 𝑐2=[2, 3].

(c) has 𝑐1= [3, 1, 3] , 𝑐2=[1, 1, 2, 3].

Denote that in cell architecture (c) cell 𝑐1 has three servers with different
performance 𝑠1,1 = 3𝛿, 𝑠1,2 = 1𝛿,and 𝑠1,3 = 3𝛿 then the total performance of 𝑐1

is 7𝛿. 𝑐2 has four servers with different performance 𝑠2,1 = 1𝛿, 𝑠2,2 = 1𝛿, 𝑠2,3 = 2𝛿,
and 𝑠2,4 = 3𝛿 then total performance of 𝑐2 is 7𝛿.

41

5.2 Comparison Metrics

The performance of the proposed algorithm is evaluated by comparing with the
other candidate algorithms are defined as follows.

1. Makespan: Makespan is the completion time of the whole user task flow from
the start of the first tasks to the end of the last task in the task flow. The
shortest makespan is considered as the best result.

2. Communication link: the number of communication between server to
server in the same cell, and between server to the mobile user device that
affects the transmission overhead. The lower number of the link is the best
result.

3. Communication cost: the total cost of transmission in the time domain
defined as a summation of all time use to send and receive data between
server to server, and between servers to the mobile user device.

4. Total energy: The total conversion of energy usage for the whole system in
one trip can calculate by using the equation in section 3.3.

5.3 Performance Evaluation Results

The performance evaluation on the environment is separated into two
scenarios; one cell and multiple cells scenario. The performance of the one cell
scenario is measured on the environment of data without the deadline constraint. On
the other hand, in the situation of multiple cells used to determine the time given
in each cell by allowing the user to move at constant speed.

42

5.3.1 One cell scenario

This experiment is conducted with very long service length cells with difference server
number and combination of user task flow size n = 20, shape= [0.5, 1, 2], dep= [1, 2,
3], and CCR = [0.1, 1.0, 10], the total is 27 type of random task flows. The result
compares with HEFT, PEFT, and HETS is shown as follow.

Table 5.1: The parameters for randomly generated task flow on one cell scenario
performance evaluation.

Table 5.1 shows the task flows 1-9 is the thin shape task flow that has many

chain tasks, task flow 10-18 is the symmetry shape task flow, and task flow 19-27 is
the large task flow that has too many parallel tasks.

43

From the setting, environment follows this is the results of the proposed algorithm
HAMS-HEC compare to HEFT and PEFT, HETS. Table 5. 2 show the part of result of
comparison between HAMS- HEC and HEFT, Other result for PEFT and HETS are
compare in the same metrics.

Table 5.2: Comparison of makespan, links, communication cost and energy for
HAMS-HEC and HEFT with 27 random task flows.

Table 5.2 shows the performance comparison between the proposed algorithm and
HEFT in the term of makespan, links, communication cost and energy. The result of
performance evaluations is described with Better, Equal, and Worse, respectively. By
which means the lowest value is the better

44

Figure 5.6: Comparison of quality of (a) makespan, (b) number of links, (c)

communication cost, and (d) total energy

Figure 5.6 shows the performance of the proposed algorithm compare to three well-
known heterogeneous algorithms HEFT, PEFT, and HETS. The result shows that the
proposed algorithm is a kindly low performance in term of makespan compare with
HEFT and higher performance than two other algorithms. From the result of a number
of a communication link between server to server the proposed algorithm is a high
performance to reduce communication link than HEFT and PEFT, But it nearly
performance compare with HETS, because of its focus on the edges between tasks.
The result of communication cost comparison the propose is higher performance
than HEFT and PEFT related to the number of the communication link. The last chart
is the compared to overall energy consumption; the proposed algorithm is a higher
performance in the average on one cell scenario.

45

5.3.2 Multiple cells scenario

The next experiment is multiple cells scenario. This research generated eight types
of task flow dataset which the random in 100 user task flow for each type. The cells
architecture is also randomly generated into eight types of cells structure with the
100 randomly structure for each type. The number of simulation of one task flow
type to multiple cells architecture is 100 x 800 = 8,000 scheduling. All of simulation
of 8x8 is 8 x 8,000 = 64,000 case.

The structure of generated of user task flow is shown as follow tables.

Table 5.3: Setting parameter for the random generated of user task flow.

Symbol �̃�(𝒅𝒊) Number of
edges 𝑬

𝒅𝒊 Amount of
dataset

SLL Low Low Low 100

SLH Low Low High 100

STL Low High Low 100

STH Low High High 100

LLL High Low Low 100

LLH High Low High 100

LTL High High Low 100

LTH High High High 100

Table 5.3 shows the parameter to set the generated task flow 𝑮 = (𝑽, 𝑫, 𝑬) .The

low �̃�(𝒅𝒊) is mean each task is not the processing intensive task. And the low
number of edge 𝑬 is mean this task flow is low dependency task. When if the
dependency to high it will affect the communication intensive task set due to the
overhead of transmission and will giving high energy consume on the transmission.
The low 𝑑𝑖 is claimed that the task 𝑣𝑖 is not the communication intensive. Can imply

46

that we can control the CCR rate by control the ratio of �̃�(𝒅𝒊) and 𝑑𝑖 . For example,
the task set SLH, STH, LLH, LTH are generated by the high CCR rate and all of them
is communication intensive task flow, Otherwise, is the computation- intensive task
flow.

Table 5.4: Setting parameter for the random generated of cell architecture.

Symbol 𝑻𝒊 Variety of
𝒑𝒊,𝒋

Variety of

𝑻𝒊

Amount of
dataset

SSS Low Low Low 100

SSV Low Low High 100

SMS Low High Low 100

SMV Low High High 100

LSS High Low Low 100

LSV High Low High 100

LMS High High Low 100

LMV High High High 100

Table 5.4 shows the parameter for the randomly generated cell architecture including
the server cluster. The control parameter 𝑇𝑖 provides to control the service length
of each cell that user’ s device pass through, The notation Low is mean that cell are
very short time to service the processing for user’ s device. The variety of 𝑝𝑖,𝑗 is
setting the difference processing speed on each server 𝑠𝑖,𝑗 in each cell the High value
mean that the high different in term of processing speed. The variety of 𝑇𝑖 provides
the control of different service length of cell in the user path, High value means some
cell may be had too short service length, and some cell are too long service length.

The simulation is running on 64,000 cases to compare the performance in term of

47

makespan, overall energy consumption, communication number, communication
cost, number of a gap (the remaining gap on each server) , slack, and the average
performance, respectively. The result is scheduling base on each cell structure by
eight type of user’s task flow structure.

Figure 5.7: The comparison of 100 cell structure type SSS to 8x100 task flow types.

Figure 5. 7 shows the result of the evaluation algorithm performance in comparison
with candidate algorithms while scheduling the random generated eight types x 100
data set into the arbitrary cell structure type SSS. The SSS type is defined for short
service length, low variety of processing speed and all cell is quite same service
length. For this kind of cell structure, it affects to the energy consumption that related
to the communication number and communication cost. Because the service time is
too short, that can’t assign that much task to the server in each cell that is generated
many transmission overheads. The task flow type LTL also affect this type of structure
because this task structure is high computation consume on each task and to many
dependency tasks to wait before process the child task.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

makespan energy commNum commCost gapNum slack Average

Cells Type: SSS

SLL SLH STL STH LLL LLH LTL LTH

48

Figure 5.8: The comparison of 100 cell structure type SSV to 8x100 task flow types.

Figure 5. 8 shows the result of the algorithm performance compares with candidate
algorithms while scheduling the random generated eight types x 100 data set into the
arbitrary cell structure type SSV. The SSS type defined for the short service length,
low variety of processing speed but all cell is different the service length. For this
kind of cell structure, it has affected the overall energy consumption due to the
variety of service length. The service time is hard to schedule that also affects to the
high computing intensive and high dependency task flow LTL.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

makespan energy commNum commCost gapNum slack Average

Cells Type: SSV

SLL SLH STL STH LLL LLH LTL LTH

49

Figure 5.9: The comparison of 100 cell structure type SMS to 8x100 task flow types.

Figure 5. 9 shows the result of the algorithm performance compares with candidate
algorithms while scheduling the random generated eight types x 100 data set into the
arbitrary cell structure type SMS. The SMS type define for the short service length,
too high different of processing speed but all cell has the same service length. For
this kind of cell structure, it affects the overall energy consumption due to the variety
of service length and processing speed of the server cluster. The user’s task flow that
affects to this cell structure is LLL because it is a computation intensive task flow
type, to scheduling on the cell structure that short service length and variety of
processing speed is not getting the good result.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

makespan energy commNum commCost gapNum slack Average

Cells Type: SMS

SLL SLH STL STH LLL LLH LTL LTH

50

Figure 5.10: The comparison of 100 cell structure type SMV to 8x100 task flow types.

Figure 5. 10 shows the result of the algorithm performance compares with candidate
algorithms while scheduling the random generated eight types x 100 data set into the
arbitrary cell structure type SMV. The SMV type define for the short service length,
too high different of processing speed and diffident of service length. For this kind of
cell structure, it has affected the overall energy consumption due to the variety of
service length and processing speed of the server cluster. The user’ s task flow that
affects to this cell structure is LLL because it is a computation intensive task flow
type, to scheduling on the cell structure that short service length and variety of
processing speed is not getting the good result.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

makespan energy commNum commCost gapNum slack Average

Cells Type: SMV

SLL SLH STL STH LLL LLH LTL LTH

51

Figure 5.11: The comparison of 100 cell structure type LSS to 8x100 task flow types.

Figure 5. 11 shows the result of the algorithm performance compares with candidate
algorithms while scheduling the random generated eight types x 100 data set into the
arbitrary cell structure type LSS. The LSS type define for the long service length, with
the same processing speed and service length. For this kind of cell structure, it has
long duration time to stay in the cell. The result show that the scheduling on average
are the get the result nearly to the candidate algorithm. Except for the task flow
structure type LLL gives lower than 70 percent win in term of energy. The LLL task
flow is the high computation intensive task type and hard to use the balance of server
index to scheduling. It also affects other candidate algorithms too.

0

10

20

30

40

50

60

70

80

90

100

makespan energy commNum commCost gapNum slack Average

Cell Types: LSS

SLL SLH STL STH LLL LLH LTL LTH

52

Figure 5.12: The comparison of 100 cell structure type LSV to 8x100 task flow types.

Figure 5. 12 shows the result of the algorithm performance compares with candidate
algorithms while scheduling the random generated eight types x 100 data set into the
arbitrary cell structure type LSV. The LSV type is the long service length, with the
same processing speed but to a variety of service length. For this kind of cell structure,
it has long duration time to stay in the cell. The result is the lowest overall
performance, especially to the energy consumption. The task flow type LLL is getting
impact too. From the chart, the LLL type win in percentage is lower than 60 percent.
However, another candidate also gets this effect too.

0

10

20

30

40

50

60

70

80

90

100

makespan energy commNum commCost gapNum slack Average

Cells Type: LSV

SLL SLH STL STH LLL LLH LTL LTH

53

Figure 5.13: The comparison of 100 cell structure type LMS to 8x100 task flow types.

Figure 5. 13 shows the result of the algorithm performance compares with candidate
algorithms while scheduling the random generated eight types x 100 data set into the
arbitrary cell structure type LMS. The LMS type is the long service length, with the
different processing speed but has same service length. For this kind of cell structure,
it has long duration time to stay in the cell. The average result is too high due to we
have the time to balance the server load with the server index, and the task can
complete immediately. The task flow structure type LLL is also getting the impact,
but the result is better than other cell structures.

0

10

20

30

40

50

60

70

80

90

100

makespan energy commNum commCost gapNum slack Average

Cells Type: LMS

SLL SLH STL STH LLL LLH LTL LTH

54

Figure 5.14: The comparison of 100 cell structure type LMV to 8x100 task flow types.

Figure 5. 14 shows the result of the algorithm performance compares with candidate
algorithms while scheduling the random generated eight types x 100 data set into the
arbitrary cell structure type LMV. The LMS type is the long service length, with the
different processing speed and variety of service length. For this kind of cell structure,
it gets the best result compared to other seven cell structure. The task flow type LLL
and LTL.

it has long duration time to stay in the cell. The average result is too high due to we
have the time to balance the server load with the server index, and the task can
complete immediately. The task flow structure type LLL is also getting the impact,
but the result is better than other cell structures.

In summary concludes, Short service duration affects overall performance, the
different of processing speed effect to the overall energy consumption, and the
variety of length affect to makespan and the overall energy consumption.

0

10

20

30

40

50

60

70

80

90

100

makespan energy commNum commCost gapNum slack Average

Cells Type: LMV

SLL SLH STL STH LLL LLH LTL LTH

55

5.3.3 Energy saving comparison

The performance value in term of energy consumption can explain by downscale of
the randomly generated task flow and cell structures. The simulation is setting the
control parameter from section 5.11, and 5.12, to point the benefit of the proposed
algorithm in the energy consumption reduction. The setting is set as follow:

1) Compare one random generated user’s task flow to 20 random generated cell
structure. The example that, scheduling 𝑮 to 𝑪𝟏, 𝑮 to 𝑪𝟐 until 𝑮 to 𝑪𝟐𝟎.

2) Compare 50 random generated user’s task flow to one random cell structure.
Explain that assign 𝑮𝟏 to 𝑪 , 𝑮𝟐 to 𝑪 , until 𝑮𝟓𝟎 to 𝑪.

3) Compare 50 random generated user’ s task flow to 50 random cell structure,
which schedules one to one. It means that assign 𝑮𝟏 to 𝑪𝟏, and 𝑮𝟐 to 𝑪𝟐
until 𝑮𝟓𝟎 to 𝑪𝟓𝟎.

The result of the simulation is shown as follow:

Figure 5.15: The energy consumption results from scheduling by assign one task flow

to 20 random cell structure.

56

Figure 5. 15 shows an average energy consumes on the server Γ𝑆 of the
proposed algorithm is 284.65 compared to the heuristic algorithm HEFT is 310.1. That
means an algorithm EAMS-HEC can save 8.2% of processing energy consumption. In
the cell structure 12, the result is very closet value, its mean that the generated
structure provides the best effect for heuristic scheduling at the same situation of the
proposed algorithm, explain that it cannot be grouping, swapping and manage the
communication channel too much. Apparently, the average total energy

consumption Γ𝐺 of the propose algorithm is 1133. 05 and significantly less than
heuristic algorithm 1417. 95. Imply that, we can save 20% of the overall energy
consumption.

The result of compared 50 random generated user’ s task flow to one random cell
structure is shown as follow.

Figure 5.16: The energy consumption results of scheduling by assign 50 random
generated user’s task flow to one random cell structure.

Figure 5.16 shows the benefit of the proposed algorithm in case of the multi-
structure of user’ s task flow on the repeat usage structure that implies to the end
user run the different application which generated the different shape of the task

57

flow and scheduling on the cell structure that they pass through every day. The result
shows that an average of total energy consumption can save more than 40%
compared to the heuristic algorithm. The proposed algorithm is mainly saved energy
from the communication overhead. In the other word, this algorithm can reduce the
transmission latency between user’s device and servers that can improve the quality
of services, and provide the best quality of experience to the end users.

The last comparison is to random generated 50 user’s task flow to 50 random
cell structure; the result is shown as follow.

Figure 5.17: The energy consumption results from scheduling by assign 50 random

generated user’s task flow to 50 random cell structure.

Figure 5. 17 shows the result the proposed algorithm in the situation of the
scheduling a random user’ s task flow to the arbitrary cell structure. The simulates
scenario of the user use the different application that generated different task flow
and schedule to the cell structure that provides on the different path. The result also
claims that the proposed algorithm can save the overall energy for the multiple
random situations more than 20% compared to the heuristic algorithm.

58

CONCLUSION

The result of simulation presented the proposed algorithm with the scenario
of a smart car, and smart city environment is outperformed in perspective of energy
consumption and communication latency. The direct effect is it can help to increase
the quality of service and quality of experience. It can be applying to the next future
application development to utilize the edge computing to handle high energy
consume work and make the more powerful application and service without
interrupting the user experience.

 Choosing a wireless network for processing by taking into account the overall
performance and cutting off a low-efficient server can help reduce overall
power consumption by enabling interoperability. There are no gaps and
waiting times.

 Grouping by transverse cutting can help reduce waiting times in parallel
processing. Continuous processing of workloads and consideration of
workload relationships in processing schedules can reduce the number of
data transfers resulting in reduced power consumption.

 Speed adjust method can be used to compensate for the processing time and
is suitable for use with intelligent car systems, automatic robots, or unmanned
aerial vehicles.

 The combination of all three algorithms: Cell selection, Task Assignment,
and Speed adjustment is more powerful and can guarantee all work can be
complete.

 All datasets of the user task flow and cell structure constructed from the
devices used in this study can be used to simulate the mobile edge computing
research environment. The research is planned to be open source to develop
this field further.

59

 Based on the EAMS-HEC algorithm, all data sets have an average winning
rate of 75% for both the makespan, energy consumption, communication
overhead, and all work guaranteed to complete processing.

 To compare with the state-of-the-art scheduling EAMS-HEC are outperform
on energy saving to 20%.

Discussion and Future Works

The mobile edge computing and energy-aware scheduling are many topics that so
interesting and practical for the mobile network and IoT industry shows as follow.

 scheduling for multiple user's devices that connect to the same cell.

 scheduling for a non-stationary server with the different service length.

 The offloading framework for micro-service on mobile edge computing
architecture.

60

REFERENCES

61

1. Salman, O. , et al. , Edge computing enabling the Internet of Things. IEEE World
Forum on Internet of Things, WF-IoT 2015 - Proceedings, 2015: p. 603-608.

2. Tawalbeh, L., Y. Jararweh, and F. Dosari, Large Scale Cloudlets Deployment for
Efficient Mobile Cloud Computing. 2015. 10: p. 70-76.

3. Oueis, J. , et al. , On the impact of backhaul network on distributed cloud
computing. 2014 IEEE Wireless Communications and Networking Conference
Workshops, WCNCW 2014, 2014: p. 12-17.

4. Topcuoglu, H. , S. Hariri, and I. C. Society, Performance- Effective and Low-
Complexity. 2002. 13: p. 260-274.

5. Arabnejad, H. and J. G. Barbosa, List scheduling algorithm for heterogeneous
systems by an optimistic cost table. IEEE Transactions on Parallel and
Distributed Systems, 2014. 25: p. 682-694.

6. Becvar, Z. , J. Plachy, and P. Mach, Path selection using handover in mobile
networks with cloud-enabled small cells. IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications, PIMRC, 2014. 2014-June:
p. 1480-1485.

7. Eswari, R. and S. Nickolas, Path-Based Heuristic Task Scheduling Algorithm for
Heterogeneous Distributed Computing Systems. Advances in Recent
Technologies in Communication and Computing (ARTCom) , 2010 International
Conference on, 2010.

8. Durillo, J. J. , H.M. Fard, and R. Prodan, MOHEFT: A multi-objective list-based
method for workflow scheduling. CloudCom 2012 - Proceedings: 2012 4th IEEE
International Conference on Cloud Computing Technology and Science, 2012:
p. 185-192.

9. Xie, G. , et al. , A High- performance DAG Task Scheduling Algorithm for
Heterogeneous Networked Embedded Systems. 2014.

10. Xie, G. , et al. , Energy-efficient Scheduling Algorithms for Real- time Parallel
Applications on Heterogeneous Distributed Embedded Systems. IEEE
Transactions on Parallel and Distributed Systems, 2017. 28: p. 3426-3442.

62

11. Yu, J., A Budget Constraint Scheduling of Workflow Applications on Utility Grids
using Genetic Algorithms. Workshop on Workflows in Support of Large- Scale
Science (WORKS06), 2006: p. 1-10.

12. Al-Maamari, A. and F.a. Omara, Task Scheduling using Hybrid Algorithm in Cloud
Computing Environments. IOSR Journal of Computer Engineering, 2015. 17: p.
2278-661.

13. Chen, W.-N. and J.Z.J. Zhang, An Ant Colony Optimization Approach to a Grid
Workflow Scheduling Problem With Various QoS Requirements. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 2009. 39: p. 29-43.

14. Chun, B. , et al. , Clonecloud: Elastic Execution Between Mobile Device and
Cloud. Proceedings of the sixth conference on Computer systems, 2011: p. 301-
314.

15. Thanavanich, T. and P. Uthayopas, Efficient energy aware task scheduling for
parallel workflow tasks on hybrids cloud environment. 2013 International
Computer Science and Engineering Conference, ICSEC 2013, 2013: p. 37-42.

16. Rodriguez, M.A. and R. Buyya, and Scheduling Algorithm for Scientific Workflows
on Clouds. 2014. 2: p. 222-235.

17. Vondra, M. and Z. Becvar, QoS- ensuring distribution of computation load
among cloud-enabled small cells. 2014 IEEE 3rd International Conference on
Cloud Networking, CloudNet 2014, 2014: p. 197-203.

18. Satyanarayanan, M. , et al. , The Case for VM- Base Cloudlets in Mobile
Computing. Pervasive Computing, 2009. 8(4): p. 14--23.

19. Simanta, S., et al., A Reference Architecture for Mobile Code Offload in Hostile
Environments. 2012 IEEE/IFIP Conference on Software Architecture and
European Conference on Software Architecture. 2012: p. 282-286.

20. Fesehaye, D. , et al. , Impact of cloudlets on interactive mobile cloud
applications. Proceedings of the 2012 IEEE 16th International Enterprise
Distributed Object Computing Conference, EDOC 2012, 2012: p. 123-132.

63

21. Of, N., N. Of, and N. Of, M OBILE C LOUD C OMPUTING G EARING R ESOURCE -P
OOR M OBILE D EVICES WITH P OWERFUL C LOUDS : A RCHITECTURES , S CIENCE
AND T ECHNOLOGY D I N IU , U NIVERSITY OF A LBERTA. 2013: p. 14-22.

22. Dou, Z. and W.B. Heinzelman, Benefits of Utilizing an Edge Server (Cloudlet)
in the MOCHA Architecture. 2013: p. 1- 49.

23. Di Valerio, V. and F. Lo Presti, Optimal Virtual Machines allocation in mobile
femto- cloud computing: An MDP approach. 2014 IEEE Wireless
Communications and Networking Conference Workshops, WCNCW 2014, 2014:
p. 7-11.

24. Lobillo, F., et al., An architecture for mobile computation offloading on cloud-
enabled LTE small cells. 2014 IEEE Wireless Communications and Networking
Conference Workshops, WCNCW 2014, 2014: p. 1-6.

25. Barbarossa, S. and S.a. Sardellitti, Communicating while computing: Distributed
mobile cloud computing over 5G heterogeneous networks. IEEE Signal
Processing Magazine, 2014. 31(6): p. 45--55.

26. Liu, J., et al., CONCERT: A cloud-based architecture for next-generation cellular
systems. IEEE Wireless Communications, 2014. 21(6): p. 14--22.

27. Luan, T.H., et al., Fog Computing: Focusing on Mobile Users at the Edge. eprint
arXiv:1502.01815, 2015.

28. Kaur, K. , et al. , Container-as-a-Service at the Edge: Trade-off between Energy
Efficiency and Service Availability at Fog Nano Data Centers. IEEE Wireless
Communications, 2017. 24: p. 48-56.

29. Kaur, A., A Comparative Study of Code Offloading Techniques and Application
Partitioning Methods in Mobile Cloud Computing. 2016. 143: p. 1-8.

30. Flores, H., et al., Mobile code offloading: From concept to practice and beyond.
IEEE Communications Magazine, 2015. 53(3): p. 80--88.

31. Zhang, W. , Y. Wen, and D. O. Wu, Energy- efficient scheduling policy for
collaborative execution in mobile cloud computing. Proceedings - IEEE
INFOCOM, 2013: p. 190-194.

32. Masood, A. , et al. , HETS: Heterogeneous Edge and Task Scheduling Algorithm
for Heterogeneous Computing Systems. 2015 IEEE 17th International

64

Conference on High Performance Computing and Communications, 2015 IEEE
7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE
12th International Conference on Embedded Software and Systems, 2015: p.
1865-1870.

33. You, C. , et al. , Energy- Efficient Resource Allocation for Mobile- Edge
Computation Offloading. IEEE Transactions on Wireless Communications, 2017.
16: p. 1397-1411.

65

APPENDIX

66

VITA

VITA

Rujivorakul Vittayasak was born in Bangkok. He received B.Eng from Faculty
of Engineering,Rajamankala Institute of Technology and M. SIT from Kasetsart
University in 2000 and 2005. He received a scholarship from the Higher Education
Research Promotion through the Office of the Higher Education Commission Ph.D.
program in 2011

67

	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1 INTRODUCTION
	1.1 Objectives
	1.2 Scope of Work
	1.3 Contribution
	1.4 Dissertation Organization

	CHAPTER 2 LITERATURE
	2.1 Task Scheduling Algorithm
	2.2 Mobile Cloud Computing and Network Architecture
	2.3 Code Offloading Techniques
	2.4 Comparative Algorithms Analysis
	2.4.1 Selected Algorithms

	CHAPTER 3 PROBLEM FORMULATION
	3.1 User Task Flows
	3.2 Studied Wireless Network Cell Architecture
	3.3 Energy Model
	3.4 Studied of User Speed Control and Condition

	CHAPTER 4 PROPOSED METHOD
	4.1 Cell Selection Algorithm
	4.2 Task Assignment Algorithm
	4.3 Speed Adjustment

	CHAPTER 5 EXPERIMENTS AND RESULTS
	5.1 Experimental Setup
	5.1.1 Random User Task Flow Generator

	5.1.2 Random Cells Generator
	5.2 Comparison Metrics
	5.3 Performance Evaluation Results
	5.3.1 One cell scenario
	5.3.2 Multiple cells scenario
	5.3.3 Energy saving comparison

	CONCLUSION
	Discussion and Future Works

	REFERENCES
	VITA

