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precise risk measure, we require an appropriate claim count process. The common claim

count processes are usually constructed from the Poisson distribution. However, insur-

ance data have generally excess zeros which causes the overdispersion. This violates the

assumption of the Poisson distribution. Therefore, alternative distributions accommo-

dating zero count are explored in literature. The zero inflated Poisson distribution is

one of the distributions widely used for zero count data. In this study, we apply the zero

inflated Poisson distribution to construct an integer valued time series for claim counts.

The model is then applied to construct risk models based on the zero inflated Poisson

time series. We derive some properties and the approximation of the value of the ruin

probability of the constructed models. In addition, we also perform some calculations

of the value of the ruin probability, the value at risk, and the tail value at risk.
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CHAPTER I

INTRODUCTION

Risk measurement is one of the essential measures that can inform actuaries and

risk managers about the degree to which the risk bearing entity. The insurance’s portfolio

can be called as the amount of surplus in the classical risk model. The amount of surplus

process can be expressed by taking account of the inflow of premiums and the outflow

of claim payments and starting with initial reserve. Therefore, we can measure risk of

insurance company through many risk measures such as the ruin probability, the value

at risk and the tail value at risk. In recent years, a majority of researches in actuarial

science focuses on the development of risk models for different underlying distributions

of the arrival of claims, claim sizes and particularly for the claim counts. Several dis-

tributions of claim counts have been explored such as Poisson distribution and Negative

Binomial distribution. Besides the classical distributions, integer valued time series for

claim counts are also introduced into the risk models.

Time series is a sequence of data points measured over time. Two common struc-

tures of time series models are the autoregressive (AR) and the moving average (MA)

structures. The autoregressive structure assumes that the current value of the series can

be explained as a linear regression of past values. The moving average structure assumes

that the current value can be explained as a regression of past values of stochastic terms

called white noises. The original autoregressive and moving average time series models

are mostly studied under the normality assumption and applied to continuous variables

of interest such as stock price markets. Later, the concepts of autoregressive moving

average models were generalized to accommodate time series of counts. For example,

McKenzie (1985) introduced the first autoregressive process integer valued AR(1) model

as a counting process. The properties of the integer valued autoregressive (INAR) and in-

teger valued moving average (INMA) are studied in Al-Osh and Alzaid (1987) and Alzaid

and Al-Osh (1988). These models can be used as claim count models based on binomial

thining operator proposed in Steutel and van Harn (1979).
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Cossette and Marceau (2000) introduced the concept of time series of counts to

the context of insurance risk models. In their study, they introduced the discrete time

risk model with correlated classes of business and studied the impact on the finite time

ruin probability and on the adjustment coefficient. Since then, several studies of the risk

models based on integer valued time series have been intensively studied in literature. For

example, Cossette et al. (2011) studied the classical risk models based on time series pro-

cess based on the Poisson distribution. The Poisson distribution is one of extensive used

distributions for count data. The one important characteristic of the Poisson distribution

is that its expectation and variance are the same. This property may not be applicable

for the data that exhibit overdispersion or underdispersion such as the insurance claim

counts. Therefore, the alternative distributions have been proposed, for instance, Laphu-

domsakda and Suntornchost (2018) introduced the discrete risk model based on negative

binomial moving average (NBMA) model.

However, none of these distributions is suitable for the data with excess of zeros.

For instance, the insurance claim counts having small claims with deductibles and no

claim discounts of automobile portfolio with excess zeros in data. Therefore, alternative

distributions to accommodate zero counts have been proposed through the concept of

zero inflated first introduced by Lambert (1992). The definition of zero inflated Poisson

distribution is stated as follows

P (X = k) =


p+ (1− p)e−λ , if k = 0,

(1− p)
e−λλk

k!
, if k = 1, 2, . . .

where p ∈ (0, 1) and λ > 0. In addition, parameter p represents for the proportion of

zero and if p = 0, we obtain the Poisson distribution. Later on, the zero inflated Poisson

has been applied to many applications such as a manual handling injury prevention strat-

egy trialled (Yau and Lee, 2001), the credibility premiums (Boucher and Denuit, 2008)

and the number of accidents (Boucher et al., 2009). Among these applications, one well

known application of the zero inflated Poisson is to model claim counts. For example, Yip

and Yau (2005) proposed proposed the zero inflated Poisson distribution for the excess

zeros in insurance claim count data. Zhu (2012) proposed zero inflated Poisson time se-



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

ries of counts (ZIP-INGARCH). Aghababaei Jazi et al. (2012) introduced the first order

integer valued AR process with zero inflated Poisson distribution (ZIP-INAR) to model

the count of events in consecutive points of time. Sarul and Sahin (2015) proposed the

zero inflated Poisson distribution as a claim count model to take account excess zeros in

data.

In this study, we apply the zero inflated Poisson to construct new discrete time risk

models based on the zero inflated Poisson moving average and the zero inflated Poisson au-

toregressive models. Moreover, we derive probabilistic properties of the new constructed

risk models, the upper bound of the ruin probability and the risk measures.

The organization of this thesis is as follows. In Chapter 2, we introduce the back-

ground knowledge used throughout this thesis. In Chapter 3, we introduce risk models

based on the first order zero inflated Poisson moving average and qth order zero inflated

Poisson moving average models, and related quantities such as the adjustment coefficient

function, approximations to the value at risk and tail value at risk. Numerical results

studying the trend of the ruin probability and the risk measures are also presented in

Chapter 3. In Chapter 4, we introduce risk models based on the first order zero inflated

Poisson autoregressive model, and related quantities and numerical results are presented.

In Chapter 5, we give discussions and conclusion of this thesis.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

BACKGROUND KNOWLEDGE

In this chapter, we provide some definitions and properties that will be used through-

out this thesis.

2.1 Random Variables and Probabilistic Properties

In this section, we give useful theorems and definitions and some handful techniques

to obtain the probabilistic properties for random variables.

Definition 2.1. Consider a random experiment whose sample space is S. A random

variable X is a function from the sample sapce S into the set or real number R such that

for each interval I in R, the set {s ∈ S |X(s) ∈ I} is an event in S.

Definition 2.2. The set {x ∈ R |x = X(s), s ∈ S} is called the space of random

variable X.

Definition 2.3. If the space of random variable X is countable,then X is called a discrete

random variable.

Definition 2.4. Let RX be the space of discrete random variable X. The function

f : RX → R defined by

f(x) = P (X = x)

is called the probability mass function (pmf) of X.

Theorem 2.5. If X is a discrete random variable with space RX and the probability

mass function f(·), then

(a) f(x) ≥ 0 for all x in RX , and

(b)
∑

x∈RX

f(x) = 1.
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Definition 2.6. The cumulative distribution function F (·) of a random variable X is

defined as

F (x) = P (X ≤ x),

for all real number x.

Theorem 2.7. If X is a random variable with the space RX and f(·) is the probability

mass function of X , then the cumulative distribution F (·) can be defined as

F (x) =
∑
t≤x

f(t),

for x ∈ RX .

Theorem 2.8. The cumulative distribution function F (·) of a random variable X has

the following properties.

(a) lim
x→∞

F (x) = 1 and lim
x→−∞

F (x) = 0,

(b) F (x) is a non decreasing function, that is if x < y,then F (x) ≤ F (y) for all real

numbers x, y,

(c) F (x) is right continuous for all x0 ∈ R and lim
x→x+

0

F (x) = F (x0).

Definition 2.9. The nth moment about the origin of a discrete random variable X, as

denoted by E(Xn), is defined to be

E(Xn) =
∑

x∈RX

xnf(x), (2.1)

for n = 0, 1, 2, . . ., provided the right side converges absolutely and f(·) is the probability

mass function of X.

Furthermore, If n = 1, then E(X) is called the first moment about the origin, or

the expectation. If n = 2, then E(X2) is called the second moment of random variable

X about the origin.
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Definition 2.10. Let X be a discrete random variable with space RX and probability

density mass function f(·). The expectation or the expected value of the random variable

X is defined as

E(X) =
∑

x∈RX

xf(x),

The expectation is also called mean of the random variable X, denoted by µX .

Theorem 2.11. If a and b are any two real numbers,then

E(aX + b) = aE(X) + b.

Definition 2.12. Let X be a random variable with mean µX . The variance of X, denoted

by Var(X), is defined as

Var(X) = E (X − µX)2 .

Theorem 2.13. If X is a random variable with mean µX , then

Var(X) = E(X2)− (µX)2.

Theorem 2.14. If X is a random variable with variance Var(X) then

Var(aX + b) = a2Var(X),

where a and b are arbitrary real constants.
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Definition 2.15. Let X and Y be random variables with means µX and µY , respectively.

The covariance function between X and Y , denoted by Cov(X,Y ), is defined as

Cov(X,Y ) = E ((X − µX)(Y − µY )) = E(XY )− µXµY .

The correlation function between X and Y , denoted by Corr(X,Y ), is defined as

Corr(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )
.

Definition 2.16. Let X be a discrete random variable whose probability mass function

f(·) with space RX . The function mX : RX → R defined by

mX(t) = E
(
etX
)

=
∑

x∈RX

etxf(x),

for t ∈ R and mX(·) is called the moment generating function of X.

Definition 2.17. Let X be a discrete random variable whose probability mass function

is f(·) with space RX . The function GX : RX → R defined by

GX(t) = E(tX) =
∑

x∈RX

txf(x),

for t ∈ R and GX(·) is called the probability generating function (p.g.f.) of X.

Definition 2.18. Let X and Y be discrete random variables defined on the same sample

space. The function FX,Y : R2 → [0, 1] defined by

FX,Y (x, y) = P (X ≤ x, Y ≤ y) ,

for all real numbers x and y and FX,Y (·, ·) is called the joint cumulative distribution

function of X and Y . The function fX,Y : R2 → [0,∞) defined by

fX,Y (x, y) = P (X = x, Y = y),

for all real numbers x and y and fX,Y (·, ·) is called the joint probability mass function of

X and Y .
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Definition 2.19. Let X and Y be discrete random variables with the joint probability

mass function fX,Y (·, ·). The marginal probability mass of Y , fY : R → [0,∞) defined

by

fY (y) =
∑

x∈ ImX

fX,Y (x, y),

for all real number y.

Definition 2.20. Let X and Y be discrete random variables with the joint probability

mass function fX,Y (·, ·) and fY (·) is the marginal probability mass function of the random

variable Y . The conditional probability mass function of X, given Y = y for all values

y such that fY (·) > 0, defined by

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
,

for all x ∈ Rx.

Definition 2.21. Let X be a discrete random variable and fX|Y (x|y) be the condition

probability mass function of X, given Y = y. The conditional expectation of X, given

Y = y defined by

E(X|Y = y) =
∑

x∈Rx

xfX|Y (x|y).

Definition 2.22. Let X1, X2, . . . , Xn be discrete random variables with the probabil-

ity mass functions fX1
(·), fX2

(·), . . . , fXn
(·). They are said to be identically distributed

random variables if and only if

fX1
(x) = fX2

(x) = . . . = fXn
(x),

for x ∈ R.
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Definition 2.23. The discrete random variables X1, X2, . . . , Xn, are said to be indepen-

dent random variables if and only if the joint probability mass function fX1,X2,...,Xn
(·, ·, . . . , ·)

can be written as

fX1,X2,...,Xn
(x1, x2, . . . , xn) = fX1

(x1)fX2
(x2) · · · fXn

(xn),

for all x1, x2, . . . , xn ∈ R, where fXi
(·) is the probability mass of Xi (i = 1, 2, . . . , n).

The random variables X1, X2, . . . , Xn are said to be independent and identically

distributed (i.i.d.) if random variables X1, X2, . . . , Xn have the same probability mass

function and are mutually independent.

Lemma 2.24. Let X be a discrete random variable with probability generating function

GX(·), the probabilistic properties of X are listed as follows

(a) E(X) =
d

dt
GX(t)

∣∣∣∣
t=1

,

(b) Var(X) =
d2

dt2
GX(t)

∣∣∣∣
t=1

+ E(X)− (E(X))2,

(c) Var(X) = E(Var(X|U)) + Var(E(X|U)), where U is any random variable,

(d) The skewness Sk =
E(X3)− 3E(X)Var(X)− E3(X)

Var(X)3/2
.

Proof. (a) Note that

d

dt
GX(t) =

d

dt
E(tX)

=
d

dt

∑
x∈RX

txf(x)

=
∑

x∈RX

xtx−1f(x).

Taking t = 1, so we can obtain E(X).
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(b) Consider

d2

dt2
GX(t) =

d2

dt2
E(tX)

=
d2

dt2

∑
x∈RX

txf(x)

=
∑

x∈RX

x(x− 1)tx−2f(x)

=
∑

x∈RX

x2tx−2f(x)−
∑

x∈RX

xtx−2f(x).

Taking t = 1,then we obtain E(X2) − E(X). Then, we add E(X) − (E(X))2 into

E(X2)− E(X), then we obtain

E(X2)− E(X) + E(X)− (E(X))2 = Var(X).

(c) Note that,

Var(X) = E(X2)− (E(X))2

= E(E(X2|U))− E2(E(X|U))

= E(E(X2|U))− E2(E(X|U))− E(E2(X|U)) + E(E2(X|U))

= E(E(X2|U)− E2(X|U)) + E(E2(X|U))− E2(E(X|U))

= E(Var(X|U)) + Var(E(X|U)).

(d) Note that the formula of skewness is defined as

Sk =
E (X − E(X))3

Var(X)3/2
.

Then, we expand the numerator to derive another version that can be calculated more

easily as follows

Sk =
E (X − E(X))3

Var(X)3/2

=
E(X3)− 3E(X2)E(X) + 3E(X)E2(X)− E3(X)

Var(X)3/2

=
E(X3)− 3E(X)

(
E(X2)− E2(X)

)
− E3(X)

Var(X)3/2

=
E(X3)− E(X)Var(X)− E3(X)

Var(X)3/2
.
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Definition 2.25. Let {δj , j = 1, 2, . . .} be a sequence of independent and identically

distributed random variables, X be an non-negative integer valued random variable which

is independent of {δj , j = 1, 2, . . .} . Then the random variable

N =

X∑
j=1

δj

is called a compound random variable.

Lemma 2.26. Let Ni =

Xi∑
j=1

δi,j for i = 1, 2 are compound random variables defined in

Definition 2.25 where {δ1,j j = 1, 2, . . .} and {δ2,j j = 1, 2, . . .} are two mutually inde-

pendent sequences of random variables and are independent of X1 and X2, respectively.

The probabilistic properties of Ni (i = 1, 2) are provided as follows.

(a) E(Ni) = E(Xi)E(δi),

(b) Var(Ni) = E(Xi)Var(Xi) + Var(Xi)(E(δi))2,

(c) Cov(Ni, Xi) = E(δi)Var(Xi),

(d) Cov(N1, N2) = E(δ1)E(δ2)Cov(X1, X2),

where E(δi) is the mean of {δi,j j = 1, 2, . . .} and i = 1, 2.

Proof. (a) For i = 1, 2, we know that {δi,j j = 1, 2, . . .} are identically distributed, then

E(δi,1) = E(δi,2) = . . . = E(δi). Thus, consider

E(Ni) = E

 Xi∑
j=1

(δi,j)


= E (E(δi,1 + δi,2 + · · ·+ δi,Xi

|Xi))

= E

 Xi∑
j=1

E(δi,j)


= E(XiE(δi))

= E(Xi)E(δi).
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(b) Using Lemma 2.24 (c),we obtain

Var(Ni) = E

Var

 Xi∑
j=1

δi,j

∣∣∣∣Xi

+ Var

E

 Xi∑
j=1

δi,j

∣∣∣∣Xi


= E(XiVar(δi)) + Var(XiE(δi))

= E(Xi)Var(δi) + Var(Xi)(E(δi))2.

(c) Note that,

Cov(Ni, Xi) = E(NiXi)− E(Ni)E(Xi)

= E

Xi

Xi∑
j=1

δi,j

− E(Xi)E(Xi)E(δi)

= E

XiE

 Xi∑
j=1

δi,j

∣∣∣∣Xi

− (E(Xi))
2E(δi)

= E(X2
i E(δi))− (E(Xi))

2E(δi)

= E(X2)E(δi)− (E(Xi))
2E(δi)

= E(δi)
(
E(X2

i )− (E(Xi))
2
)

= E(δi)Var(Xi).

(d) Note that,

Cov(N1, N2) = Cov

 X1∑
j=1

δ1,j ,

X2∑
j=1

δ2,j


= E

E

 X1∑
j=1

δ1,j ,

X2∑
j=1

δ2,j

∣∣∣∣X1, X2

− E

 X1∑
j=1

δ1,j

E

 X2∑
j=1

δ2,j


= E(X1E(δ1)X2E(δ2))− E(X1)E(δ1)E(X2)E(δ2) (2.2)

= E(δ1)E(δ2)(E(X1X2)− E(X1)E(X2))

= E(δ1)E(δ2)Cov(X1, X2),

where we use the fact that {δ1,j j = 1, 2, . . .} and {δ2,j j = 1, 2, . . .} are mutually

independent to obtain (2.2).
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Theorem 2.27. The moment generating function of the compound random variable

S = X1 + · · ·+XN is

mS(r) = GN (mX(r)), (2.3)

where GN (·) is the probability generating function of N .

Proof. Note that

E(erS |N = n) = E
(
er(X1+···+Xn)

)
= (mX(r))n,

so that E(erS |N) = (mX(r))N , using the conditional expectation, then we obtain

mS(r) = E(E
(
erS |N

)
)

= E
(
(mX(r))N

)
= GN (mX(r)).

2.2 Zero Inflated Poisson Distribution

In this section, we first introduce the concept of zero inflated distribution and

the properties of zero inflated Poisson distribution used in this study. We follow the

probability mass function proposed by Lambert (1992).

The concept of zero inflated model is to allow more flexibility in modeling the

distribution to accommodate zero counts into model. Zero inflated model, added the

probability of being zero and can be formulated with the number of distributions. Zero

inflated model can be expressed as the following

P (X = k) = pI(k) + (1− p)f(k), k = 0, 1, 2, . . . ,
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where

I(w) =


1, w = 0,

0, w ̸= 0,

and p is the proportion of zero, f(·) is probability mass function of Y where Y is a random

variable, taking value 0, 1, 2, . . ., then X is called zero inflated version of random variable

Y .

Definition 2.28. Let X be a zero inflated Poisson random variable with parameters p

and λ, denoted by X ∼ ZIP (p, λ). The probability mass function of X defined as

P (X = k) =


p+ (1− p)e−λ , if k = 0,

(1− p)
e−λλk

k!
, if k = 1, 2, . . . ,

where p ∈ (0, 1) and λ > 0.

Lemma 2.29. The zero inflated Poisson random variable X ∼ ZIP (p, λ), defined as

Definition 2.28 has the following properties.

(a) The probability generating function: GX(t) = p+ (1− p)e−λ(1−t), for t ∈ R,

(b) The expectation: E(X) = λ(1− p),

(c) The variance: Var(X) = λ(1− p)(1 + λp),

(d) The skewness: Sk =
1 + 3λp+ 2λ2p2 − λ2p√

(1− p)λ(1 + λp)3
.
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Proof. (a) Using Definition 2.17 and the probability mass function as in Definition 2.28,

we can obtain

GX(t) = E(tX)

=
∑
k≥ 0

tkP (X = k)

= P (X = 0) +
∑
k≥ 1

tkP (X = k)

= p+ (1− p)e−λt0 +
∑
k≥ 1

tk(1− p)
e−λλk

k!

= p+
∑
k≥ 0

tk(1− p)
e−λλk

k!

= p+ (1− p)e−λ
∑
k≥ 0

(tλ)k

k!

= p+ (1− p)e−λeλt

= p+ (1− p)e−λ(1−t),

for t ∈ R.

(b) Using Lemma 2.24 (a), we obtain E(X) as follows

E(X) =
d

dt
GX(t)

∣∣∣∣
t=1

=
d

dt
(p+ (1− p)e−λ(1−t))

∣∣
t=1

=
(
(1− p)e−λ(1−t)λ

) ∣∣∣∣
t=1

= λ(1− p).

(c) Using Lemma 2.24 (a), we first find d2

dt2GX(t)

∣∣∣∣
t=1

as follows

d2

dt2
GX(t)

∣∣∣∣
t=1

=
d

dt

(
p+ (1− p)e−λ(1−t)λ

) ∣∣∣∣
t=1

=
(
λ(1− p)e−λ(1−t)λ

) ∣∣
t=1

= λ2(1− p).
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Then, we obtain Var(X) as follows

Var(X) =
d2

dt2
GX(t)

∣∣∣∣
t=1

+ E(X)− (E(X))2

= λ2(1− p) + λ(1− p)− (λ(1− p))2

= λ(1− p)(λ+ 1− λ(1− p))

= λ(1− p)(1 + λp).

(d) Using Lemma 2.24 (d), we first consider E(X3) by applying probability generating

function as follows

d3

dt3
GX(t) = E

(
X(X − 1)(X − 2)tX−3

)
.

Let t = 1, then

G
′′′

X(1) = E (X(X − 1)(X − 2)) .

Then,we have

E(X3) = G
′′′

X(1) + 3E(X2)− 2E(X),

and from Lemma 2.24, we have that G
′′

X(1) = E(X2)− E(X).

Finally, we can have

E(X3) = G
′′′

X(1) + 3G
′′

X(1) + E(X).

Moreover, we know G
′′

X(1) = λ2(1− p) and G
′′′

X(1) = λ3(1− p).

Hence,

E(X3) = λ3(1− p) + 3λ2(1− p) + λ(1− p).
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Therefore, the skewness is

Sk =
E(X3)− E(X)Var(X)− E3(X)

Var(X)3/2

=
λ3(1− p) + 3λ2(1− p) + λ(1− p)− 3λ2(1− p)2(1 + λp)− (λ(1− p))3

(λ(1− p)(1 + λp))3/2

=
λ2 + 3λ+ 1− 3λ(1− p)(1 + λp)− (λ(1− p))2√

λ(1− p)(1 + λp)3

=
λ2 + 3λ+ 1− 3λ(1 + λp− p− λp2)− λ2(1− 2p+ p2)√

λ(1− p)(1 + λp)3

=
1 + 3λp+ 2λ2p2 − λ2p√

λ(1− p)(1 + λp)3
.

2.3 Binomial Thining Operator

McKenzie (1985) and Alzaid and Al-Osh (1988) have proposed the model known as

integer valued autoregressive (INAR) and moving average (INMA) processes. The models

are constructed by using binomial thining operator. In this section, we first introduce the

definition of binomial thining operator proposed by Steutel and van Harn (1979).

Definition 2.30. Let X be a non-negative integer valued random variable. For α ∈ (0, 1),

the ‘α◦’ thining operator is defined as

α ◦X =

X∑
i=1

δi,

where {δi, i = 1, 2, . . .} is a sequence of i.i.d. Bernoulli random variables with mean α

and is independent from X.
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Lemma 2.31 (Properties of binomial thining operator). Let Xi , i = 1, 2, . . . be a non

negative integer valued random variables, {δi,j i, j = 1, 2, . . .} be a sequence of i.i.d.

Bernoulli random variables with mean αi and is independent from Xi. Then for i, j =

1, 2, . . ., has the following properties.

(a) E(αi ◦Xi) = αiE(Xi),

(b) E((αi ◦Xi)Xk) = αiE(XiXk) for i ̸= k,

(c) Var(αi ◦Xi) = αi(1− αi)E(Xi) + α2
i Var(Xi),

(d) Cov(αi ◦Xi, Xk) = αiCov(Xi, Xk),

(e) Cov(αi ◦Xi, αk ◦Xk, ) = αiαkCov(Xi, Xk).

Proof. (a) Since {δi,j i, j = 1, 2, . . .} is a sequence of i.i.d. Bernoulli random variables

with mean αi, then E(δ1,j) = E(δ2,j) = E(δi,j) = αi. From Lemma 2.26 (a), we obtain

E(αi ◦Xi) = E

 Xi∑
j=1

δi,j


= E(δi)E(Xi)

= αiE(Xi).

(b) For i ̸= k,

E((αi ◦Xi)Xk) = E

Xk

Xi∑
j=1

δi,j


= E

E

Xk

Xi∑
j=1

δi,j

∣∣∣∣Xi


= E

XkE

 Xi∑
j=1

δi,j

∣∣∣∣Xi


= E (XiXkE(δi))

= E(δi)E(XiXk)

= αiE(XiXk).
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(c) Using Lemma 2.26 (b), then

Var(αi ◦Xi) = Var

 Xi∑
j=1

δi,j


= E(Xi)Var(δi) + Var(Xi)(E(δi))2

= αi(1− αi)E(Xi) + α2
i Var(Xi).

(d) Using Lemma 2.26 (a) and (b), we obtain

Cov(αi ◦Xi, Xk) = E((αi ◦Xi)Xk)− E(αi ◦Xi)E(Xk)

= αiE(XiXk)− αiE(Xi)E(Xk)

= αi(E(XiXk)− E(Xi)E(Xk))

= αiCov(Xi, Xk).

(e) Since {δi,j i, j = 1, 2, . . .} and {δk,l k, l = 1, 2, . . .} are two mutually independent

sequences of i.i.d. Bernoulli random variables with means αi and αk, respectively,

Cov(αi ◦Xi, αk ◦Xk) = Cov

 Xi∑
j=1

δi,j ,

Xk∑
l=1

δk,l


= E

E

 Xi∑
j=1

δi,j ,

Xk∑
l=1

δk,l

∣∣∣∣Xi, Xk

− E

 Xi∑
j=1

δi,j

E
(

Xk∑
l=1

δk,l

)
= E (XiE(δiXkE(δk)))− E(Xi)E(δi)E(Xk)E(δk)

= E(δi)E(δk) (E(XiXk)− E(Xi)E(Xk))

= αiαkCov(Xi, Xk).

Definition 2.32. Let {an n = 0, 1, 2, . . .} be a sequence of real numbers. The function

G : Rx → R defined by

G(t) =

∞∑
n=0

ant
n,

for t ∈ R and G(·) is called the generating function of a sequence {an n = 0, 1, 2, . . .}.
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Moreover , we will derive the joint probability generating function (joint p.g.f.) of

the variables with thining operator which will be used in this study.

Lemma 2.33. Let N1, N2, . . . , Nn be compound random variables defined as Definition

2.25 ,then

Ni = αi ◦Xi =

Xi∑
j=1

δi,j ,

for i = 1, 2, . . . , n and {δi,j , i, j = 1, 2, . . .} is a sequence of i.i.d. random variables with

the p.g.f. Gδi(·), and independent from Xi. Thus, the joint p.g.f. is given as follows

GN1,N2,...,Nn
(z1, z2, . . . , zn) = E(zα1◦X1

1 zα2◦X2

2 · · · zαn◦Xn
n )

= E
(
z
∑X1

j=1 δ1,j
1 z

∑X2
j=1 δ2,j

2 · · · z
∑Xn

j=1 δn,j

n

)
= E

(
E
(
z
∑X1

j=1 δ1,j
1 z

∑X2
j=1 δ2,j

2 · · · z
∑Xn

j=1 δn,j

n

∣∣X1, X2, . . . , Xn

))

= E

X1∏
j=1

E(zδ1,j1 )

X2∏
j=1

E(zδ2,j2 ) · · ·
Xn∏
j=1

E(zδn,j
n )


= E

(
GX1

(δ1)
(z1)G

X2

(δ2)
(z2) · · ·GXn

(δn)
(zn)

)
= GX1,X2,...,Xn

(Gδ1(z1)Gδ2(z2) · · ·Gδn(zn)).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

DISCRETE TIME RISK MODELS BASED ON

THE ZERO INFLATED POISSON MOVING

AVERAGE

In this chapter, we first introduce the definition of the discrete time surplus pro-

cess. In Section 3.1, we introduce to the ruin probability which provides a definition of

the time of ruin and a method of how to obtain the approximation of the ruin probability.

In Section 3.2, we discuss the discrete time risk models based on the first order zero

inflated Poisson moving average (ZIPMA(1)) model and derive its properties. The defi-

nition of the first order zero inflated Poisson moving average model is given in Definition

3.3, the model properties are defined in Lemma 3.4. The derivation of the adjustment

coefficient function of ZIPMA(1) is presented in Theorem 3.6 to obtain the Lundberg ad-

justment coefficient to approximate the ruin probability. The proof of the unique positive

solution of zero root of the adjustment coefficient is presented in Lemma 3.7. Afterward,

we obtain the estimated ruin probability. Moreover, we introduce risk measurements,

such as the value at risk and the tail value at risk for a better decision when conjoins with

the ruin probability. Section 3.2.3 shows the numerical experiments of the ruin probabil-

ity and the risk measurements.

Moreover, we extend the model of claim counts which is the first order zero inflated

moving average model to reach the qth order zero inflated moving average (ZIPMA(q))

model in Section 3.3. In this section, we give detail of the derivation and proof to obtain

the properties, the adjustment coefficient and the unique positive solution for ZIPMA(q).

In Section 3.3.3, we show the numerical experiments of the ruin probability and the risk

measurements in the cases of ZIPMA(2) and ZIPMA(3) risk models.
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Definition 3.1. Let Rn be the discrete time surplus process defined as

Rn = u+ nπ −
n∑

i=1

Ni∑
j=1

Ci,j , (3.1)

where

• u is the positive initial reserve of the business;

• π is the premium rate per period;

• the sequence Ci,j is the sequence of claim sizes in period i and individuals j and

the sequence is independent and identically distributed distribution with moment

generating function, mC(·);

• Ni is the claim number in period i.

We also denote that

• N(n) =
∑n

i=1Ni is the aggregate claim number for n periods;

• Wi =
∑Ni

j=1Ci,j is the aggregate claim size for period i;

• Sn =
∑n

i=1Wi is the net loss process.

3.1 Approximation to the Ruin Probability of Discrete Time Risk Model

In this section, we first give the definition of the first time of ruin and the defini-

tion of ruin probability and the methods that are applied to approximation to the ruin

probability.

Definition 3.2. Let T be the time of ruin, the first time that the surplus becomes

negative. Then T is defined as follows.

T = inf{n ∈ N+ |Rn ≤ 0}. (3.2)
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The ruin probability as a function of the initial capital u is defined as

Ψ(u) = P{T < ∞|R0 = u}. (3.3)

The ruin probability is generally difficult to calculate, we then approximate to the ruin

probability which is normally applied in many researches. For example, Gray and Pitts

(2012) proposed the approximation to ruin probability by using asymptotic Lundberg-

type result

lim
u→∞

− ln(Ψ(u))

u
= R,

where R is the Lundberg adjustment coefficient. Thus, we determine R by using function

called the adjustment coefficient function. Following Nyrhinen (1998) and Müller and

Pflug (2001), let the adjustment coefficient function c(·) is defined as

c(z) = lim
n→∞

1

n
cn(z),

where cn(·) is the logarithm function of the cumulative generating function of the aggre-

gate net loss profit process defined by

cn(z) = lnE(ez(Sn−nπ)).

They claimed that if we can find the unique R > 0 such that c(R) = 0, then the positive

zero root, R, is the Lunberg adjustment coefficient. Then the ruin probability Ψ(u) is

approximated by

Ψ(u) ≃ e−Ru. (3.4)

Hence, the main work of this study is to find the adjustment coefficient function, c(·),

and the positve zero root, R, from the surplus process.
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3.2 Discrete Time Risk Model based on the First Order Zero Inflated Poisson

Moving Average (1) process

In this section, we provide the definition of the first order zero inflated Poisson

moving average (ZIPMA(1)) model and derive its probabilistic properties. We firstly

consider the discrete time surplus defined in Definition 3.1,

Rn = u+ nπ −
n∑

i=1

Ni∑
j=1

Ci,j ,

when the claim counts, {Ni, i ∈ N}, are modelled by the first order zero inflated Poisson

moving average model. The definition of ZIPMA(1) and its probabilistic properties are

provided in Definitions 3.3 and Lemma 3.4, respectively. In Section 3.2.1, we derive

the adjustment coefficient function and the approximation to the ruin probability of the

ZIPMA(1) risk model. We also provide the special case of the adjustment coefficient

function when the claim sizes are exponentially distributed. In Section 3.2.2, we propose

the approximation to the value at risk (VaR) of the ZIPMA(1) net loss process.

Next, we will use the zero inflated Poisson random variable with the binomial thinning

operator to define the ZIPMA(1) model.

Definition 3.3. Let {Ni, i ∈ N} be the ZIPMA(1) model defined as

Ni = α ◦ ϵi−1 + ϵi, for i = 1, 2, . . . , (3.5)

where {ϵt , k = 0, 1, . . .} is a sequence of i.i.d. zero inflated Poisson random variables with

parameters p and λ. The α◦ thining operator is defined in Definition 3.3 as

α ◦ ϵi−1 =

ϵi−1∑
j=1

δ(i−1),j ,

where {δ(i−1),j , i, j = 1, 2, . . .} is a sequence of i.i.d. Bernoulli random variables with

mean α.
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The concept of the first order zero inflated Poisson moving average model is that we

apply the moving average model to consider the number of insured where ϵi is represented

as the number of new insured in period i and α is the probability of that the insured will

reclaim. Thus, α ◦ ϵi−1 represents that the number of claims in period i from the new

claims in period i − 1, where the probability of reclaim is α. Hence, the interpretation

of Ni is that the number of insured in period i based on the summation of the number

of new insured in period i and the number of reclaims from new insured in period i− 1,

where the new claims follow the zero inflated Poisson distribution.

Lemma 3.4. Let {Ni , i ∈ N} be a ZIPMA(1) model defined in Definition 3.3, then

{Ni , i ∈ N} has the following properties.

(a) The sequence {Ni , i ∈ N} is a stationary process with the probability generating

function of Ni, GNi
(z) =

(
p+ (1− p)e−λ(1−z)

) (
p+ (1− p)e−λα(1−z)

)
for i ∈ N

and z ∈ R.

(b) The expectation of Ni is E(Ni) = λ(1− p)(1 + α) for i ∈ N.

(c) The variance of Ni is Var(Ni) = λ(1− p) ((1 + pλ) + α(1 + pλα)) for i ∈ N.

(d) The covariance function between Ni and Ni−m,

Cov(Ni, Ni−m) =


λα(1− p)(1 + pλ) , for m = 1,

0 , for m > 1.

(e) The correlation function between Ni and Ni−m,

Corr(Ni, Ni−m) =


α(1 + pλ)

(1 + pλ) + α(1 + pλα)
, for m = 1,

0 , for m > 1.

Proof. To prove (a),we consider the of {Ni , i ∈ N}. Since {ϵt, t = 1, 2, . . .} is a sequence

of i.i.d. zero inflated Poisson random variables with parameters p and λ, by Lemma 2.29,

the probability generating function of Ni is
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GNi
(z) = E(zNi)

= E(zα◦ϵi−1+ϵi)

= E(zϵi)E(zα◦ϵi−1) (3.6)

= Gϵi(z)Gϵi−1
(1− α+ αz)

=
(
p+ (1− p)e−λ(1−z)

)(
p+ (1− p)e−λα(1−z)

)
, (3.7)

for z ∈ R, where we apply the independence between α ◦ ϵi−1 and ϵi to obtain (3.6)

and apply Lemma 2.29 to obtain (3.7), respectively. Since the generating function GNi
(·)

does not depend on i then GN1
(·) = GN2

(·) = . . . = GNi
(·). Therefore, {Ni , i ∈ N} is

a stationary process. In addition, the probability generating function of {Ni , i ∈ N} is

given by

GNi
(z) =

(
p+ (1− p)e−λ(1−z)

)(
p+ (1− p)e−λα(1−z)

)
,

for all i ∈ N.

(b) The expectation of Ni can be obtained by evaluating the derivative of GNi
(z) at

z = 1 as follows.

E(Ni) =
d

dz
GNi

(z)

∣∣∣∣
z=1

=
d

dz

(
p+ (1− p)e−λ(1−z)

)(
p+ (1− p)e−λα(1−z)

) ∣∣∣∣
z=1

=
(
(p+ (1− p)e−λ(1−z))((1− p)e−λα(1−z)λα)

) ∣∣∣∣
z=1

+
(
(p+ (1− p)e−λα(1−z))((1− p)e−λ(1−z)λ)

) ∣∣∣∣
z=1

= ((p+ 1− p)(1− p)λα) + ((p+ 1− p)(1− p)λ)

= λ(1− p)(1 + α).

(c) Note that, Var(Ni) = E(N2
i )− E2(Ni) . Therefore by applying the properties of the

probability generating function in Lemma 2.24 as

E(N2
i ) =

d2

dz2
GNi

(z)

∣∣∣∣
z=1

+
d

dz
GNi

(z)

∣∣∣∣
z=1

.
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Note that,

d2

dz2
GNi

(z)

∣∣∣∣
z=1

=
d2

dz2

(
p+ (1− p)e−λ(1−z)

)(
p+ (1− p)e−λα(1−z)

)
=

d

dz

(
(p+ (1− p)e−λ(1−z))((1− p)e−λα(1−z)λα)

+(p+ (1− p)e−λα(1−z))((1− p)e−λ(1−z)λ)
)

=
(
p+ (1− p)e−λ(1−z)

)(
λα(1− p)e−λα(1−z)λα

) ∣∣∣∣
z=1

+
(
λα(1− p)e−λα(1−z)

)(
(1− p)e−λ(1−z)λ

) ∣∣∣∣
z=1

+
(
p+ (1− p)e−λα(1−z)

)(
λ(1− p)e−λ(1−z)λ

) ∣∣∣∣
z=1

+
(
λ(1− p)e−λ(1−z)

)(
(1− p)e−λα(1−z)λα

) ∣∣∣∣
z=1

= (λα)2(1− p) + λ2α(1− p)2 + λ2(1− p) + λ2α(1− p)2

= λ2 (1− p)
(
α2 + 2α(1− p) + 1

)
.

Thus,

E(N2
i ) =

d2

dz2
GNi

(z)

∣∣∣∣
z=1

+
d

dz
GNi

(z)

∣∣∣∣
z=1

= λ2 (1− p)
(
α2 + 2α(1− p) + 1

)
+ λ(1− p)(1 + α).

Consequently,

Var(Ni) = λ2 (1− p)
(
α2 + 2α(1− p) + 1

)
+ λ(1− p)(1 + α)

− (λ(1− p)(1 + α))2

= λ(1− p)
(
λ(1 + α)2 − 2pλα+ (1 + α)− λ(1− p)(1 + α)2

)
= λ(1− p)

(
λ(1 + α)2 − 2pλα+ (1 + α)− λ(1 + α)2 + pλ(1 + α)2

)
= λ(1− p)

(
−2pλα+ (1 + α) + pλ(1 + α)2

)
= λ(1− p)

(
pλ((1 + α)2 − 2α) + (1 + α)

)
= λ(1− p)

(
pλ(1 + α2) + (1 + α)

)
= λ(1− p) ((1 + pλ) + α(1 + pλα)) .
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(d) To obtain the covariance function between Ni and Ni−m, Cov(Ni, Ni−m), we consider

into two cases: m = 1 and m > 1 as follows.

For m = 1,

Cov(Ni, Ni−1) = Cov(α ◦ ϵi−1 + ϵi, α ◦ ϵi−2 + ϵi−1)

= Cov(α ◦ ϵi−1, α ◦ ϵi−2) + Cov(α ◦ ϵi−1, ϵi−1)

+Cov(ϵi, α ◦ ϵi−2) + Cov(ϵi, ϵi−1)

= Cov(α ◦ ϵi−1, ϵi−1)

= αVar(ϵi−1)

= αλ(1− p)(1 + pλ),

where we use the fact that ϵi−1 is the zero inflated Poisson random variable and Lemma

2.29 to obtain the last equation.

For m > 1, by using the property that {ϵi, i = 1, 2, . . .} is a sequence of independent

random variables,

Cov(Ni, Ni−m) = Cov(α ◦ ϵi−1 + ϵi, α ◦ ϵi−m−1 + ϵi−m)

= 0.

(e) From Lemma 2.29 and (d), then

Corr(Ni, Ni−m) =
Cov(Ni, Ni−m)√

Var(Ni)Var(Ni−m)

=
Cov(Ni, Ni−m)

Var(Ni)

=


α(1 + pλ)

(1 + pλ) + α(1 + pλα)
, for m = 1,

0 , for m > 1.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29

3.2.1 Adjustment coefficient function of ZIPMA(1)

In the previous section, we have provided the definition of the discrete time surplus

process based on ZIPMA(1) model. In this section, we derive the adjustment coefficient

function of ZIPMA(1) by applying the method from Section 3.1 to obtain the Lundberg

adjustment coefficient. Afterward, we provide a proof of the unique positive solution of

zero root of the adjustment coefficient. The risk model based on ZIPMA(1) is described

below

Definition 3.5. The risk model based on ZIPMA(1) can be expressed as

Rn = u+ nπ −
n∑

i=1

Ni∑
j=1

Ci,j ,

where u is the positive initial reserve, π is the premium rate per period, Ni is modelled

by ZIPMA(1) defined in (3.5) and {Ci,j} is the sequence of independent and identically

distributed distribution.

Theorem 3.6. Let Rn be the discrete time surplus process defined in Definition 3.5. The

adjustment coefficient function c(z) of Rn is defined as

c(z) = log
(
p+ (1− p)e−λ(1−mC(z)(1−α+αmC(z)))

)
− πz, (3.8)

for z ∈ R+.

Proof. Let z ∈ R+. We denote that {Ci,j , i, j = 1, 2, . . .} is a sequence of i.i.d. random

variables whose the moment generating function of {Ci,j , i, j = 1, 2, . . .} is defined as

mC(·) and the net loss process Sn whose the moment generating function of Sn is defined

as mSn
(·). We then simplify the form of the aggregate net loss profit process cn(·) to

obtain c(·) as
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cn(z) = log E(ez(Sn−nπ))

= log E
(
ezSn

enπz

)
= log

(
E(ezSn)

enπz

)
= logmSn

(z)− nπz, (3.9)

then

c(z) = lim
n→∞

1

n
logmSn

(z)− πz.

Next, we consider the moment generating function of Sn,

mSn
(z) = E(ezSn)

= E
(
ez

∑n
i=1

∑Ni
j=1 Ci,j

)
= E

(
ez

∑N1
j=1 C1,j+z

∑N2
j=1 C2,j+···+z

∑Nn
j=1 Cn,j

)
= E

(
E
(
ez

∑N1
j=1 C1,j+z

∑N2
j=1 C2,j+···+z

∑Nn
j=1 Cn,j

∣∣N1, N2, . . . , Nn

))
= E

 N1∏
j=1

E(ezC1,j )

N2∏
j=1

E(ezC2,j ) · · ·
Nn∏
j=1

E(ezCn,j )


= E

(
mN1

C (z)mN2

C (z) · · ·mNn

C (z)
)

= E
(
m

N(n)
C (z)

)
= GN(n) (mC(z)) . (3.10)

Consequently,

mSn
(z) = GN(n) (mC(z)) , (3.11)

where GN(n)(·) is the probability generating function of N(n).

To obtain (3.11), we first derive the probability generating function GN(n)(·). Since

{ϵt, t = 0, 1, . . .} is a sequence of i.i.d. zero inflated Poisson random variables with

parameters p and λ,
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GN(n)(z) = E(zN1+N2+···+Nn)

= E
(
z(α◦ϵ0+ϵ1)+(α◦ϵ1+ϵ2)+···+(α◦ϵn−1+ϵn)

)
= E(zϵn)E(zα◦ϵ0)

n−1∏
i=1

E(zα◦ϵi+ϵi)

= E (zϵn)E
(
z
∑ϵ0

j=1 δ0,j
) n−1∏

i=1

E
(
z
∑ϵi

j=1 δi,j+ϵi
)
. (3.12)

Using Lemma 2.29, we obtain the first term of (3.12) as

E(zϵn) = p+ (1− p)e−λ(1−z) for z ∈ R+. (3.13)

Since {δi,j , i, j = 1, 2, . . .} is a sequence of i.i.d. Bernoulli random variables with mean

α and Lemma 2.29, the probability generating function E(zδi,1) = E(zδi,2) = . . . =

E(zδi,j ) = 1− α+ αz, the second term of (3.12) is derived as follows.

E
(
z
∑ϵ0

j=1 δ0,j
)

= E
(

E
(
z
∑ϵ0

j=1 δ0,j
∣∣ϵ0))

= E

 ϵ0∏
j=1

E(zδ0,j )


= E ((1− α+ αz)ϵ0)

= Gϵ0(1− α+ αz)

= p+ (1− p)e−λα(1−z), (3.14)

for z ∈ R+.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32

For the third term of (3.12), we have that {δi,j , i, j = 1, 2, . . .} is a sequence of i.i.d.

Bernoulli random variables with mean α and Lemma 2.29, then we obtain

E
(
z
∑ϵi

j=1 δi,j+ϵi
)

= E
(

E
(
z
∑ϵi

j=1 δi,j+ϵi
∣∣ϵi))

= E

zϵi
ϵi∏

j=1

E(zδi,j )


= E (zϵi(1− α+ αz)ϵi)

= E ((z(1− α+ αz))ϵi)

= Gϵi(z(1− α+ αz))

= p+ (1− p)e−λ(1−z(1−α+αz)), (3.15)

for z ∈ R+. Substituting (3.13)-(3.15) into (3.12), we obtain

GN(n)(z) =
(
p+ (1− p)e−λ(1−z)

)(
p+ (1− p)e−λα(1−z)

)
(
p+ (1− p)e−λ(1−z(1−α+αz))

)n−1
, (3.16)

where z ∈ R+.

Therefore, we apply the result obtained in (3.16) into (3.11)

mSn
(z) =

(
p+ (1− p)e−λ(1−mC(z))

)(
p+ (1− p)e−λα(1−mC(z))

)
(
p+ (1− p)e−λ(1−mC(z)(1−α+αmC(z)))

)n−1
, (3.17)

for z ∈ R+. Consequently, we obtain mSn
(·) from (3.17), then we put into (3.9) as the

following.

cn(z) = log
(
p+ (1− p)e−λ(1−mC(z))

)
+ log

(
p+ (1− p)e−λα(1−mC(z))

)
+(n− 1) log

(
p+ (1− p)e−λ(1−mC(z)(1−α+αmC(z)))

)
− nπz,

for z ∈ R+.
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Hence, we obtain the adjustment coefficient function c(·) is given by

c(z) = lim
n→∞

1

n
cn(z)− πz

= log
(
p+ (1− p)e−λ(1−mC(z)(1−α+αmC(z)))

)
− πz,

for z ∈ R+.

Since the premium per period, π, followed the net profit condition (NPC)(Thomas, 2009)

condition and premium calculation followed the expectation value principle (EVP)(Gray

and Pitts, 2012)

π = E(W )(1 + θ)

= E(N)E(C)(1 + θ)

= λ(1− p)(1 + α)E(C)(1 + θ), (3.18)

for a security loading θ > 0, E(W ) is the expectation of the aggregate claim size, E(N)

is the expectation of the claim number and E(C) is the expectation of claim size. Next,

we will show that the adjustment coefficient has the unique positive zero root in D where

D = {z ∈ R+}.

Lemma 3.7. The equation c(z) = 0 has the unique positive solution in D, where c(z)

is the adjustment coefficient function defined in Theorem 3.6.

Proof. To prove the Lemma,we will show that

(a) c(0) = 0,

(b) d

dz
c(z)

∣∣∣∣
z=0

< 0,

(c) d2

dz2
c(z) > 0 for z ∈ D,

(d) lim
z→+∞

c(z) = +∞.
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(a) Note that

c(z) = log
(
p+ (1− p)e−λ(1−mC(z)(1−α+αmC(z)))

)
− πz.

We substitute z = 0 into c(z) defined in Theorem 3.6, then we obtain

c(0) = log
(
p+ (1− p)e−λ(1−mC(0)(1−α+αmC(0)))

)
− π(0)

= log (p+ (1− p))

= 0.

(b) Consider

d

dz
c(z) =

(1− p)e−λ(1−mC(z)(1−α+αmC(z)))(−λm
′

C(z)(−1 + α− 2αmC(z)))

p+ (1− p)e−λ(1−mC(z)(1−α+αmC(z)))
− π.

Since we have π = λ(1− p)E(C)(1 + α)(1 + θ), then, for θ > 0,

d

dz
c(z)

∣∣∣∣
z=0

=
(1− p)e−λ(1−(1−α+α))(−λE(C)(−1 + α− 2α))

p+ (1− p)e−λ(1−(1−α+α))
− π

= λ(1− p)E(C)(1 + α)− (λ(1− p)E(C)(1 + α)(1 + θ))

= λ(1− p)E(C)(1 + α)(1− (1 + θ))

= −θλ(1− p)E(C)(1 + α)

< 0.

Then, we obtain that d

dz
c(z)

∣∣∣∣
z=0

< 0.
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(c) Note that,

d2

dz2
c(z) =

p(1− p)e−λ(1−mC(z)(1−α+αmC(z)))λ(m
′′

C(z)(1− α))(
p+ (1− p)e−λ(1−mC(z)(1−α+αmC(z)))

)2
+
p(1− p)e−λ(1−mC(z)(1−α+αmC(z)))2λα((m

′

C(z))
2 +mC(z)m

′′

C(z)))(
p+ (1− p)e−λ(1−mC(z)(1−α+αmC(z)))

)2
+
p(1− p)e−λ(1−mC(z)(1−α+αmC(z)))

(
λm

′

C(z)(1− α+ αmC(z))
)2(

p+ (1− p)e−λ(1−mC(z)(1−α+αmC(z)))
)2

+

(
(1− p)e−λ(1−mC(z)(1−α+αmC(z)))

)2
λ(m

′′

C(z)(1− α))(
p+ (1− p)e−λ(1−mC(z)(1−α+αmC(z)))

)2
+

(
(1− p)e−λ(1−mC(z)(1−α+αmC(z)))

)2
2λα((m

′

C(z))
2 +mC(z)m

′′

C(z)))(
p+ (1− p)e−λ(1−mC(z)(1−α+αmC(z)))

)2 .

By the properties that mC(z) > 0, m
′

C(z) > 0, m
′′

C(z) > 0 and α ∈ (0, 1), then
d2

dz2
c(z) > 0.

(d) We can show that the limit of c(z) reaches to +∞ as z approaches +∞. Let us first

consider

f(z) = λ(mC(z)(1− α+ αmC(z))− 1)

∝ λmC(z)(1− α+ αmC(z))

∝ λαm2
C(z),

for z ∈ D. We know that mC(z) is the monotonically increasing function and continuous

function in D, then m2
C(z) is growing up to +∞ with the exponential rate, then we can

conclude that f(z) will grow to infinity with exponential rate which is faster than any

linear trend. Hence, we obtain that

lim
z→+∞

(
log
(
p+ (1− p)eλ(mC(z)−1)(1−α+αmC(z))

)
− πz

)
= +∞.

Example 3.1. In this part, we consider a special case when the claim amounts follow an

exponential distribution. That is, {Ci,j , i ∈ N, j = 1, 2, . . .} is a sequence of i.i.d. expo-

nentially distributed random variables with parameter β > 0. The moment generating
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function of {Ci,j , i ∈ N, j = 1, 2, . . .} is defined as mC(z) = 1
1−z/β for z < β. Using

Theorem (3.6), the adjustment coefficient function is defined as

c(z) = log
(
p+ (1− p)e

−λ(1− 1

1−z/β
(1−α+α 1

1−z/β
))
)
− πz, (3.19)

where π = λ(1− p)(1 + α)E(C)(1 + θ), 0 < z < β.

3.2.2 Approximation to the value at risk and tail value at risk

of ZIPMA(1)

The value at risk at the confidence level γ, VaRγ(Sn), for ZIPMA(1) process in the

(1 − γ) quantile of Sn that refers to the amount of the net loss. So, the more value of

VaRγ(Sn) the higher risk of the surplus.

Figure 3.1: The graph of value at risk at confidence level γ.

As Figure 3.1, the red line represents the cumulative distribution of Sn, then we can see

that at confidence level γ, we can obtain the value of the value at risk that can inform

us about the estimated loss that the company may confront at confidence level γ or a

(1− γ) probability that the loss maybe greater than the approximated value. Note that

Sn =
∑n

i=1

∑Ni

j=1Ci,j be the net loss process and Ni be a ZIPMA(1) process. The

VaRγ(Sn) is defined as

VaRγ(Sn) = inf{k ∈ R|FSn
(k) > γ}, (3.20)
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where FSn
(·) is the cumulative distribution function of Sn. It is generally difficult to obtain

the distribution of Sn from the moment generating function given in (3.17). Therefore, we

apply the Fast Fourier Transform (FFT) algorithm (Gray and Pitts, 2012) to obtain an

approximation of the density function of FSn
(·) which can be described as the following.

From (3.11), we know that

mSn
(z) = GN(n) (mC(z)) ,

where mC(·) is the moment generating function of Ci,j for all i, j = 1, 2, . . .

Since C is exponentially distributed with pamameter β, so we first discretise distribution

of C, then for a given discretisation parameter h, we have

f0 = Pr(0 < C ≤ h/2)) = 1− e−2hβ,

and for k = 1, 2, . . .,

fk = Pr ((k − 0.5)h < C ≤ (k + 0.5)h)

= e−(k−0.5)hβ(1− e−hβ).

Thus, check that
∑∞

k=0 fk = 1, then (f0, f1, . . .) is a discrete approximation to the

distribution of X1.

Let ϕC(·) be the characteristic function of Ci,j (i, j = 1, 2, . . .). Therefore, we apply the

FFT algorithm to approximate the characteristic function ϕC(·) of Ci,j . We can calculate

the characteristic function of Sn as follows.

ϕSn
(x) = GN(n)(ϕC(x))

=
(
p+ (1− p)e−λ(1−ϕC(x))

)(
p+ (1− p)e−λα(1−ϕC(x))

)
×
(
p+ (1− p)e−λ(1−ϕC(x)(1−α+αϕC(x)))

)n−1
,

where x ∈ R+.

Applying the inverse FFT algorithm, we can approximate to the density of Sn, and the

FSn
(·). Finally, we can calculate the value of VaRγ(Sn).
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The value at risk is usually applied by banks or a company that want to measure risk

over a short time, then the tail value at risk is risk measure that is in many ways superior

than the value at risk. The tail value at risk is basically a standard risk measurement

which is applied in insurance companies as effective over a year or more.

Figure 3.2: The graph of tail value at risk at confidence level γ.

As Figure 3.2, it can be seen that the tail value at risk can inform about the behavior

of loss or the average of loss beyond the value at risk. According to the value of the

tail value at risk, insurance companies can apply these values to be one of many decisive

options about the strategies and financial planning. The risk measure VaRγ is a merely

cutoff point and does not describe the tail behavior beyond the VaRγ threshold. The tail

value at risk at the confidence level γ, TVaRγ(Sn) is defined as follows.

TVaRγ =
1

1− γ

∫ 1

γ
V aRw(Sn)dw (3.21)

where VaRw is the value at risk at confidence level w. It is difficult to directly calculate

the integral form, we then apply Riemann sum to approximate the value of the tail value

at risk.
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3.2.3 Numerical experiments of risk model based on ZIPMA(1)

In this section, we present examples to calculate the adjustment coefficient and

approximation to the ruin probability of risk model based on ZIPMA(1) claim count

process. We also provide the calculation of the value at risk and tail value at risk of the

12th periods of time at the confidence levels 0.9 and 0.95.

3.2.4 Calculation of the adjustment coefficient of risk model based on ZIPMA(1)

Let Rn be the discrete time surplus process defined in (3.1), and {Ni, i = 1, 2, . . . n}

is ZIPMA(1) model as claim counts process as defined in Definition 3.3. Let {Ci,j , i, j =

1, 2, . . .} is a sequence of i.i.d. exponentially distributed random variables with param-

eter β and we obtain c(z) as in Example 3.1. The parameters setting are u = 2,

(λ, p) = (1.5, 0.2), β ∈ {0.5, 1, 2, 4, 32} and θ = 0.3. Figure 3.3 shows the graph of

the unique positive zero root or the adjustment coefficient. Table 3.1, Figure 3.4 and Fig-

ure 3.5 show the adjustment coefficient z0 and the approximation of the ruin probability of

Rn, ΨRn
(u) = exp(−z0u) in parentheses, for different values of α ∈ {0, 0.25, 0.5, 0.75, 1}.

Figure 3.3: The unique positive zero root of the adjustment coefficient for ZIPMA(1).
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Table 3.1: The adjustment coefficient z0 and the approximation of ΨRn(u).

β
α 0 0.25 0.5 0.75 1

0.5 0.1017 0.0849 0.0762 0.0708 0.0669

(0.8159) (0.8438) (0.8586) (0.8679) (0.8747)

1 0.2035 0.1698 0.1525 0.1416 0.1339

(0.6656) (0.7120) (0.7371) (0.7533) (0.7650)

2 0.4070 0.3396 0.3051 0.2832 0.2678

(0.4431) (0.5070) (0.5432) (0.5675) (0.5853)

4 0.8140 0.6793 0.6102 0.5665 0.5357

(0.1963) (0.2570) (0.2951) (0.3220) (0.3425)

32 6.5125 5.4349 4.8819 4.5327 4.2858

(0.000002) (0.000019) (0.000057) (0.000116) (0.000189)

Figure 3.4: The trend of the adjustment coefficient when α increases and the claim
size decreases of ZIPMA(1).
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Figure 3.5: The trend of the ruin probability when α increases and the claim size
decreases of ZIPMA(1).

Table 3.1 shows that the value of the ruin probability increases along with the

increase of the values of α, but the adjustment coefficient decreases when the value of

α grows up. In addition, the value of the ruin probability decreases and the adjustment

coefficient increases with the increase of the values of β. This result is satisfied because

the greater value of α which is regarding to the increasing of the number of claims and

the greater value of β which is regarding to the decreasing of claim sizes. Figure 3.3 shows

the unique positive zero root of c(z) in case of β = 4 and α = 0.25, which is the red

point on the blue line and it satisfies 4 statements in Lemma 3.7 that is the trend of c(z)

surge to positive infinity. Figures 3.4 - 3.5 show the trend of the value of the adjustment

coefficient and the ruin probability along with the increase of the values of α and β.

3.2.5 Calculation of the value at risk and the tail value at risk for risk model

based on ZIPMA(1)

Let the time period n be 12 and divide the domain of {Ci,j , i, j = 1, 2, . . .} which

β = 0.5 to be 5× 105 parts with the length of steps are 0.0005 for the FFT distribution

approximation. For the Riemann sum approximation of tail value at risk, we divide the

length of steps of value at risk as 5 × 10−6. Table 3.2, Figure 3.6 show VaRγ(S12) and

TVaRγ(S12) for the confidence levels γ = 0.90 and 0.95, respectively.
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Table 3.2: The value of the value at risk and the tail value at risk of ZIPMA(1).

α 0 0.25 0.5 0.75 1
VaR0.90(S12) 44.1375 54.6690 64.7550 74.5600 84.1695
VaR0.95(S12) 49.4405 61.0660 72.0510 82.647 92.9765
TVaR0.90(S12) 51.2812 63.2719 74.5464 85.3923 95.9468
TVaR0.95(S12) 56.0299 68.9843 81.0389 92.5661 103.7379

Figure 3.6: The trend of the value at risk and tail value at risk when α increases at
the confidence level 0.90 and 0.95 of ZIPMA(1).

From Table 3.2 and Figure 3.6, we can see that the VaRγ(Sn) increases as α increases.

Similarly, VaRγ(Sn) increases as γ increases. The great value of α represents that there

is more probability that the new customers from the previous year will reclaim this year,

it means that either company will gain more profits or face the huge loss occurred by

insured. The value at risk can inform the estimated loss at confidence level γ and the

meaning of γ is that a (1− γ) probability that the loss will fall in value by greater than

the estimated loss.

3.3 Discrete Time Risk Model based on qth Order Zero Inflated Poisson Mov-

ing Average (ZIPMA(q))

In this section, we extend the ZIPMA(1) risk model to the ZIPMA(q) risk model

where the discrete time surplus process is in the same form as Definition (3.1)
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Rn = u+ nπ −
n∑

i=1

Nn∑
j=1

Ci,j .

However, the claim counts, {Nn, n ∈ N}, are modelled by the qth order zero inflated

Poisson moving average model denoted by ZIPMA(q). The definition of ZIPMA(q) and

probabilistic properties are provided in Definition 3.8 and Lemma 3.9, respectively. In

Section 3.3.1, we derive the adjustment coefficient function and the approximation to the

ruin probability of the ZIPMA(q) risk model. We also provide the special case of the

adjustment coefficient function when the claim sizes are exponentially distributed. Next,

we will use the zero inflated Poisson random variable with the binomial thinning operator

to get the ZIPMA(q) model.

Definition 3.8. Let {Nn, n ∈ N} be the ZIPMA(q) model defined as follows.

Nn = ϵn + α1 ◦ ϵn−1 + α2 ◦ ϵn−2 + · · ·+ αq ◦ ϵn−q,

where {ϵt, t = 1, 2, . . .} is a sequence of i.i.d. zero inflated Poisson random variables with

parameters p and λ. The α◦ thining operator is defined in Definition 3.8 as

αi ◦ ϵn−1 =

ϵn−1∑
j=1

δ
(n−1)
i,j

where for any n ∈ N, {δ(n−1)
i,j i = 1, 2, . . . , q, n ∈ N, j = 1, 2, . . .} is a sequence of i.i.d.

Bernoulli random variables with mean αi.

In ZIPMA(1) model, we consider only the number of claims in period i as a conse-

quence of new claims in period i and i− 1. However, in real situation, the number of new

claims in period i could depend on new claims from other previous periods. Therefore, we

extend the first order zero inflated Poisson moving average model to a more general model,

the zero inflated Poisson qth order moving average model ZIPMA(q) where q ∈ N. The

terms αi ◦ ϵn−i represents that the number of claims from the number of claims in period

n−i , where the probability of reclaim is αi. Hence, Nn is the number of insured in period

n based on the summation of the number of reclaims from period n− 1, n− 2, . . . , n− q

and the number of new claims in period i.
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Lemma 3.9. Let {Nn, n ∈ N} be the ZIPMA(q) process defined in Definition 3.8, then

{Nn, n ∈ N} has the following properties.

(a) The sequence {Nn, n ∈ N} is a stationary process with the probability generating

function of Nn, GNn
(z) =

q∏
i=0

(
p+ (1− p)e−λαi(1−z)

)
where α0 = 1 and for

n ∈ N.

(b) The expectation of Nn is E(Nn) = λ(1− p)

(
q∑

i=0

αi

)
where α0 = 1.

(c) The variance of Nn, Var(Nn) = λ(1− p)(1 + λp)

(
q∑

i=0

α2
i

)
+ λ(1− p)

q∑
i=0

αi(1− αi)

where α0 = 1.

(d) The covariance function between Nn and Nn−m,

Cov(Nn, Nn−m) =


λ(1− p)(1 + λp)

(
αm +

q−m∑
i=1

αiαi+m

)
, for 1 ≤ m ≤ q,

0 , for m > q.

(e) The correlation function between Nn and Nn−m where m < n,

Corr(Nn, Nn−m) =


λ(1−p)(1+λp)(αm+

∑q−m
i=1 αiαi+m)

λ(1−p)(1+λp)(
∑q

i=0 α
2
i )+λ(1−p)

∑q
i=0(αi(1−αi))

, 1 ≤ m ≤ q,

0 , m > q,

where α0 = 1.

Proof. To prove (a) we consider the probability generating function of {Nn, n ∈ N}.

Since {ϵt, t = 1, 2, . . .} is a sequence of i.i.d. zero inflated Poisson random variables with

parameters p and λ, the probability generating function of Nn can be completed as
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GNn
(z) = E

(
zϵn+

∑ϵn−1
j=1 δ

(n−1)
1,j +

∑ϵn−2
j=1 δ

(n−2)
2,j +···+

∑ϵn−q
j=1 δ

(n−q)
q,j

)
= E

(
zϵnz

∑ϵn−1
j=1 δ

(n−1)
1,j z

∑ϵn−2
j=1 δ

(n−2)
2,j · · · z

∑ϵn−q
j=1 δ

(n−q)
q,j

)
= E (zϵn)E

(
z
∑ϵn−1

j=1 δ
(n−1)
1,j

)
· · ·
(
z
∑ϵn−q

j=1 δ
(n−q)
q,j

)
= E(zϵn)E

(
E
(
z
∑ϵn−1

j=1 δ
(n−1)
1,j

∣∣ϵn−1

))
· · ·E

(
E
(
z
∑ϵn−q

j=1 δ
(n−q)
q,j

∣∣ϵn−q

))
= E(zϵn)

q∏
i=1

E
(

E
(
z
∑ϵn−i

j=1 δ
(n−i)
i,j

∣∣ϵn−i

))

= E(zϵn)
q∏

i=1

E

ϵn−i∏
j=1

E(zδ
(n−i)
i,j


= E(zϵn)

q∏
i=1

Gϵn−i
(Gδi,1(z))

=
(
p+ (1− p)e−λ(1−z)

) q∏
i=1

(
p+ (1− p)e−λαi(1−z)

)
,

for z ∈ R. Since GNn
(·) does not depend on n then GN1

(·) = GN2
(·) = . . . = GNn

(·).

Therefore, {Nn n ∈ N} is a stationary process. Furthermore, the probability generating

function of {Nn n ∈ N} is given by

GNn
(z) =

(
p+ (1− p)e−λ(1−z)

) q∏
i=1

(
p+ (1− p)e−λαi(1−z)

)
,

for all n ∈ N.

(b) From Lemma 2.31 and {ϵt, t = 1, 2, . . .} is a sequence of i.i.d. zero inflated Poisson

random variables, then we obtain

E(Nn) = E (ϵn + α1 ◦ ϵn−1 + α2 ◦ ϵn−2 + · · ·+ αq ◦ ϵn−q)

= E (ϵn) +

q∑
i=1

E(αi ◦ ϵn−i)

= λ(1− p) +

q∑
i=1

αiE(ϵn−i)

= λ(1− p)

(
1 +

q∑
i=1

αi

)
.
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(c) Using Lemma 2.31 and {ϵt, t = 1, 2, . . .} is a sequence of i.i.d. zero inflated Poisson

random variables, then we have

Var(Nn) = Var (ϵn + α1 ◦ ϵn−1 + α2 ◦ ϵn−2 + · · ·+ αq ◦ ϵn−q)

= Var(ϵn) +
q∑

i=1

Var(αi ◦ ϵn−i)

= Var(ϵn) +
q∑

i=1

(
αi(1− αi)E(ϵn−i) + α2

i Var(ϵn−i)
)

= Var(ϵn) +
q∑

i=1

α2
i Var(ϵn−i) +

q∑
i=1

αi(1− αi)E(ϵn−i)

= Var(ϵn)
(
1 +

q∑
i=1

α2
i

)
+ E(ϵn)

q∑
i=1

αi(1− αi) (3.22)

= λ(1− p)(1 + λp)(

q∑
i=0

αi) + λp

q∑
i=0

αi(1− αi),

where we apply the fact that {ϵt , t = 1, 2, . . .} is independent and identically distributed

random variables to obtain (3.22).

(d) Note that {ϵt, t = 1, 2, . . .} is a sequence of i.i.d. zero inflated Poisson random

variables with parameters p and λ.

For m = 1, using Lemma 2.31, then

Cov(Nn, Nn−1) = Cov (ϵn + α1 ◦ ϵn−1 + α2 ◦ ϵn−2 + · · ·+ αq ◦ ϵn−q,

ϵn−1 + α1 ◦ ϵn−2 + α2 ◦ ϵn−3 + · · ·+ αq ◦ ϵn−(q+1)

)
= Cov(α1 ◦ ϵn−1, ϵn−1) + Cov(α2 ◦ ϵn−2, α1 ◦ ϵn−2)

+ · · ·+ Cov(αq ◦ ϵn−q, αq−1 ◦ ϵn−q)

= α1Cov(ϵn−1, ϵn−1) + α1α2Cov(ϵn−2, ϵn−2)

+ · · ·+ αqαq−1Cov(ϵn−q, ϵn−q)

= Var(ϵn−1)(α1 +

q−1∑
i=1

αiαi+1)

= λ(1− p)(1 + λp)(α1 +

q−1∑
i=1

αiαi+1), (3.23)

where we use Lemma 2.29 (c) to obtain the last equation.
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For m ≤ q, we obtain

Cov(Nn, Nn−m) = Cov (ϵn + α1 ◦ ϵn−1 + α2 ◦ ϵn−2 + · · ·+ αq ◦ ϵn−q,

ϵn−m + α1 ◦ ϵn−(m+1) + α2 ◦ ϵn−(m+2) + · · ·+ αq ◦ ϵn−(q+m)

)
= Cov(αm ◦ ϵn−m, ϵn−m) + Cov(αm+1 ◦ ϵn−(m+1), α1 ◦ ϵn−(m+1))

+ · · ·+ Cov(αq−m ◦ ϵn−(q+m), αq ◦ ϵn−(q+m))

= αmCov(ϵn−m, ϵn−m) + α1αm+1Cov(ϵn−(m+1), ϵn−(m+1))

+ · · ·+ αqαq−mCov(ϵn−(q+m), ϵn−(q+m))

= Var(ϵn−2)(α2 +

q−2∑
i=1

αiαi+2)

= λ(1− p)(1 + λp)(αm +

q−m∑
i=1

αiαi+m),

where we use Lemma 2.29 (c) to obtain the last equation.

For m > q, we obtain

Cov(Nn, Nn−m) = Cov (ϵn + α1 ◦ ϵn−1 + α2 ◦ ϵn−2 + · · ·+ αq ◦ ϵn−q,

ϵn−m + α1 ◦ ϵn−(m+1) + α2 ◦ ϵn−(m+2) + · · ·+ αq ◦ ϵn−(q−m))

)
= 0.

(e) From Lemma 2.29 and (d) we know that Var(Nn) does not depend on n. Then,

Corr(Nn, Nn−m) =
Cov(Nn, Nn−m)√

Var(Nn)Var(Nn−m)

=
Cov(Nn, Nn−m)

Var(Nn)
.

Then, we get

Corr(Nn, Nn−m) =
λ(1− p)(1 + λp)(αm +

∑q−m
i=1 αiαi+m)

λ(1− p)(1 + λp)(
∑q

i=0 α
2
i ) + λ(1− p)

∑q
i=0(αi(1− αi))

,

for m ≤ q,

Corr(Nn, Nn−m) = 0,

for m > q.
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3.3.1 Adjustment coefficient function of ZIPMA(q)

In the previous section, we have provided the definition of the discrete time surplus

process based on ZIPMA(q) model. In this section, we derive the adjustment coefficient

function c(·), of ZIPMA(q) surplus process using the method from Section 3.1 to obtain

the Lundberg adjustment coefficient. Afterward, we provide a proof of the unique positive

solution of zero root of the adjustment coefficient. The risk model based on ZIPMA(q) is

described as the following.

Definition 3.10. The risk model based on ZIPMA(q) can be expressed as

Rn = u+ nπ −
n∑

m=1

Nm∑
j=1

Cm,j ,

where u is the positive initial reserve, π is the premium rate per period, Nm is modelled

by zero inflated Poisson qth order moving average (ZIPMA(q)) defined in Definition 3.8

and {Cm,j} is the sequence of independent and identically distributed random variables.

Lemma 3.11. Let Ni, i ∈ N be the ZIPMA(q) defined in Definition 3.8, then the joint

probability generating function of (N1, N2, . . . , Nn) can be expressed as

GN1,N2,...,Nn
(z1, z2, . . . , zn) =

(
p+ (1− p)e−λαq(1−z1)

)
× · · ·

×
(
p+ (1− p)e−λ(1−(1−α1+α1z1)···(1−αq+αqzq))

)
×

n−q∏
i=1

(
p+ (1− p)e−λ(1−zi(1−α1+α1zi+1)···(1−αq+αqzi+q))

)
×
(
p+ (1− p)e−λ(1−zn−1(1−α1+α1zn))

)
× · · ·

×
(
p+ (1− p)e−λ(1−zn−(q−1)(1−α1+α1zn+1−(q−1))···(1−αq−1+αq−1zn))

)
×
(
p+ (1− p)e−λ(1−zn)

)
,

for z1, z2, . . . , zn ∈ R+.
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Proof. The moment generating function of Sn, mSn
(·), from (3.10) defined as

mSn
(z) = E

(
ezSn

)
= E

(
ez(W1+W2+···+W3)

)
= mW1,W2,...,Wn

(z, z, . . . , z),

for z ∈ R+ and Wi =
∑Ni

j=1Ci,j defined in Definition 3.1. Then, the joint probability

generating function of (N1, N2, . . . , Nn) is given by

GN1,N2,...,Nn
(z1, z2, . . . , zn) = E

(
zN1

1 zN2

2 · · · zNn
n

)
,

for z1, z2, . . . , zn ∈ R+. The multivariate of the moment generating function, mSn
(z1, z2, . . . , zn)

of (W1,W2, . . . ,Wn) can be expressed as the joint probability generating function of

(N1, N2, . . . , Nn) and the moment generating function of {Ci,j} denoted by mC(·), then

we obtain

mSn
(z1, z2, . . . , zn) = mW1,W2,...,Wn

(z1, z2, . . . , zn)

= GN1,N2,...,Nn
(mC(z1),mC(z2), . . . ,mC(zn)). (3.24)

Then, to obtain (3.24), we find the expression for the probability generating function,

GN1,N2,...,Nn
(z1, z2, . . . , zn). Since {ϵt, t = 1, 2, . . .} is a sequence of i.i.d. random vari-

ables, we firstly consider the the joint probability generating function of (N1, N2, . . . , Nn)

as follows.
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GN1,N2,...,Nn
(z1, z2, . . . , zn) = E

(
zN1

1 zN2

2 · · · zNn
n

)
= E

(
z
ϵ1+α1◦ϵ1−1+α2◦ϵ1−2+···+αq◦ϵ1−q

1

× z
ϵ2+α1◦ϵ2−1+α2◦ϵ2−2+···+αq◦ϵ2−q

2

...

× zϵn+α1◦ϵn−1+α2◦ϵn−2+···+αq◦ϵn−q
n

)
= E(zαq◦ϵ1−q

1 )E(zαq−1◦ϵ2−q

1 z
αq◦ϵ2−q

2 )× · · ·

×E(zα1◦ϵ1−1

1 z
α2◦ϵ2−2

2 · · · zαq◦ϵn−n
q )

×
n−q∏
i=1

E
(
zϵii z

α1◦ϵi
i+1 · · · zαq◦ϵi

i+q

)
×

q−1∏
i=1

E(zϵn−i

n−i z
α1◦ϵn−i

n+1−i · · · zαq−i◦ϵn−i
n )

×E(zϵnn ). (3.25)

For the first q terms of (3.25), we apply Lemma 2.29 and the fact that {ϵt, t = 1, 2, . . .}

is a sequence of i.i.d. zero inflated Poisson random variables with parameters p and λ to

consider the first q terms, we start with the first term as the following.

E(zαq◦ϵ1−q

1 ) = E (E (zαq◦ϵ1−q |ϵ1−q))

= E

ϵ1−q∏
j=1

E
(
z
δ
(1−q)
q,j

1

)
= E ((1− αq + αqz1)

ϵ1−q)

= Gϵ1−q
(1− αq + αqz1)

= p+ (1− p)e−λαq(1−z1). (3.26)
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For the second term, note that

E(zαq−1◦ϵ2−q

1 z
αq◦ϵ2−q

2 ) = E
(
E
(
z
αq−1◦ϵ2−q

1 z
αq◦ϵ2−q

2 |ϵ2−q

))
= E

ϵ2−q∏
j=1

E
(
z
δ
(2−q)
q−1,j

1

) ϵ2−q∏
j=1

E
(
z
δ
(2−q)
q,j

2

)
= E (((1− αq−1 + αq−1z1)(1− αq + αqz2))

ϵ2−q)

= Gϵ2−q
((1− αq−1 + αq−1z1)(1− αq + αqz2))

= p+ (1− p)e−λ(1−(1−αq−1+αq−1z1)(1−αq+αqz2)). (3.27)

Finally, we can apply the same technique as in (3.26) and (3.27) to formulate the q term

as follows.

E(zα1◦ϵ0
1 zα2◦ϵ0

2 · · · zαq◦ϵ0
q ) = Gϵ0 ((1− α1 + α1z1) · · · (1− αq + αqzq))

= p+ (1− p)e−λ(1−(1−α1+α1z1)···(1−αq+αqzq)). (3.28)

For
n−q∏
i=1

E
(
zϵii z

α1◦ϵi
i+1 · · · zαq◦ϵi

i+q

)
, we know that {ϵt, t = 1, 2, . . .} is a sequence of i.i.d.

zero inflated Poisson random variables with parameters p and λ. First, consider the case

i = 1, we obtain

E
(
zϵ11 zα1◦ϵ1

2 · · · zαq◦ϵ1
1+q

)
= E

(
E
(
zϵ11 zα1◦ϵ1

2 · · · zαq◦ϵ1
1+q

∣∣ϵ1))
= E

zϵ11

ϵ1∏
j=1

E
(
z
δ
(1)
1,j

2

)
· · ·

ϵ1∏
j=1

E
(
z
δ
(1)
q,j

1+q

)
= E (z1(1− α1 + α1z2) · · · (1− αq + αqz1+q))

ϵ1

= Gϵ1(z1(1− α1 + α1z2) · · · (1− αq + αqz1+q))

= p+ (1− p)e−λ(1−z1(1−α1+α1z2)···(1−αq+αqz1+q)). (3.29)
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As a consequence, we apply the same technique as in (3.29) for i = 2, 3, . . . , n− q, then

we obtain

n−q∏
i=1

E
(
zϵii z

α1◦ϵi
i+1 · · · zαq◦ϵi

i+q

)
=

n−q∏
i=1

(
p+ (1− p)e−λ(1−zi(1−α1+α1zi+1)···(1−αq+αqzi+q))

)
.

(3.30)

For
q−1∏
i=1

E(zϵn−i

n−i z
α1◦ϵn−i

n+1−i · · · zαq−i◦ϵn−i
n ) , we apply the similar technique as in (3.28).

First, we start with i = 1,

E(zϵn−1

n−1 z
α1◦ϵn−1
n ) = Gϵn−1

(zn−1(1− α1 + α1zn))

= p+ (1− p)e−λ(1−zn−1(1−α1+α1zn)). (3.31)

Consequently, we can apply to obtain the general form for i = 2, 3, . . . , q − 1 as follows.

q−1∏
i=1

E(zϵn−i

n−i z
α1◦ϵn−i

n+1−i · · · zαq−i◦ϵn−i
n ) =

q−1∏
i=1

(
Gϵn−i

(zn−i(1− α1 + α1zn+1−i) · · · (1− αi + αizn))
)

=

q−1∏
i=1

(
p+ (1− p)e−λ(1−zn−i(1−α1+α1zn+1−i)···(1−αi+αizn))

)
.

(3.32)

Finally, the last term of (3.25), we have that {ϵt, t = 1, 2, . . .} is a sequence of i.i.d. zero

inflated Poisson random variables with parameters p and λ, then we obtain

E(zϵnn ) = p+ (1− p)e−λ(1−zn). (3.33)
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Substituting (3.26) - (3.33) into (3.25),

E
(
zN1

1 zN2

2 · · · zNn
n

)
=

(
p+ (1− p)e−λαq(1−z1)

)
× · · ·

×
(
p+ (1− p)e−λ(1−(1−α1+α1z1)···(1−αq+αqzq))

)
×

n−q∏
i=1

(
p+ (1− p)e−λ(1−zi(1−α1+α1zi+1)···(1−αq+αqzi+q))

)
×
(
p+ (1− p)e−λ(1−zn−1(1−α1+α1zn))

)
× · · ·

×
(
p+ (1− p)e−λ(1−zn−(q−1)(1−α1+α1zn+1−(q−1))···(1−αq−1+αq−1zn))

)
×
(
p+ (1− p)e−λ(1−zn)

)
. (3.34)

Theorem 3.12. Let Rn be the discrete time surplus process defined in Definition 3.10.

The adjustment coefficient function c(·) of Rn is defined as

c(z) = log(p+ (1− p)e−λ(1−mC(z)(1−α1+α1mC(z))···(1−αq+αqmC(z))))− πz, (3.35)

for z ∈ R+ and α0 = 1.

Proof. We denote that {Ci,j , i, j = 1, 2, . . .} is a sequence of i.i.d. random variables

whose the moment of generating function, mC(·).

Note that,

c(z) = lim
n→∞

1

n
logmSn

(z)− πz.
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From Lemma 3.11, we obtain

E
(
zN1zN2 · · · zNn

)
=

(
p+ (1− p)e−λαq(1−z)

)
× · · ·

×
(
p+ (1− p)e−λ(1−(1−α1+α1z)···(1−αq+αqz))

)
×
(
p+ (1− p)e−λ(1−z(1−α1+α1z)···(1−αq+αqz))

)n−q

×
(
p+ (1− p)e−λ(1−z(1−α1+α1z))

)
× · · ·

×
(
p+ (1− p)e−λ(1−z(1−α1+α1z)···(1−αq−1+αq−1z))

)
×
(
p+ (1− p)e−λ(1−z)

)
. (3.36)

Hence, from (3.24), we can obtain the moment generating function of Sn, by replacing z

by mC(z) in (3.36) as

mSn
(z) =

(
p+ (1− p)e−λαq(1−mC(z))

)
× · · ·

×
(
p+ (1− p)e−λ(1−(1−α1+α1mC(z))···(1−αq+αqmC(z)))

)
×
(
p+ (1− p)e−λ(1−mC(z)(1−α1+α1mC(z))···(1−αq+αqmC(z)))

)n−q

×
(
p+ (1− p)e−λ(1−mC(z)(1−α1+α1mC(z)))

)
× · · ·

×
(
p+ (1− p)e−λ(1−mC(z)(1−α1+α1mC(z))···(1−αq−1+αq−1mC(z)))

)
×
(
p+ (1− p)e−λ(1−mC(z))

)
. (3.37)

Consequently, we obtain mSn
(·) from (3.37), then we put into the adjustment coefficient

function as follows.

c(z) = lim
z→+∞

1

n
logmSn

(z)− πz

= log
(
p+ (1− p)e−λ(1−mC(z)(1−α1+α1mC(z))···(1−αq+αqmC(z)))

)
− πz.

The premium per period, π, follows the explanation in (3.18). Let D = {z ∈ R+}. We

will show that the adjustment coefficient has the unique positive zero root in D for q ≥ 1.
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Lemma 3.13. Let q ≥ 1, the adjustment coefficient function of ZIPMA(q) has the

unique positive solution of the equation c(z) = 0 in D.

Proof. To simplify the notation,

Ai(z) := 1− αi + αimC(z).

Then, we obtain

Ai(0) = 1,

A
′

i(z) = αim
′

C(z),

A
′′

i (z) = αim
′′

C(z),

and

A
′

i(0) = αiE(C),

where α0 = 1.

We can simplify the adjustment coefficient function defined in Theorem 3.12 as

c(z) = log
(
p+ (1− p)e−λ(1−mC(z)(1−α1+α1mC(z))···(1−αq+αqmC(z)))

)
− πz

= log
(
p+ (1− p)e−λ(1−A0(z)A1(z)···Aq(z))

)
− πz

= log
(
p+ (1− p)e−λ(1−

∏q
i=0 Ai(z))

)
− πz. (3.38)

Similar to Lemma 3.7 to prove the Lemma, then we will show that

(a) c(0) = 0,

(b) d

dz
c(z)

∣∣∣∣
z=0

< 0,

(c) d2

dz2
c(z) > 0 for z ∈ D,

(d) lim
z→+∞

c(z) = +∞.
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(a) Note that

c(z) = log
(
p+ (1− p)e−λ(1−

∏q
i=0 Ai(z))

)
− πz.

We substitute z = 0 into c(z), then we obtain

c(0) = log
(
p+ (1− p)e−λ(1−

∏q
i=1 Ai(0))

)
− π(0)

= log(p+ (1− p))

= 0.

(b) Note that

d

dz
c(z) =

(1− p)e−λ(1−
∏q

i=0 Ai(z))λ
(∑q

s=0

∏q
i=0 , i ̸= sA

′

s(z)Ai(z)
)

p+ (1− p)e−λ(1−
∏q

i=0 Ai(z))
− π.

Since we have π = λ(1− p)E(C)(
∑q

i=0 αi)(1 + θ), then for θ > 0,

d

dz
c(z)

∣∣∣∣
z=0

=
(1− p)e−λ(1−

∏q
i=0 Ai(0))λ

(∑q
s=0

∏q
i=0 , i ̸= sA

′

s(0)Ai(0)
)

p+ (1− p)e−λ(1−
∏q

i=0 Ai(0))
− π

=
(1− p)e−λ(1−1)λ(

∑q
s=0 αsE(C))

p+ (1− p)eλ(1−1)
− π

= λ(1− p)E(C)

q∑
s=0

αs − λ(1− p)E(C)(1 + θ)

q∑
s=0

αs

= λ(1− p)E(C)

(
q∑

s=0

αs −
q∑

s=0

αs − θ

q∑
s=0

αs

)

= −λ(1− p)E(C)

(
θ

q∑
s=0

αs

)
< 0.

Then, we obtain that d

dz
c(z)

∣∣∣∣
z=0

< 0.
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(c) Since z ∈ D, Ai(z) > 0, A′

i(z) > 0 and A
′′

i (z) > 0, then we obtain

d2

dz2
c(z) =

p(1− p)e−λ(1−
∏q

i=0 Ai(z))
(
2λ
∑q

x=0

∑q
y=x+1

∏q
i=0,i ̸=x,y A

′

x(z)A
′

y(z)Ai(z)
)

(
p+ (1− p)e−λ(1−

∏q
i=0 Ai(z))

)2
+
p(1− p)e−λ(1−

∏q
i=0 Ai(z))

(
λ
∑q

s=0

∏q
i=0,i ̸= sA

′′

s (z)Ai

)
(
p+ (1− p)e−λ(1−

∏q
i=0 Ai(z))

)2
+
p(1− p)e−λ(1−

∏q
i=0 Ai(z))

(
λ
∑q

s=0

∏q
i=0,i ̸= sA

′

s(z)Ai

)2
(
p+ (1− p)e−λ(1−

∏q
i=0 Ai(z))

)2
+

(
1− p)e−λ(1−

∏q
i=0 Ai(z))

)2 (
2λ
∑q

x=0

∑q
y=x+1

∏q
i=0,i ̸=x,y A

′

x(z)A
′

y(z)Ai(z)
)

(
p+ (1− p)e−λ(1−

∏q
i=0 Ai(z))

)2
+

(
1− p)e−λ(1−

∏q
i=0 Ai(z))

)2 (
λ
∑q

s=0

∏q
i=0,i ̸= sA

′′

s (z)Ai

)
(
p+ (1− p)e−λ(1−

∏q
i=0 Ai(z))

)2 .

Thus, we can conclude that d2

dz2 c(z) > 0.

(d) We can show that the limit of c(z) reaches to +∞ as z approaches +∞. Let us first

consider

f(z) = λ(

q∏
i=0

Ai(z)− 1),

∝ λ

q∏
i=0

Ai(z)

∝ λmq+1
C (z)

q∏
i=0

αi,

for z ∈ D. We know that mC(z) is the monotonically increasing function and continuous

function in D, then mq+1
C (z) is growing up to +∞ with the exponential rate, then we can

conclude that f(z) will grow with exponential rate which is faster than any linear trend.

Hence, we can make the conclusion as

lim
z→+∞

(
log
(
p+ (1− p)e−λ(1−

∏q
i=0 Ai(z))

)
− πz

)
= +∞.
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Example 3.2. In this part, we consider a special case when the claim amounts follow an

exponential distribution. That is {Ci,j , i ∈ N, j = 1, 2, . . .} is a sequence of i.i.d. expo-

nentially distributed random variables with parameter β > 0. The moment generating

function of {Ci,j , i ∈ N, j = 1, 2, . . .} is defined as mC(z) = 1
1−z/β for z < β. Using

Theorem 3.6, the adjustment coefficient function is defined as

c(z) = log
(
p+ (1− p)e−λ(1−

∏q
i=0 Ai(z))

)
− πz, (3.39)

where Ai(z) = 1− αi +
αi

1−z/β and π = λ(1− p)(
∑q

i=0 αi)E(C)(1 + θ), 0 < z < β.

3.3.2 Approximate to the value at risk and tail value at risk of ZIPMA(q)

The value at risk at the confidence level γ, VaRγ(Sn) and the tail value at risk at

the confidence level γ, TVaRγ(Sn) for ZIPMA(q) process can be approximated by the

similar technique as in ZIPMA(1). Therefore, we consider the characteristic function of

Sn as follows.

ϕSn
(x) = GN(n)(ϕC(x))

=
(
p+ (1− p)e−λαq(1−ϕC(x))

)
× · · ·

×
(
p+ (1− p)e−λ(1−(1−α1+α1ϕC(x))···(1−αq+αqϕC(x)))

)
×
(
p+ (1− p)e−λ(1−ϕC(x)(1−α1+α1ϕC(x))···(1−αq+αqϕC(x)))

)n−q

×
(
p+ (1− p)e−λ(1−ϕC(x)(1−α1+α1ϕC(x)))

)
× · · ·

×
(
p+ (1− p)e−λ(1−ϕC(x)(1−α1+α1ϕC(x))···(1−αq−1+αq−1ϕC(x)))

)
×
(
p+ (1− p)e−λ(1−ϕC(x))

)
,

where x ∈ R+.

3.3.3 Numerical experiments of risk model based on ZIPMA(q)

In this section, we show examples to calculate the adjustment coefficient and ap-

proximation to the ruin probability of risk model based on ZIPMA(q) claim count process
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where we consider a special case when q = 2 and q = 3. That is the ZIPMA(2) and

ZIPMA(3), respectively. In addition, the two risk measurements of 12th period of time

at the confidence levels 0.9 and 0.95 are also provided.

3.3.4 Calculation of the adjustment coefficient of risk model based on ZIPMA(2)

Let Rn be the discrete time surplus process defined in (3.1), and {Ni, i = 1, 2, . . . n}

is a sequence of ZIPMA(2) claฟim count process defined in Definition 3.8. Let

D = {z ∈ R+} and z < β, and {Ci,j, i, j = 1, 2, . . .} is a sequence of i.i.d.

random variables with the exponential distribution with parameter β and we ob-

tain c(z) as in Example 3.2. The parameters setting are u = 2, (λ, p) = (1.5, 0.2),

β = 4 and θ = 0.3. Table 3.3 shows the adjustment coefficient z0 for different

values of α1, α2 ∈ {0, 0.25, 0.50, 0.75, 1} and the value of upper bound of the ruin

probability of Rn, ΨRn(u) = exp(−z0u) in parentheses. Figure 3.8 - 3.9 show

the trend of the adjustment coefficient and the value of upper bound of the ruin

probability, respectively.

Figure 3.7: The unique positive zero root of the adjustment coefficient for ZIPMA(2).
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Table 3.3: The adjustment coefficient z0 and the approximation of ΨRn(u) of
ZIPMA(2).

α1
α2 0 0.25 0.5 0.75 1

0 0.8140 0.6793 0.6102 0.5665 0.5357
(0.1963) (0.2570) (0.2951) (0.3220) (0.3425)

0.25 0.6793 0.5927 0.5418 0.5074 0.4821
(0.2570) (0.3056) (0.3383) (0.3624) (0.3812)

0.5 0.6102 0.5418 0.4988 0.4687 0.4460
(0.2951) (0.3383) (0.3687) (0.3916) (0.4098)

0.75 0.5665 0.5074 0.4687 0.4408 0.4196
(0.3220) (0.3624) (0.3916) (0.4141) (0.4320)

1 0.5357 0.4821 0.4460 0.4196 0.3992
(0.3425) (0.3813) (0.4098) (0.4320) (0.4500)

Figure 3.8: The trend of the adjustment coefficient according to the changes of α1 and
α2 of ZIPMA(2).
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Figure 3.9: The trend of the ruin probability according to the changes of α1 and α2

of ZIPMA(2).

Figure 3.7 shows the unique positive zero root of c(z) in the case of β = 4,

α1 = 0.25 α2 = 0, which is the red point on the blue line and it satisfies 4

statements in Lemma 3.13 that is the trend of c(z) surge to positive infinity. Table

3.3 and Figures 3.8-3.9 show that the value of ruin probability increases while the

adjustment coefficient decreases. Besides, the ruin probability dependently grows

as a function of the level αi , i = 1, 2. Therefore, the ZIPMA(2) risk model with

two periods of claim count seems to have a high value of the ruin probability than

the ruin probability from ZIPMA(1) risk model.

3.3.5 Calculation of the value at risk and the tail value at risk for risk

model based on ZIPMA(2)

In this part, we show calculations of the value at risk and tail value at risk

of a risk model based on ZIPMA(q) when q = 2. Let the time period n be 12 and

divide the domain of {Ci,j, i, j = 1, 2, . . .} which β = 4 to be 5× 105 parts with

the length of steps are 0.0005 for the FFT distribution approximation. For the

Riemann sum approximation of tail value at risk, we divided the length of steps of

value at risk as 5× 10−6. Tables 3.4 - 3.5 show VaRγ(S12) for the different values
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of α1, α2 ∈ {0, 0.25, 0.5, 0.75, 1} and the value of TVaRγ(S12) (in parentheses)

for the confidence levels γ = 0.90 and 0.95, respectively.

Table 3.4: The value of the value at risk and tail value at risk at confidence level 0.90
of ZIPMA(2).

α1
α2 0 0.25 0.5 0.75 1

0 5.5200 6.8200 8.0600 9.2800 10.4600
(6.40828) (7.8785) (9.26798) (10.6081) (11.9146)

0.25 6.8400 8.1200 9.3600 10.5600 11.7600
(7.90664) (9.34731) (10.726) (12.0633) (13.3708)

0.5 8.1000 9.3600 10.6000 11.8200 13.0200
(9.31545) (10.7463) (12.1235) (13.4635) (14.7757)

0.75 9.3200 10.5800 11.8200 13.0400 14.2400
(10.6707) (12.0995) (13.4796) (14.825) (16.1438)

1 10.5200 11.8000 13.0400 14.2600 15.4600
(11.9897) (13.4204) (14.8055) (16.1574) (17.4835)

Figure 3.10: The trend of the value at risk according to the changes of α1 and α2 at
the confidence level 0.90 of ZIPMA(2).
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Figure 3.11: The trend of the tail value at risk according to the changes of α1 and α2

at the confidence level 0.90 of ZIPMA(2).

Table 3.5: The value of the value at risk and tail value at risk at confidence level 0.95
of ZIPMA(2).

α1
α2 0 0.25 0.5 0.75 1

0 6.1800 7.6000 8.9600 10.2800 11.5600
(7.00104) (8.58557) (10.0686) (11.4909) (12.8722)

0.25 7.6400 9.0400 10.3800 11.6800 12.9600
(8.6197) (10.1672) (11.6373) (13.0564) (14.439)

0.5 9.0000 10.4000 11.7400 13.0400 14.3400
(10.1259) (11.6616) (13.1303) (14.553) (15.9414)

0.75 10.3200 11.7200 13.0600 14.3800 15.6600
(11.5663) (13.0996) (14.572) (16.0014) (17.398)

1 11.6200 13.0200 14.3600 15.6800 16.9800
(12.9624) (14.4982) (15.9769) (17.4142) (18.8199)
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Figure 3.12: The trend of the value at risk according to the changes of α1 and α2 at
the confidence level 0.95 of ZIPMA(2).

Figure 3.13: The trend of the tail value at risk according to the changes of α1 and α2

at the confidence level 0.95 of ZIPMA(2).

Tables 3.4 - 3.5 and Figures 3.10 - 3.13 show that the value of VaRγ and

TVaRγ are increasing together with the increase of the values of α1, α2 and confi-

dence level γ. In the other words, the increasing of α1 and α2 which means that

there are more the number of new claims will continuously claim in the current
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year. Consequently, the company will receive either high earned premiums or

massive claims. The confidence level γ can inform us about the probability that

the loss will undergo over the estimated loss with a probability (1− γ).

3.3.6 Calculation of the adjustment coefficient of risk model based on

ZIPMA(3)

Let Rn be the discrete time surplus process defined in (3.1), and {Ni, i =

1, 2, . . . n} be a sequence of ZIPMA(2) claim count process defined in Definition

3.8. Let D = {z ∈ R+} and z < β, and {Ci,j, i, j = 1, 2, . . .} is a sequence of

i.i.d. random variables with the exponential distribution with parameter β and

we obtain c(z) as in Example 3.2. The parameters setting are u = 2, (λ, p) =

(1.5, 0.2), β = 4 and θ = 0.3. Figures 3.15 - 3.19 show the trend of the adjustment

coefficient z0 for the different values of α1, α2, α3 ∈ {0, 0.25, 0.50, 0.75, 1} and the

value of upper bound of the ruin probability of Rn, ΨRn(u) = exp(−z0u). Table

3.6 shows the value of the adjustment coefficient z0 and the value of upper bound

of the ruin probability in parentheses.

Figure 3.14: The unique positive zero root of the adjustment coefficient for ZIPMA(3).
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Figure 3.15: The trend of the adjustment coefficient and the approximated ruin prob-
ability when fixed α1 = 0 and either α2 or α3 increases of ZIPMA(3).

Figure 3.16: The trend of the adjustment coefficient and the approximated ruin prob-
ability when fixed α1 = 0.25 and either α2 or α3 increases of ZIPMA(3).

Figure 3.17: The trend of the adjustment coefficient and the approximated ruin prob-
ability when fixed α1 = 0.5 and either α2 or α3 increases of ZIPMA(3).
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Figure 3.18: The trend of the adjustment coefficient and the approximated ruin prob-
ability when fixed α1 = 0.75 and either α2 or α3 increases of ZIPMA(3).

Figure 3.19: The trend of the adjustment coefficient and the approximated ruin prob-
ability when fixed α1 = 1 and either α2 or α3 increases of ZIPMA(3).

Table 3.6: The adjustment coefficient z0 and the approximation of ΨRn(u) of ZIPMA(3)

α2

α3 0 0.25 0.5 0.75 1

α1 = 0 0 0.8140 0.6793 0.6102 0.5665 0.5357

(0.1963) (0.2570) (0.2951) (0.3220) (0.3425)

0.25 0.6793 0.5927 0.5418 0.5074 0.4821

(0.2570) (0.3056) (0.3383) (0.3624) (0.3812)

0.5 0.6102 0.5418 0.4988 0.4687 0.4460

(0.2951) (0.3383) (0.3687) (0.3916) (0.4098)

0.75 0.5665 0.5074 0.4687 0.4408 0.4196

Continued
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Table 3.6: (continued) The adjustment coefficient z0 and the approximation of ΨRn(u)
of ZIPMA(3)

α2

α3 0 0.25 0.5 0.75 1

(0.3220) (0.3624) (0.3916) (0.4141) (0.4320)

1 0.5357 0.4821 0.4460 0.4196 0.3992

(0.3425) (0.3813) (0.4098) (0.4320) (0.4500)

α1 = 0.25 0 0.6793 0.5927 0.5418 0.5074 0.4821

(0.2570) (0.3056) (0.3383) (0.3624) (0.3812)

0.25 0.5927 0.5301 0.4900 0.4617 0.4402

(0.3056) (0.3463) (0.3753) (0.3971) (0.4146)

0.5 0.5418 0.4900 0.4553 0.4301 0.4106

(0.3383) (0.3753) (0.4022) (0.4230) (0.4399)

0.75 0.5074 0.4617 0.4301 0.4066 0.3882

(0.3624) (0.3971) (0.4230) (0.4434) (0.4600)

1 0.4821 0.4402 0.4106 0.3882 0.3706

(0.3812) (0.4146) (0.4399) (0.4600) (0.4765)

α1 = 0.5 0 0.6102 0.5418 0.4988 0.4687 0.4460

(0.2951) (0.3383) (0.3687) (0.3916) (0.4098)

0.25 0.5418 0.4900 0.4553 0.4301 0.4106

(0.3383) (0.3753) (0.4022) (0.4230) (0.4399)

0.5 0.4988 0.4553 0.4251 0.4025 0.3847

(0.3687) (0.4022) (0.4273) (0.4470) (0.4632)

0.75 0.4687 0.4301 0.4025 0.3815 0.3649

(0.3916) (0.4230) (0.4470) (0.4662) (0.4820)

1 0.4460 0.4106 0.3847 0.3649 0.3490

(0.4098) (0.4399) (0.4632) (0.4820) (0.4975)

α1 = 0.75 0 0.5665 0.5074 0.4687 0.4408 0.4196

Continued
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Table 3.6: (continued) The adjustment coefficient z0 and the approximation of ΨRn(u)
of ZIPMA(3)

α2

α3 0 0.25 0.5 0.75 1

(0.3220) (0.3624) (0.3916) (0.4141) (0.4320)

0.25 0.5074 0.4617 0.4301 0.4066 0.3882

(0.3624) (0.3971) (0.4230) (0.4434) (0.4600)

0.5 0.4687 0.4301 0.4025 0.3815 0.3649

(0.3916) (0.4230) (0.4470) (0.4662) (0.4820)

0.75 0.4408 0.4066 0.3815 0.3622 0.3467

(0.4141) (0.4434) (0.4662) (0.4846) (0.4998)

1 0.4196 0.3882 0.3649 0.3467 0.3320

(0.4320) (0.4600) (0.4820) (0.4998) (0.5147)

α1 = 1 0 0.5357 0.4821 0.4460 0.4196 0.3992

(0.3425) (0.3812) (0.4098) (0.4320) (0.4500)

0.25 0.4821 0.4402 0.4106 0.3882 0.3706

(0.3812) (0.4146) (0.4399) (0.4600) (0.4765)

0.5 0.4460 0.4106 0.3847 0.3649 0.3490

(0.4098) (0.4399) (0.4632) (0.4820) (0.4975)

0.75 0.4196 0.3882 0.3649 0.3467 (0.3320)

(0.4320) (0.4600) (0.4820) (0.4998) (0.5147)

1 0.3992 0.3706 0.3490 0.3320 0.3181

(0.4500) (0.4765) (0.4975) (0.5147) (0.5293)

Figure 3.14 shows the unique positive zero root of c(z) in case β = 4,

α1 = 0.5 and α2, α3 = 0, which is the red point on the blue line and it satisfies

4 statements in Lemma 3.13 that is the trend of c(z) surge to positive infinity.

Figures 3.15 - 3.19 shows the similar trend to Figures 3.8-3.9 that the ruin prob-
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ability is increasing while the adjustment coefficient is decreasing along with the

increasing of level αi.

3.3.7 Calculation of the value at risk and the tail value at risk for risk

model based on ZIPMA(3)

In this part, we show a calculation of the value at risk and tail value at risk

of a risk model based on ZIPMA(q) when q = 3. Let the time period n be 12

and divide the domain of {Ci,j, i, j = 1, 2, . . .} which β = 4 to be 5 × 105 parts

with the length of steps are 0.0005 for the FFT distribution approximation. For

the Riemann sum approximation of tail value at risk, we divide the length of steps

of value at risk as 5 × 10−6. Figures 3.20 - 3.29 show the trend of VaRγ(S12)

and TVaRγ(S12) for the different values of α1, α2, α3 ∈ {0, 0.25, 0.5, 0.75, 1} at

the confidence levels γ = 0.90 and 0.95, respectively. Table 3.7 - 3.8 show the

the value of VaRγ(S12) and TVaRγ(S12) in parentheses at the confidence levels

γ = 0.90 and 0.95, respectively.

Figure 3.20: The trend of the value at risk and the tail value at risk when fixed α1 = 0
and either α2 or α3 increases at confidence level 0.90 of ZIPMA(3).
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Figure 3.21: The trend of the value at risk and the tail value at risk when fixed
α1 = 0.25 and either α2 or α3 increases at confidence level 0.90 of ZIPMA(3).

Figure 3.22: The trend of the value at risk and the tail value at risk when fixed
α1 = 0.50 and either α2 or α3 increases at confidence level 0.90 of ZIPMA(3).

Figure 3.23: The trend of the value at risk and the tail value at risk when fixed
α1 = 0.75 and either α2 or α3 increases at confidence level 0.90 of ZIPMA(3).
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Figure 3.24: The trend of the value at risk and the tail value at risk when fixed α1 = 1
and either α2 or α3 increases at confidence level 0.90 of ZIPMA(3).

Figure 3.25: The trend of the value at risk and the tail value at risk when fixed α1 = 0
and either α2 or α3 increases at confidence level 0.95 of ZIPMA(3).

Figure 3.26: The trend of the value at risk and the tail value at risk when fixed
α1 = 0.25 and either α2 or α3 increases at confidence level 0.95 of ZIPMA(3).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

73

Figure 3.27: The trend of the value at risk and the tail value at risk when fixed
α1 = 0.50 and either α2 or α3 increases at confidence level 0.95 of ZIPMA(3).

Figure 3.28: The trend of the value at risk and the tail value at risk when fixed
α1 = 0.75 and either α2 or α3 increases at confidence level 0.95 of ZIPMA(3).

Figure 3.29: The trend of the value at risk and the tail value at risk when fixed α1 = 1
and either α2 or α3 increases at confidence level 0.95 of ZIPMA(3).
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Table 3.7: The value of value at risk and tail value at risk at confidence level 0.90 of
ZIPMA(3).

α2

α3 0 0.25 0.5 0.75 1

α1 = 0 0 5.8900 7.2700 8.5900 9.8800 11.1600

(6.81278) (8.35703) (9.82485) (11.2452) (12.6327)

0.25 7.2800 8.6400 9.9600 11.2600 12.5300

(8.38418) (9.90613) (11.3671) (12.7875) (14.1783)

0.5 8.6200 9.9800 11.3000 12.5900 13.8700

(9.87097) (11.3868) (12.8493) (14.2745) (15.672)

0.75 9.9300 11.2800 12.6000 13.9100 15.1900

(11.3061) (12.8228) (14.2902) (15.7225) (17.1278)

1 11.2100 12.5600 13.8900 15.2000 16.4900

(12.7057) (14.2265) (15.7009) (17.1412) (18.5552)

α1 = 0.25 0 7.3000 8.6500 9.9700 11.2600 12.5300

(8.41112) (9.92307) (11.377) (12.7919) (14.1783)

0.25 8.6700 10.0200 11.3300 12.6200 13.9000

(9.95163) (11.4522) (12.9037) (14.3204) (15.711)

0.5 10.0000 11.3500 12.6600 13.9600 15.2300

(11.427) (12.9256) (14.3798) (15.8017) (17.1985)

0.75 11.3100 12.6500 13.9700 15.2700 16.5500

(12.859) (14.36) (15.8195) (17.2481) (18.6525)

1 12.5900 13.9300 15.2600 16.5600 17.8500

(14.2598) (15.7656) (17.2318) (18.6679) (20.0802)

α1 = 0.5 0 8.6500 10.0000 11.3100 12.6000 13.8700

(9.91636) (11.4162) (12.8667) (14.2823) (15.672)

0.25 10.0200 11.3600 12.6700 13.9600 15.2300

(11.4463) (12.9383) (14.3875) (15.8052) (17.1985)

Continued
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Table 3.7: (continued) The value of value at risk and tail value at risk at confidence
level 0.90 of ZIPMA(3).

α2

α3 0 0.25 0.5 0.75 1

0.5 11.3500 12.6800 14.0000 15.2900 16.5700

(12.9201) (14.4112) (15.8631) (17.2854) (18.6846)

0.75 12.6500 13.9900 15.3100 16.6000 17.8900

(14.3549) (15.8485) (17.3052) (18.7336) (20.1395)

1 13.9300 15.2800 16.6000 17.9000 19.1900

(15.7608) (17.2587) (18.7214) (20.1566) (21.5697)

α1 = 0.75 0 9.9700 11.3100 12.6200 13.9100 15.1900

(11.3659) (12.862) (14.3138) (15.7333) (17.1278)

0.25 11.3300 12.6700 13.9800 15.2700 16.5500

(12.8936) (14.3832) (15.8336) (17.2546) (18.6525)

0.5 12.6600 14.0000 15.3100 16.6100 17.8900

(14.3704) (15.8591) (17.3116) (18.7365) (20.1395)

0.75 13.9700 15.3000 16.6200 17.9200 19.2000

(15.8107) (17.3014) (18.7581) (20.1882) (21.5969)

1 15.2600 16.6000 17.9200 19.2200 20.5100

(17.2233) (18.7177) (20.1796) (21.6157) (23.0309)

α1 = 1 0 11.2600 12.6000 13.9100 15.2100 16.4900

(12.7775) (14.2742) (15.7297) (17.1544) (18.5552)

0.25 12.6200 13.9600 15.2700 16.5700 17.8500

(14.3072) (15.7975) (17.2512) (18.6768) (20.0802)

0.5 13.9500 15.2900 16.6000 17.9000 19.1900

(15.7892) (17.2781) (18.7334) (20.1622) (21.5697)

0.75 15.2600 16.6000 17.9200 19.2200 20.5100

(17.2363) (18.7267) (20.1852) (21.6183) (23.0309)

Continued
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Table 3.7: (continued) The value of value at risk and tail value at risk at confidence
level 0.90 of ZIPMA(3).

α2

α3 0 0.25 0.5 0.75 1

1 16.5600 17.9000 19.2200 20.5200 21.8100

(18.6565) (20.1498) (21.6126) (23.0511) (24.4692)

Table 3.8: The value of value at risk and tail value at risk at confidence level 0.95 of
ZIPMA(3).

α2

α3 0 0.25 0.5 0.75 1

α1 = 0 0 6.5800 8.0800 9.5100 10.9000 12.2600

(7.42384) (9.08114) (10.6428) (12.1461) (13.6092)

0.25 8.1000 9.5900 11.0100 12.4000 13.7700

(9.11413) (10.7437) (12.2971) (13.8006) (15.2679)

0.5 9.5500 11.0300 12.4600 13.8500 15.2200

(10.6986) (12.3208) (13.8763) (15.3857) (16.8615)

0.75 10.9600 12.4300 13.8700 15.2700 16.6400

(12.2194) (13.8428) (15.4045) (16.9228) (18.408)

1 12.3300 13.8100 15.2500 16.6600 18.0400

(13.6969) (15.3255) (16.8958) (18.4239) (19.9196)

α1 = 0.25 0 8.1300 9.6000 11.0200 12.4100 13.7700

(9.14689) (10.7641) (12.309) (13.8059) (15.2679)

0.25 9.6300 11.0900 12.5100 13.8900 15.2600

(10.7987) (12.4019) (13.9439) (15.4431) (16.9103)

0.5 11.0700 12.5300 13.9500 15.3400 16.7100

(12.3693) (13.9702) (15.5158) (17.0214) (18.4962)

0.75 12.4700 13.9300 15.3600 16.7500 18.1300

(13.8866) (15.4905) (17.0426) (18.5565) (20.0407)

Continued
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Table 3.8: (continued) The value of value at risk and tail value at risk at confidence
level 0.95 of ZIPMA(3).

α2

α3 0 0.25 0.5 0.75 1

1 13.8400 15.3100 16.7400 18.1400 19.5300

(15.3658) (16.9755) (18.536) (20.059) (21.5527)

α1 = 0.5 0 9.6000 11.0600 12.4700 13.8600 15.2200

(10.7533) (12.356) (13.897) (15.3952) (16.8615)

0.25 11.0900 12.5400 13.9600 15.3400 16.7100

(12.3924) (13.9854) (15.525) (17.0255) (18.4962)

0.5 12.5200 13.9800 15.4000 16.7900 18.1600

(13.9615) (15.5533) (17.0962) (18.6025) (20.0804)

0.75 13.9300 15.3800 16.8100 18.2000 19.5800

(15.4824) (17.0773) (18.6262) (20.14) (21.626)

1 15.3000 16.7600 18.1900 19.6000 20.9800

(16.9679) (18.5681) (20.1244) (21.6464) (23.1412)

α1 = 0.75 0 11.0100 12.4700 13.8900 15.2800 16.6400

(12.2913) (13.8898) (15.4327) (16.9356) (18.408)

0.25 12.5000 13.9500 15.3700 16.7600 18.1300

(13.9279) (15.5181) (17.0594) (18.5642) (20.0407)

0.5 13.9400 15.3900 16.8100 18.2100 19.5800

(15.5008) (17.0899) (18.6337) (20.1433) (21.626)

0.75 15.3500 16.8000 18.2300 19.6200 21.0000

(17.0286) (18.6202) (20.1691) (21.6852) (23.1748)

1 16.7300 18.1900 19.6200 21.0200 22.4100

(18.5224) (20.1185) (21.6738) (23.1971) (24.6946)

α1 = 1 0 12.4000 13.8500 15.2800 16.6700 18.0400

(13.7831) (15.3824) (16.93) (18.4396) (19.9196)

Continued
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Table 3.8: (continued) The value of value at risk and tail value at risk at confidence
level 0.95 of ZIPMA(3).

α2

α3 0 0.25 0.5 0.75 1

0.25 13.8800 15.3400 16.7600 18.1500 19.5300

(15.4223) (17.0135) (18.5589) (20.0695) (21.5527)

0.5 15.3300 16.7800 18.2000 19.6000 20.9800

(17.0016) (18.5912) (20.1386) (21.6529) (23.1412)

0.75 16.7400 18.2000 19.6200 21.0200 22.4100

(18.5378) (20.129) (21.6804) (23.2002) (24.6946)

1 18.1300 19.5900 21.0200 22.4200 23.8100

(20.0411) (21.6358) (23.1924) (24.7187) (26.2200)

Figures 3.20 - 3.29 and Table 3.7 - 3.8 show that the value of VaRγ and

TVaRγ are increasing together with the increase of the values of α1, α2, α3 and

confidence levels γ.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

DISCRETE TIME RISK MODEL BASED ON

THE ZERO INFLATED POISSON

AUTOREGRESSIVE

In this chapter, we give the definition of the discrete time surplus process as

in Definition 4.1. In Section 4.1, we apply the another prospective model of time

series, which is the autoregressive model. In this section, we provide details of the

definition of the zero inflated Poisson autoregressive model in Definition 4.2, its

probabilistic properties in Lemma 4.3, the adjustment coefficient in Theorem 4.5

and the proof of the unique positive solution in Lemma 4.6. Finally, the numerical

experiments of the ruin probability and risk measurements are shown in Section

4.1.5.

Definition 4.1. Let Rn be the discrete time surplus process defined as

Rn = u+ nπ −
n∑

i=1

Ni∑
j=1

Ci,j, (4.1)

where

• u is the positive initial reserve of the business;

• π is the premium rate per period;

• the sequence Ci,j is the sequence of claim sizes in period i and individuals

j and the sequence is independent and identically distributed distribution

with moment generating function, mC(·);

• Ni is the claim number in period i.
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We also denote that

• N(n) =
∑n

i=1 Ni is the aggregate claim number for n periods;

• Wi =
∑Ni

j=1 Ci,j is the aggregate claim size for period i;

• Sn =
∑n

i=1 Wi is the net loss process.

4.1 Discrete time risk model based on first order zero inflated Poisson

autoregressive

. In this section, we provide the definition of zero inflated Poisson autore-

gressive (ZIPAR) model and derive its probabilistic properties. We consider the

discrete time surplus defined in Definition 4.1, when the claim counts, {Ni, i ∈ N},

are modelled by the zero inflated Poisson first order autoregressive denoted by ZI-

PAR(1). The definition of ZIPAR(1) and its probabilistic properties are provided

in Definitions 4.2 and Lemma 4.3, respectively. In Section 4.1.1, we derive the

adjustment coefficient function and the approximation to the ruin probability of

the ZIPAR(1) risk model. We consider a special case of the adjustment coefficient

function when the claim sizes are exponentially distributed. In Section 4.1.2, we

derive an approximation to the value at risk (VaR) of the ZIPAR(1) net loss pro-

cess.

The concepts of zero inflated Poisson first order autoregressive model is quite

different from zero inflated Poisson moving average model. In the model of zero

inflated Poisson autoregressive, we consider the number of claim where Ni−1 is the

number of claim in period i − 1 and α is the reclaim probability. Thus, α ◦ Ni−1

is the number of insured in period i− 1 will reclaim in period i with a probability

α and ϵi is the number of new insured in period i. Hence, the number of insured

in period i, Ni, is based on the summation of the number of new claims in period

i and the number of reclaims from period i− 1 when the reclaim probability is α.
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The definition of the zero inflated Poisson first order autoregressive (ZIPAR(1))

is presented as follows.

Definition 4.2. The zero inflated Poisson first order autoregressive, N = {Ni, i ∈

N} is defined as

Ni = α ◦Ni−1 + ϵi, for i = 1, 2, . . . , (4.2)

where N1 follows the zero inflated Poisson with parameters p and λ, α◦ is the

thining operator and {ϵi, ∈ N} is a sequence of i.i.d. random variables.

We assume the probability generating function of {ϵi , i ∈ N} is defined as

Gϵi(z) =
p+ (1− p)e−λ(1−z)

p+ (1− p)e−λα(1−z)
,

where p, λ > 0 and α ∈ (0, 1) and {ϵi, i ∈ N} is independent of Ni for every i.

The α◦ thining operator is defined as follows.

α ◦Ni−1 =

Ni−1∑
j=1

δ(i−1)1j.

Following Joe (1997), the dependence structure of the ZIPAR(1) model can be

expressed as follows. First, note that for Zi and Yi follow the Bernoulli with

parameters α1 and α2, respectively. Then,

YiZi =


1 if Yi = 1, Zi = 1 with probability α1α2

0 otherwise, with probability 1− α1α2.

Hence YiZi can be considered as a Bernoulli (α1α2) random variable. Then,

(α1α2) ◦N
d
=

N∑
i=1

Xi,

where N is the count random variable and Xi is the Bernoulli random variable
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with parameter α1α2. Furthermore,

α1 ◦ (α2 ◦N)
d
= α1 ◦

N∑
i=1

Yi

=
N∑
i=1

α1 ◦ Yi

=
N∑
i=1

Yi∑
j=1

Zj

d
=

N∑
i=1

YiZj. (4.3)

where the last equation is obtained from

Yi∑
i=1

Zi =


1 if Yi = 1, Zi = 1 with probability α1α2

0 otherwise, with probability 1− α1α2

= ZiYi.

Therefore, we can conclude that

(α1α2) ◦N
d
= α1 ◦ (α2 ◦N) .

Consequently, the expressions of N2, N3, . . . are defined as

N2 =

N1∑
i=1

δ21i + ϵ2,

N3 =

N1∑
i=1

δ21iδ31i +

ϵ2∑
i=1

δ32i + ϵ3,

...

Nn =

N1∑
i=1

δ21iδ31i · · · δni +
n−1∑
j=2

ϵj∑
i=1

n∏
k=j+1

δkji + ϵn.

The random variables {δ21j, δ31j, δ32j, . . . , δn1j, δn2j, . . . , δn(n−1)j , j = 1, 2, . . .} are

i.i.d. Bernoulli random variables with mean α. Furthermore, we give details about
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the construction in the dependence structure by understanding the multiplication

of the α◦ thining operator. Having defined the ZIPAR(1) process, its probabilistic

properties can be obtained as in Lemma 4.3 below

Lemma 4.3. Let {Ni, i ∈ N} be the ZIPAR(1) model defined in Definition 4.2,

then {Ni, i ∈ N} has the following. properties.

(a) The sequence {Ni , i ∈ N} is a stationary process with the probability

generating function of Ni, GNi
(z) = p+ (1− p)e−λ(1−z) for i ∈ N.

(b) The expectation of Ni is E(Ni) = λ(1− p) for i ∈ N.

(c) The variance of Ni is Var(Ni) = λ(1− p)(1 + λp) for i ∈ N.

(d) The covariance function between Ni and Ni−m,

Cov(Ni, Ni−m) = αmλ(1− p)(1 + λp),

for m ∈ N.

(e) The correlation function between Ni and Ni−m,

Corr(Ni, Ni−m) = αm,

for m ∈ N.

Proof. To prove (a), we consider the probability generating function of {Ni , i ∈

N}, let {Ni , i ∈ N} and {ϵi, i ∈ N} be the processes defined in Definition 4.2

and use the fact that Ni and ϵi are independent, then we obtain
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GNi
(z) = E(zNi)

= E(zα◦Ni−1+ϵi)

= E(zϵi)E(zα◦Ni−1)

= Gϵi(z)GNi−1
(1− α + αz)

=

(
p+ (1− p)e−λ(1−z)

p+ (1− p)e−λα(1−z)

)(
p+ (1− p)e−λ(1−(1−α+αz))

)
= p+ (1− p)e−λ(1−z),

for z ∈ R. Since GNi
(·) does not depend on i then GN1(·) = GN2(·) = . . . =

GNi
(·). Therefore, {Ni , i ∈ N} is a stationary process. In addition, the probabil-

ity generating function of {Ni , i ∈ N} is given by

GNi
(z) =

(
p+ (1− p)e−λ(1−z)

)
,

for all i ∈ N.

(b) Since GNi
(z) = E(zNi) for all i ∈ N, we can use the p.g.f. GNi

(z) obtained

in (a) and the properties of the probability generating function to find E(Ni) as

follows.

E(Ni) =
d

dz
GNi

(z)

∣∣∣∣
z=1

=
(
(1− p)e−λ(1−z)λ

) ∣∣∣∣
z=1

= λ(1− p).

(c) To obtain the variance of Ni, we first compute the second moment E(N2
i ) by

applying the properties of the probability generating function as the following.

E(N2
i ) =

d2

dz2
GNi

(z)

∣∣∣∣
z=1

+
d

dz
GNi

(z)

∣∣∣∣
z=1

.

Note that,
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d2

dz2
GNi

(z)

∣∣∣∣
z=1

=
(
(1− p)e−λ(1−z)λ

)
(λ)

∣∣∣∣
z=1

= (1− p)λ2.

Thus,

E(N2
i ) =

d2

dz2
GNi

(z)

∣∣∣∣
z=1

+
d

dz
GNi

(z)

∣∣∣∣
z=1

= (1− p)λ2 + (1− p)λ.

Consequently,

Var(Ni) = E(N2
i )− E2(Ni)

= (1− p)λ2 + (1− p)λ− ((1− p)λ)2

= (1− p)λ(λ+ 1− (1− p)λ)

= λ(1− p)(1 + λp).

(d) To obtain the formula for the covariance function by applying the independence

of ϵi and Ni and use Lemma 2.29, for i = 1, 2, . . ..

For m = 1, using Lemma 2.31

Cov(Ni, Ni−1) = Cov(α ◦Ni−1 + ϵi, Ni−1)

= Cov(α ◦Ni−1, Ni−1) + Cov(ϵi, Ni−1) (4.4)

= Cov(α ◦Ni−1, Ni−1)

= αVar(Ni−1)

= αλ(1− p)(1 + λp), (4.5)

where we use the property that ϵi and Ni−1 are independent to obtain (4.4), and

use (c) to obtain (4.5).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

86

For m > 1, by using the independence between ϵi and Ni−m for all i and m > 0,

we obtain

Cov(Ni, Ni−m) = Cov(α ◦Ni−1 + ϵi, Ni−m)

= Cov(α ◦Ni−1, Ni−m)

= Cov(α2 ◦Ni−2 + α ◦ ϵi−1, Ni−m)

= Cov(α2 ◦Ni−2, Ni−m)

...

= Cov(αm ◦Ni−m, Ni−m)

= αmVar(Ni−m)

= αmλ(1− p)(1 + λp), (4.6)

where we apply (c) to obtain (4.6).

(e) From (c), we know that Var(Ni) does not depend on i and the result from (d),

then for m ∈ N,

Corr(Ni, Ni−m) =
Cov(Ni, Ni−m)√

Var(Ni)Var(Ni−m)

=
Cov(Ni, Ni−m)

Var(Ni)

=
αmVar(Ni−m)

Var(Ni)

= αm.

4.1.1 Adjustment coefficient function of ZIPAR(1)

In this section, we derive the adjustment coefficient function of the zero

inflated Poisson AR(1) by applying the method from Section 3.1 to obtain the

Lundberg adjustment coefficient. Then, we provide a proof of the unique posi-
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tive solution of zero root of the adjustment coefficient. The risk model based on

ZIPAR(1) can be expressed as follows.

Definition 4.4. The risk model based on ZIPAR(1) can be expressed as

Rn = u+ nπ −
n∑

i=1

Ni∑
j=1

Ci,j,

where u is the positive initial reserve, π is the premium rate per period, Ni is

modelled by zero inflated Poisson first order autoregressive (ZIPAR(1)) and {Ci,j}

is the sequence of independent and identically distributed random variables rep-

resenting claim sizes in period i and individuals j.

Theorem 4.5. Let Rn be the discrete time surplus process defined in Definition

4.4. Under the condition that αmC(z) < 1, the adjustment coefficient function

c(·) is defined as

c(z) = log

 p+ (1− p)e
−λ

(
1− ᾱmC (z)

1−αmC (z)

)

p+ (1− p)e
−λα

(
1− ᾱmC (z)

1−αmC (z)

)
− πz, (4.7)

for z ∈ R+ and ᾱ = 1− α.

Proof. From (3.10), we have that

c(z) = lim
n→∞

1

n
logmSn(z)− πz

= lim
n→∞

1

n
log
(
GN(n)(mC(z))

)
− πz.

Then to obtain the adjustment coefficient function, we will first obtain GN(n)(mC(z))

as the following. Since {ϵi , i ∈ N} is independent and identically distributed and

independent of N1, we obtain



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

88

GN(n)(z) = E(zN1+N2+···+Nn)

= E
(
zN1+α◦N1+ϵ2+α◦N2+ϵ3+···+α◦Nn−1+ϵn

)
= E

(
zN1+α◦N1+ϵ2+α2◦N1+α◦ϵ2+ϵ3+···+αn−1◦N1+···+α◦ϵn−1+ϵn

)
= E

(
zN1+α◦N1+···+αn−1◦N1

)
× E

(
zϵ2+α◦ϵ2+···+αn−2◦ϵ2

)
× · · · × E

(
zϵn−1+α◦ϵn−1

)
× E (zϵn) . (4.8)

We obtain the last term of (4.8) as we apply the p.g.f. of {ϵi , i ∈ N} from

Definition 4.2 as follows.

E(zϵn) =
p+ (1− p)e−λ(1−z)

p+ (1− p)e−λα(1−z)
, for z ∈ R+. (4.9)

We need to find the expression of E
(
z
∑n−1

i=0 αi◦N1

)
, we then apply {δijk}i,j,k=1,2,...

in Definition 4.2 and the p.g.f. of {δijk} which is the sequence of i.i.d. Bernoulli

random variables, Gδijk(z) = E(zδijk) = ᾱ + αz and N1 follows the zero inflated

Poisson with parameters p and λ to provide the development from periods n =

1, 2, 3, 4.

For n = 1, we obtain

E
(
z
∑0

i=0 α
i◦N1

)
= E

(
zN1
)

= p+ (1− p)e−λ(1−z).
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For n = 2, we obtain

E
(
z
∑1

i=0 α
i◦N1

)
= E

(
zN1zα◦N1

)
= E

(
zN1E

(
z
∑N1

i=1 δ21i
∣∣N1

))
= E

(
zN1

N1∏
i=1

E
(
zδ21i

))
= E

(
zN1(ᾱ + αz)N1

)
= GN1(z(ᾱ + αz))

= p+ (1− p)e−λ(1−z(ᾱ+αz)).

For n = 3, we have

E
(
z
∑2

i=0 α
i◦N1

)
= E

(
zN1zα◦N1zα

2◦N1

)
= E

(
zN1E

(
z
∑N1

i=1 δ21iE
(
z
∑N1

i=1 δ21iδ31i
∣∣N1, δ21i

) ∣∣N1

))
= E

(
zN1E

(
N1∏
i=1

zδ21iE
((

zδ21i
)δ31i) ∣∣N1

))

= E
(
zN1E

(
N1∏
i=1

zδ21i
(
ᾱ + αzδ21i

) ∣∣N1

))

= E
(
zN1E

(
N1∏
i=1

(ᾱzδ21i + αz2δ21i)
∣∣N1

))

= E
(
zN1

N1∏
i=1

(
ᾱ(ᾱ + αz) + α(ᾱ + αz2)

))
= E

(
zN1

(
ᾱ(ᾱ + αz) + α(ᾱ + αz2)

)N1
)

= GN1

(
z
(
ᾱ(ᾱ + αz) + α(ᾱ + αz2

))
= GN1

(
ᾱz + αᾱz2 + α2z3

)
= p+ (1− p)e−λ(1−(ᾱz+αᾱz2+α2z3)).
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For n = 4, we have

E
(
z
∑3

i=0 α
i◦N1

)
= E

(
zN1zα◦N1zα

2◦N1zα
3◦N1

)
= E

(
zN1E

(
z
∑N1

i=1 δ21iE
(
z
∑N1

i=1 δ21iδ31i ×

E
(
z
∑N1

i=1 δ21iδ31iδ41i
∣∣N1, δ21i, δ31i

) ∣∣N1, δ21i

)∣∣N1

))
= E

(
zN1E

(
z
∑N1

i=1 δ21iE
(
z
∑N1

i=1 δ21iδ31i

N1∏
i=1

(ᾱ + αzδ21iδ31i)
∣∣N1, δ21i

)∣∣N1

))

= E
(
zN1E

(
z
∑N1

i=1 δ21iE
(

N1∏
i=1

(ᾱzδ21iδ31i + αz2δ21iδ31i)
∣∣N1, δ21i

)∣∣N1

))

= E
(
zN1E

(
z
∑N1

i=1 δ21i

N1∏
i=1

(
ᾱ(ᾱ + αzδ21i) + α(ᾱ + αz2δ21i)

) ∣∣N1

))

= E
(
zN1E

(
N1∏
i=1

(
ᾱ2zδ21i + ᾱαz2δ21i + ᾱαzδ21i + α2z3δ21i

) ∣∣N1

))

= E
(
zN1E

(
N1∏
i=1

(
ᾱzδ21i + ᾱαz2δ21i + α2z3δ21i

) ∣∣N1

))

= E
(
zN1

N1∏
i=1

(
ᾱ(ᾱ + αz) + ᾱα(ᾱ + αz2) + α2(ᾱ + αz3)

))

= E
(

N1∏
i=1

(
ᾱz + ᾱαz2 + ᾱα2z3 + α3z4

))
= E

((
ᾱz + ᾱαz2 + ᾱα2z3 + α3z4

)N1
)

= GN1

(
ᾱz + ᾱαz2 + ᾱα2z3 + α3z4

)
= p+ (1− p)e−λ(1−(ᾱz+ᾱαz2+ᾱα2z3+α3z4)).
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Consequently, we deduce the following general form for case n. Since {δijk}i,j,k=1,2,...

in Definition 4.2 and the p.g.f. of {δijk} which is the sequence of i.i.d. Bernoulli

random variables and N1 follows the zero inflated Poisson with parameters p and

λ, then we have

E
(
z
∑n−1

i=0 αi◦N1

)
= E

(
zN1zα◦N1zα

2◦N1zα
3◦N1 · · · zαn−1◦N1

)
= E

(
zN1z

∑N1
i=1 δ21i · · · z

∑N1
i=1 δ21i···δn1i

)
= E

(
zN1E

(
z
∑N1

i=1 δ21i · · ·E
(
z
∑N1

i=1 δ21i···δ(n−1)1i

E
(
z
∑N1

i=1 δ21i···δ(n)1i
∣∣N1, δ21i, . . . , δ(n−1)1i

)
· · ·
∣∣N1

))
= E

(
zN1E

(
z
∑N1

i=1 δ21i · · ·E
(
z
∑N1

i=1 δ21i···δ(n−1)1i

N1∏
i=1

(
ᾱ + αzδ21i···δ(n−1)1i

) ∣∣N1, δ21i, . . . , δ(n−2)1i

)
· · ·
∣∣N1

))
...

= E
(
zN1

N1∏
i=1

(
ᾱ + ᾱαz + ᾱα2z2 + · · ·+ αn−1zn−1

))
= E

((
ᾱz + ᾱαz2 + ᾱα2z3 + · · ·+ αn−1zn

)N1
)

= E

(ᾱ(n−2∑
i=0

αizi+1

)
+ αn−1zn

)N1


= GN1

((
ᾱ

(
n−2∑
i=0

αizi+1

)
+ αn−1zn

))
= p+ (1− p)e−λ(1−(ᾱ(

∑n−2
i=0 αizi+1)+αn−1zn)). (4.10)

Thus, we obtain the first term and the last term of (4.8), then we will find the rest

by applying the development of expression (4.10). We use the fact that the p.g.f.

of {ϵi} follows Definition 4.2 and {δijk} is the sequence of i.i.d. Bernoulli random
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variables defined in Definition 4.2. Let first consider

E
(
z
∑n−2

i=0 αi◦ϵ2
)

= E
(
zϵ2+α◦ϵ2+···+αn−2◦ϵ2

)
= E

(
zϵ2zα◦ϵ2 · · · zαn−2◦ϵ2

)
= E

(
zϵ2z

∑ϵ2
i=1 δ22i · · · z

∑ϵ2
i=1 δ22iδ32i···δ(n−1)2i

)
= E ( zϵ2E ( z

∑ϵ2
i=1 δ22i · · ·E

(
z
∑ϵ2

i=1 δ22iδ32i···δ(n−1)2i

E
(
z
∑ϵ2

i=1 δ22iδ32i···δ(n−1)2i
∣∣ϵ2, δ22i, . . . , δ(n−2)2i

)
· · ·
∣∣ϵ2))

...

= Gϵ2

(
ᾱ

(
n−3∑
i=0

αizi+1

)
+ αn−2zn−1

)

=
p+ (1− p)e−λ(1−(ᾱ(

∑n−3
i=0 αizi+1)+αn−2zn−1))

p+ (1− p)e−λα(1−(ᾱ(
∑n−3

i=0 αizi+1)+αn−2zn−1))
. (4.11)

As a consequence, we also obtain terms of ϵ3, ϵ4, . . . , ϵn−1 by applying the technique

in (4.11), then we obtain the general form for each ϵj for j = 2, . . . , n− 1 in (4.8)

as follows.

E
(
z
∑n−j

i=0 αi◦ϵj
)

=
p+ (1− p)e

−λ
(
1−

(
ᾱ
(∑n−(j+1)

i=0 αizi+1
)
+αn−jzn−(j−1)

))

p+ (1− p)e
−λα

(
1−

(
ᾱ
(∑n−(j+1)

i=0 αizi+1
)
+αn−jzn−(j−1)

)) .(4.12)

Substituting (4.9)-(4.11) and (4.12) for j = 2, 3, . . . , n − 1 into (4.8), then we

obtain

GN(n)(z) =
(
p+ (1− p)e−λ(1−(ᾱ(

∑n−2
i=0 αizi+1)+αn−1zn))

)
×

n−1∏
j=2

 p+ (1− p)e
−λ

(
1−

(
ᾱ
(∑n−(j+1)

i=0 αizi+1
)
+αn−jzn−(j−1)

))

p+ (1− p)e
−λα

(
1−

(
ᾱ
(∑n−(j+1)

i=0 αizi+1
)
+αn−jzn−(j−1)

))


×
(

p+ (1− p)e−λ(1−z)

p+ (1− p)e−λα(1−z)

)
. (4.13)
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Therefore, the moment generating function of Sn is defined as (4.13) by replacing

z = mC(z) as

mSn(z) =
(
p+ (1− p)e−λ(1−(ᾱ(

∑n−2
i=0 αimC(z)i+1)+αn−1mC(z)n))

)
×

n−1∏
j=2

 p+ (1− p)e
−λ

(
1−

(
ᾱ
(∑n−(j+1)

i=0 αimC(z)i+1
)
+αn−jmC(z)n−(j−1)

))

p+ (1− p)e
−λα

(
1−

(
ᾱ
(∑n−(j+1)

i=0 αimC(z)i+1
)
+αn−jmC(z)n−(j−1)

))


×
(

p+ (1− p)e−λ(1−mC(z))

p+ (1− p)e−λα(1−mC(z))

)
. (4.14)

From (4.14), we obtain the adjustment coefficient function cn(z) as follows.

cn(z) = log
((

p+ (1− p)e−λ(1−(ᾱ(
∑n−2

i=0 αimC(z)i+1)+αn−1mC(z)n))
)

×
n−1∏
j=2

 p+ (1− p)e
−λ

(
1−

(
ᾱ
(∑n−(j+1)

i=0 αimC(z)i+1
)
+αn−jmC(z)n−(j−1)

))

p+ (1− p)e
−λα

(
1−

(
ᾱ
(∑n−(j+1)

i=0 αimC(z)i+1
)
+αn−jmC(z)n−(j−1)

))


×
(

p+ (1− p)e−λ(1−mC(z))

p+ (1− p)e−λα(1−mC(z))

))
− nπz.

By the assumption that αmC(z) < 1, thus we have
∑n

i=0(αmC(z))
i is the geo-

metric sequence. Then we can rearrange the equation as follows.

cn(z) = log
(
p+ (1− p)e

−λ

(
1−

(
ᾱmC(z)

(
1−(αmC (z))n−2

1−αmC (z)

)
+mC(z)(αmC(z))n−1

)))

+
n−1∑
j=2

log

 p+ (1− p)e
−λ

(
1−

(
ᾱmC(z)

(
1−(αmC (z))n−(j+1)

1−αmC (z)

)
+mC(z)(αmC(z))n−j

))

p+ (1− p)e
−λα

(
1−

(
ᾱmC(z)

(
1−(αmC (z))n−(j+1)

1−αmC (z)

)
+mC(z)(αmC(z))n−j

))


+ log
(

p+ (1− p)e−λ(1−mC(z))

p+ (1− p)e−λα(1−mC(z))

)
− nπz.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

94

Finally, we thus obtain the adjustment coefficient function is given by

c(z) = lim
n→∞

1

n
cn(z)− πz

= lim
n→∞

1

n

(
log
(
p+ (1− p)e

−λ

(
1−

(
ᾱmC(z)

(
1−(αmC (z))n−2

1−αmC (z)

)
+mC(z)(αmC(z))n−1

)))

+ lim
n→∞

1

n

n−1∑
j=2

log

 p+ (1− p)e
−λ

(
1−

(
ᾱmC(z)

(
1−(αmC (z))n−(j+1)

1−αmC (z)

)
+mC(z)(αmC(z))n−j

))

p+ (1− p)e
−λα

(
1−

(
ᾱmC(z)

(
1−(αmC (z))n−(j+1)

1−αmC (z)

)
+mC(z)(αmC(z))n−j

))


+ lim
n→∞

1

n
log
(

p+ (1− p)e−λ(1−mC(z))

p+ (1− p)e−λα(1−mC(z))

)
− πz.

Since αmC(z) < 1, then the limit of (αmC(z))
n as n approaches to infinity is a

zero value, for the first and third terms of c(·), their limit approach to zero and

for the second term, we then apply the Cesàro mean theorem (Peyerimhoff, 1969).

Hence, we obtain

c(z) = log

 p+ (1− p)e
−λ

(
1− ᾱmC (z)

1−αmC (z)

)

p+ (1− p)e
−λα

(
1− ᾱmC (z)

1−αmC (z)

)
− πz.

The premium per period, π, follows the net profit condition (NPC) (Thomas,

2009) condition and premium calculation followed the expectation value principle

(EVP) (Gray and Pitts, 2012) as follows.

π = E(W )(1 + θ)

= E(N)E(C)(1 + θ)

= λ(1− p)E(C)(1 + θ),

for a security loading θ > 0, E(W ) is the expectation of the aggregate claim size,

E(N) is the expectation of the claim number and E(C) is the expectation of claim

size. Next, we will show that the adjustment coefficient has the unique positive

zero root in R+.
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Lemma 4.6. From the expression for the adjustment coefficient function of the

ZIPAR(1), the equation c(z) = 0 has the unique positive solution in R+.

Proof. Similar to Lemma 3.7 to prove the Lemma, then we will show that

(a) c(0) = 0,

(b) d

dz
c(z)

∣∣∣∣
z=0

< 0,

(c) d2

dz2
c(z) > 0, for z ∈ R+,

(d) There exists z∗ ∈ D such that lim
z→z∗

c(z) = +∞.

(a) Note that

c(z) = log

 p+ (1− p)e
−λ

(
1− ᾱmC (z)

1−αmC (z)

)

p+ (1− p)e
−λα

(
1− ᾱmC (z)

1−αmC (z)

)
− πz.

We substitute z = 0 into c(z) defined in Theorem 4.5, then we obtain

c(0) = log

 p+ (1− p)e
−λ

(
1− ᾱmC (0)

1−αmC (0)

)

p+ (1− p)e
−λα

(
1− ᾱmC (0)

1−αmC (0)

)
− π(0)

= log
(
p+ (1− p)

p+ (1− p)

)
= 0.

Before giving the proof of the statements (b), (c) and (d), we define the notations

that helps to simplify the notations as follows.

E(z) = (1− p)e
−λ

(
1− ᾱmC (z)

1−αmC (z)

)
,

Eα(z) = (1− p)e
−λα

(
1− ᾱmC (z)

1−αmC (z)

)
,

E
′
(z) =

d

dz
E(z)

= E(z)T (z).
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Therefore,

E
′

α(z) =
d

dz
Eα(z)

= αEα(z)T (z),

E
′′
(z) =

d2

dz2
E(z)

= E(z)T
′
(z) + E

′
(z)T (z)

= E(z)T
′
(z) + E(z)T 2(z),

E
′′

α(z) =
d2

dz2
Eα(z)

= αEα(z)T
′
(z) + αE

′

α(z)T (z)

= αEα(z)T
′
(z) + α2Eα(z)T

2(z),

where

T (z) =
ᾱm

′
C(z)λ

(1− αmC(z))2
,

T
′
(z) =

(1− αmC(z))λᾱm
′′
C(z) + 2λαᾱ(m

′
C(z))

2

(1− αmC(z))3
.

Moreover, we notice that E(z) > 0, Eα(z) > 0, E ′
(z) > 0, E ′

α(z) > 0, E ′′
(z) >

0 and E
′′
α(z) > 0 with T (z) > 0 and T

′
(z) > 0.

(b) Consider

d

dz
c(z) =

d

dz
log
(

p+ E(z)

p+ Eα(z)

)
− π

=

(
p+ Eα(z)

p+ E(z)

)(
(p+ Eα(z))E

′
(z)− (p+ E(z))E

′
α(z)

(p+ Eα(z))2

)
− π.
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Since we have π = λ(1− p)E(C)(1 + θ), then for θ > 0,

d

dz
c(z)

∣∣∣∣
z=0

=

(
p+ Eα(0)

p+ E(0)

)(
(p+ Eα(0))E

′
(0)− (p+ E(0))E

′
α(0)

(p+ Eα(0))2

)
− π

=

(
p+ Eα(0)

p+ E(0)

)(
(p+ Eα(0))E(0)T (0)− (p+ E(0))αE(0)T (0)

(p+ Eα(0))2

)
− π

= (1− p)
λᾱm

′
C(0)

ᾱ2
− (1− p)

λαᾱm
′
C(0)

ᾱ2
− (1 + θ)λ(1− p)E(C)

= λ(1− p)E(C)− λ(1− p)E(C)(1 + θ)

= −λ(1− p)E(C)θ

< 0.

Then, we obtain that d
dz
c(z)

∣∣
z=0

< 0.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

98

(c) Consider

d2

dz2
c(z) =

d

dz

(
d

dz
c(z)

)
=

d

dz

((
(p+ Eα(z))E

′
(z)− (p+ E(z))E

′
α(z)

(p+ Eα(z))(p+ E(z))

)
− π

)
=

(p+ Eα(z))(p+ E(z))
(
pE

′′
(z) + Eα(z)E

′′
(z)− pE

′′
α(z)− E(z)E

′′
α

)
((p+ Eα(z))(p+ E(z)))2

−
(pE

′
(z) + E

′
(z)Eα(z)− pE

′
α(z)− E(z)E

′
α(z))

(
pE

′
(z) + pE

′
α(z)

)
((p+ Eα(z))(p+ E(z)))2

−
(pE

′
(z) + E

′
(z)Eα(z)− pE

′
α(z)− E(z)E

′
α(z))

(
E(z)E

′
α(z) + E

′
(z)Eα(z)

)
((p+ Eα(z))(p+ E(z)))2

=
p3(E

′′
(z)− E

′′
α(z)) + p2(Eα(z)E

′′
(z)− E(z)E

′′
α(z) + (z))

((p+ Eα(z))(p+ E(z)))2

+
p3(E(z)E

′′
(z)− E(z)E

′′
α(z) + Eα(z)E

′′
(z)) + p2(−EαE

′′
α(z)− E

′2(z) + E
′2
α )

((p+ Eα(z))(p+ E(z)))2

+
p(E(z)Eα(z)E

′′
(z)− E2(z)E

′′
α(z) + E2

α(z)E
′′
(z))

((p+ Eα(z))(p+ E(z)))2

+
p(−E(z)Eα(z)E

′′
α(z) + E(z)Eα(z)E

′′
(z)− E(z)Eα(z)E

′′
α(z))

((p+ Eα(z))(p+ E(z)))2

+
p(−E

′2(z)Eα(z)− E
′2(z)Eα(z))

((p+ Eα(z))(p+ E(z)))2

+
p(E(z)E

′2
α (z) + E(z)E

′2
α (z)) + (E(z)E2

α(z)E
′′
(z)− E2(z)Eα(z)E

′′
α(z))

((p+ Eα(z))(p+ E(z)))2

+
(−E

′2(z)E2
α(z)) + E2(z)E

′2
α (z))

((p+ Eα(z))(p+ E(z)))2

=
p3(E

′′
(z)− E

′′
α(z)) + p2(2E(z)Eα(z)(T

′
(z) + T 2(z)− α(T

′
(z) + αT 2(z))))

((p+ Eα(z))(p+ E(z)))2

+
p(T

′
(z)(1− α)(E2(z)Eα(z) + E(z)E2

α(z)) + E(z)E2
α(z)T

2(z)(1− α2))

((p+ Eα(z))(p+ E(z)))2

+
E(z)Eα(z)

(
E(z)Eα(z)T

′
(z)(1− α)− pα2T 2(z)(E(z)− Eα(z))

)
((p+ Eα(z))(p+ E(z)))2

+
p(E(z)Eα(z)T

′
(z)(E(z)− αEα(z))

((p+ Eα(z))(p+ E(z)))2
.

Since the assumption αmC(z) < 1 and T (z), T ′
(z), E(z) and Eα(z) which are

increasing functions and we know that E(z) − Eα(z) > 0. Then for α ∈ (0, 1),

we know that 1− α and 1− α2 are greater than 0. For the third term, we notice
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that E(z) − Eα(z) is close to zero when α is growing up and on top of that it is

weighted by α2 and p, then the third term is positive. Hence, we can conclude

that d2

dz2
c(z) > 0.

(d) We want to show that the limit of c(z) reaches to +∞ as z approaches to some

z∗ ∈ R+. Let us first consider

f(z) = λ

(
ᾱmC(z)

1− αmC(z)
− 1

)
for z ∈ R+.

Next, we will show that f(z) is the nonnegative function and the increasing func-

tion by considering as follows.

ᾱmC(z)

1− αmC(z)
− 1 =

mC(z)− 1

1− αmC(z)
.

We then follow the assumption that αmC(z) < 1 and also hold 1−αmC(z) > 0,

then we obtain f(z) for z ∈ R+ as the nonnegative function. Since mC(z) is

increasing function in R+ and 0 < mC(z) < 1
α
. Thus, there exists z∗ ∈ D such

that
lim
z→z∗

mC(z) =
1

α
.

Then, we obtain that 1− αmC(z) is decreasing and continuous function. We also

obtain
lim
z→z∗

1− αmC(z) = 0,

and 1− αmC(z) ≥ 0 for all 0 ≤ z ≤ z∗. Therefore,

lim
z→z∗

f(z) = ∞.

Consequently,

lim
z→z∗

p+ (1− p)ef(z)

p+ (1− p)eαf(z)
= lim

z→z∗
e(1−α)f(z) = ∞,
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then, we obtain

lim
z→z∗

log
(

p+ (1− p)ef(z)

p+ (1− p)eαf(z)

)
= ∞.

Hence, we can conclude that

lim
z→z∗

log
(

p+ (1− p)ef(z)

p+ (1− p)eαf(z)

)
− πz = ∞.

Example 4.1. We let the claim amounts follow the exponential distribution.

That is {Ci,j, i, j ∈ N} is a sequence of i.i.d. exponentially distributed with

parameter β > 0. The moment generating function of {Ci,j, i, j ∈ N} is denoted

as mC(z) = 1
1−z/β

for z < β. By Theorem (4.5), the adjustment coefficient

function is provided as follows.

c(z) = log
(

p+ (1− p)e−λ(1− ᾱ(1−z/β)
1−α(1−z/β))

p+ (1− p)e−λα(1− ᾱ(1−z/β)
1−α(1−z/β))

)
− (1− p)

λ

β
(1 + θ)z. (4.15)

4.1.2 Approximation to the value at risk and the tail value at risk

of ZIPAR(1)

In this section, we conduct the approximation to the value at risk and the tail

value at risk at confidence level γ for ZIPAR(1) process by the similar techniques as

in ZIPMA(1). Therefore, we consider the characteristic function of Sn as follows.

ϕSn(x) = GN(n)(ϕC(x))

=
(
p+ (1− p)e−λ(1−(ᾱ(

∑n−2
i=0 αiϕC(x)i+1)+αn−1ϕC(x)n))

)
×

n−1∏
j=2

 p+ (1− p)e
−λ

(
1−

(
ᾱ
(∑n−(j+1)

i=0 αiϕC(x)i+1
)
+αn−jϕC(x)n−(j−1)

))

p+ (1− p)e
−λα

(
1−

(
ᾱ
(∑n−(j+1)

i=0 αiϕC(x)i+1
)
+αn−jϕC(x)n−(j−1)

))


×
(

p+ (1− p)e−λ(1−ϕC(x))

p+ (1− p)e−λα(1−ϕC(x))

)
,
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where x ∈ R+.

4.1.3 Numerical experiments of the risk model based on ZIPAR(1)

In this section, we show some examples of numerical calculations of the ad-

justment coefficient and approximation to the ruin probability of a risk model

based on the ZIPAR(1) claim count process. In addition, the two risk measure-

ments of 12th period of time at the confidence levels 0.9 and 0.95 are also provided.

4.1.4 Calculation of the adjustment coefficient of the risk model based

on ZIPAR(1)

We are setting the components of the risk model as follows; {Ni, i ∈ N}

is the ZIPAR(1) model, {Ci,j, i, j ∈ N} is a sequence of i.i.d. exponentially dis-

tributed with parameter β and we obtain c(z) as in Example 4.1. The parameters

setting are u = 2, (λ, p) = (1.5, 0.2) and the security loading θ = 0.3. Table 4.1,

Figures 4.1 - 4.2 show the adjustment coefficient z0 and the approximation of of

the ruin probability as Ψ(u) = exp(−z0u) in parentheses, for different values of

α ∈ {0, 0.25, 0.5, 0.75, 0.995}.
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Table 4.1: The adjustment coefficient z0 and the approximation of ΨRn(u) of ZIAR(1).

β
α

0 0.25 0.5 0.75 0.995

0.5 0.1016 0.7401 0.0479 0.0235 0.0007

(0.8160) (0.8623) (0.9085) (0.9540) (0.9986)

1 0.2032 0.1494 0.0957 0.0469 0.0013

(0.6660) (0.7415) (0.8256) (0.9103) (0.9973)

2 0.4063 0.2989 0.1914 0.0938 0.0025

(0.4436) (0.5500) (0.6818) (0.8288) (0.9948)

4 0.8125 0.5977 0.3828 0.1875 0.0050

(0.1960) (0.3025) (0.4649) (0.6871) (0.9899)

32 6.5000 4.7813 3.0625 1.5001 0.0401

(0.000002) (0.00007) (0.0022) (0.0498) (0.9229)

Figure 4.1: The trend of the adjustment coefficient when α increases and the claim
size decreases of ZIPAR(1).
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Figure 4.2: The trend of the ruin probability according to the changes of α1 and α2

of ZIPAR(1).

The results are as we would expect that the estimated ruin probability in-

creases with the dependence parameter α is growing up. In other words, α is

represented as the probability of the former portfolio will reclaim again in next

year. The more value of α, the more impact on the current portfolio. Moreover,

we are given the situations that claim sizes become smaller, then the approximate

to the ruin probability decreases.

4.1.5 Calculation of the value at risk and the tail value at risk for the

risk models based on ZIPAR(1)

We conduct the numerical calculation for the two risk measurements that are

the value at risk and the tail value at risk. The setting parameters are the same

as in section 4.1.4 with selecting β = 4. Table 4.2 and Figure 4.3 show VaRγ(S12)

and TVaRγ(S12) for the confidence levels γ = 0.90 and 0.95, respectively.
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Table 4.2: The value of the value at risk and the tail value at risk of ZIPAR(1).

α 0 0.25 0.5 0.75 1
VaR0.90(S12) 5.5200 5.8200 6.3000 7.1600 9.0600
VaR0.95(S12) 6.1800 6.6200 7.2800 8.5200 11.0600
TVaR0.90(S12) 6.4082 6.8863 7.6366 8.9965 11.7707
TVaR0.95(S12) 7.0010 7.5938 8.5287 10.2214 13.5804

Figure 4.3: The trend of the value at risk and the tail value at risk according to the
changes of α1 and α2 of ZIPAR(1).

From Table 4.2, we can see that the VaRγ(Sn) increases as α increases.

Similarly, VaRγ(Sn) increases as γ increases. The interpretation of the increasing

of value α and γ are likewise in ZIPMA(1) and ZIPMA(q).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

CONCLUSIONS AND DISCUSSIONS

5.1 Conclusions

This research aims to construct the classical risk model based on zero in-

flated Poisson time series as a claim count process. According to the behavior of

customers with deductible amount in contracts tend to not state the claims that

less than or equal to deductible amount in order to get discount in premiums in the

next year. Consequently, it generated more zero claims in data than expected. By

analysing the insurance data issues in an excess zeros that caused overdispersion

in the data, this thesis shows how to tackle this problems. To overcome this is-

sues, we proposed the zero inflated Poisson time series such as the first order zero

inflated Poisson moving average ZIPMA(1), the qth order zero inflated Poisson

moving average ZIPMA(q) and the first order zero inflated Poisson autoregressive

ZIPAR(1) as claim counts model in the classical risk models and generally ex-

tended ZIPMA(1) to be more practical model as ZIPMA(q). We found that these

new risk models are appropriate for the overdispersion data. Regarding to the

variances that are greater than the expectations. We also provided the derivation

of the adjustment coefficient functions of ZIPMA(1), ZIPMA(q) and ZIPAR(1)

risk models and prove the existence of their unique positive solutions. We present

a method for calculating the value of the ruin probability, the value at risk and

the tail value at risk. Finally, we compare the result from ZIPMA(1), ZIPMA(2),

ZIPMA(3) and ZIPAR(1). The value of αMA = αAR = {0, 0.25, 0.5, 0.75, 0.995}

and we set up the value of α1,α2 and α3 from ZIPMA(2) and ZIPMA(3) are that

α1 = α2 = α3 = {0, 0.25, 0.5, 0.75, 0.995} in order to compare with ZIPMA(1)
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and ZIPAR(1).

Figure 5.1: The ruin probability from ZIPMA versus ZIPAR

Figure 5.1 shows that the value of ruin probability from ZIPMA is growing

up with the higher order. The higher order of ZIPMA means that we have the

number of new claims from more previous periods and if we have the number of

new claims from every previous periods in insurance data, then the whole data

is applied, then it will result that in a higher order of ZIPMA, the value of ruin

probability will approach to ZIPAR(1).

5.2 Future Work

Further research is needed to determine the risk sharing between 2 companies

or more than 3 companies. Regarding to the real world, most of insurance business

is basically doing activity such risk diversification as reinsurance. Then, if we can

find the ruin probability between 2 companies or more than 3 companies such as

the insurance company and reinsurance company, then it can be one the options to

make a decision for financial planning or business strategies. Thus, one direction of
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future study is to consider multivariate zero inflated Poisson time series or another

model to solve the data issues.
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