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ผศ. ดร. รังสิมา ชาญพนา, อ.ที่ปรึกษาวิทยานิพนธรวม : ผศ. ดร. ปจฉา ฉัตราภรณ
51 หนา.

ความนาจะเปนของการคงอยูเปนปริมาณที่นาสนใจในกระบวนการสโตแคสติกซึ่งเปน
พลวัตในงานประเภทปลูกผิวของเรา ความนาจะเปนของการคงอยูของความผันผวนของ
ความสูงคือความนาจะเปนที่คาความผันผวนของความสูงไมกลับสูคาเริ่มตนตลอดชวงเวลา
หนึ่ง ในการศึกษาครั้งนี้ เราทำการศึกษาความนาจะเปนของการคงอยูของแบบจำลองโม
เลกุลารบีมเอพิแทกซี (MBE model) ซึ่งเปนแบบจำลองการปลูกฟลมแบบโมเลกุลารบีม
เอพิแทกซีดวยวิธีทางตัวเลข ในครึ่งแรก เราศึกษาผลของอัตราการปลูกฟลมและอุณหภูมิตอ
เลขชี้กำลังการเติบโต (β) และเลขชี้กำลังการคงอยู (θ) สำหรับอุณหภูมิที่ทำใหอะตอมที่ผิว
หนามีระยะทางการแพรเทากับ 1 หนวย เราไดเลขชี้กำลังของการเติบโตประมาณ 0.17 และ
เลขชี้กำลังการคงอยูประมาณ 0.78 เมื่ออุณหภูมิเพิ่มขึ้นเลขชี้กำลังการเติบโตจะลดลงในขณะ
ที่เลขชี้กำลังการคงอยูเพิ่มขึ้น ผลที่ไดนี้เกิดขึ้นเชนเดียวกันเมื่อเราลดอัตราการปลูกฟลม ใน
สวนที่สอง เราศึกษาความนาจะเปนของการคงอยูที่เปลี่ยนไปเมื่อเราทำการพิจารณาคาความ
ผันผวนของความสูงเริ่มตนเฉพาะคา ความนาจะเปนของการคงอยูดานลบของความผันผวน
ของความสูงคาบวกลดลงตามเวลาแบบกฎการยกกำลังก็ตอเมื่อพิจารณาคาของความผันผวน
ของความสูงเริ่มตนที่มากกวาคาความกวางของอินเตอรเฟซอิ่มตัว ความนาจะเปนของการ
คงอยูดานบวกของความผันผวนของความสูงคาลบไมลดลงตามเวลาแบบกฎการยกกำลัง จน
กระทั่งเมื่อพิจารณาคาของความผันผวนของความสูงเริ่มตนที่มากกวาคาความกวางของอินเต
อรเฟซอิ่มตัวมากๆ เราวัดความนาจะเปนของการคงอยูสำหรับคาความผันผวนของความสูง
เร่ิมตน,ขนาดของระบบ, และชวงเวลาตัวอยางเพื่อหาความสัมพันธของมาตราสวน ความนา
จะเปนของการคงอยูเปนฟงกชัน 3 พารามิเตอร, f( t
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Persistence probability is an interesting quantity in stochastic process which
is the dynamics of surface growth in this study. Persistence probability of height
fluctuation is the probability that the height fluctuation does not return to its initial
value throughout a time interval. In this work, we use a numerical simulation ap-
proach to investigate the persistence probability in Molecular-Beam Epitaxy (MBE)
model which is associated with Molecular-Beam Epitaxy technique. First half, we
study the effects of temperature and deposition rate on the growth exponent (β) and
persistence exponent (θ). For the temperature corresponds to 1 diffusion length, we
get β ≈ 0.17 and positive steady-state persistence exponent, θS+ ≈ 0.78. When the
temperature increases, the growth exponent value decreases while the persistence
exponent rises. The same results happen when the deposition rate is decreased.
On the second half, we investigate how the persistence probabilities change with a
particular initial value of height fluctuation. The negative persistence probability of
positive initial height shows power law when the initial height is slightly greater than
wsat. The positive persistence probability of negative initial height does not show
power law decay unless the initial height is much greater than wsat. We measure
the relationship of persistence probability on initial height fluctuation (h0), system
size, and discreate sampling time to investigate the scaling relation. The persistence
probability is a function of three parameters, f( t

Lz ,
δt
Lz ,

|h0|
Lα ).

Department: Physics Student’s Signature . . . . . . . . . . . . . . . . . . .

Field of Study: Physics Advisor’s Signature . . . . . . . . . . . . . . . . . . .

Academic Year: 2022 Co-advisor’s Signature . . . . . . . . . . . . . .



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vi

Acknowledgements

I would like to express my gratitude to my advisors, Asst.Prof.Dr.Rangsima
Chanphana and Asst.Prof.Dr.Patcha Chatraphorn, for guiding me through this work.
They also helped me through my master’s degree life. I have learnt so many things
while I have been working with them. The wonderful working environment results
from their generosity and patience.

I am appreciative that Asst. Prof. Dr. Paisan Tooprakai, Asst. Prof. Dr.
Noravee Kanchanavatee, and Asst. Prof. Dr. Manit Klawtanong served as my
thesis committee.

I want to thank my family for providing the funds and giving me the opportu-
nity to finish my master’s degree. They also have empathy and understanding.

I would like to say ”thank you” to all my friends for their encouragement,
motivation, and inspiration. To my Ibanez guitar, for always being there for me
whether the times are good or bad.

I would like to thank Mr. Naphan Benchasattabuse for providing thesis tem-
plate in Latex form. His works are laborious.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONTENTS

Page
english

Abstract (Thai) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract (English) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Molecular-Beam Epitaxy model . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 The Molecular-beam epitaxy model and processes . . . . . . . . . . . 3
2.2 Interface width and critical exponents of MBE model . . . . . . . . . 7

3 Persistence probability of height-fluctuation . . . . . . . . . . . . . . . . 12
3.1 Persistence probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Scaling behavior of persistence probability . . . . . . . . . . . . . . . 16

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 Effects of temperature on interface width and persistence exponent . 19
4.2 Effects of deposition rate on interface width and persistence exponent 24
4.3 Effects of initial height fluctuations on persistence exponent . . . . . 27
4.4 Effects of discrete sampling time on persistence probability . . . . . . 30
4.5 Scaling behavior of persistence probability . . . . . . . . . . . . . . . 32

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Apppendix A Numerical simulation . . . . . . . . . . . . . . . . . . . . . 40

Biography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LIST OF TABLES

Table Page
english

2.1 Diffusion time for Si atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.1 A summary table of approximate value of β and θS± under different con-

ditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LIST OF FIGURES

Figure Page
english

2.1 Diagram of the (1+1) MBE model. . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The number of bonds (n) of the deposited atom (a) n = 1, (b) n = 3. . . . 7
2.3 Interface width for the MBE model of the system size L × L = 50 × 50

sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 The interface width of MBE model with three different system sizes. . . 9
2.5 Scaling plots showing the data collapse of the MBE model. . . . . . . . . 10
3.1 Schematic illustration of the persistence probability measurement process. 13
3.2 Transient persistence probability of the (2+1) MBE model. θT+ are not

correlated with the dynamic scaling exponent. . . . . . . . . . . . . . . . 14
3.3 Steady-state persistence probability of the (2+1) MBE model. . . . . . . 15
3.4 Diagram of persistence probability of a specific height fluctuation. . . . . 17
4.1 w(t) with varying temperature with F = 1 ML/s. Solid black lines are

fitting lines for β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Morphology of the MBE model with L × L = 100 × 100 sites at steady

state with temperature: (a) T = 700 K (lmax = 1) and (b) T = 750 K
(lmax = 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Morphology of the DT model with L×L=200×200 sites at steady state
(Chanphana, 2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 (a) PS
+(t) and (b) PS

−(t) with two different temperatures. θS+ and θS− are
calculated from the slope in the range of t = 100− 400 ML. . . . . . . . . 23

4.5 Diffusion length plotted against temperature, with varying the deposi-
tion rate for the surface atom with n = 1. . . . . . . . . . . . . . . . . . . . 25

4.6 (a) PS
+(t) and (b) PS

−(t) with different deposition rates. θS+ and θS− are
calculated from the slope in the range of t = 100− 400 ML. . . . . . . . . 26

4.7 (a) PS
+(−|h0|, t) and (b) PS

−(+|h0|, t) with varying h0 from the system L×
L = 50× 50 sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.8 PS
+(−|h0|, t) with varying h0 of (2+1)-dimensional DT model (Chan-

phana, 2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.9 (a) PS

+(δt, t) and (b) PS
−(δt, t) with varying δt from the system size L×L =

50× 50 sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.10 (a) PS

−(+|h0|, t) with different δt, h0 and L. The fixed ratios are δt/Lz ≈
2.47× 10−6 and |h0|/wsat ≈ 1.41. (b) Scaling collapse of PS

−(t, L, δt, |h0|). . 33
4.11 (a) PS

+(−|h0|, t) with different δt, h0 and L. The fixed ratios are δt/Lz ≈
2.47× 10−6 and |h0|/wsat ≈ 3.40. (b) Scaling collapse of PS

+(t, L, δt, |h0|). . 34
A.1 Flow chart of the (2+1) MBE model simulation. . . . . . . . . . . . . . . 41



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter I

INTRODUCTION
Persistence probability has been extensively researched in the random process

problems (Aurzada and Simon, 2015; Samia and Lutscher, 2012; Sire et al., 2000;
Williams and Araéjo, 2000; Aurzada and Kilian, 2022). The applications of persis-
tence concept are diverse, including those in financial (Ren and Zheng, 2003) and
microbiological system (Şimşek and Kim, 2019). This concept is also involved in
physics such as Burger’s equation which is convection-diffusion in fluid mechan-
ics (She et al., 1992), wetting model (Efraim and Taitelbaum, 2011), Ising model
(Majumdar et al., 1996) and interface fluctuations (Majumdar and Bray, 2001). Pre-
vious studies of persistence probability show fascinating results for both physics and
statistics. This quantity can describe the nature of random processes and predict the
dynamical evolution of any random variable.

Persistence probabilities in surface growth have received considerably interest
recently (Chanphana and Chatraphorn, 2019a,b; Chanphana et al., 2013; Constantin
et al., 2004b; Dougherty et al., 2002; Krug et al., 1997) because their properties are
found to be related to one of the critical exponents at an early time of thin-film
growth. We can examine how atoms develop with time. Persistence probabilities
of averaged and specific values of height fluctuation also show fractal behavior and
scale invariance property. According to Krug and coworkers (Krug et al., 1997), the
persistence probability of height fluctuation P (t) is the probability that the height
fluctuation h does not return to its initial value h0 throughout a certain time interval.
When the height fluctuation continues to be larger than its initial value, the persis-
tence probability is categorized as the positive persistence probability (P+). On the
other hand, when the height fluctuation remains smaller than its initial value, the
probability is classified as the negative persistence probability (P−). Both positive
and negative persistence probabilities show power law decay with time. The prob-
abilities scales with time (t) as P±(t) ∝ t−θ± where θ+ and θ− are the positive and
negative persistence exponents, respectively (Krug et al., 1997). The unit of t in this
work is monolayer (ML). This means that the time it takes for the film to grow one
complete atomic layer is 1 ML. In the steady-state when the film roughness stops
increasing, the persistence probability is called steady-state persistence probability
PS(t) and the obtained exponent is called steady-state persistence exponent θS. θS is
found to relate to the growth exponent β of the model (Krug et al., 1997; Constantin
et al., 2004b).

Previous results of the persistence probability of height fluctuation are ob-
tained from atomistic “toy” models, such as the Family (Family, 1986) and Das
Sarma Tamborenea (DT) models (Das Sarma and Tamborenea, 1991; Tamborenea
and Das Sarma, 1993). Their diffusion rules consist of random deposition and sim-



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

ple surface diffusion processes, but do not directly involve atomic type and effects
of the surface temperature, deposition rate, and bonding energy which are known
to govern the film morphology (Guan et al., 2019; Marconi et al., 2016; Tabe et al.,
1981). In this work, we study the molecular-beam epitaxy (MBE) model, a more
realistic model which reflects the actual thin film growth technique. Experimental
parameters such as the growth temperature and deposition rate are adjustable in this
model. Film morphology and statistical quantities are investigated after tempera-
tures and deposition rates are varied.

The MBE technique is a thin film growth technique that deposits atoms on
a substrate through vaporization. An element source was heated in effusion cells
then the element is evaporated through ultra-high vacuum chamber and deposited
on the substrate (Franchi, 2013). The atom deposition rate can be controlled via
the cell shutter. This allows us to grow a pure film in layer-by-layer mode (Franchi,
2013; Morresi, 2013). A thin film that is grown by the MBE technique has the
same orientation with its substrate. This technique is best known for semiconductor
manufacturing (Hotta et al., 2022; Rangel-Kuoppa et al., 2021). With the ability
to grow very precise and very thin films (with thickness in the order of nanome-
ters), the nanostructures can be made by this technique (Koguchi et al., 1991; Sad-
owski et al., 2007). Because of this experimental advantage, many simulations and
modelling studies of MBE process have been pursued (Barnett and Rockett, 1988;
Fornari et al., 2018; Kazantsev et al., 2015; Liang et al., 2020) in order to obtain
more understanding of the process and to be able to better control the process. The
simulated thin films also possess interesting statistical properties (Léonard et al.,
1997; Luis et al., 2019). Additionally, the film morphology and dynamic scaling
exponents of the MBE model at relatively low temperature are similar to those of
the DT model with single surface diffusion length (Chanphana, 2013).

The first goal of this work is to investigate how the growth and persistence
exponents vary with growth parameters which are temperature and deposition rate.
Another objective is to observe the persistence exponent when only a particular
initial height fluctuation is taken into account and to determine the scaling behavior
of the persistence probability.

This thesis is organized as follow. Chapter 1 contains an introduction. The
molecular-beam epitaxy model is described in chapter 2. In chapter 3, the persis-
tence probability and its scaling relation are addressed. We examine effects of tem-
perature and deposition rate on the growth exponent (β) and persistence exponent
(θ) in chapter 4. In this chapter, we show film morphologies of thin film grown in
different temperature. The relation between θS+, θ

S
− and β is summarized. Effects of

h0 on the persistence probabilities, the scaling behavior of PS
±(t, L, δt, |h0|) are also

included in this chapter. Lastly, the conclusion is in chapter 5.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter II

MOLECULAR-BEAM EPITAXY MODEL
In this chapter, we introduce the Molecular-beam epitaxy model for thin film

growth. In this model, the molecular-beam epitaxy technique is simulated using
three processes i.e., the deposition, desorption and diffusion processes. All pa-
rameters that influence the atomic diffusion along the surface are described. The
calculation of the diffusion time and the surface diffusion length is included in this
chapter.

2.1 The Molecular-beam epitaxy model and pro-

cesses
The Molecular-beam epitaxy (MBE) model is used in this work to simulate the

thin film growing technique under ultra-high vacuum (UHV) environment. Molecu-
lar beam evaporated from Knudsen effusion cells (K-cells) is deposited on a heated
substrate (Franchi, 2013; Holloway and McGuire, 2008). The MBE technique is
helpful to custom the controls to perform a thin layer of 1 atomic thickness (Mor-
resi, 2013). There are 2 controlling parameters that we are interested in i.e., the
growth temperature of the substrate and the deposition rate. These parameters play
important role in the roughness of the film surface (Barabási and Stanley, 1995).

To simulate a discrete model of MBE, we study its microscopic processes of
growing thin film (Arthur Jr, 1968; Barabási and Stanley, 1995; Das Sarma, 1996;
Das Sarma and Tamborenea, 1991; Franchi, 2013; Holloway and McGuire, 2008;
Morresi, 2013). The simulation steps in the model are designed to mimic the three
main MBE processes: deposition, desorption, and diffusion. Details of each process
are explained below.

1. Deposition process
Atoms are randomly deposited on the substrate with an equal probability on

each site. When only the deposition process is taken into account, the MBE model
is similar to the random deposition (RD) model (Barabási and Stanley, 1995). The
rule of the RD model is that atoms are deposited randomly with no correlation with
any previously deposited atom.

We introduce a basic concept of deposition in (d + 1)-dimensional system
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where atoms fall on to a surface in d dimension and grow in the direction that is per-
pendicular to the surface. The deposition rate (F ) indicates how fast we let atoms
fall on our substrates. It is usually measured as number of monolayer (ML) that
can be grown in a unit time, thus unit of the deposition rate is ML/s. In a system
with one dimensional substrate of a size L, the deposition rate of F ML/s means
that (F × L) atoms are deposited on the substrate in the time period of one second.
Another quantity considered is the deposition time (tF ) of an atom, which is simply
(F × L)−1 in one dimensional substrate. In other words, the deposition time is the
amount of time between two deposited atoms. In (d + 1)-dimensional system, the
deposition time is generalized to be

tF = (F × Ld)−1. (2.1)

2. Desorption process
The deposited atom can be desorbed from the substrate surface if it can form

only weak bonds to the surface atoms. The desorption probability of an atom
depends on its characteristic desorption energy (ED) and substrate temperature
(T ). The desorption time (τD) is expressed by the Arrhenius law (Arthur Jr, 1968;
Barabási and Stanley, 1995):

τD = ϕ0 exp(
ED

kBT
). (2.2)

where ϕ0 ≈ 10−14, ED ≈ 2.4 eV (for Ga on GaAs (111) substrate (Arthur Jr, 1968))
and kB is Boltzmann constant. Barabási & Stanley (Barabási and Stanley, 1995)
has shown that at low to intermediate temperature, for example, T ≤ 750 K for Ga
on GaAs (111) substrate, the desorption can be negligible, by the reason that the
desorption time is much larger than the deposition time. For higher temperature,
desorption process will play more important role. In this research, very high tem-
perature is not considered. The surface atom has a chance to desorb from the surface
but with much less probability compared to the other two processes, so desorption
is neglected.

3. Diffusion process
After an atom is deposited, it can hop to one of the nearest neighboring sites

or a further site depending on the substrate temperature and its binding energy. The
number of hops per unit time is expressed by the Arrhenius law (Barabási and Stan-
ley, 1995; Kellogg et al., 1978):

N = ωD exp(−E0 + nEb

kBT
), (2.3)

where N is the hopping rate of any atom, ωD is the Debye frequency, E0 is the
activation energy, n is the number of bonds, Eb is the energy per bond and T is the
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n
Diffusion time, τR, (s)

T =700 K T =725 K T =750 K T =775 K T =800 K
1 7.85e-3 3.60e-5 1.74e-5 8.80e-6 4.64e-6
2 1.13e-2 4.39e-3 1.81e-3 7.86e-4 3.60e-4
3 1.64e0 5.34e-1 1.87e-1 7.02e-2 2.80e-2
4 2.37e+2 6.50e+1 1.94e+1 6.27e0 2.17e0
5 3.42e+4 7.91e+3 2.01e+3 5.60e+2 1.68e+2

Table 2.1: Diffusion time for Si atoms.

substrate temperature (Barabási and Stanley, 1995). For an atom that sticks to its
neighbors, it requires the energy E = E0+nEb to break its bonds in order to diffuse.
But if the atom has no lateral bond, it needs only the energy E = E0 to overcome
the lattice potential.

From the Arrhenius law, the diffusion time, τR, which is the time that an atom
takes to diffuse to one of its nearest neighbors, is a function of E0, n, Eb and T as

τR = τ0 exp(
E0 + nEB

kBT
), (2.4)

where τ0 = h
2kBT , is the inverse frequency of atomic vibration in crystal (Kittel,

2010). In our work, we try to simulate a simple MBE model. Silicon is chosen as
both the substrate and the deposited atoms. In this work, we choose E0 = 1 eV and
Eb = 0.3 eV which are values of the Si (100) surface (Smith et al., 1995). Table 2.1
shows the calculated diffusion times for an Si atom deposited on Si (100) with n

bonds at various substrate temperatures.
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Figure 2.1: Diagram of the (1+1) MBE model.

Numbers in Table 2.1 show that the diffusion time decreases when we increase
the substrate temperature, this shows that atoms can hop more easily with high hop-
ping rate as the substrate temperature rises. At the same temperature, the diffusion
time increases by about 100 times for every additional bond.

For simplicity of understanding, we present a diagram of the MBE model in
one dimensional substrate with 10 atomic sizes in Figure 2.1. The substrate atoms
are 1-10 red boxes. At both ends of the substrate, we assign periodic boundary
conditions i.e. if an atom at site 1 is hopping to the left, the atom will land on
site 10. The surface atoms are the top atom in each column, which are those green
boxes with “×” and orange boxes with “+” in the diagram. From the configuration
in this diagram, when we calculate the hopping probability of all surface atoms,
only orange with “+” atoms can hop because their hopping rate is about 100 times
higher than others. For two dimensional substrates, bonding numbers are computed
as shown in Figure 2.2.

Figure 2.2 illustrates how to compute the number of bonds by counting the
number of sides the deposited atom touches. Figure 2.2 (a) shows that after deposi-
tion, the yellow atom has 1 bond with the atom below. If the diffusion time is less
than the deposition time, it can diffuse to any nearest neighboring site. The yellow
atom in Figure 2.2 (b) forms 3 bonds with neighbors and substrate and can diffuse
to any direction if it has enough energy to break the bonds and with the condition
τR < τF .

τF in equation (2.1) tells us the time required before a new atom is deposited,
whereas τR in equation (2.4) represents the time it takes for a deposited atom to
hop. Between each deposition, all surface atoms with τR < τF can diffuse to one of
the nearest sites. The atom with lower τR has higher probability of hopping. The
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Figure 2.2: The number of bonds (n) of the deposited atom (a) n = 1, (b)
n = 3.

number of hopping steps that an atom can hop is called the diffusion length (l),
which can be calculated from the ratio τF ⁄ τR as expressed in equation (2.5).

l =
1

(F×Ld)
/(τ0 exp(

E0 + nEB

kBT
)). (2.5)

According to equation (2.5), increasing the substrate temperature lengthens
the surface diffusion length. In contrast, increasing the deposition rate results in a
reduction in the diffusion length.

More details on how the diffusion length varies with temperature and deposi-
tion rates are reported in chapter 4.

2.2 Interface width and critical exponents of

MBE model
The interface width (w) is a quantity that describes roughness of the interface.

It is defined as the root mean square fluctuation in the height, H, (Barabási and
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Figure 2.3: Interface width for the MBE model of the system size L × L =
50× 50 sites.

Stanley, 1995).

w(L, t) =

√√√√ 1

Ld

Ld∑
i=1

[H(i, t)− H̄(t)]2, (2.6)

where H is the height of each site on the substrate and H̄(t) is the mean height at
time t. w is actually the standard deviation of the height of the grown films. So, this
is a quantity that describe the roughness of the film surfaces.

The plots of interface width versus time in the log-log scale are shown in fig-
ure 2.3. There are 2 separated regimes. In the first regime, w evolves with time.
This is called “transient region”. Figure 2.3 shows that the interface width grows
as a power of time, w(L, t) ∼ tβ, β is the growth exponent. The second region takes
place when the value of w stops increasing and becomes constant. It is called “sat-
urated region” or the steady-state region. The saturation width, wsat, increases as a
power of the system size, L, as wsat(L, t) ∼ Lα, where α is the roughness exponent.
So, when we plot w vs t, we will observe large crossover time for large L. The time
that w vs t curve changes from transient to steady-state is “cross-over time (tx) ”. tx
is found to scale with Lz, where z is the dynamical exponent. The interface width is
observed to be self-affine fractal which has scale invariance (Barabási and Stanley,
1995). Information extracted from the w vs t plot can determine the critical expo-
nents (α, β, z) that characterize the universality class of the model used to simulate
the film. For models with the same set of critical exponents, we can say that they
are in the same ”universality class” (Barabási and Stanley, 1995). They share the
same dynamics scaling behavior.
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In this dissertation we obtain critical exponents of the MBE model by using
the data collapse method. We follow Family-Vicsek scaling relation (Family and
Vicsek, 1985) to determine α, β and z. Step 1, we obtain w(t) for different system
sizes as shown in figure 2.4. Step 2, we rescale w(L, t) with Lα and rescale t by Lz

with varying values of the two exponents until all plots collapse on the same curve.
The set of exponents when the plots are collapsed as shown in figure 2.5 is the set
of critical exponents of the model being explored.

Figure 2.4: The interface width of MBE model with three different system
sizes.
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Figure 2.5: Scaling plots showing the data collapse of the MBE model.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

Figure 2.4 shows the plots of w vs t of the (2+1)-MBE model with l = 1 for
three different system sizes i.e., L × L = 50 × 50, 75 × 75 and 100 × 100 sites. It is
clearly seen that the film interface takes longer time to saturate and wsat is higher
for bigger system sizes. wsat are observed to obey the relation wsat(L) ∼ Lα. In
figure 2.5, we rescale w(L, t) with Lα and vary α until all plots saturate at the same
value. For horizontal axis, we rescale t with Lz with varying z to shift all plots to
have the same crossover time. After adjusting α and z until all plots approximately
collapse into a single curve, β is calculated from the slope in the transient stage
where w(t) ∼ tβ. The best set of α, β and z forms the set of critical exponents for
our model. So, from our simulation results, we found that α ≈ 0.56, β ≈ 0.17 and
z ≈ 3.30 are the best set for collapsing our data of the (2+1)-MBE model with l = 1

and these values are consistent with the Family-Vicsek scaling relation (Family and
Vicsek, 1985): α

β ≈ z.

In theory, the non-linear continuum growth equation that describes the MBE
equation (Barabási and Stanley, 1995; Lai and Das Sarma, 1991) is:

∂H(x, t)

∂t
= −K∇4H + λ1∇2(∇H)2 + F + η, (2.7)

where H(x, t) is interface height at position x and time t. F is flux of particles
arriving at site x. K and λ1 are constants. η is the uncorrelated random noise in
which the average is zero and the second moment is 2Dδd(x − x′)δ(t − t′), where
d is system dimensions and D is diffusion coefficient. The K∇4 H and non-linear
λ1∇2(∇H)2 terms are described surface diffusion. The non-linear term in equation
(2.7) makes up-down symmetry (H → −H) absent for the MBE model.

From equation (2.7), the scaling exponents of the (2+1)-dimensional MBE
model are obtained to be α = 0.67, β = 0.20 and z = 3.30 (Barabási and Stanley,
1995) which all satisfy the relation α

β ≈ z. However, according to our simulation,
the critical exponents are slightly lower than those from the MBE equation. The
non-linear MBE equation describes thin film growth in continuum limit where the
system size goes to infinity, this is the reason why the exponents are a bit different
from our results.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter III

PERSISTENCE PROBABILITY OF

HEIGHT-FLUCTUATION
In this chapter, we describe the transient and steady-state persistence proba-

bilities. We discuss two categories of probabilities, their exponents, and the rela-
tionship between θ and β. We present that the non-linear term in the MBE equation
causes the inequality of the persistence exponents. Results of the persistence prob-
abilities as a function of the initial height fluctuation are shown. Lastly, the scaling
behavior of the persistence probability is studied.

3.1 Persistence probability
From the perspective of nature, the persistence probability (P (t)) measures

a quantity’s memory. It tells us how long the value will remain unchanged. For
the study of dynamical fluctuations in height profile of thin film growth, P (t) is the
probability that the h(t) does not cross h0 over a certain period of time. The height
fluctuation of site i at time t, h(i, t), is defined as h(i, t) = H(i, t)−H̄(t), where H(i, t)

is the height of site i at time t and H̄(t) is the average height at the same time.

A detailed example of how we calculate the persistence probability of average
height fluctuation are shown in figure 3.1. For this example, we consider a flat
substrate with 4 atomic sites and exclude random deposition and diffusion processes.
Step 1, we start measuring the persistence probability at t = 0 ML when no atom has
been deposited. At this time H̄ = 0 and the initial height fluctuations of each site are
h0 = [0, 0, 0, 0] as shown in figure 3.1 (a). Step 2, we deposit 4 atoms (which equals
the number of atoms in the substrate), the time becomes 1 ML and the average height
is H̄ = 1 represented by the red dash line in figure 3.1 (b). Because we deposit 2
atoms on the first site and another 2 atoms on the third site in this illustration, the
height fluctuations of each site at t = 1 ML are h = [1,−1, 1,−1]. At sites 1 and 3, h
are greater than h0, so we collect these sites for P+(t) type. For sites 2 and 4, h < h0,
thus we collect these sites for P−(t) type. At t = 1 ML, P+ = 1

2 and P− = 1
2 . Step 3

shows configuration at t = 2 ML, another layer of atoms is deposited (3 atoms at site
2 and one at site 4) and H̄ = 2. h of sites 1 and 3 equal h0 = 0, they violate condition
to have nonzero of P+, so at this time P+(t) = 0. h of site 2, which is grouped in
P− type, is higher than its h0, so the negative persistence probability of this site is
zero. For site 4, we observe that h < h0 which is consistent with the condition to
have nonzero P−, so we keep measuring P− of this site. At t = 2 ML, P+ = 0 and
P− = 1

4 .
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Figure 3.1: Schematic illustration of the persistence probability measure-
ment process.
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Figure 3.2: Transient persistence probability of the (2+1) MBE model. θT+
are not correlated with the dynamic scaling exponent.

According to Krug and coworkers (Krug et al., 1997), the persistence proba-
bility calculated by averaging over all initial heights exhibits power law decay with
time. As the growth process is divided into 2 regions: transient and steady-state
regions, P (t) can also be calculated from 2 regions. The difference in them is the
way the initial time (t0), which is the time used to determine h0, is chosen. For the
transient persistence probabilities, the initial time is in the transient region, while
the initial time must be in the steady-state region for the steady-state persistence
probabilities. The transient persistence probabilities are observed to scale with the
growth time as P T

± ∝ t−θT
± , while the steady-state persistence probabilities decay

with time with the different rate as PS
± ∝ t−θS

± , where θT ̸= θS in general. In our
simulations, P T

± are measured from an initial flat substrate, h0 = 0 at (t0 = 0ML).
For some models, P T

± plots do not clearly show a power-law decay. For instance, P T
±

rapidly decrease to zero in the (2+1)-dimensional Family model (Constantin et al.,
2004b), whose surface morphology is very smooth (Family, 1986). For the (2+1)-
MBE model with lmax = 1, our simulated film surface is quite rough with deep
grooves. P T

± show short range of the power-law decay during t ∼ 30 − 100 ML as
shown in figure 3.2. We obtain θT+ ≈ 1.71, θT− ≈ 1.43.

For PS
± , the initial time (t0) depends on the saturation time of each model.

PS
± plots decrease with time as a power-law in all growth models studied in the

literatures (Chanphana et al., 2013; Chanphana and Chatraphorn, 2021; Krug et al.,
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Figure 3.3: Steady-state persistence probability of the (2+1) MBE model.

1997). Figure 3.3 shows our PS
± versus time plots for the MBE model of L × L =

100×100 sites, t0 = 60, 000 ML. We obtain θS+ ≈ 0.78 and θS− ≈ 0.90 which are smaller
than θT±.

Krug and coworkers (Krug et al., 1997) suggests that if the system can be de-
scribed by linear Langevin equation, then steady-state persistence exponents relate
the growth exponent β as

θS+ = θS− = 1− β. (3.1)

Constantin and coworkers (Constantin et al., 2004b) extends eq.3.1 to cover
nonlinear growth processes as

β = max[1− θS+, 1− θS−]. (3.2)

As can be seen from the figure 3.2 and 3.3, θ+ ̸= θ− for both regions. These
inequalities show up-down asymmetric behavior which is generated from non-linear
term (Ballestad et al., 2001; Barabási and Stanley, 1995) in eq. 2.7. In this work,
we attempt to verify whether the relation in eq. 3.2 is valid in the MBE model.

Chanphana & Chatraphorn (Chanphana and Chatraphorn, 2019a) demon-
strated that the diffusion length (l) affects the value of the persistence exponents.
In our work, l can be varied by adjusting the growth parameters i.e., the substrate
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temperature, and the deposition rate. Many studies suggest that increasing the de-
position rate leads to the increase of the film roughness (Maboudian et al., 1994; Pal
and Landau, 1994) which may affect the value of θT± and θS±. In our study, effects of
the growth temperature and the deposition rate on the persistence probabilities and
exponents in the MBE model are investigated.

3.2 Scaling behavior of persistence probability
Previous works on persistence of interface fluctuations (Chanphana et al.,

2013; Chanphana and Chatraphorn, 2019a, 2021; Constantin et al., 2004b; Krug
et al., 1997; Dougherty et al., 2002) show that the steady-state persistence proba-
bility PS

±(t) of all initial height fluctuations exhibits power law decay with time as
stated earlier. So, time is considered as one of the scaling variables. Constantin
and coworkers (Constantin et al., 2004b) found that PS

±(t) exhibit power law when
t ≪ Lz. Decreasing system size causes the decrease in β, because the interface
of small L becomes saturated more quickly due to the finite size effect (Krug and
Meakin, 1990). Besides, θS± increase when L is decreased. Another scaling vari-
able is the size of the sampling time (δt) which is the discrete time interval between
two measurements (Dougherty et al., 2005). The minimum value of (δt) is 1 ML.
All the persistence probabilities from the previous chapter are measured at every
monolayer, corresponding to δt = 1. As δt is increased, PS

± increase. This can
be explained as follows. To calculate the persistence probability, number of sites
whose h does not cross h0 is counted while the sites whose h crosses h0 are elim-
inated. If (δt) is large, it is possible that h of a certain site already crosses h0 and
then crosses back before we do the counting. In this situation, we count that site as
“persisted” because we cannot detect the crossing of h, while the site would have
been eliminated if δt is small enough for us to notice the crossing. This leads to
large probabilities when δt is large. Effects of the sampling time have been widely
studied in persistence probability probability (Constantin et al., 2004a; Dougherty
et al., 2005) and other statistical quantities in stochastic process such as the survival
probability (Chanphana and Chatraphorn, 2019b). Time scales of the growth pro-
cess must depend on the cross-over time which is scaled with Lz. As a result, PS

±
should scale with t/Lz and δt/Lz). The scaling behavior of PS

±(t, L, δt) is found to
be f±(t/L

z, δt/Lz), where t/Lz ≪ 1 and δt/Lz ≪ 1 (Constantin et al., 2004b).

Effects of initial height fluctuation on PS
± of linear models was introduced by

Chanphana and coworkers Chanphana et al. (2013) The persistence probabilities of
a specific value of h0 are denoted by PS

±(h0, t). Figure 3.4 shows the example of how
to choose sites with a desired h0. The long rectangular unshaded block represents
100 completed layers already grown on a one dimensional substrate of 10 sites. The
10 blue boxes are the atoms in the 101st layer. At t0 = 101 ML, if the persistence
probability of h0 = 1 is measured, only the sites 2, 3 and 8 (green boxes with an
arrow pointing to them) are taken into account. At a later time, t = t0 + δt, sites
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Figure 3.4: Diagram of persistence probability of a specific height fluctua-
tion.

collected to PS
+(h0 = 1) are determined by those with h0(t) > 1 while sites included

to PS
−(h0 = 1) category are those with h(t) < 1.

The results of several linear models (Chanphana et al., 2013) as well as the
non-linear DT model (Chanphana and Chatraphorn, 2021) show that the positive
persistence probability of positive initial height fluctuation (PS

+(+|h0|, t)) and the
negative persistence probability of negative initial height fluctuation (PS

−(−|h0|, t))
do not exhibit power law decay. The power law decay behavior of PS

±(h0, t) are only
found for the positive persistence probability of negative initial height fluctuation
(PS

+(−|h0|, t)) and the negative persistence probability of positive initial height fluc-
tuation (PS

−(+|h0|, t)). For the (2+1) dimensional DT model, PS
+(−|h0|, t) exhibits

power law decay when h0 ≫ wsat whereas the condition of PS
−(+|h0|, t) is h0 ≳ wsat.

In contrast, only the condition h0 ≳ wsat to have the power law decay can be applied
to PS

±(∓|h0|, t) for all linear models (Chanphana et al., 2013).

It is clear that PS
±(±|h0|, t) do not display a power law decay because of the

diffusion of the surface atoms. At the site with positive h0, the height of that site
is larger than the mean height at the time we measure. The only chance that the
height of that site remains larger than the mean height is for the newly deposited
atom to stick on top of it. So, PS

+(+|h0|, t) generally decays very fast. The behavior
of PS

−(−|h0|, t) is the same as PS
+(+|h0|, t). The height fluctuation of the site with

negative h0 will remain negative if no atom falls into the groove. Both events are
relatively rare due to surface atom diffusion, leading to the quick decay of the prob-
abilities and thus we do not study PS

±(±|h0|, t) in this work.
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In this thesis, we examine PS
±(t, L, δt, |h0|) in the (2+1)-MBE model with dif-

ferent initial heights, system sizes and sampling times and follow the scaling rela-
tion reported in the literature (Chanphana et al., 2013; Chanphana and Chatraphorn,
2021).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter IV

RESULTS
In chapter 4, all results are reported. We show effects of growth temperature on

film morphology. Effects of growth temperature and deposition rate on persistence
exponents are investigated. The persistence probabilities with various initial height
fluctuation are studied. We obtain the initial height conditions in order to have a
power law decrease in time for persistence probabilities of the MBE model. Scaling
behavior of the persistence probability is explored.

We are aware that if we simulate a very small system size (L), the finite size
effect will cause additional inaccuracies in the results. However, simulating a large
system size would take a long time in order to eliminate this effect. The minimum
system size chosen in this study is 50 × 50 sites, which is acceptable for the (2+1)-
dimensional MBE model because finite size effect is small enough. We examine the
scale invariance property through the simulation of thin films with various system
sizes from 50× 50 to 100× 100 sites. The simulation time for 100× 100 sites, which
is the largest, is still reasonable.

4.1 Effects of temperature on interface width

and persistence exponent
Plots of w(t) at different temperature are shown in figure 4.1. The slope in the

early stage (the black solid line) represents the value of β which obviously decreases
as the temperature goes up. When T increases from 700 K to 750 K, the film interface
saturates faster with smaller wsat. Since w is the root mean square of the height
fluctuation, w tells us how large that the height at each site differs from the averaged
height. Smaller wsat is an indication of a smoother surface at the steady-state.

The reason for a smoother film at higher growth temperature is in equation
(2.5). From equation (2.5), increasing growth temperature (T ) leads to the increase
in diffusion length (l). This means as the temperature is increased, the atom can
search further for the stable site to be incorporated, thus the film is smoother. At
each temperature, the maximum value of l is lmax which is the diffusion length of the
surface atoms with n = 1. Figure 4.2 shows that when the temperature rises from
T = 700 K to T = 750 K, corresponding to the increase from lmax = 1 to lmax = 5,
the surface morphology becomes much smoother.

It is worth pointing out that the morphology in figure 4.2(a) is quite simi-
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Figure 4.1: w(t) with varying temperature with F = 1 ML/s. Solid black
lines are fitting lines for β.

Figure 4.2: Morphology of the MBE model with L × L = 100 × 100 sites at
steady state with temperature: (a) T = 700 K (lmax = 1) and (b) T = 750 K
(lmax = 5).
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Figure 4.3: Morphology of the DT model with L×L=200×200 sites at steady
state (Chanphana, 2013).

lar to that of the DT model (Das Sarma and Tamborenea, 1991; Tamborenea and
Das Sarma, 1993) shown in figure 4.3 (Chanphana, 2013) with deep grooves and
smooth top surface, so it is not surprising that the persistence probabilities of the
MBE model have similar behavior to those of the DT model (Chanphana and Cha-
traphorn, 2021).

Plots of the persistence probabilities (averaged over all h0) PS
± of varying tem-

perature are shown in figure 4.4. When the film is smoother at high temperature,
h returns to h0 faster for a flatter surface. PS

± , whose maximum values at t = 1 are
normalized to be 1, decay faster for higher temperature. The value of θS±, which are
the slope of the plots, then increase with the temperature. In conclusion, increasing
T causes PS

± to decrease more quickly, resulting in an increase in θS± as shown in
figure 4.4.

The value of θS± are calculated by averaging among all independent simulation
systems. The standard deviation of the mean is used as the error of θS±. In our results,
the errors are very small. For instance, the standard error of θS+ at T = 700 K for
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the substrate size L × L = 100 × 100 sites, averaged of 1,860 independent runs, is
2.76 × 10−3. The error of other systems are also not greater than the order of 10−3.
Thus, we do not show the error bars in our graphs. Note that the errors of β are in
the same order.
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Figure 4.4: (a) P S
+(t) and (b) P S

−(t) with two different temperatures. θS+ and
θS− are calculated from the slope in the range of t = 100− 400 ML.
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4.2 Effects of deposition rate on interface width

and persistence exponent
Deposition rate and temperature have completely opposite effects on interface

growth. When we increase the deposition rate, more atoms arrive at the surface
in a short time interval so each atom has a very limited period of time to diffuse,
which results in a short diffusion length. There will not be any diffusion if F is
too large. Atoms will stick to their landing sites, creating very rough film surface.
In that case, the interface evolves in the same way as the RD model. In contrast,
a slow deposition rate provides more deposition time as indicated from eq. (2.1).
As a result, the diffusion length is long because atoms have more time to diffuse.
This process agrees with the experimental study that reduced deposition rate helps
to smoothen the film morphology (Maboudian et al., 1994).

Figure 4.5 shows plots of l vs T for various values of F (0.33, 0.5, 1 and 2 ML/
s ) of the atoms that only share one bond with the substrate. For each value of F ,
increasing in temperature results in an increase in diffusion length. The graph will
shift to the right when F rises. When fixing T , larger F causes the drop in l. Because
l can only be an integer, the graphs are discontinuous.

A slower rate of deposition, which is associated with an increase in temper-
ature, leads to the smoother surface morphology. From the previous section, T =

700, 725, 730 and 750 K with F = 1 ML/s in figure 4.1 correspond to F = 1, 0.5, 0.33

and 0.2 ML/s with T = 700 K, respectively. Plots of w vs t show the decrease in β

as F decreases (T increases). The results of PS
±(t) with varying deposition rates are

shown in figure 4.6. PS
±(t) are found to decay more slowly with larger F that cause

rougher surface.

As was previously mentioned, the standard error of θS± with varying deposition
rates are in the order of 10−3, we conclude that the θS± for different deposition rates
are not equal to each other within the error bar.

We report our results of β and θS± with varying the diffusion length in table
4.1. For the MBE model, we obtain θS+ < θS− for every condition. The relation
β = max [1− θS+, 1− θS−] in equation (3.2) suggests that in this model, βeq 3.2 = 1− θS+.
Due to the substrate size limitation and simulation time restriction, β obtained in
figure 4.1 slightly differs from βeq 3.2 = 1− θS+. However, the value of β from figure
4.1 is closer to 1 − θS+ than 1 − θS−. Thus, our findings support the theory that β

remains related to the smaller persistence exponent.
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Figure 4.5: Diffusion length plotted against temperature, with varying the
deposition rate for the surface atom with n = 1.

Parameters Values Conditions
lmax 1 2 3 5
T (K) 700 725 730 750 F = 1 ML/s

F (ML/s) 1 0.5 0.33 0.2 T = 700 K
β 0.16 0.14 0.12 0.10
θS+ 0.78 0.82 0.84 0.86
θS− 0.90 0.93 0.97 1.02

βeq 3.2 = max[1− θS+, 1− θS−] 0.22 0.18 0.16 0.12

Table 4.1: A summary table of approximate value of β and θS± under different
conditions.
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Figure 4.6: (a) P S
+(t) and (b) P S

−(t) with different deposition rates. θS+ and θS−
are calculated from the slope in the range of t = 100− 400 ML.
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4.3 Effects of initial height fluctuations on per-

sistence exponent
From chapter 3, we discuss effects of h0 on PS

±(t) and results from the previous
studies (Chanphana et al., 2013; Chanphana and Chatraphorn, 2021) which suggest
that PS

±(h0, t) only exhibit power law decay in time under some specific situation. We
neglect PS

±(±|h0|, t) because of their rapid decay and lack of power law behavior. Our
simulation results for the MBE model show that the positive persistence probability
of negative initial height fluctuation (PS

+(−|h0|, t)) exhibits the desired power law
decay only when |h0| ≫ wsat. In contrast, the negative persistence probability of
positive initial height fluctuation (PS

−(+|h0|, t)) shows the power law decay when
|h0| ≳ wsat. Figure 4.7 (a) and (b) show plots of PS

+(−|h0|, t) and PS
−(+|h0|, t) of the

system size L×L = 50× 50 sites with wsat ≈ 2.90. It can be seen that at |h0| = 4, the
plot of PS

+(−|h0|, t) in figure 4.7 (a) does not exhibit a power law decline whereas
the plot of PS

−(+|h0|, t) in figure 4.7 (b) clearly does. From figure 4.7 (a), only PS
+ of

very large |h0|, i.e., |h0| ≳ 10 shows an approximate straight line in the log-log scale.
Moreover, we observe that both PS

+(−|h0|, t) and PS
−(+|h0|, t) with larger value of |h0|

undergo slower rate of decrease in time when compared to those with smaller |h0|.
This result indicates that stronger fluctuations on the film surface persist longer than
weaker ones.

Effects of h0 on PS
+(t) of the (2+1)-DT model with l = 1 are investigated in

(Chanphana and Chatraphorn, 2021). Their plots of PS
+(−|h0|, t) as a function of any

h0 are shown in figure 4.8. Their results are from simulations with L×L = 100×100

where wsat ≈ 6.87. For the DT model, PS
+(−|h0|, t) exhibits power law decay when

|h0|17 which is significantly larger than wsat. Our results of PS
−(+|h0|, t) are also

comparable to those of the DT model. As a result, our finding of conditions for a
power law decay behavior in PS

±(∓|h0|, t) of the MBE model are similar to those of
the DT model (Chanphana and Chatraphorn, 2021).
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Figure 4.7: (a) P S
+(−|h0|, t) and (b) P S

−(+|h0|, t) with varying h0 from the sys-
tem L× L = 50× 50 sites.
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Figure 4.8: P S
+(−|h0|, t) with varying h0 of (2+1)-dimensional DT model

(Chanphana, 2013).
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4.4 Effects of discrete sampling time on persis-

tence probability
We investigate effects of the discrete sampling time, δt, on PS

±(t) in the MBE
model. The system size used here is L×L = 50× 50 sites with lmax = 1. Figures 4.9
(a) and (b) show plots of PS

+(t) and PS
−(t) with varying δt. The values of δt used are

1, 2 and 4. It can be seen from the figures that at a specific time t, the value of PS
±(t)

is greater for larger δt. Despite the different values in the persistence probabilities,
all PS

+(t) plots approximately decay with the same rate. The same behaviors are seen
in PS

−(t). These results are consistence with (Constantin et al., 2004b; Dougherty
et al., 2005).
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Figure 4.9: (a) P S
+(δt, t) and (b) P S

−(δt, t) with varying δt from the system size
L× L = 50× 50 sites.
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4.5 Scaling behavior of persistence probability
Investigating PS

± of a specific value of h0, we find that PS
−(+|h0| ≳ wsat, t)

and PS
+(−|h0| ≫ wsat, t) present power law decay. Next, we examine their scaling

behavior. Since the morphology of the MBE model shown in figure 4.2 and results
of PS

±(h0, t) in figure 4.7 are consistent with those of the DT model, we assume the
possibility of PS

±(h0) to have the same scaling relation as shown in Chanphana and
Chatraphorn (Chanphana and Chatraphorn, 2021) for the MBE model.

Temporal part scales the same for PS
+ and PS

− as we discuss in chapter 3. Since
the saturation time scales with the substrate size as Lz where z is the dynamical
exponent, δt should scale with Lz as well. Additionally, when L is varied, wsat and
range of possible h0 are changed. From these behaviors, the other expected scaling
ratio is |h0|/wsat. In this work, we fix the diffusion length condition to be l = 1,
and the dynamical exponent of the MBE model for l = 1 is z = 3.3. PS

−(+|h0|, t)
and PS

+(−|h0|, t) with different L, δt and h0, but fixed ratios δt/Lz and |h0|/wsat for
each system size are plotted in figures 4.10 and 4.11. The minimum system size is
50 × 50 sites, and δt is chosen to be 1 for this substrate size. So, the ratio, which is
also used for the other L, is δt/Lz ≈ 2.47× 10−6. For PS

−(+|h0|, t), we choose h0 = 4

and the scaling ratio is |h0|/wsat ≈ 1.38. For PS
+(−|h0|, t), we choose h0 = −10 with

|h0|/wsat ≈ 3.48. Once again, for every L, the ratio |h0|/wsat is fixed. However, since
δt and h0 cannot be a fraction, both ratios which are supposed to be constant for all
L, are only approximately constant with the percentage difference of less than 6%.
After rescaling all plots with δt, the probabilities in figures 4.10 and 4.11 roughly
collapse into a single curve. These results confirm that the persistence probabilities
of the MBE model follow the relation established in prior researches (Chanphana
et al., 2013; Chanphana and Chatraphorn, 2021).

Since wsat ∼ Lα, the ratio |h0|/wsat can be written in terms of the rough-
ness exponent as |h0|/Lα. In summary, PS

±(t, L, δt, |h0|) are the function of
f(t/Lz, δt/Lz, |h0|/Lα), where t/Lz�1, δt/Lz ≪ 1 and |h0|/Lα > 1.
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Figure 4.10: (a) P S
−(+|h0|, t) with different δt, h0 and L. The fixed ratios

are δt/Lz ≈ 2.47 × 10−6 and |h0|/wsat ≈ 1.41. (b) Scaling collapse of
P S
−(t, L, δt, |h0|).
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Figure 4.11: (a) P S
+(−|h0|, t) with different δt, h0 and L. The fixed ratios

are δt/Lz ≈ 2.47 × 10−6 and |h0|/wsat ≈ 3.40. (b) Scaling collapse of
P S
+(t, L, δt, |h0|).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter V

CONCLUSIONS
Our results show that the MBE model is up-down asymmetric due differences

in morphology between upward (positive h) and downward (negative h) directions.
Deep grooves and rounded top surfaces are produced by the surface atom diffusion
rules. The outcome of this asymmetry is that PS

+ and PS
− decrease at different rate

i.e. θS+ ̸= θS−. Both growth stages result in θ+ < θ− which tell us that the positive
height fluctuation has a longer time span than the negative one before crossing the
initial value. In theory, the up-down asymmetry is represented by non-linear terms
in the continuum equation.

Variation in temperature and deposition rates cause the change in diffusion
length. The diffusion length grows with temperature while reducing as deposition
rate rises. As l increases, film becomes smoother. This causes the decrease in β but
the increase in θS±. The relation of β and θS± with different diffusion lengths follows
equation (3.2) derived by Constantin and coworkers (Constantin et al., 2004b).

We investigate effect of specific h0 on PS
±(∓|h0|, t). We ignore PS

±(±|h0|, t)
because they do not exhibit power law decay. We find that the conditions to have the
power law decay are |h0|/wsat ≳ 1 for PS

−(+|h0|, t) and |h0|/wsat ≫ 1 for PS
+(−|h0|, t).

For PS
−(+|h0|, t), the sites of moderate value of +|h0| are the sites whose atoms sit

on top of a small hill. They easily depart from their initial position during diffusion,
so h of those sites remain less than h0. This scenario leads to nonzero persistence
probability of those sites. So, plots of PS

−(+|h0| ≳ wsat, t) does not drop too fast but
decrease as a power law with time. For PS

+(−|h0|, t) with extremely large −|h0|, they
are the sites whose atoms locate at the bottom of the groove. The groove can be
easily filled by diffusing atoms, h remains greater than h0 leading to nonzero PS

+ of
those sites. So, plots of PS

+(−|h0|, t) where |h0| ≫ wsat show a power law decay.

In order to find the scaling form of the persistence probabilities, we simulate
PS
±(∓|h0|, t) for three sets of (L, δt, |h0|) with the ratios δt/Lz and |h0|/wsat are fixed.

Plots of PS
±(t, L, δt, |h0|) approximately collapse into a single line after rescaling t

with δt. As wsat ∼ Lα, PS
± are a function of f(t/Lz, δt/Lz, |h0|/Lα), which is in

agreement with those in earlier researches (Chanphana et al., 2013; Chanphana and
Chatraphorn, 2021).
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Appendix I

NUMERICAL SIMULATION
In this dissertation, we study persistence probabilities and exponents by nu-

merical simulation. To grow a film, we follow the MBE processes described in
chapter 2, but we ignore the desorption process. A flow chart represents MBE algo-
rithm is displayed in figure A.1. After deposition of each atom, the diffusion time
τR of every surface atom is computed. All of the surface atoms with the lowest τR
have a chance to diffuse. They are randomly selected to diffuse until the condition
l < lmax is violated. After that, a new atom is deposited. w is calculated from equa-
tion (2.6) at every completed layer (t). P T,S

± are calculated after every additional δt
layers.
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Figure A.1: Flow chart of the (2+1) MBE model simulation.
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