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Chapter |

INTRODUCTION

1. Background and rationale

Vancomycin was discovered from Streptomyces orientalis. It is a glycopeptide
antibiotic having bactericidal effect against a wide range of gram positive bacteria.’
The use of vancomycin in hospital settings became popular in 1980s due to the
emergence of methicillin resistant Staphylococcus aureus (MRSA).? Since vancomycin
possesses poor oral absorption, it is mainly administered by intravenous route.
Distribution of the drug varies throughout the body space. It is mainly eliminated by

renal route with nearly 90% of the drug remained unchanged in urine.’

Due to its narrow therapeutic index and nephrotoxicity, it is advised to
perform therapeutic drug monitoring (TDM) in patients receiving vancomycin
treatment. Although the ratio of area under the curve to minimum inhibitory
concentration (AUC/MIC) is the pharmacokinetic/pharmacodynamic (PK/PD) index of
vancomycin, trough concentration (C;) monitoring was the most useful practical
method in clinical setting and C; was used as a TDM parameter assuming it is an
optimal surrogate for AUC.* ®> However, several studies later pointed out poor
correlation between C; and AUC.®? For this reason, the consensus guideline has been
updated with some changes suggesting to estimate AUC directly instead of using C;
as a marker in vancomycin TDM.'® The revised consensus guideline and review by
American Society of Health-System Pharmacists (ASHP), the Infectious Diseases
Society of America (IDSA), the Pediatric Infectious Diseases Society (PIDS) and the
Society of Infectious Diseases Pharmacists (SIDP) suggested to maintain AUC/MIC 400-

600 for serious MRSA infections with isolates having MIC value of <1.

There are mainly two strategies to compute AUC.'* In one approach, AUC is

calculated from two samples collected within the same dosing interval (peak and



trough) using first order pharmacokinetic equations. The other is the prediction of
AUC based on published population model parameters. Population models of
vancomycin have been described as 1-compartment and 2-compartment models.'***
Clinicians tend to use 1-compartment models because of mathematical simplicity
although vancomycin pharmacokinetics follows 2-compartment nature.” In fact, there

are limited data comparing AUCs from 1- and 2-compartment models.

Shingde et al® assembled richly sampled vancomycin data from 30 patients
with over 300 concentrations and developed both 1-and 2-compartment models.
Single-dose AUCs derived from these models were compared. They found a
statistically significant underestimation of AUC from 1-compartment model when
compared to the reference AUC from 2-compartment model. But the difference was

unlikely to be clinically significant with respect to dose adjustment.

Neely et al” applied richly sampled vancomycin data from 47 patients with
569 concentrations and developed a 2-compartment population model from which
the reference AUC was derived. Then, they created trough-only and peak-trough
datasets by removing other concentrations from the full dataset. And 2-
compartment population models were again developed from these two depleted
datasets. This offered average daily AUCs from trough-only model (AUC;) and peak-
trough sampled model (AUCpy). Trough-only model under predicted the true AUC
with 23% bias which is higher when compared to peak-trough model having 14%

bias.

Population-based modeling approach is a useful tool to analyze the sparse
sampling data and has been widely used to analyze TDM data which mainly contains
trough concentrations. This study aimed to compare AUCs from 1- and 2-
compartment models using trough-only dataset and peak-trough dataset simulated
from a previously published robust 2-compartment model and to assess the clinical
applicability of AUCs provided by the models constructed from trough-only dataset

in terms of both 1- and 2-compartment modeling.



2. Objectives

To compare AUCs of 1-compartment model and 2-compartment model using
trough-only dataset and peak-trough dataset and to assess the AUC predictability of

the population models developed from trough-only data.

3. Scope of the study

This study used the 2-compartment population model introduced by Goti et
al'® to produce concentration-time profiles via simulation. Because this model used
the largest sample size of around 1800 subjects with various clinical conditions, AUCs

derived from this model will offer a good generalizability.

4. Hypothesis of the study

By using a non-linear mixed effect modeling approach, 1-compartment
models developed from sparse data would sufficiently predict the AUC with
reasonable bias and precision when compared to 2-compartment models. Both 1-
and 2-compartment pharmacokinetic models using trough-only samples would yield

biased AUC when compared to AUCs from peak-trough models.

5. Significance of the study

This study is the first study that compares three AUCs (AUCq.,4, AUC,445 and
average AUC,, within the first 48 hours) obtained after multiple doses from 1-
compartment and 2-compartment models with sparse data considering TDM practice
in real clinical setting. Thereby, decision could be made whether 1-compartment
model should be used to predict AUC in clinical practice. Besides, this study
examined the AUC predictability of population models developed from trough-only
data.



Chapter I

LITERATURE REVIEW

1. Physicochemical properties of vancomycin

Vancomycin is a large tricyclic glycopeptide antibiotic (figure 1) having a

molecular weight of 1448 ¢/mol and a strong solubility in water.!’

Figure 1 Chemical structure of vancomycin'®

2. Pharmacokinetics of vancomycin

2.1 Absorption

Vancomycin has poor oral absorption with less than 5% of the drug absorbed
into systemic circulation. Oral formulation is used for the treatment of enterocolitis
caused by overgrowths of gram positive bacteria in gastro-intestinal tract. Because of

poor oral absorption, it is mainly administered via intravenous route.* **



2.2 Distribution

The volume of distribution ranges from 0.4 to 1 L/kg for adults. As
vancomycin exhibits multi-compartmental pharmacokinetics, concentration-time
profile can be described by mono-exponential, bi-exponential and tri-exponential
curves’ So far, 1- and 2-compartment models were reported by several
pharmacokinetic studies.’*** Distribution half-life (alpha phase) takes 0.5-1 hour in 2-
compartment models for patients with normal renal function.”> Vancomycin has
moderate protein binding effect with around 55% of the drug binding to albumin.
Penetration of the drug into body space varies according to site of infection and is
also influenced by the presence of inflammation. Normally, vancomycin has poor
penetration into central nervous system (CNS) and lung tissues. But in patients with
meningitis, inflammation improves penetration of the drug into CNS and higher

concentration can be seen in cerebrospinal fluid.> **

2.3 Metabolism

Vancomycin metabolism is negligible in humans with non-renal route

elimination of less than 5% of total body clearance.!’

2.4 Excretion

Vancomycin is mainly excreted by glomerular filtration with over 80% of the
drug remained unchanged in urine. Therefore, clearance of the drug is mainly
influenced by renal function. Elimination half-life ranges from 6 to 12 hours in
patients with normal renal function and it takes nearly a week in patients with end

stage renal disease.”



3. Summary of literature review on compartmental models of vancomycin
Compartmental pharmacokinetics of vancomycin has mostly been described
as 1- and 2-compartment models. Broeker et al'* evaluated the predictive
performance of 31 vancomycin models including both 1- and 2-compartment
models by encoding all models in NONMEM 7.4 and using patient data from two
hospitals. First, they created a standard patient of 50-year male having body weight
of 75 kg, height of 1.7 m and serum creatinine of 85 umol/L. Then, pharmacokinetic
profiles of the standard patient was calculated using 31 models and their
concentration-time profiles were found to differ with a wide variability. Furthermore,
1221 concentrations of 292 patients were also predicted by inputting patient
covariate values in 31 models. Predicted concentrations were compared to observed
concentrations in terms of relative bias and precision (rBias and rRMSE). Of all, the 2-
compartment model by Goti et al'® was found to show the best predictive

performance having rBias -4.41% and rRMSE 44.3%.

AUC o4 for 292 patients were also predicted using those 31 models by means
of two methods. The first method involved application of only covariate values in
models. The second method was Bayesian forecasting by using 31 models and
patient data such as drug concentrations and dosing history. The difference between
AUCs from both methods were compared. Again, the model by Goti et al'® offered
the lowest bias between two AUCs showing the difference of only 2.22 me.h/L. For
all these, it was advised that the model by Goti et al' is the most suitable model to

predict AUC in clinical setting.

The summary of 35 published vancomycin models (15 one-compartment
models and 20 two-compartment models) is mentioned in table 1 and 2.'> '® 223
Pharmacokinetic parameters were calculated by inserting median or mean covariates
of particular participants into final models. It can be seen that some studies were
conducted on specific patient populations such as extremely obese patients or

critically ill patients. Most of models discovered renal function markers and body



weight as significant covariates which are currently applied for dosing purposes in
clinical practice. Among the models with generalized clinical conditions, the 2-
compartment model by Goti et al*® included the largest number of participants and
their model also contained commonly used factors (renal function and body weight)

as the significant covariates.
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4, Mechanism of action

Vancomycin inhibits bacterial cell wall synthesis (figure 2) by forming a
complex with peptidoglycan precursors (D-alanyl-D-alanine), thereby, blocking

incorporation of those subunits into peptidoglycan.*

Vancomycin-susceptible staphylococci

Vancomycin
Inhibition of
cell-wall synthesis

-D-Ala-D-Ala > —_— -D-Ala-D-Ala -

Tripeptide containing intermediates
in cell-wall synthesis

Figure 2 Mechanism of action of vancomycin®

5. Therapeutic uses and dosage

Vancomycin is used in infections caused by gram positive bacteria such as
skin and soft tissue infections, bacteremia, endocarditis, pneumonia, meningitis,
ventriculitis, osteomyelitis and pseudomembranous colitis. It plays an important role

in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections.>

Dosage varies according to renal function and weight. Usual adult
maintenance dose is 15-20 mg/kg to be given 8 or 12 hourly with intermittent
infusion. Loading dose of 25-30 mg/kg is sometimes recommended to achieve steady
state in early treatment period. Continuous infusion is also sometimes given due to

the ease of drug level monitoring.*

6. Untoward effects

Adverse drug reactions involving local phlebitis, Red Man Syndrome,
neutropenia, thrombocytopenia, hypersensitivity, ototoxicity and nephrotoxicity are
major concerns and are assumed to be dose related. It is suggested to infuse over at

least 1 hour to avoid infusion-related side effects or antihistamine can be given
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before the start of infusion. It is also recommended to perform therapeutic drug

monitoring to prevent development of some dose-related side effects.”

7. Therapeutic drug monitoring of vancomycin and importance of area under

the curve (AUC)

Therapeutic drug monitoring (TDM) is the practice of measuring drug levels
and maintaining them within the therapeutic range for the purpose of dosage
individualization. In the case of vancomycin, TDM is mainly provided for patients with
high risk of nephrotoxicity, those who need long duration of treatment (greater than
3-5 days). Once-a-week monitoring is recommended for stable patients requiring long

duration of treatment.* >

Having concentration-independent activity, the ratio of area under the curve
to minimum inhibitory concentration (AUC/MIC) is more likely to be an indicative of
efficacy and toxicity of vancomycin. AUC is the measure of drug exposure on a
certain time interval. Considering some practical feasibility, steady-state trough
concentration (C;) monitoring was the most useful TDM method assuming C; as a
surrogate marker for AUC. And it was suggested to maintain C; between 15-20 mg/L
for MRSA infections and complicated infections like bacteremia, meningitis,
endocarditis and osteomyelitis.* However, several studies®® °%? later indicated that
trough concentration tends out to be unreliable TDM parameter because of these
three main reasons:

(1) Trough concentration was found to be poorly correlated with AUC

(2) Significant association between AUC and nephrotoxicity

(3) Significant association between AUC and other patient outcomes

Therefore, the updated consensus guideline (2020) no longer supports C;
monitoring in serious MRSA infections. A new decision was made to apply AUC
monitoring in patients with serious MRSA infections and it is suggested to maintain

AUC/MIC of 400-600 in MRSA infections with isolates having MIC < 1.
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7.1 Poor correlation between trough concentration and AUC

Several studies showed therapeutic discordance between C; and AUC. Patel
et al® found a wide variability of AUC values given by similar trough concentrations
from different dosage regimens (1 g, 1.5 g and 2 ¢ twice a day) and the probability of
achieving target AUC was 70% in spite of having lower C; than the recommended
value. Similarly, in the study conducted by Neely et al,” 50-60 % of simulated
patients achieving AUC/MIC=400 were found to have trough concentration less than

15 mg/L. (Table 3)

Unlike above studies, Bel Kamel et al® analyzed correlation of AUC and
trough concentration by using actual patient data. And around one-third of patients
showed AUCy, value of greater than 400 mg.h/L with trough concentrations less than
15 mg/l. Chart analysis conducted by Hale et” also pointed out that C; > 15 mg/L
would not necessarily be needed to obtain AUC/MIC=400 in patients infected with
MRSA having MIC value of 1 mg/L. (Table 4)
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Table 3 Simulation studies showing trough concentration as a poor predictor of

AUC
Authors Study Design Objective AUC Method Results
(year)
Patel et | -Monte Carlo simulation from To observe PD Steady-state 70% of subjects
al® published 2-compartment profile of the AUC was with AUC/MIC >
(2011) model drug in response | calculated from | 400 had (<
-Simulation across different to guidelines integrated 15 mg/L
dosage regimens-0.5¢,1¢, 1.5 concentration-
g and 2 g (g12 each) with time profiles
assumed MIC values of 0.5-2
me/L
Neely et | - Population pharmacokinetic To access AUC was 50-60% of
al’ analysis with Pmetrics 1.1.1 for | whether calculated from | subjects achieving
(2014) R 3.0.1 assumption of simulated AUC/MIC = 400
- Simulation from 2- C; being a good | concentration- | had C, < 15 mg/L

compartment model with 2
dosage regimens (5000 profiles
each) with Cleg = 100 mL/min
® 1ginfover1lhgl2
5days
® 15g¢infover1hgl2

5days

surrogate for
AUC is true or

not

time profiles

with 1h interval

assuming MIC of 1

me/L
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Table 4 Studies indicating trough concentration as a poor predictor for AUC with

actual patient data

Authors Study Design Objective AUC Method | Results
(year)
Bel Kamel Retrospective To analyze AUC was -Moderate correlation
et al® analysis of TDM data | correlation estimated by between AUC,, and C,
(2017) (n=95, elderly) between C, and Bayesian (R? = 0.51)
PK parameters AUC and assess approach with | -1/3 of patients
estimated by how well AUC BestDose achieved AUC target
Bayesian approach could be predicted with C; < 15 mg/L
with BestDose from C; -C; = 10.8 mg/L was
optimal predictor for
AUC,4 > 400 me.h/L
Hale et al’ Retrospective chart | To find association | AUC obtained 52.4% of patients
(2017) review between via daily dose achieving AUC/MIC

(n=100) with MRSA
infections

94% of isolates had
MIC 1 mg/L

attainment of
AUC/MIC and
different trough
concentration

ranges

divided by Cl
using
published
equation

Cl =(0.79 CrCl
+ 15.4) x0.06

target attainment had

C.< 15 mg/L

7.2 Association between AUC and nephrotoxicity

After finding out trough concentration as a poor surrogate for AUC, several

studies attempted to point out association between AUC and nephrotoxicity by

conducting researches in clinical settings. Zasowski et al’’ found out the risk of

nephrotoxicity increases by 3-4 times with daily AUC value between 600-800 mg.h/L

(Table 5). Finch et al’® and Neely et al®® compared AUC-guided dosing strategy and

trough-based dosing strategy. The former method was superior to the latter in terms

of nephrotoxicity occurrence. Besides, AUC-based monitoring was also related to
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shorter duration of therapy and fewer additional blood samples per patient in the

study by Neely et al*® (Table 6).

Table 5 Summary of the study by Zasowski et al®’

Authors | Study design | Objective AUC Results
(Year) estimation
method

Zasowski | Multi-center, | To observe AUC was - AUC threshold of 600-
et al*’ retrospective | association estimated by 800 me.h/L was
(2017) cohort study | between AUC ' | Bayesian produced by CART

and method with analysis

nephrotoxicity | ADAPT V

- 3-fold increase of
nephrotoxicity in patients
with AUCy445 > 683,
Poisson regression, RR =
2.982 (95%Cl=1.293 to
6.878)

- 4 fold increase of
nephrotoxicity in patients
with AUCyq = 677,
Poisson regressing, RR =
3.734 (95% Cl = 1.646 to
8.470)

CART analysis = classification and regression tree analysis
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Table 6 Literature review of comparing trough-based monitoring and AUC-based

monitoring
Authors Study design Objective Outcomes
(year)
Finch et Single-center, retrospective quasi- To determine Association of AUC-based
al*® experiment incidence of monitoring and lower
(2017) N = 1280 (546 in C; group and 734 nephrotoxicity in | nephrotoxicity
in AUC group) two groups ® by multivariable
regression, Adjusted
OR =0.52
(95%CI=0.34 to 0.80)
p=0.003
® by Cox proportional
hazard regression,
HR=0.53 (95%CI=0.35
to 0.78) p=0.002
Neely et Prospective 3-year study -To compare Lower proportion of patients
al*® (n =252) AUC-guided suffered nephrotoxicity in
(2018) Yearl Year2 Year3 dosing and C, AUC-guided group - 0% in
guided dosing year 2, 2% in year 3 when
N=75 N =88 N =89 .
compared with trough-based
Trough Bayesian Bayesian
_ 0
based AUC AUC To assess group (8%)
monitoring | monitoring monitoring | Nephrotoxicity (Fisher’s exact test, p=0.01)
(from trough | (from between those
samples) optimally mentioned
collected groups
samples)




30

7.3 Association between AUC and other patient outcomes

It has already been known that AUC/MIC has an association with clinical and

bacteriological outcomes in terms of therapeutic success and eradication of

bacteria.®®

Kullar et al® and Holmes et al®® studied the association of AUC/MIC and

patient outcomes. The rate of treatment failure was higher in patients with AUC/MIC

< 421 when compared to those above that cut off value according to the first study.

Also, patients having AUC/MIC < 373 were found to have 12% higher 30-day mortality

in the latter study (Table 7).

Table 7 Literature review on association of AUC and patient outcomes

Authors | Study design Objective AUC method Results
(year)
Kullar et Single-center, To examine AUC = Daily Dose | AUC/MIC cut off = 421
al” retrospective impact of divided by Cl from CART analysis
(2011) analysis, exposure and (from study of
N = 320 with patient their institution) Failure rate in subjects
MRSA infections outcomes below cut off was higher
than those above the
cut off ( 61.2% Vs 48.6%,
p = 0.038)
Holmes Observational To assess AUC=Dose/CL AUC/MIC cut off = 373
et al® study AUC/MIC=400 is from CART analysis
(2013) N= 182 with related to Cl=(0.79CrCl+15.4)
S.aureus improved x0.06 Probability of survival in
bacteremia outcome or not subjects above cut off

was higher than those
below the cut off (84.3%
Vs 71.6%, p=0.043) by
Kaplan-Meier curve and

log-rank test
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Moreover, there was significant association between AUC/MIC and treatment failure,
persistent bacteremia and mortality in the meta-analysis conducted by Prybylski et
al®" which involves 14 cohorts with Staphylococcus aureus bacteremia. Regression
analysis yielded AUC/MIC threshold of 418 mg.h/L. Patients above the threshold
were found to have lower risks of treatment failure (OR=0.4, 95% CI=0.31 to 0.53),
persistent bacteremia (OR=0.41, 95% CI=0.33 to 0.86) and mortality (OR=0.47,
95%Cl=0.33 to 0.65).

Men et al® also conducted a meta-analysis which involves 9 cohorts having
different types of serious infections with MRSA isolates. They evaluated the evidence
of association between AUC/MIC and clinical outcomes in terms of mortality and
treatment failure. Outcomes were compared between patient groups having targeted
AUC/MIC greater than 400 and below. Patients with higher exposure were noticed to
have lower mortality rate (RR=0.47, 95% CI=0.31 to 0.70 p<0.001) and treatment
failure (RR=0.39, 95% Cl=0.28 to 0.55, p=0.001) when compared to those below
AUC/MIC 400.

8. Methods to predict AUC

Linear trapezoidal approach is the one which can predict the most precise
AUC. But, a series of blood samples are needed to obtain AUC with linear trapezoidal
approach and this is the reason which makes it impossible to implement the linear
trapezoidal method in real clinical practice. Alternatively, there are a variety of
methods to estimate AUC with reasonable precision and less bias ranging from
specific AUC calculator created by each institution to commercially and freely
available online software.!* Of these, 2-sample pharmacokinetic equation method

and Bayesian method are the most popular among researchers and clinical settings.

8.1 Simplified pharmacokinetic equation method

This strategy was originally introduced by Begg, Barclay and Duffull and it was

dedicated for aminoglycosides.® Pai et al®® modified this method which was later
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renowned as Pai innovative approach in estimation of AUC for vancomycin. In this
method, 2 serum levels (peak and trough) during steady state are required and they
must also be collected from the same dosing interval so that mono-exponential
pharmacokinetic equation could be applied for mathematical simplicity. There are

two options in Pai innovative method.

As for the first option, elimination rate constant (K.) was first derived from

collected samples as below:

c1
) Ln (a
t
C1 = peak concentration

e

C2 = trough concentration

t = time difference between two concentrations

After this step, K. can be used to obtain theoretical peak and trough
concentrations through backward and forward extrapolations as follow:
Cmax = C1 . ek-(t1=17)

Cmax = theoretical concentration at the end of infusion

t1 = sampling time of C1
tl

infusion time
Cmin = = c2. e~ f(T=t2)

Cmin = theoretical concentration at the end of dosing interval
T = dosing interval

t2 = sampling time for C2

After extrapolations, AUC for one dosing interval can be calculated as follow:

t'x(Cmax+Cmin) . Cmax—Cmin
AUC o1 = > + .
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Finally, AUC,4 can be calculated by multiplying AUC of one dosing interval

with the number of doses during 24-hr period. There was some area which could not

be captured by this method and it was believed to under-predict the true AUC for a

certain extent (figure 3). So, the authors also invented another option.

50

Area not captured by this method

40

1
/
/
7
/
°?§o?’
..0008)

30

Vancomycin Concentration (mg/L)
20

10

Extrapolated concentration
at the end of infusion (Ceoi’)

27

24 25 26

28
Time (hours)

T T T

29 30 31 32

o Expected Profile
® peak

Mono-exponential fit
trough

Figure 3 Area uncaptured by the first option®®

As for the second option, AUC for one dosing interval can be calculated by

using extrapolated concentration at the start of infusion (Csoi) and AUC,, can be

obtained as mentioned above.

Csoi—Cmin
AUC ot = T

Csoi = 1. ek (tD)

In contrast to the first option, AUC,4 appeared to over predict the true AUC

for a slight amount (figure 4).
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Figure 4 A slight overprediction of AUC by the second option®®

Suchartlikitwong et al® applied these two options to determine their
predictability of AUCs for vancomycin in clinical settings and the first option was
found to be superior to the second one. Their study involved 43 pediatric patients
with normal renal function. Vancomycin was given as intermittent infusion over 1-2
hours every 6 hour. For two-sample equation method, peak and trough
concentrations were collected after the fourth dose. Peak concentrations were
collected at 2 hours after the completion of infusion and trough concentrations were
collected at 30 minutes before the subsequent dose. Using the mentioned option 1
and option 2 along with these samples, two AUCs were obtained. Then, they
analyzed the agreement between these two AUCs and their reference AUC by means
of Bland-Altman analysis. Reference AUC was calculated from 1-compartment

intermittent short infusion model as follow:

Total daily dose

AUC24 = CL

_ Dose (mg)(1 — e *tin) g=k(t=tiny)

CL
Ct' tinf- (1 - e‘kT)
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AUC,, = area under the curve over 24 hours (mg.h/L)
CL = clearance (L/h)

K = rate constant (hours™)

ti¢ = infusion time (hours)

C, = concentration at certain time t (mg/L)

t = sampling time (hour)

T = dosing interval (hour)

According to Bland-Altman analysis, AUC obtained from the option 1 showed less
bias than the AUC from the option 2 when comparing to the reference AUC. In other
words, the option 1 provided the bias of 1.3 mg.h/L and the option 2 offered the
bias of -72.1 me.h/L.

8.2 AUC estimation by Bayesian software

AUC estimation by Bayesian approach is based on Bayes’ theorem in which
parameters are included as probability distributions instead of a single value. In this
method, known parameter distribution and variability from previous population
models such as clearance (Cl) or volume of distribution (V) are inputted as Bayesian
priors into the software. Inputted parameters are again re-estimated based on patient
data such as blood samples, dosing history and demographic figures to gain revised
version of parameter distribution (Bayesian conditional posteriors). Unlike simple
pharmacokinetic equation method, clinicians do not need to pick serum levels at the
steady state.!’ Only one random concentration is enough to predict AUC with the aid
of Bayesian software!" ¢’ However, the revised consensus guideline suggested to use
at least one trough sample with the belief that including trough concentration alone
or a pair of peak and trough concentrations offers more precise AUC."

There are a wide range of software available for this method, say, Adult and
Pediatric Kinetics (APK), BestDose, Dose Me, InsightRx, Pmetrics, Precise PK, Rxkinetics,
Target Intervention Software Program and MM-USCPACK. Among the aforementioned
software, only BestDose and Target Intervention Software Program are freely

available. Some published population pharmacokinetic models have already been
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embedded in these software. The level of precision and bias of estimating AUC
between these software may vary due to the different input models and the
samples. Of note, it has been said that clinicians should be aware of the chosen
population model to input as a prior into the software.®® ¢ In other words, patients
to whom dosing individualization wants to be performed should have similar
characteristics with participants in the model. Furthermore, it is still unclear that
AUCs yielded from 1-and 2-compartment models inputted as priors have similar
precision or not. And there are very few studies that compare AUCs from 1-

compartment model and 2-compartment model.

8.3 Comparing Bayesian approach and simplified pharmacokinetic

equation approach

Both Bayesian approach and 2-sample equation method were proved to have
sufficient predictive ability when estimating the true AUC. Alsultan et al” compared
two AUCs derived from Bayesian method using only one trough concentration and 2-
sample based equation method to the reference AUC in pediatric patients who are
1-12 years old. First, 1-compartment model was built from 76 patients with the use
of Monolix 4.3. Using that model, concentration-time profiles for 500 virtual patients
were created via simulation and the reference AUCs were calculated from those
profiles with trapezoidal rule. Using trough sample collected at 5.5 h (Css), patient
data and their model parameters as Bayesian priors, clearance (CL) was revised

(Bayesian posterior). And revised CL was used to obtain Bayesian AUC as follow.

total dose in 24 hours

AUCy_»4 =
0-24 revised CL

In 2-sample equation method, peak concentrations were obtained at 1-hour after the
end of infusion and trough concentrations were collected at 30 minutes before fifth
dose. AUCs were calculated according to equations by Pai innovative method. The

comparisons of AUCs were conducted in terms of coefficient of determination (R?),
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bias, and precision. Bias and precision were calculated according to the following

equations.

% Bias =

Y.(predicted AUC — observed AUC) ( 100 )
N mean AUC

Y (predicted AUC — observed AUC)? ( 100 )

% Precision = \/ N mean AUC

Predicted AUC = AUCs from Bayesian approach and 2-sample equation approach
were

Observed AUC = Reference AUC

N = number of observed AUCs

Mean AUC = the average value of predicted AUC and observed AUC

Both AUCs from Bayesian approach and 2-sample equation method showed strong
correlations with the reference AUC having R? values of 0.93 and 0.92 respectively.
AUCs obtained by Bayesian approach showed bias of -3.19% and precision of 9.6%.
AUCs from 2-sample equation method offered bias of 0.71% and precision of 10.5%.

Turner et al®®

also compared AUCs from Bayesian approach and simplified
pharmacokinetic equation approach to the reference AUC using adult data. The
study involved rich data from previously published study with 19 critically ill
participants. The original dataset consisted roughly of 6 samples per patient -
collected during infusion, at the end of infusion, 1 hour post infusion, 2 hours post
infusion, 5 hours post infusion and immediately before the next dose. Reference AUC
(AUC,ep) was obtained from that full data set using linear-log trapezoidal formula.
They also examined the variability of AUCs between five Bayesian software programs
— Adult and Pediatric Kinetics (APK), BestDose, DoseMe, InsightRx and Precise PK.
Researchers assessed Bayesian AUCs from different sampling designs. In this case, five

subsets of dataset with different sampling designs were created. Two subsets

included one sample per patient - trough only subset giving AUC: and another
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subset used samples at 5-hour post infusion level giving AUCs,. Three remaining

subsets include two samples per patient — trough and peak from 1-hour post

infusion (AUCr 11,), trough and peak from 2-hour post infusion (AUCr ), trough and the

sample collected 2.8 hours before the trough level (AUCq o). Therefore, each

Bayesian software program vyielded five Bayesian AUCs with different sampling

designs. AUCt and AUCs;, provided similar estimates in all programs except in APK.

Therefore, each of remaining Bayesian AUCs except AUCs, was compared to AUC, in

terms of bias and accuracy (table 8 and 9). Bias was calculated by the following

equation in terms of percentage.

% Bias =

IAUCpred == AUCrefI

AUCref

x 100

AUC,q = AUC predicted from each Bayesian software

AUC,.f = reference AUC calculated from full dataset using log-linear trapezoidal rule

Table 8 Bias of Bayesian AUCs when compared to the reference AUC in the

study by Turner et al®

Software AUC, AUCq 3, AUC 5, AUCT ext
APK 13.1(7.4-189) |- - -

BestDose | 11.2(5.1-183) |8.1(3.6-183) |88(44-116) | 10.6(5.7-20.2)
DoseMe 21.2(16.3-24.6) | 8.4 (4.6 - 13.2) |133(6.6 -16.1) | 16.8(13.8-21.0)
InsightRx 16.4 (11.8 - 22.6) | 12.2 (8.0 - 16.9) | 12.6 (9.1 - 14.5) | 13.9 (9.5 - 22.1)
Precise PK | 5.1 (3.0 - 11.2) 89(1.8-122) [47(29-128) |52(3.3-8.9)

Biases are described as median percentage (25" percentile to 75" percentile). From APK, AUCs

estimated with 2 levels were assumed unreliable by researchers due to errors during analysis.
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Accuracy was calculated in terms of the median ratio of predicted AUC to the
reference AUC (AUCpeq /AUC). The ratio value greater than 1 means overestimation

and less than 1 means underestimation.

Table 9 Accuracy of Bayesian AUCs when compared to the reference AUC in the

study by Turner et al®

Software AUC/AUC,¢ | AUGCT 11/AUC, AUGCT ,/AUC, ¢ AUCT pext/AUC ¢
0.87
APK - - -
(0.81 - 0.94)
1.01 1.03 1.02 1.01
BestDose
(0.84 - 1.08) (0.86 — 1.06) (0.91 - 1.06) (0.82 - 1.06)
0.79 0.92 0.87 0.83
DoseMe
(0.75 - 0.84) (0.87 = 0.97) (0.84 - 0.93) (0.79 - 0.86)
0.84 0.88 0.87 0.86
InsightRx
(0.77 - 0.88) (0.83 - 0.92) (0.86 — 0.91) (0.78 - 0.91)
1.03 1.07 1.04 1.03
Precise PK
(0.92 - 1.05) (1.01-1.12) (1.01 -1.12) (0.95 - 1.06)

Date were described as median (25" percentile to 75" percentile). From APK, AUCs estimated

with 2 levels were assumed unreliable by researchers due to errors during analysis.

Looking above AUCs estimated with five Bayesian software using only one
trough sample, bias ranges from 5.1 to 21.2% and accuracy ranges from 0.79 to 1.03.

Among these software, Precise PK showed the least bias of 5.1%.

They also predicted AUCs by means of 2-sample pharmacokinetic equations
based method with three sampling designs - trough and peak from 1-hour post
infusion (AUCr1,), trough and peak from 2-hour post infusion (AUCr ), trough and the
sample collected 2.8 hours before the trough level (AUCr ..). Bias and accuracy of

AUCs estimated by PK equation method in comparison of AUC, are mentioned in
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table 10. This PK equations also offered similar estimates of AUCs when compared to

AUC estimates from Bayesian method.

Table 10 Bias and accuracy of AUCs from PK equations when compared to the

reference AUC in the study by Turner et al®®

% Bias
PK equations AUCr 15 AUCr o0 AUCr ot
Equation option 1 | 6.5 (2.0 - 12.2) 71(333-11.9) 15.1 (10.8 - 19.1)
Equation option 2 | 11.0 (3.9 - 14.4) 55(1.3-10.1) 11.3 (7.6 - 15.3)
Accuracy
PK equations AUCT 1n/AUC, ¢ AUCT on/AUC ¢ AUCT jext/AUC ¢

Equation option 1

1.0 (0.93 - 1.05)

0.94 (0.88 - 0.97)

0.88 (0.81 - 0.93)

Equation option 2

1.09 (0.96 - 1.14)

0.98 (0.92 - 1.01)

0.89 (0.85 - 0.97)

Date were described as median (25" percentile to 75" percentile).

All in all, both Bayesian and PK equation methods were assumed as reliable

approaches to predict AUC according recent studies.”” °® ™ Bayesian method is

preferred where technical aid and experts are readily available when compared to 2-

sample equation approach due to some superiorities over the later metho

d 10, 11

Benefits and drawbacks of these two methods are summarized in table 11.
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Table 11 Advantages and disadvantages of simplified pharmacokinetic equation

method and Bayesian approach for prediction of AUC

Method

Advantages

Disadvantages

Simplified

pharmacokinetic

Easy to use by inputting formula

into excel spreadsheet

-More levels (peak and

trough) are required when

equation compared with Bayesian
method approach
-Not adaptive to physiologic
changes as samples were
collected from one dosing
interval at steady state
Bayesian -Require only one sample regardless | -Extensive training is required
approach of sampling time (might be to use complicated software

advantageous especially for
neonates, pediatrics and ICU
patients)

-Dose optimizing could be
performed at early period because
of no requirement to wait until
steady state

-Adaptive to physiologic changes as
covariates like creatinine clearance
(CrCl) representing patient’s renal
function can be inputted into

software

-Some software are not freely

available
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9. Comparison of AUCs from rich-data and sparse-data models

Neely et al’ tried to compare AUCs from 2-compartment models using
trough-only and peak-trough samples (figure 5). They extracted data from three
previous studies with rich samples and built 2-compartment models by Bayesian
estimation with the use of Pmetrics 1.1.1 for R 3.0.1. Their model gave parameter
distributions (Bayesian posteriors) of linear elimination rate constant (K.), volume of
central compartment (V,), transfer rate constants between compartments- K, (from
central to peripheral) and K, (from peripheral to central). From these parameter
distributions, concentration-time profiles with 12-minute intervals were created for
each subject. Reference AUC (AUCq,) was calculated from these full concentration-

time profiles by using trapezoidal method.

Then, only trough concentrations were remained in the data set by setting
other concentrations as missing value which is zero and built a 2-compartment
model from this data depleted dataset. Concentration near 1 hr before next dose

was assumed as trough concentration. AUC was calculated as before (AUCy).

Another data depleted version was also created by removing non-trough and
non-peak concentrations from the full dataset. Concentrations around 1 hr post
infusion were remained as peak concentrations. Another 2-compartment model was
built from this dataset containing only peak and trough concentrations. AUC was

estimated as above (AUCy).

AUC; and AUCpr were compared to the reference AUC by Wilcoxon signed-
rank test and linear regression. AUC; was found to underestimate the true AUC by
23% (95% Cl=11 to 33%, p=0.0001) and AUCst also underestimated the true AUC by
149% (95% Cl=7 to 19%, p<0.0001).

This points out that models constructed from trough-only data could under
estimated the true AUC with more biased than AUC from peak-trough sampled

models.
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N = 15 with 124 samples
(6 samples per subject on
average)

N = 22 with 357 samples
(14 samples per subject
on average)

N = 10 with 88 samples
(9 samples per subject
on average)

Model with full
data

v

AUCsy

Model with only
trough data

A 4

AUC;

Model with peak
and trough data

AUCpr

Figure 5 Brief illustration of AUCs derivation in the study by Neely et al’
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10. Comparisons of AUCs from non-compartmental and compartmental models

The study conducted by Shingde et al®

was the first study attempting to
compare single-dose AUCs from non-compartmental models and 1-, 2- and 3-
compartment models. They combined extensively sampled data from three different
studies and analyzed the data with the use of PK solver 2.0 which is an add-in
software for Microsoft Excel. Model fits were based on Akaike information criterion
(AIC) and visual inspection of residual plots for 1- and 2-compartment models. Due
to incomplete convergence, 3-compartment model was excluded from the study.
Therefore, AUCs from non-compartment model (AUC,), 1-compartment model

(AUC; ), and 2-compartment model (AUC,¢y7) were compared by setting AUC ey as

a gold-standard (reference AUC).

As for the outcomes from statistic perspective, AUC;cyr and AUCycyr were
inspected to be significantly different while AUCy was similar to AUC,cyr. There was a
slight underestimation of AUC from 1-compartment model when compared to both

AUC,cur and AUC (8.3% and 7.2%, respectively).

From clinical perspective, these differences were considered to be
insignificant when using AUC values of 400-600 mg.h/L as the therapeutic target and
700 meg.h/L as the threshold for nephrotoxicity. To be clear, the authors accepted

the difference between AUCs up to 20% according to the following equation.

700 — 600

X100 =17% = 209
600 00 %o 0%

For these reasons, the investigators suggested that 1-compartment model can
sufficiently predict the true AUC with a negligible imprecision. The summary of this

study is described in table 12.



Table 12 Summary of the study by Shingde et al®
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Objective Study design AUC estimation Results showing AUC
methods values (mean % SD)
and their difference
(mg.h/L)
To compare single- | Retrospective For AUC,, data were AUC, = 180 + 86

dose AUC,.., from
1-, 2- and 3-
compartment
models and non-
compartment

models

pharmacokinetic data
analysis from combined
data of 3 different studies
(N=30)

n, = 10 (21 samples per
patient)

n, = 11 (5 samples per
patient)

ns; = 10 (8 samples per

patient)

AUCs were compared by 1-
way repeated measures
analysis of variance and
post-hoc analysis (Tukey
contrasts with Bonferroni
correction) with the use of

R 3.5.0.

fitted by non-
compartmental
infusion model and
AUC, was calculate by
linear ascending, log-
linear descending

trapezoidal approach

For compartmental
AUCs, data were fitted
by compartmental
modelling
Concentration-time
profiles and AUCs were
calculated by using
equivalent standard PK

equations.

AUClCMT = 167 + 79
AUCZCMT = 183 + 88

AUCZCMT - AUClCMT = 151
(p=54x%x10"

AUCZCMT - AUCN = 2].
(p =0.85)

AUCN - AUClCMT = 130
(p=13x10"
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Chapter llI

Methodology

1. Study Design

This is a pharmacokinetic study employing simulated profiles conducted using
a previously published robust model. The overview of the study design is illustrated

in figure 6.

2. Original Study

Broeker et al'*

evaluated the predictive performance of 31 vancomycin
models by encoding and processing all models in NONMEM 7.4. The 2-compartment
model by Goti et al'® showed the best predictive performance and provided the
most precise AUC. Furthermore, it is believed to offer a good generalizability as it was
developed from the largest sample size composed of 1812 adult patients with 2765
samples. Also, they found creatinine clearance and body weight as significant
covariates, which are the common factors used for dosing purposes in clinical

l16

practice. For all these reasons, the model by Goti et al ® was used in the simulation

process.

Their model was parameterized by clearance (Cl), central volume of
distribution (V1), peripheral volume of distribution (V2) and inter-compartmental
clearance (Q). Inter-individual variability (IIV) was described by exponential function
and residual error model was described by a combined additive and proportional
error model. Creatinine clearance (CrCL) and the presence of dialysis (DIAL) were
found to be significant covariates for Cl. V. was influenced by body weight (WT) and
the presence of dialysis. The final model is as follow:

TVCL (Lh™Y) = 4.5 x (%)0'8 x ;P

TVV1 (L) = 58.4 X (%) x 9Pl
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TVCL = typical value of clearance
TWV1 = typical value of central volume of distribution
CrCL = creatinine clearance

DIAL = dialysis status

3. Data simulation

Full concentration-time profiles with 15 min interval for 100 patients were
created by simulation with the use of NONMEM 7.3. Median covariate values (Wt =
79 kg and CLCR = 62 ml/min) were inserted to the final model equation by Goti et
al'® assuming there is no dialysis in virtual population. Obtaining parameters used in
the simulation process are shown in table 13. Dosing regimen of 1000 mg given 12
hourly with 2 hour infusion time was used in NONMEM input dataset. As for the
residual error model, the original error components were manipulated to an
acceptable level — proportional component to 10% and additive component to the
standard deviation (SD) of 0.5 to avoid erratic-looking concentration-time profiles
from which the reference AUC was calculated. The NONMEM control file for the

simulation is mentioned in appendix.



Table 13 Parameter estimates used in the simulation process
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Parameters Values
CL(81) inL/h 2.65
V1(0,) inL 65.99
V2inL 38.4
QinL/h 6.5

IIV on CL in variance (%CV)

0.158 (39.8%)

IIV on V1 in variance (%CV)

0.666 (81.6%)

IV on V2 in variance (%CV)

0.326 (57.1%)

Proportional error component in variance (%CV)

0.01 (10%)

Additive error component in variance (SD)

0.25(0.5)

CL - clearance, V1 - central volume of distribution, V2 — peripheral volume of distribution, Q —

inter-compartmental clearance, IV — inter-individual clearance.
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Published 2-compartment

model

4

Concentration-time

profiles with 15-minute | Reference AUC

intervals for 100 patients

Trough-only dataset Peak-trough dataset
1-compartment 2-compartment 1-compartment 2-compartment
model model model model
AUClCmtT AUCzcmtT AUClCthT AUCZCthT

Figure 6 Overview of the study design
AUC it and AUC,cyer: AUCs from 1- and 2-compartment models using trough-only
dataset, AUC; et @and AUC,cpr: AUCs from 1- and 2-compartment models using

peak-trough dataset
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4. Estimation of the reference AUC

From simulated full concentration-time profiles, three reference AUCs — AUC,,.
20, AUC,4.45 and average daily AUC within 48 hours (AUC,,,) were calculated by means

of linear trapezoidal rule. The following equation was used in this case.
1
AUC = 5 (€1 +C)(t, — t1)

C;and G, are concentrations within a given time interval of t; and t,.

5. Creating data-depleted versions of dataset

Two versions of depleted dataset such as trough-only and peak-trough
datasets were created by simulation with NONMEM® 7.3 and PDx-Pop® 5.2 (ICON
Development Solutions, Ellicott city, MD, USA). Each dataset includes 100 patients.
Trough-only dataset contains one sample per patient. Peak-trough dataset includes
two samples per patient. Concentrations at 30 minutes before 4" dose (Css.5) from
the previous simulated full profiles were used as trough concentrations and
concentrations obtained at 1 hour post infusion (Cy) were used as peak
concentrations. Other remaining concentrations were removed from the simulated

profiles and set up as missing value that is zero.

6. Population Model Building

Both 1- and 2-compartment models were built from each of two depleted
datasets, thereby, four population models were obtained. Models were developed
by using non-linear mixed effect modelling software, NONMEM 7.3® and PDx pop
5.2® (ICON Development Solutions, Ellicott city, MD, USA). First-order conditional
estimation method with interaction (FOCE-I) was used to estimate model parameters.
ADVAN1 TRANS2 were used for 1-compartment modeling and ADVAN3 TRANS4 were
used for 2-compartment modeling. Inter-individual variability (IIV) was described by
exponential function. Residual variability was tested with additive, proportional,

combined additive and proportional error models.
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In- modeling from trough-only dataset, only clearance and its variability were
estimated and other parameters were fixed to the values in literature. In that case,
the literature search was performed via PubMed using key words - ‘vancomycin’ and
‘population” and ‘pharmacokinetics’. The summary of 15 studies (1-compartment
models) and 19 studies (2-compartment models) in adults was mentioned in

literature review section (tables 1 and 2).2%°?

. Number of participants, patient
characteristics, covariates and physiological plausibility of the parameters were
mainly considered for assigning reasonable volume parameters into the models.
Studies with less than 100 patients were excluded. As body weight was found to
have an impact on volume of distribution in most studies, those with participants
having similar weight as in our virtual population were mainly focused. As for the 1-

1% and

compartment model, three models from studies by Staatz et al?!, Revilla et a
Roberts et al** were selected. Likewise, studies by Thomson et al*®® and Sanchez et
al* were chosen for V1, V2 and Q in 2-compartment model. And then, PK
parameters to be fixed were calculated by standardizing these models with median

(6. Residual errors

covariate values of the patient population in the study by Goti et a
were also fixed and described as constant proportional error when modeling from

trough-only datasets.

The most appropriate model was chosen according to physiological
plausibility, precision of parameter estimates and objective function values (OFV).
Model evaluation was performed by using goodness-of-fit plots: observed versus
population and individual predicted concentrations (DV Vs PRED, DV Vs IPRED),
conditional weighted residuals versus population predictions and time (CWRES Vs
PRED, CWRES Vs TIME). Condition numbers were also checked to test the model
stability. Bootstrap procedure with 1000 replications was performed for model

validation.
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7. Simulation and obtaining AUCs from four population models

Final model parameter estimates with their variability from each model were
used to create concentration-time profiles until 48 hour for 100 patients per model.

The same seed was used to generate concentrations from all four models.

8. Comparison of AUCs from four models

The difference between AUCs from 1- and 2-compartment models was
examined in terms of both statistical and clinical significance. As for statistical
comparison, one-way repeated measure analysis of variance (ANOVA) was used with
Bonferroni post hoc analysis. The difference around 17% was accepted as clinically
insignificant level according to the study by Shingde et al."” By pairwise comparison,
AUCs from each of four models were also compared to the AUC, to assess the AUC
predictability between models from trough-only data and models from peak-trough

data.
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Chapter IV

Results

1. Simulated data

Full concentration-time profiles with 15-min interval for 100 patients were
obtained through simulation from the model by Goti et al.’® For trough-only dataset,
the average trough concentration was 14.21 mg/L ranging from 3.56 mg/L to 30.86
me/L. For peak-trough dataset, the average peak concentration was 23.3 mg/L with
minimal concentration of 3.56 mg/L and the maximal concentration of 59.83 mg/L.
According to the original study where concentrations below 5 mg/L were regarded as
below limit of quantification (BQL) data, there was one point which fell below the
limit of quantification in both depleted datasets. In terms of percentage, this BQL
data point accounted for 1% in trough-only dataset and 0.5% for peak-trough

dataset.

2. Modeling

As for 1-compartment model from peak-trough dataset, both clearance (Cl)
and volume of distribution (V4) along with their variabilities could be estimated with
reliable precision. For residual variability, proportional error model best described the
data with lowest objective function value (OFV) having 919.89 when compared to
additive error with OFV 926.25. Both of the error models gave similar PK parameter
values. The model did not converge successfully when using the combined error
model. When dealing with trough-only dataset, fixing V4 from the model by Staatz et

al?! showed the lowest OFV and condition number (Table 14).
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Table 14 Comparison of fixed volume of distribution parameters for 1-

compartment model from trough-only data

Condition Parameter
Study Patient population OFV
number estimate (%RSE)
Staatz et | N = 102 (cardiothoracic 442 .51 25 Cl=38L/h
al?! surgery) (5.5%)
(2005) Age (years) = 66 (17-87)

Vg = 90.8 L (fixed)
Wt (kg) = 74 (44-110)

CLCR (mU/min) = 60 (12-

172)
Revilla et | N = 191 (ICU) 594.23 10 Cl=1.58L/h
al# Age (years) = 61.1 + 16.3 (19.1%)
(2010) Wt (kg) = 73 + 13.3

Vy = 160 L (fixed)
CLCR (M/min) = 74.7 +

58
Roberts et | N = 191 (septic, critically | 462.93 4.6 Cl=313L/h
al* i) (8.53%)
(2011) Age (years) = 58.1 + 14.8

Vg = 119 L (fixed)
Wt (kg) = 74.8 = 15.8

CLCR (mU/min/1.73m? =
90.7 + 60.4

Wt weight, CLCR creatinine clearance, ICU intensive care unit, OFV objective function value, %RSE
percent relative standard error, Cl clearance, V4 volume of distribution. Median values were

shown with range and mean values were shown with + SD.

As for 2-compartment model from peak-trough dataset, all fixed-effect
parameters - clearance (Cl), central volume of distribution (V1), peripheral volume of

distribution (V2) and inter-compartmental clearance (Q) could be estimated.
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Regarding random effect parameters, inter-individual variabilities on V2 and Q could
not be estimated. Proportional error model best described the data with OFV 904.66
when compared to additive error with OFV 909.46. Combined error model could not
be run successfully. As for trough-only model, the most appropriate model was
obtained by fixing with PK parameters from Sanchez et al*! with the smallest OFV

and conditional number (Table 15).

Table 15 Comparison of fixed pharmacokinetic parameters for 2-compartment

model from trough-only data

Condition Parameter
Study Patient population OFV
number | estimate (%RSE)
Thomson N = 398 (patients on 441.89 2.3 Cl=282L/h
et al*® TDM) (5.46%)
(2009) Age (years) = 66 (16-97) V; = 53.3 L (fixed)
Wt (kg) = 72 (40-159) V, = 57.8 L (fixed)
CLCR (mU/min) = 64 (12- Q=2281L/h
216) (fixed)
Sanchez et | N = 141 (hospitalized 436.68 1.2 Cl=348L/h
al™! patients) (3.71%)
(2010) Age (years) = 55 + 14.58 V, = 22.4 L (fixed)
Wt (kg) = 73.2 + 17.48 V, = 34.3 L (fixed)
Scr (mg/dl) = 1.05 + 0.65 Q=877 L/h
CLCR (mY/min) = 82.3 (fixed)

TDM therapeutic drug monitoring, Wt weight, Scr serum creatinine, CLCR creatinine clearance,
OFV objective function value, %RSE % relative standard error, Cl clearance, V, and V, central and
peripheral volumes of distribution respectively, Q inter-compartmental clearance. Median values

were shown with range and mean values were shown with + SD.
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3. Model evaluation

Goodness-of-fit plots showed acceptable models. Shrinkage was found when
looking at dependent variable versus population predictions plots (DV Vs PRED) and
dependent variable versus individual predictions plots (DV Vs IPRED). There was a
symmetric distribution of points at each side of the identity line in each plot.
Observed concentration points fell within + 3 SDs in conditional weighted residuals
versus population predictions plots (CWRES Vs PRED) and in conditional weighted
residuals versus time plots (CWRES Vs TIME). Goodness-of-fit plots for all models
from the depleted datasets are illustrated in Figure 7, 8, 9 and 10.
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identity line.
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Model validation by bootstrap procedures also provided good results. Typical

parameter estimates from all models fell within 95% confidence intervals of

bootstrap estimates (Table 16 and 17). Out of 1000 replications for each model,

success rate was over 95% in all fixed and random effect parameter estimates.

Table 16 Summary of 1-compartment models with bootstrap results

1000 Bootstraps

Parameters

Values (%RSE) | Median 95% ClI
Model from peak-trough dataset
Cl(L/h) 3.66 (4.43) 3.63 3.22-395
Vg (L) 82.2 (7.02) 83.43 71.9-96.7
IV on Clin %CV 39.7 (16.4) 37.84 20.9 - 45.60
IV on Vq in %CV 66.9 (12.9) 67.29 58.48 - 75.76
Residual variability (proportional,
%CV) 9.75 (38.0) 11 53 -18.28
Model from trough-only dataset
Cl(L/h) 3.80 (5.50) 3.798 339-42
Vg (L) 90.8 (fixed) - -
IV on Clin %CV 51.6% (17.6%) | 51.69 43.24 - 60.75

Residual variability (proportional,

%CV)

9.75 (fixed)

Cl; clearance, Vg; volume of distribution, IIV; inter-individual variability, %CV; percent coefficient of

variation, %RSE; percent relative standard error
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Table 17 Summary of 2-compartment models with bootstrap results

1000 Bootstraps

Parameters

Values (%RSE) | Median 95% ClI
Model from peak-trough dataset
Cl(L/h) 2.20 (15.2) 2.25 154 -3
Vi (L) 65.20 (23.6) 83.43 51.5-80.9
Vs, (L) 63 (16.7%) 60.15 34.3 - 86.6
Q (L/h) 5.87 (47.2%) 5.95 3.41 -8.61
IV on Clin %CV 63.5 (26.6%) 59.01 32.25-79.75
IV .on V1 in %CV 84.5 (37.3%) 86.52 70.71 - 104.88
Residual variability (proportional,
V) 10.9 (42.6%) | 12.08 6 - 20.69
Model from trough-only dataset
Cl(L/h) 3.48 (3.71%) 3.47 3.22-372
Vi (L) 22.4 (fixed) : .
Vs, (L) 34.3 (fixed) - -
Q (L/h) 8.77 (fixed) - -
IV on Clin %CV 35.6% (14.7%) | 35.59 30.61 - 40.74

Residual variability (proportional,

%CV)

10.9 (fixed)

Cl; clearance, V1; central volume of distribution, V2; peripheral volume of distribution, Q; inter-

compartmental clearance, IIV; inter-individual variability, %CV; percent coefficient of variation,

%RSE; percent relative standard error
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4. Areas under the curve (AUC)

Predicted vancomycin exposures from three time periods (0 to 24 hr, 24 to 48

hr and average exposure within 48 hrs) are mentioned in table 18.

Table 18 Reference AUCs and AUCs from the models with depleted datasets

Models

AUCo.24

(mean + SD)

AUC24.48

(mean + SD)

AUC,,

(mean % SD)

Reference AUC

283.14 £ 124.69

470.63 + 176.28

376.88 + 149.24

2-compartment model

(peak-trough)

267.05 + 104.88

458.72 + 171.43

362.89 + 136.62

2-compartment model

(trough-only)

379.92 + 62.59

559.06 + 140.28

469.49 + 101.28

1-compartment model

(peak-trough)

290.84 + 125.17

450.02 + 163.33

370.43 + 140.09

1-compartment model

(trough-only)

265.51 + 40.23

459.78 + 124.64

362.64 + 82.3

AUC 5, exposure between the time period of 0 to 24 hour, AUC,4.45 exposure between the time

period of 24 to 48 hour, AUC,,, average 24-hour exposure within first 48 hours.




64

4.1 Comparison of AUCs

When conducting one-way repeated measure analysis of variance (ANOVA),
the Mauchly’s test of sphericity was violated. Therefore, degrees of freedom were
adjusted using Greenhouse-Geisser correction. ANOVA and the pairwise comparisons
with the post-hoc analysis using Bonferroni correction showed there were significant

differences within pairs of mean AUCs (p < 0.05).

When comparing AUCs from each of models with the depleted dateset to the
AUC., AUCs from 1-compartment models from both depleted datasets were not
statistically significant from the AUC.. Two-compartment model with peak-trough
data also offered similar AUCs with the AUCs . However, AUCs from 2-compartment
model with trough-only dataset showed significant differences (p < 0.05) when
compared to the AUC. — 25.16% for AUCq,q, 15.92% for AUC,q45 and 19.45% for
AUG,, (table 19). In other words, AUCs from 2-compartment model with trough-only
data were incomparable to the remaining AUCs (figure 11). Besides, there were
statistically significant differences between AUCs from 1- and 2-compartment models

with both versions of depleted datasets (table 20).
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Figure 11 Comparison of AUCs from 1- and 2-compartment models and the

reference AUCs

The small circles are means and the bars show standard deviations. Ref reference model, 2cmtPT
2-compartment model from peak-trough dataset, 2cmtT 2-compartment model from trough-only
dataset, 1cmtPT 1-compartment model from peak-trough dataset, 1cmtT 1-compartment model

from trough-only dataset.
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Table 19 Mean difference (%) of the reference AUCs and AUCs from the

models with depleted datasets

Models

Mean difference

for AUCO_24

Mean difference

for AUC24_48

Mean difference

for AUGC,,,

2-compartment model

(peak-trough)

5.68% (NS)

2.53% (NS)

3.71% (NS)

2-compartment model

(trough-only)

25.16% *
(p < 0.05)

15.92% *
(p < 0.05)

19.45% *
(p < 0.05)

1-compartment model

(peak-trough)

2.65% (NS)

4.38% (NS)

1.719% (NS)

1-compartment model

(trough-only)

6.23% (NS)

2.31% (NS)

3.78% (NS)

AUC 5, exposure between the time period of 0 to 24 hour, AUC,4.45 exposure between the time

period of 24 to 48 hour, AUC,,, average 24-hour exposure within first 48 hours.

* significant difference from the reference AUC (p < 0.05), NS - not significant.
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Table 20 Comparison of AUCs between 1- and 2-compartment models from the

depleted datasets

Mean
Mean difference P value
difference
(%)
(mg.h/L)

Peak-trough models
AUC,emt - AUC et -23.79 8.09 < 0.0005
(0to24)
AUC et - AUC e 8.7 1.9 = 0.037
(24t048)
AUC,en - AUC ¢t -7.54 2.04 < 0.0005
(average within 48
hours)
Trough-only models
AUC,emt - AUC et 114.41 29.75 < 0.0005
(0to24)
AUCocrnt - AUC ¢t 99.28 17.87 < 0.0005
(24t048)
AUC,cn - AUC ¢t 106.84 22.44 < 0.0005
(average within 48
hours)

AUC, .« — AUC from 1-compartment model, AUC,: — AUC from 2-compartment model
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Chapter V

Discussion

Until recent years, trough concentration (C;) was mostly used as TDM
predictor in vancomycin therapeutic monitoring with the belief of having correlation
with AUC, the therapeutic indicator for efficacy and toxicity. However, the updated
consensus guideline (2020) recommended to apply AUC-guided monitoring system in
MRSA infections with pathogens having MIC < 1 after studies pointed out therapeutic
discordance between C;and AUC.'® With the emergence of Bayesian dose-optimizing
software like BestDose, DoseMe, Adult and Pediatric Kinetic (APK), InsightRx and
Precise PK, AUC can be estimated using existing population models and patient
data.’® ®®As vancomycin pharmacokinetics has mostly been described by both 1- and
2-compartment models using TDM data, we examined whether the difference
between AUCs from 1- and 2-compartment models are acceptable from clinical
point of view. This study was pharmacokinetic data analysis using simulated
concentrations from a previously published model. We also examined whether
models with trough-only data could adequately estimate the true AUC when

compared to models with peak-trough data.

According to findings from our study, there was a statistically significant
difference between AUCs from 1- and 2-compartment models in both cases of using
peak-trough data and using trough-only data. Using peak-trough dataset, the
differences between AUCs from 1- and 2-compartment models were 8.09% for AUC,.
2, 1.9% for AUC,448 and 2.04% for average AUC,, over 48-hour period. In spite of
having significant differences from statistical analysis, the extent of difference was
small with respective to clinical perspective as the percentages were less than 17%
which was our assigned cut-off level for clinical significance. Shindge et al **
compared single-dose AUCs between 1- and 2—-compartment models using rich data.

Their mean (+SD) AUCs were 183 + 88 mg.h/L for 2-compartment model and 167 +
79 mg.h/L for 1-compartment model. AUC,.+ was higher than AUC, by 8.3% (p <
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0.05). In our models using peak-trough data, AUC,.+ was higher than AUC; . by 1.9%
for AUCyq.45 Whereas AUC, ., was higher than AUC,,: by 8.09% for AUC,.,4 and 2.04%
for AUC,e. Our findings on the difference between AUCs were consistent with the
findings by Shindge et al."> In both studies, the difference of AUCs between 1- and 2-
compartment models was small with respect to dose adjustment (< 17%). Hence, it
can be assumed that 1-compartment model using either rich or sparse data (in this
case, one peak sample and one trough sample) could adequately predict AUC when

compared to 2-compartment model.

Broeker et al'* predicted AUCy .. from the model by Goti et al'® with two
different methods - prior method and Bayesian method. In prior method, their
patient covariate values were inserted into the final model equations of the study by
Goti et al’® and AUC was derived from these PK parameters. In Bayesian method,
observed concentrations from their patients were also used along with the model by
Goti et al'® as Bayesian priors. The former method provided median AUC (10™ - 90"
percentiles) of 265mg.h/L (180 - 407) and the later method provided median AUC
(10™ — 90™ percentiles) of 267 mg.h/L (174 - 415). Our study offered the reference
AUCq.,4 of 283.14 + 124.9 meg.h/L in terms of mean + SD and 261.15 mg.h/L (132.64 —
447.16) in terms of median (10" = 90" percentiles). It appears that our finding for the

reference AUCg,q from the model by Goti et al'®

is consistent with their findings.
According to our findings, we would like to suggest that AUC,44 could be the
optimal predictor for therapeutic drug monitoring practice as recommended AUC

target (> 400 mg.h/L) was achieved only within time period of 24-48hr. (Table 2).

In the study by Neely et al’, AUCs from models with trough-only data and
peak-trough data (AUC; and AUCpy) were compared to the true AUC (AUC,) from the
model with rich data in terms of 2-compartment modeling. In their study, AUCs were
compared in the form of the average daily AUC (AUC,,) between the time period of 0
to 120 hours. Their median reference AUC (range) was 445.2 (28.3 to 7172) me.h/L.
Our reference average daily AUC between 0-48 hour in terms of mean + SD was

376.88 + 149.24 mg.h/L and 363.95 (134.63 to 819.14) mg.h/L in terms of median
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(range). The lower value of our reference average daily AUC (0-48 hour) could be
explained by the shorter time interval used for calculating AUC from simulated
concentrations. It seems that higher AUC could be expected with the longer time
interval in their study. Furthermore, cumulative exposure should also be considered
with more number of doses until 120 hours after the first dose. We decided to
estimate AUCs over the time interval of 0-48 hour since the reviewed consensus
guideline suggested to use AUC obtained within first 48 hours for dosing purposes. In
their study, both peak-trough model and trough-only model underestimated the
reference AUC by 14% and 23% respectively. Also, our 2-compartment model from
trough-only data offered AUCs which are considerably different from the AUC.s -
15.92 to 25.16% for for AUCs of three periods whereas 2-compartment model using

peak-trough data provided similar AUC estimates with the reference AUCs.

AUCs derived from 1-compartment models (both trough-only and peak-
trough datasets) did not show significant differences from the reference AUCs. From
these findings, we could assume that 1-compartment model constructed from
trough-only data might be dependable to predict AUC when rich-data population

models are scarce to be used as Bayesian priors for intended population.

In our study, we decided to estimate only clearance and its inter-individual
variability in modeling from trough-only data according to the following reasons. First,
it is likely that volume parameter estimates do not yield good precision when
modeling from trough-only data as the trough concentrations are more related to
elimination process. Second, we fixed residual error (RE) due to the presence
confounding effect between IV and RE. "' Besides, PK parameters seem to play more

important role than residual error to predict AUC by Bayesian approach.

In the study by Goti et al'®, concentrations below 5 mg/L were regarded as
below limit of quantification (BQL) data and treated by M3 method and by exclusion
from analysis process. In our simulated data, we found only one concentration point
having less than 5mg/L and we did not apply any special method to handle this BOL
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data for the following reasons. Keizer et al'® showed that there is no significant
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difference in model performance between BQL handling methods when the
percentage of BQL is less than 5%. In addition, they found that model performance
was superior when incorporating BOL data in analysis process when compared to the
likelihood methods. Therefore, we decided to include this BQL data in our PK

analysis.

We decided to compare the therapeutic outcome predictor in terms of AUC
rather than in terms of the ratio of AUC over MIC (AUC/MIC) even though the
suggested target was AUC/MIC 400-600. The reviewed guideline also favors to use
AUC solely for dosing purposes regarding MIC as a less important parameter for the
following reasons. The first reason is the narrow range of MIC values for vancomycin
having MIC breakpoint of 2 mg/L and the reports showed that most of MIC values
were less than 1 mg/L despite a slisht MIC creep discovered. Second, the methods
used to measure MIC differ among hospitals such as E test, broth micro dilution
(BMD), Vitek 2, MicroScan and BD Phoenix methods. This brings about the variability
in measured MIC values. As the therapeutic target AUC/MIC 400-600 was adopted
from the study using BMD method, there might be the variability AUC/MIC results if
different methods of MIC measurement are used. The third reason is the imprecision
of measurement of MIC values with + log, dilution allowing for 10-20% measurement
error. The fourth reason is that MIC values are usually available after 72 hours of
admission in hospitals and this hampers to examine the therapeutic outcome in
terms of AUC/MIC in the need for early monitoring within 48 hours after the first
dose.!” > For all these facts, it seems to be more sensible to apply AUC alone for
TDM in clinical practice.

We have some limitations in our study. First, we did not apply Bayesian
approach to predict AUC due to some technical difficulties. Instead, we decided to
perform simulation to produce concentration-time provides at 15-min intervals until
48 hours with the use of NONMEM®. And then, we applied linear trapezoidal rules to
calculate AUC by summing each trapezoids of 15-min interval. We believe that our
AUCs were precise as we included as many trapezoids as possible when calculating

AUCs. Besides, our reference AUC, ,, estimate was similar to Bayesian AUCy.,4 of the
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study by Broeker et al™ having median AUCs (range) of 261.15 mg.h/L (86.03 to
657.74) and 267 mg.h/L (174 - 415) respectively considering the fact that both studies

attempted to derive AUCs from the same model by Goti et al'.

Another limitation is that we chose to perform modeling with simulated

concentrations from Goti et al'®

as this model has been suggested as the most
appropriate model to predict AUC . Since this study was conducted on adults, our
findings might not be applicable in pediatric populations. In addition, the original
error components were bound to be reduced as small as possible so that an erratic
concentration-time profile could be avoided and the residual error modeling process
could be run successfully in our analysis plan. Therefore, these residual errors might
not reflect the true assay errors which could be higher than our manipulated errors.
Nonetheless, we believe that this could be ignored as the residual error appears to

play less important role than pharmacokinetic parameters in the process of

predicting AUC via Bayesian method.
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Chapter VI

Conclusion

Vancomycin is a sglycopeptide antibiotics which is effective against gram
positive bacterial infections. The unique usefulness of vancomycin is the treatment
of methicillin resistant Staphylococcus aureus (MRSA) infections.> >> Therapeutic drug
monitoring (TDM) is usually performed in patients receiving vancomycin treatment for
major infections or serious MRSA infections. Being time dependent antibiotic, area
under the curve (AUQ) is the therapeutic indicator for vancomycin. Due to the
difficulty to calculate AUC in clinical bedside in earlier years, the 2009 consensus
guideline recommended to use trough concentration as TDM parameter with the
belief that there is correlation between trough concentration and AUC.* However,
later studies showed the therapeutic discrepancy between trough concentration and
AUC.%? Besides, AUC proved to be more related to nephrotoxicity and other patient

outcomes.**%?

With the emergence of advanced dosing optimizing software in recent years,
it is expected to be able to calculate AUC with less trouble and the updated
consensus guideline do not suggest trough based monitoring anymore. Instead, AUC-
based monitoring is preferred and it is recommended to maintain AUC/MIC 400-600
for MRSA infections with isolates having MIC < 1. The guideline advised to apply
Bayesian method or first-order pharmacokinetic equations based method to estimate
AUC. To predict AUC with Bayesian method, population pharmacokinetic models are
required.'” ® Vancomycin pharmacokinetics has been described as 1- and 2-
compartment models.’*** As the AUC outcome depends on various factors including
inputted model, it is important to examine the difference between AUCs from 1- and
2-compartment models. So far, only one study explored the difference between
AUCs from 1-and 2-compartment models using rich data."” Considering the fact that

the majority of vancomycin models have been derived from TDM data which are
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sparse in nature, our study explored the difference of AUCs from 1- and 2-
compartment models using sparse data in two scenarios — using peak-trough dataset
and trough-only dataset. By comparing AUCs derived from models with these
depleted datasets to the reference AUC, we also assessed the AUC predictability of

peak-trough model and trough-only model.

The previously published 2-compartment model was used to produce full
concentration-time profiles with 15-minute intervals until 48 hours after the first dose
of vancomycin. The reference AUC (AUC,s) was calculated by linear trapezoidal
formula using these concentrations. AUCs were calculated for three different time
periods — 0 to 24 hour, 24 to 48 hour and average daily AUC within 0 to 48 hour.
AUC,¢f values for these three periods were 283.14 + 124.69 mg.h/L, 470.53 + 176.28
mg.h/L and 376.88 + 149.24 mg.h/L respectively. Then, 1- and 2-compartment
models were constructed from depleted datasets and AUCs were derived from each
model. AUC values for aforementioned three periods from 2-compartment model
using peak-trough data were 267.05 + 104.88 me.h/L, 458.72 + 171.43 me.h/L and
362.89 + 136.62 mg.h/L. Resulting AUCs from 2-compartment model with trough-only
data were 379.82 + 62.59 me.h/L, 559.06 + 140.28 mg.h/L and 469.49 + 101.28
meg.h/L. As for 1-compartment model with peak trough data, AUCs of 290.84 +
125.17, 450.02 + 163.33 mg.h/L and 370.43 + 140.09 mg.h/L were obtained. From 1-
compartment model using trough-only data, AUC values were 265.51 + 40.23 mg.h/L,
459.78 + 124.64 mg.h/L and 362.64 + 82.3 mg.h/L.

First, AUCs were compared between 1- and 2-compartment models from
depleted datasets. And then, AUCs from each of those models were also compared
to the AUC,r. Statically significant difference was found between AUCs from 1- and 2-
compartment models in both cases of depleted datasets. In models from peak-
trough dataset, the percent differences were negligible (less than 17%) from clinical
point of view - 8.09% for AUC; 4, 1.9% for AUCy.45 and 2.04% for AUC,,,. However,
the percent differences were higher in models from trough-only dataset having

around 17 % for all AUCs of three time periods. When comparing each AUC to the
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AUC,, none of the pairs showed significant difference except in the pair of AUC
and AUCs from 2-compartment (trough-only) model. The results demonstrated that
2-compartment model with only trough concentrations should better be avoided for

predicting AUCs for dosing purposes in clinical practice.

Taken together, 1-comparment model with sparse data that is a pair of peak
and trough samples per patient could sufficiently describe the true AUC in clinical
practice. Our findings also imply that there is a possibility of usefulness from 1-
compartment model with single-trough data when models with rich data are not
available for intended population to predict AUC by Bayesian software. Besides, 2-
compartment model with at least one peak sample and one trough sample per
patient could be reliably applied in prediction of AUC whereas 2-compartment

model with only trough samples should better be avoided.

As our study is simulation study using previously published model with adult
data, the question remains whether our findings are generalizable to pediatric
population of neonates and children. We would like to suggest further studies to
explore the idea of the difference between AUCs from 1- and 2-compartment
models using sparse data in neonates and children as these are the population

where it is inconvenient to collect rich data.
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Appendix

1. The control stream used for simulation from the previously published model

SINPUT C ID TIME AMT RATE TAD DV MDV EVID
SDATA FULLPROFILE.CSV IGNORE=C
SSUBROUTINES ADVAN3 TRANS4
SPK
TVCL=THETA(1)
CL=TVCL*EXP(ETA(1))
TW1=THETA(2)
VI=TWI*EXP(ETA(2))
TVV2=THETA(3)
V2=TVV2*EXP(ETA(3))
TVQ=THETA(4)
Q=TVQ
S1=V1
S2=V2
REP=IREP

SERROR
IPRE=F
Y = F + F*EPS(1) + EPS(2)

STHETA
2.65;[CL]
65.99 ;[V1]
38.4 ;[V2]
6.5 ;[Q]



SOMEGA
0.158 ;[P] omega(1,1)
0.666 ;[P] omega(2,2)
0.326 ;[P] omega(3,3)

SSIGMA
0.01 ;[P] sigmal(1,1)
0.25 ;[A] sigma(2,2)
SSIMULATION (123456) ONLYSIM SUBPROBLEM=100
STABLE ID TIME AMT RATE TAD DV MDV EVID REP ONEHEADER NOPRINT
FILE=072003sub.tab
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2. The control stream used for modeling 1-compartment (peak-trough) model

SINPUT C ID TIME AMT ADDL Il RATE TAD DV MDV EVID
$DATA PEAKTROUGHFOUR.CSV IGNORE=C
$SUBROUTINES ADVAN1 TRANS2
SPK

TVCL=THETA(1)

CL=TVCL*EXP(ETA(1))

TW=THETA(2)

V=TVW*EXP(ETA(2))

S1=V

SERROR
IPRE=F
W= IPRE
IRES= DV-IPRE
IWRE=IRES/W
Y = F + W*ERR(1)

SEST METHOD=1 INTERACTION PRINT=5 MAX=9999 SIG=3 MSFO=0813pro001.msf
STHETA
(0, 3);ICL
(0, 70);[V]
SOMEGA
0.04 ;[P] omega(1,1)
0.04 ;[P] omega(2,2)
SSIGMA
0.04 ;[P] sigmal(1,1)
SCOV PRINT=E

7



STABLE ID TIME ONEHEADER NOPRINT FILE=0813pro001.tab

STABLE ID TIME CL V ONEHEADER NOPRINT FILE=PATAB0813pro001

STABLE ID PRED RES WRES IPRE IWRE CPRED CWRES ONEHEADER NOPRINT
FILE=SDTAB0813pro001

STABLE ID CL V FIRSTONLY NOAPPEND NOPRINT FILE=0813pro001.par
STABLE ID ETA1 ETA2 FIRSTONLY NOAPPEND NOPRINT FILE=0813pro001.eta
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3. The control stream used for modeling 1-compartment (trough-only) model

SINPUT C ID TIME AMT ADDL Il RATE TAD DV MDV EVID
$DATA TROUGHFOUR.CSV IGNORE=C
$SUBROUTINES ADVAN1 TRANS2
SPK
TVCL=THETA(1)
CL=TVCL*EXP(ETA(1))
TW=THETA(2)
V=TVW*EXP(ETA(2))
S1=V

SERROR
IPRE=F
W= IPRE
IRES= DV-IPRE
IWRE=IRES/W
Y = F + W*ERR(1)

SEST METHOD=1 INTERACTION PRINT=5 MAX=9999 SIG=3 MSFO=091staatz001.msf
STHETA
(0, 1) ;ICL
90.85 FIXED ;[V]
SOMEGA
0.04 ;[P] omega(1,1)
0 FIXED ;[P] omega(2,2)
SSIGMA
0.00951 FIXED ;[P] sigma(1,1)
SCOV PRINT=E



STABLE ID TIME ONEHEADER NOPRINT FILE=091staatz001.tab

STABLE ID TIME CL V ONEHEADER NOPRINT FILE=PATAB091staatz001

STABLE ID PRED RES WRES IPRE IWRE CPRED CWRES ONEHEADER NOPRINT
FILE=SDTAB091staatz001

STABLE ID CL V FIRSTONLY NOAPPEND NOPRINT FILE=091staatz001.par
STABLE ID ETA1 ETA2 FIRSTONLY NOAPPEND NOPRINT FILE=091staatz001.eta
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4. The control stream used for modeling 2-compartment (peak-trough) model

SINPUT C ID TIME AMT ADDL Il RATE TAD DV MDV EVID
SDATA PEAKTROUGHFOUR.CSV IGNORE=C
SSUBROUTINES ADVAN3 TRANS4
SPK

TVCL=THETA(1)

CL=TVCL*EXP(ETA(1))

TWI1=THETA(2)

V1=TVVI*EXP(ETA(2))

TVQ=THETA(3)

Q=TVQ*EXP(ETA(3))

TW2=THETA(4)

V2=TVV2*EXP(ETA(4))

S1=V1

S2=V2

SERROR
IPRE=F
W= IPRE
IRES= DV-IPRE
IWRE=IRES/W
Y = F + W*ERR(1)

SEST METHOD=1 INTERACTION PRINT=5 MAX=9999 SIG=3 MSFO=084pro002.msf
STHETA

(0, 1.385) ;[CL]

(0, 59) ;[V1]

(0, 5.8) ;1Q]

(0, 34.56) ;[V2]
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SOMEGA
0.04 ;[P] omega(1,1)
0.04 ;[P] omega(2,2)
0 FIXED ;[P] omega(3,3)
0 FIXED ;[P] omega(4,4)

SSIGMA

0.04 ;[P] sigma(1,1)

SCOV PRINT=E

STABLE ID TIME ONEHEADER NOPRINT FILE=084pro002.tab

STABLE ID TIME CL V1 Q V2 ONEHEADER NOPRINT FILE=PATAB084pro002
STABLE ID PRED RES WRES IPRE IWRE CPRED CWRES ONEHEADER NOPRINT
FILE=SDTAB084pro002

STABLE ID CL V1 Q V2 FIRSTONLY NOAPPEND NOPRINT FILE=084pro002.par
STABLE ID ETAL ETA2 ETA3 ETA4 FIRSTONLY NOAPPEND NOPRINT
FILE=084pro002.eta



5. The control stream used for modeling 2-compartment (trough-only) model

SINPUT C ID TIME AMT ADDL Il RATE TAD DV MDV EVID
SDATA TROUGHFOUR.CSV IGNORE=C
SSUBROUTINES ADVAN3 TRANS4
SPK
TVCL=THETA(1)
CL=TVCL*EXP(ETA(1))
TW1=THETA(2)
V1=TVVI*EXP(ETA(2))
TVQ=THETA(3)
Q=TVQ*EXP(ETA(3))
TW2=THETA(4)
V2=TVV2*EXP(ETA(4))
S1=V1
S2=V2

SERROR
IPRE=F
W= IPRE
IRES= DV-IPRE
IWRE=IRES/W
Y = F + W*ERR(1)

SEST METHOD=1 INTERACTION PRINT=5 MAX=9999 SIG=3
MSFO=091sanchez001.msf
STHETA

(0, 1) ;ICL

22.36 FIXED ;[V1]

8.77 FIXED ;[Q]

34.29 FIXED ;[V2]
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SOMEGA

0.04 ;[P] omega(1,1)

0 FIXED ;[P] omega(2,2)

0 FIXED ;[P] omega(3,3)

0 FIXED ;[P] omega(4,4)
SSIGMA

0.0118 FIXED ;[P] sigma(1,1)
SCOV PRINT=E
STABLE ID TIME ONEHEADER NOPRINT FILE=091sanchez001.tab
STABLE ID TIME CL V1 Q V2 ONEHEADER NOPRINT FILE=PATAB091sanchez001
STABLE ID PRED RES WRES IPRE IWRE CPRED CWRES ONEHEADER NOPRINT
FILE=SDTAB091sanchez001
STABLE ID CL V1 Q V2 FIRSTONLY NOAPPEND NOPRINT FILE=091sanchez001.par
STABLE ID ETA1 ETA2 ETA3 ETA4 FIRSTONLY NOAPPEND NOPRINT
FILE=091sanchez001.eta



6. The control stream used for simulation from 1-compartment (peak-trough)

model

SINPUT C ID TIME AMT RATE TAD DV MDV EVID
SDATA FULLPROFILE.CSV IGNORE=C
SSUBROUTINES ADVAN1 TRANS2
SPK

TVCL=THETA(1)

CL=TVCL*EXP(ETA(1))

TW=THETA(2)

V=TVV*EXP(ETA(2))

S1=V

REP=IREP

SERROR
IPRE=F
Y = F + F*ERR(1)

STHETA

3.66 ;[CL]

82.2 ;[V]
SOMEGA

0.158 ;[P] omega(1,1)

0.448 ;[P] omega(2,2)
SSIGMA

0.00951 ;[P] sigma(1,1)
SSIMULATION (123456) ONLYSIMULATION SUBPROBLEM=100
STABLE ID TIME AMT RATE TAD DV MDV EVID REP ONEHEADER NOPRINT
FILE=1cmtpeaktrough.tab



7. The control stream used for simulation from 1-compartment (trough-only)

model

SINPUT C ID TIME AMT RATE TAD DV MDV EVID
SDATA FULLPROFILE.CSV IGNORE=C
SSUBROUTINES ADVAN1 TRANS2
SPK

TVCL=THETA(1)

CL=TVCL*EXP(ETA(1))

TW=THETA(2)

V=TW

S1=V

REP=IREP

SERROR
IPRE=F
Y = F + F*ERR(1)

STHETA
3.8 ;[CL]
90.8 ;[V]
SOMEGA
0.266 ;[P] omega(1,1)
SSIGMA
0.00951 ;[P] sigma(1,1)
SSIMULATION (123456) ONLYSIMULATION SUBPROBLEM=100
STABLE ID TIME AMT RATE TAD DV MDV EVID REP ONEHEADER NOPRINT
FILE=staatz.tab



8. The control stream used for simulation from 2-compartment (peak-trough)

model

SINPUT C ID TIME AMT RATE TAD DV MDV EVID
SDATA FULLPROFILE.CSV IGNORE=C
$SUBROUTINES ADVAN3 TRANS4
SPK

TVCL=THETA(1)

CL=TVCL*EXP(ETA(1))

TWI1=THETA(2)

V1=TWI1*EXP(ETA(2))

TVQ=THETA(3)

Q=TVQ

TVWW2=THETA(4)

V2=TW2

S1=V1

S2=V2

REP=IREP

SERROR
IPRE=F
Y = F + F*ERR(1)

STHETA
2.20 ;[CL]
65.2 ;[V1]
5.87;1Q]
63 ;[V2]



SOMEGA
0.403 ;[P] omega(1,1)
0.714 ;[P] omega(2,2)
SSIGMA
0.0118;[P] sigma(1,1)
SSIMULATION (123456) ONLYSIM SUBPROBLEM=100
STABLE ID TIME AMT RATE TAD DV MDV EVID REP ONEHEADER NOPRINT
FILE=2cmtpeaktrough.tab
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9. The control stream used for simulation from 2-compartment (trough-only)

model

SINPUT C ID TIME AMT RATE TAD DV MDV EVID
SDATA FULLPROFILE.CSV IGNORE=C
SSUBROUTINES ADVAN3 TRANS4
SPK

TVCL=THETA(1)

CL=TVCL*EXP(ETA(1))

TWI1=THETA(2)

V1=TW1

TVQ=THETA(3)

Q=TvVQ

TVV2=THETA(4)

V2=TW2

S1=V1

S2=V2

REP=IREP

SERROR
IPRE=F
Y = F + F*ERR(1)

$THETA
3.48 ;[CL]
22.4 V1]
8.77 :[Q]
34.3 (V2]
SOMEGA
0.127 ;[P] omega(1,1)
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SSIGMA
0.0118;[P] sigma(1,1)
SSIMULATION (123456) ONLYSIM SUBPROBLEM=100
STABLE ID TIME AMT RATE TAD DV MDV EVID REP ONEHEADER NOPRINT
FILE=sanchez.tab
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