Food Inflation During the Covid-19 Pandemic. A Comparison Between Brazilian and Thai Food Inflation During the Years 2020 and 2021.

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Arts in Business and Managerial Economics Field of Study of Business and Managerial Economics FACULTY OF ECONOMICS Chulalongkorn University Academic Year 2022 Copyright of Chulalongkorn University เงินเฟือด้านอาหารในช่วงโควิด-19 ระบาด. การเปรียบเทียบ ระหว่างอัตราเงินเฟืออาหารบราซิลและอาหารไทยในช่วงปี 2563 และปี 2564

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาศิลปศาสตรมหาบัณฑิต สาขาวิชาเศรษฐศาสตร์ธุรกิจและการจัดการ สาขาวิชาเศรษฐศาสตร์ธุรกิจและการจัดการ คณะเศรษฐศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2565 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	Food Inflation During the Covid-19 Pandemic. A
	ComparisonBetween Brazilian and Thai Food Inflation During
	the Years 2020and 2021.
Ву	Mrs. Lilian Cordeiro Prates
Field of Study	Business and Managerial Economics
Thesis Advisor	NIPIT WONGPUNYA

Accepted by the FACULTY OF ECONOMICS, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Arts Dean of the FACULTY OF ECONOMICS (SITTIDAJ PONGKIJVORASIN)

THESIS COMMITTEE

Chairman

(SAN SAMPATTAVANIJA)

Thesis Advisor

(NIPIT WONGPUNYA) มหาวิทยาลัย

External Examiner

(Isriya Nitithanprapas Bunyasiri)

ลิเลียน คอไดโร ปาเตส : เงินเฟื้อด้านอาหารในช่วงโควิด-19 ระบาด. การเปรียบเทียบ ระหว่างอัตราเงินเฟื้ออาหารบราซิลและอาหารไทยในช่วงปี 2563 และปี 2564. (Food Inflation During the Covid-19 Pandemic. A ComparisonBetween Brazilian and Thai Food Inflation During the Years 2020and 2021.) อ.ที่ปรึกษาหลัก : นิพิฐ วงศ์ปัญญา

ใทยและบราซิลเป็นผ้ส่งออกสินค้าเกษตรสทธิที่โคคเค่น 2 ราย และทั้งสองประเทศได้รับผลกระทบอย่างรนแรงจากการระบาดของโควิด-19 ในขณะที่ GDP ้ของไทยลคลง 6.1% ในปี 2020 เศรษฐกิจบราซิลหคตัว 4.1% แม้จะมีความคล้ายคลึงกันเหล่านี้ แต่ในช่วงระยะเฉียบพลันของการระบาคใหญ่ ราคาอาหารในบราซิลเริ่มเพิ่มขึ้นอย่างรวคเร็ว ในขณะที่ในประเทศไทย ราคาอาหารยังคงต่ำและคงที่ ในปี 2020 อัตราเงินเฟือด้านอาหารประจำปีในบราซิลอยู่ที่ 14,11% และของไทยอยู่ที่ 1.37% ดังนั้น การศึกษานี้จึงมีวัตถประสงค์เพื่อสนับสนนวรรณกรรมโดยการเติมเต็มช่องว่างข้อมลเกี่ยวกับการ เปลี่ยนแปลงของอัตราเงินเพื่อของอาหารในสองประเทศดังกล่าวในช่วงการระบาดใหญ่ของโควิ ด-19.วิธีการ Autoregressive Distributed Lag ถูกนำไปใช้กับตัวแปรอธิบายที่เป็นไปได้ 13 ตัว ใด้แก่ การนำเข้าอาหาร การส่งออกอาหาร อัตราคอกเบี้ย พร็อกซีสำหรับ DGP รายเดือน (หนึ่งรายการสำหรับแต่ละประเทศ) คัชนีน้ำมันคิบ ราคาน้ำมันคิบ คัชนีอาหารโลก อัตราแลกเปลี่ยน ค่าที่กำหนด อัตราแลกเปลี่ยนที่แท้จริง ดัชนีราคาสินค้าเกษตร ดัชนีผลผลิตทางการเกษตร และอัตราเงินเฟื้อพลังงาน จาก 13 ตัวแปรเหล่านี้ มีเพียง 6 ตัวแปรสุดท้ายเท่านั้นที่มีนัยสำคัญ ทางสถิติ เหตุผลหลักที่ทำให้อัตราเงินเฟือด้านอาหารสูงขึ้นในบราซิลลือ: i) ประเทศนี้ไม่ได้ใช้ประโยชน์จากการตกต่ำของน้ำมันดิบระหว่างประเทศเพื่อให้ส่วนลดที่รุนแรง มากขึ้นในราคาพ ลังงานในประเทศ; ii) ความชะงักงันของการเติบโตของการผลิตสำหรับอาหารหลักบางชนิค; iii) การส่งผ่านสูงจากดัชนีราคาสินค้าเกษตรไปยังดัชนีราคาผู้บริโภค; และ iv) การลดค่าสกลเงินจำนวนมาก.

สาขาวิชา เศรษฐศาสตร์ธุรกิจและการจัด ลายมือชื่อนิสิต การ

ปีการศึกษา 2565

ลายมือชื่อ อ.ที่ปรึกษาหลัก

##6384055029: MAJOR BUSINESS AND MANAGERIAL ECONOMICS

KEYWORD: Food Inflation Brazil Thailand Pandemic Ardl

Lilian Cordeiro Prates : Food Inflation During the Covid-19 Pandemic. A ComparisonBetween Brazilian and Thai Food Inflation During the Years 2020and 2021.. Advisor: NIPIT WONGPUNYA

Thailand and Brazil are two prominent net agro-exporters, and both countries were hit severely by the Pandemic of Covid-19. While Thailand's GDP decreased by 6.1% in 2020, the Brazilian economy shrank by 4.1%. Despite these similarities, during the acute phase of the pandemic, food prices in Brazil started to increase at an accelerated pace while, in Thailand, food prices remained low and stable. In 2020, the annual food inflation in Brazil was 14,11%, and Thailand's was 1.37%. Therefore, this study aims to contribute to the literature by filling the information gap about food inflation dynamics in those two countries during the Covid-19 pandemic. The Autoregressive Distributed Lag methodology was applied to 13 potential explanatory variables: Food Imports, Food Exports, Interest Rate, a proxy for Monthly DGP (one for each country), Crude Oil Index, Crude Oil Price, Global Food Index, Exchange Rate, Nominal Effective Exchange Rate, Agricultural Price Index, Agricultural Production Index, and Energy Inflation. Out of these 13 variables, only the last six were statistically significant. The key reasons for the food inflation hike in Brazil were: i) the country has not taken advantage of the international crude oil slump to provide more aggressive discounts in domestic energy prices; ii) the production growth stagnation for some staple foods; iii) high pass-through from Agricultural Price Index to Consumer Price Index; and iv) large currency devaluation.

Field of Study:	Business and Managerial	Student's Signature
	Economics	
Academic Year:	2022	Advisor's Signature

ACKNOWLEDGEMENTS

I would like to express my most profound appreciation to my advisor Prof. Nipit Wogpunya, Ph.D., for his priceless guidance. I would also like to thank Prof. San Sampattavanija, Ph.D., and Prof. Isriya Boonyasiri, Ph.D., for being on my committee and providing helpful feedback and suggestions.

I could not have completed this journey without my husband's emotional support. I am also grateful to Trina for helping me to care for my children while this work was being written.

Lilian Cordeiro Prates

TABLE OF CONTENTS

Page
iii
ABSTRACT (THAI)iii
ABSTRACT (ENGLISH) iv
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
CHAPTER 01
INTRODUCTION 1
1.1 Problem Statement
1.2 Research Question and Objectives of the Study16
1.2.1 Main Objective and Research Question16
1.2.2 Secondary Objectives16
1.2.3 Research Question
1.4 Significance and Expected Benefits18
1.5 Limitations
HISTORICAL BACKGROUND
2.1 Post World War II
2.2 OIL CRISIS
CHAPTER 3

LITERATURE REVIEW	32
3.1 Inflation in Developed Countries	32
3.2 Inflation and Food Inflation in Low-Income and Developing Countries	35
3.2.1 Brazilian Food Inflation	49
3.2.2 Thailand Inflation	50
3.3 General Considerations	55
4.1 CONCEPTUAL FRAMEWORK	58
4.1.1Research Design	60
4.2 Data	60
4.2.1 Descriptive Analyses	
4.2.1.1 Average	61
4.2.1.2 – Kurtosis	61
4.2.1.3 Skew	62
4.2.1.4 Standard Deviation and Coefficient of Variation	64
4.2.2 Inferential Analysis	64
4.3 Time-series Analysis	65
4.3.1. Analyzing the Stationarity	67
Unit Root Analyses	67
Dickey-Fuller test	70
Integration	72
4.3.3 Error Corrector model	75
4.3.4 ARDL or Bound Cointegration Test	76

4.4 Model Proposed
4.4.1 Brazilian Model
4.4.2 Thai Model
CHAPTER 5
RESULTS AND DISCUSSION
5.1) Brazil's Findings and Model Analysis82
5.1.1 Model 1: Production and Interest Rate as the explanatory variable
5.1.2 Model 2: Agrarian Price Index and Energy Inflation.93
5.1.3 Model 3: Energy Inflation and Nominal Effective Exchange Rate as the explanatory variable
5.2. Thailand's Findings and Model Analysis
5.2.1 Thailand's First Model104
5.2.1 Thailand's Second Model
5.2.3 Thailand's Third Model
5.3 Discussion
5.3.1Thailand's and Brazil's Model 1
5.3.2 Brazil's and Thailand's Model 2
5.3.3 Brazil's and Thailand's Model 3
5.4 Research Question Analysis and Final Considerations119
Chapter 06
CONCLUSION
REFERENCES
REFERENCES

APPENDIX A	142
APPENDIX B	164
Statistical Outcomes	164
Table B - 1	164

Dependent Variable: TF_BINF Method: ARDL Date: 10/21/22 Time: 10:22 Sample (adjusted): 2018M02 2021M12 Included observations: 47 after adjustments Maximum dependent lags: 4 (Automatic selection) Model selection method: Akaike info criterion (AIC) Dynamic regressors: C Number of models evaluated: 100 Selected Model: ARDL(1, 0, 1) Note: final equation sample is larger than selection sample

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
TF_BINF(-1)	0.187137	0.147457	1.269091	0.2114
DIFLNTIR	0.533530	0.685300	0.778535	0.4406
LNTAPROD	-0.122173	0.218167	-0.559998	0.5785
LNTAPROD(-1)	-0.292253	0.223281	-1.308901	0.1977
C	2.134260	1.214939	1.756682	0.0863
R-squared	0.112809	Mean depend	lent var	0.106170
Adjusted R-squared	0.028314	S.D. dependent var		0.400530
S.E. of regression	0.394819	Akaike info criterion		1.079508
Sum squared resid	6.547039	Schwarz crite	rion	1.276333
Log likelihood	-20.36845	Hannan-Quin	n criter.	1.153575
F-statistic	1.335100	Durbin-Watso	on stat	1.880959
Prob(F-statistic)	0.272812			

*Note: p-values and any subsequent tests do not account for model selection.

<u>____</u>___

Chulalongkorn University

LIST OF TABLES

	Page
Table 1 - Thailand Processed Food and Agri-based ProducImports	ts
Table 2 - Brazilian F&B and F&B input main imports 20202021	
Table 3 - Thailand F&B and F&B input main imports 2020 2021	
Table 4 - Mailing F&B Brazilian imports products in 2020	8
Table 5 - Cost of Living and Money Supply in Thailand	22
Table 6 - Variables Abbreviation	80
Table 7- The abbreviation of stationary Variables I (0) or I	<i>(1)</i> 83
Table 8 - Brazilian variables: Moderate correlation	85
Table 9 - Pairwise Granger Causality Test	88
Table 10 - Test for structural break	89
Table 11 - BRAZIL MODEL 1 - SHORT RUN	91
Table 12 - Bound Test for long-run cointegration	93
Table 13 - Brazilian Model 2a.	94
Table 14 - MODEL 2b. Short-run	95
Table 15 - Brazilian model 3 – Short-run	97
Table 16 - List of Abbreviations as in summaries.	99
Table 17 - Thailand Granger Causality test.	102
Table 18 - Thailand Model 1. Short-run	105
Table 19 - Thailand. Model 2	107

Table	20 -	Thailand model 3. Short- run	08
Table	21 -	GFI and TAPI Granger Causality and Correlogram	
Tests		1	16

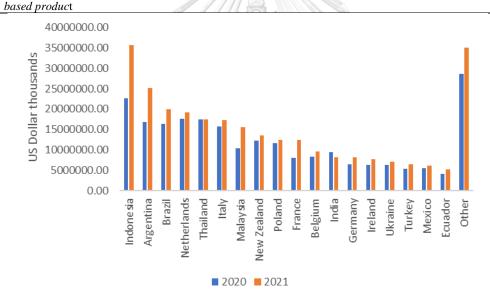
LIST OF FIGURES

Figure 1-List of net exporting markets for the selected product group. Product group: Processed food and agro-based product
Figure 2 - F&B Monthly Inflation 2020 - 2021
Figure 3 - F&B Accumulated Inflation 20209
Figure 4 - F&B Accumulated Inflation 202111
Figure 5-Brazil Degree of Openness
Figure 6 - Thailand Degree of Openness
Figure 7 - Relationship between Inflation and Growth
Figure 8-Relationship between Inflation and Credit
Figure 9 – Brazilian and Thai skewness based on food inflation distribution.
Figure 10 - Methodology Flow Chart
Figure 11 - Scatterplot. Food and Beverage Inflation against the
explanatory variables
Figure 12 - Scatterplot Food Inflation against explanatory variables.
Figure 13 - Production Growth
Figure 14 - Energy Inflation123
Figure 15 - Agricultural Price Index Growth
Figure 16 - BNEER Growth Rates and TER Growth126

CHAPTER 01

INTRODUCTION

Common sense suggests that countries with food sovereignty and an expressive positive trade balance of food and agri-based products are able to control the price of these commodities. Since they do not rely on imports, they are less susceptible to international price pressure. After the shock caused by the Covid-19 situation, Thailand and Brazil had different performances regarding the controlling of food inflation, despite their similarities. This chapter will encompass an overview of food inflation behavior during the Covid-19 Pandemic (2020 and 2021). It will be divided into four sections. The first section will be the Problem Statement, presenting the elements that raised inquiries about different outcomes of Thai and Brazilian food inflation. The second part will set forth the Research Question. The third part will present the justification and expected benefits of the research. Finally, the fourth section will discuss its limitations.


จหาลงกรณีมหาวิทยาลัย 1.1 Problem Statement LALONGKORN UNIVERSITY

Both Thailand and Brazil can be defined as big countries in terms of food and agri-based production. For its turn, Thailand has long been referred to as 'the kitchen of the world'. With its abundant natural resources, it is considered "one of the largest net food-exporting countries globally and (has become the 3rd food exporter in Asia after the big giants, China, and India". (WANG et al., 2020, pg. 02). "The country has one of the most advanced food processing industries in Southeast Asia, and its food and beverage sector is the country's third-largest industry" (Food Export Association of the Midwest USA and Food Export USA – Northeast (n.d.)). The abundance of raw materials, a skilled and affordable workforce, and a good logistics system make Thailand an important power at exporting processed food. "The development of these industries dates back to the 1960s when Thailand drafted its first National Economic and Social Development Plan. Within this strategy, the Government emphasized the food industry as a means to increase the value of cheap and abundant agricultural goods while taking advantage of relatively cheap labor wages." (THAMMACHOTE & TROCHIM, 2021, PG. 07).

Thailand is a recognized commodities exporter, but "from 1998 to 2016, processed food exports accounted for 60% of the agri-food sector ... the processed food industry has replaced some traditional commodities, such as sugar and rice. Moreover, food processing is a labor-intensive activity that contributes to lowering the unemployment in Thailand, raising the average salary more than threefold from 1998 to 2016" (TANRATTANAPHONG et al., 2020). From the analysis during that period, the authors reported an interesting finding: Thai processed food is treated as a necessity good by developed countries (when income fall, the consumption rise) and luxury good by developed country, its GDP and the amount of Thai processed food export (TPFE) are negatively related (negative elasticity, moving in the opposite direction). Conversely, for the developing countries, their GDP and TPFE has positive elasticity; they move together. (TANRATTANAPHONG, et al. 2020). In this way, economic crises tend to lead to an improvement in TPFE towards developed countries.

Even during the Covid-19 Pandemic, with all constraints faced for the export sector, such as containers shortage since the 2Q2020, the increasing freight rate, and workforce shortage caused by the Covid-19 Pandemic, Thailand is still within the 15 more prominent food exporters and within the 5 food net-exporters. During the biennial of 2020 and 2021, Thailand exported more than US\$ 17 billion each year in Processed Food and Agri-based products. The figures reached the order of US\$ 17,465,088,000.00, in 2020 and US\$ 17,418,353,000.00, in 2021, according to the database of the International Trade Center (ITC, 2022).

Figure 1 - List of net exporting markets for the selected product group. Product group: Processed food and agro-

Note: Data from: International Trade Center (ITC) database. Retrieved by: https://www.trademap.org.

Table 1, below, shows the main groups present in Thailand's trade import, regarding processed food and Agri-based category. The products with more preponderance were those for feedstuff preparations: Oilcake and Preparation for animal feeding, together encompassed 17,24% in 2020 and 20,70% in 2021. Around 60% of the processed food imports were spread throughout hundreds of other categories in 2020 and 2021.

CATEGORY	2020	2021	2020%	2021%
embeent	2020	2021	202070	202170
Oilcake and other solid residues, fit for feed ingredient	1,013,225.	1,359,521.	12.38	15.40%
	00	00	%	
Food preparations, n.e.s.	807,195.00	868,435.00	9.86%	9.84%
Preparations of a kind used in animal feeding	398,331.00	467,151.00	4.87%	5.29%
Cuttlefish and squid, frozen, with or without shell	386,319.00	381,845.00	4.72%	4.33%
Mixtures of odoriferous substances (used as raw material in the industry)	650,359.00	693,541.00	7.94%	%7.86
OTHER	4,930,463.	5,055,617.	60.23	57.28%
No.	00	00	%	
TOTAL	8,185,892.	8,826,110.	100.00	100.00%
	ngk ⁰⁰ n U	NIV ⁰⁰ SITY	%	

 Table 1 - Thailand Processed Food and Agri-based Products Imports

Note: Author's calculations. Data from: International Trade Center (ITC) https://www.trademap.org

The amount is in Thousands of US\$

Likewise, Brazil is one of the most significant food exporters globally. In 2020, the country had more than US\$ 15 billion (US\$15,035,845,000.00) of processed food net exports. And during 2021, this figure reached almost US\$20 billion (US\$19,960,504,000.00) (ITC, 2022b). The figures below reflect only part of the huge Brazilian agricultural trade balance compound and refer specifically to

processed foods. However, the Brazilian numbers hiked when the data extracted from ITC (2022b) was aggregated, considering $F\&B^1$ in general and F&B production inputs. For F&B and its inputs, the trade balance was US\$ 63.372.316.000.00 in 2020 and US\$

70,949,842,000.00 in 2021.

Categories	2020	2021	Ratio -	Ratio -
		8	2020	2021
Fertilizers'	8,027,716.00	15,164,542.00	41.84%	53.75%
Cereals	2,108,189.00	2,878,426.00	10.99%	10.2%
Animal or vegetable fats and oils and their cleavage products; prepared edible fats; animal	1,226,397.00	1,591,466.00	6.39%	5.64%
Fish and crustaceans, molluscs, and other aquatic invertebrates	858,945.00	1,146,122.00	4.48%	4.06%
Other	6,964,611.00	7,432,925.00	36.3%	26.35%

 Table 2 - Brazilian F&B and F&B input main imports 2020 - 2021

Note: Autor's calculation. Data from: https://www.trademap.org Values are in Thousands of US\$

According to the Food and Agricultural Organization (FAO, 1999), "Since 1970, Brazil has been expanding agricultural production, and the country has gone from being an important importer to one of the world's leading food exporters." (Oliveira et al., 2019, pg. 2906). Nevertheless, the country still depends on the imports of milk and wheat.

¹ Unless otherwise stated, F&B circumscribes F&B consumed in-home or outside the home

As stated by the Brazilian Association of Food Industries (ABIA,2016), "the food and beverage industry is considered the largest national sector of the Brazilian transformation industry." (ARISSETO-BRAGOTTO et al., 2017). The national industry processed 58% of the total agricultural production, and processed food accounted for 51% of the agribusiness exports and 18% of the total Brazilian export." (ARISSETO-BRAGOTTO et al., 2017). The consumers' behaviors have been changed, from fresh to processed food. Currently, 85 percent of the food consumed in Brazil is processed, compared to 56% in 1980. (ABIA, 2013, as cited in Oliveira et al, 2019, pg. 2907)

"In 2020, Brazil kept as the main supplier for livestock products, highlighting soybean, animal protein, sugar, and coffee. In addition, the wheat crops had a markable production increase, which reduced the pressure to import this commodity." (IPEA, 2021).

The whole agricultural sector in Brazil exported US\$ 100,701,953,630.00 and imported US\$ 13,054,347,989, therefore the net exports of US\$ 87,647,605,641, according to the Ministry of Agriculture, Livestock and Food Supply - MAPA (2022). For 2021, the amounts are still more impressive; the Brazilian agricultural sector had a trade surplus of US\$ 104,992,957,229.00, the imports were US\$ 120,521,447,545, and exports were US\$ 15,528,490,316. This data was extracted from the Brazilian governmental system - AGROSTAT (MAPA, 2022), and differently from the values in table 03, encompasses all kinds of agrarian products, even not related to Food and Beverage (F&B), but excludes fertilizers.

The information in tables 1 and 2, from the International Trade Center (ITC) – a multilateral agency, displays some discrepancy compared to the information in the respective national statistics systems since each country compounds the items to reflect the idiosyncrasies of their economies. Nevertheless, the advantage of using the ITC data is the possibility of comparing the trade balance that contains the exact specification.

Nevertheless, despite having robust agribusiness environments and developed F&B production systems, neither of the countries studied here is self-sufficient in F&B and food production inputs. Tables 03 and 04 gather the main products imported by Brazil and Thailand. It is essential to put these products in evidence because they can be a key variable in explaining the F&B's price pressures. Moreover, they can provide clues to understanding the weaknesses in Thailand and Brazilian food sovereignty.

CATEGORIES	2020	2021	Ratio -	Ratio - 2021
CATEGORIES	CHULALOI	igkorn Uni	2020	Kuuo 2021
Fish and crustaceans, molluscs and other aquatic	3,309,496.00	3,225,038.00	19.06%	18.08%
Residues from the food industries; prepared animal fodder	2,285,110.00	2,033,469.00	13.16%	11.4%
Oil seeds; miscellaneous grains	1,520,996.00	1,865,274.00	8.76%	10.46%
Fertilisers	168,9076.00	1,528,362.00	9.73%	8.57%

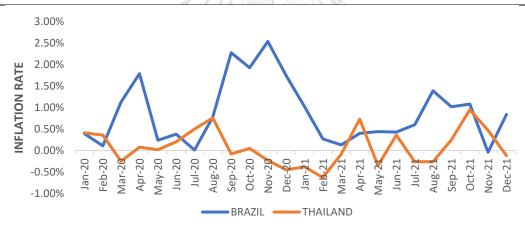
Table 3 - Thailand F&B and F&B input main imports 2020 - 202	Table 3 - Thaild	and F&B and F&B ing	out main imports 2020 - 2	2021
--	------------------	---------------------	---------------------------	------

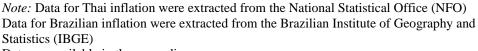
CATEGORIES	2020	2021	Ratio	- Ratio - 202
			2020	
Cereals	1,074,417.00	1,271,019.00	6.19%	7.12%
Edible fruit and nuts;	916,042.00	1,152,923.00	5.28%	6.46%
Miscellaneous edible preparations	961,939.00	1,111,657.00	5.54%	6.23%
Edible vegetables and certain roots and tubers	980,401.00	975,309.00	5.65%	5.47%
Dairy produce; birds' eggs; natural honey	728,635.00	724,753.00	4.2%	4.06%
Others	3,897,419.00	3,952,865.00	22.43%	22.15%

 Table 3 - Thailand F&B and F&B input main imports 2020 - 2021

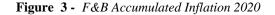
	AUDI	OT COLORISE	2
8	22250	VARAC	
24			
Brazilian imr		du sta in	2020

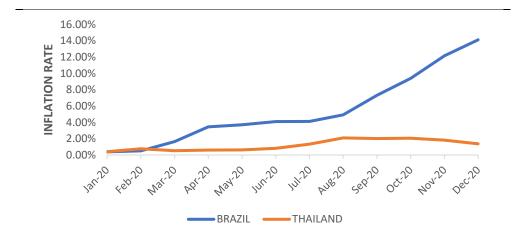
Table 4 - Mailing F&B Brazilian imports products in 2020					
CATEGORY	Value in USD	Imports ratio			
Cereal, flours, food preparations	3,902,869,385.00	25.13%			
Oilseeds (ex. Soy)	1,414,706,437.00	9.11%			
Fishery products	1,180,599,104.00	7.60%			
Beverages	891,501,702.00	5.74%			


Note. Data from MAPA (Ministry of Agriculture Livestock and Food Supply). https://indicadores.agricultura.gov.br/agrostat/index.htm

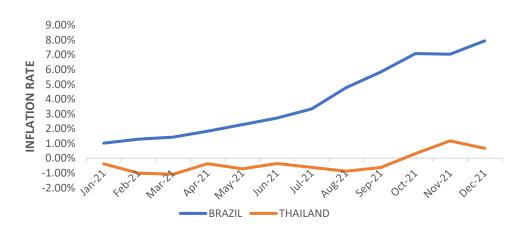

According to ITC (2022c), Brazil and Thailand occupy the 4th and 5th positions regarding net exports of Food and Agri-based products. Although these two

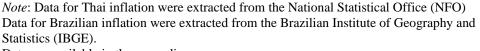
countries are food self-sufficient and have suffered economic contraction from COVID-19, we can observe different outcomes if we analyze the F&B inflation.


In January 2020, as shown in figure 02, the F&B inflation was 0.39 and 0.41% in Thailand and Brazil, respectively. Somehow the gap becomes more prominent as the months pass, reaching, by the end of the year, the accumulated value of 14,11% (Brazil) and 1.37% (Thailand). For the year 2021, the gap persists. Looking at the data from January until December, the Brazilian accumulated inflation was 7.94%, while Thailand was 0.67%, as shown in figures 03 and 04.


Figure 2 - F&B Monthly Inflation 2020 - 2021

Data are available in the appendix

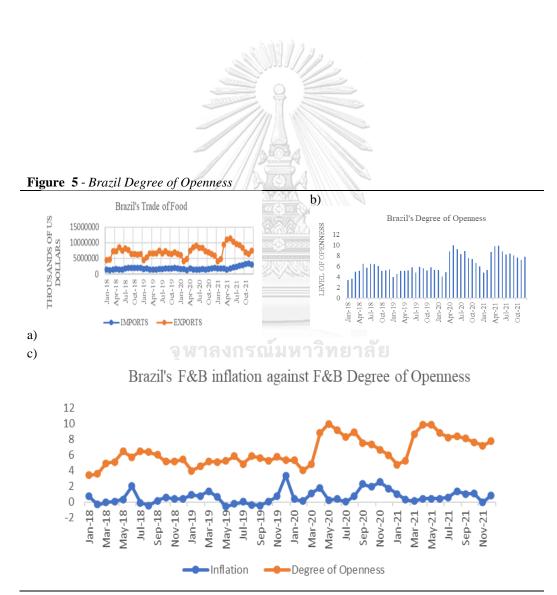



Note: Data for Thai inflation were extracted from the National Statistical Office (NFO) Data for Brazilian inflation were extracted from the Brazilian Institute of Geography and Statistics (IBGE). Data are available in the appendix

Although Thailand had a good performance in F&B exports during the first quarter of 2020 (Q.1/2020), as well as in the previous quarter, Thailand suffered from an arduous drought that impaired the crops. According to NESDEC (2020), agricultural production contracted significantly. One of the main hampered products is paddy (-29.4%), maize (-29.2%), sugarcane (-12.7%), and palm oil (-8.3%). Then this decrease in the Agricultural Product Index (API) was followed by a rise in the Agricultural Price Index, which rose by 8.8%. However, those specific shocks could not push prices up due to, partly, the decline in demand; for example, the wholesale of F&B declined 6.1% for this same period. Despite this troubled period, with a pandemic and droughts, Q1/2020 F&B average inflation was only 1.8% larger than in 2019 for the same period. Unlike Brazil, Thailand had a modest rise in its slope curve during Q.3/2020, mainly due to seasoning and poultry, albeit none of these items' prices rose more than 3%. In Q.4/2020, the weather condition improved for the first time in the year, raising the agricultural supply and releasing the pressure on prices.

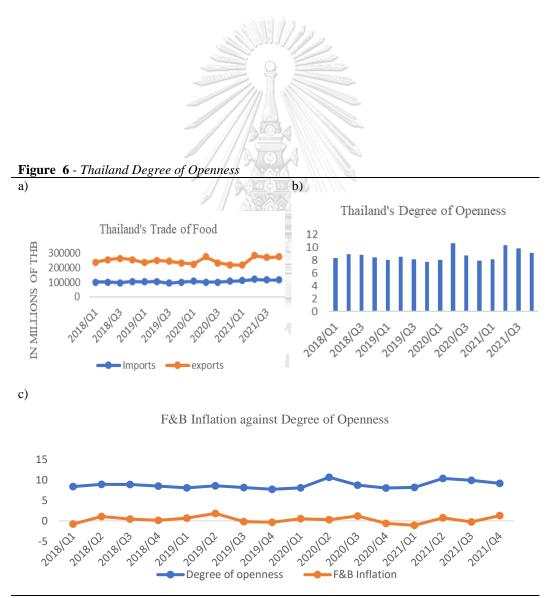
In Brazil, during Q.1/2020, the F&B inflation started to increase mainly because of the sub-group "food consumed in-house". Figure 02 reports that, in Q.3/2020, the curve kinked, becoming steeper, due to the acceleration in the monthly rate. According to the Institute of Applied Economic Research - IPEA (2020), after the Q.3/2020, the YoY (year over year) food inflation was responsible for 70% of the headline inflation, although this component has no more than 23% of weight in that index. As stated in IPEA (2020b), rice and cereals, in general, were the villains for that acceleration. Moreover, rice and beans (the typical Brazilian dish) had a rampant rise across the year 2020, 69,5% and 40,8%, respectively (IPEA, 2021). Furthermore, when the pandemic onsets, some people changed their consumption behavior, anticipating purchases of storable food for precautions. It made the prices of that specific goods soar. A good example was the rampant canned tuna in Thailand during the Q.1/2020.

Figure 4 - F&B Accumulated Inflation 2021


Data are available in the appendix

According to the NESDC (2021), Thailand overcame the bad weather condition in Q.1/2021. The rise in the production of rice (8.8%), fruits (7.9%), and maize (21.4) was expressive. Along with other factors, it helped keep prices below zero. Following the same trend as Thailand, Brazil saw reduced inflation rates in Q.1/2021 compared to the previous quarter. Nevertheless, compared to the same period of the previous year, the price level was higher. The production side contributed to cooling down the prices in Q.1/2021. Pork meat (17%), milk (6.6%), fruits and vegetables (between 6% and 15%) were some of the products which had price reductions (IPEA, 2021b). In Thailand, for Q.3/2021, the Agricultural Produce Index rose the figure by almost 9%, helped by the persistent good weather condition. Fruits and paddy productions had massive expansions - 37% and 12%, respectively -, along with a significant decrease in Agricultural Price Index – negative 4.5% (Nesdec, 2021c). All these numbers are in line with the negative position of the price curve in this period (figure 03). In contrast to Thailand, Brazil saw price hikes across Q.3/2021. Figure 03 shows a kinked in Brazilian's price curve. Some supply-side adversities can explain why the curve is steeper from July onwards. Meat beef and milk production growths were extremely negative throughout Q.3 and Q.4/2021. Furthermore, grains (except soy and wheat) and vegetables had negative performances (Ipea, 2021c and Ipea, 2021d). Thailand, in turn, was hit by the adverse shock in animal protein (shrimp and pork) by the end of Q.4/2021 (Nesdec, 2021d), which could not cause a significant impact on inflation for that year.

Another element that the literature points out as an inflation driver is the degree of openness. According to Romer's Hypothesis, there is a strong and negative correlation between the degree of openness and inflation, mainly when the economy


is politically unstable and has a less independent central bank (Romer, 1993). From the publication of that seminal article until today, many scholars tried to test whether this relationship holds up in different scenarios. For instance, in evaluating this relationship for food inflation in Kenya, LIN AND WANG (2017) did not find any relationship between trade openness and food inflation in the short run. Nevertheless, in the long run, this study supports Romer's hypothesis that an increase in trade openness has a reducing influence on inflation. On the other hand, ECLAC (2008) states that food exporters that increasingly sell into international markets have experienced accelerated food price inflation.

FLACHSBATH & GARRIDO's studies (2014) confirm that deeper market integration increases global price transmission elasticities, worsening food CPI pressures during global shocks. Many authors argue that countries that are more integrated into world markets might show higher world price transmission rates. These economies would be more affected by international price fluctuations than closed ones. The Brazilian economy trades expressive volumes of agricultural commodities; however, the agricultural sector still produces even larger amounts for the domestic market. The authors' empirical tests showed that this lower degree of agricultural market integration has also led to lower food price transmission, especially in the short run (Flachsbath & Garrido, 2014, pg. 937). An opposite outcome was found in a study by MANSILLA et al. 1 (2020). They analyzed the connection between overall inflation and the degree of openness from January 2002 to December 2017 in Brazil. The results "suggest that efforts should be undertaken to increase Brazil's insertion in global trade since, in this scenario, the inflationary dynamic is less influenced by cyclical changes in economic activity" (Mansilla et al., 2020, pg. 1948 – 1957).

Note. 1)The degree of openness was calculated by adding the monthly food and beverage exports to imports over the monthly GDP (all values in USD). 2) The data for food was extracted from the Trademap database (ITC). 3) The data for monthly GDP was extracted from Brazilian Central Bank, time series code 4385, retrieved from: https://www3.bcb.gov.br/sgspub/consultarvalores/telaCvsSelecionarSeries.paint. 4) The list of food and beverage trade as such as all values will be shown in appendices.

Figure 5, c reflects the inconclusive relationship between Inflation and Degree of Openness, sometimes positive, sometimes negative, and occasionally null. Nevertheless, during the two years of the pandemic, when food inflation spiked, it converged with a higher openness level.

Note 1) For Thailand, the quarterly data in THB was used because this data was not found in USD or in higher frequency. 2) The data relating to trade was extracted from the Bank of Thailand from the table: EC_XT_001: Trade Classified by Commodity Group. Retrieved date: 14 Sep 2022 23:48.3) It is not feasible to directly confront Thailand's and Brazil's Degree of Openness since the data collection was

done from different sources, and the list of food trade provided by BoT might not be consistent with that offered by the Trademap.

According to HAMIDI & PRASETYO (2020), for ASEAN countries, including Thailand, Rome's hypothesis is invalid and, actually, the degree of trade openness showed a positive relationship with inflation. As can be seen by figure 6, c, for the year of 2020 and 2021, the line corresponding to the F&B inflation and that which stands for F&B degree of openness have a similar path and positive relationship, regardless of some lag.

1.2 Research Question and Objectives of the Study

1.2.1 Main Objective and Research Question

Brazil and Thailand were severely hit by COVID-19. The Brazilian economy shrunk 4.1 percent, while Thailand's GDP decreased 6.1 percent in 2020. The main objective is to investigate the causes of the discrepancy between Thailand's and Brazilian's F&B inflation behavior during the covid, considering i) the similarities between the two economies (both are developing and food exporter countries), and ii) both having been affected by the same adversity shock. Why could Thailand control F&B inflation while Brazilian inflation is high and above the target?

1.2.2 Secondary Objectives

The secondary objective of this study is to identify and evaluate the probable causes for food inflation in Brazil, the drives which make the prices soar, the weight and relevance of the variables which conduct Brazilian food costs.

An assessment will be made on whether the worldwide economic environment had the same impact on Brazilian and Thailand's food prices. The effectiveness of national price control policies will be appraised for the F&B microeconomic variable. Finally, these two countries' strategies and approaches in dealing with the rate of F&B price changes will be compared.

1.2.3 Research Question

Why could Thailand control F&B inflation while Brazilian inflation is high and above the target?

What are the drives to F&B inflation? Are they different in Brazil and Thailand?

จุหาลงกรณ์มหาวิทยาลัย

Hypothesis:

H₀: Domestic Energy Inflation has no impact on Food and Beverage Inflation.

H₁: Domestic Energy Inflation has an impact on Food and Beverage Inflation.

 H_0 : There is no relationship between the Interest Rate and Food and Beverage Inflation.

H₁: There is a relationship between the Interest Rate and Food and Beverage Inflation.

1.3 Scope

The study will analyze the economic variables of Brazilian and Thailand that explain F&B inflation's behavior during the 24 months since the pandemic onset – January 2020 until December 2021. This timeframe is justified by the fact that it was the acute stage of the pandemic, and the vaccination programs still had not shown their full effects. Moreover, the study will appraise the dataset from periods before 2020 in case of explanatory lag variables.

1.4 Significance and Expected Benefits

"Price stability or inflation is a key macroeconomic variable that policymakers should monitor continuously" (Gongsiang and Amatyakul, 2020, pg. 02). Understanding prices variation dynamics after the Covid-19 shock is relevant because inflation is a powerful economic indicator. The way how inflation moves leads to plenty of social impacts. There are solid theoretical and empirical data that suggest that the increase in inflation amplifies inequality. Conversely, the risk of deflation can affect the capital market severely. Moreover, businesses with debts in nominally fixed bonds experience a rise in real debt. On the other hand, financial institutions perceive a decrease in the prices of the collaterals, making their balance sheets uneven.

Another critical issue is that households with lower income spend proportionally more on foods than the people from other income ranges. According to WORLD BANK (2012), "On average, sharp increases in food prices raise poverty, reduce nutrition and curtail the consumption of essential services such as education and health care" (Laborde, 2019, pg. 03). Debating the increase in the prices of F&B is especially relevant for developing countries because this item constitutes a huge ratio of the whole CPI basket. For example, regarding Brazil, the F&B ratio in IPCA represents 18.99% of the total price index; while Thailand's F&B accounts for around 40%. However, there is empirical evidence that this ratio has been changing during Covid-19 due to the changes in consumers' behavior. Other important facts are that i) the price-elasticity effect for families at the lowest percentile of the income distribution is high, and ii) these households already purchase less expensive options of basic need goods. Therefore, F&B high inflation for those who are on the breadline means risks of starvation.

It is worth highlighting that the literature about inflation is well developed; however, the studies about dynamics of price behavior after the Covid-19 outbreak are still incipient. Hence, previous studies about Thailand and Brazil's inflation during the pandemic are scarce. Furthermore, the apparent dissemblance between these countries might discourage studies comparing these two economies. Nevertheless, similarities between the performance in the agricultural sector and food production aroused issues about price control capacity. This lack in the literature reinforces the importance of an investigation contrasting two emerging economies' inflation outcomes, and it will contribute to the enrichment in the stock of economic knowledge.

1.5 Limitations

One of the constraints is the non-standardization for some indices in the data systems of both countries regarding inflation. The Thai inflation data, made available by the Ministry of Commerce, utilize the CPI average to calculate the quarterly and yearly accumulated inflation rates. However, for the scope of this study, the inflation rate across quarters and during the year will be computed by the compounding method to assure rigorous isonomic handling between the two treated groups. In addition, some of Thailand's information, such as subtitles for tables, are not available in English.

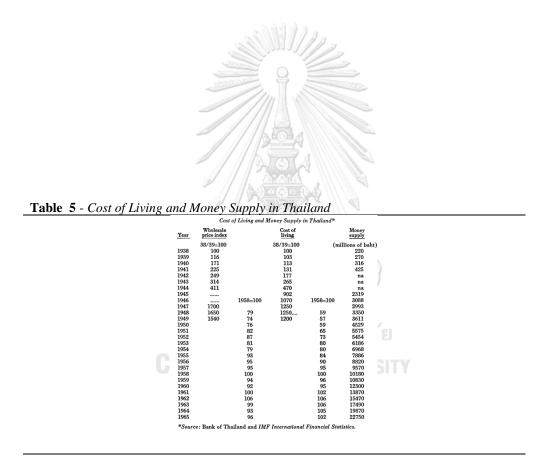
Another restriction consists of the relative scarcity of dependent variables in the time series - the time frame scope of two years provides only 24 observations. Nevertheless, to estimate the coefficients will be use data points from January 2018 until December 2021. Furthermore, the methodology that will be used ARDL – Autoregressive Distributed Lag is adequate to small samples: "the ARDL procedure is statistically more valid in small samples" (Battha et. al., 2020).

CHAPTER 02

HISTORICAL BACKGROUND

This chapter envisages to compare inflation behavior in Thailand and Brazil after two massive external shocks: WWII and the Oil Crisis. This analysis aims to provide a historical perspective about overall inflation behaviors, patterns, and rate standards. Furthermore, it explores the way how the Brazilian and the Thai governments dealt with their respective price hikes and the level of inflation which Brazilian and Thai societies admit as tolerable. These periods were chosen due to them having affected both economies at the same time.

2.1 Post World War II


After WWII, Thailand established its independent Central Bank (hereinafter BOT), which had as its first challenge dealing with high and persistent inflation. It effectively managed to lower the rates from 76% in 1945 to 18% in the following year (NIDHIPRABHA, 1995). According to Haring & Westphal (1968), "Thailand, perhaps more

than any other country, has been able to achieve rapid and substantial growth without inflation since World War II." (pg. 364)

The currency devaluation after the war is the most significant explanatory variable for Thailand's high inflation rates at the time. After the war (1945), the reserves in yen turned worthless, and the stirling reserve was blocked. With the Japanese occupation, Thailand was obligated to leave the sterling exchange pattern and adopt the yen standards: one baht to one yen. That exchange policy led to a devaluation of 35% of the exchange rate. Moreover, another factor pressuring inflation was the broadening of the monetary base. "Note circulation increased from 393 million baht at the end of 1942 to 2,100 million baht by September 30, 1945, when the war ended" (Haring & Westphal, 1995, pg. 366).

The bolstered money supply led to a fast inflation growth from 1952 to 1964. However, this expansion also reflected the recovery in the output. The money supply (currency and demand and time deposits) more than tripled during thirteen years, while income (GNP) increased by about 2.4 times. Analyzing the money supply and the output for these periods, is it possible to deduce a strong relationship between those two variables. The time series encompassing these 13 years shows a correlation coefficient of 0.985 between the log of money and the log of income; the positive sign means that they move in the same direction. Since the maximum value the index can reach is 1 or minus 1 (when they move in an oppositive direction), the value found indicates a solid relationship. (Haring & Westphal, 1995)

According to HARING & WESTPHAL (1995), three factors helped Thailand keep prices under control: i) financial aids that the country received after the war, ii) consumer preference for local goods, and iii) the fact that the exchange market and the foreign exchange transactions were under total control of the government. By analyzing the data from 1938 until 1965, at table 05 below, it is possible to draw two essential conclusions. Firstly, the money supply grew quicker than inflation. Secondly, the response to inflation in 1947 was effective.

Note: From: Haring, J. E., & Westphal, L. E. (1968). Financial policy in postwar Thailand: external equilIBC_BRium and domestic development. Asian Survey, 8(5), 364-377. Pg. 367.

The Brazilian Economic history has frequently been pervaded by inflationary issues. Concerns about inflation are always latent among economists, scholars, journalists, policymakers, consumers, and the public opinion. According to VIANA (1990), there was a perception that inflation had been escalating during the period after WWII. Between 1951 and 1953, prices measured in then-capital Rio de Janeiro soared year after year, from 12,1% to 17,3% and to 20%. Part of this increase is explained by currency devaluation, which made production costs more expensive. To make matters worse from the inflationary perspective, a rise of 100% on the minimum wage was given. For PINHO (1990), in 1954 the government "intended to adopt strict anti-inflationary measures, blaming the debt monetization and the credit expansion as the main culprits for the inflation. In 1955, prices stabilized at 13.1%, but thanks to the high performance of agriculture rather than monetary policy". Scholars define the biannual of 1954/1955 as stabilization-oriented, through the restriction of aggregated demand. However, PINHO (1990) characterizes the period as an alternation between contractionist and expansionist programs.

From 1956 to 1960, as stated by ORENSTEIN & SOCHACZEWSKI (1990), "the recurring plans of stabilization, when implemented, were only attempts at reducing the pace of inflation to the tolerable level." However, the rise of inflation rates from 7% in 1957 to 24,5% in 1958 raised a red flag. As a response, the government announced the Monetary Stabilization Plan. The plan had two main points: lowering the pace of the monetary supply's expansion and wage-setting based on firms' costs and revenues. This plan was evaluated as extremely orthodox and aligned with the IMF. Besides, it had no political or institutional support for its implementation. For example, Bank of Brazil (BB), which had accumulated the function of Central Bank and commercial bank, was not aligned with the stabilization plan's objective regarding controlling the money supply. It is important to stress that the Brazilian Central Bank (Bacen) was created only in 1964. Moreover, organized worker pressure rendered the plan highly unpopular. Unions argued that workers would lose in wage purchasing power. Therefore, then-President Juscelino Kubitschek decided to forego the stabilization. "Under the structuralist vision, underdeveloped countries would only be able to

industrialize by coping with some level of inflation, which should be managed, instead of seeking price control through stagnation" (Orenstein & Sochaczewski,1990, pg. 194)

In conclusion, by analyzing the post-WWII period, it becomes clear that Brazil and Thailand prioritized different aspects of stabilization. While Thailand followed an orthodox policy regarding inflation control, Brazil, on the other hand, admitted moderately high inflation, with general public complacency as long as the economy performed at a desirable level of growth.

2.2 OIL CRISIS

In Thailand, a big part of the country's history of price stability stems, among other reasons, from the conservative bureaucracy. The longest-running BOT governor in history so far, Dr. Puey Ungphakorn, stated that monetary growth could not exceed 2 or 3 % of the GNP growth; otherwise, it could cause high inflation, which leads to high inequality in wealth distribution.

Conversely, in Brazil, during the years that precede the crisis, 1967-1973, the level of inflation was in the range of 20 to 30%. This inflation, however, did not accelerate further due to prices and wages control. The Brazilian government created the Interministerial Board of Prices (CIP – Portuguese abbreviation) to control prices. The CPI was in charge of analyzing and allowing the firms' prices increases. (Lago, 1990). On the other hand, "the salary constraints were aligned with the inflation-fighting moods, favoring capital accumulation through a high level of profits" (Lago, 1990, pg. 287). Despite these constraints, some drivers pushed prices up. The industry installed capacity had reached its limit, making price control innocuous. This theory is corroborated by LIMA (1977, pg. 32), which states that: "the argument of 'imported inflation' is not enough to explain the acceleration of prices during

70's". The economy was about to reach the potential level of output. By 1973, it had achieved around 90% of total capacity.

Not unlike Brazil during the '70s until the '90s, Thailand also experienced pressure on its level of prices in the same period. The first impact, in 1972-1973, was a positive shock due to the appreciation of commodities. The second one was the first oil shock, in 1973-74, but its effects lasted until the end of the decade. During the second oil shock, in 1979-80, the barrel price skyrocketed, as well as general interest rates (Warr, 1996).

In the period between 1975 and 1990, import prices normally surpassed export prices, mostly due to the rising oil prices. However, nonpetroleum imported products had their role. "Since nonpetroleum imports account for more than 80% of Thailand's import bill, these nonpetroleum price increases contributed significantly to the inflation that Thailand experienced in these two periods, along with most of the rest of the world." (Warr, 1996, pg. 105). Conversely, in Brazil, "after the first oil shock, the higher prices of oil products meant only 33% of the increment on the imports bill." (Lima, 1977, pg. 30).

The effects of those two oil shocks on Thailand's balance of payments were equivalent to a deficit of 4% of GDP in 1973 and 2.4% of GDP in 1979. Both shocks, in 1973 and 1979, pushed down the growth trend by around 2%. The first shock led to an inflation of 25% in 1974 and 15% in 1979. Nevertheless, between the two shocks, the economy could perform between 2 and 7% above the trend, with moderate inflation (Warr, 1996, pg. 122). After the second shock, inflation receded, but growth remained below the trend until 1982.

By comparison, the Brazilian government forwent equilibrium at the balance of payments for the sake of growth at 10% during the period of 1975 to 1979. This period was known as "growth in a forced march." This policy was endorsed by the population, in general, because "there was a tradition of coexistence with a significative inflation rate, facilitated by a

comprehensive indexation system. Regardless, there was no social security system capable of coping with the impact of a constractionist adjustment". (Marques, 1991, pg. 47)

As reported by NIDHIPRABHA (1995), the relationship between inflation and growth rate in Thailand between 1971 and 1990 can be categorized into four groups, as indicated in figure 5. It is important to stress that unemployment rates were analyzed using growth rates as a proxy. If the normalized growth index (GZ) were positive (negative), it meant that unemployment was below (above) the natural rate of unemployment. With regards to inflation (FZ), a negative index number means it is below the average and, if positive, above the average for that time series. The first group (growth and positive inflation) were the years of 1973, 1977, 1978; the second group, with negative growth and positive inflation, were the years of 1974, 1979, 1980, 1981 (external shocks); the third, with both negative inflation and growth, 1971, 1972, 1975, 1982, 1984, 1985, 1986; and the fourth, with positive growth and negative inflation, 1976, 1983, 1987, 1988, 1989, 1990. It is possible to see from the table below that none of the indexes lie far from 3 standard deviations from the mean. The most extreme value corresponds to 25% of inflation in 1974.

Year	GZ	FZ
1973	0.943	1.380
1977	0.957	0.088
1978	1.142	0.150
1974	-0.997	2.689
1979	-0.652	0.467
1980	-0.841	2.020
1981	-0.288	0.905
1971	-0.778	-1.107
1972	-1.099	-0.380
1975	-0.819	-0.292
1982	-1.102	-0.295
1984	-0.007	-1.075
1985	-1.302	-0.787
1986	-0.794	-0.902
1976	0.777	-0.511
1983	0.036	-0.561
1987	0.809	-0.770
1988	2.080	-0.548
1989	1.741	-1.287
1990	0.194	-0.184

Figure 7 - Relationship between Inflation and Growth

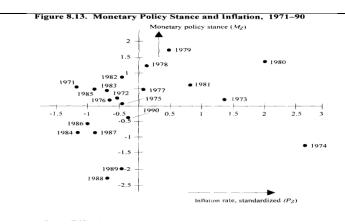
Note: adapted from Nidhiprabha, B. (1995). Inflation and Macroeconomic Management in Thailand. Macroeconomic Management in Southeast Asian's Transitional Economies. Pg. 144

Regarding fiscal stance, there is a negative relationship between fiscal impulse (budgetary debt is used as a proxy) and inflation. High inflation can cause a rise in unplanned revenues as well as expenditures, but its impact on revenues is stronger, and it leads to a decline in actual deficit. However, Warr (1996) argues that the two oil shocks came along with an economic slowdown; therefore, the tax revenue does not increase sufficiently to reduce the fiscal impulse (here understood as debt), weakening the negative correlation between these two variables. In contrast with WARR (1996), NIDHIPRABHA (1995) stresses that "during the expansionary period, the fiscal deficit was reduced, and even in periods where booming is along with inflation, the so-called Tanzi effect was not observed in Thailand because there is no significative lag in tax collection" (pg.135). During both positive and negative shocks, government revenue increased. The inflation caused by these two shocks made the tax revenue expand from 28 % in 1973 to 48% in 1979. The government used this surplus to reduce indirect tax and lessen the consumer and producer prices pressure.

Still regarding fiscal stance, according to NIDHIPRABHA (1995), wages play an important role in inflation control. In the later '70s and early '80s, the Thai government tried

to control inflation expectations by controlling the raises in wages. Although the minimum wage had an annual nominal adjustment, the civil servant salary raise was kept underinflation on average. This influenced how the wages in the private sector were set. In agreement with NIDHIPRABHA (1995), WARR (1995) acknowledges that the freeze in civil servant salaries from 1982 to 1988 was important to control expectations. However, to the latter, the stabilizing role of expenditure can be seen through the lens of public investment, since it is harder to cut current expenditures (government consumption) than capital expenditures. The very rigid budgetary rule does not allow for the execution of that expenditure when the price is higher than what was defined by the fiscal law. Thus, when inflation scales and the price of capital goods rises, that expenditure is not made at all for that specific fiscal year, which contributes to deficit reduction. Nonetheless, given that public and private capital expenditures (investment) are mostly negatively correlated, growth wasn't jeopardized.

With respect to the Brazilian budget during the '70s, controlling it was challenging due to the coexistence of three different budgetary systems: the union budget, the monetary budget, and the state-owned enterprise budget. From the revenue perspective, net taxes (direct and indirect taxes minus transfers, payments and subsidies) shrunk from 15,6% of GDP in 1970 to 9,8 % in 1983.


It is consensual among scholars that large public debt can lead to high inflation. Since the beginning of the '80s, Thailand has reduced its public debt and, since the early '70s, shifted the borrowing pattern towards less inflationary means. "In the period of 1970-74, borrowing from the Bank of Thailand was 78% of total net domestic borrows. It fell to only 25% during 1986-88." (Nidhiprabha, 1995, pg. 165). In comparison, the Brazilian economy was characterized by a high debt, which, until 1964, was financed entirely by seigniorage. Until the '60s, the Open Market Operation system wasn't well developed. There wasn't any hedging mechanism against inflation, which made the OMO not attractive (CERQUEIRA,

2007). The two oil shocks worsened Brazilian debt. In 1973, Brazil had a net foreign debt of US\$ 6 billion — which corresponded to one year of exports. In 1979, that figure had enlarged sixfold. (Munhoz, 1997, pg. 79).

Regarding monetary stance, Thai monetary policy had two main conflicting objectives: price and income stabilization. If inflation is within moderate standards, below 6% a year, the monetary stance will seek income stabilization. Figure 6 displays, in the x-axis, the standardized value of inflation for the period that encompasses the '70s and the '80s; and, in the y-axis, the changes in credit as a proxy for the monetary stance. When inflation was below the mean (east side), BOT acted both pro and countercyclical. In the period of 1978/1979/1980, inflation control was put aside. These years were marked by BOT weakening due to political issues. Then, even with the inflation higher than average, growth stability was prioritized, and there was no contractionary monetary policy.

Figure 8 - Relationship between Inflation and Credit

Note: From Warr, P. G., & Nidhiprabha, B. (1996). Thailand's macroeconomic miracle: Stable adjustment and sustained growth.

"The monetary contractions of 1973-74, 1979-80, and 1980-82 are cases in point. These contractions were not especially prolonged because inflation responded quickly. It must be emphasized that the past record of Thailand's conservative monetary management has been such that its monetary policy remains highly credible. When the Bank of Thailand starts raising its lending rate, inflationary expectations start to abate." (WARR, 1990, 247)

With respect to the Brazilian monetary stance, both Marques (1991) and Lima (1977) understand that the monetary policy was pro-cyclical in 1973. Nevertheless, for Lima (1977, pg. 34), the rise in money supply was a consequence of the inflationary process underway, and not its cause. It was needed to fulfill transactions in an ongoing process of prices upheaval. In 1975, 1977, and 1981, there was a monetary contraction thanks to the public debt behavior, which showed a slight decline. However, in 1977, 1979, 1982, and 1983, massive redemptions of securities pressured the monetary base upwards. Moreover, another monetary variable that explains the inflation trajectory between 1973 to 1979 was the rise of real liquidity fostered by the highly subsidized credit expansion (Marques, 1991).

In conclusion, Thailand, from 1979 to 1990, has been very conservative in deficit; the planned expenditures can never surpass 25% of the revenues. This ceiling lasted until around 1994. And, since 1960, there has been a ceiling in the debt service in the ratio of 5 percent. Debt control helped keep inflation under a tolerable level. According to Nidhiprabha (1995), fiscal discipline also helped offset the surplus caused by capital inflows from 1982 to 1995. It was crucial to hold the excess of liquidity to warrant price stability, in accordance with the quantitative theory of money.

In contrast, from 1964 until 1994, all plans of controlling Brazilian inflation were frustrated. "Between 1970 and 1973, inflation was at 17.5% on average, a modest rate from a historical perspective. However, due to demand pressure caused by deficit, inflation got into an accelerated pace from 1974 onwards. (Cerqueira, 2007, pg. 85). Since then, indexation based on past inflation was used more often, causing inflation to spill out of control at an accelerated pace. Thus, the inflation inertia component had been fed by indexation. Therefore, inflation expectations were adaptive instead of rational, at least until 1986. After 1986, policy-makers started to implement a sequence of plans which consisted of supply shocks and price freezes. These plans were known as heterodox plans of stabilization. With each shock, inflation fell sharply, but in the subsequent month, it accelerated with more intensity (Cerqueira, 2007). This heterodox policy led the Brazilian economy to hit never seen before levels of inflation, reaching almost 1800 % (YoY) in 1989. Effective stabilization only came in 1994 with "Plano Real".

CHAPTER 3

LITERATURE REVIEW

The literature about food inflation during the acute phase of the Covid-19 Pandemic is scarce due to this theme being recent in terms of history and scientific production. With respect to Thailand and Brazil, there is no publication comparing food inflation in both countries, until the present moment. This lack of studies motivated this work to look into the reasons that drove Brazil's and Thailand's food inflation in certain ways. Having said that, this chapter is an effort to review the specialized literature and provide elements to help fill the literature void and answer this dissertation's primary concern. Due to this study's contemporaneous object, scientific articles have not been published yet. Assessing general inflation drives, overall food inflation components, specific elements of Brazilian and Thai inflation, as well as inflation and food inflation in the developing economies can furnish tools to analyze the core question of the present work. Therefore, the present literature review will explore the issues surrounding the topic question targeted by this work.

In face of the reasons above, this literature review will be organized into two main parts: i) inflation in developed countries and ii) inflation in low-income economies and emerging countries, which encompass Brazil end Thailand.

3.1 Inflation in Developed Countries

Few journal articles can be found regarding food inflation in developed economies since food does not have a relevant proportion in the consumption basket for those countries. Nevertheless, the disruption in the supply chain caused by the Pandemic raised concerns about food security and inflation. The impact of socialdistancing measures on prices, such as the stay-at-home policy, was unknown since western countries have not experienced these measures since World War II. The work of AKTER (2020), even incipient, sheds light on the likely problems in terms of price changes and distortion in relative prices. The scholar evaluated the impact of related stay-at-home restrictions on food prices in 31 European countries. The indices used were the European Union's Harmonized Index of Consumer Prices (HICP) and Stay-at-Home Restriction Index (SHRI), both organized in panel data. The author created a dummy variable for the SHRI – called SHRID. That variable has a value of 0 when SHRI is equal to or greater than 1.9 and 1 otherwise. Another dummy called Post was created, in which January and February have the value of 0. For its turn, Xit is a vector of 5 different variants. The time series is from January 2019 until May 2020.

AKTER (2021) used the Differences-in-Differences fixed effed to design the model below.

 $HICP_{it} = \beta_0 + \beta_1 SHRID_i + \beta_2 POST_t + \beta_3 SHRID_i * POST_t + \beta_4 X_{it} + \epsilon_{it}$ eq.01

According to the model created by AKTER (2020), in equation 01, β_2 captures the trend as the shock would not have happened; therefore, the average impact of covid among the countries. The β_3 deserves special attention. This regressor captures the change in HICP during the post-restriction months and between countries and the differences between high and low restriction countries. Distinct outcomes suggested that food prices rose in countries with high restrictions, while the food prices declined in countries with fewer restrictions. However, prices stabilized for the countries with high restrictions afterwards.

After running a regression for each group of food, the results showed different outcomes for the restriction analyses. For example, for the bread, oil, and fat group, the covid impact did not show any statistical significance; nevertheless, there was statistical significance in all three months of post-shock for the animal protein.

Analyzing β_3 for all groups simultaneously, the conclusion is that the countries with high restrictions had around 1 percent further change in CPI. However, it should be emphasized that there is no statistical difference between countries with high and low restrictions from May onwards. The outcomes suggest that the restrictions could have caused price pressure when it was introduced, but there is no evidence that this pressure was sustained. This is because the supply sector might have rearranged itself to adapt to the new rules.

On the other hand, for general inflation, HA et al. (2021) identified a reduction **CHULALONGKORN DENSITY** of around 0.6% on average, considering the developed economies. The food price spike was offset by the oil price slump for the first four months of 2020. HA et al. (2021) analyzed the monthly inflation in 31 advanced and 50 emerging and developing economies from 2001 to 2021 and concluded that after the Covid-19 outbreak, global disinflation was the most short-lived inflation downturn aftershock considering the last 50 years.

Regarding the United States economic environment, the study of KWON & KOO (2009) aims to address the dynamics of food price setting. The authors intend to

analyze the transmission mechanism by the stage of process (SOP) framework. They collected data from January 1985 to July 2008 from The US PPI (Producer Price Index) of crude foodstuff, feedstuffs, intermediary food, and CPI food at home. The sample was divided into the period I (1985 - 2001) and period II (2002 – 2008). For period I, the results showed the coexistence of both: cost-push and demand-pull mechanisms. However, for the second period, all mechanisms of demand-pull have not revealed any significance; conversely, the cost-push channel showed strong relevance.

The authors highlight the importance of the cost-push mechanism in price stabilization. KWON & KOO (2009) claim that the literature frequently exploits the weight of commodity prices in food inflation hikes, neglecting how the retail sector magnifies price pressures. Although several scholars infer the unidirectional price transmission mechanism, another group of researchers argue that the rise in food prices derives from the demand towards wholesale's prices. Based on these finds, it is possible to conclude that retail prices have the capability of pulling agricultural prices, establishing a dynamic relationship. Regarding exchange rate, there is no relationship between that variable and food prices in the first period, contrarily to what happened during the second period. (Kwon & Koo, 2009).

3.2 Inflation and Food Inflation in Low-Income and Developing Countries

In contrast to advanced economies, food inflation is a central concern in developing economies. Even when these economies are net exporters of food and selfsufficient, the price instability of commodities can generate losses in social welfare, food insecurity, and, ultimately, spill out to the rest of the economy, such as the nonfood sector and labor market.

According to HA et al. (2021), the last period of high inflation was registered during the 90s and 80s for low-income and developing economies, respectively. On the other hand, the Covid-19 outbreak was preceded by a long period of low inflation for developed economies, emerging countries, and low-income economies. Nevertheless, the current expectation for global inflation is an increase of one percent on average, which can impair inflation targeting for developing economies. However, one year before the outbreak, for both groups of economies, inflation was stable at a low level of 3.5 percent (emerging economies) and 3.5 (low-income economies).

Regarding low-income countries, AGYEI et al. (2021) evaluated whether the Covid-19 outbreak impacted food prices in SSA – Sub-Saharan Africa countries. The authors used the GMM (General Methods of Moments) methodology, with Panel Data, from March to September of 2020, only six months total. The product of this study was aggregated into two main models. In the first model, the Maize price was the dependent variable; the explanatory variables were: lnCovid (number of infections), lnEXRave (average exchange rate), lnInfod (food inflation), LnCopave (crude oil price), and InMaizepx_{it-1} (one-month lag of the dependent variable). The second model, by its turn, used the same variables group, except for using a lockdown dummy rather than the number of inflections.

It is essential to highlight that the number of Sub-Saharan countries is larger than the number of time observations needed to apply techniques that treat endogeneity. Furthermore, the same models were used for Sorghum, imported rice, and local rice but with different combinations of countries. The authors tested all independent variables for multicollinearity and used the benchmark of 0.7 as the cutoff point. Collinearity is the level of correlation between the independent variables, and when it happens, the estimated regressor loses its reliability.

The maize price during those months was, on average, US\$ 0.43 per Kg and had a standard deviation of US\$0.26, which suggested a large difference among countries. After regressing the variables, they identified that the most potent regressor was the lag-dependent variable for the three food staples. 'This suggests that managing current food prices informs their future levels" (Agyei et al., 2021, pg. 108). Also, there is a positive and significant relationship between the price of these staples and the number of covid new cases. The author explains this relationship due to the rise in production costs by reducing labor supply.

To be more specific, in the first model, which used the number of infections, AGYEI et al. (2021), found two different outcomes for the exchange rate. The interaction between local food prices and the exchange rate depicted a significant negative relationship; when the exchange rate rises, food becomes cheaper, which is intuitive. However, an unexpected positive relationship between imported rice price and the exchange rate was observed. It is logical that when there is a currency appreciation, imported goods become cheaper compared to domestic goods. However, with the currency appreciation, the demand for imported rice has increased; therefore, the price elasticity of demand pulled its price up.

AGYEI's et al. (2021) article concludes that the number of infections interferes with food price changes. However, in line with AKTER's (2021) studies

(which did not find the relationship between lockdown and food prices from May of 2020 onwards), AGYEI' et al. (2021) did not find any association between lockdown and starchy food staples, excepting maize. The maize behavior can be explained by the fact that this staple was a cheaper product compared to sorghum and rice. Therefore, being an inferior good, when income decreases, maize consumption increases, putting pressure onto its future prices.

As AGYEI's et al. (2021), ADEWOPO (2021) specifically evaluated price changes over 11 weeks during the first Covid-related lockdown in Northern Nigeria, focusing on the lockdown effect. In order to do this in real-time, the author used a digital crowdsourcing tool. The proliferation of mobile phones and internet access, along with citizen participation, has the potential to provide real-time monitoring of food prices. The benefit of this method is that it allows official instances to issue rapid and context-specific intervention. Furthermore, this method can spot inconsistencies in official ones. "Crowdsourced price, averaged on weekly basis, was slightly higher than the prices reported by the National Bureau of Statistics" (ADEWOPO, 2021, pg. 5). Seven hundred volunteers collected food price data of some staple foods daily. This tool was part of a broader program called Food Price Crowdsourcing in Africa (FPCA), allowing data collection before Covid, during the lockdown, and during the lockdown easing.

Unlike AGYEI et al. (2021), ADEWOPO (2021) identified a persistent rise in grain prices after the lockdown. The daily price data, on average, consistently showed higher grain prices in 2020 compared to the preceding year. Retail prices of maize and rice were, on average, 26% and 44% higher. The maize price after lockdown easing

continued to rise sharply, likely due to the limits imposed by the importation policy. Likewise, rice prices continued to increase despite the lockdown easing.

According to ADEWOPO (2021), prices did not return to the pre-covid level, resulting in many households experiencing food insecurity. Distinctly from what AKTER (2021) concluded for European countries, in Northern Nigeria, the lockdown, by itself, caused persistent food inflation according to the first scholar. One interesting factor for these different outcomes can be partially explained by the changes in the logistics of doing the groceries. Data show that the mean distance traveled for shopping was reduced by 54%. Restrictions in mobility may have reduced the consumer's bargaining power. After the lockdown, along with the rise in the distance traveled to shopping, the size of the packages had increased, and probably consumers were attempting to catch up on postponed purchases. This can explain, in part, the reason why food inflation continued to grow after the lockdown restrictions.

For developing economies, the monetary stance has a prominent role. However, there is no consensus about which of the negative or positive impacts will have more weight. For example, there is no common understanding if monetary policy stabilizes food prices by reducing the aggregated demand. Many scholars advocate subsidies as the best way to stabilize food prices and consumption because it leads to a lower output loss compared to a rise in the real interest rate. BHATTACHARYA & JAIN (2020) investigated the effectiveness of this channel in the presence of elements that impact the supply side by increasing production costs and working capital. Furthermore, those scholars argue that a tightening in monetary policy by raising the cost of capital impacts total food production cost no matter if the food sector is capital intensive or not. When the food sector is capital intensive, it is easy to understand the connections. In this case, a rise in interest rates increases the opportunity cost of capital and worsens financing conditions. On the other hand, when the food sector is not capital intensive, it is affected by the monetary tightening due to the capital-intensive nonfood sector increasing the ratio of labor/capital; then, with the rise in demand for labor, wages also rise, affecting the food sector through demand, even when it is not capital intensive. The author emphasizes that the monetary tightening must be stubborn to show any effect in reducing food prices. "By the side of the demand, aggregated demand channel can outweigh production cost channel via sustained monetary contraction." (Bhattacharya & Jain, 2020, pg. 123)

The effectiveness of interest rate hikes in food price stabilization is far from being an uncontested theme. FRANKEL (2008), cited by BHATTACHARYA & JAIN (2020), found that real interest rate lowers aggregated real commodity price, including agricultural commodities. Nevertheless, Hammoudeh et al. (2015), using the VAR model from US quartering data from 1957 to 2018, found that, "lowering a monetary tightening, food prices persistently rise after an initial decline" (Bhattacharya & Jain, 2020, pg. 126). These two studies are examples of how the specific literature can diverge concerning this point.

Furthermore, the study conducted by BHATTACHARYA & JAIN (2020), with panel data and quarterly data (from 2006 to 2016), compared food inflation dynamics in developed countries (US, UK, Canada, Japan, Italy, France, and

Germany) against emerging economies (Brazil, Russia, India, and China, South Korea, Chile, Mexico, Turkey, and Hungary). The authors spotted different aspects of the monetary policy on food price stabilization. For the emerging economies group, a 0.1% increase in the interest rate causes, on average, food inflation to increase by 0.01% immediately, but this change is transitory. "This study stands with the existing literature, which asserts that the relationship between monetary stance and food inflation is weak in emerging economies due to its underdeveloped financial system, low level of financial integration" (Bhattacharya & Jain, 2020, pg. 131). Additionally, the negative effect of the interest rate related to aggregated demand is more than outweighed by the increase in production cost.

These authors applied the FEVD (Forecast Error Variance Decomposition) methodology. The outcome indicated the following main contributions to the food inflation variation: income growth, exchange rate, real consumption, investment growth, and headline inflation. All these elements were used with a lag of 4 quarters. For emerging economies, variation in GDP growth can explain only 7.77% of the variation in food inflation. However, the main takeaway from this work is that the policy rate has a positive and significant effect on food inflation; in other words, when the interest rate rises, the overall result, after some quarters, is an increase in the variation of food prices. "A monetary tightening may turn out to be destabilizing" (Bhattacharya & Jain, 2020, pg. 133)

Many scholars also observe a close and vital relationship between food inflation and monetary stance through the exchange rate channel. For instance, in emerging economies, according to HA et al. (2020), ten percent in exchange rate depreciation has been estimated to raise inflation by about one percent. These authors claim that food price increases are highly correlated to currency depreciation because of the cost of importing food products. This outcome is in keeping with AGYEI's et al. (2021) findings for low-income countries. However, differently from AGYEI et al. (2021), HA's et al. (2020) studies analyzed developing economies during the outbreak of Covid-19.

The demand depression was the main player in the price downturn in the first quarter of 2020. Besides, from the second quarter of 2020 onwards, the change in disinflationary pressures also derived from the recovery in the crude oil price and demand uprises, each one of them contributing, on average, with one and two-thirds, respectively (Ha et al., 2020).

In agreement with HA et al. (2020), BHATTARYA & JAIN (2020) spotted the link between food commodity prices and monetary policy. We shall suppose a tightening in monetary policy, which entails an interest rate increase. One of the first impacts of a contractionist policy is a sudden boost in storage costs. Given that, the firms have an economic incentive to release their inventories, temporarily shifting the supply curve. However, once the interest rates remain at a high level, so does the inventory carrying costs, which discourage firms from maintaining a high stock. Secondly, bonds become more attractive than holding commodity assets, which can decompress demand for this commodity, which in turn might negatively impact retail prices. Third, the aggregate demand falls because investment is negatively correlated to the interest rate. "The two latest movements release the pressure on inflation food, while the first one pulls the prices up." (Iddrisu, 2021, pg.57). Although the reduction in aggregate demand has less impact on food inflation than on nonfood inflation, the optimal level of monetary stance promotes food price stabilization.

The current literature has been considering that the correlation between the interest rate on food prices is rising. AKAN's (2009) and HAMMOUCH et al. (2015) (as cited in Iddrisu, 2021) research concluded that when interest rates rise, so do food prices. In both studies, the outcomes suggested a positive and persistent relationship between food inflation and interest rate.

To reckon how and by how much food inflation is affected by monetary decisions, IDDRISU (2021) analyzed the monthly time series from January 2006 to May 2018 in ten different developing countries. The variables used were: MPR (Monetary Policy Rate), FOOD (Food Inflation), Real Gross Domestic Product (RGDP), HCE (Household Consumption Expenditure), GFCF (Gross Fixed Capital Formation), USD (Exchange Rate domestic against the Dollar), and GFPI (Global food prices index). The author applies wavelet-based quantile regression. This methodology's advantage is preventing outliers that mislead the forecasting accuracy and spots asymmetry in the relationship between monetary policy and food prices.

Another advantage of the Wavelet approach is its ability to handle nonstationary data. First, IDDRISU (2021) used wavelets to decompose the time series into high and low frequencies. The father wavelets are integrated to 1 and can capture the trend and the time series' smooth part (low frequency). The mother is integrated to zero and captures high frequency. Second, after decomposing the series, the author applies quantile regression techniques to assess whether monetary policy affects food inflation in different quantiles and horizons. The quantile of interest was 25th, 50th, and 75th.

In this vein, the author estimates the variable of interest by means of two different models. The first employs the Real Gross Domestic Product, Exchange Rate, and Global Food Price as controlling vectors. On the other hand, the second model applies the controlling vector to Real Household Consumption Expenditure and Real Gross Fixed Capital Formation. (Iddrisu, 2021)

The core of IDDRISU's (2021) arguments is that correlation between monetary policy and food inflation relies on the following cause-consequences chain: the agriculture and food processing sectors are capital intensive and highly automatized nowadays; therefore, interest rates directly affect their production costs. Additionally, given the inelasticity of food demand, production costs are easily passed through to consumers. "Moreover, and on account of the same reasoning, food item from the food sector get to final consumers through the efforts of wholesalers and retailers who also invest heavily on transportation infrastructure, warehouse, packing and packaging equipment." (Iddrisu, 2021, pg. 69). Monitoring food price stability is crucial due to its influence on overall prices. When total inflation increases, the monetary authority tightens the monetary stance, which, in turn, pressures the food price by rising production costs.

From the lessons of IDDRISU (2021), a contractionist monetary policy by raising production costs can end up being a factor of instability for food inflation. To warrant food price stability, especially in developing and low-income countries, it is critical to utilize fiscal policy (such as subsidies). The reflections of KAUR (2020)

partially corroborate those of IDDRISU (2021). The former author emphasizes that a monetary tightening makes capital more costly, then the production sector shifts and becomes more labor intensive, causing wage and price pressures. For the demand side, a rise in the interest rate causes consumption and investment to diminish, therefore lowering general prices, including food. It is essential to highlight that KAUR' (2020) is based on the Indian economic environment and cannot be extended to other emerging economies.

However, while a strand of scholars advocates that the Central Bank must interfere no matter the causes of inflation, another group sustains the hands-off approach (Subbarao, 2011). SUBBARAO's (2011) study aims to investigate the underlying conditions that have driven Indian Food inflation to a higher level compared to the last 60 years, even in the face of record production of foodgrain. This study's goal is to figure out what has changed in the recent years. For this scope, the author set as recent years: 2008 until 2011.

SUBBARAO (2011) lists some non-monetary elements that might have contributed to the increase in Indian food inflation. First, dietary behavior includes more protein. According to Bennett's law, the higher the income, the less proportional spending on starchy staples in favor of more expensive sources of calories. Along with the increase in income, India also increased its consumption of protein-rich items. However, the supply side did not catch up with this change. Secondly, inclusive growth. Two laws warranted minimum income for rural areas. The first law was the Mahatma Gandhi National Rural Employment Guarantee Scheme which ensured at least one hundred days of wage employment to rural labor. This pushed up real wages for rural areas. The second is the Minimum Support Price Policy. Thirdly, the international environment. According to OECF-FAO's estimative, food prices would continue to spike from 2015 to 2020. This means that the international market integration would not soothe the domestic situation. Furthermore, the financialization of agricultural commodities amplified the disequilibrium between supply and demand. Although, for India, the relationship between the future market and food prices has not been empirically proved.

Regarding the pandemic context, HA et al. (2021) point out for overall inflation that Central Banks, in general, kept doing accommodative policies so as to not jeopardize growth and due to believing that inflation expectations are well anchored for the medium-term.

Using the same methodology as IDDRISU (2021), BANERJEE et al. (2020) analyzed 31 emerging and 12 advanced economies separately from 1990 onwards. The author employed quantile regression through panel data. This choice was justified since the OLS conventional regression estimates averages while quantile regression focuses on edges. The author exemplifies the cases in which financial restriction can act negatively and positively related to inflation. For conventional methodology dealing with averages, the regression could not demonstrate the relationship between those two variables. Concerning financial conditions' impact on general inflation, the studies conducted by BANERJEE et al. (2020) are aligned with IDDRISU (2021). For emerging countries, tighter financial conditions contribute as much to the downside (left tail of the distribution) as to the upside (right tail of the distribution) of inflation risks. In emerging countries, food inflation and monetary policy have a dynamic relationship. Apart from humanitarian matters, persistent food inflation can be challenging for the monetary bodies. Some scholars advocate that central banks should look after the side effects or second-round effects caused by food inflation on core inflation. However, "there is evidence that food price inflation dynamics can differ in emerging economies. In this sense, ignoring food inflation in monetary policy actions could lead to policy mistakes" (Ribeiro, 2019, pg. 82). According to WALSH (2011), cited by Ribeiro (2019), food price instability in emerging countries tends to be more persistent and spread more easily through other sectors. Moreover, as the proportion of food on CPI is larger in developing economies compared to advanced ones, so is the pass-through to core inflation. As stated by KAUR (2020), although inflation targeting helps forging the Central Bank's credibility and the stationarity of the inflation rate, Central Banks should analyze where inflation stems from before using interest rate stances.

In a study assessing whether food inflation plays an important role in core inflation, RIBEIRO (2019) appraised Peruvian economic data before the Pandemic, from 2010 to 2016. The food sector is highly susceptible to shocks. While there is a consensus that monetary policy should not react to transitory supply shocks, there is also a consensus that Central Banks should act timely when the supply shock is significant enough to generate second-round effects on inflation. The timeframe studied was marked by elevated volatility in food prices. Nevertheless, the inflation expectation was well anchored and stable. The outcomes of Ribeiro's work suggest that the Peruvian price expectations have a forward-looking composition, which reduces the inflationary inertia and helps keep transitory shocks only temporary. RIBEIRO's (2019) approach is in line with SUBBARAO (2011) 's observations. For the latter author, in scope of the Indian economy, a rising in food inflation is often caused by a supply shock. Therefore, Central Banks must evaluate whether the shocks are temporary or permanent. When the shock is permanent, it tends to also impact core inflation and inflation expectation; only then would the Central Bank's action be suggested.

Central banks also need to evaluate the nature of the shocks. Contrarily to demand shocks, which affect growth and inflation in the same direction, negative supply shocks cause downturns in growth and spikes in inflation. In such scenarios, Central Banks must choose between growth and price stabilization.

The spiraling of food inflation should not be the only concern of central banks. It is well known that general inflation exacerbates inequality; is food inflation more powerful in doing this? WASH et al. (2012) studied the differences between the impact of food and nonfood inflation in India. The authors argue that high food prices can hurt poor people in urban areas but, in rural areas, nonfood inflation can be more prejudicial than food inflation. High food prices can benefit small rural producers, but this only works for those who are net food producers. Additionally, food inflation in rural areas contributes to reducing inequality by encouraging the poorest producers, who cannot take advantage of food inflation, to migrate to cities; therefore, an inflationary food environment expels the poorest, softening rural inequality.

On the other hand, many scholars and researchers worldwide suggest that long-run inflationary scenarios worsen the income distribution. WALSH et al. (2021) ponder that inflation does not contribute to rural equality because poor people do not have those mechanisms available for high-income people to cope with inflation, such as pursuing financial assets with returns that offset inflation. Moreover, consumption anticipation, another mechanism of inflationary hedge, is not feasible to deal with food inflation due to its perishability.

3.2.1 Brazilian Food Inflation

The interaction between food inflation and monetary stances in Brazil's environment during the pre-pandemic period was analyzed by IDDRISU (2021), whose research was comprehensively described in the previous section. In the Brazilian case, results show statistical significance only from the 8 to 16 months horizon and just for the 25th quantile. One percent increase in the interest rate leads to an increase of 0.393 in food inflation. Over 16- and 32-months horizon, monetary policy is statistically significant for all quantiles. The marginal change in monetary policy leads to a 1.134%, 1.088%, and 1.183% change in food inflation for the 25th, 50th, and 75th quantiles, respectively.

UCHULALONGKORN UNIVERSITY

Other non-monetary macroeconomic variables were also regressed against food inflation. For real DGP, the estimated coefficient reported a small magnitude. However, it was statistically significant for the 25th quantile in all horizons. Brazilian food inflation seems insensitive to the Global Food Price Index (GFPI), except for the horizon of 16 to 32 months, which has a positive sign and statistical significance at a 1% of the significance level. The coefficients for all quantiles in that horizon were around 0.1, which means that for each unit of variation in GFPI, food inflation in Brazil changed by around 0.1 units. In other words, for a specific range of lag – 16 to

32 months – the world food inflation led to a rise in Brazilian food inflation at an economic and statistical level of significance. (Iddrisu, 2021)

Exchange rate had the most expressive coefficient in size. This regressor showed a positive relationship and statistical significance for all quantiles for the 16 to 32 months horizon. A one percent increase in the exchange rate (here understood as the Real depreciation against the Dollar) led to an increase of 4.2%, 5.0%, and 4.2% in food inflation at the 25th, 50th, and 75th quantile, respectively. Nevertheless, an unexpected and statistically significant outcome rose in the horizon of 2 to 8 months for the 75th quantile. This regressor is negatively correlated to food inflation. For each unit of exchange rate diminished, the food inflation rises by two units. (Iddrisu, 2021). BANERJEE's et al. (2020) studies were inconsistent with the outcome of the 2 to 8 months range. "The depreciation of the Brazilian real in the first quarter has a relatively strong effect in raising upside inflation risks, as shown by a proportionately larger movement in the upper tail than in the lower tail" (Banerjee et al., 2020, pg. 05)

จุหาลงกรณ์มหาวิทยาลัย

CHULALONGKORN UNIVERSIT

3.2.2 Thailand Inflation

In recent years, Thailand has not been showing signs of persistently high inflation. Bearing in mind the scarcity of journal articles about Thailand's inflation behavior after covid, it is worth investigating this key economic behavior in previous shocks, such as the 1997's crisis. SIREGAR & RAJAGURO (2005) performed an empirical analysis covering the period between 1985 to 2002 and the role of monetary aggregates in inflationary pressures. For the author, monetary aggregates play an important role in explaining price levels after the 1997's crisis. "In late 1997 and early 1998, many of these economies had experienced excessively high growths of money base due to the liquidity supports provided to troubled banks and the impact of depositor runs on banks" (Siregar & Rajaguro, 2005, pg. 869). By 2000, Thailand had adopted the inflation targeting system. They also embraced monetary growth, interest rate targeting, and management of exchange rate volatility to achieve price stability.

To assess the likely causes of general inflation after the 1997's shock, SIREGAR & RAJAGURO (2005) built a working model based on the monetary theory, which establishes that the prices variation rate is equal to the growth rate of the nominal money supply (% Δm^s_t) minus the growth rate of actual money demand (% $\Delta m^d_t / p$). Moreover, $m^d_t / p = f(Y, r, rf, ed)$, where Y is output, r is the internal interest rate, rf is the foreigner interest rate, ed is the expectation of devaluation, and $\Delta p_t = f (\Delta y_t, \Delta r_t, \Delta rf_t, \Delta ed_t, \Delta ms_t)$. The expectation was that the outcome would be positive for the expectation of depreciation, foreigner interest rate, domestic interest rate, and money supply, and negative for output.

Contrary to SIREGAR & RAJAGURO (2005), the study of GONGSIANG & AMATYAKUL (2020) took into account key variables from the real economy, such as weather conditions, oil price, and Leading Economic Index (LEI). The data used covered the period between January 2003 and June 2020 and it used monthly inflation rather than quarterly inflation so as to have more data frequency. The dependent variable was one-year- ahead in the Thailand Consumer Price Index.

SIREGAR & RAJAGURO (2005) estimated the coefficients through the Autoregressive Distributed Lag Model (ARDL) method. Four different regressions

were estimated pre-crisis and post-crisis, using bilateral exchange rate and Nominal Effective Exchange Rate (NEER). The expected signs of the coefficient are consistent with the theory mentioned in the previous paragraph. All variables showed statistical significance at 10%, at least. All of those that did not meet this requirement were withdrawn. Each regression has a different combination of variables, though. Conversely, GONGSIANG& AMATYAKUL (2020) applied quantile regression methodology. For this work, the quartiles of interest are 10th, 30th, 50th, 70th, and 90th. Shall we consider 10th and 90th, respectively, left and right tail of the distribution. The use of quantile regression is helpful when we have some assumptions: i) Non-linearity of the predictor and future Inflation; ii) the regressor of the equation which predicts future inflation varies throughout the quantiles, and iii) restriction in using the Ordinary Least Square (OLS).

The model designed by SIREGAR & RAJAGURO (2005) for the post-crisis period has higher explanatory power compared to the model before the crisis. For the pre-crisis model, using the bilateral exchange rate (Baht against the US dollar), the R-squared value was 0.17; on the other hand, the model with NEER had a 0.23 R-squared. For the post-crisis model, using either bilateral exchange or NEER, both performed 0.45 of R-squared. It is understood as R-squared the percentage of variation in the dependent variable that is caused by the independent variable. "The exchange rate factor, the base money, and the domestic interest rate are found to be significant in causing price changes in both regressions of NEER and nominal baht against the US dollar. However, the foreign interest rate is significant only for the bilateral nominal exchange rate case." (Siregar & Rajaguro, 2005, pg. 877)

For the pre-crisis of the 1997 environment, the exchange rate had a smooth fluctuation, due to the regime's rigidity. For the bilateral exchange rate, the Thai baht had a slight appreciation, an average of 0.18%; on the other hand, the Thai currency had depreciated by around 0.8% considering NEER. Moreover, the role of the exchange rate variable alone corresponds to around 9 % of the variation in the inflation rate, while the growth rate of money supply and the expectation of appreciation altogether explain 10%. During the after-crisis period, the Thai government reduced monetary growth, preventing persistent inflation. From December 1997 to December 1998, the monetary base was lowered by 0.35%. "However, the weak and volatile local currencies contributed significantly more to the price fluctuations than the base money" (Siregar & Rajaguro, 2005, pg. 882).

In sum, according to SIREGAR & RAJAGURO (2005), control of the monetary base, early adoption of the inflation-target framework, and management of local currency volatility play a more relevant role in fighting against inflation, leaving the interest rate policy with secondary importance. Furthermore, the low R-squared suggested that the price rate variation had increased mainly due to its own shock.

The studies of GONGSIANG& AMATYAKUL (2020) encompassed, among others, raw food inflation and core inflation. For the latest, the relevant drivers were Inflation Expectation, Wage, LEI, World Production, NEER, Credit Spread, and World Food Price. For example, regarding NEER, the sign was negative, and the magnitude of the coefficient was growing larger along with the percentiles. Contrarily, SIREGAR & RAJAGURO (2005) found that the variable NEER showed different signs depending on the lag. Concerning raw food inflation, the authors selected data from 2006; after the selection process, they left five variables. The explanatory variables were selected by using LASSO (Last Absolute Shrinkage and Selection Operator). After this triage, the variable sorted were: i) CBOE VIX (Volatility Index), LEI, World Food Price, Retail Oil Price, and Ocean Nino Index (ONI). No statistical significance exists for the ONI index at any of the quintiles. The retail oil price was not significant at the edges, just around the center (quantile 50th). The volatility Index was significant throughout all quintiles, and the coefficients are pretty similar to each other (0.21 and 0.22). The scholars spotted that the likely reason is that investors shift their preferences toward commodities, such as food, when the uncertainty is high. World Food Prices were statistically significant for all quintiles, and their size rose along with the quintiles, from 0.21 to 0.5. This means the higher the quantiles, the more prominent the impact of World Food Prices on Thai food inflation.

According to the data shown in chapter 1 of the present dissertation, food inflation in Thailand during 2020 and 2021 was low and stable. SEREENOCHAI & ARUNRAT (2021) described non-monetary or fiscal strategies that helped Thai people to cope with this issue during the Covid-19 Pandemic. On the countryside, some communities created strategies to deal with food insecurity, building up net support mechanisms to help each other. These strategies were outlined without a monetary element. SEREENOCHAI & ARUNRAT (2021) listed three local communities' tools developed to manage food insecurity challenges in the Covid-19 Pandemic. The first was the food bank; local community leadership encouraged households to grow their own vegetables for consumption. Some communities count on a local and informal or semi-formal institution called a paddy rice fund, where the villagers can borrow rice for a year, and the principal and interest rate are paid back with rice as well. Second, some traditional villages which had never worked together before the Covid-19 crisis started a barter system that consisted of product exchange – 'P2P" (people to people and product to product). Third, the creation of collective pantries by a private group called "small brick."

Additionally, export barriers might have soothed the food price pressures. THAMMACHOTE (2021) argues that in 2021, Thai rice exports experienced their lowest volumes in two decades due to an increase in Bath value and production costs. Moreover, processed fruits and vegetables for Q.2 and Q.3 of 2020, had extremely negative growth in exports.

3.3 General Considerations

According to HA et al. (2021), for emerging economies, the headline inflation reached a low level in May 2020 and then rose; the inflation downturn lasted for just five months after the onset of the Pandemic. By its turn, the global financial crisis (2008) had a turning point 14 months after the Lehman Brothers' bankruptcy (Ha et al., 2021). After the first quarter of 2020, the fade in demand was offset by the supply shock and supply chain disruption. For the inflationary period, HA et al. (2021) argue that the demand side once again played a highlighted role; consumers shifted their behavior, increasing online purchasing. On the supply side, there was a decompression once firms had learned how to deal with the Covid-19 situation. Nevertheless, the demand side outweighed supply enhancements.

From the perspective of HA et al. (2021), global inflation is susceptible to pressures that can pull it down or push it up, making the year 2021 an inflection point. The author gathered elements that can damper the prices rising, such as the well-anchored expectation, automation (which holds down wages), transparency in price setting, and the global value chain. Conversely, factors that could heat prices up, such as demand pressures, weaker fiscal position, and pressure for reshoring production emerged.

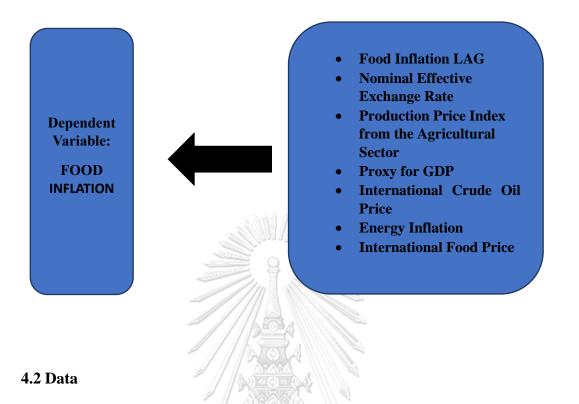
CHAPTER 04 METHODOLOGY

This study tries to assess whether the food inflation in Brazil and Thailand rose at a different pace after the Covid-19 outbreak, given all similarities between those two countries regarding food production. To address this question will be performed quantitative analyses, thereby descriptive and inferential statistics. Besides, qualitative methods will be applied to interpret the results based on the economic theory.

This research is based on two strategies. First, a panel analysis to spot differences in the level of food inflation between the two countries. Second, the two countries' food inflation will be evaluated through time series methods. A similar model will be constructed for Brazil and Thailand separately; then, the coefficients will direct the analyses. The choice of time series is, among others, due to its cleanness and easiness of interpreting the results.

Furthermore, the time series allows for analyzing the data although its autocorrelation Church Churc

4.1 CONCEPTUAL FRAMEWORK


Findings across the literature suggested that many variables could be relevant in explaining why inflation behaves in a determined manner. The table below highlights the most common variables used to forecast inflation and assess the causality of inflation changes. Checking if this correlation remains for the two countries studied here in the cohort of 2020 and 2021 would be a pointful contribution to the literature.

Author	Dependent	Independent (drivers)	Methodology			
Agyei (2021)	Maize price	 Number of infections Lockdowns (Dummy) Crude oil Exchange rate Food inflation 	GMM Panel			
Akter (2021)	Food price	 Controller variable vector of 5 different variables. Stay Home restriction (Dummy) 	Diff- in -diff Fix effect			
Siregar, R., & Rajaguru, G. (2005).	General Inflation	 Dependent variable lag Expectation of depreciation Internal interest rate Money supply NEER Bilateral exchange rate (US) 	ARDL			
Gomez et al. (2012)	Food inflation	 Tradable goods Food inflation one lag Nonfood inflation Output gap 	Flexible Least Square			
Iddrisu & Alagidede	Food Inflation	 Monetary policy Rates Food Inflation Real Gross Domestic Product 	Quantile Regression			

	Household Consumption Expenditure	
	 Gross Fixed Capital Formation Exchange rate Global Food Price Index 	
Raw Food	 Leading Economic index Volatility index Nino index 	Quantile Regression
General nflation COVID)	 NEER Equity Return Volatility Zero lower bound (Dummy) Inflation targeting (dummy) 	Quantile Regression Panel data
The gap between beadline and ore inflation General nflation	 Core inflation Headline inflation Interest rate Currency devaluation GDP PPI REER 	General EquilIBC_BRium Model
	eneral flation COVID) ne gap etween eadline and ore inflation eneral	 Exchange rate Global Food Price Index Weating Economic index Leading Economic index Volatility index Nino index Nino index Nino index Nino index NEER Equity Return Volatility Zero lower bound (Dummy) Inflation targeting (dummy) Inflation targeting (dummy) Core inflation Headline inflation Interest rate Currency devaluation GDP PPI

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

4.1.1Research Design

The data set was retrieved from the statistics national institutes of Thailand and Brazil, their respective central banks (BOT and Bacen), the International Monetary Fund (IMF), and the International Trade Center database. The data will primarily be time-series, encompassing Thai and Brazilian macroeconomics variables from January 2018 to December 2021. All variables are monthly frequency, and a monthly one will be used as a proxy in the case of variables that usually are quarterly, such as GDP.

The variable of interest will be Food and Beverage inflation. The independent variables (explanatory variables) will be the Food Inflation lag, Interest Rate, Currency devaluation, Nominal Effective Exchange Rate (NEER), Agricultural Sector's Producer Price Index (PPI), Proxy for GDP (Lei for Thai economic activities, and IBC-Br for Brazilian economic activities), International Crude Oil price, national's energy inflation, and international food price.

4.2.1 Descriptive Analyses

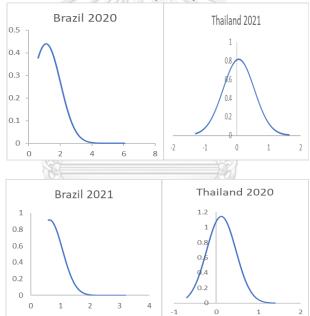
4.2.1.1 Average.

In 2020, the average monthly food of Brazilian food inflation was 1.10596%, while in the Asian country was 0.11345%, approximately. In 2021, Brazil had monthly average food inflation of 0.63848%, and Thailand had around 0.0566%. Recall that the average monthly inflation is calculated by compounding the monthly inflation of the whole year and finding the figure as if the inflation had grown at a constant rate during the entire period. The difference between the two countries seems small, but the gap grows more prominent when the numbers are calculated compounding.

Chulalongkorn University

4.2.1.2 – Kurtosis

The Kurtosis, in the gross definition, is the thickness of the distribution. It is essential to highlight that there are three kinds of Kurtosis. First, mesokurtic, when there is a distribution that shows no excess of kurtosis, or Kurtosis equal to 3, and this suggests a normal distribution. Second, Leptokurtic, also called tall distribution or positive kurtosis, happens when the Kurtosis is greater than 3, its pick is thinner, and the tails are thicker than they should be. A positive kurtosis leads to a high Jaquera-Bera statistic test for normality. High Kurtosis can also be a sign of an outlier or small sample. (Hill, 2011). The third one is the Platykurtic, which is a low and negative kurtosis, in other words, when the curve is flat with thin tails (Salvatore & Reagle, 2002). In this case, there is no peak; the peak is a plateau; the mean is not the highest frequency, and the values around the mean have a similar occurrence.

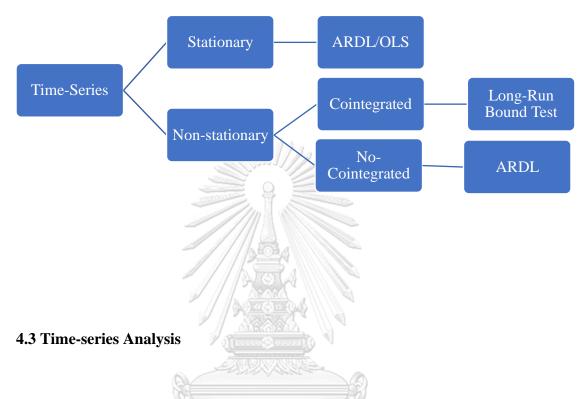

In 2020, Brazilian B&F inflation Kurtosis was around -1.65, while Thailand's was 0.41. In 2021, the Latin American country had a - 0.93 Kurtosis, and the Asian one had a - 0.75 Kurtosis. For both years, the two countries had a Platykurtic Kurtosis. It means that the frequency for the deciles around the media, for example, the 30th, 40th, 60^{th,} and 70^{th,} have approximately similar occurrences.

4.2.1.3 Skew

According to WOOLDRIDGE (2012), skewness defines whether the distribution is symmetric about the mean, based on the third moment of the standardized random sample. When the distribution is entirely normal, it shows skewness equal to zero. A negatively skewed distribution concentrates the observations closer to the right tail, while the positively skewed distribution gathers its observation near the left tail. For non-bell-shaped distribution, the empirical rule does not apply, which states that 68,2 % of the observations lie within +/- 1 Sd, 95.4% lie within +/- 2 Sd, and 99.6 +/- 3 Sd. Instead, it is preferable to apply the Chebyshev's Theorem (Inequality Theorem), which states that at least 75% of the observations are within +/- 2 Sd from the mean, and at least 88,89% of the observations are within +/- 3 Sd from the mean. (Keller, 2018)

Brazil's F&B inflation distribution showed a positively skewed curve, with the skewness of 0.73 and 0.19, in 2020 and 2021, respectively. At the same time, Thailand's F&B inflation distribution had a slightly positively skewed curve in 2020 (0.23) and 2021(0.53). In both cases, a possible mode is located on the left side of the median. Besides, the median is smaller than the mean. The distance between the third and second quarters is greater than the distance between the second and first quarters $(Q_3 - Q_2 > Q_2 - Q_1)$. In conclusion, this indicates that might have been outliers pulling up the mean.

Figure 9 – Brazilian and Thai skewness based on food inflation distribution.


4.2.1.4 Standard Deviation and Coefficient of Variation

The Coefficient of Variation (CV) indicates the magnitude in which the data are spread. The CV is found by dividing the standard deviation by the mean. Brazil's F&B inflation CV was 2.09 and 0.68 in 2020 and 2021, while Thailand's was 3.05 and 8.32 in 2020 and 2021, respectively. It is essential to highlight that the inflation statistical mean does not converge with the financial average. Therefore, irrespective of the amplitude of the distance between the observations in Brazil's and Thailand's F&B inflation distribution, the last country shows the observations more spread than the former.

4.2.2 Inferential Analysis

Two techniques will be used. The first method will be subsidiary and consists of performing the Differences in Differences (Diff-in-Diff) Fixed Effect Panel Data. However, the heart of the present study will be assessed by means of time series analysis. The main goal is to compare and contrast how Brazil's and Thailand's F&B inflation evolve during the Covid-19 pandemic. To this end, it will be assessed whether there is a relationship between food inflation and the variables pointed out by the scholars, such as energy price, crude oil price, the international price of the food, nominal effective exchange rate, and so on.

Figure 10 - Methodology Flow Chart

This section will discuss the steps to conduct the time-series analyses. The present study focuses on two individuals – Thailand and Brazil; therefore, this task can be done using two time series for each country thereby of ARDL (Autoregressive Distributed Lag) method. Given that, a different model (equation) for each country will be run. It is important to emphasize that, although ARDL can easily accommodate panel data, tests for unit root panel data are not fully developed, such as for time series data.

Another advantage of ARDL over other existing methodologies consists of clarity and simplicity. A whole model can be summarized in a single equation, while VAR (Vector Autoregressive), for example, is a multi-equation system, with each

variable demanding an individual equation. Furthermore, the ARDL is suitable for short time series and can tackle times series with different levels of integration, as long as there is no presence of variable integrated by 2 - I(2). Nevertheless, before performing the ARDL analyses, it is beneficial to scrutinize the data regarding their stationarity and unit roots.

It must be analyzed whether the time-series variable is stationary (Integration equals zero and mean, and standard deviation constant) or nonstationary (containing unit roots and the mean and standard deviation vary along with the time) should be analyzed. If nonstationary, we can use integration to transform them. The main difference between cross-section and time-series data is that the last one has a high probability that each observation is autocorrelated.

One important characteristic of time series is that each observation contains relevant information with a dynamic nature relationship. Furthermore, a dependent variable can be a function of current and past variables. Therefore, it means that a contemporary explanatory variable impacts the dependent variable now and in the future. This dynamic is known as a distributed lag model. (Hill et al., 2011)

Another characteristic of time-series data is that the past dependent variable can work as explanatory variables, mathematically expressed as $Y_t = f(Y_{t-1}, X_t)$. This variable is called lagged dependent variable. This method can be trustworthy in explaining why a high (low) inflation period is followed by a high (low) inflation period. That shed light on why the changes are more likely to be gradual than abrupt unless the occurrence of a shock. It urges us to analyze the incidence of autocorrelation among the error terms, which violated one of the assumptions of the ordinary least square (OLS). Since the error term is an unobserved term, we cannot compute their autocorrelation; we rely on the correlogram of the residuals instead.

4.3.1. Analyzing the Stationarity

Unit Root Analyses

The unit roots analysis is meaningful because "it has been observed that most time series are DSP rather than TSP" (Nkoro & Uko, 2016, pg. 67). The authors mean DSP – Difference stationery Process (stationary after differentiation) and TSP – Trend Stationary Process (Deterministic). Moreover, as suggested by the scholars (2016, pg. 86), "the variables that are the integration of order I(2) lead to the crashing of the techniques". Besides, in the presence of unit root, any shock can trigger a permanent effect, preventing the possibility of making predictions.

A rough test to evaluate whether the series have or do not have a unit root is plotting a graph and, by the rules of the thumb, seeing if the observation is trendy or if the observations quickly convert to the mean. Nevertheless, there are specific techniques to assess the data stationarity, such as Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test, Phillips-Perron (PP) test, and Augmented Dickey-Fuller (ADF) test.

Mathematically, according to GUAJARATI (2011), given the autoregressive model, we can intuitively represent unit root as follows:

$$Y_t = \beta_1 + \beta_2 t + \beta_3 Y_{t-1} + u_t$$
 ------(7)

After subtracting Y_{t-1} from both sides, transforming β_3 into C-1, and considering "u" as a residue and t as a trend, we have:

$$Y_t - Y_{t-1} = \beta_1 + \beta_2 t + (C - 1)Y_{t-1} + u_t$$
, then: -----(8)

 $\Delta Y = \beta_1 + \beta_2 t + (C - 1)Y_{t-1} + u_t$; if C is equal to 1, it means that β_3 is equal to zero, which yields no relationship between the dependent variable and its predecessor. Therefore, the unit root hypothesis consists of β_3 equal to zero, or H₀: $\beta_3 = 0$, and the alternative hypothesis is H₀: $\beta_3 \neq 0$. If we fail to reject the null hypothesis, we face a nonstationary time series.

This test can be done by the Dickey-Fuller method, and the hypothesis will be named the tau test (†). It is essential to highlight that DF critical values do not follow the exact value of t-statistics. The tau (†) depends on the kind of model chosen and the number of variables. Moreover, we will look at the left-tail side of the distribution.

The Dicky-Fuller and Augmented Dickey-Fuller are the main tests to determine whether the variable has a unit root. To that end (DF) presented three different forms of testing :

a) Random walk:

 $\Delta Y = \beta_3 Y_{t-1} + u_t \qquad (9)$

b) Random walk with drift (also known as slope or shift):

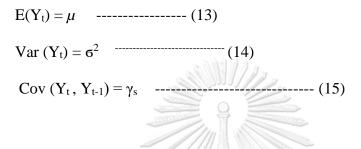
 $\Delta Y = \beta_1 + \beta_3 Y_{t-1} + u_t \quad (10)$

c) Random Walk with drift and a deterministic trend, given t = 1,2, ...t (the trend can be deterministic or stochastic):

$$\Delta Y_{t} = \beta_{1} + \beta_{2}t + \beta_{3} Y_{t-1} + u_{t} \quad \dots \quad (11)$$

Before we move forward in explaining the DF test, it is crucial to clarify important aspects of the trend. It can be defined as a persistent upward or downward movement of variables over a period. Recognizing trends is vital because "Ignoring the fact that two sequences are trending in the same or opposite directions can lead us to falsely conclude that changes in one variable are actually caused by changes in another variable." (WOODRIDGE, 2013, pg. 364).

The trending behavior can be captured by β_2 in equation c, u_t, in this case, is an independent and identically distributed sequence with E (e_t) = 0 and Var (e_t) = σ^2 . According to WOODRIDGE (2011), a trending behavior also can be explained by the simple equation:


$$Y_{t=} \alpha_{0+} \alpha_{1} t + e_{t,t} t = 1,2,...$$
 (12)

Holding everything else fixed, α_1 measures the changes, due to time, in Y_t from one period to the next. A linear correlation characterizes the equation above; nonetheless, exponential trends express many of the economic time series. In the occurrence of an exponential relationship, the theory suggests transforming the exponential variable into a natural logarithm to solve the inconsistency derived from an exponential relationship, assuming that the variables are greater than zero.

A trend in a time series can be a source of the nonstationary process, and this kind of time series characteristics encompasses different mean and variance for each piece of period. To the deterministic trend, each Y_i is impacted by β_2 , positively or

negatively, and β_2 is a fixed parameter given that Y changes due to the cumulative manner of simple changing of time. When we refer to stochastic tendency, β_2 is persistent and random.

For a time series to be considered stationary, the series has to have at least these three conditions :

Where μ , σ^2 , and γ s, are constants, the mean and variance of Yt do not depend on the time. This process is also known as the white noise process. Therefore, the error term obeys what determines the equations 13, 14, and 15; if otherwise, the process is considered nonstationary. "The first feature that has received the most attention"... "Nonstationary series with nonconstant means are often described as not having the property of mean reversion" (Hill, 2011, pg. 477)

าหาลงกรณมหาวัทยาลัย

GHULALONGKORN UNIVERSI Dickey-Fuller test

Many tests assess the unit root issue; however, the DF test will be employed for Thai and Brazilian time series due to its reliability and popularity. Therefore, it is urged to analyze the following equation:

$$Y_t = \rho_1 Y_{t-1} + e_t, \ 0 < \rho_1 \le 1$$
 ------ (16)

The time serie represented by the equation above is considered a univariate time series. According to GRANGER & NEWBOLD (1974), univariate time-series

models are examples of stochastic processes where the variable y is related to past values of itself and current and past error terms. As a univariate model, this model does not account for regressor as a multivariate model. Because of its simplicity, the univariate and autoregressive of order one -AR(1) is didactic in explaining the unit root issue. That equation is called AR (1) because the dependent variable is partly composed of just one lag of itself.

How to figure out if the series depicted by equation 16 is random walking or stationary autoregressive (1)? The hypothesis test will be as follows:

H0:ρ1 = 1 H1: ρ1 < 1

The first step is finding an estimated value of ρ , employing OLS regression. Then ρ^* and $S\rho^*$ will represent the estimated regressor and standard error. After that define the f-test ($f = (\rho^* - 1)/S\rho^*$)). Contrast the result with the values in the table constructed by Dickey and adopted by Fuller against the critical value of f, considering the sample size. If $|\rho_1| > 1$, then the series has explosive behavior. If $|\rho_1| = 1$, than the series has unit root (non-stationary); and If $|\rho_1| < 1$ then the series is I (0), called, stationary. It is important to stress that the t-test is not useful in this situation; we will use the *tau* instead. Moreover, in this scenario, we analyze the distribution's left tail; the more negative, the more statistically significant.

The DF test has a sensitive flaw of not acknowledging that the error term might also be correlated; the Augmented DF (ADF) deals with this weakness. The ADF test assumes a serial autocorrelation in the error term. Therefore "they extend their test by including extra lagged in terms of the dependent variables in order to eliminate the problem of autocorrelation." (Mushtaq, 2011). In other words, to

perform ADF, we should explore the explanatory variable lags until obtaining a white noise error. In order to choose the adequate number of lags, it is possible to use any valid criteria: AIC (Akaike), SBC (Schwarts), and HQ (Hanna-Quinn). The general equation will be as below.

In sum, the importance of knowing whether the time series is stationary is because, otherwise, we can generate a regression with a significant coefficient and a large R^2 with two variables that are not correlated whatsoever. This process is denominated as spurious regression. In this scenario, the residues are probably correlated, and the *t*- statistics test is no longer reliable.

Integration

A Process stochastic nonstationary for a Y variable is called integrated posse in order d, or d I(d), when we have to differentiate in d times to turn it into a stationary process. In other words, a process integrated with I(O) is a purely stationary process since do not need to be integrated. (ENGLE and GRANGER, 1987).

4.3.2 Cointegration

Since a large amount of time series became stationary after differentiation methods, some long-term information can be lost in this process. "Cointegration makes it possible to retrieve the relevant long-run information of the relationship between the considered variable that had been lost on differencing." (NKORO & UKO, 2016, pg. 68)

Another angle to analyzing long relationships is to consider that sometimes, two time series, separately, have stochastic trend behavior. However, when these series are combined, they become stationary – I (0). "This linear combination cancels out the stochastic trend in two series." (JAGUARATI, 2011, pg. 230). An anecdotic example is the drunkards wandering, holding a dog by the dog leash, and randomly walking. However, even with the distance varying during the journey, it varies within a range. Something (the lash) holds the dog and the drunkards together long-term. In this metaphor, the path of the dog and the drunkards represents a nonstationary time series. Nevertheless, it is possible to visualize that the distance between those two time series is relatively constant. Even when the distance between those two variables varies in the short run, there is a long-run relationship between them. This long-run relationship is called Cointegration.

Using inappropriate techniques can lead to a spurious relationship between nonstationary variables. Therefore, Engle and Granger (1987) developed the cointegration test, later improved by Johansen (1988). The main difference between the unit root and cointegration tests is that the latest is performed to analyze the relationship among variables which shows the unit root. In this context, it deserves particular attention that Cointegration cannot be used when the variables present different orders of integration.

By way of explanation, suppose a bivariate regression:

$$e_{t} = Y_{t} - \beta_{1} - \beta_{2}X_{t},$$
 ------(18)

To test if these two variables are cointegrated, we can test for the stationarity of the Least Square Residuals (\hat{e}) using a Dickey-Fuller test. If the residuals are stationary, those two variables are cointegrated; otherwise, any regression would be spurious if the residuals are not stationary.

In a time series, each observation is probably highly correlated with its own lag; for a stationary process, this correlation between adjacent terms should be the same across all periods. To perform the DF test, we must evaluate whether there is a trend or intercept in the regression to choose the critical values. The test consists of:

H₀: residuals are nonstationary. \implies The series are not cointegrated

H₁: residuals are nonstationary. \implies The series are cointegrated.

Likewise, for the unit root one-tail test, we will look at the left side of the distribution and reject the null hypothesis if *tau* statistics is smaller than the critical value.

Additionally, there is another test to assess Cointegration, called Johansen Cointegration Test. "Johansen cointegration test method is employed when all the variables included in the model are nonstationary. In the case of mixed variables, i.e., some variables stationary but others nonstationary cointegration method cannot be used." Shrestha & Bhatta (2018, pg. 18)

Nevertheless, in some moments, even sharing a long-run trend, those kinds of time series can deviate from the equilibrium in the short run. That is why was created the Error Correction Model.

4.3.3 Error Corrector model

"A relationship between I(1) variables is also often referred to as a long-run relationship while a relationship between I(0) variables is often referred to as a short-run relationship" (Hill, 2011, pg. 490). Error correction is how cointegrated variables would return to their typical path. Consider a nonstationary bivariate equation:

$$Y_{t} = \delta + \theta_{1} y_{t-1} + \delta_{0} x_{t} + \delta_{1} x_{t-1+Vt}$$
(19)

Since we define Y and X as cointegrated, there is a long-run relationship between them. Therefore: $y_t = y_{t-1} = y$, $x_t = x_{t-1} = x$ and $v_t = 0$.

Considering that: $Y = \beta_1 + \beta_2 x$, $\beta_1 = \delta/(1 - \theta_1)$, and $\beta_2 = (\delta_0 + \delta_1)/(1 - \theta_1)$. Then, we can accommodate the cointegrating relation into ARDL. First let us manipulate the equation by adding the term y_{t-1} in both side.

(21)

$$y_{t} - y_{t-1} = \delta + (\theta_{1} - 1) y_{t-1} + \delta_{0} (x_{t} + x_{t-1}) + (\delta_{0} + \delta_{1}) x_{t-1} + vt - \dots (20)$$

$$\Delta y_{t} = (\theta_{1} - 1) (\delta/(\theta_{1} - 1) + y_{t-1} + (\delta_{0} + \delta_{1}) x_{t-1}/\theta_{1} - 1) + \delta_{0} \Delta x_{t} + v_{t} - \dots (21)$$

Using β_1 and β_2 definitions:

If we consider $\alpha = (1 - \theta_1)$, the cointegration relationship is inserted into the ARDL framework. The expression $(y_{t-1} - \beta_1 - \beta_2 x_{-1})$ shows the deviation from the longrun, and $\theta_1 = 1$ indicates the correction. This equation suggests an important conclusion. First, if the error in the previous period was positive (y_{t-1}) , then the y_t will fall, and the first difference will be negative. Second, if the error in the previous period were negative (y_{t-1}), y_t would increase, and the variation will be positive. (Hill, 2011, pg. 491)

$$Y_{t-1} > \beta_{0+}\beta_{1}x_{t-1}$$
, then $y_{t-1} > 0$, and $\Delta_{y} < 0$ ------(23)

 $Y_{t-1} < \beta_{0+} \beta_1 x_{t-1}$, then $y_{t-1} < 0$, and $\Delta_y > 0$ ------(24)

In sum, if the variable were not stationary, we can estimate its parameters by:

- a) ARDL: when there is a Trend Stationarity or a stochastic trend, the variables are not cointegrated (estimate the model in first differences).
- b) Cointegration: If the variables are cointegrated, it is possible to estimate the long-run relationship and the error correction model to estimate the short-run relationship.

จุหาลงกรณ์มหาวิทยาลัย

4.3.4 ARDL or Bound Cointegration Test

The ARDL or Bound Cointegration test model was proposed by Pesaran and Shin (1995). The model can be split into short-run autoregressive, short-run distributed lags, and long-run. Furthermore, this model is a "p" (lag of dependent variable) and "q" (lag of independent variables) model, and the short run can be mathematically expressed as follows:

When the number of lags is adequate, it reduces the serial correlation of the errors. The correlogram of the residues is a helpful tool to check this kind of autocorrelation. For a white noise error term, the v must consist of a random error that assumes zero means and constant variance.

The ARDL method deals with short and long-run in a single equation. For this last relationship, the studies of Pesaran and Shin (1995) are essential in the matters that it helps identify the existence of a cointegration vector. In the word of NKORO and UKO (2016, pg. 75): "If one cointegrating vector (i.e., the underlying equation) is identified, the ARDL model of the cointegrating vector is reparametrized into ECM."

 $\Delta Yt = \delta + \sum_{i:1}^{p} \theta \Delta Yt - i + \sum_{i:0}^{q} \delta \Delta xt - i + \psi_{1} Y_{t-1} + \phi_{2} Y_{t-1} + v_{1}$ (26)

In sum, a bound testing procedure is available to draw conclusive inferences without knowing whether the variables are integrated of order zero or one, I(0) or I(1), respectively (Pesaran, Shin, and Smith, 2001). The model will expand to (p, q_1 , and q_2).

$$\delta + \sum_{i=1}^{p} \theta \Delta Y t - i + \sum_{i=0}^{q} \delta \Delta x t - i + \longrightarrow \text{SHORT RUN}$$

$$\varphi_{1} Y_{t-1} + \varphi_{2} Y_{t-1} + v_{1} \longrightarrow \text{LONG RUN/ERROR CORRECTION}$$

The hypothesis for the long-run relationship is tested as:

///684

H_0 : $\phi_1 = \phi_2 = 0$	No long relationship
$H_1: \phi_1 \neq \phi_{2 \neq} 0$	There is a long relationship

To reject the null hypothesis is necessary to assess the two sets of F-statistic. The first set presumes that all variables are integrated I(0), then there is no cointegration. The second set assumes that all variables are I (1). The critical values are the ranges of: 2.496 - 3.346, 2.962 - 3.910, and 4.068 - 5.250 at 90%, 95%, and 99%, respectively. If the F-statists of φ_1 and φ_2 lie within that bound, the results are inconclusive. However, suppose the F-statistics lies bellow the lower bound, it means you cannot reject the null hypothesis. On the other hand, if the F-statistic's lies above the upper bound, we cannot reject the null hypothesis.

4.4 Model Proposed

Since the scope of this work is to evaluate a short-run period (2020 and 2021), the effort will be concentrated on the first part of equation 26.

The models displayed in sections 4.4.1 and section 4.4.2 will help answer the research question by means of a comparison of the coefficients δ (delta) and θ (theta). These coefficients will disclose the magnitude of importance in which each variable has impacted the inflation variation.

4.4.1 Brazilian Model

BF&BINF = $\delta + \sum_{i=1}^{P} \theta_{1+i}$ BF&INF_{t-i} + $\sum_{i=0}^{q} \delta_{2+i}$ BNEER_{t-i} + $\sum_{i=0}^{q} \delta_{3+i}$ BAPI_{t-i} + $\sum_{i=0}^{q} \delta_{4+t} \text{BAPROD}_{t-i} + \sum_{i=0}^{q} \delta_{5+t} \text{IBCBR}_{t-i} + \sum_{i=0}^{q} \delta_{6+t} \text{BEINF}_{t-i} + \sum_{i=0}^{q} \delta_{7+t}$ $\operatorname{COI}_{t-i} + \sum_{i=0}^{q} \delta_{8+t} \operatorname{COP}_{t-I} + \sum_{i=0}^{q} \delta_{9+t} \operatorname{GFI}_{t-i} + \sum_{i=0}^{q} \delta_{10+t} \operatorname{BFIMP}_{t-i} + \sum_{i=0}^{q} \delta_{10+t} + \sum_{i=0}^{$ $\delta_{11+t} \operatorname{BFEXP}_{t-i} + \sum_{i=0}^{q} \delta_{12+t} \operatorname{BER}_{t-i} + \sum_{i=0}^{q} \delta_{13+t} \operatorname{BIR}_{t-i} + e_{t-1}$

4.4.2 Thai Model CHULALONGKORN UNIVERSITY

 $TF\&BINF = \delta + \sum_{i=1}^{p} \theta_{1+i} TF\&INF_{t-i} + \sum_{i=0}^{q} \delta_{2+i} TNEER_{t-i} + \sum_{i=0}^{q} \delta_{3+i} TAPI_{t-i}$ $+ \sum_{i=0}^{q} \delta_{4+i} TAPROD_{t-i} + \sum_{i=0}^{q} \delta_{5+i} LEI_{t-i} + \sum_{i=0}^{q} \delta_{6+i} TEINF_{t-i} + \sum_{i=0}^{q} \delta_{7+i}$ $COI_{t-i} + \sum_{i=0}^{q} \delta_{8+i} COP_{t-1} + \sum_{i=0}^{q} \delta_{9+i} GFI_{t-i} + \sum_{i=0}^{q} \delta_{10+i} TFIMP_{t-i} + \sum_{i=0}^{q} \delta_{11+i} TFEXP_{t-i} + \sum_{i=0}^{q} \delta_{12+i} TER_{t-i} + \sum_{i=0}^{q} \delta_{13+i} BIR_{t-i} + e_{t-1}$

Table 6 - Variables Abbreviation

Abbreviation Meaning Food & Beverage Inflation (B)(T)F&BINF (B)(T)NEER Nominal Effective Interest Rate (B)(T) API Agricultural Price Index Agricultural Production Index (B)(T) APROD Economic Activity Indices IBC-BR Food Imports (B)(T)FIMP Food Exports (B)(T) FEXP Leading Economic Index LEI Interest Rate (B)(T) IR (B)(T)ER Exchange Rate GFI **Global Food Index** COI Crude Oil Index COP **Crude Oil Price**

CHAPTER 5 RESULTS AND DISCUSSION

This chapter will be composed of three sections. The first section will present the process related to the Brazilian data analysis and how was the data scrutinized and transformed to meet the criteria of reliability, consistency, and nonbias. For this purpose, all selected variables will be tested, in their raw format and logarithmic form, to determine whether they have unit roots. The variables which do not pass on ADF tests will be integrated by differencing. After this process, the variables that do not meet stationarity requirements will be dismissed. Then, a correlogram matrix will be performed to identify the highly correlated variables. The correlogram results can prevent building a model carrying regressors that could cause multicollinearity. Thereafter, all dependent variables will be tested for granger causality to assess which variables are more capable of forecasting the dependent variable behavior. This will be helpful in choosing which variables are more relevant to be included in the model.

The number of lags will be defined by applying the AIC (Akaike Information Criteria). The AIC is based upon two parts: the first part is a penalization for the excess of terms (2k), and the second part is the log-likelihood ($-2\ln(L)$), which refers to how well the model is fitted. Thus, these criteria penalize the insertion of useless variables or lags and avoid an over-fitted model. Follow below the general equation, given that: N is the number of observations, SSe is the sum square of errors, and K stands for the number of parameters.

$$AIC = N * ln (SS_e/N) + 2K$$

After that, the ARDL methodology will be applied for each model and the residuals will be checked on whether they hold the assumptions for normality, homoscedasticity, autocorrelation, and multicollinearity. If the model meets the regression assumptions, it will be tested for long-term cointegration.

The second section will present the findings and model analyses concerning Thailand, using, as much as possible, the same criteria applied to Brazil's diagnostic. The third section will assess, confront, and analyze both countries' findings. Finally, the fourth section will present the response to the research question and final considerations. It is important to stress that all statistical calculation was done on Eviews, v.12 software, and the statistical significance adopted in this study will be 0.05%. All raw data can be found in Appendix A of the present study, whereas the statistical summaries will be available in Appendix B.

5.1) Brazil's Findings and Model Analysis

Based on the literature review, as stated in chapter 4, the following variables will encompass the explanatory regressors: Agricultural Price Index, Agricultural Production Index, Energy Inflation, Exchange Rate, Food & Beverage Imports, Food & Beverage Exports, Interest Rate, Nominal Effective Exchange Rate, Crude Oil Index, Crude Oil Price, Global Food Index, and a proxy for monthly domestic output - IBC_BR. These raw data are available in Appendix A.

A test for stationarity was conducted using Augmented Dickey-Fuller, as stated in section 4.3.1 of this study. This test's statistical summary is available in Table B-1, Appendix B. The Null Hypothesis consists of: the variable has a unit root. To reject this hypothesis, a significance of 0.05 was used as the cutoff point. Additionally, the stationarity of the logarithmic form of the variables mentioned in the previous paragraph was also tested. The logarithmic transformation is helpful to cope with skewness, to change exponential growth into linear growth, and to facilitate the comparison among variables with different magnitudes. When we failed to reject the null hypothesis, either in the raw form or the logarithmic form, we took the first difference of these variables. Therefore, this group of variables will be I(0) and I(1). The table below shows the variables that met the requirements for stationarity I(0) or I(1) and their abbreviation as they appear in the statistical summaries.

Table 7- The abbreviation of stationary Var	iables I (0) or I (1)
BF_INF •	Brazilian Food & Beverage Inflation
DIFBF_INF •	First Difference of the BF_BINF
BENINF •	Brazilian Energy Inflation
DIFBENINF	Fist Difference of BENINF
BIR •	Brazilian Interest Rate
LNBIR •	Log BIR
IBC_BR •	Economic Activities Index
LNIBC_BR •	Log Economic Activities Index
DIFIBC_BR •	First Difference of IBC_BR
LNIBC_BR •	Log of IBC_BR
DIFLNIBC-BR •	First Difference of LNIBC_BR
LNBF_BEXP •	Log of the Brazilian Food & Beverage Export
DIFBF_BEXP •	First Difference of LNBF_BEXP
LNBAPI •	Brazilian Agricultural Price Index
DIFBAPI •	First Difference of the Brazilian Agricultural
DIFLNBAPI	Price Index
•	First Difference of the Log of BAPI
LNBAPROD •	Log of Brazilian Agricultural Production
DIFBAPROD •	First difference of the Brazilian Agricultural
DIFLNBAPROD	production

Table 1- The abbreviation of stationary v	
	• First Difference of the Log of BAPROD
LNBF_BIMP	Log Brazilian Food & Beverage Imports
DIFBF_BIMP	• First Difference of the Brazilian Food &
DIFLNBF_BIMP	Beverage Imports
	• First difference of the log of BF_BIMP
BER	Brazilian Exchange Rate
DIFBER	• First Difference of the Brazilian Exchange
DIFLNBER	Rate
	• First Difference of the Log of BER
BNEER	Brazilian Nominal Effective Exchange rate
LNBNEER	Log BNEER
DIFBNEER	• First Difference of the Brazilian Nominal
DIFLNBNEER	Effective Exchange Rate
	First Difference of Log of BNEER
COI	Crude Oil Index
DIFCOI	• First Difference of the Crude Oil Index
COP	Crude Oil Price
LNCOP	Log of Crude Oil Price
DIFCOP	• First Difference of the Crude Oil Price
DIFLNCOP	• First Difference of the Log of the COP
DFI	Global Food Index
LNGFI	Log Global Food Index
DIFGFI	• First Difference of the Global Food Index
DIFLNGFI	• First Difference of the Global

Table 7- The abbreviation of stationary Variables I (0) or I (1)

To build the models, we use three main criteria. First, a correlation matrix was calculated, tables B-4, B -5, B -6, and B -7, in Appendix B. Second, the Granger causality test of the dependent variable was applied against each independent variable to assess whether a specific variable helps predict the former variable. While correlation refers to relationships, granger causality assesses whether one variable is caused by another. This result contributes to choosing the model with more explanatory power. Third, the equations will try to encompass, as much as possible, variables from the real economy, such as Agrarian Production, Energy, and Crude Oil, and variables from the monetary stance, such as Interest Rate, Exchange Rate, and Nominal Effective Exchange Rate.

The correlation matrix quantifies and qualifies the relationship between two variables. Pearson's correlation coefficient varies from -1 (maximum negative correlation) to + 1 (maximum positive correlation). This matrix can be a tool for preventing multicollinearity, displaying the degree of correlation among the variables. This tool allows us to spot which combination of variables might cause multicollinearity. For many scholars, a Pearson coefficient, with an absolute value above 0.7, determines a strong relationship between two variables. Analyzing the correlogram A, B, C, and D (tables B-4, B-5, B-6, and B-7), it is possible to verify that no strong relationship was found among the regressors. However, we can highlight some moderate correlations that vary from the absolute value of 0.3 to 0.7. The table below shows the list of variables with a moderated bivariate correlation:

() [
Table 8 - Brazilian variables: Moderate corre	plation
Interest Rate	• F_BINF (negative)
	• GFI (negative)
Energy Inflation:	First Difference of the Logarithm
	of:
	• BAPI (negative).
	• BAPROD (negative), and
	• DIFLNFIMP (positive).
GDP proxy	• DIFBNEER (negative)
	• DIFLNBFEXP (negative)
	• DIFLNBNEER (negative)
First Difference of the Crude	• DIFIBC_BC (positive)
Oil Index and Crude Oil Price	• DIFLNBER (negative)
	• DIFLNIBC-BR (positive)
	• DIFLNDFI (negative)
First Difference of the	• BNEER (positive)
Logarithm of the Brazilian	DIFCOI and DIFCOP
Agricultural Price Index	(negative)

Note. The coefficients can be found in Appendix B, tables B-4 to B-7.

The contemporaneous negative relationship between interest rate and domestic food inflation is not in line with the literature because, according to Taylor's rule, "the federal funds should be set equal to the inflation rate plus an equilibrium real federal funds rate." (pg 464, MISHKIN, 2012). This result might be because of the central bank's dual mandate - inflation and employment. Along with the Pandemic, a sharp drop in GDP might have prevented the Brazilian Central Bank from raising the interest rate.

The Agricultural Price index and the Production Index have a positive relationship with food inflation. The first highlights a high pass-through from agricultural costs to retail prices. With respect to Production, those correlations might be spurious. Regarding the fact that the Nominal Effective Exchange Rate and the Exchange Rate are positively related to the variable of interest, this is expected, once currency depreciation is the main cause of price pressure. It is important to stress that, unlike Thailand, an increase in Brazil's BNEER means depreciation. The negative relationship of crude oil and food inflation is unexpected and needs more investigation. For imports, exports and energy inflation, the curve is quite flat, which implies non-correlation.

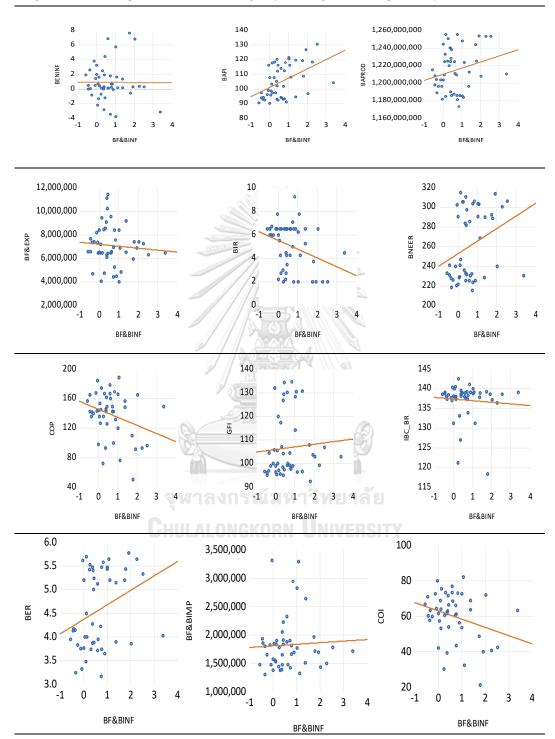


Figure 11 - Scatterplot. Food and Beverage Inflation against the explanatory variables

Additionally, the granger causality test was performed to evaluate which variables are more likely to have high explanatory power. Hence, table 09 displays the more expressive results:

Hypothesis	Obs.	lags	F.	Probability
		U	Statistics	5
IBC_BR does not Granger Cause	44	4	2.19581	0.0896
BF_BINF			2.93963	0.0340
BF_BINF does not Granger Cause				
IBC_BR				
DIFGFI does not Granger Cause	43	4	1.70459	0.1717
BF_BINF	1/2		2.48061	0.0623
BF_BINF does not Granger Cause		>		
DIFGFI				
DIFIBC_BR does not Granger Cause	43	4	3.88782	0.0105
BF_BINF			0.37566	0.8244
BF_BINF does not Granger Cause				
DIFIBC_BR				
DIFLNGFI does not Granger Cause	43	4	1.62353	2.50098
BF_BINF	4		0.1909	0.0607
BF_BINF does not Granger Cause	2 III	à		
DIFLNGFI		4		
DIFLNIBC_BR does not Granger Cause	39	4	2.71465	0.0303
BF_BINF	A183		0.80396	0.6059
BF_BINF does not Granger Cause	aller a			
DIFLNIBC_BR	40	8	3.70516	0.0064
BIR does not Granger Cause BF_BINF	40	8	0.37955	0.0064 0.9206
BF_BINF does not Granger Cause BIR	39	8	2.79218	0.0269
DIFBER does not Granger Cause BF_BINF	าวิท	มาลัย	1.40431	0.0209
BF_BINF does not Granger Cause	1 9 1 1	บเลย	1.40451	0.2495
DIFBER	Unn	EDCIT	×	
DIFGFI does not Granger Cause	39	8	0.84075	0.5776
BF_BINF	39	0	2.59807	0.0364
BF_BINF does not Granger Cause			2.37007	0.0304
DIFGFI				
DIFLNBAPI does not Granger Cause	39	8	2.75965	0.0283
BF BINF	57	0	0.79099	0.6160
BF_BINF does not Granger Cause			0.17077	0.0100
DIFLNBAPI				
DIFLNBFIMP does not Granger Cause	39	8	0.52094	0.8279
BF BINF			2.05200	0.0871
BF_BINF does not Granger Cause				
DIEI NREIMP				

 Table 9 - Pairwise Granger Causality Test

 DIFLNBFIMP

 Note. The whole table can be found in Appendix B, tables B-2 and B-3

Broadly speaking, granger causality means that the past values of X_t contain information capable of predicting the contemporaneous value of Y. The F-statistics the joint significance of the coefficients - allow us to reject the null Hypothesis. Therefore, we can state that there might be a unidirectional granger causality of IBC_BR (DGP proxy), Interest Rate, and Agrarian Price Index to food inflation. These findings partially corroborate the correlogram analysis regarding the impact of the Interest Rate on Food Inflation. Besides, we can stress that the explanatory power of the proxy for GDP is an unexpected outcome because scholars rarely correlate growth output and food inflation. Nevertheless, a more complex test will be done to investigate whether these two variables are upon a spurious relationship.

Moreover, the Chow test was performed to assess the existence of a structural break for the Food & Beverage inflation series. As seen below, the F-statistics was insufficient to reject the null Hypothesis, which states: no breaks in January 2020. Therefore, there is no breakpoint in that time series that justifies the use of dummies.

Varying regressors: Equation Sample: 2			
F-statistic	3.709314	Prob. F(1,46)	0.0603
Log likelihood ratio	3.722444	Prob. Chi-Square(1)	0.0537
Wald Statistic	3.709314	Prob. Chi-Square(1)	0.0541

After the preliminary analyses for unit roots, granger causality, and correlation; and after assessing the residual's consistency for normality, non-serial correlation, homoscedasticity, non-multicollinearity, and stability, four models were selected:

- 1) BF BINF= $\delta_0 + \theta_1$ BF_BINF_{t-1} + $\delta_1 \Delta \ln BAPROD_{t-6} + e_t$
- 2) a)BF_BNIF= $\delta_0 + \theta_1$ BF_BINF_{t-1} + $\delta_1 \Delta \ln BAPI_{t-1} + \delta_2 BENINF_{t-1} + e_t$ b)BF_BNINF = $\delta_0 + \delta_1 \Delta \ln BAPI_{t-1} + \delta_2 BENINF_{t-1} + e_t$
- 3) BF BNINF= $\delta_0 + \theta_1$ BF_BINF_{t-1} + δ_1 BENINF_{t-2} + $\delta_2 \Delta \ln BNEER_{t-7} + e_t$

5.1.1 Model 1: Production and Interest Rate as the explanatory variable.

Many attempts have been made with the Exchange Rate variable, as seen in Table B-19, Appendix B. However, whatever form used, the model encompassing the exchange rate was not normally distributed or showed a nonsense coefficient sign. For the models in which the assumptions were observed, the coefficient for exchange rate was negatively related to food inflation, which contradicts the literature and the correlation matrix. Recall that the exchange rate is calculated by dividing the domestic currency by the foreign currency. Thus, the interest rate was chosen instead of the exchange rate because the former brought more instability to the model.

Therefore, Model 1 encompasses two explanatory variables: Interest Rate (BIR) as fixed and the Difference of the Logarithm of the Agricultural Production Index (Δ lnBAPROD). The autoregressive component (1 month of lag) and Agricultural Production Index (6 months of lag) showed statistical significance. The coefficient relative to the interest rate (BIR) did not display any significance; nevertheless, the model with interest rate had a higher Adjusted R-square than the model without that variable. The adjusted R-squared of 0.36% indicates that

approximately 36% of the variation in Food Inflation can be explained by the variation in the regressors. Furthermore, the F-statistics – the overall significance in regression – allow us to reject the null Hypothesis: the intercept-only model fits the data as well as the present model. The coefficient of the autoregressive part is highly significant (at 1%) and positively correlated. In turn, the Agrarian Production displayed, with 6 months of lag, has statistical significance (1%) and a negative relationship with the dependent variable.

Table 11 - BRAZIL	MODEL 1 -	SHORT RUN	1		
Dependent Variable	BF BINE		and the second		
Method: ARDL					
Date: 10/08/22 Tim	a: 13-18				
Sample (adjusted): 2		13/12			
Include d observation		AD 100 000 20 000 100			
Maximum depender					
Model selection met					
Dynamic regressors	(\$ lags, auton	natic): DIFLN	BAPROD		
Fixed regressors: BI	RC////	A SASA	1111 B		
Number of models e	valuated: 36	CORRECTION A	1 1 11 23		
Selected Model: AR	DL(2,7)	714921211-049			
Note: final equation		ger than select	ion sample		
Variable	Coefficient	Std. Error	t-Statistic	Prob.*	
BF BINF(-1)	0.628825	0.178874	3.515459	0.0015	
BF BINF(-2)	-0.270375	0.159991	-1.689937	0.1021	
DIFLNBAPROD	-8.355262	14.99318	-0.557271	0.5818	
DIFLNBAPROD(-1)	-20.88914	15.27945	-1.367139	0.1825	
DIFLNBAPROD(-2)	26.49288	16.00176	1.655623	0.1090	
DIFLNBAPROD(-3)	-2.336498	16.85369	-0.138634	0.8907	
DIFLNBAPROD(-4)	-30.01486	18.55838	-1.617321	0.1170	
DIFLNBAPROD(-5)	19.82238	15.66827	1.265129	0.2163	
DIFLNBAPROD(-6)	-52.95688	15.53136	-3.409675	0.0020	
DIFLNBAPROD(-7)	20.63356	17.06528	1.209096	0.2367	
BIR C	-0.122659	0.082101	-1.493991	0.1464 0.0350	
C N	1.052284	0.475014	2.213209	0.0350	
R-squared	0.546	428 Mean den	endent var 🚫 0	718000	
Adjusted R-sq				834350	
S.E. of regress				.259754	
Sum squared r		424 Schwarz c	riterion 2	.766417	
Log likelihood	l -33.19	507 Hannan-Q	uinn criter. 2	.442947	
F-statistic	3.066		atson stat 1	.912071	
Prob(F-statisti	c) 0.008	120			

The residual's analyses indicate that these coefficients are unbiased and reliable and hold the main assumptions for regression: linear in parameters, homoscedasticity, independent error term, normal error, no multicollinearity, and exogeneity. The whole summary of these tests can be found in Appendix B. The Q-statist test and Breusch-Godfrey Serial Correlation LM test, table B-8 and table B-09, have shown the absence of serial correlation in the model. The Qstatistic test outcome had a p-value greater than 10%. For its part, the Breusch-Godfrey Serial Correlation LM Test corroborated the Q-statist. The null hypothesis states: there is no serial correlation at up to 8 lags. The F-statistics probability does not allow us to reject the null hypothesis; therefore, there is no indication of serial correlation. For heteroscedasticity, the Breusch-Pagan-Godfrey results fail to reject the null Hypothesis: there is homoscedasticity.

Null hypothesis: Homoskedasticity

F-statistic	0.957972	Prob. F(11,28)	0.5041
Obs*R-squared	10.93754	Prob. Chi-Square(11)	0.4485
Scaled explained SS	4.764450	Prob. Chi-Square(11)	0.9420

Furthermore, the model has proved to be stable, the errors normally distributed, and free from the presence of multicollinearity, as seen in table B-11 a, B-11,b, and B-11c, in Appendix B. The Jarque-Bera probability was 0.8, greater than 0.05; therefore, the error terms are normally distributed. The outcome of the centered Variance Inflation Factor's (VIF) for all variables was below the cutoff number of VIF 3. The CUSUM test shows no structural break in the model.

After that, we shall test whether there is a long-run relationship between the dependent and independent variables. To this end, a long-run bound test was performed.

 $\begin{array}{ll} H_0: & \phi_1=\phi_2=0 & No \mbox{ long relationship } \\ H_1: & \phi_1\neq\phi_{2\neq} & 0 & There \mbox{ is a long relationship } \end{array}$

	a resi joi tong in	n connegi anon			
F-Bounds Test	Null Hypothesis: No	o levels relationship			
Test Statistic	Value	Signif.	I(0)	I(1)	
		Asymptotic: n=1000			
F-statistic	8.936234	10%	4.04	4.78	
k	1	5%	4.94	5.73	
		2.5%	5.77	6.68	
		1%	6.84	7.84	
		Finite Sample:			
		n=45			
Actual Sample	41	10%	4.225	5.02	
Size		5%	5.235	6.135	
		1%	7.74	8.65	

 Table 12 - Bound Test for long-run cointegration

The figure above is only a fraction of table B-12, Appendix B. The F-statistics above the upper bound allow us to reject the null hypothesis, concluding that there is a long-term relationship among the variables.

5.1.2 Model 2: Agrarian Price Index and Energy Inflation

Model 2 sought to build an equation with the right-side part: the Global Food Index (GFI), Crude Oil, Brazilian Agricultural Price Index (BAPI), and Brazilian Energy Inflation (BENINF). Nevertheless, GFI as COI did not display any statistical significance. These two variables were substituted by others capable of measuring the international environment. Then a model was built with BAPI, BENINF, and Brazilian Exchange Rate (BER). Nonetheless, although the latter variable has shown a significant coefficient, this variable has disturbed the model. The presence of BER caused multicollinearity. Additionally, in attempting to stabilize the model by log transformation and first differencing, the coefficient turned into a negative sign, which is not in line with the literature. The summary of these models can be found in Appendix B, Table B-16. Finally, the chosen model only counts on Agricultural Price Index and Energy Inflation and Food Exports. The food exports, as well as their log transformations and differencing, did not have a significative coefficient; however, it did not cause noise in the model. The statically significant variables' coefficients – Agricultural Price Index and Energy Inflation – are positively related to the dependent variable, in line with the scholars' views. As seen in appendix B, table B-17, the model is stable, and the residuals are well-shaped. The Jarque-Bera normality test outcome had a probability of 0.75. The Breusch-Godfrey for Serial Correlation test resulted in a 0.68 probability. Additionally, the Breusch-Pagan-Godfrey result was 0.49. These results, respectively, did not allow us to reject the null hypothesis of normality, no serial correlation, and homoscedasticity.

)				6.2	ii)				
			0	-0	CARLO CARCE				
ependent Variable: B ethod: ARDL	F_BINF			-	F-Bounds Test		Null Hypothe	sis: No levels re	lationship
ate: 10/13/22 Time: ample (adjusted): 20	18M03 2021M1				Test Statistic	Value	Signif.	I(0)	I(1)
cluded observations aximum dependent l	ags: 4 (Automat	ic selection)				0100		ymptotic: n=1000	
odel selection metho vnamic regressors (4					F-statistic	12.67826	10%	2.72	3.77
DIFBENINF	+ lags, automati	C). LINDF_DEAF	DIFLINDAFI		Charleson		5%	3.23	4.35
ixed regressors; C					3724 1 2		2.5%	3.69	4.89
umber of models eva							196	4.29	5.61
elected Model: ARDL ote: final equation sa		han colection c	ample				Fini	te Sample:	
ote. Intal equation sa	imple is larger u	nan selection s	ample		Actual Sample Size	46 D S		n=50	
Variable	Coefficient	Std. Error	t-Statistic	Prob.*			10%	2.873	3.973
T differen		010. 21101	1 010000				5%	3.5	4.7
	0.306232	0.124470	2.460293	0.0184			196	4.865	6.36
BF_BINF(-1)									
LNBF_BEXP	-0.496470	0.447999	-1.108194	0.2746					
	-0.496470 4.612862	0.447999 3.624885	-1.108194 1.272554	0.2746 0.2107			Fini	te Sample:	
LNBF_BEXP								n=45	2 0 9 2
LNBF_BEXP DIFLNBAPI DIFLNBAPI(-1) DIFBENINF	4.612862 13.76909 0.022492	3.624885 3.653784 0.040338	1.272554 3.768446 0.557600	0.2107 0.0005 0.5803			10%	n=45 2.893	3.983
LNBF_BEXP DIFLNBAPI DIFLNBAPI(-1) DIFBENINF DIFBENINF(-1)	4.612862 13.76909 0.022492 0.092941	3.624885 3.653784 0.040338 0.038207	1.272554 3.768446 0.557600 2.432584	0.2107 0.0005 0.5803 0.0197			10% 5%	n=45 2.893 3.535	4.733
LNBF_BEXP DIFLNBAPI DIFLNBAPI(-1) DIFBENINF	4.612862 13.76909 0.022492	3.624885 3.653784 0.040338	1.272554 3.768446 0.557600	0.2107 0.0005 0.5803			10%	n=45 2.893	4.733
LNBF_BEXP DIFLNBAPI DIFLNBAPI(-1) DIFBENINF DIFBENINF(-1) C	4.612862 13.76909 0.022492 0.092941	3.624885 3.653784 0.040338 0.038207	1.272554 3.768446 0.557600 2.432584 1.157765	0.2107 0.0005 0.5803 0.0197 0.2540 0.663696	+ Bounde Tart		10% 5% 1%	n=45 2.893 3.535 4.983	4.733 6.423
LNBF_BEXP DIFLNBAPI DIFLNBAPI(-1) DIFDERINF DIFBENINF(-1) C -squared djusted R-squared	4.612862 13.76909 0.022492 0.092941 8.195527 0.471731 0.390459	3.624885 3.653784 0.040338 0.038207 7.078748 Mean depend S.D. depende	1.272554 3.768446 0.557600 2.432584 1.157765	0.2107 0.0005 0.5803 0.0197 0.2540 0.663696 0.842642	t-Bounds Test		10% 5% 1%	n=45 2.893 3.535	4.733 6.423
LNBF_BEXP DIFLNBAPI DIFLNBAPI DIFBENINF DIFBENINF(-1) C -squared djusted R-squared E. ofregression	4.612862 13.76909 0.022492 0.092941 8.195527 0.471731 0.390459 0.657877	3.624885 3.653784 0.040338 0.038207 7.078748 Mean depend S.D. depende Akaike info cri	1.272554 3.768446 0.557600 2.432584 1.157765 lent var nt var terion	0.2107 0.0005 0.5803 0.0197 0.2540 0.663696 0.842642 2.139671	⊧Bounds Test Test Statistic	Value	10% 5% 1%	n=45 2.893 3.535 4.983	4.733 6.423 Iationship
LNBF_BEXIP DIFLNBAPI DIFLNBAPI(-1) DIFBENINF DIFBENINF(-1) C - squared djusted R-squared i.e. of regression um squared resid	4.612862 13.76909 0.022492 0.092941 8.195527 0.471731 0.390459 0.657877 16.87929	3.624885 3.653784 0.040338 0.038207 7.078748 Mean depende S.D. depende Akaike info cri Schwarz critei	1.272554 3.768446 0.557600 2.432584 1.157765 lent var int var terion rion	0.2107 0.0005 0.5803 0.0197 0.2540 0.663696 0.842642 2.139671 2.417943		Value	10% 5% 1% Null Hypothe	n=45 2.893 3.535 4.983 sis: No leve ls re	4.733 6.423 Iationship
LNBF_BEXP DIFLNBAPI DIFLNBAPI(-1) DIFBENINF DIFBENINF(-1) C -squared djusted R-squared E. of regression um squared resid og likelihood	4.612862 13.76909 0.022492 0.092941 8.195527 0.471731 0.390459 0.657877 16.87929 -42.21244	3.624885 3.653784 0.040338 0.038207 7.078748 Mean depend S.D. depende Akaike info cri Schwarz critei Hannan-Quin	1.272554 3.768446 0.557600 2.432584 1.157765 lent var int var terion rion n criter.	0.2107 0.0005 0.5803 0.0197 0.2540 0.842642 2.139671 2.417943 2.243913		Value -5.573790	10% 5% 1% Null Hypothe	n=45 2.893 3.535 4.983 sis: No leve ls re	4.733 6.423
LNBF_BEXIP DIFLNBAPI DIFLNBAPI(-1) DIFBENINF DIFBENINF(-1) C - squared djusted R-squared i.e. of regression um squared resid	4.612862 13.76909 0.022492 0.092941 8.195527 0.471731 0.390459 0.657877 16.87929	3.624885 3.653784 0.040338 0.038207 7.078748 Mean depende S.D. depende Akaike info cri Schwarz critei	1.272554 3.768446 0.557600 2.432584 1.157765 lent var int var terion rion n criter.	0.2107 0.0005 0.5803 0.0197 0.2540 0.663696 0.842642 2.139671 2.417943	Test Statistic		10% 5% 1% Null Hypothe Signif.	n=45 2.893 3.535 4.983 sis: No leve ls re I(0)	4.733 6.423 Hationship I(1)

Note: p-values and any subsequent tests do not account for model selection.

Notwithstanding this, when the export variable is removed from the model, the adjusted R-squared has improved. On the other hand, the autoregressive component has become statistically insignificant.

 Table 14 - MODEL 2b. Short-run

Maximum dependent i Model selection metho Dynamic regressors (4	od: Akaike info cr	c selection)	F		
Fixed regressors: C		DIENDAIIDIDENI	18		
Number of models eva Selected Model: ARD		1911/12	112 2		
Note: final equation sa		in selection sample	1///		
Variable	Coefficient	Std. Error	t-Statistic	Prob.*	
BF BINF(-1)	0.235496	0.137340	1.714700	0.0950	
DIFLNBAPI	4.729918	3.559046	1.328985	0.1922	
DIFLNBAPI(-1)	17.42341	3.775129	4.615315	0.0000	
DIFLNBAPI(-2)	-2.544515	3.872322	-0.657103	0.5153	
DIFLNBAPI(-3)	6.138256	3.359210	1.827291	0.0760	
DIFBENINF	0.029611	0.037922	0.780849	0.4400	
DIFBENINF(-1)	0.121703	0.039420	3.087325	0.0039	
C	0.423732	0.126113	3.359924	0.0019	
R-squared	0.555166	Mean dependent var	0.693409		
Adjusted R-squared	0.468670	S.D. dependent var	0.849703		
S.E. of regression	0.619369	Akaike info criterion	2.042733		
	13.81023	Schwarz criterion	2.367131		
Sum squared resid		Hannan-Quinn criter.	2.163036		
Sum squared resid Log likelihood	-36.94013		4 95 6579		
	-30.94013 6.418433	Durbin-Watson stat	1.956579		

The F-statistics ensures that at more than 1% of significance, Model 2b has a better fit to the data than an alternative model without any independent variable. The model can explain approximately 46% of the variation of the dependent variable. The residuals are normally distributed and do not show heteroskedasticity or serial correlation. The Jarque-Bera has a probability of 0.79, failing to reject the null Hypothesis. The Breusch-Pagan-Godfrey test presented a chi-square larger than 0.05. Likewise, the Q-statistic test results fail to reject the null hypothesis of no autocorrelation. The summaries are in Appendix B, table B-13. Moreover, as verifiable in table B-14, appendix B, the centered Variance Inflation Factors (VIF)

outcomes for each variable were less than 2, which indicates a neglectable multicollinearity level. Lastly, the CUSUM did not spot any structural break.

The bound test for long-run cointegration displayed a high level of significance in rejecting the null hypotheses. The F-statistics was 12.17, which is high above the upper bound at any level of significance, as seen below. The respective table is available in appendix B, table 15-B.

F-Bounds Test Null Hypothesis: No levels relati					
Test Statistic	Value	Signif.	I(0)	l(1)	
		Asymptotic: n=1000 10% 3.17 4.14 5% 3.79 4.85 2.5% 4.41 5.52			
F-statistic	12.17903	10%	3.17	4.14	
k	2	5%	3.79	4.85	
		2.5%	4.41	5.52	
		1%	5.15	6.36	
Actual Sample Size	46	Fin	ite Sample: n=50		
Actual Sample Size	40	10%	3.333	4.313	
		5%	4.07	5.19	
		1%	5.817	7.303	
		Fin	ite Sample: n=45		
		10%	3.33	4.347	
		5%	4.083	5.207	
		1%	5.92	7.197	

5.1.3 Model 3: Energy Inflation and Nominal Effective Exchange Rate as the explanatory variable.

The third model will consider a maximum lag of 8 due to the results of the granger causality test that pointed out granger causality between these explanatory variables and dependent variables with that specific lag. Energy inflation was used in its raw form, and the Nominal Effective Exchange Rate was used in its logarithmic form and then the first differencing was applied. The statistically significant coefficient had a positive sign, which aligns with the theory. The Adjusted R-squared was 0.35, which means that the model can explain 35% of the variation on the independent variable. In turn, the F-statistics of 0.04 allows for rejecting the null

hypothesis that an alternative model with no variables would have a better fit than the present model.

 Table 15 - Brazilian model 3 – Short-run

D_{I}	iziiiun mouei .	5 51101111				
	Dependent Variable: E	F BINF				
	Method: ARDL					
	Date: 09/28/22 Time:					
	Sample (adjusted): 201					
	Included observations:					
	Maximum dependent 1					
	Model selection metho					
		lags, automatic): BI	ENINF DIFLNBNEER			
	Fixed regressors: C					
	Number of models eva					
	Selected Model: ARD					
	Note: final equation sa	mple is larger than s	election sample			
	Variable	Coefficient	Std. Error	t-Statistic	Prob.*	
	BF BINF(-1)	0.674921	0.183090	3.686282	0.0014	
	BF BINF(-2)	-0.294508	0.178268	-1.652059	0.1134	
	BENINF	-0.050306	0.059794	-0.841308	0.4097	
	BENINF(-1)	0.149502	0.058257	2.566271	0.0180	
	BENINF(-2)	-0.092375	0.056211	-1.643347	0.1152	
	BENINF(-3)	0.019408	0.055858	0.347452	0.7317	
	BENINF(-4)	0.009574	0.052056	0.183909	0.8558	
	BENINF(-5)	0.007235	0.052196	0.138612	0.8911	
	BENINF(-6)	-0.061250	0.056954	-1.075419	0.2944	
	BENINF(-7)	0.122911	0.059607	2.062009	0.0518	
	DIFLNBNEER	-0.717952	3.133520	-0.229120	0.8210	
	DIFLNBNEER(-1) DIFLNBNEER(-2)	3.588063	3.424033	1.047906	0.3066	
	DIFLNBNEER(-2)	-1.310389	3.474641	-0.377129	0.7099	
	DIFLNBNEER(-3)	-0.756160	3.480644	-0.217247	0.8301	
	DIFLNBNEER(-4)	6.144343	3.384862	1.815242	0.0838	
	DIFLNBNEER(-5)	-4.063500	3.417040	-1.189187	0.2476	
	DIFLNBNEER(-6)	3.681216	3.542366	1.039197	0.3105	
	DIFLNBNEER(-7)	8.946673	3.613021	2.476231	0.0219	
	С	0.272963	0.209772	1.301236	0.2073	
	R-squared	0.653596	Mean dependent var	0.718000		
	Adjusted R-squared		S.D. dependent var	0.834350		
	S.E. of regression		Akaike info criterion	2.340205		
	Sum squared resid		Schwarz criterion	3.142423		
	Log likelihood		Hannan-Quinn criter.	2.630261		
	F-statistic		Durbin-Watson stat	1.985873		
	Prob(F-statistic)	0.042530				

The residual behavior warrants the coefficient's reliability. The Jarque-Bera test for normality resulted in a 0.27 probability, which is not significant to reject the normality hypothesis. Likewise, the Q-statistic test, the Breusch-Godfrey Serial Correlation LM test results, for all variables and their lags, were not sufficient to reject the hypothesis of no serial correlation. Moreover, there is no sign of multicollinearity among the variables; and the model were stable and did not show any structural break. The summaries can be found in Appendix B, table B-20.

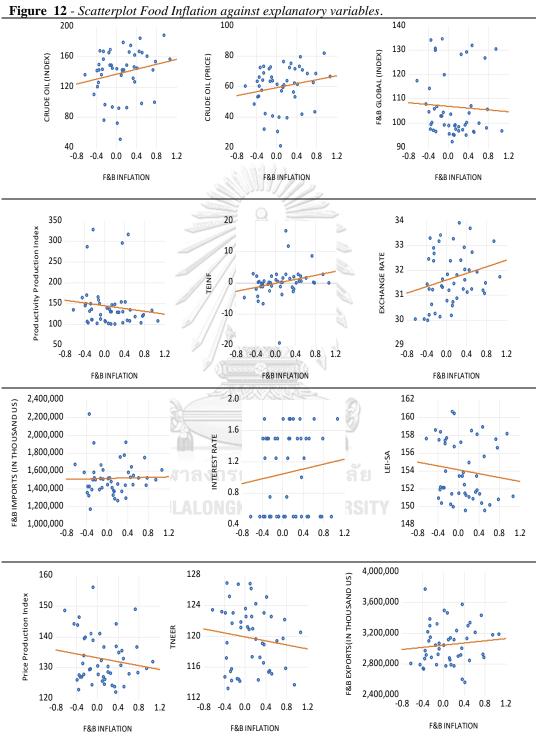
The Bound test results for long-run cointegration allow us to affirm that, at 5% of significance, the variables are jointly cointegrated. The Bound test summary is entirely available in appendix B, table B-20.

F-Bounds Test		Null Hypothesis	No levels fel	auonsnip
Test Statistic	Value	Signif.	I(0)	I(1)
			ymptotic:	
F-statistic	5 294701	10%	n=1000 3.17	4.14
r-statistic k	2.294701	5%	3.79	4.14
ĸ	2	2.5%	4.41	4.85
		2.5%		
		1%	5.15	6.36
		Fini	te Sample:	
Actual Sample Size	40		n=40	
-		10%	3.373	4.377
		5%	4.133	5.26
		1%	5.893	7.337
t-Bounds Test		Null Hypothesis	No levels rel	ationship
Test Statistic	Value	Signif.	I(0)	I(1)
t-statistic	-3.860465	10%	-2.57	-3.21
		5%	-2.86	-3.53
		2.5%	-3.13	-3.8
		1%	-3.43	-4.1

5.2. Thailand's Findings and Model Analysis.

For Thailand's analysis, the same set of variables used by Brazilians will be used as much as possible. The Augmented Dickey-Fuller (ADF) test for stationarity was applied to all variables as well as to their logarithmic-transformed form. The results were summarized in Appendix B, Table B-21. All variables and their log transformations are purely stationary – I(0) – or stationary integrated by 1 – I (1). Recall that this combination is suitable for ARDL methodology. Below is the table with the variables' abbreviations as they will appear in the statistical summaries.

 Table 16 - List of Abbreviations as in summaries.


Table 10 List of hobreviations as in summaries.				
TF_BINF	THAI FOOD & BEVERAGE INFLATION (Dependent			
	variable)			
COI, DIFCOI	CRUDE OIL INDEX, First Difference of COI			
LNCOI, DIFLNCOI	Log of COI, First Difference of Log COI			
COP, DIFCOP	CRUDE OIL PRICE, First Difference of COP			
LNCOP, DIFLNCOP	Log of COP, Fist Difference of Log of COP			
GFI, DIFGFI	GLOBAL FOOD INDEX, First Difference of GFI			
LNGFI, DIFLNGFI	Log of GFI, First Difference of Log of GFI			
TAPI, DIFTAPI	THAI AGRICULTURAL PRICE INDEX, First Difference o			
LNTAPI, DIFLNTAPI	TAPI			
	Log of TAPI, First Difference of Log of TAPI			
TAPROD, DIFTAPROD	THAI AGRICULTURAL PRODUCTION, First Difference of			
LNTAPROD,	TAPROD			
DIFLNTAPROD	Log of TAPROD, First Difference of Log TAPROD			
TEINF, DIFTEINF	THAI ENERGY INFLATION, First Difference of Thai Energy			
	Inflation			
TFEXP, DIFTEXP	THAI FOOD EXPORTS, First Difference of TFEXP			
LNTFEXP, DIFLNTFEXP	Log of TFEXP, First Difference of Log of TFEXP			
TFIMP, DIFTFIMP	THAI FOOD IMPORTS, First Difference of TFIMP			
LNTFIMP, DIFLNTFIMP	Log of TFIMP, First Difference of Log of TFIMP			
TIR, DIFTIR	THAI INTEREST RATE, Fist Difference TIR			
LNTIR, DIFLNTIR	Log of TIR, First Difference of Log of TIR			
TLEI, DIFTLEI	THAI LEADING ECONOMIC INDEX, First Difference of			
LNTLEI, DIFLNTLEI	TLEI			
	Log of TLEI, First Difference of Log of TLEI			
TNEER, DIFTNEER	THAI NOMINAL EFFECTIVE EXCHANGE RATE, First			
LNTNEER,	Difference of TNEER			
DIFLNTNEER	Log of TNEER, First Difference of log of TNEER			

Before starting modeling, it is beneficial to check the correlation matrix in order to avoid aggregating highly correlated variables (degree of correlation larger than 0.7). The GFI variable, for example, displayed a high positive degree of correlation with TFIMP and TAPI. The result is unexpected for TFIMP (Imports) and can cause misleading interpretations. There might be an unobserved variable cointegrating DFI and TFIMP. TAPI and TLEI are positively correlated because economical heating can cause price pressure. Energy and crude oil are positively correlated, which is expected. TIR and TLEI are negatively correlated because a rise (decrease) in the latter implies a decline (rise) in the former. The whole matrix can be found in Table- B 23, appendix B.

After that, the dependent variable was plotted against the probable explanatory variables, as in Figure 10 below. The cost-push effect explains the positive relationship between food inflation and crude oil and energy prices. The agrarian production index and the agrarian price index are negatively associated with the variable of interest. The production correlation is expected; however, the production price should be positively correlated to inflation because of the pass-through mechanism from the production sector to retailers; thus, this latter relationship is non-sense and needs further investigation. The imports curve is relatively flat; in turn, the exports have a slightly positive inclination; the direct explanation is that the more exports, the less domestic food surplus.

Concerning monetary aspects, the positive relations between inflation and interest rate align with the theory: central banks must raise the interest rate to prevent inflation from spiraling out of control. Likewise, the exchange rate is well-known as a root fact of inflation. Lastly, NEER (nominal effective exchange rate) curve is negatively inclined once, according to the Bank of Thailand: an increase in NEER refers to the baht appreciation against Thailand's major trading partners and competitors. Then, holding everything else constant, the stronger the currency, the lower the inflation.

The next step consists of testing for Granger Causality to improve the chance of choosing meaningful regressors for the models. All variables were submitted to this test. Below, table 16 displays the statistically significant variables, at least at 10%. Bear in mind that the Granger Null Hypothesis is: Variable x does not Granger Cause variable Y. Thus, with the maximum lag of 4 months, only agricultural price and agricultural production and their transformed forms were able to reject the Null Hypothesis. On the other hand, accounting for the maximum of 8 months of lags, crude oil price and crude oil index allowed us to reject the Null Hypothesis. These results point out that oil prices and agricultural conditions can be worthy explanatory variables for food inflation.

Pairwise Granger Causality Tests		
Date: 10/17/22 Time: 13:57		
Sample: 2018M01 2021M12		
Lags: 4		
Null Hypothesis:	Obs	F-Statist
Prob.		
DIFTF_BINF does not Granger Cause DIFLNTAPI	43	1.77425
0.1568		
DIFLNTAPI does not Granger Cause DIFTF_BINF		2.12518
0.0991		
DIFTF_BINF does not Granger Cause DIFLNTAPROD	43	0.17444
0.9500		
DIFLNTAPROD does not Granger Cause DIFTF_BINF		2.06362
0.1074		
TF_BINF does not Granger Cause DIFTAPROD	43	0.68169
0.6095		
DIFTAPROD does not Granger Cause TF_BINF		2.23621
0.0857		
LNTAPI does not Granger Cause DIFTF_BINF	43	2.19138
0.0908		
DIFTF_BINF does not Granger Cause LNTAPI		2.32193
0.0766		
TAPI does not Granger Cause DIFTF_BINF	43	2.26609
0.0824		
DIFTF_BINF does not Granger Cause TAPI		2.19458
0.0905		

 Table 17 - Thailand Granger Causality test.

Table 17 - Thailand Granger Causality test.		
TF_BINF does not Granger Cause LNTAPI	44	2.54697
0.0566		
LNTAPI does not Granger Cause TF_BINF		2.11538
0.0997		
TF_BINF does not Granger Cause TAPI	44	2.40168
0.0684		
TAPI does not Granger Cause TF_BINF		2.21752
0.0871		
Pairwise Granger Causality Tests		
Date: 10/17/22 Time: 14:17		
Sample: 2018M01 2021M12		
Lags: 8		
	Obs	F-Statist
Lags: 8	Obs	F-Statist
Lags: 8 Null Hypothesis:	Obs 40	F-Statist
Lags: 8 Null Hypothesis: Prob.		
Lags: 8 Null Hypothesis: Prob. TF_BINF does not Granger Cause COI		
Lags: 8 Null Hypothesis: Prob. TF_BINF does not Granger Cause COI 0.8914		0.42917
Lags: 8 Null Hypothesis: Prob. TF_BINF does not Granger Cause COI 0.8914 COI does not Granger Cause TF_BINF		0.42917
Lags: 8 Null Hypothesis: Prob. TF_BINF does not Granger Cause COI 0.8914 COI does not Granger Cause TF_BINF 0.0896	40	0.42917 2.01960
Lags: 8 Null Hypothesis: Prob. TF_BINF does not Granger Cause COI 0.8914 COI does not Granger Cause TF_BINF 0.0896 TF_BINF does not Granger Cause COP	40	0.42917 2.01960
Lags: 8 Null Hypothesis: Prob. TF_BINF does not Granger Cause COI 0.8914 COI does not Granger Cause TF_BINF 0.0896 TF_BINF does not Granger Cause COP 0.8731	40	0.42917 2.01960 0.45739

Finally, before presenting the model, we shall test for the breakpoint. The Chow test was applied for structural break; the F-statistic outcome was not enough to reject the following statement: there is no breakpoint in January 2020. Therefore, there is no need to use dummy variables.

Chulalongkorn University

Chow Breakpoint Test: 2020M01 Null Hypothesis: No breaks at specified breakpoints Varying regressors: All equation variables Equation Sample: 2018M01 2021M12

F-statistic	0.080735	Prob. F(1,46)	0.7776
Log likelihood ratio	0.084171	Prob. Chi-Square(1)	0.7717
Wald Statistic	0.080735	Prob. Chi-Square(1)	0.7763

Given the abovementioned guideline to avoid creating models Integrated by order 2 - I(2) or more, building models with moderated or highly correlated variables was modeled around 38 models. However, out of these models, 35 come out with

very low adjusted R-squared (the percentage of the change in the dependent variable explained by the model minus the penalty for including useless variables), and low F-statistics. These models are available in Table b-30, appendix B.

Having said that, the models which passed by the criteria of significance, stability and reliability are:

- > 1)TF_BINF= $\delta_1 \Delta \ln TAPROD_{t-4} + \delta_2 \Delta TENINF + \delta_3 \Delta TENINF_{t-2} + e_t$
- $> 2)TF_BNIF = \delta_0 + \delta_1 \Delta lnTAPI_{t-1} + \delta_2 \Delta TENINF + \delta_3 \Delta TENINF_{t-1} + \delta_4 \Delta TENINF_{t-2} + \delta_5 \Delta lnGFI + \delta_6 \Delta lnGFI_{t-2} + e_t$
- > 3)TF_BNINF= θ_1 TF_BINF_{t-1} + $\delta_1 \Delta \ln TAPROD_{t-1}$ + $\delta_2 \Delta TENINF$ + $\delta_3 \Delta TENINF_{t-1}$ + $\delta_4 \Delta TENINF_{t-2}$ + $\delta_5 \Delta TENINF_{t-3}$ + $\delta_6 \Delta TER_{t-1}$ + e_t

5.2.1 Thailand's First Model

In the first model, three explanatory variables were initially attempted: Agricultural Production (log differences), Energy Inflation (first difference), and Nominal Effective Exchange Rate (log differences). However, the F-statistics did not have sufficient statistical significance, and the R-squared was too low - 0.2. Therefore, the NEER was changed by economic output proxy - LEI (log differences), which improved the r-squared to 0.27, as in table 17.

Regarding the coefficients, there was no statistical significance for the autoregressive part. The agriculture production, with four months of lags, is significant and the sign is as expected – negatively related to inflation since a rise in the quantity of supply causes a decrease in prices. For energy inflation, the

contemporaneous coefficient and its three months lag are significant, and the positive sign is in line with the expectations. The LEI did not have any significance, although it improved the r-squared, without sacrificing stability.

Moreover, once all assumptions were observed, the residual diagnostics warrant that the coefficients have the least variance among all linear unbiased estimators. The error terms are normally distributed, and there is no sign of heteroscedasticity, auto-correlation, endogeneity, and multicollinearity. Besides, the model is stable with no structural break. The summary for all these tests is available in Appendix B, table B-23.

 Table 18 - Thailand Model 1. Short-run

 Dependent Variable: TF_BINF

 Method: ARDL

 Date: 10/18/22 Time: 22:05

 Sample (adjusted): 2018M06 2021M07

 Included observations: 38 after adjustments

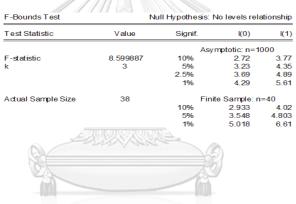
 Maximum dependent lags: 4 (Automatic selection)

 Model selection method: Akaike info criterion (AIC)

 Dynamic regressors (4 lags, automatic): DIFLNTAPROD DIFLNTLEI, DIFTENINF

 Fixed regressors: C

 Number of models evaluated: 500


 Selected Model: ARDL(1, 4, 0, 3)

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
TF BINF(-1)	0.168132	0.164716	1.020737	0.3168
DIFLNTAPROD	-0.067020	0.187473	-0.357489	0.7236
DIFLNTAPROD(-1)	-0.351102	0.195159	-1.799055	0.0836
DIFLNTAPROD(-2)	-0.047853	0.202868	-0.235881	0.8154
DIFLNTAPROD(-3)	-0.213360	0.195864	-1.089331	0.2860
DIFLNTAPROD(-4)	-0.531583	0.187853	-2.829778	0.0089
DIFLNTLEI	-0.000225	0.000164	-1.372939	0.1815
DIFTENINF	0.022530	0.010126	2.225035	0.0350
DIFTENINF(-1)	0.009887	0.010602	0.932547	0.3596
DIFTENINF(-2)	0.028422	0.010153	2.799406	0.0095
DIFTENINF(-3)	0.018163	0.011115	1.634060	0.1143
С	165.8241	120.7410	1.373387	0.1814

 Table 18 - Thailand Model 1. Short-run

R-squared	0.490954	Mean dependent var	0.082632
Adjusted R-squared	0.275588	S.D. dependent var	0.379920
S.E. of regression	0.323359	Akaike info criterion	0.831979
Sum squared resid	2.718579	Schwarz criterion	1.349112
Log likelihood	-3.807604	Hannan-Quinn criter.	1.015971
F-statistic	2.279630	Durbin-Watson stat	1.769332
Prob(F-statistic)	0.041197		

For the long-run analysis, the Bound test exhibits an F-statistics (8.59) expressively larger than the upper bound (6.61), enabling the rejection of the null hypothesis of non-cointegration in favor of the alternative hypothesis at any level of significance. The whole table for the bound test is displayed in table B-24.

5.2.1 Thailand's Second Model

The second model contains the Agricultural Price Index (TAPI), the Energy Inflation (TENINF), and the Global Food Index (DFI). The agricultural price positively impacts inflation, considering one month lag. In turn, for this model, the energy affects the food inflation contemporaneously and with one and two months of lag. Both variables behave as expected; they move in the same direction as the dependent variable. However, the global food price had an unexpected path, negatively related to Thailand's food inflation. The adjusted R-squared was highly penalized by the number of lags. Nevertheless, the model is reliable and stable according to the residual diagnostics available in table B-26.

Table 19 - Thailand. Model 2 Dependent Variable: TF_BINF Method: ARDL Date: 10/19/22 Time: 13:14 Sample (adjusted): 2018M06 2021M12 Included observations: 43 after adjustments Maximum dependent lags: 4 (Automatic selection) Model selection method: Akaike info criterion (AIC) Dynamic regressors (4 lags, automatic): DIFLNTAPI DIFTENINF DIFLNGFI Fixed regressors: C Number of models evaluated: 500 Selected Model: ARDL(2, 1, 4, 2) Variable Coefficient Std. Error t-Statistic Prob.* TF_BINF(-1) TF_BINF(-2) 0.159701 0.247265 1.548304 0.1320 -0.292106 0.157012 -1.860401 0.0727 2.181460 2.234295 DIFLNTAPI -1.496581 -0.686046 0.4980 DIFLNTAPI(-1) 5.716617 2.558577 0.0158 DIFTENINF 0.031928 0.011175 2.856976 0.0077 DIFTENINF(-1) 0.023168 0.011501 2.014368 0.0530 DIFTENINF(-2) 0.043758 0.013720 3.189281 0.0033 DIFTENINF(-3) 0.022768 0.012153 1.873490 0.0708 DIFTENINF(-4) 0.017830 0.011600 1.537071 0.1348 DIFLNGFI -4.319051 1.957875 2.036995 -2.205989 0.0352 DIFLNGFI(-1) 0.808867 0.397088 0.6941 DIFLNGFI(-2) 4.007452 1.979763 -2.024208 0.0519 С 0.138158 0.058888 2.346101 0.0258 R-squared 0.477022 Mean dependent var 0.103023 Adjusted R-squared 0.267831 S.D. dependent var 0.390711 S.E. of regression 0.334319 Akaike info criterion 0.891206 Sum squared resid 3.353076 Schwarz criterion 1.423662 Log likelihood -6.160936 Hannan-Quinn criter. 1.087560 F-statistic 2.280317 Durbin-Watson stat 1.819147 Prob(F-statistic) 0.033226

The Bound test for long-run cointegration reveals a long-term relationship

among the variables within this model. The whole table is in appendix B, table B-27.

F-Bounds Test	Null Hypothesis: No levels relationsl			ationship
Test Statistic	Value	Signif.	I(0)	l(1)
			symptotic: n=1000	
F-statistic	10.01040	10%	2.72	3.77
k	3	5%	3.23	4.35
		2.5% 1%	3.69 4.29	4.89 5.61
			Finite	
Actual Sample Size	43		mple: n=45	
		10%	2.893	3.983
		5%	3.535	4.733
		1%	4.983	6.423
			Finite	
		Sa	mple: n=40	
		10%	2.933	4.02
		5%	3.548	4.803
		1%	5.018	6.61

5.2.3 Thailand's Third Model

 Table 20 - Thailand model 3. Short- run

Dependent Variable: TF_BINF Method: ARDL Date: 10/20/22 Time: 14:35 Sample (adjusted): 2018M05 2021M12 Included observations: 44 after adjustments Maximum dependent lags: 4 (Automatic selection) Model selection method: Akaike info criterion (AIC) Dynamic regressors (4 lags, automatic): DIFLNTAPROD DIFTENINF DIFTER Fixed regressors: C Number of models evaluated: 500 Selected Model: ARDL(1, 1, 3, 1)

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
TF_BINF(-1)	0.302778	0.137320	2.204911	0.0343
DIFLNTAPROD	-0.065121	0.170647	-0.381609	0.7051
DIFLNTAPROD(-1)	-0.362898	0.176551	-2.055482	0.0476
DIFTENINF	0.030326	0.009837	3.082690	0.0041
DIFTENINF(-1)	0.022944	0.009700	2.365480	0.0239
DIFTENINF(-2)	0.038198	0.010196	3.746214	0.0007
DIFTENINF(-3)	0.024698	0.009927	2.488117	0.0179
DIFTER	-0.139590	0.083312	-1.675501	0.1030
DIFTER(-1)	0.205765	0.085958	2.393781	0.0223
С	0.063049	0.052634	1.197879	0.2392
		Left A	and the second second	
D	0.450545			0.110000
R-squared	0.450645	Mean depender		0.110909
Adjusted R-squared	0.305228	S.D. dependent	var	0.389668
S.E. of regression	0.324800	Akaike info cri	terion	0.785501
Sum squared resid	3.586827	Schwarz criteri	onาวิทยา	1.190998
Log likelihood	-7.281017	Hannan-Quinn	criter.	0.935879
F-statistic	3.098977	Durbin-Watson		1.978197
Prob(F-statistic)	0.007954			1.0.0177
1100(1-statistic)	0.007734			

The third model includes Agricultural Production (log differences), Energy inflation and Exchange Rate (first difference). The sign of all coefficients returned as expected. The regressive part was positive, meaning that the previous inflation affects the present inflation. The agricultural production variable had a negative sign and was statistically significant for one month of lag, which means that inflation tends to decrease when production rises. Energy inflation was positively significant for the contemporaneous result and for one, two and three months of lag. The one-month lag of the exchange rate was positively related to inflation; recalling that a rise in the exchange rate means depreciation, then an increase in the exchange rate tends to pull the inflation up.

Furthermore, model 3 seemed stable, according to the CUSUM test result. The coefficients are reliable, with error terms normally distributed (Jarque-Bera 0.59). Besides, we failed to reject the hypothesis of homoskedasticity, autocorrelation, and multicollinearity, as shown by Table B-28, Appendix B.

For the long-run relationship, the variables are cointegrated and tend to return to long-term equilibrium in case of disturbance. The F-statistics for the Bound test was 12.79, far higher than the upper bound for any level of significance. The entirely Bound test result for cointegration is available in tables B-29. An excerpt of this test is below.

F-Bounds Test		Null Hypothesis: No levels relationshi		
Test Statistic	Value	Sign if.		l(1)
			symptotic: n=1000	
F-statistic	12.79867	10%	2.72	3.77
k	3	5%	3.23	4.35
		2.5%	3.69	4.89
		1%	4.29	5.61
		Finit	te Sample:	
Actual Sample Size	44		n=45	
		10%	2.893	3.983
		5%	3.535	4.733
		1%	4.983	6.423
		Finit	te Sample:	
			n=40	
		10%	2.933	4.02
		5%	3.548	4.803
		1%	5.018	6.61

5.3 Discussion

In this section, the results from sections 5.1 and 5.2 will be discussed, contrasted, and compared. The models designed in the mentioned sections were built in two formats: level-Log and level-Log Difference. Given that, the interpretation will be based on the following definition:

 $\succ \text{ Linear} - \text{Log} \\ y_t = \beta_1 + \beta_2 \ln x_t + e_t$

 $\beta_2 = \frac{\Delta Yt}{\Delta \ln Xt} \xrightarrow{yields} \frac{dy}{dx} = \frac{\beta_2}{x} \xrightarrow{yields} dy = \frac{\beta_2}{x} \cdot x \xrightarrow{yields} \Delta Y = \frac{\beta_2}{100} \text{ (everything else held constant)}$

Linear-log Difference

 $\Delta Y = Log(x_t) - log(x_{t-1}) \cong \frac{Yt - Yt - 1}{Yt - 1}$, when the number is small; otherwise, the logarithm will be calculated.

Out of 13 possible explanatory variables, along with their transformed forms, only 6 had explanatory power: Agricultural Production, Agricultural Price, Energy Inflation, Global Food Index, Nominal Effective Exchange Rate, and Exchange Rate. These variables, encompassed by the three models proposed in sections 5.1 and 5.2, will be thoroughly analyzed in the following sections.

5.3.1Thailand's and Brazil's Model 1.

- ► BF_BINF= $1.05 + 0.62BF_BINF_{t-1} 52.95\Delta lnBAPROD_{t-6} + e_t$
- > TF_BINF= $0.53\Delta \ln TAPROD_{t-4}$ + $0.02\Delta TENINF$ + $0.02\Delta TENINF_{t-2}$

 $+ e_t$

For Brazil's First Model, the natural logarithm of 52.95 is approximately 3.97; the negative sign means that the dependent variable moves in an oppositive way from the independent variable. For each one percent increase in production growth, there is a reduction of 3.87 units of inflation, everything else holding constant, with six months of lag. The reverse is also true; for each one percent decrease in production growth, there is an increase of 3. 97 units in food inflation. In this model, the intercept and the regressive part are different from zero for Brazil. These non-null coefficients indicate i) a degree of inflation stickiness and ii) that the expectations are backward looking (adaptative); in order words, the firms, households, and workers expect that the subsequent inflation will be similar to the current one. Thus, the economic agents act accordingly: bearing in mind that the prices based on the level the past inflation. Moreover, the Interest rates did not show statistical relevance; besides, because this variable is stationary only at level, it was not possible to perform any transformation.

Brazil is known as one of the most prominent food producers; nevertheless, according to the Center of Advanced Studies in Applied Economics (CEPEA), grain production grew only 4.3% in 2020 (below the average of the previous ten years - 7.7%). Moreover, fruits and vegetables had a slight decline in production. During the pandemic, Brazil experienced a reduction in the production of rice, beans, coffee beans, cassava, potato, orange, cocoa, grape, apple, banana, and papaya (Pereira & Castro, 2022). According to IPEA (2020, b), rice production stagnated. Moreover, according to BACCARIN & OLIVEIRA (2020), the Brazilian production of non-tradable products is tightly related to domestic demand, so the consumers have little bargaining power. In addition, during the Covid-19 pandemic, consumers increased

the quantity per purchase to stockpile non-perishable products, such as rice and beans. Therefore, we can highlight that, in Brazil, there is no expressive surplus of eatable agricultural production. Thus, any disturbance can encourage wholesalers and producers to raise the prices, and this increase is easily passed through to retailers until they reach the final consumers.

For Thailand, one percent of the decrease in the growth of agricultural production can lead to a reduction of 0.53 units in food inflation, with four months of lag. This rate is far lower than Brazil's transmission rate. A small magnitude of the food production coefficient explains why the decline in production did not spill over to the retailer sector. In the first quarter of 2020, the Agricultural Producer Index contracted by 6%, especially because of the droughts. In the first semester of 2020, the water reservoir was at its lowest level. In general, the 2020 agricultural production decreased by 3.4 %. The water scarcity during the first semester can partially explain the food price pick in the third quarter of 2020.

หาลงกรณ์มหาวิทยาลัย

On the other hand, an increase in rural unemployment contributed to reducing the pressure for wage rises, which, in turn, lessened production costs. Another fact that might have contributed to the decrease in prices is the decline in rice and fishery exports. Nevertheless, in the third quarter of 2020, production and rural unemployment started to stabilize, and some products, like fruits and poultry, even increased their production. In 2021, weather conditions changed, and the water supply was enough to boost the crops. The third quarter of 2021 was marked by an expressive increase in production – around 8%. However, it was insufficient to contain an inflation peak in the fourth quarter.

Thailand's first model is also composed of the energy element, which is understood as domestic removable and non-removable energy sources. Thailand's Model 1 indicates that one unit of increase in energy inflation growth adds 0.02 units in food inflation contemporaneously and after two months of lag. Mathematically: Δ TF&BInflation = 0.2 (TENINF_t - TENINF_{t-1}) + 0.2 (TENINF_{t-5} - TENINF_{t-4}). Since Food Inflation = $\%\Delta$ in food CPI, and Energy Inflation is the $\%\Delta$ in energy CPI, 0.2 is the elasticity of Food CPI against the Growth of Energy CPI. Therefore, a negative change in energy CPI leads to a negative impact on food inflation. Although the monthly energy inflation has had a volatile behavior, the accumulated rate for the first three semesters of 2020 decreased by 10%. It is possible to infer that keeping the change in energy prices under zero greatly contributed to negative food inflation during Q.4 of 2020 and Q.1 of 2021. The energy prices only reached the level of January 2020 in April 2021, which had an increase of 8% from April to December 2021. It is important to stress that the Thai Model has neither an intercept nor an autoregressive part. With this result, one can infer that the expectation is forwardlooking (rational); the current rate is independent from the previous ones.

5.3.2 Brazil's and Thailand's Model 2

- \rightarrow b) BF_BNINF = 0.42 + 17.42 Δ lnBAPI_{t-1}+0.12 Δ BENINF_{t-1} + e_t
- $TF_BNIF = 0.13 + 5.71 \Delta lnTAPI_{t-1} + 0.03 \Delta TENINF + 0.023 \Delta TENINF_{t-1} + 0.023 \Delta TEN$

 $0.043 \Delta TENINF_{t\text{-}2} \text{-} 4.31 \Delta lnGFI \quad \text{-} 4 \Delta lnGFI_{t\text{-}2} \ + e_t$

Brazil's model 2 was split into two: model "a" is formed by the autoregressive part, the Brazilian Agricultural Price Index (BAPI), and the Brazilian Energy Inflation (BENINF); whereas model "b" is formed by the intercept, Agricultural Price Index and Energy Inflation. Regarding model "a," each unit change in last month's food inflation add 0.3 units to the current one. Concerning energy inflation, according to model "a," each one unit of positive change in BENINF adds 0.09 units in food inflation one month after. For model "b," each unit of positive energy inflation changes leads to an increment of 0.12 units in food inflation after one month. With respect to BAPI, each positive change in the Agricultural Price Index growth leads to an addition of 2.62 (Ln 13.76) units in food inflation; in turn, in model "b," each percentage change in the BAPI growth adds 2.85(Ln 17.42) units to food inflation.

The energy inflation – renewable and non-renewable sources – was under control until the Q.3 of 2020, when it started to accelerate, reaching 8.2% in Q.4. This index slowed down during Q.1 of 2021; however, from Q.2 onwards, it grew in a rapid pace: 6.7% in Q.2, 14.68% in Q.3 and, 3.78% in Q.4. For the Brazilian model, the gap between the rise in energy and its reverberation in food inflation takes only one month. These figures align with food inflation peaks: in Q.3 and Q4. of 2020 and Q.3 of 2021.

The Agricultural Price Index (API) is understood as the selling price received by domestic producers for their output and is heavily affected by demand and costs. The Brazilian Agricultural Price index has a sharp increase of 13.1% in Q.1 of 2020, mainly due to grain prices growing rampant. In this period, the demand-pull transmission mechanism was also verified. At the beginning of the pandemic, consumers stockpiled non-perishable food, such as rice and beans, which raised the retailer's demand towards wholesalers at a level over what had been expected. According to IPEA (2020, b), the production cost was inflated mostly by the administrated prices and input costs. For instance, in Brazil, paddy crops rely on electric irrigation, and other crops depend highly on imported fertilizers, which have become more expensive due to currency depreciation. Besides, for the first semester, the cost of production for grains was over two standard deviations from what was expected (Cepea, 2020). In Q.3 and Q.4 of 2020, BAPI rose more than 5 and 11%. The grains' production cost was the main culprit. These sequential rises stopped in Q.1, Q.2, and Q.3 of 2021 when the costs cooled off.

Thailand's second model counts on intercept, Agricultural Price Index (TAPI), Energy Inflation (TENINF) Growth, and Global Food Index (GFI) Growth. The intercept means that, in this model, if there were no other variables, the inflation would be 0.13%. Regarding TAPI, the rise in agrarian prices takes one month to affect food inflation. According to this equation, each one percent increase in the growth of agricultural prices leads to a rise of approximately 1.74 (Ln 5.71) units in food inflation one month after the increment. The Global Food Index displayed an unexpected negative relationship with Thailand's food inflation. Each positive percentage change in GFI growth leads to a decrease of 1.43 (ln 4.31) units in current food inflation and 1.38 (ln 4) after two months. This relationship is unexpected; however, indeed, the lowest level of Thai food inflation – Q4/2002 and Q1/2021 – converge with the Global Food Index hike. Instead, a positive and strong relationship between GFI and TAPI was identified, as depicted in Table 21, a. In the Granger Causality test below, the F-statistics allows for rejecting the Null hypothesis. In any case, it was preferable to keep the GFI in the model because its permanence enhances the Adjusted R-squared and the Jarque-Bera test for normality. Besides, this model's Variance Inflator Factor was below the acceptable level, as shown in section 5.2.2, and there is only a weak correlation between the contemporaneous DIFLNTAPI_t and DIFLNDFI_t variables, as displayed in Table 21,b.

 Table 21 - GFI and TAPI Granger Causality and Correlogram Tests

b) Corre	logram	
	DIFLNTAPI	DIFLNGFI
DIFLNIAPI DIFLNGFI	1.000000 0.148761	0.148761 1.000000
	tic Prob. 32 0.6765	Prob. DIFLNTAPI 1.000000 82 0.6765 DIFLNGFI 0.148761

The Thai Energy Inflation was discussed in section 5.3.1; having said that, we shall discuss Thailand's Agricultural Price Index. This index soared during the pandemic period. For example, TAPI recorded 8.8% in Q.1 of 2020; however, the raises were concentrated in non-eatable products such as rubber. Conversely, the raisings registered in Q.3/2020 (6.4%) and Q.4/2020 (11%) were more expressive in eatable products - poultry and palm oil. For the main staple – rice – TAPI contracted continuously until Q3/2021. TAPI had steady growth for the first semester of 2021, receding only after Q3/2021.

Despite the persistent and expressive surge in TAPI, food inflation in Thailand was kept under control due to the low pass-through rate - each one percent of positive change in TAPI adds 1,73 units in inflation. For example, the Growth TAPI in September 2021 was 0.002890; thus, the expected increase in food inflation one month ahead will be 0.005 units.

5.3.3 Brazil's and Thailand's Model 3

- $BF_BNINF = 0.67BF_BINF_{t-1} + 0.14BENINF_{t-1} + 0.12BENINF_{t-7} + 8.94\Delta lnBNEER_{t-7} + e_t$
- $TF_BNINF= 0.3TF_BINF_{t-1} 0.36\Delta lnTAPROD_{t-1} + 0.03\Delta TENINF + 0.02\Delta TENINF_{t-1} + 0.03\Delta TENINF_{t-2} + 0.02\Delta TENINF_{t-3} + 0.2\Delta TER_{t-1} + e_t$

Model 3, for both countries, encloses variables that account for energy inflation, food production, and monetary stance. Normally, the specialized literature suggests the Nominal Effective Exchange Rate (NEER) as the adequate monetary predictor of food inflation; nevertheless, for Thailand's model, the former variable did not show statistical significance. The Exchange Rate was used instead. Moreover, since energy inflation and agricultural production have already been comprehensively discussed, this section will focus on the monetary variables.

CHULALONGKORN UNIVERSITY

The autoregressive coefficient of the Brazilian model has twice the magnitude of its equivalent in Thailand's model. In Brazil's model, each unit change of the previous inflation adds 0.67 units to the current one. Regarding energy inflation, each unit of positive change adds 0.14 and 0.12 to food inflation with one and seven months of lags, respectively.

In the Brazilian model, concerning the monetary stance, one percent positive change in BNEER growth adds 2.19 (ln 8.98) units in food inflation. NEER is defined as the measure of the value of a currency against a weighted average of several

foreign currencies. Contrarily to other countries, an increase in the Brazilian NEER indicates a depreciation of the local currency against the weighted basket of its trading partners. In other words, an increase in Brazil's NEER index means more Brazilian Reais (R\$) are needed to buy the same currency basket. From January 2020 to December 2021, the BNEER depreciated by 31.50%. The most prominent devaluation occurred in Q1/2020 - 15%, and the highest peak of Brazilian food inflation for the pandemic period occurred during Q.4/2020; this is consistent with the model, which forecasted that the impact of NEER devaluation occurs around seven months later, as can be seen in Figure 2, Chapter 01.

In Thailand's model, each unit of the previous inflation adds 0.3 units to the current one. Moreover, each percentage positive (negative) change in agricultural production growth reduces (increases) 0.36 units in food inflation after one month. Besides, each one-unit change in Energy Inflation Growth also changes, in the same direction, the current food inflation and the one and two-months ahead food inflation by 0.03, 0.02, and 0.03 units, respectively.

The Thai Baht started the pandemic period stable with slight appreciation during the entire year of 2020. According to the third model, the impact of currency change on food inflation occurs one month later. The highest appreciation occurred in Q.4/2020, which matches the sustained negative food inflation period - from October 2020 to March 2021. Figure 02 from Chapter 01 portrays the congruity between the downward part of the food inflation curve and the periods of Thai Bath appreciation: 1.93% in Q3/2020, 2.25% in Q.4/2020, and 1.07% in Q.1/2021. Likewise, the upward

part of the food inflation curve is concurrent with the depreciation periods: 2.11% in Q2/2020, 3.53% in Q.2/2021, 2.99% in Q.3/2021, and 1.37% in Q.4/2021.

In sum, after the three models have been analyzed, we can conclude that the findings are in line with KWON and KOO (2009), concerning the importance of the Producer Price Index (here treated as the Agricultural Price Index) and the cost-push characteristics. The results agreed with GONGSIANG & AMATYAKUL's (2020), regarding world food price significance. However, this study is partially in agreement with IDDRIZU (2021). The importance of the exchange rate to food inflation was recognized, but the interest rate was not significant.

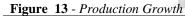
5.4 Research Question Analysis and Final Considerations

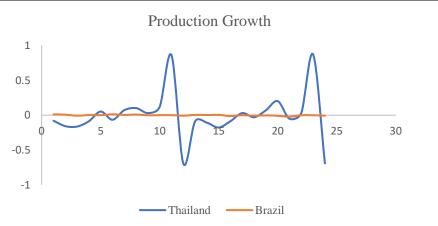
In our mission to explain the reason that gave rise to the food inflation hike in Brazil during the Pandemic (2020-2021) while Thailand experienced low and stable food inflation, 14 key economic variables were analyzed. Nevertheless, some of them did not show any statistical significance; for Brazil: Interest Rate, Crude Oil Price, Crude Oil Index, Global Food Index, IBC_BR, Food Import, Food Export, and Exchange Rate. Thailand's non-relevant variables converged with Brazil's, except for the Global Food Index, which indicated an unexpected result, and for the Nominal Effective Exchange Rate, which is meaningless to Thailand but not to Brazil.

The analysis of this chapter's previous sections gave elements to answer one of the questions from which this study stemmed: What are the drivers of F&B inflation? Are they different in Brazil and Thailand? The answer to these inquiries can be found in models 1, 2, and 3. For Brazil, the variables which demonstrated predictive power were: Domestic Energy Inflation (BENINF), Agricultural Production Index (BAPROD), Agricultural Price Index (BAPI), and the Nominal Effective Exchange Rate (BNEER). For Thailand, the variables with explanatory power were: Domestic Energy Inflation (BENINF), Agricultural Production Index (TAPROD), Agricultural Price Index (TAPI), and the Exchange Rate (TER). Therefore, the critical variables explaining food inflation during Covid-19 were mainly the same for Thailand and Brazil, except for the monetary stance.

Recalling that a provisional answer was proposed to solve the Research Question, the solution was materialized in the form of these two hypotheses below:

 H_0 : Domestic Energy Inflation has no impact on Food and Beverage Inflation.


H₁: Domestic Energy Inflation has an impact on Food and Beverage Inflation.

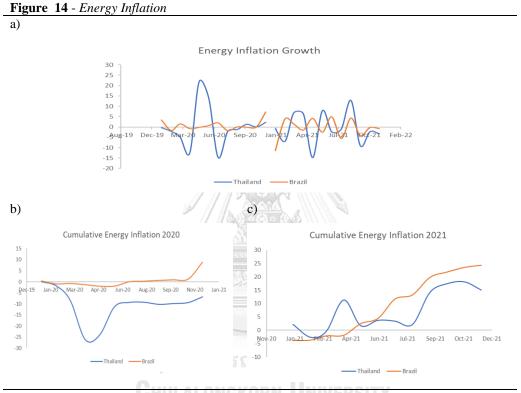

 H_0 : There is no relationship between the Interest Rate and Food and Beverage Inflation.

H₁: There is a relationship between the Interest Rate and Food and Beverage Inflation.

For the first hypothesis, for both economies, the models presented allow for rejecting the null hypothesis in favor of the alternative. For the second hypothesis, there was no evidence to reject the null hypothesis.

Another part of the research question, and its major issue, is: Why could Thailand control F&B inflation while Brazilian inflation was high and above the target? The coefficients of the predictor variables can answer this question. The Agrarian Production Growth variable coefficient for Thailand (-0.53) is almost 8 times smaller than Brazil's (-3.97). However, as previously explained, Brazil's production of non-tradable and eatable products is quite tight during the Pandemic. When the production's variation is positive (negative), the food inflation tends to decrease (increase). Figure 13 below displays that Brazil's production growth was relatively stable; however, this index refers to the production of all kinds of crops. Nevertheless, as stated in sections 1.1 and 5.3.1, Brazilian production growth for fruits, rice and beans was unstable and, not seldom, negative. This negative production growth turns the coefficient positive, increasing inflation. Given the heterogeneity characteristics of production for tradable and non-tradable products, future research can improve this study by segregating the data for the main staples in each economy and then having a more accurate estimator for the role of production growth in curbing food inflation.

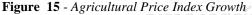
Note. The values were calculated by taking the log difference of the Production Index. The raw data is available in Appendix A.


Energy inflation is another crucial driver of food inflation. For the Brazilian model, this variable was regressed using two formats: at level and first difference; for Thailand, only the former was used. Therefore, for the variable at level, its impact on the Thai and Brazilian economies cannot be directly compared.

According to Brazilian Model 2a, the energy influence (at level) is quick and robust. Each unit change in energy inflation leads to a 0.09 increase in food inflation, with one month of lag. For example, in November 2020, the Brazilian energy inflation was 0.32% and jumped to 7.64%, a change of 7.32 units. This increment adds an expected positive change of 0.65 units in the food inflation of January 2021. In this case, the word unit is interchangeable with percentage because both variables are in percentage form.

Regarding the Growth in Energy Inflation Growth (First Difference), for Brazil, Model 2b reveals that each unit positive change in this coefficient leads to an increase of 0.12 units in the subsequent food inflation. For Thailand, the impact is similar to Brazil, but it is spread throughout the months.

This finding is in line with the literature. Energy, electricity, gas, and oil are crucial inputs for food production throughout the entire production chain - "farm to fork." In Brazil, for example, many crops rely on electricity to maintain their irrigation system. About 30% of global energy is consumed in the agricultural and food sector. According to the DAY (2011), agri-food supply heavily depends on fossil fuel inputs -both direct and indirect. Moreover, both economies have a welldeveloped food industry, which is highly energy-consuming throughout each stage, such as cleaning, brewing, preparing, packing, and transportation.


Thailand's policy of keeping the cumulative energy inflation low was crucial to offset other inflationary pressures. On the other hand, Brazil did not take advantage of the slump in international crude oil prices in 2020 to promote a more aggressive reduction in domestic energy prices (Figure 14).

Note. The raw data can be found in Appendix A.

The Agricultural Price Index (API) Growth exhibited relevant outcomes for both economies. This macroeconomic key variable is addressed by Model 2. For the Brazilian case, this model was split into two: one equation contains the autoregressive component, and the other contains the intercept, but the coefficient is virtually the same. We shall analyze the latter due to its similarity with Thailand's Model 2. The Thai Agricultural Price Index (TAPI) Growth was in the order of 1.72, whereas Brazil's (BAPI) Growth was 2.85 – more than 65% higher.

During the Covid-19 Pandemic, Brazil and Thailand faced a surge in API. In Brazil, the inputs became extremely costly because most of them are imported, such as fertilizers, whose prices are highly impacted by currency depreciation and by crude oil international prices. Similarly, Thailand's agrarian production costs soared during the Pandemic, among other reasons, because of the acute drought that lasted all through the year 2020. The API growth for both countries was similar (see Figure 15). On average, outliers excluded, TAPI monthly growth was 0.005%, slightly smaller than Brazil's – 0.0065%. Therefore, the critical point here is the transmission rate. BAPI transfer to Brazilian food inflation is more than 65% higher than what is transmitted by TAPI to Thailand's food inflation. A necessary conclusion is that food prices are more amplified throughout the food supply chain in Brazil than in Thailand.

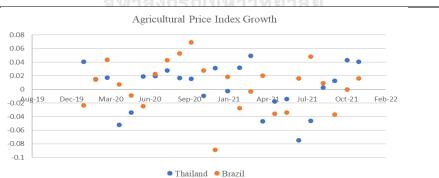
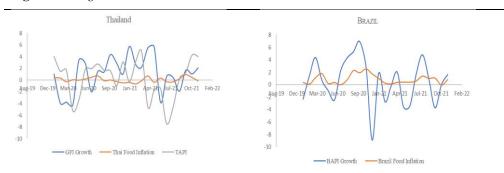



Figure 15 - Agricultural Price Index Growth

Note. The average Agricultural Price Index Grow – Thailand: 0.003539, Brazil: 0.005208. The trimmed average (excluded outliers) – Thailand: 0.0050, Brazil: 0.0065 The raw data can be found in Appendix A.

The relation between Global Food Index Growth and Brazilian Food Inflation did not depict statistical reliability. Besides, the negative relationship between GFI growth and Thai Food Inflation is awkward and needs further investigation by future researchers.

Finally, regarding the monetary stance, while NEER has suited the Brazilian model, Exchange Rate fits better than the Thai model. Thus, there is an obstacle to the direct comparison between the two equations. TER is the value of the Thai Bath against the US Dollar, and BNEER is the value of the Real against a currency basket of Brazil's main trade partners. Nevertheless, a valid comparison is how quickly the regressor impacts the variable of interest. For example, whereas BNEER takes 7 months to reach the Brazilian Food Inflation, TER takes only one month.

While the Brazilian Exchange Rate depreciated around 30%, TER remained quite steady. Figure 16 shows BNEER changes represented in percentage, and TER represented in units of currency. Recalling that, in the Figure 16, when the dot is below zero, it means currency appreciation, and when above zero it means currency depreciation.

According to Thai Model 3, each unit change in the TER's growth adds 0.2 units to food inflation. However, the TER net growth during this period was only 2.28 units; therefore, the net increment that food inflation suffered due to Thai depreciation was less than half percent. As for Brazil, the BNEER coefficient was expressive in size. Each percentage change in BNEER's growth rate led to 2.19 units change in food inflation. Another important distinction between the two economies is that the Brazilian currency's impact takes longer than in Thailand. This might be because Brazilian agricultural imports are concentrated in inputs, such as fertilizers. In other words, currency depreciation mainly affects the beginning of the Brazilian production chain. Thus, the rises take a while to reach final consumers.

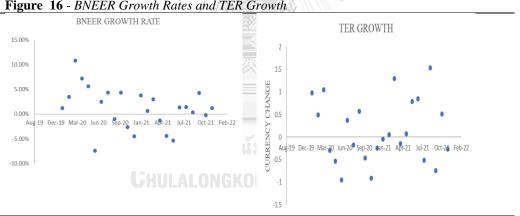


Figure 16 - BNEER Growth Rates and TER Growth

In sum, many reasons contributed to Thailand keeping its food inflation low and stable during the Pandemic. First, enough production of the leading food staples, rice (especially in 2021) and fruits, whereas the Brazilian production of eatable and non-tradable agrarian products stagnated. Second, the low transmission rate of the Agricultural Price Index to the final consumers. Third, the low level of energy

Note The raw data can be found in Appendix A.

inflation during most of this period. Last, the control and stability of the Exchange Rate.

Chapter 06

CONCLUSION

This Chapter will conclude this study by abridging the main research findings in relation to the research question. It will also review the constraints of the study and spot opportunities for future research.

In recent years, Thailand and Brazil have had remarkable net export performance in agrarian products. Moreover, both economies count on a welldeveloped food industry. During the two years of the acute phase of the COVID-19 Pandemic, global food prices had increased persistently. Both countries were assumed to have the tools to protect their economies from rampant food inflation. However, during the analyzed period, food prices in Brazil started escalating, whereas, in Thailand, they remained low and stable. This fact raises questions about why Brazil could not control food price hikes.

Based on the literature review, this study selected 13 macroeconomic variables that could provide elements to help explain food inflation behavior: Agricultural Price Index, Agricultural Production Index, Domestic Energy Inflation, Crude Oil Price, Crude Oil Index, Global Food Price Index, Food Exports, Food Imports, Proxy for monthly DGP (one for each country), Exchange Rate, Nominal Effective Exchange Rate, and Interest Rate. However, out of these variables, only 5 displayed meaningful statistical significance: Agricultural Price Index, Agricultural Product Index, Domestic Energy Inflation, Exchange Rate, and Effective Exchange Rate. These variables were analyzed by applying the Autoregressive Distributed Lag methodology. Three models were built, using, as much as possible, the same set of variables for both countries to compare these two economies.

Unfortunately, Romer's hypothesis of a negative correlation between inflation and the degree of openness could not be empirically investigated. This limitation is because Thailand's monthly GDP is unavailable, and the number of observations provided by the quarterly GDP is insufficient to conduct reliable statistics. However, two components of the Degree of Openness index (imports and exports) and one proxy for monthly GDP (Thailand's LEI and Brazil's IBC_BR) were evaluated, and none of them demonstrated statistical relevance to food inflation during the analyzed period. Nevertheless, Thailand's and Brazil's graphs of the Degree of Openness against food inflation depicted some delayed positive relationship between those two variables in some fragments of the studied period, contrary to which states Romer's hypothesis.

The Brazilian Agrarian Production Index has been shown to be highly influential in curbing inflation, even more than in Thailand; however, because the agricultural production in the years comprised by this study (2020-21) was tightly related to the demand, there was no space for this possibility to be seen in practice. Brazilian production growth of the main food staples (rice, beans, fruits, and vegetables) and non-tradable products stagnated. Based on the study presented here, we can state that, in Thailand, the elasticity of the Agrarian Production Index related to the Food Price Index is weaker than in Brazil. Nonetheless, because of the excellent weather conditions in 2021, Thailand's Production Growth warranted enough supply of staple foods. This surplus fostered the conditions to cool off any inflationary pressure in Thailand until the end of 2021. Not unlike Brazil's Agricultural Price Index, Thailand's soared. However, the API's pass-through was smaller in the latter than in the former country. Therefore, the best evidence suggests that Thailand's food chain (farm to fork) is more price-efficient than Brazil's during the Pandemic period.

Regarding the rate at which domestic energy inflation impacts food prices, both countries had the same magnitude; however, it was more concentrated in Brazil. Generally, it took only one month for the variation in energy inflation to reach food inflation in Brazil, whereas, for Thailand, the exact impact was diluted over three months. Moreover, on average, Thailand kept the domestic energy price at a low level, which was critical to controlling food prices.

Finally, related to the monetary stance, the Thai Baht remained stable during the Pandemic, whereas the Brazilian Real depreciated by 30%. Due to statistical constraints, Brazil's food inflation had the Nominal Effective Exchange Rate (NEER) as the monetary explanatory variable, and Thailand had the Exchange Rate (ER). In Brazil, the transmission rate of each percentage change in NEER was huge in magnitude, around 2.19 units of inflation. Besides having had lower currency depreciation (about 7%), Thailand's degree of transmission from the Exchange Rate to food inflation was low (0.2 units per unit of Thai Bath change).

Monitoring food inflation is extremely relevant in low-income and developing countries because food encompasses a massive percentage of the consumption basket in those countries. In emerging economies, the Food price increase can condemn people to starvation. This study spotted the main macroeconomic elements which conducted food prices to soar in Brazil during the Pandemic. The main limitation of this study was the scarcity in the literature about food inflation during the Covid-19 Pandemic. Many facts contributed to this lack of studies. First, in the past few years, the world has experienced a sustained period of low inflation; therefore, there was no motivation to investigate this issue. Second, food inflation used to be a low-income country problem, and in these countries, the production of specialized publications is quantitatively lower than in developed centers. Finally, the Pandemic occurred recently; peer-reviewed and published scientific work, though, takes time.

Some issues could be more deeply investigated – for example, why commodities prices were negatively correlated to Thailand's food inflation. Besides, contrarily to what has been pointed out by many scholars, the interest rate was statistically unlike to be a good predictor of food inflation, and this needs additional analysis. Moreover, future research can contribute to the field by analyzing food production in each category and figuring out whether there is a group in which production growth is more efficient in curbing inflationary pressures.

CHULALONGKORN UNIVERSITY

REFERENCES

REFERENCES

Abadie, Alberto. (2005) Semiparametric Difference-in-Difference Estimators. Review of Economic Studies. 2005

Adewopo, J. B., Solano-Hermosilla, G., Colen, L., & Micale, F. (2021). Using crowdsourced data for real-time monitoring of food prices during the COVID-19 pandemic: insights from a pilot project in northern Nigeria. Global Food Security, 29, 100523.

Apaitan, T., Disyatat, P., & Manopimoke, P. (2020). Thai inflation dynamics: A view from disaggregated price data. *Economic Modelling*, *84*, 117-134.

Arisseto-Bragotto, A. P., Feltes, M. M. C., & Block, J. M. (2017). Food quality and safety progress in the Brazilian food and beverage industry: chemical hazards. *Food Quality and Safety*, 1(2), 117-129.

Armantier, O., Koşar, G., Pomerantz, R., Skandalis, D., Smith, K., Topa, G., & Van der Klaauw, W. (2021). How economic crises affect inflation beliefs: Evidence from the Covid-19 pandemic. *Journal of Economic Behavior & Organization*, *189*, 443-469.

Armantier, O., Koşar, G., Pomerantz, R., Skandalis, D., Smith, K., Topa, G., & Van der Klaauw, W. (2021). How economic crises affect inflation beliefs: Evidence from the Covid-19 pandemic. *Journal of Economic Behavior & Organization*, 189, 443-469.

Baldasso, G. (2022). Comportamento do consumidor brasileiro de alimentos na pandemia de covid-19: um estudo via mineração de texto.

Baltagi, B.H. (2005). Econometric analysis of panel data (3rd ed.) John Willey & Sons, Ltd.

Banerjee, R. N., Mehrotra, A., & Zampolli, F. (2020). *Inflation at risk from Covid-19* (No. 28). Bank for International Settlements.

Baumeister, C., & Kilian, L. (2014). Do oil price increases cause higher food prices?. *Economic Policy*, *29*(80), 691-747.

Bertrand, M., Duflo, E., & Mullainathan, S. (2004). How much should we trust differences-in-differences estimates? The Quarterly journal of economics, 119(1), 249-275.

Bhattacharya, R., & Jain, R. (2020). Can monetary policy stabilize food inflation?Evidence fromadvanced and emerging economies. *Economic Modelling*, 89,122-141.

Bhatta, S. R., Adhikari, P., & Byanjankar, R. (2020). Choice of Regression Models in Time Series Data. Economic Journal of Development Issues, 101-129.

Bresser-Pereira, L. C. (1996). A inflação decifrada. *Brazilian Journal of Political Economy*, *16*(4), 20-35.

Brunnermeier, Markus K., and Yuliy Sannikov. 2016. "On the Optimal Inflation Rate." *American Economic Review*, 106 (5): 484-89.

Cavallo, A. (2020). *Inflation with Covid consumption baskets* (No. w27352). National Bureau of Economic Research.

Cerqueira, L. F. (2007). Déficit público, indexação, mudanças de regimes e expectativas inflacionárias: a dinâmica da taxa de inflação no Brasil entre 1960 e 2005. *Perspectiva Econômica*, *3*(2), 82-126.

Cepea (2020). Índices de Preços ao Produtor de Grupos de Produtos Agropecuários (IPPA) – abril a junho de 2020. Centro de Estudos Avançados em Economia Aplicada.

Chand, R. (2010). Understanding the nature and causes of food inflation. *Economic and Political Weekly*, 10-13.

Chantanahom, P., Poonpatpibul, C., & Vongsinsirikul, P. (2004). Exploring inflation in Thailand: through sectoral price setting behavior and underlying trend (p. 2004). Bangkok: Bank of Thailand.

Claeys, G., & Guetta-Jeanrenaud, L. (2021). How has COVID-19 affected inflation measurement in the euro area?. *Bruegel-Blogs*, NA-NA.

Coibion, Olivier, Yuriy Gorodnichenko, and Mauricio Ulate. 2019. "Is Inflation Just Around the Corner? The Phillips Curve and Global Inflationary Pressures." *AEA Papers and Proceedings*, 109: 465-69.

Cukierman, A. (2021). COVID-19, Seignorage, Quantitative Easing and the Fiscal-Monetary Nexus. *Comparative Economic Studies*, *63*(2), 181-199.

Danlami, I. A., Hidthiir, M. H., & Hassan, S. (2017). Dynamics of inflation in developing economies: A quest for conceptual framework. *IOSR Journal of Humanities and Social Science*, 22(10), 53-59.

Day, F. C. S. K. (2011). Energy-smart food for people and climate. FAO, Rome.

Del Negro, M., Lenza, M., Primiceri, G. E., & Tambalotti, A. (2020). What's up with Inflation and the Business Cycle Pn the COVID-19 Shock?.

Dessus, S., Herrera, S., & De Hoyos, R. (2008). The impact of food inflation on urban poverty and its monetary cost: some back-of-the-envelope calculations. *Agricultural Economics*, *39*, 417-429. Dietrich, A., Keuster, K., Müller, G. J., & Schoenle, R. (2020). News and uncertainty about covid-19: Survey evidence and short-run economic impact.

Dillon, B.M. and Barrett, C.B., 2013. The impact of world oil price shocks on maize prices in East Africa. University of Melbourne, Melbourne.

Diwan, R., Leduc, S., & Mertens, T. M. (2020). Average-Inflation Targeting and the Effective Lower Bound. *FRBSF Economic Letter*, 2020(22), 1-01.

ERDOĞAN, S., YILDIRIM, D. Ç., & GEDİKLİ, A. (2020). Dynamics and determinants of inflation during the COVID-19 pandemic period in European countries: A spatial panel data analysis. *Duzce Medical Journal*, 22(Special Issue), 61-67.

Food Export Association of the Midwest USA and Food Export USA – Northeast (n.d.). Thailand Country Profile. Retrieved March 23, 2022,

from:https://www.foodexport.org/export-insights/market-and-country-profiles/thailand- country-profile

Goel, R., Malik, S., & Zheng, X. (2020). Low Growth and Low Inflation Expectations in the Post–COVID-19 World: A Market-Based Perspective. *Available at SSRN 3826500*.

Gómez, M. I., González, E. R., & Melo, L. F. (2012). Forecasting food inflation in developing countries with inflation targeting regimes. *American Journal of agricultural economics*, 94(1), 153-173.

Gongsiang, M., & Amatyakul, P. (2021). *Inflation at risk in Thailand* (No. 151). Puey Ungphakorn Institute for Economic Research.

Grenville, S., & Ito, T. (2010). An independent evaluation of the Bank of Thailand's monetary policy under the inflation targeting framework, 2000-2010. *Bank of Thailand Evaluation Paper*.

Ha, J., Kose, M. A., & Ohnsorge, F. (2021). Inflation during the pandemic: What happened? What is next?.

Hahn, Robert W., and Robert D. Metcalfe. 2021. "Efficiency and Equity Impacts of Energy Subsidies." *American Economic Review*, 111 (5): 1658-8

Haring, J. E., & Westphal, L. E. (1968). Financial policy in postwar Thailand:
external equilIBC_BRium and domestic development. *Asian Survey*, 8(5), 364-377.

Hayat, M. A., Ghulam, H., Batool, M., Naeem, M. Z., Ejaz, A., Spulbar, C., & Birau,
R. (2021). Investigating the Causal Linkages among Inflation, Interest Rate, and
Economic Growth in Pakistan under the Influence of COVID-19 Pandemic: A
Wavelet Transformation Approach. *Journal of Risk and Financial Management*, 14(6), 277.

Higgins, M. (2021). Investors Can Temper Their Inflation Fears: Post-COVID Inflation is Unlikely to Resemble the Great Inflation of 1968 to 1982. *Available at SSRN 3907668*.

Hill, C. R., Griffiths, W. E. & Lim, G. C. (1995). Principles of econometrics (4th ed.). John Wiley & Sons, Inc.

IBGE. (2020.) Sistema Nacional de Índices de Preços ao Consumidor-métodos de cálculos. Serie Relatórios Metodológicos, 14.

IBGE. (2020b). Pesquisa de Orçamentos Familiares 2017-2018 – Análise do consumo alimentar pessoal no Brasil.

Iddrisu, A. A., & Alagidede, I. P. (2022). Monetary Policy and Food Inflation in Emerging and Developing Economies. Routledge Focus.

IPEA (2021). Inflação. Carta de Conjuntura - 1º Trimestre de 2021, 50. Retrieved https://www.ipea.gov.br/portal/images/stories/PDFs/conjuntura/201006_cc_48 _nt_arroz. pdf

IPEA (2021b). Mercados e Preços Agropecuários. Carta de Conjuntura – 2 Trimestre de 2021, n 51. Retrieved

https://ipea.gov.br/portal/images/stories/PDFs/conjuntura/210429_nota_8_mer cado_e_pr eco_agro.pdf

IPEA (2021c). Mercados e Preços Agropecuários. Carta de Conjuntura – 3 Trimestre de 2021, n 52. Retrieved from:

https://www.ipea.gov.br/portal/images/stories/PDFs/conjuntura/210819_cc_52 _nota_14_ mercados_e_precos_agro.pdf

IPEA (2021d). Mercados e Preços Agropecuários. Carta de Conjuntura – 4 Trimestre de 2021, n 53. Retrieved

https://www.ipea.gov.br/portal/images/stories/PDFs/conjuntura/211130_nota_ mercado_d e_trabalho_final.pdf

IPEA. (2020). Inflação. Carta de Conjuntura – 2 ° Trimestre de 2020, 47. Retrieved https://ipea.gov.br/portal/images/stories/PDFs/conjuntura/200619_cc_47_infla

cao.pdf

IPEA. (2020b). Agropecuária. Carta de Conjuntura – 4 ° Trimestre de 2020, 49. Retrieved

https://www.ipea.gov.br/portal/images/stories/PDFs/conjuntura/201006_cc_48 _nt_arroz. pdf

ITC, I. (2017). Trade Map - List of importing markets for the product exported by Japan in 2016. Trademap.org. Retrieved 30 May 2017, from

 $\label{eq:metric} http://www.trademap.org/countrymap/Country_SelProductCountry.aspx?nvp m=1|392 \qquad ||||TOTAL|||2|1|1|2|1|1|2|1|1.$

ITC, I. (2022). Trade Map – List of partners markets for a product group commercialized by Thailand. Trademap.org. Retrieved from

https://www.trademap.org/Country_SelProductCountry_TS.aspx?nvpm=1%7c 764%7c%

7c%7c%7c%7c196561%7c%7c2%7c1%7c1%7c3%7c2%7c1%7c2%7c1%7c1 %7c1

ITC, I. (2022b). Trade Map - List of partners markets for a product group commercialized by Brazil. Retrieved from:

https://www.trademap.org/Country_SelProductCountry_TS.aspx?nvpm=1%7c 076%7c%

7c%7c%7cTOTAL%7c%7c%7c2%7c1%7c1%7c3%7c2%7c1%7c2%7c1%7c 1%7c1

ITC, I. (2022c). Trade Map - List of markets for the selected product group: food and beverage. Retrieved from

https://www.trademap.org/Country_SelProduct_TS.aspx?nvpm=1%7c%7c%7c%7c% %7c196561%7c%7c2%7c1%7c1%7c3%7c2%7c1%7c2%7c1%7c1%7c1

Jemna, L. M. (2016). Qualitative and mixed research methods in economics: the added value when using qualitative research methods. *Journal of Public Administration, Finance and Law*, (09), 154-167.

Josephs, D. (2019). A Brief Discussion of Stationarity. SlideShare.

7c

https://bookdown.org/josephs_david11/tsReview/a-brief-discussion-of-stationarity.html

Kaur, S. (2021). A Decade of Impact of Monetary Policy on Food Inflation: An Overview and Future Direction. *Vision*, 09722629211015603.

Keller, G. (2018). Statistics for Management and Economics (11ed.). Cengage.

Kwon, D. H., & Koo, W. W. (2009). *Price transmission mechanisms among disaggregated processing stages of food: Demand-pull or cost-push?* (No. 319-2016-9929).

Laborde, D., Lakatos, C., & Martin, W. J. (2019). Poverty Impact of Food Price Shocks and Policies. World Bank Policy Research Working Paper, (8724).

Lago, L. A. C. (1990). A retomada do crescimento e as distorções do "milagre": 1967-1973. *A ordem do progresso: cem anos de política econômica republicana, 1989,* 233-294.

Leiva-Martinez, M. A., de las Mercedes Anderson-Seminario, M., Alvarez-Risco, A., Estrada- Merino, A., & Mlodzianowska, S. (2021). Price Variation in Lower Goods as of Previous Economic Crisis and the Contrast of the Current Price Situation in the Context of COVID-19 in Peru. In *Advances in Business and Management Forecasting*. Emerald Publishing Limited. Lima, L. A. D. O. (1977). Crise do petróleo e evolução recente da economia brasileira. *Revista de administração de empresas*, *17*(2), 29-37.

Lopes, M. S., Freitas, P. P. D., Carvalho, M. C. R. D., Silva, U. M., & Lopes, A. C. S. (2022). The COVID-19 pandemic in a Brazilian metropolis: repercussion on food prices. *Cadernos de Saúde Pública*, *38*.

Louw, M., Meyer, F., & Kirsten, J. (2018). *Fundamental Drivers of Food Inflation-Evidence from South Africa* (No. 277190). International Association of Agricultural Economists.

M.M.J. Kennedy, Macroeconomic Theory, (Asoke K. Ghosh, PHI Learning Private Limited, M – 97, Connaught circus, New Delhi-110001, 2011)

MAPA, I. (2022). Agrostat – Importação e Exportação. Retrieved from: https://indicadores.agricultura.gov.br/agrostat/index.htm

Marques, M. S. B. (1991). *Inflação e política macroeconômica após o primeiro choque do petróleo*. Fundação Getulio Vargas.

Mishkin, F. S. (2012). The Economics of Money, Banking and Financial Markets (The Pearson Series in Economics).

Moosavi Mohseni, R., & Gharleghi, B. (2021). The choice of inflation targeting regimes for inclusive growth: Lessons from southern countries. *Journal of Public Affairs*, 21(1), e2152.

Munhoz, D. G. (1997). Inflação brasileira: os ensinamentos desde a crise dos anos 30. *Revista de Economia Contemporânea*, *1*(1).

Mushtaq, R. (2011). Augmented dickey fuller test.

Naraghi, N., Moghaddasi, R., & Mohamadinejad, A. (2021). Nexus between Energy Consumption and Agricultural Inflation: an Iranian Experience. *International Energy* Journal, 21(1).

NESDEC. (2020). NESDEC Economic Repost. Thai Economic Performance in Q1 and Outlook for 2020.

NESDEC. (2020b). NESDEC Economic Repost. Thai Economic Performance in Q2 and Outlook for 2020.

NESDEC. (2020c). NESDEC Economic Repost. Thai Economic Performance in Q3 and Outlook for 2020.

NESDEC. (2020d). NESDEC Economic Repost. Thai Economic Performance in Q4 and Outlook for 2020.

NESDEC. (2021). NESDEC Economic Repost. Thai Economic Performance in Q1 and Outlook for 2021.

NESDEC. (2021). NESDEC Economic Repost. Thai Economic Performance in Q2 and Outlook for 2021.

NESDEC. (2021). NESDEC Economic Repost. Thai Economic Performance in Q3 and Outlook for 2021.

NESDEC. (2021). NESDEC Economic Repost. Thai Economic Performance in Q1 and Outlook for 2021.

Newbold, P., & Granger, C. W. J. (1974). Experience with Forecasting Univariate Time Series and the Combination of Forecasts. Journal of the Royal Statistical Society. Series A (General), 137(2), 131–165.

Nguyen, B. (2015). Effects of fiscal deficit and money M2 supply on inflation:Evidence from
and Administrativeselected economies of Asia. Journal of Economics, Finance
Science, 20, 49-53.

Nguyen, T. N., Pham, T. T. X., & Nguyen, T. C. (2021, January). Forecasts of GDP
Growth and Inflation Under the Influence of the Covid-19 Pandemic: The
Case of Vietnam. In *International Econometric Conference of Vietnam* (pp. 483-497). Springer, Cham.

Nidhiprabha, B. (1995). Inflation and Macroeconomic Management in Thailand. *ntoKKMnranfls*, 127.

Nkoro, E., & Uko, A. K. (2016). Autoregressive Distributed Lag (ARDL) cointegration technique: application and interpretation. Journal of Statistical and Econometric methods, 5(4), 63-91.

Oliveira, C. A. O., Ruffoni, E. P., Maçada, A. C. G., & Padula, Â. D. (2019). Innovation capabilities in the food processing industry in Brazil. *British Food Journal*.

Orenstein, L., & Sochaczewski, A. C. (1990). Democracia com desenvolvimento: 1956-1961. *A ordem do progresso: cem anos de política econômica republicana*, *1989*(10).

Pastore, A. C. (1994). Déficit Público, a Sustentabilidade do Crescimento das Dívidas
 Interna e Externa, Senhoriagem e Inflação: Uma Análise do Regime Monetário
 Brasileiro. *Brazilian Review of Econometrics*, 14(2), 177-234.

Pesaran, M. H., & Shin, Y. An Autoregressive Distributed Lag Modelling Approach to Cointegration Analysis.

Pinho, D. M. (1990). O interregno Café Filho: 1954-55. A ordem do progresso: cem anos de política econômica republicana 1889-1989.

Reinsdorf, M. (2020). COVID-19 and the CPI: Is inflation underestimated?.

Reinsdorf, M. B. (2020). *COVID-19 and the CPI: Is Inflation Underestimated?* (No. 2020/224). International Monetary Fund.

Ribeiro, Joao. (2019). Inflación de alimentos en Perú: El rol de la política monetaria. Revista de análisis económico, 34(2), 81-98.

Samuelson, P. A., & Nordhaus, W. D. (2001). *Study Guide for Use with Economics*. McGraw- Hill/Irwin.

Seiler, P. (2020). Weighting bias and inflation in the time of COVID-19: evidence from Swiss transaction data. *Swiss Journal of Economics and Statistics*, *156*(1), 1-11.

Sereenonchai, S., & Arunrat, N. (2021). Understanding food security behaviors during the COVID-19 pandemic in Thailand: a review. Agronomy, 11(3), 497.

Shrestha, M. B., & Bhatta, G. R. (2018). Selecting appropriate methodological framework for time series data analysis. The Journal of Finance and Data Science, 4(2), 71-89.

Silva Filho, O. J. D., & Gomes Júnior, N. N. (2020). The future at the kitchen table: COVID-19 and the food supply. *Cadernos de Saude Publica*, *36*, e00095220.

Siregar, R., & Rajaguru, G. (2005). Sources of variations between the inflation rates of Korea, Thailand and Indonesia during the post-1997 crisis. *Journal of Policy Modeling*, 27(7), 867-884.

Subbarao, D., & Governor, R. B. I. (2011). The challenge of food inflation. *Reserve Bank of India Bulletin*, *55*, 2029-2039.

Tanrattanaphong, B., Hu, B., & Gan, C. (2020). The impacts of value chain upgrading on the export of processed food. *Food policy*, *93*, 101906.

Thammachote, P., & Trochim, J. I. (2021). The Impact of the COVID-19 Pandemic on Thailand's Agricultural Export Flows.

VIANNA, S. B. (1990). Duas tentativas de estabilização. A ordem do progresso: cem anos de política econômica republicana. Rio de Janeiro, Campus.

Victor, V., Karakunnel, J. J., Loganathan, S., & Meyer, D. F. (2021). From a Recession to the COVID-19 Pandemic: Inflation–Unemployment Comparison between the UK and India. *Economies*, 9(2), 73.

WALSH, J. (2011). "Reconsidering the Role of Food Prices in Inflation", IMF Working Paper 11/71

Walsh, M. J. P., & Yu, J. (2012). *Inflation and Income Inequality: Is food inflation different?* I international Monetary Fund.

Wardhono, A., Nasir, M. A., Qori'ah, C. G., & Indrawati, Y. (2021). Movement of Inflation and New Keynesian Phillips Curve in ASEAN. *Economies*, *9*(1), 34.

Warr, P. G. (2000). Myths about miracles: the case of Thailand. *Journal of International Trade* & *Economic Development*, 9(1), 115-134.

Warr, P. G., & Nidhiprabha, B. (1996). Thailand's macroeconomic miracle: Stable adjustment and sustained growth.

Wooldridge, J. M. (2012). Introductory Econometrics. A modern Approach (5th ed.). Cengage.

Zafar, R. F., Qayyum, A., & Ghouri, S. P. (2015). Forecasting Inflation using Functional Time Series Analysis.

APPENDIX A Raw Data

Food and Bever	age Inflation 2018 - 20	019		
MONTI	ILY INFLATION	(MoM)	ACCUMULA	TED ON YEAR
DATE	THAILAND	BRAZIL	THAILAND	BRAZIL
JAN/2018	-0.10%	0.74%	-0.10%	0.74%
FEB/2018	-0.39%	-0.33%	-0.49%	0.41%
MAR/2018	-0.28%	-0.07%	-0.77%	0.34%
APR/2018	0.78%	0.09%	0.01%	0.43%
MAY/2018	0.45%	0.32%	0.46%	0.75%
JUN/2018	-0.15%	2.03%	0.31%	2.79%
JUL/2018	-0.33%	-0.12%	-0.03%	2.67%
AGO/2018	0.51%	-0.44%	0.48%	2.22%
SEP/2018	0.28%	0.15%	0.77%	2.37%
OUT/2018	0.14%	0.59%	0.91%	2.98%
NOV/2018	0.35%	0.39%	1.26%	3.38%
DEZ/2018	-0.36%	0.44%	0.90%	3.83%
JAN/2019	0.33%	0.90%	0.33%	0.90%
FEB/2019	0.15%	0.78%	0.48%	1.69%
MAR/2019	0.20%	1.37%	0.68%	3.08%
APR/2019	0.61%	0.63%	1.30%	3.73%
MAY/2019	1.07%	-0.56%	2.38%	3.15%
JUN/2019	0.13%	-0.25%	2.51%	2.89%
JUL/2029	0.01%	0.01%	2.19%	2.90%

MONTHLY INFLATION (MoM)			ACCUMULA	TED ON YEAR
DATE	THAILAND	BRAZIL	THAILAND	BRAZIL
AGO/2019	-0.30%	-0.35%	2.22%	2.54%
SEP/2018	0.12%	-0.43%	2.34%	2.10%
OCT/2019	0.10%	0.05%	2.44%	2.15%
NOV/2019	-0.35%	0.72%	2.08%	2.89%
DEZ/2019	-0.13%	3.38%	1.95%	6.36%

Note: a) Thailand's monthly data was extracted from the Bureau of Trade and Economic Indices – Minister of Commerce. Retrieved from: http://www.price.moc.go.th/

b) Brazilian's data was extracted from Central Bank of Brazil – BACEN, Time-Series dataset, IPCA – Food and Beverage, Cod. 1635. Retrieved from:

https://www3.bcb.gov.br/sgspub/consultarvalores/consultarValoresSeries.do?method=consultarValores. c) With the updating of the weighting ponderation, obtained by the Household Budget Survey – POF – were ameliorated the component of IPCA from January 2020 onwards.

Table A- 2

Food and Beverage Inflation – 2020 - 2021

MONTHLY INFLATION (MoM) ACCUMULATED ON YEAR

DATE	THAILAND	BRAZIL	THAILAND	BRAZIL
Jan-20	0.41%	0.39%	0.41%	0.39%
Feb-20	0.36%	0.11%	0.77%	0.50%
Mar-20	-0.25%	1.13%	0.52%	1.64%
Apr-20	0.08%	1.79%	0.60%	3.46%
May-20	0.02%	0.24%	0.62%	3.70%
Jun-20	0.2%	0.38%	0.82%	4.10%
Jul-20	0.5%	0.01%	1.33%	4.11%
Aug-20	0.76%	0.78%	2.10%	4.92%
Sep-20	-0.08%	2.28%	2.01%	7.31%

Food and Beverage Inflation 2018 - 2019

MONT	THLY INFLATION	(MoM)	ACCUMULAT	ED ON YEAR
DATE	THAILAND	BRAZIL	THAILAND	BRAZIL
Oct-20	0.05%	1.93%	2.06%	9.38%
Nov-20	-0.23%	2.54%	1.83%	12.16%
Dec-20	-0.45%	1.74%	1.37%	14.11%
Jan-21	-0.38%	1.02%	-0.38%	1.02%
Feb-21	-0.63%	0.27%	-1.01%	1.29%
Mar-21	-0.08%	0.13%	-1.09%	1.42%
Apr-21	0.73%	0.4%	-0.36%	1.83%
May-21	-0.35%	0.44%	-0.71%	2.28%
Jun-21	0.36%	0.43%	-0.36%	2.72%
Jul-21	-0.26%	0.6%	-0.62%	3.33%
Aug-21	-0.26%	1.39%	-0.87%	4.77%
Sep-21	0.25%	1.02%	-0.63%	5.84%
Oct-21	0.95%	1.08%	0.32%	7.08%
Nov-21	0.47%	-0.04%	1.17%	7.04%
Dec-21	-0.12% ลงกร	0.84%	าลัย 0.67%	7.94%

Food and Beverage Inflation – 2020 - 2021

Dec-21-0.12%0.84%0.67%7.94%Note: a) Thailand's monthly data was extracted from the Bureau of Trade and Economic Indices –
Minister of Commerce. Retrieved from: http://www.price.moc.go.th/

b) Brazilian's data was extracted from table 6070 of the System of Automatic Retriever (SIDRA) of the Brazilian Instituto of Geography and Statistics (IBGE).

Core Inflation – 2	018-2019			
MONT	THLY INFLATION	(MoM)	ACCUMULATI	ED ON YEAR
DATE	THAILAND	BRAZIL	THAILAND	BRAZIL
Jan-18	0.03%	0.2%	0.03%	0.20%
Feb-18	0.07%	0.47%	0.10%	0.67%

MONTI	HLY INFLATION	(MoM)	ACCUMULATE	ED ON YEAR
DATE	THAILAND	BRAZIL	THAILAND	BRAZIL
Mar-18	0.04%	0.14%	0.14%	0.81%
Apr-18	0.03%	0.21%	0.17%	1.02%
May-18	0.17%	0.11%	0.34%	1.13%
Jun-18	0.11%	0.24%	0.45%	1.38%
Jul-18	0.04%	0.45%	0.49%	1.83%
Aug-18	0.01%	0.14%	0.50%	1.98%
Sep-18	0.14%	0.3%	0.64%	2.28%
Oct-18	0.04%	0.21%	0.68%	2.50%
Nov-18	0%	0.05%	0.68%	2.55%
Dec-18	0.01%	0.53%	0.69%	6.66%
Jan-19	0.04%	0.39%	0.04%	0.39%
Feb-19	-0.02%	0.33%	0.01%	0.72%
Mar-19	0.02%	0.3%	0.04%	1.02%
Apr-19	0.06%	0.46%	0.10%	1.49%
May-19	0.1%	0.09%	าลัย 0.20%	1.58%
Jun-19	0.05%	0.34%	RSIT 0.25%	1.92%
Jul-19	-0.03%	0.25%	0.22%	2.18%
Aug-19	0.09%	0.14%	0.31%	2.32%
Sep-19	0.09%	0.09%	0.40%	2.41%
Oct-19	0.04%	0.21%	0.44%	2.63%
Nov-19	0.03%	0.29%	0.50%	2.93%
Dec-19 Note:a) Thailand's	0 .03%	0.52%	0.50% e index (Cod. 9300)".	2.93%

*Note:*a) Thailand's monthly data refer to "base consumer price index (Cod. 9300)", extracted from the Bureau of Trade and Economic Indices – Minister of Commerce. Retrieved from: http://www.price.moc.go.th/

http://www.price.moc.go.th/ b) Brazilian's montly data refer to Broad National Consumer Price Index - Ex-Food and Energy (EXFE) core (COD 28751), extracted for dataset of Time-series management System . Central Bank of Brazil (BACEN)

Table A-4

Core Inflation – 2020 - 2021

MONT	MONTHLY INFLATION (MoM)		ACCUMULATED ON YEAR	
DATE	THAILAND	BRAZIL	THAILAND	BRAZIL
JAN/2020	0.02%	0.13%	0.02%	0.13%
FEB/2020	-1.92%	0.46%	-1.90%	0.59%
MAR/2020	-0.02%	-0.01%	-1.92%	0.58%
APR/2020	-0.07%	-0.01%	-1.99%	0.57%
MAY/2020	-0.3%	-0.2%	-2.28%	0.37%
JUN/2020	-0.01%	0.03%	-2.29%	0.40%
JUL/2020	0.41%	0.07%	-1.89%	0.47%
AGO/2020	0%	0.13%	-1.89%	0.60%
SEP/2020	0.04%	-0.13%	-1.85%	0.47%
OUT/2020	-0.02%	0.57%	-1.87%	1.04%
NOV/2020	0.01%	0.33%	-1.86%	1.38%
DEZ/2020	0.15%	0.7%	-1.72% าลัย	2.09%
JAN/2021	0.03%	0.26%	0.03%	0.26%
FEB/2021	-0.08%	0.53%	-0.05%	0.79%
MAR/2021	0.03%	0.21%	-0.02%	1.00%
APR/2021	0.14%	0.4%	0.12%	1.41%
MAY/2021	-0.11%	0.35%	0.01%	1.76%
JUN/2021	0.02%	0.42%	0.03%	2.19%
JUL/2021	0.03%	0.48%	0.06%	2.68%
AGO/2021	-0.07%	0.45%	-0.01%	3.14%
SEP/2021	0.16%	0.61%	0.15%	3.77%
OCT/2021	0.41%	0.99%	0.56%	4.80%

MONT	HLY INFLATION	(MoM)	ACCUMULATI	ED ON YEAR
DATE	THAILAND	BRAZIL	THAILAND	BRAZIL
NOV/2021	0.01%	0.39%	0.57%	5.21%
DEZ/2021	0.05%	0.91%	0.62%	6.16%

Note: a) Thailand's monthly data refer to "base consumer price index (Cod. 9300)", extracted from the Bureau of Trade and Economic Indices – Minister of Commerce. Retrieved from: http://www.price.moc.go.th/

b) Brazilian's monthly data refer to Broad National Consumer Price Index - Ex-Food and Energy (EXFE) core (COD 28751), extracted for dataset of Time-series management System. Central Bank of Brazil (BACEN)

Energy Inflation – 2018 - 2019

ACCUMULATED ON YEAR MONTHLY INFLATION(MoM) DATE THAILAND BRAZIL THAILAND BRAZIL Jan-18 0.03% -3.48% 0.03% -3.48% Feb-18 -1.92% 0.06% -1.89% -3.42% 0.47% -2.97% Mar-18 -0.15% -2.04% Apr-18 0.03% 0.7% -2.01% -2.29% 0.78% 0.16% May-18 2.85% 2.51% 6.99% Jun-18 -0.38% 6.82% 0.40% Jul-18 0.48% 3.84% 0.88% 11.10% 0.49% Aug-18 0.68% 1.57% 11.65% Sep-18 1.46% 0.43% 3.05% 12.13% Oct-18 0.13% 0.12% 3.19% 12.26% Nov-18 -2.84% 9.07% -2.84% 0.26% Dec-18 -4.41% -1.23% -4.17% 7.73% Jan-19 -1.47% -0.06% -1.47% -0.06%

	MONT INFLATION(MoM		ACCUMULATE	ED ON YEAR
DATE	THAILAND	BRAZIL	THAILAND	BRAZIL
Feb-19	1.67%	0.71%	0.18%	0.65%
Mar-19	2.85%	0.17%	3.03%	0.82%
Apr-19	1.55%	0.12%	4.63%	0.94%
May-19	0.01%	1.91%	4.64%	2.87%
Jun-19	-3.76%	-0.82%	0.70%	2.03%
Jul-19	1.05%	3.27%	1.76%	5.36%
Aug-19	-1.24%	2.62%	0.50%	8.12%
Sep-19	0.14%	-0.04%	0.64%	8.08%
Oct-19	-1.1%	-2.23%	-0.47%	5.67%
Nov-19	0.14%	1.8%	-0.33%	7.57%
Dec-19	0.29%	-3.13%	-0.04%	4.20%

Note: a) Thailand's monthly data refer to "energy (Cod 9200)", extracted from the Bureau of Trade and Economic Indices – Minister of Commerce. Retrieved from: http://www.price.moc.go.th/

b) Brazilian's data was extracted from table 1419 of the System of Automatic Retriever (SIDRA) of the Brazilian Instituto of Geography and Statistics (IBGE).

Chulalongkorn University

Table A-6

Energy Inflation – 2020 - 2021

MONTHLY INFLATION(MoM)			ACCUMULA	TED ON YEAR
DATE	THAILAND	BRAZIL	THAILAND	BRAZIL
JAN/2020	0.07%	0.31%	0.07%	0.00%
FEB/2020	-1.92%	-1.3%	-1.85%	-1.30%
MAR/2020	-6.70%	0.2%	-8.43%	-1.10%
APR/2020	-19.22%	-0.55%	-26.03%	-1.65%

	MONT INFLATION(Mo		ACCUMULA	TED ON YEAR
DATE	THAILAND	BRAZIL	THAILAND	BRAZIL
MAY/2020	2.73%	-0.7%	-24.01%	-2.34%
JUN/2020	16.78%	0%	-11.26%	-2.34%
JUL/2020	2.18%	2.03%	-9.32%	-0.35%
AGO/2020	0.10%	0.27%	-9.23%	-0.08%
SEP/2020	-1.02%	0.35%	-10.16%	0.27%
OUT/2020	0.37%	0.28%	-9.82%	0.55%
NOV/2020	0.50%	0.32%	-9.37%	0.87%
DEZ/2020	2.86%	7.64%	-6.78%	8.58%
JAN/2021	2.17%	-3.79%	2.17%	-3.79%
FEB/2021	-4.68%	0.13%	-2.61%	-3.66%
MAR/2021	2.23%	1.65%	-0.44%	-2.08%
APR/2021	8.71%	0.22%	11.33%	-1.86%
MAY/2021	-6.00%	4.44%	1.74%	2.50%
JUN/2021	1.95%	1.94%	3.72%	4.49%
JUL/2021	-0.30%	6.91%	3.41%	11.71%
AGO/2021	-1.20%	1.4%	0.00%	13.27%
SEP/2021	11.76%	5.79%	14.18%	19.83%
OCT/2021	2.82%	1.65%	17.40%	21.8%
NOV/2021	0.61%	1.44%	18.12%	23.55%
DEC/2021	-2.59%	0.65%	15.06%	24.36%

Note: a) Thailand's monthly data refer to "energy (Cod 9200)", extracted from the Bureau of Trade and Economic Indices – Minister of Commerce. Retrieved from: http://www.price.moc.go.th/

b) Brazilian's data was extracted from table 6070 of the System of Automatic Retriever (SIDRA) of the Brazilian Instituto of Geography and Statistics (IBGE).

Table A-7

	MO	NTHLY	MONTI VARIA		ACCUMU ON YE	
DATE	THAILAND	BRAZIL	THAILAND	BRAZIL	THAILAND	BRAZIL
JAN/2018	114.14	215.44	0	0.00	0.00	0.0
FEB/2018	114.75	218.58	-0.39%	1.46%	0.53%	1.5%
MAR/2018	115.45	220.7	-0.18%	0.97%	1.15%	2.4%
APR/2018	115.84	229.18	0.78%	3.84%	1.49%	6.4%
MAY/2018	115.37	236.29	0.45%	3.10%	1.08%	9.7%
JUN/2018	114.53	239.84	-0.15%	1.50%	0.34%	11.3%
JUL/2018	113.26	239.76	-0.33%	-0.03%	-0.77%	11.3%
AGO/2018	115.15	241.4	0.51%	0.68%	0.88%	12.0%
SEP/2018	117.28	247.02	0.28%	2.33%	2.75%	14.7%
OUT/2018	117.32	225.54	0.14%	-8.70%	2.79%	4.7%
NOV/2018	116.57	225.72	0.35%	0.08%	2.13%	4.8%
DEZ/2018	117.17 วุ ง	231.49	-0.36%	2.56%	2.65%	7.4%
JAN/2019	119.11	225.38	0.33%	-2.64%	1.66%	-2.6%
FEB/2019	121.02	223.65	0.15%	-0.77%	3.29%	-3.4%
MAR/2019	119.68	228.69	0.20%	2.25%	2.14%	-1.2%
APR/2019	119.41	230.52	0.61%	0.80%	1.91%	-0.4%
MAY/2019	120.52	233.14	1.07%	1.14%	2.86%	0.7%
JUN/2019	122.61	225.88	0.13%	-3.11%	-2.41%	-2.4%
JUL/2029	123.59	221.76	0.01%	-1.82%	5.48%	-4.2%
AGO/2019	125.18	227.75	-0.30%	2.70%	6.84%	-1.6%
SEP/2018	126.22	230.81	0.12%	1.34%	7.72%	-0.3%
OCT/2019	126.85	228.75	0.10%	-0.89%	8.26%	-1.2%

Nominal Effective Exchange Rate 2018-2019

	MO	NTHLY	MONTI VARIA		ACCUMU ON YE	
DATE	THAILAND	BRAZIL	THAILAND	BRAZIL	THAILAND	BRAZIL
NOV/2019	126.92	232.43	0.35%	1.61%	8.32%	0.4%
DEZ/2019	126.74	230.28	-0.13%	-0.93%	8.17%	-0.5%

Note: a)Thailand's monthly dataset was extracted from the Bank of Thailand (BoT), retrieved from: https://www.bot.or.th/App/BTWS_STAT/statistics/BOTWEBSTAT.aspx?reportID=407&language=E NG. Monthly variation is form authors calculation.

b)The NEER for Thai Baht reflects movements of the Thai baht relative to other currencies. The NEER is often used to analyze the country's price competitiveness.

Brazilian's monthly data (COD. 20360) were extracted from dataset of time-series management System. Central Bank of Brazil (BACEN) Monthly variation is form authors calculation.

Table A-8

Nominal Effective Exchange Rate 2020 - 2021

NE	EER MONTLY	INDEX	MONTHLY VARIATION		ACCUMULATED ON YEAR	
DATE	THAILAND	BRAZIL	THAILAND	BRAZIL	THAILAND	BRAZIL
JAN/2020	125.14 J N	233.15	-1.26	1.25	-1.26	1.2
FEB/2020	123.02	241.44	OR -1.69	3.56	-2.94	4.8
MAR/2020	121.71	268.99	-1.06	11.41	-3.97	16.8
APR/2020	120.88	289.01	-0.68	7.44	-4.62	25.5
MAY/2020	122.56	305.82	1.39	5.82	-3.30	32.8
JUN/2020	124.21	283.97	1.35	-7.14	-2.00	23.3
JUL/2020	122.55	291.09	-1.34	2.51	-3.31	26.4
AGO/2020	122.21	303.98	-0.28	4.43	-3.57	32.0
SEP/2020	121.13	301.02	-0.88	-0.97	-4.43	30.7
OUT/2020	121.23	314.31	0.08	4.41	-4.35	36.5
NOV/2020	123.03	306.20	1.48	-2.58	-9.78	33.0

NEER MONTLY INDEX			MONTHLY VARIATION		ACCUMULATED ON YEAR	
DATE	THAILAND	BRAZIL	THAILAND	BRAZIL	THAILAND	BRAZIL
JAN/2020	125.14	233.15	-1.26	1.25	-1.26	1.2
DEZ/2020	123.17	292.76	0.11	-4.39	-2.82	27.1
JAN/2021	123.03	304.05	-0.11	3.86	-0.11	3.9
FEB/2021	123.48	305.93	0.37	0.62	0.25	4.5
MAR/2021	121.86	315.26	-1.31	3.05	-1.06	7.7
APR/2021	119.75	311.17	-1.73	-1.30	-2.78	6.3
MAY/2021	119.17	297.59	-0.48	-4.36	-3.25	1.6
JUN/2021	118.91	282.03	-0.22	-5.23	-7.16	-3.7
JUL/2021	115.80	285.82	-2.62	1.34	-5.98	-2.4
AGO/2021	114.27	289.88	-1.32	1.42	-7.23	-1.0
SEP/2021	114.35	290.82	0.07	0.32	-7.16	-0.7
OCT/21	113.69	303.5	-0.01	4.36	-0.08	3.67
NOV/21	115.54	302.83	0.02	-0.22	-0.06	3.44
DEC/21	114.41	306.61	-0.01	1.25	-0.07	4.73

Nominal Effective Exchange Rate 2020 - 2021

Note: a)Thailand's monthly dataset was extracted from the Bank of Thailand (BoT), retrieved from: https://www.bot.or.th/App/BTWS_STAT/statistics/BOTWEBSTAT.aspx?reportID=407&language=E NG. Monthly variation is form authors calculation.

b)The NEER for Thai Baht reflects movements of the Thai baht relative to other currencies. The NEER is often used to analyze the country's price competitiveness. An increase in NEER refers to the baht appreciation against Thailand's major trading partners and competitors. This reflects relative disadvantage of the baht in price competitiveness.

Brazilian's monthly data (COD. 20360) were extracted from dataset of time-series management System. Central Bank of Brazil (BACEN) Monthly variation is form authors calculation.

Trade Balance Processed Food and Agro-Based products – 2018 – 2019 (*In Thousands of US Dollar*)

IMPORTS		EXPORTS		NET EXPORT		
DATE	THAILAND	BRAZIL	THAILAND	BRAZIL	THAILAND	BRAZIL
JAN/2018	665,504.00	454,420.00	2,255,319.00	1,564,187.00	1,589,815.00	1,109,767.00

(In Thousands of US Dollar)

FEB/2018	597,468.00	416,828.00	2,133,295.00	1,666,758.00	1,535,827.00	1,249,930.00
MAR/2018	732,708.00	453,358.00	2,394,492.00	1,851,372.00	1,661,784.00	1,398,014.00
APR/2018	730,154.00	451,061.00	2,119,847.00	1,625,646.00	1,389,693.00	1,174,585.00
MAY/2018	763,703.00	431,155.00	2,397,772.00	1,977,021.00	1,634,069.00	1,545,866.00
JUN/2018	697,075.00	382,029.00	2,393,411.00	1,823,521.00	1,696,336.00	1,441,492.00
JUL/2018	577,247.00	445,538.00	2,310,171.00	1,942,434.00	1,732,924.00	1,496,896.00
AGO/2018	778,957.00	423,738.00	2,497,063.00	1,859,736.00	1,718,106.00	1,435,998.00
SEP/2018	647,764.00	452,867.00	2,254,455.00	1,863,302.00	1,606,691.00	1,410,435.00
OUT/2018	742,133.00	503,757.00	2,433,754.00	1,671,487.00	1,691,621.00	1,167,730.00
NOV/2018	690,212.00	491,462.00	2,365,893.00	1,533,486.00	1,675,681.00	1,042,024.00
DEZ/2018	638,558.00	417,727.00	2,243,861.00	1,876,574.00	1,605,303.00	1,458,847.00
JAN/2019	841,016.00	444,664.00	2,207,877.00	1,272,146.00	1,366,861.00	827,482.00
FEB/2019	589,722.00	444,569.00	2,134,967.00	1,237,978.00	1,545,245.00	793,409.00
MAR/2019	626,757.00	421,829.00	2,329,170.00	1,427,986.00	1,702,413.00	1,006,157.00
APR/2019	765,106.00	422,040.00	2,146,694.00	1,409,068.00	1,381,588.00	987,028.00
MAY/2019	768,629.00	472,618.00	2,437,905.00	1,747,910.00	1,669,276.00	1,275,292.00
JUN/2019	766,454.00	384,092.00	2,269,560.00	1,527,596.00	1,503,106.00	1,143,504.00
JUL/2019	674,640.00	475,055.00	2,285,665.00	1,705,512.00	1,611,025.00	1,230,457.00
AGO/2019	687,933.00	414,566.00	2,285,249.00	1,571,905.00	1,597,316.00	1,157,339.00
SEP/2018	685,093.00	406,427.00	2,293,175.00	1,608,082.00	1,608,082.00	1,201,655.00
OCT/2019	664,692.00	479,324.00	2,515,812.00	1,647,794.00	1,851,120.00	1,168,470.00
NOV/2019	749,576.00	447,038.00	2,365,233.00	1,639,687.00	1,615,657.00	1,192,649.00
DEZ/2019	736,602.00	436,508.00	2,143,875.00	1,656,277.00	1,407,273.00	1,219,769.00

Note. Thailand's and Brazil's data were extracted from trademap database, of the International Trade Centre.

_

Table A-10

Trade Balance Processed Food and Agro-Based Product – 2020 - 2021 (In Thousands of US Dollar)

	IMPOR	TS	EXPORTS	NET EXPORT		
DATE	THAILAND	BRAZIL	THAILAND	BRAZIL	THAILAND	BRAZIL
JAN/2020	734,463.00	446,442.00	1,997,928.00	1,269,674.00	1,263,465.00	823,232.00
FEB/2020	582,131.00	402,454.00	2,012,744.00	1,167,951.00	1,430,613.00	765,497.00
MAR/2020	690,774.00	492,525.00	2,317,561.00	1,551,816.00	1,626,787.00	1,059,291.0
APR/2020	707,648.00	374,537.00	2,325,008.00	1,564,604.00	1,617,360.00	1,190,067.0
MAY/2020	664,624.00	321,258.00	2,212,932.00	2,017,789.00	1,548,308.00	1,696,531.0
JUN/2020	704,543.00	355,858.00	2,100,705.00	2,016,262.00	1,396,162.00	1,660,404.0
JUL/2020	666,461.00	454,303.00	2,043,206.00	2,098,873.00	1,376,745.00	1,644,570.0
AGO/2020	636,005.00	390,145.00	2,100,036.00	1,971,968.00	1,464,031.00	1,581,823.0
SEP/2020	702,784.00	487,037.00	2,135,521.00	2,085,040.00	1,432,737.00	1,598,003.0
OUT/2020	647,002.00	600,057.00	2,158,748.00	2,259,954.00	1,511,746.00	1,659,897.0
NOV/2020	717,327.00	666,585.00	2,240,309.00	2,023,115.00	1,522,982.00	1,356,530.0
DEZ/2020	731,414.00	607,161.00	2,005,566.00	1,912,641.00	1,274,152.00	1,305,480.0
JAN/2021	658,499.00	570,272.00	1,900,211.00	1,572,053.00	1,241,712.00	1,001,781.0
FEB/2021	698,394.00	546,004.00	1,957,917.00	1,639,159.00	1,259,523.00	1,093,155.0
MAR/2021	761,230.00	551,644.00	2,218,787.00	1,907,023.00	1,457,557.00	1,355,379.0
APR/2021	745,812.00	485,314.00	2,095,395.00	2,112,951.00	1,349,583.00	1,627,637.0
MAY/2021	874,094.00	488,979.00	2,184,950.00	2,391,635.00	1,310,856.00	1,902,656.0
JUN/2021	837,478.00	513,118.00	2,340,844.00	2,532,176.00	1,503,366.00	2,019,058.0
JUL/2021	746,900.00	490,917.00	2,041,009.00	2,486,189.00	1,294,109.00	1,995,272.0
AGO/2021	828,858.00	534,881.00	2,123,555.00	2,433,554.00	1,294,697.00	1,898,673.0
SEP/2021	881,363.00	490,612.00	2,401,740.00	2,315,486.00	1,520,377.00	1,824,874.0
OCT/2021	677,909.00	581,492.00	2,442,695.00	2,275,951.00	1,764,786.00	1,694,459.0
NOV/2021	755,284.00	568,628.00	2,498,678.00	2,306,398.00	1,743,394.00	1,737,770.0
DEZ/2021	740,093.00	576,175.00	2,418,486.00	2,385,965.00	1,678,393.00	1,809,790.0

Note: Both Thailand and Brazilian data were extracted from trade map database, of the International Trade Centre.

Table	A-	11
-------	----	----

Crude Oil Global Price – 2018 - 2019

Crude Oil Global Pr	ice – 2018 - 2019		
DATE	index	Change over the Previous Period	PRICE in US\$
JAN/2018	149.22	8.07%	US\$ 66.15
FEB/2018	141.81	-4.11%	US\$ 63.44
MAR/2018	143.34	1.19%	US\$ 64.20
APR/2018	153.86	7.17%	US\$ 68.79
MAY/2018	167.08	6.62%	US\$ 73.34
JUN/2018	165.24	-1.81%	US\$ 71.99
JUL/2018	167.92	0.99%	US\$ 72.72
AGO/2018	165.28	-2.26%	US\$ 71.06
SEP/2018	174.66	6.05%	US\$ 75.36
OUT/2018	179.06	1.83%	US\$ 76.73
NOV/2018	146.29	-18.67%	US\$ 62.38
DEZ/2018	126.08	-13.77%	US\$ 53.79
JAN/2019	131.42	4.90%	US\$ 56.43
FEB/2019	142.53	8.29%	US\$ 61.10
MAR/2019	148.86	11111111111111111111111111111111111111	US\$ 63.79
APR/2019	GHU _{160.45} (GK	ORN 7.47%	US\$ 68.57
MAY/2019	157.12	-2.47%	US\$ 66.88
JUN/2019	139.92	-10.71%	US\$ 59.73
JUL/2019	144.45	2.93%	US\$ 61.47
AGO/2019	136.17	-6.31%	US\$ 57.60
SEP/2018	142.33	4.18%	US\$ 60.01
OCT/2019	135.55	-4.51%	US\$ 57.30
NOV/2019	142.60	5.44%	US\$ 60.42
DEZ/2019	149.22	4.93%	US\$ 63.40

DATE	index	Change over the Previous Period	PRICE in US\$
Note: Crude Oil (petrole	um) is composed of	f a simple average of three spot prices: Da	ated Brent, West
Texas Intermediate, and	the Dubai Fateh.		

Data extracted from the International Monetary Fund (IMF). FMI eLIBC_BRary data. Primary Commodity price System. Retrieved from: https://data.imf.org/?sk=471DDDF8-D8A7-499A-81BA-5B332C01F8B9&sId=1547558078595

Crude Oil Global Pr DATE	index	Change over the Previous Period	PRICE in US\$
DATE	Index	Change over the rievious renou	TRICE III 050
JAN/2020	145.14	-2.67%	UD\$ 61.68
FEB/2020	126.53	-13.49%	UD\$ 53.37
MAR/2020	76.22	-39.64%	UD\$ 32.20
APR/2020	50.45	-34.22%	UD\$ 21.17
MAY/2020	72.25	43.24%	UD\$ 30.35
JUN/2020	92.83	29.98%	UD\$ 39.46
JUL/2020	98.08	6.61%	UD\$ 42.07
AGO/2020	99.85	3.25%	UD\$ 43.44
SEP/2020	93.32	-6.53%	UD\$ 40.60
OUT/2020	91.57	-1.75%	UD\$ 39.90
NOV/2020	96.88	6.37%	UD\$ 42.44
DEZ/2020	110.07	14.89%	UD\$ 48.75
JAN/2021	120.32	9.70%	UD\$ 53.49
FEB/2021	136.26	13.03%	UD\$ 60.47
MAR/2021	145.10	5.56%	UD\$ 63.83
APR/2021	142.87	-1.43%	UD\$ 62.93
MAY/2021	149.65	5.57%	UD\$ 66.43
JUN/2021	162.28	8.08%	UD\$ 71.80
JUL/2021	167.08	2.08%	UD\$ 73.28

Crude Oil Global Price –	2020 -2021		
DATE	index	Change over the Previous Period	PRICE in US\$
AGO/2021	157.23	-5.99%	UD\$ 68.89
SEP/2021	166.18	5.61%	UD\$ 72.77
OCT/2021	188.48	12.78%	UD\$ 82.06
NOV/2021	184.64	-2.63%	UD\$ 79.89
DEZ/2021	169.41	-8.66%	UD\$ 72.98

Note: Crude Oil (petroleum) is composed of a simple average of three spot prices: Dated Brent, West Texas Intermediate, and the Dubai Fateh.

Data extracted from the International Monetary Fund (IMF). FMI eLIBC_BRary data. Primary Commodity price System. Retrieved from: https://data.imf.org/?sk=471DDDF8-D8A7-499A-81BA-5B332C01F8B9&sId=1547558078595

Table A-13

Commodity Price: Food and Beverage

Commodity 11	Index				Change over the Previous Period			Period
Month	2018	2019	2020	2021	2018	2019	2020	2021
January	104.43	99.12	104.14	114.34	3.32%	1.76%	1.07%	5.94%
February	104.66	97.62	100.12	117.39	0.21%	-1.51%	-3.86%	2.67%
March	105.77	96.78	96.44	120.01	1.06%	-0.86%	-3.67%	2.23%
April	105.64	100.00	92.42	126.84	-0.13%	3.32%	-4.17%	5.69%
May	107.16	96.78	95.63	134.27	1.44%	-3.22%	3.48%	5.86%
June	102.91	98.98	98.42	129.29	-3.97%	2.28%	2.92%	-3.71%
July	100.19	99.06	96.49	130.15	-2.65%	0.08%	-1.96%	0.66%
August	96.18	96.93	97.94	130.76	-3.99%	-2.15%	1.50%	0.47%
September	97.25	95.08	99.35	128.34	1.11%	-1.91%	1.44%	-1.85%
October	99.31	95.42	103.79	130.51	2.11%	0.36%	4.47%	1.69%
November	95.10	99.41	106.79	131.91	-4.24%	4.19%	2.89%	1.07%
December	97.40	103.04	107.93	134.73	2.42%	3.65%	1.06%	2.14%

Note: Data extracted from the International Monetary Fund (IMF). FMI eLIBC_BRary data. Primary Commodity price System. Retrieved from: https://data.imf.org/?sk=471DDDF8-D8A7-499A-81BA-5B332C01F8B9&sId=15475580785

Table	A-	14
-------	----	----

Thailand Degree	e of Openness. Quarter	ly data		
Date	Import (TBH)	EXPORT(TBH)	GDP	Degree of
				Openness
2018/Q1	102,588.94	236,948.27	4,053,070	8.377284626
2018/Q2	101,256.98	255,445.11	3,999,458	8.918760742
2018/Q3	96,790.31	264,353.63	4,065,277	8.883624412
2018/Q4	106,148.51	255,199.45	4,255,538	8.491240356
2019/Q1	103,490.19	236,188.39	4,220,390	8.04851163
2019/Q2	105,314.42	250,802.53	4,154,137	8.572585594
2019/Q3	95,375.67	244,711.18	4,179,947	8.136152205
2019/Q4	101,431.59	232,551.08	4,337,937	7.699112965
2020/Q1	107,340.65	225,500.57	4,137,075	8.045327194
2020/Q2	101,019.53	274,767.52	3,534,836	10.63096138
2020/Q3	101,428.08	234,270.60	3,853,530	8.711458844
2020/Q4	108,028.57	220,695.46	4,111,450	7.995330844
2021/Q1	111,899.43	218,655.45	4,053,192	8.155421209
2021/Q2	121,396.78	284,443.66	3,913,505	10.3702548
2021/Q3	117,389.24	270,464.35	3,917,629	9.900212348
2021/Q4	116,275.28	275,741.90	4,295,500	9.12622931

Note. The Units are in billions of baht. For Thailand, the quarterly data in THB was used because this data was not found in USD or in higher frequency. 2) The data relating to trade was extracted from the Bank of Thailand from the table: EC_XT_001: Trade Classified by Commodity Group. Retrieved date : 14 Sep 2022 23:48.

Degree of Op	benness			
	2018	2019	2020	2021
January	3.42649136	3.984921066	5.307767383	4.774973851
February	3.602472725	4.561258092	4.016679316	5.265516631
Mach	4.930627381	5.133114817	4.862060183	8.684458924
April	5.114011093	5.116272379	8.795882426	9.82601852
May	6.464693134	5.234228697	9.96676101	9.882722283
June	5.7351279	5.837239427	9.209808636	8.792609544
July	6.502587233	4.834437292	8.281359187	8.239322147
August	6.355535035	5.851387293	8.919943743	8.390293244
September	6.012349674	5.618112451	7.532596514	8.096181434
October	5.15582234	5.242585523	7.388643533	7.607448018
November	5.215285816	5.777505738	6.658239205	7.188720233
December	5.405983876	5.345161101	5.977140613	7.776719306
Monthly DGP	(Thousands of US	D)		
	2018	2019	2020	2021
January	171,471,000.00	154,560,000.00	121,421,000.00	145,802,000.00
February	165,809,000.00	154,933,000.00	124,344,000.00	139,664,000.00

Brazil degree of Openness and monthly DGP

Mach	178,791,000.00	156,815,000.00	129,991,000.00	127,212,000.00
April	171,457,000.00	157,795,000.00	128,078,000.00	103,969,000.00
May	153,650,000.00	154,239,000.00	134,468,000.00	996,360,000.00
June	153,909,000.00	155,091,000.00	142,021,000.00	113,553,000.00
July	153,755,000.00	167,458,000.00	144,102,000.00	118,203,000.00
August	151,607,000.00	156,636,000.00	141,077,000.00	113,053,000.00
September	139,364,000.00	150,057,000.00	138,717,000.00	116,356,000.00
October	162,220,000.00	158,730,000.00	133,700,000.00	116,339,000.00
November	159,998,000.00	152,919,000.00	135,845,000.00	121,820,000.00
December	154,181,000.00	153,568,000.00	135,069,000.00	132,392,000.00

		s & the first of a			
DGP Proxy.					
Brazil IBC_BR	2018	2019	2020	2021	
January	137.31	139.04	139.65	140.04	
February	137.32	138.34	140.57	142.56	
Mach	137.1	137.89	131.18	137.35	
April	137.97	137.63	118.31	138.57	
May	133.14	138.68	121.19	138.9	
June	137.21	138.56	127.04	138.71	
July	137.75	138.15	131.22	138.88	
August	138.79	138.04	133.92	138.94	
September	137.97	50 139.04 Me	136.51	138.74	
October	138.07	GK0140.01	ERS138.63	139.08	
November	138.19	139.32	138.61	140.32	
December	139.04	139.04	139.31	141.16	
Thailand LEI	2018	2019	2020	2021	
January	149.95	151.65	151.44	157.49	
February	150.93	151.28	151.84	157.6	
Mach	152.09	151.06	153.96	160.44	
April	150.8	150.19	153.41	157.56	
May	150.35	151.17	153.39	158.38	
June	150.21	151.49	154.94	158.11	
July	150.41	151.48	155.61	157.06	

August	149.57	152.09	156.56	157.38
September	150.85	152.44	156.73	158.53
October	149.53	153.86	157.22	158.2
November	153.44	152.16	157.7	158.9
December	151.92	151.43	158.56	160.66

Note: IBC_BR (Central Bank Economic Activity Index). Retrieved from: https://www3.bcb.gov.br/sgspub/consultarmetadados/consultarMetadadosSeries.do?method=consultarMetadadosS eriesInternet&hdOidSerieSelecionada=24363

LEI(Leading Economic Index). Calculated by the Bank of Thailand

Table A-17

Monetary Policy (end of Period)

Date	Thailand's Exchange Rate	Thailand's Interest Rates	Brazil's Exchange	Brazil's Interest Rate
Jan-18	31.3762	1.50	3.1618	7.1
Feb-18	31.4627	1.50	3.2443	6.75
Mar-18	31.2318	1.50	3.3232	6.5
Apr-18	31.4986	1.50	3.4805	6.5
May-18	32.0247	1.50	3.7364	6.5
Jun-18	33.1672	1.50	3.8552	6.5
Jul-18	33.3093	1.50	3.7543	6.5
Aug-18	32.742	1.50	4.1347	6.5
Sep-18	32.4066	1.75	4.0033	6.5
Oct-18	33.2714	01.75 ORN UNI	3.7171	6.5
Nov-18	32.9178	1.75	3.8627	6.5
Dec-18	32.4498	1.75	3.8742	6.5
Jan-19	31.2458	1.75	3.6513	6.5
Feb-19	31.4767	1.50	3.7379	6.5
Mar-19	31.8117	1.50	3.8961	6.5
Apr-19	31.9338	1.25	3.9447	6.5
May-19	31.7553	1.25	3.9401	6.5
Jun-19	30.7443	1.00	3.8316	6
Jul-19	30.7965	0.75	3.7643	6
Aug-19	30.6443	0.75	4.1379	6
Sep-19	30.5919	0.50	4.1638	6
Oct-19	30.1829	0.50	4.0035	5.5

Date	Thailand's Exchange Rate	Thailand's Interest Rates	Brazil's Exchange	Brazil's Interest Rate
Nov-19	30.2264	0.50	4.2234	5
Dec-19	30.154	0.50	4.0301	4.5
Jan-20	31.1307	0.50	4.2689	4.5
Feb-20	31.6225	0.50	4.4981	4.25
Mar-20	32.6712	0.50	5.1981	4.25
Apr-20	32.3781	0.50	5.4264	3.75
May-20	31.845	0.50	5.4257	3
Jun-20	30.8905	0.50	5.4754	2.25
Jul-20	31.2596	0.50	5.2027	2.25
Aug-20	31.0874	0.50	5.4707	2
Sep-20	31.6579	0.50	5.6401	2
Oct-20	31.1977	0.50	5.7712	2
Nov-20	30.2805	1.50	5.3311	2
Dec-20	30.0371	1.50	5.1961	2
Jan-21	29.9928	1.50	5.4753	2
Feb-21	30.0434	1.50	5.5296	2
Mar-21	31.3394	1.50 โมหาวิทย	5.6967	2.75
Apr-21	31.195	01.50 CR UNI	5.403	2.75
May-21	31.2629	1.50	5.2316	3.5
Jun-21	32.0533	1.50	5.0016	4.25
Jul-21	32.9018	1.75	5.121	4.25
Aug-21	32.3856	1.75	5.1427	5.25
Sep-21	33.9223	1.75	5.4388	6.25
Oct-21	33.1805	1.75	5.6424	7.75

Monetary Policy (end of Period)

Monetary Policy (end of Period)

Date	Thailand's Exchange Rate	Thailand's Interest Rates	Brazil's Exchange	Brazil's Interest Rate
Nov-21	33.6898	1.75	5.6193	7.75
Dec-21	33.4199	1.50		9.25

Note. Thailand's exchange rate (domestic currency per us dollar). Source: International Financial Statistics of the International Monetary Fund. Thailand's Interest Rate, retrieved from the Bank of Thailand.

Brazil's exchange rate (domestic currency per us dollar). Source: International Financial Statistics of the International Monetary Fund.

Brazil's Interest Rate retrieved from the Central Bank of Brazil.

Agrarian Production

Date	Brazilian	Brazilian	Thailand's	Thailand's
	Agricultural	Agricultural	Agricultural	Production
	Production	Price Index	Production	Index
	(LSPA)	(IPPAs/CEPEA)	Index	
Jan-18	1,185,753,186.00	93.1 19 93.1	149.58	124.43
Feb-18	1,189,268,614.00	94.3	144.59	126.11
Mar-18	1,196,376,025.00	99 ORN NIVE	149.33	131.4
Apr-18	1,224,610,063.00	98.7	122.56	128.36
May-18	1,219,893,960.00	97.4	109.79	130.76
Jun-18	1,207,997,037.00	96.7	102.08	129.4
Jul-18	1,203,910,257.00	96.1	104.22	127.05
Aug-18	1,198,037,465.00	97.5	134.65	123.83
Sep-18	1,185,079,393.00	97.4	128.76	124.27
Oct-18	1,187,313,763.00	94.4	130.7	124.57
Nov-18	1,190,245,012.00	92.9	296.69	122.02
Dec-18	1,186,096,740.00	92.5	170.78	122.85
Jan-19	1,185,896,401.00	91.1	154.55	123.88
Feb-19	1,181,242,882.00	93.2	146.14	126.31
Mar-19	1,196,474,589.00	94.7	147.6	128.57
Apr-19	1,210,900,149.00	93.9	118.42	127.99
May-19	1,215,071,760.00	90.6	107.99	132.01
Jun-19	1,196,545,554.00	92.3	101.12	136.68
Jul-19	1,203,900,744.00	90.2	108.61	130.55
Aug-19	1,204,103,591.00	92.9	131.8	127.07

Agrarian Production							
Date	Brazilian	Brazilian	Thailand's	Thailand's			
	Agricultural	Agricultural	Agricultural	Production			
	Production	Price Index	Production	Index			
	(LSPA)	(IPPAs/CEPEA)	Index				
Sep-19	1,208,351,909.00	94	130.74	127.03			
Oct-19	1,209,461,110.00	95.9	136.64	125.72			
Nov-19	1,209,382,380.00	101.8	286.65	127.55			
Dec-19	1,210,387,193.00	104.4	166.43	129.63			
Jan-20	1,224,463,734.00	102	153.71	134.97			
Feb-20	1,233,186,479.00	103.5	131.27	137			
Mar-20	1,223,654,995.00	108.1	111.48	139.43			
Apr-20	1,224,964,358.00	108.9	102.14	132.33			
May-20	1,225,312,097.00	107.9	107.56	127.92			
Jun-20	1,240,403,499.00	105.3	100.71	130.36			
Jul-20	1,244,694,367.00	107.7	108.1	132.93			
Aug-20	1,255,691,985.00	112.4	119.66	136.66			
Sep-20	1,253,478,985.00	118.5	123.27	138.93			
Oct-20	1,253,994,988.00	127	138.95	141.14			
Nov-20	1,253,566,744.00	130.6	328.24	139.82			
Dec-20	1,244,162,903.00	119.5	164.1	144.23			
Jan-21	1,248,432,911.00	121.7	150.22	143.87			
Feb-21	1,250,813,812.00	118.4	134.81	148.57			
Mar-21	1,255,455,541.00	118	112.9	156.13			
Apr-21	1,239,584,304.00	120.4	103.61	149.01			
May-21	1,238,222,167.00	116.2	106.74	146.42			
Jun-21	1,228,519,882.00	112.3	103.55	144.33			
Jul-21	1,224,494,683.00	114.1	111.07	133.92			
Aug-21	1,212,730,333.00	119.7	135.79	127.85			
Sep-21	1,185,446,303.00	120.8	128.77	128.22			
Oct-21	1,183,739,041.00	116.4	133.07	129.85			
Nov-21	1,181,969,125.00	116.4	317.4	135.52			
Dec-21	1,173,302,886.00	118.3	158.88	141.12			

Note. The Brazilian Agricultural Production (LSPA- Systematic Reporting of Agricultural Production) is measured by tons and it can be found at table 6588, calculated by the Brazilian Institute of Geography and Statistics (IBGE) The Brazilian Production Price Index (IPPAs) is an index calculated by the Center of Advanced Studies in Applied Economics (CEPEA). retrieved from: https://www.cepea.esalq.usp.br/br/metodologia-ippa-1.aspx

Thailand's Producer Index and Price Index can be found at table 01 and 02 respectively. Source: Office of Agricultural Economics, Ministry of Agriculture and Cooperatives. Retrieved from: Price and output indices (oae.go.th)

APPENDIX B

Statistical Outcomes

Table B - 1

Brazilian Data Unit Root Test Results Null Hypothesis: the variable has a unit root.

	-	9	1000	3 =				
At First Differenc e	t-Statistic		API) d(B 407 -	APROD) 5.4336	d(BC) -14.9090	d(BENINI -7.2815	F) d(BER) -6.1678	d(BF_BIMP) -6.7993
With Constant	Prob.		000 **	0.0000 ***	0.0000 ***	0.0000 ***	0.0000 ***	0.0000 ***
With	t-Statistic	-5.6	- 757	1.0939	-14.9056	-7.1981	-6.1231	-6.7917
Constant & Trend	Prob.		001 (**	0.9165 n0	0.0000 ***	0.0000 ***	0.0000 ***	0.0000 ***
XX 7° (1	t-Statistic	-5.6	5879 -:	5.4899	-15.0441	-7.3687	-5.9367	-6.6545
Without Constant	Prob.		000 **	0.0000 ***	0.0000 ***	0.0000 ***	0.0000 ***	0.0000 ***
& Trend		24			100			
		- 1011			1111			
At level		BF_BINF	BF_EXF	P BI	R B	NEER	COI	COP
With Constant	t- Statisti	-4.5206	-3.8621	-3.84	431 -(0.9312	-1.4097	-1.4284
Constant	c	0.0007 ***	0.0047 ***	0.0		0.7695 n0	0.5693	0.5601
With	Prob.	-4.7576	-4.0797			1.7860	n0 -1.1990	n0 -1.2342
Constant	t-	0.0019	0.0127	0.1	263	0.6956	0.8987	0.8910
& Trend	Statisti	***	**	n	-	n0	n0	n0
Without	c Prob.	-3.3452	1.1485	-		1.2465	-0.0994	-0.0472
Constant		0.0013 ***	0.9324 n0	0.8		0.9438 n0	0.6440 n0	0.6617 n0
& Trend	t- Statisti				-			
	c							
	Prob.							
At First		d(BF_BINF)	d(BF_EX	, ,	,	I(BNEER)	d(COI)	d(COP)
Differenc e	t- Statistic	-5.3622	-4.2615		2312	-5.8952	-5.6456	-5.6372
With	Prob.	0.0001 ***	0.0018 ***		9716 nO	0.0000 ***	0.0000 ***	0.0000 ***
Constant	t- Statistic	-5.3790	-5.6129		6601	-5.8274	-5.6888	-5.6562

Brazilian Data Unit Root Test Results

Null Hypothesis: the variable has a unit root.

With Constant	Prob. t-	0.0004 ***	0.0003 ***	0.9994 n0	0.0001 ***	0.0001 ***	0.000 ***
& Trend	Statistic	-5.4158	-4.6203	-1.3211	-5.7594	-5.7114	-5.699
Without Constant & Trend	Prob.	0.0000 ***	0.0000 ***	0.1698 n0	0.0000 ***	0.0000 ***	0.000 ***
At level	_						
		GFI	IBC_BR	LNBAPI	LNBAPROD	LNBC	LNBER
With	t- Statistic	0.7051	-3.2460	-0.9126	-2.6380	-5.2284	-1.5624
Constant	Prob.	0.9911	0.0236	0.7756	0.0944	0.0001	0.4936
Constant		n0	**	n0	*	***	n0
With	t- Statistic	-1.0597	-3.2130	-2.2534	-0.1884	-6.0579	-2.1659
Constant	Prob.	0.9250	0.0946	0.4499	0.9915	0.0001	0.4968
& Trend		n0	*	nO	n0	***	n0
	t-	1.5187	0.1102	1.1336	-0.1925	-0.8229	1.5651
Without	Statistic Prob.	0.9665 🥔	0.7126	0.9313	0.6116	0.3523	0.9695
Constant & Trend		n0	nO	nO	nO	n0	n0
At First			///////////////////////////////////////				
Differenc		d(GFI)	d(IBC_BR)	d(LNBAPI)	d(LNBAPROE	D)d(LNBC)	d(LNBEF
e	t- Statistic	-5.4011	-5.1225	-5.6688	-5.4180	-5.3912	-6.3759
With	Prob.	0.0000	0.0001	0.0000	0.0000	0.0001	0.0000
Constant	t-	***	***	***	***	***	***
With Constant	Statistic	-5.8962	-5.0760	-5.6044	-1.0912	-5.3506	-6.3678
& Trend	Prob.	0.0001	0.0008	0.0002	0.9170	0.0006	0.0000
	t-	***	***	***	nO	***	***
	Statistic	-5.2557	-5.1784	-5.6043	-5.4739	-5.4306	-6.0897
Without	Prob.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Constant		***	***	***	***	***	***

CHULALONGKORN UNIVERSITY

At level		LNBF_BEX	KPLNBF_BIM	IP LNBIR	LNBNEER	LNCOP	LNGFI	LNIBC_BR
	t- Statistic	-4.1774	-1.1910	-1.9291	-0.9795	-1.5773	0.4999	-3.3062
With	Prob.	0.0019	0.6708	0.3159	0.7531	0.4857	0.9850	0.0203
Constant	t-	***	nO	nO	n0	n0	n0	**
With Constant	Statistic Prob.	-4.3113	-1.8361	-4.1503	-2.0494	-1.4147	-1.1852	-3.2699
& Trend	t-	0.0069	0.6711	0.0117	0.5594	0.8431	0.9020	0.0841
Without	Statistic	***	nO	**	n0	n0	n0	*
Constant	Prob.	0.8592	0.9120	0.0153	1.4291	0.0962	1.3204	0.1542
& Trend		0.8915	0.9008	0.6824	0.9600	0.7082	0.9509	0.7260
		n0	nO	nO	nO	n0	n0	n0

d(LNBF BE	X d(LNBF	BIM d(LNBIR	d(LNBNEE	d(LNCOPd(LNGFI	d(LNIBC B
			a(11,11,11,11)	a(Ericor a(Ericor r	a(E1 (12 C_2

At First	t-	P)	P))	R)))	R)
Differenc	Statistic	-4.8285	-7.8536	-2.0337	-5.7791	-5.9931	-5.4387	-5.2117
	Prob.							
e	t-	0.0004	0.0000	0.2719	0.0000	0.0000	0.0000	0.0001
With	Statistic	***	***	n0	***	***	***	***

Brazilian Data Unit Root Test Results

Null Hypothesis: the variable has a unit root.

Constant	Prob.	-5.7127	-7.7988	-2.3836	-5.7126	-5.9960	-5.8676	-5.1636	
With Constant	t- Statistic	0.0002	0.0000	0.3828	0.0001	0.0001	0.0001	0.0006	
Constant & Trend	Prob	***	***	n0	***	***	***	***	
Without		-4.6787	-7.7134	-2.0410	-5.6348	-6.0607	-5.3288	-5.2692	
Constant		0.0000	0.0000	0.0407	0.0000	0.0000	0.0000	0.0000	
& Trend		***	***	**	***	***	***	***	

Note.

a: (*)Significant at the 10%; (**)Significant at the 5%; (***) Significant at the 1% and (no) Not Significant

b: Lag Length based on AIC

c: Probability based on MacKinnon (1996) one-sided p-values.

Table B - 2

Brazilian Data. Pairwise Granger Causality Test. Lags:4

Null Hypothesis:	Obs	F-Statistic	Prob.
BIR does not Granger Cause BF_BINF	44	1.11918	0.3632
BF_BINF does not Granger Cause BIR		0.06096	0.9928
BENINF does not Granger Cause BF_BINF	44	0.78731	0.5413
BF_BINF does not Granger Cause BENINF		0.83580	0.5117
IBC_BR does not Granger Cause BF_BINF	ี่ 44	2.19581	0.0896
BF_BINF does not Granger Cause IBC_BR	วิทยาลั	2.93963	0.0340
LNBIR does not Granger Cause BF_BINF	JAN ⁴⁴ RS	0.99717	0.4221
BF_BINF does not Granger Cause LNBIR		0.25407	0.9052
DIFBENINF does not Granger Cause BF_BINF	43	0.79263	0.5382
BF_BINF does not Granger Cause DIFBENINF		0.86146	0.4969
DIFBER does not Granger Cause BF_BINF	43	1.18559	0.3347
BF_BINF does not Granger Cause DIFBER		0.20401	0.9344
DIFBNEER does not Granger Cause BF_BINF	43	0.45722	0.7665
BF_BINF does not Granger Cause DIFBNEER		0.65404	0.6281
DIFCOI does not Granger Cause BF_BINF	43	0.44851	0.7727
BF_BINF does not Granger Cause DIFCOI		0.70598	0.5934
DIFCOP does not Granger Cause BF_BINF	43	0.58274	0.6772
BF_BINF does not Granger Cause DIFCOP		0.61704	0.6534
DIFGFI does not Granger Cause BF_BINF	43	1.70459	0.1717
BF_BINF does not Granger Cause DIFGFI		2.48061	0.0623

DIFIBC_BR does not Granger Cause BF_BINF	43	3.88782	0.0105
BF_BINF does not Granger Cause DIFIBC_BR		0.37566	0.8244
DIFLNBAPI does not Granger Cause BF_BINF	43	1.60019	0.1968
BF_BINF does not Granger Cause DIFLNBAPI		1.16132	0.3450
DIFLNBAPROD does not Granger Cause BF_BINF BF_BINF does not Granger Cause DIFLNBAPROD	43	1.04802 2.72498	0.3971 0.0454
DIFLNBFEXP does not Granger Cause BF_BINF	43	0.20955	0.9313
BF_BINF does not Granger Cause DIFLNBFEXP		1.16639	0.3429
DIFLNBFIMP does not Granger Cause BF_BINF	43	1.26835	0.3015
BF_BINF does not Granger Cause DIFLNBFIMP		0.17391	0.9503
DIFLNBER does not Granger Cause BF_BINF	43	0.61368	0.6557
BF_BINF does not Granger Cause DIFLNBER		0.58760	0.6738
DIFLNBNEER does not Granger Cause BF_BINF	43	0.39709	0.8093
BF_BINF does not Granger Cause DIFLNBNEER		0.95034	0.4471
DIFLNCOI does not Granger Cause BF_BINF	43	0.36381	0.8326
BF_BINF does not Granger Cause DIFLNCOI		0.96509	0.4392
DIFLNCOP does not Granger Cause BF_BINF	43	0.69689	0.5994
BF_BINF does not Granger Cause DIFLNCOP		0.56005	0.6932
DIFLNGFI does not Granger Cause BF_BINF	43	1.62353	0.1909
BF_BINF does not Granger Cause DIFLNGFI		2.50098	0.0607
DIFLNIBC_BR does not Granger Cause BF_BINF BF_BINF does not Granger Cause DIFLNIBC_BR	43	1.60995 1.18217	0.1943 0.3361
DIFBAPROD does not Granger Cause BF_BINF	4 ³ าล้า	0.18542	0.9444
BF_BINF does not Granger Cause DIFBAPROD		0.84342	0.5075
DIFBAPI does not Granger Cause BF_BINF	43 8	1.14425	0.3525
BF_BINF does not Granger Cause DIFBAPI		2.88195	0.0371
DIFBF_BIMP does not Granger Cause BF_BINF	44	1.95528	0.1230
BF_BINF does not Granger Cause DIFBF_BIMP		0.64855	0.6317
DIFBF_BEXP does not Granger Cause BF_BINF	44	2.14172	0.0963
BF_BINF does not Granger Cause DIFBF_BEXP		0.47106	0.7566

Note. All statistical tests were done by Eviews v.12. All these variables had rejected the null hypothesis regards to unit root.

<i>Brazilian Data. Pairwise Granger Causality Test. Lags: 8</i> Null Hypothesis:	Obs 1	F-Statistic	Prob.
BIR does not Granger Cause BF_BINF	40	3.70516	0.0064
BF_BINF does not Granger Cause BIR		0.37955	0.9206
BENINF does not Granger Cause BF_BINF	40	0.67763	0.7063
BF_BINF does not Granger Cause BENINF		1.85568	0.1175
IBC_BR does not Granger Cause BF_BINF	40	1.09413	0.4021
BF_BINF does not Granger Cause IBC_BR		2.37521	0.0500
LNBIR does not Granger Cause BF_BINF	40	2.90736	0.0214
BF_BINF does not Granger Cause LNBIR		0.24351	0.9776
DIFBENINF does not Granger Cause BF_BINF	39	0.67563	0.7077
BF_BINF does not Granger Cause DIFBENINF		1.94810	0.1031
DIFBER does not Granger Cause BF_BINF	39	2.79218	0.0269
BF_BINF does not Granger Cause DIFBER		1.40431	0.2493
DIFBNEER does not Granger Cause BF_BINF	39	0.99659	0.4657
BF_BINF does not Granger Cause DIFBNEER		1.46438	0.2264
DIFCOI does not Granger Cause BF_BINF	39	0.99644	0.4658
BF_BINF does not Granger Cause DIFCOI		1.37311	0.2620
DIFCOP does not Granger Cause BF_BINF	39	1.34332	0.2747
BF_BINF does not Granger Cause DIFCOP		0.58586	0.7788
DIFGFI does not Granger Cause BF_BINF	39	0.84075	0.5776
BF_BINF does not Granger Cause DIFGFI		2.59807	0.0364
DIFIBC_BR does not Granger Cause BF_BINF	39	1.39782	0.2519
BF_BINF does not Granger Cause DIFIBC_BR		0.75491	0.6444
DIFLNBAPI does not Granger Cause BF_BINF	39	2.75965	0.0283
BF_BINF does not Granger Cause DIFLNBAPI		0.79099	0.6160
DIFLNBAPROD does not Granger Cause BF_BINF	39	0.64068	0.7356
BF_BINF does not Granger Cause DIFLNBAPROD	-	2.12674	0.0771

DIFLNBFEXP does not Granger Cause BF_BINF	39	0.13108	0.9970
BF_BINF does not Granger Cause DIFLNBFEXP		1.92801	0.1065
DIFLNBFIMP does not Granger Cause BF_BINF	39	2.99275	0.0198
BF_BINF does not Granger Cause DIFLNBFIMP		1.34916	0.2721
DIFLNBER does not Granger Cause BF_BINF	39	1.74533	0.1435
BF_BINF does not Granger Cause DIFLNBER		1.00096	0.4628
DIFLNBNEER does not Granger Cause BF_BINF	39	0.52094	0.8279
BF_BINF does not Granger Cause DIFLNBNEER		2.05200	0.0871
DIFLNCOI does not Granger Cause BF_BINF	39	0.51301	0.8337
BF_BINF does not Granger Cause DIFLNCOI		1.95666	0.1017
DIFLNCOP does not Granger Cause BF_BINF	39	1.44405	0.2339
BF_BINF does not Granger Cause DIFLNCOP		0.56573	0.7943
DIFLNGFI does not Granger Cause BF_BINF	39	0.85645	0.5657
BF_BINF does not Granger Cause DIFLNGFI		2.70944	0.0306
DIFLNIBC_BR does not Granger Cause BF_BINF	39	2.71465	0.0303
BF_BINF does not Granger Cause DIFLNIBC_BR		0.80396	0.6059
DIFBAPROD does not Granger Cause BF_BINF	39	0.09609	0.9990
BF_BINF does not Granger Cause DIFBAPROD		1.41638	0.2445
DIFBAPI does not Granger Cause BF_BINF	39	0.64285	0.7339
BF_BINF does not Granger Cause DIFBAPI		1.82252	0.1265
DIFBF_BIMP does not Granger Cause BF_BINF	40	1.86752	0.1152
BF_BINF does not Granger Cause DIFBF_BIMP		1.74517	0.1411
DIFBF_BEXP does not Granger Cause BF_BINF	40	1.27970	0.3016
BF_BINF does not Granger Cause DIFBF_BEXP		1.67228	0.1592

Note. All statistical tests were done by Eviews v.12. All these variables had rejected the null hypothesis regards to unit root.

	BF_BINF	BIR	BENINF	IBC_BR	LNBIR
BF_BINF	1.000000	-0.327577	0.002506	-0.076788	-0.347415
BIR	-0.327577	1.000000	0.044070	0.284735	0.983466
BENINF	0.002506	0.044070	1.000000	0.089762	0.046488
IBC_BR	-0.076788	0.284735	0.089762	1.000000	0.246710
LNBIR	-0.347415	0.983466	0.046488	0.246710	1.000000
DIFBENINF	-0.058231	-0.045754	0.653499	-0.034862	-0.031727
DIFBER	-0.070016	0.066639	-0.008364	-0.169367	0.085217
DIFBNEER	0.022532	0.002656	-0.177798	-0.319690	0.010686
DIFCOI	0.004628	-0.184724	0.248466	0.060178	-0.215341
DIFCOP	-0.006882	-0.156601	0.258983	0.064043	-0.187083
DIFGFI	0.187475	-0.315320	-0.172422	0.148604	-0.360745
DIFIBC_BR	-0.121525	-0.096112	0.065750	0.343207	-0.161135
DIFLNBAPI	0.196774	-0.105863	-0.316065	-0.027400	-0.098456
DIFLNBAPROD	-0.143723	-0.101335	-0.334049	-0.116251	-0.102741
DIFLNBFEXP	-0.138136	-0.013541	0.022087	-0.355794	0.002809
DIFLNBFIMP	-0.044411 🥌	-0.014482	0.339245	-0.016253	-0.000535
DIFLNBER	-0.100255 🥔	0.081826	0.011962	-0.154658	0.101089
DIFLNBNEER	0.014462	0.003529	-0.156098	-0.314264	0.014995
DIFLNCOI	-0.079317 🖊	-0.174070	0.180983	0.079889	-0.212160
DIFLNCOP	-0.087507	-0.154763	0.188737	0.084240	-0.192091
DIFLNGFI	0.203008	-0.321149	-0.181578	0.142222	-0.364991
DIFLNIBC_BR	-0.129648	-0.098030	0.066285	0.339041	-0.161750
Note. The statistics	were done by the	software Eviews v	.12		

Note. The statistics were done by the software Eviews v.12 The raw data can be found at Appendix A

Table B - 5

BRAZILIAN DATA CORRELOGRAM B

BRAZILIAN DATA CORRELOGRAM B								
	DIFBENINF	DIFBER	DIFBNEER	DIFCOI	DIFCOP			
BF_BINF	-0.058231	-0.070016	0.022532	0.004628	-0.006882			
BIR	-0.045754	0.066639	0.002656	-0.184724	-0.156601			
BENINF	0.653499	-0.008364	-0.177798	0.248466	0.258983			
IBC_BR	-0.034862	-0.169367	-0.319690	0.060178	0.064043			
LNBIR	-0.031727	0.085217	0.010686	-0.215341	-0.187083			
DIFBENINF	1.000000	-0.021546	-0.151808	0.096801	0.091912			
DIFBER	-0.021546	1.000000	0.648396	-0.340545	-0.330267			
DIFBNEER	-0.151808	0.648396	1.000000	-0.343558	-0.338851			
DIFCOI	0.096801	-0.340545	-0.343558	1.000000	0.998191			
DIFCOP	0.091912	-0.330267	-0.338851	0.998191	1.000000			
DIFGFI	-0.043538	-0.311703	-0.180054	0.399507	0.382354			
DIFIBC_BR	-0.003782	-0.348119	-0.423057	0.439728	0.434810			
DIFLNBAPI	-0.294827	0.284069	0.423262	-0.337069	-0.340965			
DIFLNBAPROD	-0.043911	0.102374	0.080129	0.185	0.181057			
DIFLNBFEXP	0.198799	0.143108	0.174385	-0.112581	-0.105916			
DIFLNBFIMP	-0.022256	0.003723	-0.088442	0.027447	0.024405			
DIFLNBER	0.004946	0.987909	0.630892	-0.333093	-0.321289			
DIFLNBNEER	-0.121974	0.668624	0.994208	-0.356057	-0.352267			

BRAZILIAN DATA CORRELOGRAM B

DRALILIAN DATA CORRELOORAM D								
	DIFBENINF	DIFBER	DIFBNEER	DIFCOI	DIFCOP			
DIFLNCOI	0.073297	-0.379037	-0.389130	0.939089	0.938682			
DIFLNCOP	0.070018	-0.369842	-0.382960	0.939931	0.942075			
DIFLNGFI	-0.040120	-0.322161	-0.198666	0.436042	0.418518			
DIFLNIBC_BR	0.000206	-0.341069	-0.422727	0.445695	0.440867			

Note. The statistics were done by the software Eviews v.12 The raw data can be found at Appendix A

The faw data can be found at Appendix 7

Table B - 6

BRAZILIAN DATA CORRELOGRAM C DIFLOBARI DIFLNBAPROD DI

BF_BINF	0.187475	-0.121525	0.196774	-0.143723	-0.143723	-0.087507	
BIR	- 0.315320	-0.096112	-0.105863	-0.101335	-0.101335	-0.154763	
BENINF	- 0.172422	0.065750	-0.316065	-0.334049	-0.334049	0.188737	
IBC_BR	0.148604	0.343207	-0.027400	-0.116251	-0.116251	0.084240	
LNBIR	- 0.360745	-0.161135	-0.098456	-0.102741	-0.102741	-0.192091	
DIFBENINF	- 0.043538	-0.003782	-0.294827	-0.043911	-0.043911	0.070018	
DIFBER	- 0.311703	-0.348119	0.284069	0.102374	0.102374	-0.369842	
DIFBNEER	- 0.180054	-0.423057	0.423262	0.080129	0.080129	-0.382960	
DIFCOI	0.399507	0.439728	-0.337069	0.185025	0.185025	0.939931	
DIFCOP	0.382354	0.434810	-0.340965	0.181057	0.181057	0.942075	
DIFGFI	1.000000	0.220828	0.055407	0.066965	0.066965	0.407588	
DIFIBC_BR	0.220828	1.000000	-0.076838	0.127078	0.127078	0.620958	
DIFLNBAPI	0.055407	-0.076838	1.000000	-0.056202	-0.056202	-0.323245	
DIFLNBAPROD	0.066965	0.127078	-0.056202	1.000000	1.000000	0.175872	
DIFLNBFEXP	0.040392	-0.459951	0.115897	0.045762	0.045762	-0.145891	
DIFLNBFIMP	- 0.254882	-0.114780	-0.072915	-0.088473	-0.088473	-0.087565	
DIFLNBER	-	-0.325885	0.284356	0.123284	0.123284	-0.350839	

BRAZILIAN DATA CORRELOGRAM C

	DIFGFI	DIFIBC_BR	DIFLNBAPI	DIFLNBAPROD	DIFLNBAPROD	DIFLNIBC_BR
	0.328882					
DIFLNBNEER	-	-0.426326	0.415221	0.090988	0.090988	-0.396474
	0.202489					
DIFLNCOI		0.630989	-0.316872	0.178858	0.178858	0.998999
	0.419953					
DIFLNCOP		0.620958	-0.323245	0.175872	0.175872	1.000000
	0.407588					
DIFLNGFI		0.245705	0.063776	0.070424	0.070424	0.448198
	0.992988					
DIFLNIBC BR		0.998892	-0.076701	0.127364	0.127364	0.632296
b 0_b R	0.226524					

Note. The statistics were done by the software Eviews v.12

The raw data can be found at Appendix A

Table B - 7

CORRELOGRAM D

Table B - 7			M112.							
CORRELOGRAM D										
CORRELOORAN	DIFLNBFIMP	DIFLNBER	DIFLNBNEER	DIFLNCOI	DIFLNCOP	DIFLNGFI				
		10000		0						
BF_BINF	-0.143723	-0.138136	-0.044411	-0.100255	0.014462	-0.079317				
BIR	-0.101335	-0.013541	-0.014482	0.081826	0.003529	-0.174070				
BENINF	-0.334049	0.022087	0.339245	0.011962	-0.156098	0.180983				
IBC_BR	-0.116251	-0.355794	-0.016253	-0.154658	-0.314264	0.079889				
LNBIR	-0.102741	0.002809	-0.000535	0.101089	0.014995	-0.212160				
DIFBENINF	-0.043911	0.198799	-0.022256	0.004946	-0.121974	0.073297				
DIFBER	0.102374	0.143108	0.003723	0.987909	0.668624	-0.379037				
DIFBNEER	0.080129	0.174385	-0.088442	0.630892	0.994208	-0.389130				
DIFCOI	0.185025	-0.112581	0.027447	-0.333093	-0.356057	0.939089				
DIFCOP	0.181057	-0.105916	0.024405	-0.321289	-0.352267	0.938682				
DIFGFI	0.066965	0.040392	-0.254882	-0.328882	-0.202489	0.419953				
DIFIBC_BR	0.127078	-0.459951	-0.114780	-0.325885	-0.426326	0.630989				
DIFLNBAPI	-0.056202	0.115897	-0.072915	0.284356	0.415221	-0.316872				
DIFLNBAPRO	1.000000	0.045762	-0.088473	0.123284	0.090988	0.178858				
D										
DIFLNBFEXP	0.045762	1.000000	0.131958	0.161327	0.174622	-0.152421				
DIFLNBFIMP	-0.088473	0.131958	1.000000	-0.002710	-0.094908	-0.087760				
DIFLNBER	0.123284	0.161327	-0.002710	1.000000	0.661152	-0.361016				
DIFLNBNEER	0.090988	0.174622	-0.094908	0.661152	1.000000	-0.402121				
DIFLNCOI	0.178858	-0.152421	-0.087760	-0.361016	-0.402121	1.000000				
DIFLNCOP	0.175872	-0.145891	-0.087565	-0.350839	-0.396474	0.998999				
DIFLNGFI	0.070424	0.019639	-0.264144	-0.342479	-0.222807	0.461001				
DIFLNIBC_BR	0.127364	-0.450396	-0.131709	-0.318768	-0.425327	0.642371				

Note. The statistics were done by the software Eviews v.12

The raw data can be found at Appendix A

Table B - 8

Residuals Brazil MODEL 1

Date: 10/08/22 Time: 14:09

Sample (adjusted): 2018M09 2021M12

Q-statistic probabilities adjusted for 2 dynamic regressors

Autocorrelation	Partial			AC	PAC	Q-Stat
	Correlation					
		1	0.029	0.029	0.0371	0.847
.* .	.*	2	-0.100	-0.101	0.4815	0.786
		3	0.028	0.034	0.5164	0.915
.* .	.* .	4	-0.123	-0.137	1.2185	0.875
.* .	.* .	5	-0.180	-0.169	2.7785	0.734

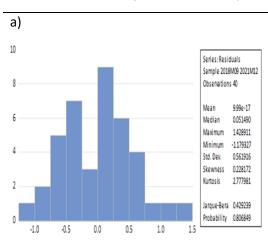
.* .	** .	6	-0.178	-0.209	4.3481	0.630
** .	**	7	-0.215	-0.273	6.6969	0.461
. *.		8	0.111	0.040	7.3409	0.500
. *.	. .	9	0.128	0.029	8.2353	0.511
.* .	.* .	10	-0.080	-0.154	8.5893	0.571
. *.		11	0.098	-0.031	9.1506	0.608
. *.		12	0.165	0.036	10.791	0.547
	.*	13	-0.041	-0.076	10.897	0.619
. *.	. *.	14	0.106	0.131	11.622	0.637
** .	** .	15	-0.297	-0.329	17.544	0.287
.* .	.*	16	-0.105	-0.076	18.313	0.306
	.* .	17	0.003	-0.142	18.314	0.369
.* .	.* .	18	-0.122	-0.122	19.453	0.364
. .	.* .	19	-0.041	-0.096	19.585	0.420
. *.		20	0.206	0.003	23.152	0.281

Note. The statistics were done by the software Eviews v.12

Table B - 9

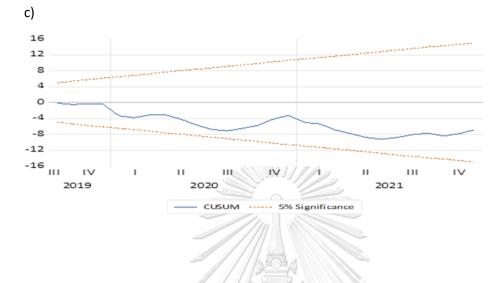
_

Null hypothesis:	No serial correlation	n at up to 8 lags
F-statistic	0.946926	Prob. F(8,20) 0.5018
Obs*R-squared	10.98864	Prob. Chi-Square(8) 0.2023


		AFRA		
Test Equation:				
Dependent Variable: RE	ESID	A CHECONG & COMPANY		
Method: ARDL				
Date: 10/08/22 Time: 1				
Sample: 2018M09 2021				
Included observations: 4				
Presample missing value			B	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
BF_BINF(-1)	-0.382749	1.209396	-0.316479	0.7549
BF_BINF(-2)	0.158846	0.370274	0.428996	0.6725
DIFLNBAPROD	8.375828	15.88848	0.527164	0.6039
DIFLNBAPROD(-1)	4.041963	22.79535	0.177315	0.8610
DIFLNBAPROD(-2)	-6.449920	36.68637	-0.175812	0.8622
DIFLNBAPROD(-3)	5.272679	24.14362	0.218388	0.8293
DIFLNBAPROD(-4)	3.362599	19.34896	0.173787	0.8638
DIFLNBAPROD(-5)	-6.199377	39.09589	-0.158568	0.8756
DIFLNBAPROD(-6)	4.157091	17.35684	0.239507	0.8131
DIFLNBAPROD(-7)	-16.51174	59.67251	-0.276706	0.7848
BIR	-0.129388	0.227794	-0.568005	0.5764
С	0.767539	1.807671	0.424601	0.6757
RESID(-1)	0.175690	1.237055	0.142023	0.8885
RESID(-2)	-0.268397	0.562995	-0.476731	0.6387
RESID(-3)	-0.191381	0.272587	-0.702091	0.4907
RESID(-4)	-0.267143	0.254969	-1.047745	0.3073
RESID(-5)	-0.319354	0.227826	-1.401747	0.1763
RESID(-6)	-0.391841	0.239537	-1.635824	0.1175
RESID(-7)	-0.460947	0.247356	-1.863495	0.0771
RESID(-8)	-0.101460	0.261849	-0.387476	0.7025
R-squared	0.274716	Mean dependent var	9.99E-17	
Adjusted R-squared	-0.414304	S.D. dependent var	0.561916	
S.E. of regression	0.668256	Akaike info criterion	2.338562	
Sum squared resid	8.931319	Schwarz criterion	3.183001	
Log likelihood	-26.77123	Hannan-Quinn criter.	2.643884	
F-statistic	0.398705	Durbin-Watson stat	1.920786	
1 Statistic	0.570705	Daroni- watson stat	1.720700	

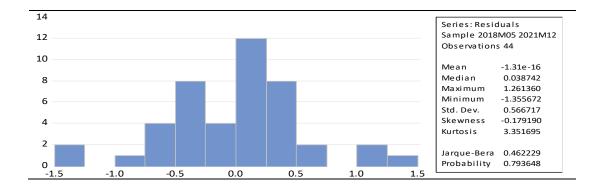
Brazil Model 1. Heteroskedasticity Test: Breusch-Pagan-Godfrey

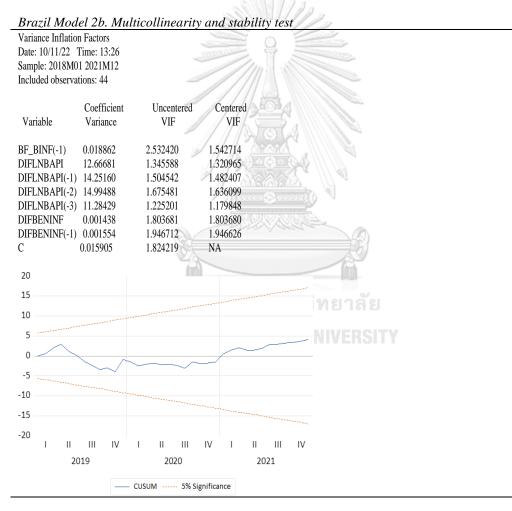
Null hypothesis: Homo	oskedasticity			
F-statistic	0.957972	Prob. F(11,28)	0.5041	
Obs*R-squared	10.93754	Prob. Chi-Square(11)	0.4485	
Scaled explained SS	4.764450	Prob. Chi-Square(11)	0.9420	
Test Equation:				
Dependent Variable: R	ESID^2			
Method: Least Squares				
Date: 10/08/22 Time:	17:19			
Sample: 2018M09 202	1M12	which it a		
Included observations:		- AL 1/1 B -	-	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.050620	0.299557	0.168982	0.8670
BF_BINF(-1)	0.300247	0.112803	2.661687	0.0127
BF_BINF(-2)	-0.110807	0.100895	-1.098243	0.2815
DIFLNBAPROD	3.905068	9.455124	0.413011	0.6827
DIFLNBAPROD(-1)	3.090567	9.635653	0.320743	0.7508
DIFLNBAPROD(-2)	12.84594	10.09116	1.272990	0.2135
DIFLNBAPROD(-3)	2.887894	10.62841	0.271715	0.7878
DIFLNBAPROD(-4)	-9.553914	11.70344	-0.816334	0.4212
DIFLNBAPROD(-5)	15.19729	9.880851	1.538055	0.1353
DIFLNBAPROD(-6)	-12.19585	9.794515	-1.245171	0.2234
DIFLNBAPROD(-7)	11.23713	10.76185	1.044164	0.3053
BIR	0.026529	0.051775	0.512389	0.6124
R-squared	0.273439	Mean dependent var	0.307856	
Adjusted R-squared	-0.011996	S.D. dependent var	0.415727	
S.E. of regression	0.418214	Akaike info criterion	1.337676	
Sum squared resid	4.897274	Schwarz criterion	1.844340	
Log likelihood	-14.75353	Hannan-Quinn criter.	1.520870	
F-statistic	0.957972	Durbin-Watson stat	1.699445	
Prob(F-statistic)	0.504051			
		เกรณมหาว ัทย		


Table B - 11 CHULALONGKORN UNIVERSITY

Brazilian Model 1 Test for multicollinearity and residuals test of normality and stability.

b)


cluded observations: 4	0		
	·		
Variable	Coefficient Variance	Uncentered VIF	Centered VIF
BF_BINF(-1)	0.031996	3.438151	2.06867
BF_BINF(-2)	0.025597	2.751309	1.66209
DIFLNBAPROD	224.7955	1.145872	1.14031
DIFLNBAPROD(-1)	233.4616	1.173992	1.16950
DIFLNBAPROD(-2)	256.0562	1.292995	1.28700
DIFLNBAPROD(-3)	284.0467	1.495028	1.48177
DIFLNBAPROD(-4)	344.4134	1.418924	1.41706
DIFLNBAPROD(-5)	245.4946	1.263077	1.25554
DIFLNBAPROD(-6)	241.2231	1.254666	1.24020
DIFLNBAPROD(-7)	291.2237	1.479559	1.44852
BIR	0.006741	16.14097	2.38129
С	0.225639	20 52220	NA



			CHERCHICA A		
Brazilian Model 1. A	ARDL	Long Run Form	n and Bounds Test		
ARDL Long Run Fo	orm a	nd Bounds Test	6666666	0	
Dependent Variable	: D(B	F_BINF)	conce@aaaaat)() N		
Selected Model: AR	DL(2	2,7)	Law Martin		
Case 3: Unrestricted	l Con	stant and No Tre	end		
Date: 10/10/22 Tin	ne: 16	5:01			
Sample: 2018M01 2	2021N	112	/		
Included observation	ns: 41			(U)-	
Conditional Error C	orrec	tion Regression	d A	2 2	
Variable		Coefficient	Std. Error	t-Statistic	Prob.
С		375.2814	398.7609	0.941119	0.3544
BF_BINF(-1)*		-0.683664	0.170698	-4.005106	0.0004
LNBAPROD(-1)		-17.84413	19.02107	-0.938124	0.3559
D(BF_BINF(-1))		0.155120	0.150215	1.032652	0.3103
D(LNBAPROD)		-23.37545	20.17410	-1.158686	0.2560
D(LNBAPROD(-1)))	-19.48100	15.67361	-1.242918	0.2239
D(LNBAPROD(-2)))	23.86479	15.93327	1.497796	0.1450
D(LNBAPROD(-3)))	0.812604	16.74061	0.048541	0.9616
D(LNBAPROD(-4)))	-24.89882	14.87199	-1.674209	0.1048
D(LNBAPROD(-5)))	15.37655	15.28406	1.006051	0.3227
D(LNBAPROD(-6)))	-48.90473	15.13161	-3.231959	0.0031
BIR		-0.307058	0.195613	-1.569717	0.1273
Levels Equation					
Case 3: Unrestricted	l Con	stant and No Tre	end		
Variable	Coe	efficient	Std. Error	t-Statistic	Prob.
DIFLNBAPROD	-26.	10072	29.21480	-0.893407	0.3790
$EC = BF_BINF - (-2)$	26.10	07*LNBAPROI	D)	•	
F-Bounds Test N	ull Hy	ypothesis: No le	vels relationship		
Test Statistic	Val	ue	Signif.	I(0)	I(1)

		Asymptotic: n=1000		
F-statistic	8.936234	10%	4.04	4.78
k	1	5%	4.94	5.73
		2.5%	5.77	6.68
		1%	6.84	7.84
		Finite Sample:		
		n=45		
Actual Sample	41	10%	4.225	5.02
Size		5%	5.235	6.135
		1%	7.74	8.65
		Finite Sample:		
		n=40		
t-Bounds Test	Null Hypothesis: N	o levels relationship		
Test Statistic	Value	Signif.	I(0)	I(1)
t-statistic	-4.005106	10%	-2.57	-2.91
		5%	-2.86	-3.22
		2.5%	-3.13	-3.5
		1%	-3.43	-3.82

Brazil Model 2	2b . Residuals	
Date: 10/11/22 Sample (adjusted 2021M12	Time: 13:24): 2018M05 pilities adjusted for 1 dynamic	Heteroskedasticity Test: Breusch-Pagan-Godfrey Null hypothesis: Homoskedasticity F-statistic 1.002742 Prob. F(7,36) 0.4454 Obs*R-squared 7.179226 Prob. Chi-Square(7) 0.4105 Scaled explained 55 5.651038 Prob. Chi-Square(7) 0.581
- . - *. - *. - . - . ** . - ** - . - .		Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 10/11/22 Time: 13:26 Sample: 2018M05 2021M12 Included observations: 44 Variable Coefficient Std. Error t-Statistic Prob.
. *. . . .*!. .*!. 	 . *. 130.0770.0749.6163 0.725 . 140.0690.0449.9401 0.767 ** . 150.0950.22810.570 0.782 .* . 160.2450.13114.916 0.531 .* . 170.2680.19720.305 0.259 .'*. 180.0880.07820.912 0.284 . . 190.0110.04120.922 0.341 .* . 200.1340.08422.429 0.318 	C 0.268245 0.099117 2.706358 0.0103 BF_EINF(-1) 0.041684 0.107939 0.386177 0.701 DIFLNBAPI 0.647432 2.797166 -0.231460 0.812 DIFLNBAPI(-1) 4.313570 2.966992 1.453853 0.154 DIFLNBAPI(-2) -3.791949 3.043379 -1.245966 0.220 DIFLNBAPI(-3) 3.580797 2.640109 1.356306 0.183

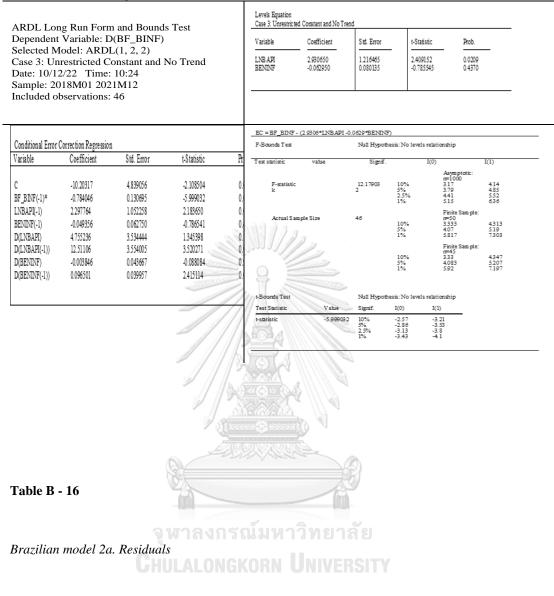


Table B - 15

Brazil Model 2b. Long Run Form and Bound Test

Brazil Model 2b. Long Run Form and Bound Test

Brazilian model 2a. Residuals

	ies adjusted for 1 dyna	AC	PAC				F-statistic Obs*R-squared	0.455647 2.276836	Prob. F(4,35) Prob. Chi-Squ	are(A)	0.7676
utocorrelation	Partial Correlation	1 0.046 2 -0.133 3 0.012 4 0.177 5 0.114 6 0.081	0.046 -0.135 0.025 0.160 0.106 0.120		0.750 0.611 0.803 0.620 0.649 0.718		Tes t Equation: Dependent Variable: RE Method: ARDL Date: 10/13/22 Time: 1 Sample: 2018/W03 2021 Included obs er vations : Presample mis sing val	5:00 M12 16			
		8 -0.094	-0.100	5.9174 7.9563			Variable	Coefficient	Std. Error	t-Statis tic	Prob
		10 -0.011 11 -0.100 12 0.021 13 0.156 14 0.030 15 -0.105 16 -0.106 17 -0.102	-0.085 -0.019 0.071 0.158 0.016 -0.138 -0.077 -0.177 0.230 -0.039	7.9635 8.5893 8.6167 10.236 10.299 11.088 11.911 12.698 18.708 18.750	0.632 0.660 0.735 0.675 0.740 0.746 0.750 0.756 0.410 0.473	17	BF_BINF(-1) LNBF BEXP DIFLNBAPI DIFLNBAPI(-1) DIFBENINF(-1) C RESID(-1) RESID(-2) RESID(-3) RESID(-4)	0.009636 0.014295 0.067290 0.138359 -0.012627 -0.009054 -0.229459 0.051531 -0.127278 0.019449 0.169797	0.210320 0.479368 3.803495 4.020429 0.043272 0.040699 7.601202 0.268714 0.186238 0.177542 0.174365	0.045816 0.029821 0.017692 0.034414 -0.291803 -0.222475 -0.030187 0.191768 -0.683416 0.109544 0.973800	0.9637 0.9764 0.9860 0.9727 0.7722 0.8252 0.9761 0.8490 0.4988 0.9134 0.3368
babilities may n	otbe valid forthis equ	ation specifi	cation.			Innau	R-squared Adjusted R-squared SE. of regression Sum squared resid Loq likelihood F-statistic Prob(F-statistic)	0.049496 -0.222076 0.677049 16.04383 -41.04488 0.182259 0.996538	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	8.88E-16 0.612450 2.262821 2.700105 2.426630 1.961811
		6			60	A A	Heteroskedasticity Test	Breusch-Pag	an-Godfrey		
			_	Series: Resi Sample 201 Obsenation	BM03 2021M 12	N.	F-statistic Obs*R-squared Scaled explained SS	0.859359 5.371463 4.698608	Prob. F(6,39) Prob. Chi-Sq Prob. Chi-Sq	uare(6)	0.5330 0.4971 0.5830
				Nean Nedian Naximum Ninimum Std. Dex.	888e-16 0063221 1549662 -1.240325 0.612450		Test Equation: Dependent Variable: RE Method: Least Squares Date: 10/13/22 Time: 1 Sample: 2018M03 2021 Included observations:	5:01 M12			
				Skewness	0.159293		Variable	Coefficient	Std. Error	t-Statistic	Prob.
4.0 -0.5	00 05	10 19		Kurtosis Jarque-Bera Probability	0.757564	ห	C BF_BINF(-1) LNBF_BEXP DIFLNBAPI DIFLNBAPI(-1) DIFBENINF DIFBENINF(-1)	3.461935 0.015269 -0.198745 0.240061 4.169682 0.017712 0.064778	6.286920 0.110547 0.397886 3.219406 3.245072 0.035826 0.033933	0.550657 0.138120 -0.499503 0.074567 1.284928 0.494395 1.909013	0.6202 0.9409 0.2064 0.6238
						IN	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.116771 -0.019110 0.584287 13.31427 -36.75565 0.859359 0.533036	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watso	ent var iterion rion nn criter.	0.366941 0.578783 1.902420 2.180691 2.006662 1.607395

Brazilian Model 2a. Attempts.

a)					b)					
Dependent Variable: BF Method: ARDL Date: 10/13/22 Time: 0 Sample (adjusted): 2016 Included observations: 4 Model selection method Dynamic regressors (4 I DIFBENINF Fixed regressors: C Number of models evalu Selected Model: ARDL(Note: final equation sam		selection) erion (AIC) DIFLNGFI DIFLM		API	Dependent Variable Method: ARDL Date: 10/13/22 Tim Sample (adjusted): 3 Included observation Maximum dependen Model selection met Dynamic regressors: C Number of models e Selected Model: ARI	– e: 05:57 2018M02 202 hs: 47 after av t lags: 4 (Aut hod: Akaike i s (4 lags, auto avaluated: 10 DL (1, 0, 0)	djustments omatic selec nfo criterion omatic): DIFI 0	(AIC) LNGFI DIFL		
Variable	Coefficient	Std. Error	t-Statistic	Prob.*	Note: final equation				-	
BF_BINF(-1) DIFLNGFI DIFLNGFI(-1) DIFLNCOI DIFLNBAPI DIFLNBAPI(-1) DIFBENINF	0.310410 5.641189 5.105589 -1.464526 3.333068 12.89734 0.009448	0.120472 3.971026 3.670681 0.851650 3.828340 3.551074 0.038922	2.576615 1.420587 1.390911 -1.719634 0.870630 3.631953 0.242729	0.0141 0.1638 0.1726 0.0939 0.3896 0.0008 0.8096	Variable BF BINF(-1) DIFLNGFI DIFLNCOI C	Coeffic 0.383 8.115 -1.677 0.356	543 0.1 809 4.5 901 0.9	37274 32512 38574 -	t-Statistic 2.793993 1.790576 1.787714 2.482221	Prob. 0.007 0.080 0.080 0.080
DIFBENINF(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.084582 0.324910 0.522999 0.419864 0.641813 15.24116 -39.86442 5.071002 0.000267	0.036620 0.123792 Mean dependen S.D. dependen Akaike info crite Schwarz criterio Hannan-Quinn Durbin-Watson	var erion on criter.	0.0266 0.0125 0.663696 0.842642 2.124540 2.482317 2.258565 1.898762	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.220 0.166 0.772 25.65 -52.46 4.058 0.012	289 S.D. o 412 Akaik 467 Schw 269 Hann 321 Durbi	dependen dependent e info criter rarz criterior an-Quinn c in-Watson s	var rion n criter.	0.6425 0.84594 2.4026 2.56012 2.46192 1.97294
*Note: p-values and any selection.	subsequent tes	ts do not account	for model		*Note: p-values and selection.	any subsequ	enttests do) not accou	nt for mod	el
C) Dependent Variable BF- Melhod A ROL Date: 10/13/22 Time: 00 Sam pie (adjusted): 2016 included observation: 4 Model selection method Dynamic regressors (c) Fixed regressors (c) Selected Model: ARDLC Note: final equation sam Dynamic regressors (c) Selected Model: ARDLC Note: Selected Model: ARDLC Note: Selected Model: ARDLC	- 5:48 3M04 2021M12 5 after adjustme is : 4 (Automatic : Akaike info crite ags, automatic):	rion (AIC) BER DIFLNBAPI n selection sampl	0	(มา)Ri	d) Dependent Variable: BF Method: ARDL Date: 10/13/22 Time: 0 Sample (adjusted): 201 Included observations: Maxim um dependentia. Model selecton method Dynamic regressors: C Num ber of models well Selected Model: ARDL() Note: final equation sam	- 6:31 8M0 4 20 21 M12 45 a fler a djustm gs: 4 (Automati : Akaike in focri lags, automatic uated: 500 I, 2, 1, 1)	ients cselection) terion (AC) c): DIFBER DIF		BENINF	
Variable BF_BINF(-1) BER(-2) BER(-2) DIFLNBAPI(-1) DIFLNBAPI(-1) DIFEENINF DIFEENINF(-1) C	Coefficient 0.292306 -0.227676 0.629693 -1.286822 1.068976 4.882574 14.05441 0.045178 0.098085 -0.390582	0.124962 2.3 0.474821 -0.4 0.690279 0.8 0.702876 -1.8 0.464526 2.3 3.779158 1.2 3.725460 3.1 0.039873 1	339161 0. 179499 0. 912229 0. 330795 0. 301221 0. 291974 0. 72530 0. 33043 0.	ob.* 0252 6346 3679 0757 0275 2048 0006 2649 2649 2102 5101	Variable BF_BINF(-1) DIFBER DIFBER (-2) DIFLNBAP(-1) DIFLNBAP(-1) DIFLNBAP(-1) DIFBENINF(-1)	C oe fficient 0.352874 -0.406421 0.297030 -1.024228 5.991921 13.48137 0.046964 0.096324	Std. Error 0.118952 0.463840 0.485447 0.469765 3.746842 3.753773 0.040397 0.036563	t-Statistic 2.966513 -0.876211 0.611869 -2.180298 1.599192 3.591419 1.162572 2.634450	0.0053 0.3867 0.5445 0.0359 0.1185 0.0010 0.2527 0.0123	
R-squared Adjusted R-squared S.E. of regression Sum squared resid	0.574372 M 0.464925 S 0.617957 A 13.36548 S	lean dependent v i.D. dependent va kaike info criterion ichwarz criterion lannan-Quinn crit	ar 0.68 r 0.84 n 2.06 2.46	0000 4794 8335 9815	R-squared Adjusted R-squared S.E. of regression	0.418411 0.550182 0.450222 0.626390	0.126244 Mean depende S.D. depende Akaike in 10 cr	3.314302 dentvar entvar	0.0021 0.680000 0.844794 2.079169 2.440501	

Brazilian Model 2a. Coefficient diagnostics and stability

ARDL Long Run Form an Dependent Variable: D(BB				ŗ	Date Sam	: 10/1 ple: 2	nflation Facto 3/22 Time: 1 018M01 2021 0bservations:	5:06 IM12		
Selected Model: ARDL(1, Case 3: Unrestricted Cons Date: 10/13/22 Time: 15: Sample: 2018M01 2021M	0, 1, 1) tant and No Trend 17					Va	ıriable	Coefficient Variance	Uncentered VIF	Centere o VIF
Included observations: 46	12						BINF(-1) F_BEXP	0.015493 0.200703	1.847731 5303.129	1.17693 1.13559
	Conditional Error	Correction Regre	ssion				LNBAPI	13.13979	1.309309	1.27537
Variable	Coefficier			Prob.		DIF	NBAPI(-1) BENINF ENINF(-1)	13.35013 0.001627 0.001460	1.327241 1.809708 1.663714	1.29378 1.80968 1.66193
C BF_BINF(-1)* LNBF_BEXP** DIFLNBAPI(-1) DIFBENINF(-1) D(DIFLNBAPI) D(DIFBENINF)	8.19552 -0.69376 -0.49647 18.3819 0.11543 4.61286 0.02249	8 0.12447 0 0.44799 5 4.27288 3 0.06896 2 3.62488	0 -5.573790 9 -1.108194 0 4.302004 4 1.673825 5 1.272554	0.2540 0.0000 0.2746 0.0001 0.1022 0.2107 0.5803	20		C	50.10868	5325.754	NA
* p-value incompatible w ** Variable interpreted as	ith t-Bounds distri Z = Z(-1) + D(Z).	bution.			15 10 5 	_				
Case	Levels Equ 3: Unrestricted Con		1111		-10					
Variable	Coefficient	Std. Error	t-Statistic Prol		-15 -20					
LNBF BEXP DIFLNBAPI DIFBENINF	-0.715614 26.49582 0.166386	0.630132 7.767753 0.102588	-1.135657 0.20 3.411001 0.00 1.621891 0.1	15	· · · ·	IV 018	2019	IV I II 2020 - CUSUM 5%		I III IV 2021
F-Bounds Test Test Statistic F-statistic k Actual Sample Size	Value 12.67826 3 46	Signif. 10% n 10% 2.5% 2.5% 1% Finit 10% 10% 10% 10%	mptotic: =1000 2.72 3 3.69 4 4.29 5 e Sample: n=50 2.873 3.1 3.5 6 e Sample:	hip (1) 77 35 89 61		ลัย				
	Сн	10% 5% 1%	3.535 4.1	983 733 123			TY			
t-Bounds Test			is: No levels relations	hip						
Test Statistic	Value	Signif.	I(0) I	(1)						
t-statistic	-5.573790	10% 5% 2.5% 1%	-2.86 -3 -3.13 -4	.46 .78 .05 .37						

Brazil Model 1 Attemps

Dependent Variable: B	F BINE				Dependent Variable: BF	- Contrain					
Method: ARDL	אווט_ יי				Method: ARDL Date: 10/14/22 Time: 11	- 19 D.C.S.					
Date: 10/14/22 Time:	18:31				Sample (adjusted): 2011	3M09 2021M1					
Sample (adjusted): 20	18M04 2021M	112			Included observations: 4 Maximum dependent lag	s: 4 (Automat	tic selection)				
Included observations:					Model selection method.	Akaike info c	riterion (AIC)	ROD LNBER			
Maximum dependent la					Fixed regressors: C Number of models evalu						
Model selection metho Dynamic regressors (4				FR	Selected Model: ARDL(2	,7,0)	Iterion (A/C) DIFLN BAPROD LNBER an selection sample Std. Error t-Statistic 0.178151 3.762688 0.000 0.168791 -163513 0.113 15.91174 -0.318811 0.752 15.48776 -1.017767 0.317 15.64210 2.118465 0.042 18.01296 -1.285836 0.200 15.34576 1.683320 0.103 15.14423 -3.074408 0.004 16.57073 1.609449 0.118 0.783831 1.02339 0.314 1.162233 0.058246 0.498 Mean dependent var 0.83433 Akaike info criterion 2.80633 Hannan-Quinn criter. 2.49252 Durbin-Watson stat 2.1073				
Fixed regressors: C	, lago, autoilla	ao). Di LINDAI						i construction and			
Number of models eva Selected Model: ARDL					Variable BF_BINF(-1)	Coefficient 0.670328			Prob.* 0.0008		
Note: final equation sa		than selection	n sample		BF_BINF(-2) DIFLNBAPROD	-0272727		-1.635139	0.1132		
					DIFLNBAPROD(-1)	-15.76293	15.48776	-1.017767	0.3175		
Variable	Coefficient	t Std. Error	r t-Statistic	Prob.*	DIFLNBAPROD(-2) DIFLNBAPROD(-3)	33.13725 8.089663	16.13325	0.501428	0.6200		
	0 475919	0.134979	3.525120	0.0011	DIFLNBAPROD(-4) DIFLNBAPROD(-5)	-23.16171 25.83183					
BF_BINF(-1) DIFLNBAPROD	0.475818 -12.09224				DIFLNBAPROD(-6) DIFLNBAPROD(-7)	-46.55955 26.66975	15.14423	-3.074408	0.0047		
DIFLNBAPROD(-1)	-15.66598				LNBER	0.802124	0.783831	1.023339	0.3149		
DIFLNBAPROD(-2)	35.62105				С	-0.796418	1.162238	-0.685246	0.4988		
DIFLNBER	-2.039064				Adjusted R-squared	0.527927 0.342470			0.718000		
DIFLNBER(-1)	3.160257				S.E. of regression	0.676559	Akaike info cr	riterion	2 299732		
DIFLNBER(-2)	-5.043169				Sum squared resid Log likelihood	12.81651 -33.99464			2.806396 2.482926		
C	0.409849	0.146865	2.790644	0.0083	F-statistic Prob(F-statistic)	2.846625			2.018735		
R-squared	0.373601	Mean depe	ndent var	0.680000			este do pot con	count for mod	al		
Adjusted R-squared	0.255093			0.844794	selection.	subsequent	cata do not acc	councion mod			
S.E. of regression	0.729125			2.365868							
Sum squared resid	19.67007			2.687053		-values and any subsequent tests do not account for model					
Log likelihood	-45.23203			2.485603	I D						
F-statistic Prob(F-statistic)	3.152535 0.010254		เรงทรเสเ	1.838495	11 11				1 0.7522 7 0.3175 5 0.0431 8 0.6200 0 0.1034 8 0.0447 9 0.1187 9 0.3145 5 0.4988 0.718000 0.834350 2.299732 2.806396 2.482926 2.018735		
	3.010204	-			111 -						
*Note: p-values and an	vsubsequent	tooto do not o									
selection.			ccount for mod	lel							
selection. Dependent Variable:			ccount for moc		Dependent Variable: BF	BINF					
selection.			ccount for moc		Method: ARDL						
selection. Dependent Variable:	BF_BINF				Method: ARDL Date: 10/14/22 Time: 19	:50	,				
selection Dependent Variable: Method: ARDL	BF_BINF e: 19:47				Method: ARDL):50 IM04 2021M12			<u>-</u>		
selection Dependent Variable: Method: ARDL Date: 10/14/22 Time	BF_BINF a: 19:47 018M09 2021	M12			Method: ARDL Date: 10/14/22 Time: 19 Sample (adjusted): 2018 Included observations: 4 Maximum dependent lag):50 MO4 2021 M12 5 after adjustr s:4 (Automati	ments ic selection)				
Selection Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20	BF_BINF e: 19:47 018M09 2021 s: 40 after ad	M12 justments			Method: ARDL Date: 10/14/22 Time: 19 Sample (adjusted): 2018 Included observations: 4 Maximum dependent lag Model selection method:):50 MO4 2021 M12 5 after adjustr s:4 (Automati Akaike in fo cr	ments ic selection) iterion (AIC)				
selection. Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation	BF_BINF e: 19:47 018M09 2021 s: 40 after ad t lags: 4 (Auto	M12 Justments	an)		Method: ARDL Date: 10/14/22 Time: 19 Sample (adjusted): 2018 Included observations: 4 Maximum dependent lag Model selection method: Dynamic regressors (4 la):50 MO4 2021 M12 5 after adjustr s:4 (Automati Akaike in fo cr	ments ic selection) iterion (AIC)	ODLNBER			
selection. Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meth	BF_BINF e: 19:47 018M09 2021 s: 40 after ad t lags: 4 (Auto hod: Akaike in	.M12 Justments omatic selection of o criterion (J	on) AIC)		Method: ARDL Date: 10/14/22 Time: 19 Sample (adjusted): 2018 Included observations: 4 Maximum dependent lag Model selection method:	9:50 MO4 2021 M12 5 after adjustr s:4 (Automati Akaike in focr ags, automatio	ments ic selection) iterion (AIC)	ODLNBER			
selection. Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meth	BF_BINF e: 19:47 018M09 2021 s: 40 after ad t lags: 4 (Auto hod: Akaike in	.M12 Justments omatic selection of o criterion (J	on) AIC)		Method: ARDL Date: 10/14/22 Time: 19 Sample (adjusted): 2018 Induded observations: 4 Maximum dependent lag Model selection method: Dynami cregressors: C Number of models e valu Selected Model: ARDL(1,	1:50 MO4 2021 M12 5 after adjustr s:4 (Automati Akaike in 15 cr ags, automati ated:100 .2,3)	nents ic selection) iterion (AIC) c): DIFLNBAPR				
selection Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meth Dynamic regressors (b	BF_BINF e: 19:47 018M09 2021 s: 40 after ad, t lags: 4 (Auto hod: Akaike in 8 lags, autom	.M12 Justments omatic selection of o criterion (J	on) AIC)		Method: ARDL Date: 10/14/22 Time: 19 Sample (adjusted): 2018 Induded observations: 4 Maximum dependent lag Model selection method: Dynamic regressors (4 la Fixed regressors: C Number of models evalu	1:50 MO4 2021 M12 5 after adjustr s:4 (Automati Akaike in 15 cr ags, automati ated:100 .2,3)	nents ic selection) iterion (AIC) c): DIFLNBAPR				
Selection. Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meth Dynamic regressors: (Fixed regressors: C Number of models ev	BF_BINF e: 19:47 018M09 2021 s: 40 after ad, t lags: 4 (Auto hod: Akaike in 8 lags, autom valuated: 324	.M12 Justments omatic selection of o criterion (J	on) AIC)		Method: ARDL Date: 10/14/22 Time: 19 Sample (adjusted): 2018 Included observations: 4 Model selection method: Dynamic regressors: C Number of models e valu Selected Model: ARDL(1, Note: final equation sam	:50 MD4 2021 M12 5 after adjustr s:4 (Automati Akaike in 15 or ags, automati ated:100 ,2,3) ple is larger tr	nents ic selection) iterion (AIC) c): DIFLNBAPR nan selection sa	ample	Prob.*		
selection. Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meth Dynamic regressors (Fixed regressors: C Number of models ev Selected Model: ARD	BF_BINF e: 19:47 018M09 2021 s: 40 after ad, t lags: 4 (Auto hod: Akaike in 8 lags, autom valuated: 324 L(2, 0, 7)	M12 justments omatic selection ofo criterion (/ atic): DIFLNB/			Method: ARDL Date: 10/14/22 Time: 19 Sample (adjusted): 2018 Included observations: 4 Maximum dependent lag Model selection method: Dynami cregressors: C Number of models e valu Selected Model: ARDL(1, Note: final equation sam Variable	50 M04 2021M12 5 after adjust s: 4 (Automati Akaike into cr ags, automati ated: 100 .2, 3) ple is larger th Coefficient	ments ic selection) iterion (AIC) c): DIFLNBAPR nan selection sa Std. Error	ample t-Statistic	Prob.*		
selection. Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meth Dynamic regressors (Fixed regressors: C Number of models ev Selected Model: ARD	BF_BINF e: 19:47 018M09 2021 s: 40 after ad, t lags: 4 (Auto hod: Akaike in 8 lags, autom valuated: 324 L(2, 0, 7)	M12 justments omatic selection ofo criterion (/ atic): DIFLNB/			Method: ARDL Date: 10/14/22 Time: 19 Sample (adjusted): 2018 Induded observations: 4 Maximum dependent lag Model selection method: Dynamic regressors: C Number of models e valu Selected Model: ARDL(1, Note: final equation sam Variable BF BINF(-1)	9:50 MO4 2021M12 S after adjustr S after adjustr Akaike in to cr ags, automatio ated: 100 2, 3) ple is larger tr <u>Coefficient</u> 0.428687	ments ic selection) iterion (AIC) c): DIFLNBAPR nan selection sa Std. Error 0.141072	ample t-Statistic 3.038791	0.0044		
selection Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meth Dynamic regressors: C Number of models ev Selected Model: ARD Note: final equation s	BF_BINF e: 19:47 018M09 2021 s: 40 after ad, t lags: 4 (Auto hod: Akaike in 8 lags, autom valuated: 324 L(2, 0, 7)	M12 Justments omatic selection atic): DIFLNBA atic): DIFLNBA er than select			Method: ARDL Date: 10/14/22 Time: 19 Sample (adjusted): 2018 Induded observations: 4 Maximum dependent lag Model selection method: Dynamic regressors: C Number ofmodels evalu Selected Model: ARDL(1 Note: final equation sam Variable BF BINF(-1) DIFLNBAPROD	h50 MD4 2021 M12 5 after adjust s: 4 (Automati Akaike in fo cr ags, automati ated: 100 (2,3) ple is larger th Coefficient 0.428887 -8.738281	ments ic selection) iterion (AIC) c): DIFLNBAPR nan selection sa Std. Error 0.141072 14.17001	ample +Statistic 3.038791 -0.616674	0.0044 0.5413		
Selection Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meti Dynamic regressors: C Number of models ev Selected Model: ARD Variable	BF_BINF e: 19:47 D18M09 2021 s: 40 after ad t lags: 4 (Auto hod: Akaike in 8 lags, autom valuated: 324 L(2, 0, 7) sample is larg Coefficient	M12 justments omatic selection atic): DIFLNB/ atic): DIFLNB/ er than select Std. Error	on) AIC) APROD DIFLINI NATS OF NATS OF	SER (SIMI) ORN UN Prob.*	Method: ARDL Date: 10/14/22 Time: 19 Sample (adjusted): 2018 Included observations: 4 Model selection method: Dynamic regressors: C Number of models e valu Selected Model: ARDL(1, Note: final equation sam Variable BF BINF(-1) DIFLNBAPROD DIFLNBAPROD(-1)	h50 MD4 2021M12 5 after adjust s: 4 (Automatik Akraike info cr ags, automatik ated: 100 2, 3) ple is larger th Oceficient 0.428887 -8.738281 -14.33538	nents ic selection) iterion (AIC) c): DIFLNBAPR nan selection sa Std. Error 0.141072 14.17001 14.35709	ample t-Statistic 3.038791 -0.616674 -0.998486	0.0044 0.5413 0.3247		
Selection Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meth Dynamic regressors (Fixed regressors: C Number of models ev Selected Model: ARD Note: final equation s Variable BF_BINF(-1)	BF_BINF e: 19:47 018M09 2021 s: 40 after ad t lags: 4 (Auto hod: Akaike in 8 lags, autom valuated: 324 L(2, 0, 7) sample is larg Coefficient 0.643824	M12 justments omatic selection atic): DIFLNB/ er than select Std. Error 0. 159420	on) AIC) APROD DIFLINI APROD DIFLINI APROD DIFLINI ADD SAMPLE t Statistic 4.038530	SER (SIM13) ORN UN Prob.* 0.0004	Method: ARDL Date: 10/14/22 Time: 19 Sample (adjusted): 2018 Induded observations: 4 Maximum dependent lag Model selection method: Dynamic regressors: C Number ofmodels evalu Selected Model: ARDL(1 Note: final equation sam Variable BF BINF(-1) DIFLNBAPROD	h50 MD4 2021 M12 5 after adjust s: 4 (Automati Akaike in fo cr ags, automati ated: 100 (2,3) ple is larger th Coefficient 0.428887 -8.738281	ments ic selection) iterion (AIC) c): DIFLNBAPR nan selection sa Std. Error 0.141072 14.17001	ample +Statistic 3.038791 -0.616674	0.0044 0.5413		
Selection Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meth Dynamic regressors (Fixed regressors: C Number of models ex Selected Model: ARD Note: final equation s Variable BF_BINF(-1) BF_BINF(-2)	BF_BINF e: 19:47 018M09 2021 s: 40 after ad t lags: 4 (Auto hod: Akaike in 8 lags, autom (aluated: 324 L(2, 0, 7) sample is larg Coefficient 0.643824 -0.176975	M12 justments omatic selection atic): DIFLNB/ er than select Std. Error 0.159420 0.160980	on) AIC) APROD DIFLNI Hon sample t Statistic 4.038530 -1.099357	SER (SIM 13)RN UN Prob.* 0.0004 0.2810	Method: ARDL Date: 10/14/22 Time: 19 Sample (adjusted): 2018 Induded observations: 4 Maximum dependent lag Model selection method: Dynamic regressors: C Number of models e valu Selected Model: ARDL(1 Note: final equation sam Variable BF BINF(-1) DIFLNBAPRCD(-1) DIFLNBAPRCD(-1) DIFLNBAPRCD(-1) DIFLNBAPRCD(-1) DIFLNBAPRCD(-1) DIFLNBAPRCD(-1) DIFLNBAPRCD(-1) DIFLNBAPRCD(-2) LNBER LNBER(-1)	+50 MD4 2021M12 sifer adjust s: 4 (Automati Akaike info cr ags, automati ated: 100 2.3) ple is larger ti Coefficient 0.428687 -8.738281 -1.433536 37.13132 -1.526896 5.176339	nents ic selection) iterion (AIC) c): DIFLNBAPR han selection s: Std. Error 0.141072 14.17001 14.35709 14.28246 2.415497 3.374806	ample +Statistic 3.038791 -0.616674 -0.998486 2.599788 -0.632125 1.533818	0.0044 0.5413 0.3247 0.0134 0.5313 0.1338		
Selection Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meth Dynamic regressors (Fixed regressors: C Number of models ex Selected Model: ARD Note: final equation s Variable BF_BINF(-1) BF_BINF(-2)	BF_BINF e: 19:47 018M09 2021 s: 40 after ad t lags: 4 (Auto hod: Akaike in 8 lags, autom valuated: 324 L(2, 0, 7) sample is larg Coefficient 0.643824	M12 justments omatic selection atic): DIFLNB/ er than select Std. Error 0.159420 0.160980	on) AIC) APROD DIFLINI APROD DIFLINI ADD SAMPLE t Statistic 4.038530	SER (SIM13) ORN UN Prob.* 0.0004	Method: ARDL Date: 10/14/22 Time: 15 Sample (adjusted): 2018 Induded observations: 4 Maximum dependent lag Model selection method: Dynamic regressors: C Number of models evalu Selected model: ARDL(1 Note: final equation sam Variable BF BINF(-1) DIFLNBAPROD(-1) DIFLNBAPROD(-1) DIFLNBAPROD(-1) DIFLNBAPROD(-2) LNBER LNBER(-1) LNBER(-2)	50 MD4 2021M12 5 after adjust 5 after adjust 5 after adjust Akaike info cr ags, automatik ated: 100 2, 3) ple is larger th 0.428887 -8.738281 -14.3538 37.13132 -1.528896 5.178339 -7.897351	nents ic selection) iterion (AIC) c): DIFLNBAPR nan selection si Std. Error 0.141072 14.17001 14.35709 14.28246 2.415497 3.374806 3.419611	t-Statistic 3.038791 -0.616674 -0.998486 2.599786 -0.632125 1.533818 -2.309430	0.0044 0.5413 0.3247 0.0134 0.5313 0.1338 0.0268		
Selection Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meth Dynamic regressors (Fixed regressors: C Number of models ex Selected Model: ARD Note: final equation s Variable BF_BINF(-1) BF_BINF(-2) DIFLNBAPROD	BF_BINF e: 19:47 018M09 2021 s: 40 after ad t lags: 4 (Auto hod: Akaike in 8 lags, autom (aluated: 324 L(2, 0, 7) sample is larg Coefficient 0.643824 -0.176975	M12 Justments omatic selection (atic): DIFL NB/ er than select Std. Error 0.159420 0.160980 17.76322	on) AIC) APROD DIFLNI Hon sample t Statistic 4.038530 -1.099357	SER (SIM 13)RN UN Prob.* 0.0004 0.2810	Method: ARDL Date: 10/14/22 Time: 15 Sample (adjusted): 2018 Included observations: 4 Model selection method: Dynamic regressors: C Number of models evalu Selected Model: ARDL(1, Note: final equation sam Variable BF BINF(-1) DIFLNBAPROD DIFLNBAPROD(-1) DIFLNBAPROD(-2) LNBER LNBER(-1) LNBER(-1) LNBER(-3)	150 MD4 2021M12 5 after adjust s: 4 (Automati Akaike info cr ags, automati ated: 100 2, 3) ple is larger th 0.428887 -8.738281 -14.33538 37.13132 -1.528896 5.178339 -7.837351 5.038865	nents ic selection) iterion (AIC) c): DIFLNBAPR han selection sa Std. Error 0.141072 14.17001 14.35709 14.28246 2.415497 3.374806 3.419611 2.382707	+Statistic 3.038791 -0.616874 -0.998486 2.599786 -0.632125 1.533818 -2.309430 2.114681	0.0044 0.5413 0.3247 0.0134 0.5313 0.1338 0.0268 0.0414		
Selection Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meth Dynamic regressors (Fixed regressors: C Number of models ev Selected Model: ARD Note: final equation s Variable BF_BINF(-1) BF_BINF(-2) DIFLNBAPROD DIFLNBER	BF_BINF e: 19:47 018M09 2021 s: 40 after ad t lags: 4 (Auto hod: Akaike in 8 lags, autom valuated: 324 L(2, 0, 7) sample is larg Coefficient 0.643824 -0.176975 -17.10383	M12 Justments omatic selection (i atic): DIFLNB/ er than select Std. Error 0.159420 0.160980 17.76322 2.544139	on) AIC) APROD DIFLINI tion sample t-Statistic 4.038530 -1.099357 -0.962879	BER (31373) ORN UN Prob.* 0.0004 0.2810 0.3439	Method: ARDL Date: 10/14/22 Time: 15 Sample (adjusted): 2018 Induded observations: 4 Maximum dependent lag Model selection method: Dynamic regressors: C Number of models evalu Selected model: ARDL(1 Note: final equation sam Variable BF BINF(-1) DIFLNBAPROD(-1) DIFLNBAPROD(-1) DIFLNBAPROD(-1) DIFLNBAPROD(-2) LNBER LNBER(-1) LNBER(-2)	50 MD4 2021M12 5 after adjust 5 after adjust 5 after adjust Akaike info cr ags, automatik ated: 100 2, 3) ple is larger th 0.428887 -8.738281 -14.3538 37.13132 -1.528896 5.178339 -7.897351	nents ic selection) iterion (AIC) c): DIFLNBAPR nan selection si Std. Error 0.141072 14.17001 14.35709 14.28246 2.415497 3.374806 3.419611	t-Statistic 3.038791 -0.616674 -0.998486 2.599786 -0.632125 1.533818 -2.309430	0.0044 0.5413 0.3247 0.0134 0.5313 0.1338 0.0268		
Selection Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meth Dynamic regressors (Fixed regressors: C Number of models ev Selected Model: ARD Note: final equation s Variable BF_BINF(-1) BF_BINF(-1) DIFLNBAPROD DIFLNBER(-1)	BF_BINF e: 19:47 018M09 2021 s: 40 after ad t lags: 4 (Auto hod: Akaike in 8 lags, autom (aluated: 324 L(2, 0, 7) coefficient 0.643824 -0.176975 -17.10383 -3.111686	M12 Justments omatic selection (i atic): DIFLNB/ er than select Std. Error 0.159420 0.160980 17.76322 2.544139 2.373965	on) AIC) APROD DIFLNI Hon sample t Statistic 4.038530 -1.099357 -0.962879 -1.223080	BER (31 M 13)RN UN Prob.* 0.0004 0.3439 0.2315	Method: ARDL Date: 10/14/22 Time: 15 Sample (adjusted): 2018 Included observations: 4 Model selection method: Dynamic regressors: C Number of models evalu Selected Model: ARDL(1, Note: final equation sam Variable BF BINF(-1) DIFLNBAPROD DIFLNBAPROD(-1) DIFLNBAPROD(-2) LNBER LNBER(-1) LNBER(-1) LNBER(-3)	150 MD4 2021M12 Safter adjust s: 4 (Automati Akaike info or ags, automativ ated: 100 2,3) ple is larger ff 0.428687 -8.738281 -14.35368 5.178339 -7.897351 5.038865 -0.755958	nents ic selection) iterion (AIC) c): DIFLNBAPR han selection sa Std. Error 0.141072 14.17001 14.35709 14.28246 2.415497 3.374806 3.419611 2.382707	sample 1-Statistic 3.038791 -0.616674 -0.958486 2.599786 -0.632125 1.533818 -2.309430 2.114681 -0.713970	0.0044 0.5413 0.3247 0.0134 0.5313 0.1338 0.0268 0.0414		
Selection Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meth Dynamic regressors (Fixed regressors: C Number of models ev Selected Model: ARD Note: final equation s Variable BF_BINF(-1) BF_BINF(-1) DIFLNBER DIFLNBER(-1) DIFLNBER(-1)	BF_BINF e: 19:47 D18M09 2021 s: 40 after ad t lags: 4 (Auto hod: Akaike in 8 lags, autom valuated: 324 L(2, 0, 7) coefficient 0.643824 -0.176975 -17.10383 -3.111686 3.312601	M12 Justments omatic selection (atic): DIFLNB/ er than select Std. Error 0.159420 0.160980 17.76322 2.544139 2.373965 2.433698	on) AIC) APROD DIFLNI Hon sample t-Statistic 4.038530 -1.09357 -0.962879 -1.223080 1.395388	BER (31 24 23)RN U Prob.* 0.0004 0.2810 0.3439 0.2315 0.1739	Method: ARDL Date: 10/14/22 Time: 15 Sample (adjusted): 2018 Induided observations: 4 Maximum dependent lag Model selection method: Dynamic regressors: C Number of models evalu Selected Model: ARDL(1 Note: final equation sam Variable BF BINF(-1) DIFLNBAPROD(-1) DIFLNBAPROD(-1) DIFLNBAPROD(-1) DIFLNBAPROD(-1) DIFLNBAPROD(-2) LNBER(-1) LNBER(-1) LNBER(-3) C R-squared Adjusted R-squared	t50 MD4 2021M12 5 after adjust s: 4 (Automatic Akaike info cr ags, automatic ated: 100 2,3) ple is larger th 0.428887 -8.738281 -14.32538 37.13132 -1.528898 -0.755958 0.394392 0.259813	nents ic selection) iterion (AIC) c): DIFLNBAPR nan selection sa Std. Error 0.141072 14.17001 14.35709 14.28246 2.415497 3.374806 3.419611 2.382707 1.058810 Mean depende	ample t-Statistic 3.038791 0.616674 0.998488 2.599788 -0.632125 1.533818 -2.309430 2.114681 -0.713970 ent var nt var	0.0044 0.5413 0.3247 0.0134 0.5313 0.1338 0.0268 0.0414 0.4798 0.680000 0.844794		
Selection Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meth Dynamic regressors: C Number of models ev Selected Model: ARD Note: final equation s Variable BF_BINF(-1) BF_BINF(-1) BF_BINF(-2) DIFLNBER DIFLNBER (-1) DIFLNBER (-2) DIFLNBER (-2) DIFLNBER (-3)	BF_BINF e: 19:47 D18M09 2021 s: 40 after ad t lags: 4 (Auta hod: Akaike in 8 lags, autom valuated: 324 L(2, 0, 7) coefficient 0.643824 -0.176975 -17.10383 -3.111686 3.312601 -4.673589	M12 Justments omatic selection for criterion (<i>i</i> atic): DIFLNBA er than select Std. Error 0.159420 0.160980 17.76322 2.544139 2.373965 2.433698 2.433698 2.459811	on) AIC) APROD DIFLNI ton sample t Statistic 4.038530 -1.09357 -0.962879 -1.223080 1.395388 -1.920365	BER (31 24 23)RN U Prob.* 0.0004 0.2810 0.3439 0.2315 0.1739 0.0651	Method: ARDL Date: 10/14/22 Time: 19 Sample (adjusted): 2018 Included observations: 4 Maximum dependent lag Model selection method: Dynamic regressors: C Number of models e valu Selected Model: ARDL(1, Note: final equation sam Variable BF BINF(-1) DIFLNBAPROD DIFLNBAPROD(-2) UNBER (1) LNBER (-1) DIFLNBAPROD(-2) LNBER (-1) LNBER (-1) LNBER (-1) LNBER (-1) LNBER (-2) LNBER	+50 MD4 2021M12 5 after adjust 5 after adjust s: 4 (Automati Akai ke info cr ated: 100 2.3) ple is larger ff Ocefficient 0.428887 -8.738281 -14.33538 37.13132 -7.897351 5.038685 0.259813 0.259813	nents ic selection) iterion (AIC) c): DIFLNBAPR han selection sa Still. Error 0.141072 14.17001 14.35709 14.28246 2.415497 3.374806 3.419611 2.382707 1.058810 Mean depend Akaike info cri	ample t-Statistic 3.038791 0.016674 -0.998486 2.599786 -0.32125 1.533818 -2.309430 2.114681 -0.713970 ent var terion	0.0044 0.5413 0.3247 0.0134 0.5313 0.0288 0.0414 0.4798 0.880000 0.880000 0.844794 2.376557		
Selection Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meth Dynamic regressors: C Number of models eve Selected Model: ARD Note: final equation s Variable BF_BINF(-1) BF_BINF(-1) BF_BINF(-2) DIFLNBAPROD DIFLNBER(-1) DIFLNBER(-1) DIFLNBER(-3) DIFLNBER(-4)	BF_BINF e: 19:47 D18M09 2021 s: 40 after ad t lags: 4 (Auto hod: Akaike in 8 lags, autom valuated: 324 L(2, 0, 7) coefficient 0.643824 -0.176975 -17.10383 -3.111686 3.312601 -4.673589 2.582822	M12 Justments omatic selection for criterion (<i>i</i> atic): DIFLNB <i>i</i> er than select Std. Error 0.159420 0.160980 17.76322 2.544139 2.373965 2.433698 2.433698 2.4359811 2.372840	on) AIC) APROD DIFLNI ton sample t Statistic 4.038530 -1.099357 -0.962879 -1.223080 1.395388 -1.920365 1.050008	BER (31 24 32 Prob.* 0.0004 0.2810 0.3439 0.2315 0.1739 0.0651 0.3027	Method: ARDL Date: 10/14/22 Time: 19 Sample (adjusted): 2018 Induded observations: 4 Maximum dependent lag Model selection method: Dynamicregressors: C Number of models evalu Selected Model: ARDL(1, Note: final equation sam Variable BF BINF(-1) DIFLNBARCDD DIFLNBARCDD DIFLNBARCDD(-1) DIFLNBARCDC-2) LNBER LNBER(-1) LNBER(-1) LNBER(-1) LNBER(-2) LNBER(-3) C	+50 MD4 2021M12 Safer adjust s: 4 (Automati Akaike info or ags, automatic ated: 100 2.3) ple is larger ff Coefficient 0.428887 -8.738281 -14.33538 5.176339 -7.897351 5.038865 5.176339 -0.755958 0.394392 0.259813 0.326813 0.726811 19.01717	nents ic selection) iterion (AIC) c): DIFLNBAPR han selection si Stil. Error 0.141072 14.17001 14.35709 14.28248 2.415497 3.374808 3.419611 2.382707 1.058810 Mean depend S.D. depender S.D. depender S.D. depender S.D. depender	ample 1-Statistic 3.038791 0.998486 2.599786 0.632125 1.533818 2.309430 2.309430 2.114681 0.713970 ent var nt var tenion tion	0.0044 0.5413 0.3247 0.5313 0.1338 0.0268 0.0414 0.4798 0.680000 0.844794 2.376557 2.737889		
Selection Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meth Dynamic regressors: C Number of models eve Selected Model: ARD Note: final equation s Variable BF_BINF(-1) BF_BINF(-1) BF_BINF(-2) DIFLNBAPROD DIFLNBER(-1) DIFLNBER(-1) DIFLNBER(-3) DIFLNBER(-4) DIFLNBER(-5)	BF_BINF e: 19:47 D18M09 2021 s: 40 after ad t lags: 4 (Auto hod: Akaike in 8 lags, autom valuated: 324 L(2, 0, 7) coefficient 0.643824 -0.176975 -17.10383 -3.111686 3.312601 -4.673589 2.582822 -0.408585 1.371282	M12 Justments omatic selection for criterion (<i>i</i> atic): DIFLNB <i>i</i> er than select Std. Error 0. 159420 0. 160980 17.76322 2.544139 2.373965 2.433698 2.433698 2.4359811 2.372840 2.639663	on) AIC) APROD DIFLNI APROD DIFLNI t-Statistic 4.038530 -1.099357 -0.962879 -1.223080 1.395388 -1.920365 1.050008 -0.172192 0.519491	BER SUM 20 Prob.* 0.0004 0.2810 0.3439 0.2315 0.1739 0.0651 0.3027 0.8645 0.6075	Method: ARDL Date: 10/14/22 Time: 19 Sample (adjusted): 2018 Induided observations: 4 Maximum dependent lag Model selection method: Dynamic regressors: C Number of models e valu Selected Model: ARDL(1, Note: final equation sam Variable BF BINF(-1) DIFLNBARCD DIFLNBARRCD(-1) DIFLNBARRCD(-1) DIFLNBARRCD(-1) DIFLNBARRCD(-1) DIFLNBARRCD(-1) DIFLNBARRCD(-2) LNBER LNBER(-1) LNBER(-3) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	K50 MD4 2021M12 Safter adjust s: 4 (Automati Akaike info cr ags, automati ated: 100 2,3) ple is larger ft 0.428687 -8,738281 -14,3538 37,13132 -1,526896 -0,755958 0.394392 0.26811 19,01717 -44,47253	nents ic selection) iterion (AIC) c): DIFLNBAPR nan selection s: Std. Error 0.141072 14.17001 14.35709 14.28246 2.415497 3.374806 3.419611 2.382707 1.058810 Mean depende Akaike into cri Schwarz criter Hannan-Quin	ample 1-Statistic 3.038791 -0.616674 -0.998486 2.599786 -0.632125 1.533818 -2.309430 2.114681 -0.713970 ent var nt var terion n oriter.	0.0044 0.5413 0.3247 0.0134 0.5313 0.1338 0.0268 0.0414 0.4798 0.880000 0.844794 2.376557 2.737889 2.511258		
Selection Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meth Dynamic regressors: C Number of models ev Selected Model: ARD Note: final equation s Variable BF_BINF(-1) BF_BINF(-1) BF_BINF(-2) DIFLNBARROD DIFLNBER(-1) DIFLNBER(-1) DIFLNBER(-1) DIFLNBER(-3) DIFLNBER(-5) DIFLNBER(-6)	BF_BINF e: 19:47 D18M09 2021 s: 40 after ad, t lags: 4 (Auto hod: Akaike in 8 lags, autom valuated: 324 L(2, 0, 7) coefficient 0.643824 -0.176975 -17.10383 -3.111686 3.312601 -4.673589 2.582822 -0.408585 1.371282 -1.185023	M12 Justments omatic selection for criterion (<i>i</i> attic): DIFLNB <i>i</i> er than select Std. Error 0. 159420 0. 160980 17.76322 2.544139 2.373965 2.433698 2.433698 2.439811 2.372840 2.639663 2.312780	on) AIC) APROD DIFLNI t Statistic 4.038530 1.099357 0.962879 1.223080 1.395388 1.920365 1.050008 0.172192 0.519491 -0.512380	BER SUM 20 Prob.* 0.0004 0.2810 0.3439 0.2315 0.1739 0.0651 0.3027 0.8645 0.6075 0.6124	Method: ARDL Date: 10/14/22 Time: 19 Sample (adjusted): 2018 Induded observations: 4 Maximum dependent lag Model selection method: Dynamicregressors: C Number of models e valu Selected Model: ARDL(1, Note: final equation sam Variable BF BINF(-1) DIFLNBARCDD DIFLNBARCDD DIFLNBARCDD(-1) DIFLNBARCDC-2) LNBER LNBER(-1) LNBER(-1) LNBER(-1) LNBER(-2) LNBER(-3) C	K50 MD4 2021M12 Safter adjust s: 4 (Automati Akaike info cr ags, automati ated: 100 2,3) ple is larger ft 0.428687 -8,738281 -14,3538 37,13132 -1,526896 -0,755958 0.394392 0.26811 19,01717 -44,47253	nents ic selection) iterion (AIC) c): DIFLNBAPR han selection si Stil. Error 0.141072 14.17001 14.35709 14.28248 2.415497 3.374808 3.419611 2.382707 1.058810 Mean depend S.D. depender S.D. depender S.D. depender S.D. depender	ample 1-Statistic 3.038791 -0.616674 -0.998486 2.599786 -0.632125 1.533818 -2.309430 2.114681 -0.713970 ent var nt var terion n oriter.	0.0044 0.5413 0.3247 0.5313 0.1338 0.0268 0.0414 0.4798 0.680000 0.844794 2.376557 2.737889		
Selection Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meth Dynamic regressors: C Number of models ev Selected Model: ARD Note: final equation s Variable BF_BINF(-1) BF_BINF(-1) BF_BINF(-2) DIFLNBER(-1) DIFLNBER(-1) DIFLNBER(-1) DIFLNBER(-3) DIFLNBER(-5) DIFLNBER(-6) DIFLNBER(-7)	BF_BINF e: 19:47 D18M09 2021 s: 40 after ad, t lags: 4 (Auto hod: Akaike in 8 lags, autom valuated: 324 L(2, 0, 7) coefficient 0.643824 -0.176975 -17.10383 -3.111686 3.312601 -4.673589 2.582822 -0.408585 1.371282 -1.185023 7.301419	M12 Justments omatic selection for criterion (<i>J</i> atic): DIFLNB/ er than select Std. Error 0. 159420 0. 159420 0. 160980 17.76322 2. 544139 2. 373965 2. 433698 2. 433698 2. 433698 2. 439811 2. 372840 2. 639663 2. 312780 2. 351500	AIC) APROD DIFLNI APROD DIFLNI t-Statistic 4.038530 -1.09357 -0.962879 -1.223080 1.395388 -1.920365 1.050008 -0.172192 0.519491 -0.512380 3.105005	BER 500004 0.2810 0.2315 0.1739 0.0651 0.3027 0.8645 0.6075 0.6124 0.0043	Method: ARDL Date: 10/14/22 Time: 19 Sample (adjusted): 2018 Induide observations: 4 Maximum dependent lag Model selection method: Dynamicregressors: C Number of models evalu Selected Model: ARDL(1, Note: final equation sam Variable BF BINF(-1) DIFLNBARCDD(-1) DIFLNBARCDD(-1) DIFLNBARCDD(-1) DIFLNBARCDD(-1) DIFLNBARCDD(-1) DIFLNBARCDD(-2) LNBER(-1) LNBER(-1) LNBER(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likeli hood F-statistic	Hold 2021M12 5 after adjust 5 after adjust 5 after adjust 5 after adjust 5 after adjust 6 after adjust 4kaike info or 303 ated: 100 2.3) ple is larger ff 0.428887 -8.738281 -14.33538 37.13132 -1528896 5.176339 -7.897351 5.038865 0.0259518 0.394392 0.255958 0.394392 0.726811 19.01717 -44.47253 2.930553 0.012563 -0.12564	nents ic selection) iterion (AIC) c): DIFLNBAPR han selection si Stil. Error 0.141072 14.17001 14.35709 14.28248 2.415497 3.374808 3.419611 2.382707 1.058810 Mean depender Akalke into cri Sch. depender Akalke into cri Schwarz criter Hannan-Quin Durbin-Watso	ample 1-Statistic 3.038791 0.616874 0.998486 2.599788 0.832125 1.533818 2.309400 2.114681 0.713970 ent var nt var terion ion n oriter. n stat	0.0044 0.5413 0.3247 0.5313 0.038 0.0288 0.0288 0.0414 0.4798 0.880000 0.844794 2.378557 2.737889 2.511258 1.845973		
Selection Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meth Dynamic regressors: C Number of models ev Selected Model: ARD Note: final equation s Variable BF_BINF(-1) BF_BINF(-1) BF_BINF(-2) DIFLNBAPROD DIFLNBER(-1) DIFLNBER(-1) DIFLNBER(-1) DIFLNBER(-3) DIFLNBER(-5) DIFLNBER(-6) DIFLNBER(-7)	BF_BINF e: 19:47 D18M09 2021 s: 40 after ad, t lags: 4 (Auto hod: Akaike in 8 lags, autom valuated: 324 L(2, 0, 7) coefficient 0.643824 -0.176975 -17.10383 -3.111686 3.312601 -4.673589 2.582822 -0.408585 1.371282 -1.185023	M12 Justments omatic selection for criterion (<i>J</i> atic): DIFLNB/ er than select Std. Error 0. 159420 0. 159420 0. 160980 17.76322 2. 544139 2. 373965 2. 433698 2. 433698 2. 433698 2. 439811 2. 372840 2. 639663 2. 312780 2. 351500	on) AIC) APROD DIFLNI t Statistic 4.038530 1.099357 0.962879 1.223080 1.395388 1.920365 1.050008 0.172192 0.519491 -0.512380	BER SUM 20 Prob.* 0.0004 0.2810 0.3439 0.2315 0.1739 0.0651 0.3027 0.8645 0.6075 0.6124	Method: ARDL Date: 10/14/22 Time: 15 Sample (adjusted): 2018 Induded observations: 4 Maximum dependent lag Model selection method: Dynamic regressors: C Number of models e valu Selected Model: ARDL(1 Note: final equation sam Variable BF BINF(-1) DIFLNBAPROD(-1) DIFLNBAPROD(-1) DIFLNBAPROD(-1) DIFLNBAPROD(-1) DIFLNBAPROD(-2) LNBER LNBER(-1) LNBER(-2) LNBER(-2) LNBER(-2) LNBER(-2) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	Hold 2021M12 5 after adjust 5 after adjust 5 after adjust 5 after adjust 5 after adjust 6 after adjust 4kaike info or 303 ated: 100 2.3) ple is larger ff 0.428887 -8.738281 -14.33538 37.13132 -1528896 5.176339 -7.897351 5.038865 0.0259518 0.394392 0.255958 0.394392 0.726811 19.01717 -44.47253 2.930553 0.012563 -0.12564	nents ic selection) iterion (AIC) c): DIFLNBAPR han selection si Stil. Error 0.141072 14.17001 14.35709 14.28248 2.415497 3.374808 3.419611 2.382707 1.058810 Mean depender Akalke into cri Sch. depender Akalke into cri Schwarz criter Hannan-Quin Durbin-Watso	ample 1-Statistic 3.038791 0.616874 0.998486 2.599788 0.832125 1.533818 2.309400 2.114681 0.713970 ent var nt var terion ion n oriter. n stat	0.0044 0.5413 0.3247 0.5313 0.038 0.0288 0.0288 0.0414 0.4798 0.880000 0.844794 2.378557 2.737889 2.511258 1.845973		
Selection Dependent Variable: Method: ARDL Date: 10/14/22 Time Sample (adjusted): 20 Included observation Maximum dependent Model selection meth Dynamic regressors: C Number of models ev Selected Model: ARD Note: final equation s Variable BF_BINF(-1) BF_BINF(-1) BF_BINF(-2) DIFLNBER(-1) DIFLNBER(-1) DIFLNBER(-1) DIFLNBER(-3) DIFLNBER(-4) DIFLNBER(-5)	BF_BINF e: 19:47 D18M09 2021 s: 40 after ad, t lags: 4 (Auto hod: Akaike in 8 lags, autom valuated: 324 L(2, 0, 7) coefficient 0.643824 -0.176975 -17.10383 -3.111686 3.312601 -4.673589 2.582822 -0.408585 1.371282 -1.185023 7.301419	M12 Justments omatic selection for criterion (<i>J</i> atic): DIFLNB/ er than select Std. Error 0. 159420 0. 159420 0. 160980 17.76322 2. 544139 2. 373965 2. 433698 2. 433698 2. 433698 2. 439811 2. 372840 2. 639663 2. 312780 2. 351500	an) AIC) APROD DIFLNI ACO t Statistic 4.038530 -1.099357 -0.962879 -1.223080 1.395388 -1.920365 1.050008 -0.172192 0.519491 -0.512380 3.105005 1.660188	BER 500004 0.2810 0.2315 0.1739 0.0651 0.3027 0.8645 0.6075 0.6124 0.0043	Method: ARDL Date: 10/14/22 Time: 19 Sample (adjusted): 2018 Induded observations: 4 Maximum dependent lag Model selection method: Dynamicregressors: C Number of models evalu Selected Model: ARDL(1, Note: final equation sam Variable BF BINF(-1) DIFLNBARCOD DIFLNBARCOD DIFLNBARCOD(-1) DIFLNBARCOD(-1) DIFLNBARCOD(-1) DIFLNBARCOD(-1) DIFLNBARCOD(-2) LNBER(-1) LNBER(-3) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	Hold 2021M12 5 after adjust 5 after adjust 5 after adjust 5 after adjust 5 after adjust 6 after adjust 4kaike info or 303 ated: 100 2.3) ple is larger ff 0.428887 -8.738281 -14.33538 37.13132 -1528896 5.176339 -7.897351 5.038865 0.0259518 0.394392 0.255958 0.394392 0.726811 19.01717 -44.47253 2.930553 0.012563 -0.12564	nents ic selection) iterion (AIC) c): DIFLNBAPR han selection si Stil. Error 0.141072 14.17001 14.35709 14.28248 2.415497 3.374808 3.419611 2.382707 1.058810 Mean depender Akalke into cri Sch. depender Akalke into cri Schwarz criter Hannan-Quin Durbin-Watso	ample 1-Statistic 3.038791 0.616874 0.998486 2.599788 0.832125 1.533818 2.309400 2.114681 0.713970 ent var nt var terion ion n oriter. n stat	0.0044 0.5413 0.3247 0.5313 0.038 0.0288 0.0288 0.0414 0.4798 0.880000 0.844794 2.378557 2.737889 2.511258 1.845973		

3am ple (adjus ted): 2 3-s tatis tic probabiliti		V12 2 dynamic regressors			_		Series: Resi	
							Sample 2028	M09 2023M 12
Autocorrelation	Partial Correl	lation AC PAC	Q-Stat P	8			Observe ti on	s 40
· <u>•</u> ·	י יבי	1 -0.038 -0.038					Ven	1.000
:5		2 -0.202 -0.204 3 -0.000 -0.018		6				
i di i	i ini i	4 -0.069 -0.116					Vedian	0.02577
.] .	1 . 7 .	5 0.008 -0.005					Vaximum	13850
1 🖬 1	· 🖬 ·	6 -0.172 -0.224	3.5565 0				Vininum	0.8375
· • •	· 🗉 ·	7 -0.084 -0.118					Std Dev.	14506
		8 -0.044 -0.178					Ske on ess	0.6 17451
		9 0.377 0.352						
i di i	1 1 6 1	11 -0.097 0.083		2			Rutosis	31855
ים[י	ի մին	12 0.114 0.087						I
· 🖬 ·	י 🖬 י	13 -0.137 -0.096					larque Bro	259728
- 1		14 -0.052 -0.062		0			Probability	027298
		15 -0.065 -0.004		-10 -05	00 05	10	5	
	l (d)	17 -0.107 -0.135						
	1 313	18 0.168 0.056						
- F -	.ef.	19 0.016 -0.175						
	<u> </u>	20 -0.082 -0.066		1/22				
Probabilities may n	ot be valid for th	is equation specification.		00000/				
reus ch-God frey Seria	al Correlation LM	/ Test:		Heterosked as ticity Te	st Breusch-Pag	an-God frey		
Iull hypothesis: No se				Null hypothes is : Hom				
-statistic bs*R-squared	1.047845	Prob. F(8,13) Prob. Chi-Square(8)	0.4511	F-s tatis tic	0.826414	Prob. F(18,21)		0.6559
bs-R-squared	10.06134	Prob. Chi-Square(6)	0.0472	Obs*R-s quared	16.58566	Prob. Chi-Squ	are/18)	0.5517
			1	Scaled explained SS	4.988921			0.9989
est Equation: lependent Variable: F	RESID							
lethod:ARDL								
ate: 10/15/22 Time: ample: 2018M09 202			1	Test Equation:				
cluded observations				Dependent Variable: I	RESID ²			
resample missing w	alue lagged resi	duals set to zero.		Method: Least Square				
Variable	Coefficient	Std. Error t-Statistic	Prob.	Date: 10/15/22 Time Sample: 2018/09/20				
				Included observations				
BF_BINF(-1) BF_BINF(-2)	0.073862	0.381337 0.193693 0.358273 0.786712		modded observations				
BEN INF	0.040976	0.073347 0.558663	0.5859	Variable	Coefficient	Std. Error	t-Statis tic	Prob.
BEN INF(-1)	0.004313	0.065523 0.065831		HELEY CHARLEN				
BEN INF(-2) BEN INF(-3)	-0.018659 0.017525	0.061109 -0.305340 0.072208 0.242705	0.7649	с	0.225675	0.114972	1.962864	0.0630
BEN INF(-4)	0.014538	0.061716 0.235556	0.8174	BF_BINF(-1)	0.127267	0.100348	1.268252	0.2186
BEN INF(-5) BEN INF(-6)	0.039954	0.063457 0.629617 0.067950 0.027285		BF_BINF(-2)	-0.168621	0.097705	-1.725816	0.0991
BEN INF(-7)	-0.012082	0.072190 -0.167366	0.8697	BENINF	-0.035078	0.032772	-1.070370	0.2966
DIFLNBNEER	0.605302	4.038791 0.149872		BENINF(-1)	0.042144	0.031929	1.319922	0.2011
DIFLNBNEER(-1) DIFLNBNEER(-2)	3.939875 0.657994	4.303085 0.915593 4.806799 0.136888		BENINF(-2) BENINF(-3)	-0.034749 0.011806	0.030808 0.030615	-1.127917 0.385625	0.2721
DIFLNBNEER(-3)	4.141238	4.299841 0.963114	0.3531	BENINF(-3) BENINF(-4)	0.024252	0.028531	0.385025	0.4049
DIFLNBNEER(-4) DIFLNBNEER(-5)	1.952983	3.979323 0.490783 4.316692 1.089943		BENINF(-4)	0.011801	0.028608	0.412508	0.6841
DIFLNBNEER(-6)	0.795647	3.924532 0.202737	0.8425	BENINF(-6)	-0.008082	0.031216	-0.258893	0.7982
DIFLNBNEER(-7)	1.500571	4.006479 0.374536 0.288333 -1.691556		BENINF(-7)	0.042296	0.032670	1.294642	0.2095
RESID(-1)	-0.487731	0.288333 -1.691556 0.462652 -0.693161		DIFLNBNEER	-0.227092	1.717426	-0.132228	0.8961
RESID(-2)	-0.933647	0.410099 -2.276637	0.0404	DIFLNBNEER(-1)	1.007188	1.876651	0.536694	0.5971
RESID(-3) RESID(-4)	-0.394445 -0.515943	0.423320 -0.931790 0.340609 -1.514763		DIFLNBNEER(-2)	1.496978	1.904388	0.786068	0.4406
RESID(-5)	-0.206922	0.331831 -0.623576	0.5437	DIFLNBNEER(-3)	-2.764129	1.907678	-1.448949	0.1621
RESID(-6) RESID(-7)	0.670601	0.348944 -1.921802 0.365177 -0.487354		DIFLNBNEER(-4)	3.385746	1.855182 1.872818	1.825021	0.0823
RESID(-7)	-0.602270	0.365177 -0.487354 0.390445 -1.542522		DIFLNBNEER(-5) DIFLNBNEER(-6)	-1.653208	1.872818	-0.882738	0.3874
RESID(-8)			-1.11E-17	DIFLNBNEER(-0)	-1.138980	1.980232	-0.575175	0.5713
RESID(-8)	0.392033	Mean dependent var S.D. dependent var	0.491066					
-s quared		Akaike info criterion	2.242569	R-s quared	0.414642			0.235117
l-squared djusted R-squared .E. of regression	0.663193	Schwarz criterion	3.382563 2.654755	Adjusted R-s quared	-0.087094	S.D. depender		0.351783
R-squared djusted R-squared S.E. of regression dum squared resid	0.663193 5.717730 -17.85139	Hannan-Quinn criter.			0.366782	Akaike info crit	erion	1.137544
t-squared djusted R-squared i.E. of regression sum squared resid og likelihood -statistic	5.717730 -17.85139 0.322414		1.760380	S.E. of regression				
R-squared djusted R-squared S.E. of regression sum squared resid og likelihood	5.717730 -17.85139	Hannan-Quinn criter.		Sum squared resid	2.825108	Schwarz criteri		1.939762
-squared djusted R-squared .E. of regression um squared resid og likelihood -statistic	5.717730 -17.85139 0.322414	Hannan-Quinn criter.		Sum s quared resid Log likelihood	-3.750883	Hannan-Quinr	oriter.	1.427601
-squared djusted R-squared .E. of regression um squared resid og likelihood -statistic	5.717730 -17.85139 0.322414	Hannan-Quinn criter.		Sum s quared resid			oriter.	

Brazilian Model 3. Residual's diagnostics and coefficient stability

_						0		55			/		
Ti										riance Inflation Facto			
						والمريبي المراجع			Da	te: 10/15/22 Time: 1	2:53		
10 .									Sa	mple:2018M012021	M12		
									Inc	luded observations:	40		
а.						-			_				
		_	1	\sim	\sim	_					Coefficient	Uncen tered	Cen tered
ο.	\sim	~								Variable	Variance	VIF	VIF
4									—				
				<u> </u>						BF_BINF(-1)	0.033522	3.537395	2.128389
10.					Sec					BF_BINF(-2)	0.031779	3.354412	2.026431
										BENINF	0.003575	1.954664	1.749517
16										BENINF(-1)	0.003394	1.854034	1.661243
			IV.	1.1			IV.			BENINF(-2)	0.003160	1.815540	1.608024
		2020			2 (12)	1				BENINF(-3)	0.003120	2.097878	1.826533
										BENINF(-4)	0.002710	1.657271	1.459149
				M	gi ffean re					BENINF(-5)	0.002724	1.657271	1.465711
										BENINF(-6)	0.003244	1.628952	1.476138
										BENINF(-7)	0.003553	1.754401	1.607983
										DIFLNBNEER	9.818950	1.258203	1.226862
										DIFLNBNEER(-1)	11.72400	1.499506	1.463812
										DIFLNBNEER(-2)	12.07313	1.544030	1.506681
										DIFLNBNEER(-3)	12.11488	1.506115	1.476956
								12.2.		DIFLNBNEER(-4)	11.45729	1.447976	1.412668
								11/1		DIFLNBNEER(-5)	11.67616	1.507513	1.463939
									1	DIFLNBNEER(-6)	12.54835	1.617740	1.5722.40
							うりのみ	222211	1	DIFLNBNEER(-7)	13.05392	1.604955	1.528913
								19	2	c	0.044004	3.930346	NA
						-			_				
						-	NO. STATE		-				

Brazilian Model 3. Residual's diagnostics and coefficient stability

Brazilian model 3 . Long-run test for cointegration.

endent Variable: D (BF ected Model: AR DL (2, e 3: Unrestricted Con- e: 10/15/22 Time: 12:	7,7) stant and No Tre	en d		1920	X	Case 3: Unrestricted Constant and No Trend				
mple:2018M01 2021M luded observations: 40	12					Variable	Coefficient	Std. Error	t-Statistic	Prob.
Condit	ional Error Corr	ection Regres	sion	20	,	BENINF	0.168983	0.231507	0.729924	0.4735
Variable	Coefficient	Std. Error	t-Statistic	Prob.	ORDERO	DIFLNBNEER	25.03650	16.61201	1.507133	0.1467
c	0.272963	0.209772	1.301236	0.2073	222	2				
BF_BINF(-1)*	-0.619587	0.160495	-3.860465	0.0009	and the second second	EC = BF_BINF - (0.1690	BENINE + 25 03/		ED)	
BENINF(-1)	0.104700	0.143653	0.728834	0,4742		C = DF_DINF = (0.1690	DENINF # 25.030	55-DIFLINDINE	cr()	
DIFLNBNEER (-1)	15.51229	10.11939	1,532927	0.1402		_				
D (BF_BIN F(-1))	0.294508	0.178268	1.652059	0.1134						
D(BENINF)	-0.050306	0.059794	-0.841308	0.4097		E-Bounds Test	N	d Hoothasis	No levels rela	alionehin
D (BE NIN F(-1))	-0.005503	0.108298	-0.050810	0.9600		F-bounds lest	IN .	un nypouresis	. NO TEVEIS TES	seonsnip
D (BE NIN F(-2))	-0.097877	0.101932	-0.960224	0.3479						
D (BE NIN F(-3))	-0.078469	0.098407	-0.797400	0.4341		Test Statistic	Value	Signif.	I(O)	I(1)
D (BE NIN F(-4))	-0.068896	0.094493	-0.729112	0.4740						
D (BE NIN F(-5))	-0.061661	0.085155	-0.724101	0.4770				As	symptotic: n=10	000
D (BE NIN F(-6))	-0.122911	0.059607	-2.062009	0.0518		F-statistic	5.294701	10%	3.17	4,14
D(DIFLNBNEER)	-0.717952	3.133520	-0.229120	0.8210	6	k	2	5%	3.79	4.85
D (DIFLNBNEER (-1))	-12.64218	8.425811	-1.500411	0.1484	001		-	2.5%	4.41	
D (DIFLN BNEER (-2))	-13,95257	7.145816	-1.952551	0.0643						5.52
D (DIFLNBNEER (-3))	-14.70873	6.108490	-2.407916	0.0253				1%	5.15	6.36
D (DIFLNBNEER (-4))	-8.564389	5.307874	-1.613525	0.1216						
D (DIFLNBNEER (-5))	-12.62789	4.268194	-2.958603	0.0075		Actual Sample Size	40	Fi	nite Sample: n	=40
D (D IFLN BNEER (-6))	-8.946673	3.613021	-2.476231	0.0219				10%	3.373	4.377
		and the second se	and the second se	and the owner where the party of the local division of the local d				5%	4.133	5.26
o-value incompatible w	ith t-Bounds dis	tribution.						1%	5.893	7.337
Case 3:	Levels Eq Unrestricted Co		Trend			t-Bounds Test	N	ull Hypothesis	: No levels rel:	ationship
Variable	Coefficient	Std. Error	t-Statistic	Prob.		Test Statistic	Value	Signif.	I(0)	I(1)
BENINF	0.168983	0.231507	0.729924	0.4735		t-statistic	-3.860465	10%	-2.57	-3.21
DIFLNBNEER	25.03650	16.61201	1.507133	0.1467				5%	-2.86	-3.53
								2.5%	-3.13	-3.8
= BF_BINF - (0.1690*E	ENINF + 25.03	55*DIFLNBNE	ER)					2.5%	-3.13	-3.8

Thailand ADF Unit Roots test

At level									
		COI	COP	GFI	LNCOI	LNCO	P LN	GFI L	NTAPI
	t-Statistic	-1.4284	-1.4097	0.7051	-1.5773	-1.589	5 0.4	999 -2	2.2123
	Prob.	0.5601	0.5693	0.9911	0.4857	0.479	6 0.9	850 (0.2048
With Constant		n0	n0	n0	n0	n0	n	0	n0
	t-Statistic	-1.2342	-1.1990	-1.0597	-1.4147	-1.420	0 -1.1	852 -3	3.2727
With Constant & Trend	Prob.	0.8910	0.8987	0.9250	0.8431	0.841	4 0.9	020 (0.0836
With Constant & Hend		n0	n0	n0	n0	n0	n	0	*
	t-Statistic	-0.0472	-0.0994	1.5187	0.0962	0.036	5 1.3	204 0).4414
Without Constant & Trend	Prob.	0.6617	0.6440	0.9665	0.7082	0.689	3 0.9	509 (0.8055
		n0	n0	n0	n0	n0	n	0	n0
At First Difference		1(00)	1(000)		1/1 1/00	0 1/11/0			
	(Otaria da	d(COI)	d(COP)	d(GFI)	d(LNCO	· ·		'	I(LNTAPI)
With Constant	t-Statistic	-5.6372	-5.6456	-5.4011	-5.9931				-4.8529
	Prob.	0.0000	0.0000	0.0000	0.0000	0.00		.0000	0.0002
With Constant & Trend	t-Statistic	-5.6562	-5.6888	-5.8962	-5.9960				-4.7817
	Prob.	-0.0002 0.0001	-0.0000 0.0001	-0.0902 0.0001	-5.9900 0.0001			.0070 . 0001	-4.7017 0.0019
	PTOD.	0.0001	0.0001	0.0001	0.0001	I U.UU		.0001 ***	0.0019 ***
Without Constant & Trend	t-Statistic	-5.6990	-5.7114	-5.2557	-6.0607				-4.8752
	Prob.	-0.0990	-5.7114 0.0000	-5.2557 0.0000	-0.0007 0.0000			.3200 . 0000	-4.0752 0.0000
	P100.	0.0000	0.0000 ***	0.0000	0.0000	/ 0.00 ***		***	***
	11 11	1/113			100				
		1/1/25	OLA)		l -	2			
A . T 1		HE							
At Level		//22/	\odot		11 -				
		LNTAPI	LNTAPROD	LNTEXP	LNTFIMP	LNTIR	LNTLEI	LNTNEER	TAPI
	t-Statistic	-2.2123	-5.5614	-3.5833	-1.7179	-0.3136	-0.0947	-1.4699	-2.1985
With Constant	Prob.	0.2048	0.0000	0.0099	0.4156	0.9149	0.9438	0.5398	0.2096
			***	***					
		nO			n0	n0	nO	nO	nO
With Constant & Trend	t-Statistic	-3.2727	-5.8534	-3.6441		-1.4248	-3.2210	-1.1256	-4.2421
	Prob.	0.0836	0.0001	0.0369	0.0001	0.8406	0.0928	0.9134	0.0085
Without Constant & Trend			***	**	***	n0	*	n0	***
	t-Statistic	0.4414	0.0382	0.2086	0.3504	-0.0905	1.6820	-0.1093	0.3389
	Prob.	0.8055	0.6899	0.7425	0.7819	0.6473	0.9759	0.6407	0.7789
		n0	n0	n0	n0	n0	n0	n0	n0
At First Difference	ิจุฬาสงเ	1219	NN	<u>13N</u>	818	B			
	0	d(LNTAP) d(LNTAP	d(I NTEYP)	d(LNTFIMP)	d(I NTIP)	d(LNTLEI	d(LNTNE	d(TAPI)
With Constant	CHUL/		/ · ·						. ,
with COllStallt	t-Statistic	-4.8529	-9.1970	-7.8982	-9.1759	-3.0798	-9.7625	-4.6176	-4.9149
	Prob.	0.0002	0.0000	0.0000	0.0000	0.0353	0.0000	0.0005	0.0002
With Constant & Trend	1100.	***	***	***	***	**	***	***	***
		170/7	0.400.4	7 0050	0.0004	0.0010	0 7570	10007	10100
	t-Statistic	-4.7817	-9.1084	-7.8053	-9.0631	-3.0343	-9.7579	-4.9637	
Without Constant & Trend	Prob.	0.0019	0.0000	0.0000	0.0000	0.1346	0.0000	0.0011	0.0016
		***	***	***	***	n0	***	***	***
	1 01 -1-1-	10750	0.0040	7 0050	0.0000		0 4070	10704	10000
	t-Statistic	-4.8752	-9.3013	-7.9656	-9.2629	-2.8817	-9.4270	-4.6731	
	Prob.	0.0000	0.0000	0.0000	0.0000	0.0049	0.0000	0.0000	
		***	***	***	***	***	***	***	***

At Level

Thailand ADF Unit Roots test

With Constant	t-Statistic Prob.	TAPROD -5.2971 0.0001	TEINF -6.2489 <i>0.0000</i>	TF_BINF -5.3912 0.0000	TFEXP -3.5354 0.0112	TFIMP -1.7151 0.4170	TIR -0.3595 0.9075	TLEI -0.0667 0.9469	TNEER -1.4885 0.5305	
With Constant & Trend	t-Statistic Prob.	-6.5012 0.0000	-6.3222 0.0000	-5.3468 0.0003	** -3.6527 0.0361	n0 -5.4596 0.0002	n0 -1.4120 0.8445	n0 -3.1934 0.0982	n0 -1.1528 0.9083	
Without Constant & Trend	t-Statistic Prob.	*** -0.6766 0.4185 n0	-6.2997 0.0000	*** -5.1552 0.0000 ***	** -0.0368 0.6654 n0	*** 0.1751 0.7323 n0	n0 -1.6555 <i>0.0919</i> *	* 1.6912 0.9764 n0	n0 -0.1448 0.6283 n0	

At First Difference									
With Constant	t-Statistic Prob.	d(TAPROD) -10.1532 0.0000	d(TEINF) -6.9281 0.0000	d(TF_BINF) -8.7445 0.0000	d(TFEXP) -7.8078 0.0000	d(TFIMP) -9.1975 0.0000	d(TIR) -5.9073 0.0000	d(TLEI) -9.7498 0.0000	d(TNEER) -4.5750 0.0006
With Constant & Trend	t-Statistic Prob.	*** -10.0448 0.0000	-6.8410 0.0000	*** -8.6524 0.0000	*** -7.7163 0.0000	*** -9.0833 0.0000	*** -5.8488 0.0001	*** -9.7526 0.0000	*** -4.9082 0.0013
Without Constant & Trend	t-Statistic	-10.2665	-7.0273	-8.8411	-7.8750	-9.2874	-3.0574	-9.4091	-4.6298
	Prob.	0.0000 ***	0.0000	0.0000	0.0000	0.0000 ***	-5.0374 0.0030	0.0000 ***	-4.0298 0.0000 ***

Table B - 22

THAILAND MATRIX OF CORRELATION

	GFI		LNCOP			LNTAPROD	LNTEXP
COL				0.27812013			
COP	0.32883897	0.98308884	0.98454393	0.33465461	-0.1958365	-0.0284292	0.08168787
DIFCOI	0.31144848	0.28036215	0.29911585	0.32383460	0.10257055	-0.1030805	0.00056487
DIFCOP	0.31402320	0 25645580	0 27647248	0.32638174	0 11772160	-0.0927766	-0.0130685
DIFLNCO				0.25497285			
DIEGEI				0.42228632			
DIFLNCOP				0.25097489			
DIFLINTAPI				-0.1582503			
DIFLINGFI				0.39381072			
DIFLINTEXP				0.05153025			
DIFLINTAPROD							
				-0.1075012			
DIFLNTFIMP				0.01180982			
DIFLNTIR				0.20809763			
DIFLNTLEI				0.55772696			
DIFLNTNEER				-0.3960223			
DIFTAPI				-0.1677018			
DIFTAPROD				-0.0849088			
DIFTEINF	-0.0204052	0.01642921	0.01176361	-0.0103887	-0.0599917	-0.0278516	0.01237319
DIFTF_BINF	-0.0400771	0.06257049	0.06176218	-0.0365407	-0.0292752	-0.0464149	0.00096092
DIFTFEXP	0.06168790	-0.1297976	-0.1241695	0.05424295	0.20242274	-0.0803477	0.51240340
DIFTFIMP	0.02161323	-0.0698909	-0.0649028	0.01872046	0.05768799	0.07523780	0.28711573
DIFTILEI				-0.1889340			
DIFTIR				0.18511264			
DIFTNEER				-0.3931211			
GFI	1			0.99889438			
LNCO	0.28611165	1		0.29360984			
LNCOP		0.99767970			-0.1644267		
LNGFI				1		-0.1573381	
LINGET				0.69655783		-0.2057691	
				-0.1573381		-0.2057051	-0.3434023
LNTAPROD				0.30487285			-0.3434023.
LNTEXP							
LNTFIMP				0.67696631			
LNTIR				-0.5249678			
LNTLEI				0.62583100			
LNTNEER				-0.1582211			
TAPI				0.70131981			
TAPROD				-0.1315909			
TEINF				0.14146386			
TF_BINF	-0.1996695	0.12647046	0.10957518	-0.2073948	-0.1691436	-0.2463207	0.10773950
TFEXP	0.35860500	-0.0201120	-0.0175361	0.32718838	0.10480720	-0.3488453	0.99849391
TEIMP	0.70599381	0.02774503	0.05488886	0.69341458	0.53275616	-0.1633580	0.53007796
TIR				-0.5039290			
TLEI				0.62878550			
TNEER				-0.1606014			

1	LNTFIMP	LNTIR	LNTLEI	LNTNEER	TAPI	TAPROD	TEINE
COI	-0.0004377	0.54638845			-0.2307154		
COP	0.03571246	0.50520949	-0.3632051	-0.4634323	-0.1851232	-0.0541934.	0.21876574
DIFCOI							0.59074816
DIFCOP							0.58698041
DIFLNCO	0.13426367	-0.1837908	0.12717733 (0.08584603	0.03959115	-0.0412678.	0.69486857
DIFGFI	0.33246483	-0.3490301	0.37662857 (0.23864216	0.36419011	0.09894074	0.28221215
DIFLNCOP							0.69754726 0.15145939
DIFLNTAPI DIFLNGFI							0.31385760
DIFLNTEXP							0.3345059
DIFLNTAPROD							-0.0115277
DIFLNTFIMP							0.1048508
DIFLNTIR	0.04392869	0.15983820	0.01721687 •	-0.2874927	0.00449884	0.15148373.	0.04841842
DIFLNTLEI							0.06310708
DIFLNTNEER							0.10097238 0.13924159
DIFTAPI DIFTAPROD							0.0163331
DIFTEINF							
DIFTE BINE							0.25460244
DIFTFEXP	0.23442359	-0.0364976	0.05741731	-0.0910134	0.20651874	-0.0797608.	0.3475980
DIFTFIMP							0.1213361
DIFTILE							0.0536859
DIFTIR	0.05622122	0.10233398	0.01/4964/	0.3487398	-0.0140696	0.14144933.	0.04834671 0.10381093
DIFTNEER GFI	0.68757748	-0 5281883	0.62885627	-0 1574958	0 69424734	-0 14 13712	0.12743679
LNCO							0.29042331
LNCOP							0.29456123
LNGFI							0.14146386
LNTAPI							0.03498557
LNTAPROD							0.0524048
LNTEXP	0.51260981						0.1845405
LNTFIMP	1	-0.4650705	0.52532241	0.02197485	0.54252945	-0.1192793.	0.0398774
LNTIR	-0.4650705						0.1337013
LNTLEI	0.52532241						0.08705060
LNTNEER			-				
TAPI		-0.2649793		1			0.07134341
TAPROD		-0.7494194			1		0.03689539
		0.07613998					-0.0473233
TEINF	-0.0398774	-0.1337013	0.08705060 (0.07134341	0.03689539	-0.0473233.	1
TF_BINF	0.08398993	0.19334022	-0.2555252	-0.0953731	-0.1720397	-0.2197573.	0.24054564
TFEXP	0.53553370	-0.1666746	0.14796734	-0.2446138	0.10874322	-0.2746707.	0.1894435
TFIMP	0 99420329	-0 4500756	0.51649492	-0 0001024	0 53604978	-0 1317084	0.0534491
TIR							
TLE							0.0965091
TLEI TNEER	0.52662263	-0.9019003	0.99996995 (0.29075752	0.82906817	0.04433085	0.08815176
	0.52662263 0.01634243	-0.9019003 -0.2592416	0.99996995 0.28764340	0.29075752 0.99987718	0.82906817	0.04433085	0.08815176 0.07247309
	0.52662263	-0.9019003	0.99996995 0.28764340 TEIMP	29075752 <u>0.99987718</u> דו	0.82906817 0.23932845 R	0.04433085 0.16589658	0.08815176
TNEER	0.52662263 0.01634243 TF_BINE	-0.9019003 -0.2592416 TFEXP	0.99996995 (0.28764340 (TEIMP 0.02700	0.29075752 0.99987718 דו 08 0.550	0.82906817 0.23932845 R 5046 -0.4	0.04433085 0.16589658 TLEI 402374	0.08815176 0.07247309 TNEER
COI COP DIFCOI	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.18972	0.29075752 0.99987718 108 0.556 56 0.516 29 -0.143	0.82906817 0.23932845 R 5046 -0.2 5685 -0.2 7946 0.2	0.04433085 0.16589658 TLEI 402374 358629 147244	0.08815176 0.07247309 TNEER -0.423029 -0.458047 0.068829
COI COP DIFCOI DIFCOP	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.18972 0.20370	0.29075752 0.99987718 108 0.556 56 0.516 29 -0.14 106 -0.168	0.82906817 0.23932845 8 6046 -0.4 6685 -0.4 7946 0.4 8120 0.4	0.04433085 0.16589658 TLEI 402374 358629 147244 170515	0.08815176 0.07247309 TNEER -0.423029 -0.458047 0.068829 0.090193
COI COP DIFCOI DIFCOP DIFLNCOI	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.044766	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.18972 0.20370 0.13471	0.29075752 0.99987718 08 0.556 06 0.516 29 -0.145 06 -0.163 13 -0.135	0.82906817 0.23932845 R 5046 -0.5 5685 -0.5 7946 0.5 8120 0.5 3752 0.5	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095	0.08815176 0.07247309 TNEER -0.423029 -0.458047 0.068829 0.090193 0.087128
TNEER COP DIFCOI DIFCOP DIFLNCOI DIFGFI	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.04766 -0.023704	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.18972 0.20370 0.13471 0.33142	0.29075752 0.99987718 18 0.556 6 0.516 29 -0.145 16 -0.166 13 -0.135 25 -0.316 25 -0.	0.82906817 0.23932845 R 5046 -0.5 5685 -0.3 7946 0.5 3120 0.3 3752 0.5 5932 0.3	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401	0.08815176 0.07247309 TNEER -0.423029 -0.458047 0.068829 0.090193 0.087128 0.236499
COI COP DIFCOI DIFCOP DIFLOCOI DIFLINCOI DIFLINCOP	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.044766	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.18972 0.20370 0.13471 0.33142 0.13978	0.29075752 0.99987718 1.8 0.556 56 0.511 59 -0.147 16 -0.166 13 -0.136 25 -0.314 13 -0.144 15 -0.146 15 -0.146 16 -0.146 16 -0.146 16 -0.146 16 -0.146 16 -0.146 16 -0.146 16 -0.146 16 -0.146 16 -0.146 17 -0.146 16 -	0.82906817 0.23932845 R 5046 -0.5 5685 -0.5 7946 0.5 3120 0.5 3752 0.5 5932 0.5 5955 0.5	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095	0.08815176 0.07247309 TNEER -0.423029 -0.458047 0.068829 0.090193 0.087128
TNEER COP DIFCOI DIFCOP DIFLNCOI DIFGFI	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 0.028334 0.025385 -0.012325 -0.225405	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.044766 -0.023704 -0.056082 -0.557364 -0.056306	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.18972 0.13975 0.13471 0.33142 0.13975 0.13975 0.29855 0.29855	0.29075752 0.99987718 18 0.55 6 0.51 19 -0.14 10 -0.16 13 -0.13 25 -0.31 10 -0.14 10 -0.16 13 -0.14 10 -0.30 13 -0.30 13 -0.30 13 -0.30 13 -0.30 13 -0.30 13 -0.30 13 -0.30 14 -0.30 15 -0.50 15 -0.30 15 -0.30	0.82906817 0.23932845 R 5046 -0.5 5685 -0.7 7946 0.5 3752 0.5 5932 0.5 5	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401 142584 019885 356860	0.08815176 0.07247309 TNEER -0.423029 -0.458047 0.068829 0.090193 0.087128 0.236499 0.101426 0.235356 0.250064
TNEER COP DIFCOI DIFCOP DIFLNCOI DIFCRFI DIFLNCOP DIFLNCOP DIFLNTAPI DIFLNGFI DIFLNTAPI DIFLNTAP	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.012325 -0.225405 -0.001742	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.004803 -0.004804 -0.044766 -0.023704 -0.0560822 -0.557364 -0.050366 0.502034	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.18972 0.20370 0.33142 0.33142 0.33142 0.13978 -0.10904 0.22147	0.29075752 0.99987718 TI 0.554 6 0.551 9 -0.147 16 -0.167 13 -0.130 15 -0.310 13 -0.144 10 0.066 12 -0.055 12 -0.055 15 -0.310 15 -0.310 15 -0.310 15 -0.310 15 -0.310 15 -0.300 12 -0.055 15 -0.310 15 -0.300 15 -0.500 15 -0.5000 15 -0.500 15 -0.500 15 -0.5000 15 -0	0.82906817 0.23932845 R 5046 -0.5 5685 -0.5 7946 0.3 3120 0.3 3120 0.3 35932 0.5 5655 0.5 1644 0.5 3201 0.5 2756 0.5	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401 142584 019885 356860 063278	0.08815176 0.07247309 TNEER -0.423029 -0.458047 0.068829 0.090193 0.087128 0.236499 0.101426 0.235356 0.250064 -0.098284
TNEER COP DIFCOI DIFCOP DIFLNCOI DIFLNCOP DIFLNTCP DIFLNTAPI DIFLNTEXP DIFLNTAPROD	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.012325 -0.225405 -0.001742 0.019254	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.023704 -0.023704 -0.023704 -0.056306 0.502034 0.126679	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.18972 0.20370 0.13471 0.33142 0.13975 -0.19975 0.29855 0.29855 0.22147 0.05847	0.29075752 0.99987718 18 0.51 18 0.51 19 -0.14 19 -0.14 19 -0.14 19 -0.14 19 -0.14 19 -0.14 10 -0.06 10 -0.05 10 -0.05	0.82906817 0.23932845 R 5046 -0.5 5685 -0.3 7946 0.3 5932 0.3 5932 0.3 5655 0.1 1644 0.4 3201 0.3 2756 0.1 5942 0.4	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401 142584 019885 356860 063278 036536	0.08815176 0.07247309 TNEER -0.423029 -0.458047 0.068829 0.090193 0.087128 0.236499 0.101426 0.235366 0.2550064 -0.098284 0.004739
TNEER COI COP DIFCOI DIFCOP DIFLNCOI DIFLNCOI DIFLNCOI DIFLNCOP DIFLNTAPI DIFLNTEXP DIFLNTEXP DIFLNTEXP DIFLNTEXP	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.012325 -0.225405 -0.001742	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.023704 -0.023704 -0.056082 -0.557364 -0.056306 0.502034 0.126679 0.299621	0.99996995 0.28764340 TFIMP 0.02700 0.02700 0.02700 0.02700 0.02700 0.02700 0.02700 0.02700 0.02700 0.02700 0.02700 0.02700 0.02147 0.13975 0.13975 0.13975 0.29855 0.22147 0.05847 0.53677	0.29075752 0.99987718 TI 18 0.55 6 0.51 19 -0.14 19 -0.14 10 -0.16 13 -0.13 13 -0.14 10 0.06 13 -0.30 12 -0.03 12 -0.03 16 -0.02 16 -0.02 16 -0.02 16 -0.02 16 -0.02 16 -0.02 17 -0.02 16 -0.02 18 -0.	0.82906817 0.23932845 R 5046 -0.5 5046 -0.5 5046 -0.5 5046 -0.5 5046 -0.5 5046 -0.5 5046 -0.5 5042 -0.5 5042 -0.5 5042 -0.5 5042 -0.5 5042 -0.5 5042 -0.5 5042 -0.5 5042 -0.5 5042 -0.5 5042 -0.5 5042 -0.5 5042 -0.5 5042 -0.5 5042 -0.5 5042 -0.5 5042 -0.5 5042 -0.5 5042 -0.5 5045 -0.5 5046 -0.5	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401 142584 019885 356860 063278 036536 032615	0.08815176 0.07247309 TNEER -0.423029 -0.458047 0.068829 0.090193 0.087128 0.236499 0.101426 0.235356 0.250064 -0.098284 0.014739 0.034759
TNEER COP DIFCOI DIFCOP DIFLNCOI DIFLNCOP DIFLNTCP DIFLNTAPI DIFLNTEXP DIFLNTAPROD	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.012325 -0.012325 -0.001742 0.019254 0.092257	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.023704 -0.023704 -0.023704 -0.056306 0.502034 0.126679	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.18972 0.20370 0.33142 0.33547 0.35477 0.35877 0.558777 0.558777 0.558777 0.55877	0.29075752 0.99987718 18 0.55(6 0.51(9 -0.14) 6 -0.16(13 -0.13) 5 -0.31(13 -0.13) 5 -0.31(13 -0.14) 15 -0.31(13 -0.14) 15 -0.31(13 -0.14) 15 -0.31(13 -0.14) 16 -0.16(13 -0.14) 16 -0.16(16 -0.16) 16 -0.16(17 -0.14) 16 -0.16(16 -0.16) 17 -0.14) 18 -0.14(19 -0.14) 19 -0.14(10 -0.16) 10 -0.16(10 -0.16) 10 -0.06(10 -0.05) 10 -0.05(10 -0.05)	0.82906817 0.23932845 R 6046 -0.5 6685 -0.5 7946 0.5 8752 0.5 8932 0.5 8932 0.5 8655 0.5 1644 0.4 3201 0.5 2756 0.5 1644 0.4 3201 0.5 2756 0.5 1644 0.5 3205 0.5 1644 0.5 1645 0.5 1645 0.5 1645 0.5 1645 0.5 1646 0.5 1646 0.5 1646 0.5 1646 0.5 1647 0.5 1647 0.5 1647 0.5 1648 0.5 1	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401 142584 019885 356860 063278 036536 032615	0.08815176 0.07247309 TNEER -0.423029 -0.458047 0.068829 0.090193 0.087128 0.236499 0.101426 0.235366 0.2550064 -0.098284 0.004739
TNEER COP COP DIFCOI DIFCOP DIFLNCOI DIFLNCOP DIFLNTAPI DIFLNTAPI DIFLNTAPI DIFLNTFIMP DIFLNTFIMP	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.012325 -0.012325 -0.012325 -0.01742 0.019254 0.019254 0.035553 -0.170603 0.00483	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.04766 -0.023704 -0.056306 0.557364 0.126679 0.29621 -0.201052 0.191727 -0.104042	0.99996995 0.28764340 0.02700 0.02700 0.02700 0.02700 0.0305 0.18972 0.33142 0.13471 0.33142 0.13975 0.29855 0.052417 0.052417 0.050622 0.00075	0.29075752 0.99987718 18 0.556 19 0.511 19 0.141 10 -0.161 13 -0.141 10 -0.161 10 -0.051 10 -0.051 10 -0.052 10 -0.	0.82906817 0.23932845 8046 -0.5 8685 -0.5 7946 0.5 8120 0.5 8752 0.5 8655 0.5 1644 0.1 3201 0.5 2756 0.3 5942 0.4 4857 0.1 5942 0.4 4857 0.4 5942	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 377401 142584 019885 358860 063278 036536 032615 019733 886400 301970	0.08815176 0.07247309 TNEER -0.423029 -0.458047 0.068829 0.090193 0.087128 0.236499 0.101426 0.235356 0.255064 -0.098284 0.014739 -0.034759 -0.287361 0.509158 0.129334
TNEER COP DIFCOI DIFCOP DIFLNCOI DIFLNCOP DIFLNCOP DIFLNTAPI DIFLNTRP DIFLNTRP DIFLNTRP DIFLNTIR DIFLNTIR DIFLNTIR DIFLNTIRE DIFLNTIRE DIFLNTINE	$\begin{array}{c} 0.52662263 \dots \\ 0.01634243 \dots \\ TF_BINF \\ 0.147913 \\ 0.127905 \\ 0.026156 \\ 0.015037 \\ 0.030202 \\ -0.228334 \\ 0.025385 \\ -0.012325 \\ -0.025345 \\ -0.001742 \\ 0.019254 \\ 0.092257 \\ 0.035553 \\ -0.170603 \\ 0.0025454 \end{array}$	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.007804 -0.007804 -0.023704 -0.023704 -0.023704 -0.056306 0.502034 0.126679 0.299621 -0.201052 0.191727 -0.104042 -0.558836	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.18972 0.20370 0.13471 0.33142 0.13975 0.13975 0.298555 0.298555 0.298555 0.298555 0.298555 0.298555 0.298555 0.2985555 0.2985555 0.2985555 0.2985555 0.29855555 0.2985555 0.2985555 0.29855555555 0.29855555 0.298555555555555555555555555555555555555	0.29075752 0.99987718 18 0.55(6 0.51(9 -0.14) 16 -0.16(13 -0.13) 15 -0.31(13 -0.14) 16 -0.16(13 -0.14) 16 -0.16(15 -0.31(10 -0.30) 16 -0.020 16 -0.020 16 -0.200 16 -0.200 16 -0.800 16 -0.8000 16 -0.8000 16 -0.8000 16 -0.8000 16 -0.8000 16	0.82906817 0.23932845 R 6046 -0.5 6685 -0.3 7946 0.3 5932 0.3 5932 0.3 5655 0.1 1644 0.4 3201 0.3 2756 0.1 2756 0.4 8063 0.4 3063 0.4 3075 0.4 3	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401 142584 019885 356860 063278 036536 032615 036536 032615 032615 03970 019733 886400 301970 026264	0.08815176 0.07247309 TNEER 0.423029 -0.458047 0.068829 0.090193 0.236499 0.101426 0.235356 0.250064 -0.098284 0.014739 0.034759 -0.287361 0.509158 0.129334 0.238104
TNEER COI COP DIFCOI DIFCOP DIFLNCOI DIFLNCOI DIFLNCOI DIFLNCOI DIFLNCOP DIFLNTAPI DIFLNTEXP DIFLNTEXP DIFLNTR DIFLNTRE DIFLNTRE DIFLNTRE DIFLNTRE DIFLNTRE	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 0.228334 0.025385 -0.0125405 -0.01742 0.019254 0.092257 0.035553 -0.025455 -0.025454 0.025454 0.056172	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.023704 -0.023704 -0.056082 -0.057364 -0.056306 0.502034 0.126679 0.299621 -0.201052 0.191727 -0.104042 -0.558836 0.118632	0.99996995 0.28764340 TFIMP 0.02700 0.02700 0.02700 0.02700 0.02700 0.02700 0.02700 0.02700 0.030471 0.33142 0.13979 0.10904 0.22147 0.05847 0.05847 0.05847 0.05847 0.05867 0.05847 0.53677 0.05241 0.53677 0.05241 0.53677 0.05241 0.53677 0.05847 0.05847 0.05847 0.05847 0.05847 0.05847 0.05847 0.05867 0	0.29075752 0.99987718 TI 18 0.555 66 0.511 29 -0.14 19 -0.16 13 -0.13 25 -0.31 10 -0.14 10 -0.16 13 -0.14 10 -0.16 13 -0.13 15 -0.31 15 -0.31 16 -0.20 16 -0.66 10 -0.30 10 -0.55 10 -0.15 10 -0.5 10 -0	0.82906817 0.23932845 R 5046 -0.5 5046 -0.5 5046 -0.5 5046 -0.5 5046 -0.5 5042 0.5 5052 0.5 5052 0.5 5055 0.5 1644 0.5 3201 0.5 5042 0.5 5045 0.5 5045 0.5 5045 0.5 5045 0.5	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401 142584 01985 356860 063278 036536 036536 032615 019733 886400 301970 026264 032872	0.08815176 0.07247309 TNEER -0.423029 -0.458047 0.068829 0.236499 0.236499 0.101426 0.235356 0.250064 -0.098284 0.014739 0.034759 -0.287361 0.509158 0.129334 0.238104 0.005208
TNEER COI COP DIFCOI DIFCOI DIFCOOP DIFLNCOI DIFLNCOP DIFLNTOP DIFLNTAPI DIFLNTRIMP DIFLNTRIMP DIFLNTRIMP DIFLNTRER DIFLNTRER DIFLAPROD DIFTEINF	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.012325 -0.01742 0.012325 -0.01742 0.019254 0.092257 0.035553 -0.170603 0.025454 0.056172 0.106765	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.023704 -0.023704 -0.023704 -0.056082 -0.557364 0.502034 0.126679 0.299621 -0.2010522 0.191727 -0.104042 -0.558836 0.118632 0.006529	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.18972 0.20370 0.33142 0.33142 0.33142 0.33142 0.33142 0.33142 0.29855 0.29855 0.29855 0.29855 0.29855 0.29855 0.29855 0.29855 0.29855 0.29855 0.29855 0.29855 0.29855 0.29855 0.29855 0.29855 0.29855 0.29877 0.50622 0.50524 0.50545 0.50524 0.50524 0.50524 0.50524 0.50524 0.50524 0.50524 0.50524 0.50524 0.50524 0.50524 0.50524 0.50524 0.50524 0.50524 0.50545 0.50555 0.50555 0.505555 0.505555 0.5055555 0.505555555555	0.29075752 0.99987718 18 0.55(6 0.51(9 -0.14; 16 -0.16(13 -0.13; 15 -0.31(13 -0.14; 16 -0.16(13 -0.13; 15 -0.31(13 -0.14; 16 -0.16(13 -0.13; 15 -0.31(10 -0.16(10 -0.1	0.82906817 0.23932845 R 6046 -0.5 6685 -0.5 7946 0.3 8752 0.5 8932 0.5 8655 0.5 1644 0.4 3201 0.5 2756 0.4 1644 0.4 3201 0.5 2756 0.4 3063 0.4 3063 0.4 3092 0.5 3065 0.5 3066 0.5 3060 0.5 3	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 377401 142584 019885 356860 036536 032615 019733 886400 019733 886400 01970 026264 032872 008045	0.08815176 0.07247309 TNEER 0.423029 -0.458047 0.068829 0.090193 0.236499 0.101426 0.235356 0.235356 0.235356 0.250064 -0.098284 0.014739 0.034759 -0.287361 0.509158 0.129334 0.238104 0.005208 0.077308
TNEER COI COP DIFCOI DIFCOP DIFLNCOI DIFLNCOP DIFLNCOP DIFLNTAPI DIFLNTR DIFLNTERP DIFLNTRR DIFLNTLEI DIFLNTLEI DIFLNTLEI DIFLNTLEI DIFLNTLEI DIFLNTLEI DIFLNTLEI DIFLNTLEI DIFLNTLEI DIFLTPROD DIFTEINF	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 0.228334 0.025385 -0.0125405 -0.01742 0.019254 0.092257 0.035553 -0.025455 -0.025454 0.025454 0.056172	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.023704 -0.023704 -0.056082 -0.057364 -0.056306 0.502034 0.126679 0.299621 -0.201052 0.191727 -0.104042 -0.558836 0.118632	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.13471 0.33142 0.33142 0.33142 0.33142 0.33142 0.33142 0.33142 0.33142 0.29855 0.22147 0.50847 0.50847 0.50622 0.005241 0.50622 0.01075 0.011675 0.011675 0.011675 0.00861 0.11055	0.29075752 0.99987718 TI 18 0.556 6 0.511 9 -0.14 9 -0.20 9 -0.05 9 -0.05 9 -0.05 9 -0.03 9 -0.05 9 -0.03 9 -0.03 9 -0.05 9 -0.03 9 -0.03 9 -0.05 9 -0.03 9 -0.03 9 -0.05 9 -0.03 9 -0.03 9 -0.03 9 -0.05 9 -0.03 9 -0.03 9 -0.03 9 -0.05 9 -0.03 9 -0	0.82906817 0.23932845 R 5046 -0.5 5056 -0.3 7946 0.3 5932 0.3 5932 0.3 5932 0.3 5932 0.3 5932 0.3 5942 0.4 2756 0.4 3063 0.4 3063 0.4 3063 0.4 3052 0.3 3068 0.4 3068 0.4 30544 -0.4 3520 -0.4 35	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401 142584 019885 356860 063278 036536 032615 032615 032615 032615 032640 032872 008045 046337	0.08815176 0.07247309 TNEER -0.423029 -0.458047 0.068829 0.236499 0.236499 0.101426 0.235356 0.250064 -0.098284 0.014739 0.034759 -0.287361 0.509158 0.129334 0.238104 0.005208
TNEER COI COP DIFCOI DIFCOI DIFCOOP DIFLNCOI DIFLNCOI DIFLNCOP DIFLNTAPI DIFLNTAPI DIFLNTRIMP DIFLNTRIMP DIFLNTRER DIFLNTRER DIFLAPROD DIFTAPROD DIFTEINF	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.0172325 -0.01742 0.019254 0.092257 0.035553 -0.170603 0.000483 -0.25454 0.056172 0.106765 0.642608	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.023704 -0.023704 -0.023704 -0.056306 0.50234 0.126679 0.299621 -0.201052 0.191727 -0.104042 -0.558836 0.118632 0.006529 -3.44E-05	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.18972 0.20370 0.13471 0.33142 0.13975 0.13975 0.298555 0.298555 0.298555 0.298555 0.298555 0.298555 0.2985555 0.2985555 0.2985555 0.2985555 0.2985555555 0.298555555555555555555555555555555555555	0.29075752 0.99987718 1.8 0.554 6 0.511 1.9 -0.14 1.9 -0.05 1.9 -0.02 1.9 -0.03 1.9 -	0.82906817 0.23932845 6046 -0.5 6685 -0.5 7946 0.5 8120 0.5 8120 0.5 8555 0.5 1644 0.4 82756 0.1 5942 0.5 1644 0.4 3201 0.5 2756 0.1 5942 0.5 1644 0.4 3063 0.1 3063 0.1 3063 0.1 3077 0.5 3077 0.5 3686 0.4 3686 0.4 3684 0.4 368	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401 142584 019885 356860 063278 036536 032615 032615 032615 032615 03264 032872 008045 046337	0.08815176 0.07247309 TNEER -0.423029 -0.458047 0.068829 0.090193 0.087128 0.236499 0.101426 0.235366 0.250064 -0.098284 0.014739 0.034759 -0.287361 0.509158 0.129334 0.233104 0.035208 0.077308 0.011026
TNEER COI COP DIFCOI DIFCOP DIFLNCOI DIFLNCOI DIFLNCOI DIFLNCOP DIFLNGFI DIFLNTERP DIFLNTERP DIFLNTERP DIFLNTRRP DIFLNTRRP DIFLNTRRP DIFLNTRRP DIFLNTRRP DIFLNTRRP DIFLNTRRP DIFLNTRRP DIFLNTRRP DIFTPROD DIFTENPF DIFTENPF DIFTENPF	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 0.228334 0.025385 -0.0125405 -0.01742 0.019254 0.092257 0.035553 -0.0254554 0.0254544 0.056172 0.106765 0.642608 -0.000989 0.061165 -0.076474	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.044766 -0.0237044 -0.056306 0.502034 0.126679 0.299621 -0.201052 0.104042 -0.558836 0.118632 0.006529 -3.44E-05 0.504391 0.288164 -0.130355	0.99996995 0.28764340 TFIMP 0.00700 0.06305 0.13972 0.13972 0.13975 0.13975 0.13975 0.13975 0.13975 0.29855 0.29855 0.22147 0.53677 0.05847 0.53677 0.05847 0.00758 00	0.29075752 0.99987718 TI 18 0.555 6 0.511 29 -0.14 19 -0.16 13 -0.13 25 -0.31 15 -0.30 12 -0.05 16 -0.02 16 -0.02 16 -0.03 16	0.82906817 0.23932845 R 5046 -0.5 5046 -0.5 5046 -0.5 5046 -0.5 5042 -0.5 5042 -0.5 5052 -0.5 5052 -0.5 5052 -0.5 5042 -0.5 5042 -0.5 5042 -0.5 5044 -0.5 5046 -0.5 5046 -0.5 5045 -0.5	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401 142584 019885 356860 063278 036536 036536 036536 036536 036536 032615 019733 886400 301970 026264 032872 008045 046337 058833 034442 204437	0.08815176 0.07247309 TNEER -0.423029 -0.458047 0.068829 0.236499 0.101426 0.235356 0.250064 -0.098284 0.014739 0.034759 -0.287361 0.509158 0.129334 0.2387461 0.509158 0.129334 0.2387461 0.509158 0.129334 0.2387461 0.509158 0.129334 0.238104 0.005208 0.077308 0.011026 -0.094515 0.037257 0.076499
TNEER COI COP DIFCOI DIFCOI DIFCOP DIFLNCOI DIFLNCOI DIFLNTOP DIFLNTAPI DIFLNTAPI DIFLNTRIMP DIFLNTRIMP DIFLNTRIMP DIFLNTRIMP DIFLNTRIMP DIFLNTRER DIFLAPROD DIFTENP DIFTENP DIFTENP DIFTENP DIFTENP DIFTENP DIFTENP DIFTENP DIFTENP DIFTENP DIFTENP DIFTENP DIFTENP DIFTENP DIFTENP	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.012325 -0.017424 0.019254 0.019254 0.019254 0.019255 -0.0176426 0.042608 -0.00989 0.061165 -0.076474 0.010472	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.043704 -0.023704 -0.023704 -0.056306 0.502034 0.126679 0.299621 -0.201052 0.191727 -0.104042 -0.558836 0.118632 0.01258836 0.118632 0.006529 -3.44E-05 0.504391 0.288164 -0.130355 -0.150904	0.99996995 0.28764340 TFIMP 0.06305 0.18972 0.20370 0.33142 0.33242 0.33242 0.33242 0.33242 0.33242 0.33242 0.33242 0.33452 0.33452 0.33452 0.33452 0.33452 0.33452 0.33452 0.33452 0.33452 0.33452 0.33452 0.33452 0.33452 0.33452 0.33452 0.33452 0.03455 0.004452 0.004552 0.004552 0.0045555 0.0045555 0.0045555 0.0045555 0.0045555 0.0045555 0.0045555 0.0045555 0.0045555 0.0045555 0.00455555 0.00455555 0.00455555 0.00455555 0.00455555 0.0045555555555555555555555555555555555	0.29075752 0.99987718 18 0.55(6 0.51(9 -0.14) 16 -0.16(13 -0.13) 15 -0.31(13 -0.13) 15 -0.31(13 -0.13) 15 -0.31(13 -0.14) 16 -0.020 17 -0.86(10 -0.20) 16 -0.021 16 -0.021 16 -0.031 15 -0.0	0.82906817 0.23932845 R 6046 -0.5 5046 -0.5 5046 -0.5 5042 0.3 5152 0.5 5055 0.5 1644 0.4 5942 0.1 1644 0.4 5942 0.1 1644 0.4 5942 0.1 1644 0.4 15942 0.1 15942 0.1 1644 0.4 15942 0.1 15942 0.1 15942 0.1 1644 0.4 15942 0.1 15942 0.1 1	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 377401 142584 019885 36860 032615 036536 032615 036536 032615 036536 032624 032872 008045 046337 00845 046337 058833 034442 204437 019746	0.08815176 0.07247309 TNEER 0.423029 -0.458047 0.068829 0.090193 0.236499 0.101426 0.235356 0.250064 -0.098284 0.014739 0.034759 -0.287361 0.509158 0.129334 0.238104 0.238104 0.05208 0.077308 0.011026 -0.094515 0.037257 0.076499 -0.350056
TNEER COI COP DIFCOI DIFCOP DIFLNCOI DIFLNCOP DIFLNCOP DIFLNTAPI DIFLNTAPI DIFLNTR DIFLNTR DIFLNTIR DIFLNTIR DIFLNTIR DIFLNTIRER DIFTAPI DIFTAPI DIFTAPI DIFTENF DIFTENF DIFTENF DIFTENF DIFTENF DIFTENF DIFTENF DIFTENF DIFTENF DIFTIER	$\begin{array}{c} 0.52662263 \dots \\ 0.01634243 \dots \\ TF_BINF \\ 0.147913 \\ 0.127905 \\ 0.026156 \\ 0.015037 \\ 0.030202 \\ -0.228334 \\ 0.025385 \\ -0.017325 \\ -0.225405 \\ -0.001742 \\ 0.019254 \\ 0.092257 \\ 0.035553 \\ -0.170603 \\ 0.025454 \\ 0.056172 \\ 0.106765 \\ 0.642608 \\ -0.00989 \\ 0.061165 \\ -0.076474 \\ 0.010472 \\ -0.008133 \end{array}$	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.023704 -0.023704 -0.023704 -0.056306 0.50234 0.126679 0.299621 -0.201052 0.191727 -0.104042 -0.558836 0.118632 0.006529 -3.44E-05 0.508391 0.288164 -0.130355 -0.150904 -0.099292	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.13471 0.33142 0.33142 0.33142 0.33142 0.33142 0.33142 0.33142 0.33142 0.33142 0.33142 0.33147 0.33142 0.33147 0.29856 0.29856 0.29856 0.052417 0.50622 0.005446 0.11055 0.23463 0.24463 0.24463 0.24463 0.24463	0.29075752 0.99987718 TT 18 0.556 6 0.511 19 -0.14 19 -0.14 19 -0.14 19 -0.13 15 -0.31 10 -0.30 15 -0.31 10 -0.30 12 -0.05 16 -0.022 16 -0.020 16 -0.03 16 -0.04 18 -0.03 18 -0.04 18 -0.03 18 -0.04 18 -0.03 18 -0.04 18 -0.03 18 -0.04 18 -0.03 18 -0.04 18 -0.03 18 -0.04 18 -0.03 18 -0.04 18 -0.03 18 -0.04 18 -0.03 18 -0.04 18 -0.03 18 -0.04 18 -0.04 18 -0.03 18 -0.04 18	0.82906817 0.23932845 R 5046 -0.5 5046 -0.5 5046 -0.5 5046 -0.5 5042 -0.5 5042 -0.5 5052 -0.5 5052 -0.5 5052 -0.5 5052 -0.5 5052 -0.5 5042 -0.5 5042 -0.5 5042 -0.5 5044 -0.5 5046 -0.5 5045 -0.5	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401 142584 019885 356860 063278 036536 032615 019733 886400 301970 026264 032872 008045 046337 058833 058437 058833 034442 204437 019746 298390	0.08815176 0.07247309,. TNEER -0.423029 -0.458047 0.068829 0.090193 0.087128 0.236499 0.101426 0.235356 0.250064 -0.098284 0.014739 0.034759 -0.287361 0.509158 0.129334 0.034758 0.129334 0.035208 0.077308 0.077308 0.011026 -0.094515 0.037257 0.076499 -0.350056 0.131486
TNEER COI COP DIFCOI DIFCOP DIFLOCOI DIFCOP DIFLINCOI DIFLINCOI DIFLINCOI DIFLINCOI DIFLINCOP DIFLINTEXP DIFLINTEXP DIFLINTEXP DIFLINTEXP DIFLINTER DIFLINTE DIFLINTE DIFLINF DIFTEXP DIFTEXP DIFTEXP DIFTEXP DIFTEXP DIFTEXP DIFTER DIFTER DIFTIER OIFTILEI DIFTIER OIFTILES GFI	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 0.228334 0.025385 -0.012325 -0.225405 -0.01742 0.019254 0.092257 0.035553 -0.019254 0.092553 -0.025454 0.056172 0.106765 0.642608 -0.000989 0.061165 -0.076474 0.010472 -0.076474 0.010472 -0.008133 -0.199670	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.044766 -0.0237044 -0.056306 0.502034 0.1567364 -0.557364 -0.557364 -0.557364 -0.201052 0.191727 -0.104042 -0.5588366 0.118632 0.006529 -3.44E-05 0.504391 0.288164 -0.130355 -0.150904 -0.358805	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.13471 0.33142 0.33142 0.33142 0.33142 0.33142 0.33142 0.33142 0.33142 0.33142 0.33142 0.33547 0.05241 0.53677 0.05241 0.53677 0.05241 0.53677 0.05847 0.05847 0.05847 0.05846 0.11055 0.23463 0.23463 0.23463 0.23463 0.23463 0.23463 0.23463 0.02759	0.29075752 0.99987718 TI 18 0.555 6 0.511 19 -0.14 19 -0.14 19 -0.14 19 -0.14 19 -0.14 19 -0.14 19 -0.14 10 -0.14 10 -0.16 13 -0.14 15 -0.31 10 -0.30 12 -0.05 14 -0.03 16	0.82906817 0.23932845 R 5046 -0.5 5046 -0.5 5046 -0.5 5046 -0.5 5046 -0.5 5042 0.5 5052 0.5 5052 0.5 5052 0.5 5052 0.5 5054 0.5 5042 0.5 5054 0.5 5054 0.5 5054 0.5 5054 0.5 5054 0.5 5054 0.5 5054 0.5 5056 0.5	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401 142584 019885 356860 063278 036536 036536 036536 036536 036536 032615 019733 886400 301970 026264 032872 008045 046337 058833 034442 204437 019746 298390 631699	0.08815176 0.07247309 TNEER -0.423029 -0.458047 0.068829 0.236499 0.101426 0.235356 0.250064 -0.098284 0.014739 0.034759 -0.287361 0.509158 0.129334 0.2387361 0.509158 0.129334 0.2387361 0.509158 0.129334 0.2387361 0.509158 0.129334 0.2387361 0.2387361 0.509158 0.129334 0.2387361 0.3509158 0.131486 -0.160023
TNEER COI COP DIFCOI DIFCOI DIFCOP DIFLNCOI DIFLNCOI DIFLNTOP DIFLNTOP DIFLNTAPI DIFLNTRIMP DIFLNTRIMP DIFLNTRIMP DIFLNTRIMP DIFLNTRER DIFTAPROD DIFTF_BINF DIFTFENP DIFTFENP DIFTFENP DIFTFENP DIFTFENP DIFTFENP DIFTFENP DIFTFENP DIFTFENP DIFTFENP DIFTFENP DIFTFENP DIFTFENP DIFTFENP DIFTFENP DIFTER DIFTRER GFI	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.012325 -0.01742 0.019254 0.092257 0.035553 -0.0174603 0.0254544 0.056172 0.106765 0.642608 -0.076474 0.010472 -0.008133 -0.126470	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.04766 -0.023704 -0.0557364 0.557364 0.557364 0.55034 0.126679 0.290621 -0.201052 0.191727 -0.104042 -0.558836 0.118632 0.006529 -3.44E-05 0.554391 0.288164 -0.150904 -0.150905 -0.150904 -0.099292 0.358605 -0.020112	0.99996995 0.28764340 TFIMP 0.06305 0.18972 0.20370 0.13971 0.33142 0.13975 0.13975 0.29859 0.00759 0.00759 0.00759 0.00759 0.00759 0.00759 0.00759 0.00759 0.00759 0.00759 0.002774	0.29075752 0.99987718 1.8 0.55(0.6 0.51(1.9 -0.14; 1.9 -0.05; 1.9	0.82906817 0.23932845 R 6046 -0.5 5046 -0.5 5046 -0.5 5032 0.5 5932 0.5 5942 0.5 5946 0.5	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 377401 142584 019885 356860 032615 032872 008045 045833 034422 04437 019746 298390 0319740 019746 298390 0319740 019746 298390 0319740 019746 298390 0319740 019746 298390 0319740 019746 298390 0319740 019746 298390 0319740 019746 298390 0319740 019746 298390 0319740 019746 298390 03169 019746 298390 03169 019746 298390 03169 019746 298390 03169 019746 298390 03169 019746 298390 03169 019746 298390 03169 019746 298390 03169 019746 298390 03169 019746 298390 03169 019746 01	0.08815176 0.07247309 TNEER 0.423029 -0.458047 0.068829 0.090193 0.236499 0.101426 0.235356 0.250064 -0.098284 0.014739 0.034759 -0.287361 0.509158 0.129334 0.238104 0.238104 0.238104 0.005208 0.077308 0.011026 0.094515 0.037257 0.037257 0.0376499 -0.350056 0.131486 0.156394
TNEER COI COP DIFCOI DIFCOP DIFLNCOI DIFCNCP DIFLNCOP DIFLNTAPI DIFLNTR DIFLNTR DIFLNTR DIFLNTIR DIFLNTIR DIFLNTIR DIFLNTIR DIFLNTIR DIFLNTIR DIFLNTRER DIFTAPI DIFTENF DIFTENF DIFTENF DIFTENF DIFTER DIFTER DIFTIRE DIFTIRE DIFTIRE CFI LINCOI LINCOP	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.017325 -0.025454 0.092257 0.035553 -0.170603 0.025454 0.025454 0.056172 0.106765 -0.00989 0.0642608 -0.00989 0.064165 -0.076474 0.076474 0.010472 -0.008133 -0.199670 0.126470	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.007804 -0.007804 -0.023704 -0.023704 -0.023704 -0.056306 0.50234 0.126679 0.299621 -0.201052 0.191727 -0.10442 -0.558836 0.118632 0.006529 -3.44E-05 0.508355 -0.130904 -0.130355 -0.150904 -0.358805 -0.150904 -0.358805 -0.150904 -0.358805 -0.150904 -0.358805 -0.020112 -0.017536	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.18972 0.20370 0.13471 0.33142 0.13975 0.13975 0.29855 0.005488 0.29855 0.02774 0.054855 0.054855 0.05485 0.054855 0.054855 0.054855 0.05485 0.054	0.29075752 0.99987718 1.8 0.55(6 0.51(1.9 -0.14) 1.9 -0.14(1.9 -0.14) 1.9 -0.04(1.9 -0.05) 1.9 -0.02(1.9 -0.04) 1.9 -0.04(1.9	0.82906817 0.23932845 R 6046 -0.5 5685 -0.3 7946 0.5 5932 0.3 5932 0.3 5655 0.1 1644 0.4 3201 0.3 2756 0.1 2756 0.1 3063 0.4 3063 0.4 3063 0.4 3063 0.4 3250 -0.1 3686 0.4 3520 -0.1 3686 0.4 3686 0.4 3520 -0.1 3686 0.4 3686 0.4 3520 -0.1 3686 0.4 3686 0.4 3686 0.4 3686 0.4 3680 0.4 3880 0.4 3800 0	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401 142584 019885 356860 063278 036536 032615 032615 032615 032642 032872 008045 046337 058833 054442 204437 019746 298390 034442 204437 019746 298390 034442 204437 019746 298390 03442 204437 019746 298390 03442 204437 019746 298390 03442 204437 11009	0.08815176 0.07247309 TNEER 0.423029 -0.458047 0.068829 0.090193 0.236499 0.101426 0.235356 0.250064 -0.098284 0.014739 0.034759 -0.287361 0.509158 0.129334 0.238104 0.035208 0.11026 -0.094515 0.037257 0.076499 0.35056 0.131486 -0.160023 0.356394 0.380936
TNEER COI COP DIFCOI DIFCOP DIFLNCOI DIFCOP DIFLNCOI DIFLNCOI DIFLNTAPI DIFLNTEXP DIFLNTEXP DIFLNTRPI DIFLNTLEI DIFLNTLEI DIFLNTER DIFLTPINF DIFTEXP	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 0.228334 0.025385 -0.0172325 -0.225405 -0.001742 0.019254 0.092257 0.035553 -0.170603 0.000483 -0.25454 0.056172 0.106765 0.642608 -0.00989 0.061165 -0.076474 0.010472 -0.008133 -0.199670 0.126470 0.126470 0.126470 0.126470 0.126775 -0.207395	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.04803 -0.023704 -0.056306 0.502034 0.1567364 -0.056306 0.502034 0.126679 0.299621 -0.201052 0.191727 -0.104042 -0.5588366 0.118632 0.006529 -3.44E-05 0.504391 0.288164 -0.130355 -0.150904 -0.130355 -0.150904 -0.020112 -0.07536 0.327188	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.13471 0.33142 0.33142 0.33142 0.33142 0.33142 0.33142 0.33142 0.33142 0.33142 0.33142 0.33547 0.29856 0.22147 0.50622 0.05241 0.50622 0.05241 0.50622 0.054861 0.11055 0.23463 0.23463 0.23463 0.23463 0.02756 0.011075 0.02756 0.02756 0.02756 0.02756 0.02756 0.02756 0.02756 0.02756 0.02756 0.02756 0.02756 0.02756 0.02756 0.02774 0.05488 0.05488 0.05488	0.29075752 0.99987718 TT 18 0.556 6 0.511 9 -0.14 9 -0.14 9 -0.14 9 -0.14 9 -0.14 9 -0.14 9 -0.14 9 -0.14 10 -0.06 13 -0.14 10 -0.03 15 -0.30 12 -0.05 16 -0.020 16 -0.020 16 -0.021 16 -0.03 16 -0.05 16 -0.05	0.82906817 0.23932845 R 5046 -0.5 5046 -0.5 5046 -0.5 5046 -0.5 5046 -0.5 5042 -0.5 5052 -0.5 5052 -0.5 5052 -0.5 5052 -0.5 5052 -0.5 5054 -0.5	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401 142584 019885 356860 063278 036536 036536 036536 036536 036536 032615 019733 886400 301970 026264 032872 008045 046337 058833 034442 204437 019746 298390 631699 149224 141009 632786	0.08815176 0.07247309 TNEER 0.423029 -0.458047 0.068829 0.090193 0.236499 0.101426 0.235366 0.255064 0.098284 0.014739 0.034759 -0.287361 0.509158 0.129334 0.238104 0.005208 0.077308 0.011026 -0.094515 0.037257 0.037257 0.036499 -0.350056 0.131486 -0.160023 0.386394 0.380936 0.160061
TNEER COI COP DIFCOI DIFCOP DIFLNCOI DIFCNCP DIFLNCOP DIFLNTAPI DIFLNTR DIFLNTR DIFLNTR DIFLNTIR DIFLNTIR DIFLNTIR DIFLNTIR DIFLNTIR DIFLNTIR DIFLNTRER DIFTAPI DIFTENF DIFTENF DIFTENF DIFTENF DIFTER DIFTER DIFTIRE DIFTIRE DIFTIRE CFI LINCOI LINCOP	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.017325 -0.025454 0.092257 0.035553 -0.170603 0.025454 0.025454 0.056172 0.106765 -0.008133 -0.109575	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.007804 -0.007804 -0.023704 -0.023704 -0.023704 -0.056306 0.50234 0.126679 0.299621 -0.201052 0.191727 -0.10442 -0.558836 0.118632 0.006529 -3.44E-05 0.508355 -0.130904 -0.130355 -0.150904 -0.358805 -0.150904 -0.358805 -0.150904 -0.358805 -0.150904 -0.358805 -0.020112 -0.017536	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.18972 0.20370 0.33142 0.53275 0.02774 0.052441 0.052441 0.05245 0.02774 0.054488 0.053275 0.052441 0.53275	0.29075752 0.99987718 18 0.55(6 0.51(9 -0.14; 10 -0.04; 10 -0.05; 10 -0.03; 10 -0.05; 10 -0.03; 10 -0.05; 10 -0.03; 10 -0.05; 10 -0.03; 10 -0.05; 10 -0.0	0.82906817 0.23932845 R 6046 -0.5 5046 -0.5 5046 -0.5 5032 0.5 5032 0.5 5042 0.5 5040 0.5	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 377401 142584 019885 356860 036536 032615 036536 032615 036536 032615 036536 032615 036536 032615 036536 032872 008045 046337 058833 034442 204437 019746 298390 058833 034442 204437 019746 298390 058836 032672 019746 298390 058836 032672 019746 298390 058836 032672 019746 298390 058836 032672 019746 298390 058836 032672 019746 298390 058836 032672 019746 298390 058836 032672 019746 298390 058836 032672 0058836 032672 0058836 032672 0058836 032672 0058836 032672 0058836 032672 0058836 032672 0058836 032672 0058836 032672 0058836 032672 005885 032675 005885 032675 005885 032675 005885 032675 005885	0.08815176 0.07247309 TNEER 0.423029 -0.458047 0.068829 0.090193 0.236499 0.101426 0.235356 0.250064 -0.098284 0.014739 0.034759 -0.287361 0.509158 0.129334 0.238104 0.035208 0.11026 -0.094515 0.037257 0.076499 0.35056 0.131486 -0.160023 0.356394 0.380936
TNEER COI COP DIFCOI DIFCOI DIFCOI DIFLNCOI DIFLNCOI DIFLNTOP DIFLNTOP DIFLNTAPI DIFLNTRIMP DIFLNTRIMP DIFLNTRER DIFLAPROD DIFLAPROD DIFTENP DIFTAPROD DIFTENP DIFTENP DIFTENP DIFTENP DIFTENP DIFTER DIFTIEI DIFTIER	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.012325 -0.01742 0.012325 -0.01742 0.019254 0.092543 -0.017463 0.025454 0.056172 0.106765 0.642608 -0.076474 0.010472 -0.008133 -0.126470 0.126470 0.12955 -0.207395 -0.207395 -0.207395	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.023704 -0.023704 -0.023704 -0.056306 0.502034 0.126679 0.299621 -0.201052 0.191727 -0.104042 -0.558836 0.118632 0.006529 -3.44E-05 0.504391 0.288164 -0.150904 -0.288164 -0.150904 -0.288164 -0.150904 -0.288164 -0.150904 -0.288164 -0.150904 -0.288164 -0.150904 -0.288164 -0.150904 -0.288164 -0.150904 -0.288164 -0.150904 -0.288164 -0.150904 -0.288164 -0.150904 -0.150904 -0.288164 -0.150904 -0.150904 -0.150904 -0.020112 -0.017536 0.327188 0.104807	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.18972 0.20370 0.13471 0.33142 0.13975 0.03142 0.33142 0.13975 0.29855 0.29755 0.005488 0.005488 0.69341 0.53275 0.16335 0.163355 0.163555 0.16355 0.165555 0.165555 0.165555 0.165555 0.165555 0.165555 0.165555 0.165555 0.165555 0.1655555 0.1655555 0.165555 0.165555 0.1655555 0.1655555 0.1655555 0.1655555 0.1655555 0.165555555 0.165555555 0.16555555 0.1655555555555 0.1655	0.29075752 0.99987718 TT 0.556 0.0.514 0.0.514 0.0.143 0.0.143 0.0.143 0.0.143 0.0.143 0.0.0163 0.0.066 0.0.020 0.0.0307 0.0.007 0.0.007 0.0.007 0.0.007 0.0.0077 0.0.0077 0.0.0077 0.0.0077 0.0.0077 0.0.007	0.82906817 0.23932845 R 6046 -0.5 5685 -0.3 7946 0.3 5932 0.3 5932 0.3 5655 0.1 1644 0.4 3201 0.3 2756 0.1 2756 0.1 3063 0.4 3063 0.4 3063 0.4 3250 -0.1 3686 0.4 3520 -0.1 3686 0.4 3520 -0.1 3686 0.4 3520 -0.1 3686 0.4 3520 -0.1 3686 0.4 3520 -0.1 3684 0.4 3520 -0.1 3686 0.4 3520 -0.1 3686 0.4 3520 -0.1 3686 0.4 3520 -0.1 3686 0.4 36898 -0.2 7116 0.4 3283 -0.2 3283 -0.2 331 -0.3 3929 0.6 0090 0.6	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401 142584 019885 356860 063278 036536 032615 032615 032615 03264 032872 008045 046337 058833 034442 204437 019746 298390 034442 204437 019746 298390 034442 204437 019746 298390 034442 204437 019746 298390 034442 204437 019746 298390 034442 204437 019746 298390 03446 205603	0.08815176 0.07247309 TNEER 0.423029 -0.458047 0.068829 0.090193 0.236499 0.101426 0.235356 0.235356 0.235356 0.250064 -0.098284 0.014739 0.034759 -0.237361 0.509158 0.129334 0.238104 0.238104 0.238104 0.005208 0.077308 0.011026 0.094515 0.037257 0.037257 0.0376499 -0.350056 0.131486 0.160001 0.245495
TNEER COI COP DIFCOI DIFCOP DIFLNCOI DIFLNCOI DIFLNCOI DIFLNCOI DIFLNCOP DIFLNTAPI DIFLNTEXP DIFLNTEXP DIFLNTEXP DIFLNTRER DIFLNTRER DIFLNTRER DIFTAPROD DIFTERP DIFTNEER GFI LNCOP LNCAP	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.017325 -0.025454 0.092257 0.035553 -0.170603 0.025454 0.025454 0.056172 0.106765 0.642608 -0.00989 0.064165 -0.076474 0.076474 0.010472 -0.008133 -0.199670 0.12957 -0.207395 -0.207395 -0.207395 -0.2046321	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.043704 -0.023704 -0.023704 -0.0257364 -0.056306 0.502034 0.126679 0.299621 -0.201052 0.191727 -0.104042 -0.558836 0.118632 0.010528 -0.44E-05 0.504391 0.288164 -0.130355 -0.020112 -0.020112 -0.020112 -0.017536 0.327188 0.104807 -0.348845 0.998494 0.535534	0.99996995 0.28764340 TFIMP 0.06305 0.18972 0.20370 0.13471 0.33142 0.29855 0.29855 0.29855 0.29855 0.29855 0.29855 0.29855 0.29855 0.29855 0.29855 0.33142 0.53847 0.532755 0.53007 0.99420	0.29075752 0.99987718 1.8 0.55(0.6 0.51(1.9 -0.14; 1.9	0.82906817 0.23932845 R 6046 -0.5 6046 -0.5 5046 -0.5 5042 -0.5 5052 -0.5 5052 -0.5 5052 -0.5 5052 -0.5 50542 -0.5 5042 -0.5 5042 -0.5 5042 -0.5 5054 -0.5 5055 -0.5 5054 -0.5 5055 -0.5 5054 -0.5 5054 -0.5 5054 -0.5	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 377401 142584 019885 356860 036536 036536 036536 036536 036536 032615 036536 032615 036536 032612 019733 886400 036536 032624 032872 008045 026264 032872 036437 0364437 019746 298390 058833 034442 204437 019746 298390 34445 208786 228786 228786 228786 228786 228786 228786 228786 228786 228786 228786 228786 228786 228786 228786 228786 228786 228785 228785 226023	0.08815176 0.07247309 TNEER 0.423029 -0.458047 0.068829 0.090193 0.236499 0.101426 0.235356 0.250064 -0.098284 0.014739 0.034759 -0.237361 0.509158 0.129334 0.0238104 0.005208 0.011026 0.037257 0.076499 -0.350056 0.131486 0.1304515 0.037257 0.076499 -0.350056 0.131486 0.160601 0.245495 0.180445 0.257461 0.016342
TNEER COI COP DIFCOI DIFCOP DIFLOCOI DIFLOCOI DIFLOCOI DIFLINCOI DIFLINCOI DIFLINTEXP DIFLINTEXP DIFLINTEXP DIFLINTER DIFLINTER DIFLINTER DIFLINTE DIFLINTE DIFTAPROD DIFTEINF DIFTEXP DIFTERP DIFTERP DIFTIER	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.01742 0.012325 -0.225405 -0.001742 0.019254 0.092257 0.035553 -0.170603 0.000483 -0.025454 0.056172 0.16765 0.642608 -0.00989 0.064165 -0.076474 0.076474 0.076474 0.109575 -0.207395 -0.207395 -0.264321 0.107740 0.083990 0.193340	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.007804 -0.04803 -0.007804 -0.023704 -0.023704 -0.023704 -0.056306 0.50234 0.126679 0.299621 -0.201052 0.191727 -0.104042 -0.558836 0.118632 0.006529 -3.44E-05 0.508365 -0.150904 -0.328164 -0.1509292 0.358605 -0.017536 0.327188 0.104807 -0.348845 0.998494 0.535534 -0.166675	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.18972 0.20370 0.13471 0.33142 0.13975 0.13975 0.29855 0.00775 0.005488 0.09425 0.53075 0.53055 0.53055 0.53055 0	$\begin{array}{c} 0.29075752\\ 0.99987718\\ T1\\ 0.556\\ 0.511\\ 0.556\\ 0.511\\ 0.556\\ 0.511\\ 0.556\\ 0.511\\ 0.556\\ 0.5$	0.82906817 0.23932845 R 6046 -0.5 5685 -0.3 7946 0.5 5932 0.3 5932 0.3 5655 0.1 1644 0.4 3201 0.3 2756 0.1 2756 0.1 3063 0.4 3063 0.4 3063 0.4 3252 0.3 3686 0.4 3252 0.5 3686 0.4 3520 -0.1 3686 0.4 3520 -0.1 3684 0.4 3520 -0.1 3684 0.4 3520 -0.1 3684 0.4 3683 -0.2 3757 0.4 3688 0.4 3283 -0.5 331 -0.3 3929 0.6 0090 0.6 1982 0.5 2558 0.5 1988 -0.5 1988	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401 142584 019885 356860 063278 036536 032615 032615 032642 032872 008045 046337 058833 032442 204437 058833 034442 204437 058833 034442 204437 05864 035660 034442 204437 05863 034442 204437 05863 034442 204437 05863 034442 204437 05863 034442 204437 05863 034442 204437 05865 034442 204437 058660 034442 204437 058660 034442 204437 058660 034442 204437 058660 034442 204437 058660 034442 204437 058660 034442 204437 058660 034442 204437 058660 034442 204437 058660 034442 204437 058660 035660 035660 035660 035660 035660 035660 035660 035660 035660 035660 035660 03566000 0356600 03566000 03566000 03566000 03566000 03566000 03566000 03566000 035660000 035660000 0356600000 035660000000000000000000000000000000000	0.08815176 0.07247309 TNEER 0.423029 -0.458047 0.068829 0.090193 0.087128 0.236499 0.101426 0.235356 0.250064 -0.098284 0.014739 0.034759 -0.287361 0.509158 0.129334 0.238104 0.035208 0.11026 -0.094515 0.037257 0.076499 0.3506394 0.38036 0.131486 -0.160023 0.356394 0.38036 0.180601 0.245495 0.180445 0.257461 0.0163422 0.259242
TNEER COI COP DIFCOI DIFCOP DIFLNCOI DIFLNCOI DIFLNCOP DIFLNTAPI DIFLNTAPI DIFLNTRP DIFLNTRP DIFLNTRP DIFLNTRP DIFLNTRP DIFLNTRP DIFTAPROD DIFTAPROD DIFTENP DIFTERP DIFTIER DIFTIER DIFTIER DIFTERP DIFTIER DIFTIER DIFTERP	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.012325 -0.01742 0.019254 0.092257 0.035553 -0.01742 0.0192257 0.035553 -0.017603 0.025454 0.056172 0.106765 0.642608 -0.00989 0.061165 -0.076474 0.010472 -0.008133 -0.126470 0.109575 -0.27395 -0.169144 -0.246321 0.107740 0.83990 0.193340 -0.255525	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.047666 -0.023704 -0.056306 0.557364 0.126679 0.299621 -0.201052 0.191727 -0.104042 -0.558836 0.118632 0.006529 -3.44E-05 0.504391 0.288164 -0.150904 -0.150904 -0.150904 -0.1538605 -0.150904 -0.358605 -0.348845 0.348845 0.98494 0.535534 -0.166675 0.147967	0.99996995 0.28764340 0.28764340 0.02700 0.06305 0.18972 0.20370 0.13471 0.33142 0.33142 0.13975 0.29855 0.29855 0.29855 0.29857 0.29857 0.53677 0.53275 0.53077 0.53007 0.51649 0.5	$\begin{array}{c} 0.29075752\\ 0.99987718\\ TI\\ 0.55(\\ 0.6 \\ 0.51(\\ 0.6 \\ 0.51(\\ 0.6 \\ 0.51(\\ 0.6 \\ 0.51(\\ 0.6 \\ 0.51(\\ 0.6 \\ 0$	0.82906817 0.23932845 R 6046 -0.5 6056 -0.7 7946 0.5 8032 0.3 8052 0.5 8052 0.5 8052 0.5 8052 0.5 8052 0.5 8055 0.5 8053 0.5 8053 0.5 8053 0.5 8054 -0.5 8054 0.5 8056	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 377401 142584 019885 356860 032615 032615 032615 032615 032615 0326264 0326264 0326264 032833 034442 204437 019746 298390 058833 034442 204437 019746 298390 058835 032604 11009 049224 11009 058835 034855 126623 001900 1999970	0.08815176 0.07247309 TNEER 0.423029 -0.458047 0.068829 0.090193 0.236499 0.101426 0.235356 0.235356 0.250064 -0.098284 0.014739 0.034759 -0.287361 0.509158 0.129334 0.238104 0.005208 0.077308 0.011026 0.094515 0.037257 0.037257 0.037257 0.076499 -0.350056 0.131486 -0.160023 0.356394 0.356394 0.356394 0.356394 0.356394 0.32645 0.1297461 0.027541 0.027461 0.027461
TNEER COI COP DIFCOI DIFCOP DIFLNCOI DIFLNCOI DIFLNCOP DIFLNTAPI DIFLNTAPI DIFLNTRIMP DIFLNTRIMP DIFLNTRER DIFLAPROD DIFTF_BINF DIFTAPROD DIFTF_BINF DIFTFEXP DIFTFEX	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.012325 -0.228344 0.025385 -0.017424 0.019254 0.019254 0.035553 -0.170603 0.035553 -0.170603 0.035553 -0.076474 0.056172 0.061165 -0.076474 0.0104722 -0.008133 -0.199670 0.126470 0.109575 -0.207395 -0.207395 -0.269144 -0.246321 0.107740 0.083990 0.193340 -0.255525 -0.095373	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.047666 -0.023704 -0.056306 0.502034 0.126679 0.299621 -0.201052 0.191727 -0.104042 -0.558836 0.118632 0.010528 -3.44E-05 0.504391 0.288164 -0.130355 -0.150904 -0.020112 -0.017536 0.327188 0.104807 -0.348845 0.998494 0.535534 -0.166675 0.147967 -0.244614	0.99996995 0.28764340 TFIMP 0.06305 0.18972 0.20370 0.13471 0.33142 0.29859 0.22147 0.50642 0.005241 0.53067 0.530622 0.00774 0.53847 0.53962 0.002774 0.05488 0.69341 0.53275 0.53007 0.53007 0.53007 0.53007 0.53007 0.53007 0.53007 0.53007 0.53007 0.53007 0.53007 0.53007 0.53649 -0.00010	0.29075752 0.99987718 1.8 0.55(0.6 0.51(1.9 -0.14; 1.9	0.82906817 0.23932845 R 6046 -0.5 6046 -0.5 6046 -0.5 6046 -0.5 6046 -0.5 6055 -0.5 752 -0.5 8055 -0.5 6057 -0.5 8057 -0.5 8057 -0.5 8058 -0.5 10544 -0.5 8059 -0.5 10544 -0.5 10544 -0.5 10544 -0.5 10544 -0.5 10544 -0.5 10554 -0.5 10555 -0.5	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401 142584 019885 356860 036536 036536 036536 036536 032615 036536 032615 036536 032644 032872 008045 046337 034442 204437 019746 298390 058833 034442 204437 019746 298390 058835 034442 204437 019746 298390 058835 034445 019746 298390 058835 019746 298390 058835 019746 298390 058835 019746 298390 058835 019746 298390 058835 019746 298390 058835 019746 298390 058835 019746 298390 05885 019746 298390 05885 019746 298390 05885 019746 298390 05885 019746 298390 05885 019746 298390 05885 019778	0.08815176 0.07247309 TNEER 0.423029 -0.458047 0.068829 0.090193 0.236499 0.101426 0.235356 0.250064 -0.098284 0.014739 0.034759 -0.237361 0.509158 0.129334 0.238104 0.005208 0.011026 -0.094255 0.237361 0.509158 0.129334 0.037257 0.076499 -0.350056 0.131486 -0.160023 0.356394 0.380936 0.180445 0.2357461 0.245495 0.180445 0.257461 0.016342 0.287643 0.999877
TNEER COI COP DIFCOI DIFCOP DIFLOCOI DIFCOP DIFLINCOI DIFLINCOI DIFLINCOI DIFLINTEXP DIFLINTEXP DIFLINTEXP DIFLINTEXP DIFLINTEER DIFLINTE DIFTAPROD DIFLINTEER DIFTEXP DIFTEXP DIFTEXP DIFTEXP DIFTEXP DIFTERP DIFTERP DIFTERP DIFTERP DIFTERP DIFTERP DIFTERP DIFTERP DIFTERP DIFTERP DIFTERP DIFTERP DIFTERP DIFTERP DIFTERP DIFTERP DIFTERP DIFTIELE DIFTIER CINCOP LINCOP LINCOP LINCOP LINTEXP LINTEXP LINTEXP LINTEXP LINTERP	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 0.228334 0.025385 -0.01742 0.012325 -0.225405 -0.001742 0.019254 0.092257 0.035553 -0.170603 0.000483 -0.025454 0.056172 0.1076476 0.642608 -0.00989 0.642608 -0.00989 0.642608 -0.076474 0.076474 0.109575 -0.207395 -0.264700 0.109575 -0.207395 -0.169144 -0.246321 0.193340 -0.255525 -0.095373 -0.172040	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.007804 -0.04803 -0.007804 -0.023704 -0.023704 -0.023704 -0.056306 0.5023704 -0.056306 0.502370 -0.299621 -0.201052 0.191727 -0.104042 -0.558836 0.118632 0.006529 -3.44E-05 0.508355 -0.150904 -0.099292 0.358605 -0.1020112 -0.027118 0.1017536 0.327188 0.104807 -0.348845 0.998494 0.535534 -0.1666755 0.147967 -0.244614 0.108743	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.13972 0.13972 0.13975 0.13975 0.13975 0.29855 0.29855 0.22147 0.50622 0.05241 0.50622 0.05241 0.50622 0.00755 0.11676 0.0445 0.23463 0.2355 0.002774 0.068441 0.53275 0.53007 0.53605 0.	0.29075752 0.99987718 TT 0.99987718 TT 0.556 0.0.511 0.0.511 0.0.14 0.0.14 0.0.14 0.0.14 0.0.14 0.0.04	0.82906817 0.23932845 R 6046 -0.4 5685 -0.3 7946 0.3 5932 0.3 5932 0.3 5655 0.1 1644 0.4 2756 0.4 2756 0.4 2756 0.4 2849 0.4 3863 0.4 3863 0.4 3863 0.4 3863 0.4 3864 0.4 3864 0.4 3868 0.4 38520 -0.4 3868 0.4 38520 -0.4 3868 0.4 38520 -0.4 3868 0.4 38520 -0.4 3868 0.4 38520 -0.4 3868 0.4 38520 -0.4 38520 -0.4 3850 -0.4 38	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401 142584 019885 356860 032615 032615 032615 032642 032872 008045 046337 058833 034442 204437 058833 034442 204437 058833 034442 204437 05863 032474 208390 031476 298390 0314699 149224 11009 12786 228786 228390 149224 11009 12786 228390 149224 11009 128786 228390 134855 226004 005603 134855 226028 139970 290758 229068	0.08815176 0.07247309,. TNEER -0.423029 -0.458047 0.068829 0.090193 0.087128 0.236499 0.101426 0.235356 0.250064 -0.098284 0.014739 0.034759 -0.287361 0.509158 0.129334 0.034759 -0.287361 0.509158 0.129334 0.03508 0.011026 -0.094515 0.037257 0.076499 0.350056 0.131486 -0.160023 0.356394 0.380396 0.180601 0.245495 0.180445 0.257461 0.016342 0.257461 0.016342 0.259242 0.287643 0.999877 0.239328
TNEER COI COP DIFCOI DIFCOP DIFLNCOI DIFLNCOI DIFLNCOP DIFLNTAPI DIFLNTERP DIFLNTERP DIFLNTERP DIFLNTERP DIFLNTRE DIFLATRIN DIFLATRIN DIFLAPROD DIFLAPROD DIFTEINF DIFTERP DIFTREP DIF	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.012325 -0.025405 -0.01742 0.019254 0.09257 0.035553 -0.0174603 0.025454 0.056172 0.106765 0.642608 -0.00989 0.061165 -0.076474 0.010472 -0.008133 -0.1264700 0.129675 -0.27395 -0.169144 -0.246321 0.107740 0.083990 0.193340 -0.255525 -0.095373 -0.172040	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.047666 -0.023704 -0.0557364 0.0557364 0.557364 0.557364 0.126679 0.290621 -0.201052 0.191727 -0.104042 -0.558836 0.118632 0.006529 -3.44E-05 0.504391 0.288164 -0.130355 -0.150904 -0.150904 -0.150905 -0.150904 -0.37188 0.104807 -0.348845 0.934944 0.535534 -0.166675 0.147967 -0.244614 0.108743 -0.274671	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.18972 0.20370 0.13971 0.33142 0.33142 0.13975 0.29855 0.002774 0.05241 0.053675 0.004762 0.004762 0.004762 0.004865 0.004755 0.004755 0.0053475 0.0053455 0.0053455 0.53007 0.51649 0.053655 -0.13170	0.29075752 0.99987718 1.8 0.55(0.6 0.51(0.9 -0.14; 0.6 -0.16; 1.3 -0.14; 0.5 -0.31(0.3 -0.14; 0.5 -0.31(0.3 -0.14; 0.3 -0.14; 0.3 -0.14; 0.3 -0.14; 0.3 -0.14; 0.3 -0.14; 0.3 -0.14; 0.3 -0.16; 0.3 -0.30; 1.4 -0.022; 1.4 -0.022; 1.4 -0.022; 1.4 -0.03; 1.5 -0.03; 1.5 -0.03; 1.5 -0.03; 1.5 -0.03; 1.5 -0.03; 1.5 -0.03; 1.5 -0.03; 1.5 -0.03; 1.5 -0.04; 1.4 -0.022; 1.4 -0.02; 1.4 -0.03; 1.5 -0.03; 1.5 -0.03; 1.5 -0.03; 1.5 -0.03; 1.5 -0.03; 1.5 -0.03; 1.5 -0.03; 1.5 -0.04; 1.4 -0.02; 1.4 -0.02; 1.4 -0.02; 1.5 -0.03; 1.5 -0.03;	0.82906817 0.23932845 R 6046 -0.5 6046 -0.5 6046 -0.5 6058 -0.5 7946 0.5 8052 0.5 8052 0.5 8052 0.5 8052 0.5 8052 0.5 8052 0.5 8052 0.5 8054 0.5 8054 0.5 8054 -0.5 8054 0.5 8056 0.5 8057 0.2 8057 0.5 8050 0.	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 377401 142584 019885 356860 032615 032625 032615 032615 032615 032615 032615 032615 032615 032625 032615 032615 032615 032615 032615 032615 032615 032615 032615 032625 032615 032615 032625 032615 032615 032615 032615 032615 032615 032625 032615 032615 032625 032615 032625 032625 032615 032625 032615 032625 032615 032625 032625 032625 03265	0.08815176 0.07247309 TNEER 0.423029 -0.458047 0.068829 0.090193 0.236499 0.101426 0.235356 0.235356 0.250064 -0.098284 0.014739 0.034759 -0.287361 0.509158 0.129334 0.238104 0.005208 0.011026 0.094515 0.037257 0.037257 0.037641 0.076499 -0.350056 0.131486 0.16023 0.356394 0.356394 0.2859242 0.257641 0.016342 0.287643 0.999877 0.239328 0.165897
TNEER COI COP DIFCOI DIFCOP DIFLOCOI DIFLOCOI DIFLOCOI DIFLINCOI DIFLINCOI DIFLINCOI DIFLINTEXP DIFLINTEXP DIFLINTEXP DIFLINTEXP DIFLINTEXP DIFLINTEXP DIFLINTEXP DIFLINTE DIFLINTE DIFTEMP DIFTEMP DIFTEMP DIFTIER DIFTIER GFI LINCOI LINCOP LINTAPI LINTAPROD LINTER LINTAPROD LINTER LINTAPROD LINTER	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.012325 -0.228344 0.025385 -0.01742 0.019254 0.019254 0.025454 0.056172 0.035553 -0.170603 0.00483 -0.025454 0.056172 0.035555 0.642608 -0.009895 -0.076474 0.010472 -0.08133 -0.199670 0.126470 0.109575 -0.207395 -0.207395 -0.269144 -0.246321 0.107740 0.083990 0.193340 -0.255525 -0.095373 -0.172040 -0.219757 0.240546	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.04803 -0.023704 -0.023704 -0.023704 -0.056306 0.502034 0.126679 0.299621 -0.201052 0.191727 -0.104042 -0.558836 0.118632 0.04528 -3.44E-05 0.504391 0.288164 -0.130355 -0.150904 -0.020112 -0.020112 -0.020112 -0.027188 0.328865 -0.1535534 -0.348845 0.998494 0.5355534 -0.166675 0.147967 -0.244614 0.189444	0.99996995 0.28764340 TFIMP 0.06305 0.18972 0.20370 0.13471 0.33142 0.29858 0.005244 0.538677 0.538677 0.508488 0.69341 0.532755 0.53007 0.99420 0.53605 -0.13170 -0.05344	0.29075752 0.99987718 1.8 0.55(0.6 0.511 0.9 -0.14(0.9 -0.14(1.9	0.82906817 0.23932845 R 6046 -0.4 5685 -0.3 7946 0.3 5932 0.3 5655 0.3 1644 0.4 3201 0.3 25942 0.4 1644 0.4 3201 0.3 25942 0.4 1644 0.4 3201 0.3 25942 0.4 1644 0.4 3201 0.3 25942 0.4 1644 0.4 3205 0.4 3063 0.4 3063 0.4 3520 -0.4 36843 0.4 36843 0.4 3520 -0.4 36843 0.4 3520 -0.4 3520	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401 142584 019885 356860 036536 032615 032615 0326264 032872 008045 026264 032872 008045 046337 034442 204437 019746 298390 631699 149224 11009 63369 149224 11009 63363 1499 149224 11009 126004 056633 134855 126023 001900 199070 190758 129068 144331 188152	0.08815176 0.07247309 TNEER 0.423029 -0.458047 0.068829 0.090193 0.236499 0.101426 0.235356 0.235356 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.238104 0.005208 0.077308 0.011026 0.094515 0.037257 0.076499 0.350056 0.131486 0.160601 0.245495 0.180445 0.2357461 0.245495 0.180445 0.259242 0.287643 0.999877 0.239328 0.165897 0.072473
TNEER COI COP DIFCOI DIFCOP DIFLOCOI DIFCOP DIFLINCOI DIFLOCOP DIFLINCOI DIFLINTEXP DIFLINTEXP DIFLINTEXP DIFLINTEXP DIFLINTER DIFLINTER DIFTAPROD DIFLINTER DIFTEXP D	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.01742 0.012325 -0.225405 -0.001742 0.019254 0.092257 0.035553 -0.170603 0.000483 -0.025454 0.056172 0.106765 0.642608 -0.00989 0.061165 -0.076474 0.076474 0.076474 0.109575 -0.207395 -0.169144 -0.246321 0.199370 0.193340 -0.255525 -0.063390 0.193370 -0.255555 -0.07373 -0.172040 0.224546 1.000000	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.007804 -0.04803 -0.007804 -0.023704 -0.023704 -0.023704 -0.056306 0.50234 -0.126679 0.299621 -0.201052 0.191727 -0.104042 -0.558836 0.118632 0.006529 -3.44E-05 0.508355 -0.150904 -0.130355 -0.150904 -0.130355 -0.150904 -0.150904 -0.34845 0.327188 0.1047536 0.348454 0.348845 0.998494 0.535534 -0.1666755 0.147967 -0.244614 0.108743 -0.274671 -0.189444 0.108743 -0.189444 0.108743 -0.189444 0.108743 -0.189444 0.108743 -0.189444 0.108743 -0.189444 0.108743 -0.189444 0.108743 -0.189444 0.108743 -0.189444 0.108743 -0.189444 0.1084459	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.18972 0.03142 0.13975 0.13975 0.13975 0.29855 0.005248 0.005488 0.53965 0.53007 0.53463 0.53007 0.53649 0.005140 0.53605 0.31425 0.53655 0.53065 0.53655 0.13170 0.53649 0.00510	0.29075752 0.99987718 TI 0.99987718 TI 0.554 0.0.514 0.0.514 0.0.143 0.0.143 0.0.143 0.0.143 0.0.046 0.0.04	0.82906817 0.23932845 R 6046 -0.5 5046 -0.5 5046 -0.5 5055 -0.5 5052 -0.5 5052 -0.5 5052 -0.5 5052 -0.5 5052 -0.5 50542 -0.5 50542 -0.5 50542 -0.5 50542 -0.5 50542 -0.5 50544 -0.4 50575 -0.5 5054 -0.5 5054 -0.5 5059	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401 142584 019885 356860 063278 036536 032615 032615 032642 032872 008045 046337 058833 034442 204437 058833 034442 204437 05863 034442 204437 05863 034442 204437 05863 034442 204437 05863 034442 204437 05863 034442 204437 05863 034442 204437 05863 034442 204437 05863 034442 204437 05863 034442 204437 05863 034442 204437 05863 034442 204437 05863 034442 204437 05863 034442 204437 05863 034442 204437 058786 228390 034437 019746 298390 034437 019746 298390 034437 20845 034437 019746 298390 034437 20845 034437 05863 209078 229068 144331 088152 255405	0.08815176 0.07247309 TNEER -0.423029 -0.458047 0.068829 0.090193 0.087128 0.236499 0.101426 0.235356 0.250064 -0.098284 0.014739 0.034759 -0.287361 0.509158 0.129334 0.238104 0.035208 0.011026 -0.094515 0.037257 0.076499 0.350056 0.131486 -0.160023 0.356394 0.38036 0.180601 0.245495 0.180445 0.257461 0.016342 0.257461 0.0163897 0.239328 0.165897 0.239328 0.165897 0.072473 0.099763
TNEER COI COP DIFCOI DIFCOP DIFLOCOI DIFLOCOI DIFLOCOI DIFLOCOI DIFLOCOP DIFLINTAPI DIFLINTER DIFLINTERP DIFLINTERP DIFLINTERP DIFLINTER DIFLINTER DIFLINTER DIFTERP DIFTIER D	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.012325 -0.025405 -0.01742 0.019254 0.092257 0.035553 -0.017463 0.025454 0.056172 0.106765 0.642608 -0.070474 0.010472 -0.008133 -0.1264700 0.1264700 0.126470 0.109575 -0.27395 -0.169144 -0.246321 0.107740 0.193340 -0.255525 -0.0755373 -0.172040 -0.219757 0.240546 1.000000 0.104159	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.047666 -0.023704 -0.0557364 0.557364 0.557364 0.5502034 0.126679 0.290621 -0.201052 0.191727 -0.104042 -0.558836 0.118632 0.006529 -3.44E-05 0.504391 0.288164 -0.130355 -0.150904 -0.150904 -0.288164 -0.130355 -0.150904 -0.37188 0.348845 0.998494 0.535534 -0.166675 0.147967 -0.244614 0.108743 -0.274671 -0.189444 0.104159 1.000000	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.18972 0.20370 0.13971 0.33142 0.33142 0.13975 0.29859 0.005244 0.006445 0.006445 0.005340 0.53605 -0.13170 0.055540 0.555540 0.555540 0.555540 0.555540 0.555540 0.555540 0.555540 0.555540 0.555540 0.555	0.29075752 0.99987718 1.8 0.55(0.6 0.51(0.9 -0.14; 0.6 -0.16; 1.3 -0.14; 0.5 -0.31(0.3 -0.14; 0.3 -0.14; 0.3 -0.14; 0.3 -0.14; 0.3 -0.14; 0.3 -0.14; 0.3 -0.14; 0.3 -0.14; 0.3 -0.16; 0.3 -0.30; 1.4 -0.02; 1.4 -0.02; 1.4 -0.02; 1.4 -0.02; 1.4 -0.03; 1.5 -0.03; 1.6 -0.02; 1.4 -0.03; 1.5 -0.03; 1.6 -0.03; 1.	0.82906817 0.23932845 R 6046 -0.6 5046 -0.7 5046 -0.7 5046 -0.7 5032 0.7 5032 0.7 5032 0.7 5032 0.7 5032 0.7 5032 0.7 5032 0.7 5032 0.7 5032 0.7 5032 0.7 5042 0.7 5042 0.7 5042 0.7 5042 0.7 5044 -0.7 5044 -0.7 5054 -0.7 5054 0.7 5054 0.7 5056 0.7 5057 0.2 5059 0.2 5050 0	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 377401 142584 019885 356860 032615 032615 032615 032615 032615 032624 032872 008045 046337 03445 046337 019746 298390 058833 034442 204437 019746 298390 058835 0326623 019746 298390 058835 034855 26623 01900 999970 990758 929068 944331 988152 55405 448904 48904	0.08815176 0.07247309 TNEER 0.423029 -0.458047 0.068829 0.090193 0.236499 0.101426 0.235356 0.250064 0.098284 0.014739 0.034759 -0.098284 0.014739 0.034759 -0.287361 0.509158 0.129334 0.238104 0.005208 0.077308 0.011026 0.094515 0.037257 0.037257 0.076499 -0.350056 0.131486 0.130455 0.0376594 0.356394 0.356394 0.356394 0.287643 0.287643 0.289267 0.287643 0.999877 0.239328 0.165897 0.072473 0.099763 0.248042
TNEER COI COP DIFCOI DIFCOP DIFLOCOI DIFLOCOI DIFLOCOI DIFLINCOI DIFLINCOI DIFLINCOI DIFLINTEXP DIFLINTEXP DIFLINTEXP DIFLINTER DIFLINTEER DIFLINTE DIFLINTE DIFTAPROD DIFTEXP DIFTERP DIFTERP DIFTERP DIFTIEER GFI LINCOI LINCOP LINCOP LINCOP LINCOP LINCOP LINCOP LINCOP LINCOP LINCOP LINCOP LINCOP LINCOP LINCOP LINCOP LINTER DIFTIEER GFI LINCOP LINTER DIFTIEER TAPROD LINTER TAPROD TEINF TF_BINF TFEXP	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.012325 -0.225405 -0.01742 0.019254 0.092257 0.035553 -0.170603 0.00483 -0.025454 0.056172 0.035553 -0.1706765 0.642608 -0.076474 0.010472 -0.08133 -0.199670 0.126470 0.109575 -0.207395 -0.207395 -0.207395 -0.207395 -0.207395 -0.207395 -0.207395 -0.207395 -0.207395 -0.207395 -0.207395 -0.207395 -0.1264470 0.199575 -0.207395 -0.126470 0.1295555 -0.207395 -0.169144 -0.246321 0.107740 0.083990 0.193340 -0.255525 -0.095373 -0.172040 -0.219757 0.240546 1.000000 0.104159 0.060215	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.04766 -0.023704 -0.056306 0.502034 0.126679 0.299621 -0.201052 0.191727 -0.104042 -0.558836 0.118632 0.04529 -3.44E-05 0.504391 0.288164 -0.130355 -0.150904 -0.130355 -0.150904 -0.327188 0.327188 0.327188 0.327188 0.327188 0.1048075 -0.348845 0.998494 0.535534 -0.166675 0.147967 -0.244614 0.1089444 0.108743 -0.274671 -0.189444 0.104159 1.000000 0.5554002	0.99996995 0.28764340 TFIMP 0.06305 0.18972 0.20370 0.13471 0.33142 0.29858 0.29858 0.29858 0.29858 0.29858 0.29858 0.29858 0.29858 0.29858 0.29858 0.29858 0.29858 0.29858 0.29858 0.29858 0.29858 0.29858 0.29858 0.29858 0.005244 0.53962 0.00445 0.53968 0.002776 0.00445 0.53968 0.027756 0.027756 0.02555 0.02555 0.02556 0.025556 0.02556 0.02556 0.02556 0.0255	0.29075752 0.99987718 1.8 0.55(0.6 0.511 0.9 -0.14(1.9	0.82906817 0.23932845 R 6046 -0.4 5685 -0.3 7946 0.5 5932 0.3 5932 0.3 5932 0.3 5952 0.3 5952 0.3 5942 0.4 1644 0.4 3201 0.3 2757 0.4 3063 0.4 3063 0.4 3063 0.4 3063 0.4 3064 -0.4 3520 -0.4 36843 0.4 3520 -0.4 36843 0.4 3520 -0.4 36843 0.4 36843 0.4 3690 0.6 3690 0.6 3690 0.6 3690 0.4 3690 0.4 3600	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 129095 377401 142584 019885 356860 036536 036536 036536 032615 036536 032615 0326264 032872 008045 046337 034442 204437 019746 298390 631699 149224 019746 298390 631699 149224 019746 298390 631699 149224 019746 298390 631699 149224 019776 226004 005603 34855 226023 001900 99970 990758 229068 1488152 555405 148894 117884 117884	0.08815176 0.07247309 TNEER 0.423029 -0.458047 0.068829 0.090193 0.236499 0.101426 0.235356 0.235356 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.238104 0.005208 0.077308 0.011026 0.094515 0.037257 0.076499 0.350056 0.131486 0.160023 0.380936 0.160601 0.245495 0.180445 0.2857461 0.2857
TNEER COI COP DIFCOI DIFCOP DIFLOCOI DIFLOCOI DIFLOCOI DIFLOCOI DIFLOCOP DIFLINTAPI DIFLINTER DIFLINTERP DIFLINTERP DIFLINTERP DIFLINTER DIFLINTER DIFLINTER DIFTERP DIFTIER D	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 0.228334 0.025385 -0.012325 -0.012325 -0.025405 -0.001742 0.019254 0.092257 0.035553 -0.0170603 0.0056172 0.106765 0.642608 -0.00989 0.066175 0.642608 -0.0098133 -0.199670 0.109575 -0.207395 -0.109575 -0.207395 -0.169144 -0.246321 0.107740 0.109575 -0.207395 -0.169144 -0.246321 0.107740 0.193340 -0.255525 -0.095373 -0.172040 -0.219757 0.240546 1.000000 0.104159 0.060215 0.206626	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.047666 -0.023704 -0.0557364 -0.0557364 0.126679 0.299621 -0.201052 0.191727 -0.104042 -0.558836 0.299621 -0.201052 0.191727 -0.104042 -0.558836 0.194042 -0.558836 0.194045 -0.150904 -0.150904 -0.328164 0.104807 -0.348845 0.998494 0.535544 -0.1666755 0.147967 -0.244614 0.1087433 -0.274671 -0.189444 0.104159 1.000000 0.555402 -0.154601	0.99996995 0.28764340 0.28764340 0.02700 0.06305 0.18972 0.20370 0.13471 0.33142 0.33142 0.33142 0.33142 0.2147 0.22847 0.22847 0.53677 0.50622 0.05241 0.53677 0.05241 0.53677 0.04762 0.04762 0.04762 0.02756 0.02756 0.02756 0.02756 0.02764 0.052463 0.53007 0.99420 0.53605 0.53007 0.99420 0.53649 0.53605 0.53605 0.53605 0.53605 0.53605 0.53605 0.05344 0.55540 0.05540 0.043053 0.054305 0.05540 0.043053 0.043053 0.054355 0.053645 0.053645 0.053645 0.053645 0.053645 0.053645 0.055540 0.053645 0.055540 0.043053 0.043053 0.043053 0.054355 0.05540 0.043053 0.043053 0.043053 0.043053 0.043053 0.054305 0.05540 0.043053 0.043053 0.043053 0.043053 0.043053 0.043053 0.043053 0.053645 0.053655 0.053655 0.053655 0.053655 0.053655 0.053655 0.053655 0.053655 0.053655 0.053655 0.053655 0.053655 0.053655 0.053655 0.053655 0.0536555 0.0536555 0.0536555 0.0536555 0.0536555 0.05365555 0.0536555 0.0536555 0.0536555 0.05365555 0.0536555 0.05365555 0.05365555 0.05365555 0.05365555 0.053655555 0.05365555555555555555555555555555555555	0.29075752 0.99987718 1.999987718 1.10 1.	0.82906817 0.23932845 R 6046 -0.5 6046 -0.5 6046 -0.5 6055 -0.5 7946 0.5 8052 0.5 8052 0.5 8052 0.5 8053 0.5 9392 0.5 9384 0.5 9392 0.5 9392 0.5 9384 0.5 9392 0.5 9392 0.5 9384 0.5 9392 0.5 9384 0.5 9392 0.5 9384 0.5 9392 0.5 9384 0.5 9392 0.5 9384 0.5 9392 0.5 9384 0.5 9390 0.5	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 377401 142584 036536 032615 032615 032615 032615 032615 032615 032615 032672 0363278 0326264 036337 058833 034442 204437 019746 298390 631699 1009 11009 128786 026623 034855 126004 026623 034855 126004 035883 034855 126004 035883 034855 126004 05603 134855 126004 05603 134855 126004 05603 134855 126004 055505 126004 055505 126004 128786 128786 128786 128786 128786 128888 1288888 128888 128888 128888 128888 128888 128888 12888	0.08815176 0.07247309 TNEER 0.423029 -0.458047 0.068829 0.090193 0.236499 0.101426 0.235356 0.235356 0.250064 -0.098284 0.014739 0.034759 -0.287361 0.509158 0.129334 0.238104 0.005208 0.077308 0.011026 -0.094515 0.037257 0.076499 -0.350056 0.131486 -0.160023 0.356394 0.380936 0.160601 0.245495 0.180445 0.257461 0.016342 0.257461 0.016389 0.287643 0.999877 0.279283 0.005588 0.279293
TNEER COI COP DIFCOI DIFCOP DIFLOCOI DIFCOP DIFLINCOI DIFLOCOP DIFLINCOI DIFLINTESP DIFLINTESP DIFLINTESP DIFLINTESP DIFLINTER DIFTAPROD DIFLINTEER DIFTAPROD DIFTAPROD DIFTESP DIFTESP DIFTESP DIFTERP DIFTESP DIFTERP TENP LINTER LINTER TAPI TENP TENP TENP TENP TRIMP	0.52662263 0.01634243 TF_BINF 0.147913 0.127905 0.026156 0.015037 0.030202 -0.228334 0.025385 -0.012325 -0.225405 -0.01742 0.019254 0.092257 0.035553 -0.170603 0.00483 -0.025454 0.056172 0.035553 -0.1706765 0.642608 -0.076474 0.010472 -0.08133 -0.199670 0.126470 0.109575 -0.207395 -0.207395 -0.207395 -0.207395 -0.207395 -0.207395 -0.207395 -0.207395 -0.207395 -0.207395 -0.207395 -0.207395 -0.1264470 0.199575 -0.207395 -0.126470 0.1295555 -0.207395 -0.169144 -0.246321 0.107740 0.083990 0.193340 -0.255525 -0.095373 -0.172040 -0.219757 0.240546 1.000000 0.104159 0.060215	-0.9019003 -0.2592416 TFEXP 0.065246 0.075741 0.004803 -0.007804 -0.04766 -0.023704 -0.056306 0.502034 0.126679 0.299621 -0.201052 0.191727 -0.104042 -0.558836 0.118632 0.04529 -3.44E-05 0.504391 0.288164 -0.130355 -0.150904 -0.130355 -0.150904 -0.327188 0.327188 0.327188 0.327188 0.327188 0.1048075 -0.348845 0.998494 0.535534 -0.166675 0.147967 -0.244614 0.1089444 0.108743 -0.274671 -0.189444 0.104159 1.000000 0.5554002	0.99996995 0.28764340 TFIMP 0.02700 0.06305 0.18972 0.20370 0.13971 0.33142 0.33142 0.13975 0.29859 0.22147 0.50546 0.23463 0.53962 0.00774 0.50540 0.53007 0.51649 0.055540 0.055540 0.06021 0.55540 0.06021 0.55540 0.06021 0.55540 0.06021 0.55540 0.51788 0.51788	0.29075752 0.99987718 1.8 0.55(0.6 0.51(1.9 -0.14; 1.9 -0.03; 1.9	0.82906817 0.23932845 R 6046 -0.5 5046 -0.5 5046 -0.5 5046 -0.5 5042 0.5 5055 0.5 5042 0.5 5042 0.5 5042 0.5 5042 0.5 5042 0.5 5042 0.5 5042 0.5 5042 0.5 5042 0.5 5042 0.5 5042 0.5 5057 0.5 5056 0.5 5056 0.5 5056 0.5 5057 0.5 5057 0.5 5057 0.5 5057 0.5 5058 0.5 5057 0.5 5058 0.5 5059 0.5 5050 0.5 5050 0.5 5050 0.5 5050 0.5	0.04433085 0.16589658 TLEI 402374 358629 147244 170515 377401 142584 036536 032615 032615 032615 032615 032615 032615 032615 032672 0363278 0326264 036337 058833 034442 204437 019746 298390 631699 1009 11009 128786 026623 034855 126004 026623 034855 126004 035883 034855 126004 035883 034855 126004 05603 134855 126004 05603 134855 126004 05603 134855 126004 055505 126004 055505 126004 128786 128786 128786 128786 128786 128888 1288888 128888 128888 128888 128888 128888 128888 12888	0.08815176 0.07247309 TNEER 0.423029 -0.458047 0.068829 0.090193 0.236499 0.101426 0.235356 0.235356 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.23536 0.238104 0.005208 0.077308 0.011026 0.094515 0.037257 0.076499 0.350056 0.131486 0.160023 0.380936 0.160601 0.245495 0.180445 0.2857461 0.2857

Thailand. Model 1. Cointegration Bound test ARDL Long Run Form and Bounds Test

Dependent Variable: D(TF_BINF)

Selected Model: ARDL(1, 4, 3, 0)

Case 3: Unrestricted Constant and No Trend

Date: 10/19/22 Time: 14:33

Sample: 2018M01 2021M12

Included observations: 38

					Variable	Coefficient Std. Error	t-Statistic	Prob
Variable	Coefficient S	td. Error	t-Statistic	Prob.			_	_
с	165.8241 1	20.7410	1.373387	0.1814	DIFLNTAPROD	-1.455660 0.680896	-2.137861	0.042
TF_BINF(-1)*	-0.831868 0	.164716	-5.050306	0.0000	DIFTENINF	0.094970 0.040499	2.344997	0.02
DIFLNTAPROD(-1)	-1.210917 0	.545638	-2.219267	0.0354	DIFLNTLEI	-0.000270 0.000191	-1.417389	0.16
DIFTENINF(-1)	0.079003 0	.030320	2.605619	0.0150				
DIFLNTLEI**	-0.000225 0	.000164	-1.372939	0.1815	EC = TF_BINF - (-1.4	557*DIFLNTAPROD + 0.095	50*DIFTENINF	-0.00
D(DIFLNTAPROD)	-0.067020 0	.187473	-0.357489	0.7236	*DIFLNTLEI)			
D(DIFLNTAPROD(-1))	0.792796 0	.412204	1.923308	0.0655				
D(DIFLNTAPROD(-2))	0.744943 0	.308581	2.414097	0.0231				
D(DIFLNTAPROD(-3))	0.531583 0	.187853	2.829778	0.0089				
D(DIFTENINF)	0.022530 0	.010126	2.225035	0.0350				
D(DIFTENINF(-1))	-0.046585 0	.017039	-2.734066	0.0111				
D(DIFTENINF(-2))	-0.018163 0	.011115	-1.634060	0.1143	V Grander			

•		
** Variable i	nterpreted as Z = Z(-1) + I	D(Z).

F-Bounds Test		Null Hypothesis: No levels relationship			t-Bounds Test	Null Hypothesis: No levels relationship			
Test Statistic	Value	Signif.	I(O)	I(1)	Test Statistic Value	Signif.	I(O)	I(1)	
		Chul	Asymptotic n=1000		t-statistic -5.050306	10%	-2.57	-3.46	
F-statistic k	8.599887 3	10% 5%	2.72 3.23	3.7 4.3		5%	-2.86	-3.78	
ĸ	5	2.5%	3.69	4.8		2.5%	-3.13	-4.05	
		1%	4.29	5.6		1%	-3.43	-4.37	
Actual Sample Size	38		Finite Sample: n=40						
		10%	2.933	4.0					
		5%	3.548	4.8					
		1%	5.018	6.6					
			Finite Sample: n=35						
		10%	2.958	4.1					
		5%	3.615	4.9					
		1%	5.198	6.8					

Thailand Model 1. Residual's diagnostics and stability

Null hypothesis: Hom	st:Breusch-Pap oskedasticity	an-Godirey			Breusch-Godfrey Seria Null hypothesis: No se			
F-statistic Obs*R-squared Scaled explained SS	0.420172 5.735504 2.636338	Prob. F(11,28) Prob. Chi-Square(11) Prob. Chi-Square(11)	0.9334 0.8904 0.9947		F-statistic Obs*R-squared	0.316930 2.070397	Prob. F(4,22) Prob. Chi-Square(0.8636 (4) 0.7228
Test Equation: Dependent Variable: F Method: Least Square Date: 10/18/22 Time Sample: 20 18/006 202 Induded observations	≌ : 22:40 21M07				Test Equation: Dependent Variable: R Method: ARDL Date: 10/18/22 Time: Sample: 2018M06 202 Included observations Presample missing value	22:39 1M07 38	luais set to zero.	
		0H 5	for Dark		Variable	Coefficient	Std. Error t-S	itatístic Prob.
Variable C TF BINF(-1) DIFLNTAPROD DIFLNTAPROD(-2) DIFLNTAPROO(-3) DIFLNTAPROO(-4) DIFLNTAPROO(-4) DIFLNNF(-1) DIFTENNF(-1) DIFTENNF(-2) DIFTENNF(-2) DIFTENNF(-2)	Coefficient 50.41648 -0.005701 -0.015701 -0.013427 -0.037124 0.001712 -0.011228 -8.83E-05 -0.001094 0.0001421 -0.001428 0.150934 -0.288288	Std. Error 1-Statis 4170081 1.2090 0.056889 0.1002 0.064748 0.4433 0.070065 -0.5286 0.070065 -0.5286 0.067846 0.2433 0.064880 0.1730 5.656-05 -1.0733 0.003867 -0.0433 0.003867 0.0410 0.003867 0.0411 0.003897 0.0411 0.003897 0.0411	05 0.2375 11 0.9209 31 0.8097 18 0.1044 44 0.6007 84 0.9799 25 0.8840 17 0.2382 72 0.9858 88 0.7676 48 0.9683		TF_BNF(-1) DIELNTAPROD DFLNTAPROD(-2) DFLNTAPROD(-3) DFLNTAPROD(-3) DIFLNTAPROD(-3) DIFTENINF(-1) DIFTENINF(-1) DIFTENINF(-2) DIFTENINF(-2) DIFTENINF(-2) DIFTENINF(-2) RESID(-1) RESID(-2) RESID(-3) RESID(-4)	-0.125807 -0.007914 -0.021596 -0.061233 -0.09704 -0.011538 -2.49E-05 -7.73E-05 -0.001530 0.000216 -0.001530 0.000628 18.35374 0.175022 -0.080356 -0.088356	0.206372 -0.0 0.207482 -0. 0.234205 -0.2 0.207567 -0.2 0.199048 -0.0 0.001086 -0.1 0.011010 -0.0 0.011152 -0.1 0.0113495 0.0 137,1709 0.1 0.382990 0.4 0.221167 -0.3 0.2224503 -0.7	121811 0.6773 19346 0.9698 104085 0.9180 157956 0.9621 157956 0.9643 13716 0.9845 107052 0.9845 107052 0.9845 107052 0.9845 107024 0.8821 146520 0.9633 132802 0.8848 182168 0.6344 162569 0.7204 137241 0.7116
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	-0.208280 0.111680 0.324281 36.59122 0.420172 0.933373	S.D. dependent var Akaike info oriterion Schwarz oriterion Hannan-Quinn oriter. Durbin-Watson stat	0.101599 -1.294275 -0.777142 -1.110283 2.023852		R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.054484 -0.590186 0.341817 2.570459 -2.743136 0.084515 0.999994	Mean dependent v S.D. dependent v Akaike info criterio Schwarz criterion Hannan-Quinn crit Durbin-Watson sta	ar 0.271063 on 0.986481 1.675991 ter. 1.231803
Date: 10/18/22 Time: Sample (adjusted): 20 Q-statistic probabilities Autocorrelation I	18M06 2021M0	dynamic regressor	Q-Stat Prob*	8 7 6	11111 BL 182			Series: Residuals Sample 2018M06 2021M07 Observations 38
		1 0.073 0.073 (2 -0.087 -0.093 (3 -0.168 -0.166 - 4 -0.081 -0.068 2 5 -0.160 -0.187 - 6 0.036 0.015 - 7 -0.047 -0.116 - 8 0.059 0.010 - 9 0.163 0.137 - 9 0.013 -0.137 - 10 -0.176 -0.284 (11 -0.186 -0.135 - 12 -0.141 -0.174 - 13 0.119 0.065 - 14 0.118 0.053 - 15 0.013 -0.163 - 16 0.067 0.107 -	1.5422 0.763 1.7660 0.622 20563 0.725 20563 0.725 2010 0.623 2053 0.770 2012 0.834 2025 0.770 2012 0.844 2014 0.663 2015 0.844 2016 0.657 7.784 0.637 7.784 0.637 1.531 0.644 1.543 0.713	5 4 3 2 1 0 -0.6	-0.4 -0.2 0.0) 0.2	0.4 0.6	Mean 5.24e-14 Median 0.012580 Maximum 0.666467 Minimum -0.608298 Std. Dev. 0.271063 Skewness -0.077232 Kurtosis 2.963722 Jarque-Bera 0.039861 Probability 0.980267
riance Inflation Fa ate: 10/18/22 Tin Imple: 2018M01 2 cluded observation	ne: 22:41 2021M12			KORN	15			
Variable	Coeffic Varian		Centered VIF		5 0			
TF_BINF(-1) DIFLNTAPROD(- DIFLNTAPROD(-2) DIFLNTAPROD(-2) DIFLNTAPROD(-2) DIFLNTAPROD(-2) DIFLNTAPROD(-2) DIFLNTAPROD(-2) DIFTENINF(-1)	1) 0.0380 2) 0.0411 3) 0.0383 4) 0.0352 2.68E- 0.0001 0.0001	1.143569 1.143569 1.241874 1.55 1.366923 363 1.264898 289 1.61451 08 5297872. 03 1.576091 112 1.730977	1.386880 1.143568 1.241602 1.355755 1.263826 1.160748 1.085995 1.575835 1.730872		-5 -10 -15 V 2019	1 11	III IV 2020	I II III 2021
DIFTENINF(-2) DIFTENINF(-3) C	0.0001 0.0001 14578	24 1.576004	1.524236 1.572490 NA				5% Significance	

Sample (adjusted): 2	Date: 10/19/22 Time: 14:17 Sample (adjusted): 2018M06 2021M12 Q-statistic probabilities adjusted for 2 dynamic regressors													
Autocorrelation Partial Correlation AC PAC Q-Stat Prob*														
		5 -0.050 6 -0.014 7 -0.063 8 0.073 9 -0.095 10 -0.211 11 -0.156 12 0.113 13 -0.133 14 0.098	-0.093 -0.067 0.079 -0.073 0.002 -0.063 0.067 -0.111 -0.206 -0.141 0.062 -0.199 0.133	8.9644	0.703 0.769 0.849 0.941 0.974 0.984 0.987 0.986 0.898 0.847 0.846 0.842 0.843									
			-0.009 0.190 -0.085 -0.164	10.556 10.557	0.878 0.910 0.879 0.912 0.831 0.810									
*Probabilities may not be valid for this equation specification.														

Thailand. Model 2. Residual's diagnostic and Stability

Date: 10/19/22 Time: Sample: 2018M06202 Included observations Presample missing va	21M12 : 43	iduals set to ze	ero.	
Variable	Coefficient	Std. Error	t-Statistic	Prob
TF_BINF(-1)	-0.304074	0.366610	-0.829421	0.41
TF_BINF(-2)	0.345041	0.300011	1.150092	0.26
DIFLNTAPI	0.068027	2.622968	0.025935	0.97
DIFLNTAPI(-1)	-0.303184	2.578334	-0.117589	0.90
	-0.002431 0.009003	0.011905 0.013603	-0.204173 0.661826	0.83
DIFTENINF(-1)	0.009003	0.013603	0.661826	0.51
DIFTENINF(-2)	0.002375	0.014000	0.429697	0.87
DIFTENINF(-3) DIFTENINF(-4)	-0.000421	0.014323	-0.032508	0.67
DIFTENINF(-4)	-0.000421	2.079814	0.291145	0.97
DIFLNGFI(-1)	-1. 193044	2.496331	-0.477919	0.63
DIFLNGFI(-2)	1.022882	2.200946	0.464747	0.63
C	-0.011268	0.070542	-0.159737	0.84
RESID(-1)	0.368769	0.406752	0.906619	0.37
RESID(-2)	-0.333478	0.323187	-1.031843	0.31
RESID(-2)	-0.214057	0.253097	-0.845749	0.31
RESID(-4)	0.157546	0.255615	0.616341	0.54
R-squared	0.079448	Mean depen		3.42E-
Adjusted R-squared	-0.487045	S.D. depend		0.2825
S.E. of regression	0.344555	Akaike info c		0.9944
Sum squared resid	3.086680	Schwarz crite		1.6907
Log likelihood	-4.381117	Hannan-Quir		1.2512
F-statistic	0.140246 0.999917	Durbin-Wats	on stat	1.7832

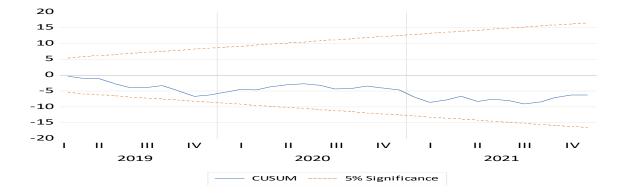
Breusch-Godfrey Serial Correlation LM Test: Null hypothesis: No serial correlation at up to 4 lags

> 0.560984 Prob. F(4,26) 3.416283 Prob. Chi-Square(4)

F-statistic Obs*R-squared

Table B - 26

Thailand. Model 2. Long run bound test ARDL Long Run Form and Bounds Test Dependent Variable: D(TF_BINF) Selected Model: ARDL(2, 1, 4, 2) Case 3: Unrestricted Constant and No Trend Date: 10/19/22 Time: 15:30 Sample: 2018M01 2021M12 Included observations: 43


Cond	litional Error Cor	rection Regres	sion			Levels Ec			
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Case	3: Unrestricted Co	onstant and No	Trend	
C TF_BINF(-1)*	0.138158 -1.044841	0.058888 0.191222	2.346101 -5.464031	0.0258 0.0000	Variable	Coefficient	Std. Error	t-Statistic	Prob.
DIFLNTAPI(-1) DIFTENINF(-1) DIFLNGFI(-1) D(TF_BINF(-1)) D(DIFLNTAPI)	4.220037 0.139451 -7.517636 0.292106 -1.496581	2.690010 0.046327 3.082842 0.157012 2.181460	1.568781 3.010146 -2.438541 1.860401 -0.686046	0.1272 0.0053 0.0209 0.0727 0.4980	DIFLNTAPI DIFTENINF DIFLNGFI	4.038928 0.133466 -7.195007	2.533329 0.050276 2.907389	1.594317 2.654651 -2.474732	0.1213 0.0126 0.0192
D(DIFTENINF) D(DIFTENINF(-1)) D(DIFTENINF(-2)) D(DIFTENINF(-3)) D(DIFLNGFI) D(DIFLNGFI(-1))	0.031928 -0.084355 -0.040597 -0.017830 -4.319051 4.007452	0.011175 0.031576 0.020471 0.011600 1.957875 1.979763	2.856976 -2.671490 -1.983204 -1.537071 -2.205989 2.024208	0.0077 0.0121 0.0566 0.1348 0.0352 0.0519	EC = TF_BINF - (4.0389 *DIFLNGFI))*DIFLNTAPI + 0.	1335*DIFTEN	INF -7.1950	

0.6930 0.4907

1	Null Hypothesis	: No levels re	lationship	t-Bounds Test		Null Hynothesis	No levels rel	ationshi
Value	Signif.	I(0)	l(1)					auononi
10.01040		n=1000	3 77	Test Statistic	Value	Signif.	I(0)	l(1
3	5%	3.23	4.35					
	2.5% 1%	3.69 4.29	4.89 5.61	t-statistic	-5.464031	10%	-2.57	-3.46
13	S 21	Finite						-3.78
43	10%	2.893	3.983			570	-2.00	-0.70
	5%	3.535	4.733			2.5%	-3.13	-4.05
	1%	4.983	6.423					
	Sa	Finite mple: n=40				1%	-3.43	-4.37
	10% 5% 1%	2.933 3.548 5.018	4.02 4.803 6.61					
	Value	Value Signif. Act 10.01040 10% 3 5% 2.5% 2.5% 1% 43 Sa 1% 5% 5% 1% 5% 5% 5% 5%	Value Signif. I(0) Asymptotic: n=1000	Asymptotic: n=1000 10.01040 0% 2.72 3.77 3 5% 3.23 4.35 2.5% 3.69 4.89 1% 4.29 5.61 43 Sample: n=45 10% 2.923 3.983 1% 4.29 5.61 5% 3.535 4.733 1% 4.933 6.423 5% 3.535 4.733 1% 4.983 6.423 Finite Sample: n=40 10% 2.933 4.02 5% 3.548 4.803	Value Signif. I(0) I(1) Asymptotic: n=1000 10(1) Test Statistic 10.01040 10% 2.72 3.77 3 5% 3.23 4.35 2.5% 3.69 4.89 1% 4.29 5.61 43 Sample: n=45 5% 3.383 5% 3.3983 5% 3.3983 1% 4.89 10% 2.893 10% 2.893 5% 3.335 1% 4.883 6.423 Finite Sample: n=40 10% 2.933 5% 3.548 4.803	Value Signif. I(0) I(1) Asymptotic: n=1000	Value Signif. I(0) I(1) Asymptotic: n=1000 10,01040 10% 2.72 3.77 3 5% 3.23 4.35 2.5% 3.69 4.99 1% 4.29 5.61 Test Statistic Value Signif. 43 Finite 5% 5.63 5% 5% 5% 5% 1% 2.893 3.983 5% 5% 5% 5% 1% 2.893 3.983 5% 2.5% 5% 10% Finite Sample: r=40 10% 2.5% 1% 1% 1%	Value Signif. I(0) I(1) Asymptotic: n=1000 10.01040 10% 2.72 3.77 3 5% 3.23 4.35 2.5% 3.69 4.99 1% 4.29 5.61 Finite 5% -2.86 5% -2.86 10% 2.893 3.983 5% -2.86 5% -2.86 10% 2.893 4.02 5% -2.86 10% -2.5% -3.13 Finite Sample: r=40 10% -2.9% -3.43 1% -3.43

Thailand. Model 3. Residual's diagnostics and stability

Autocorrelation	Partial Correlation	nic reg	AC	PAC	Q-Stat	Prob*	F-statistic Obs*R-squared	1.401873 11.90860	Prob. F(9,34) Prob. Chi-Squar		0.226 0.218
		1 2 3 4 5 6 7 8 9 10	-0.122 -0.016 0.146 -0.013 0.108	0.011 -0.160 0.081 -0.155 0.018 0.097 -0.001 0.142 -0.009 -0.339	0.0054 1.2351 1.5119 2.2638 2.2776 3.4097 3.4196 4.0761 4.1062 13.015	0.941 0.539 0.680 0.687 0.810 0.756 0.844 0.850 0.904 0.223	Scaled explained SS Test Equation: Dependent Variable: RESI Method: Least Squares Date: 10/20/22 Time: 18: Sample: 2018M05 2021M Included observations: 44	13 12	Prob. Chi-Squar		0.778
	. *. .*!	11 12 13 14 15 16 17 18 19 20	0.052 0.017 -0.170 0.052 -0.067 0.123 -0.038 -0.147 -0.010	0.076 -0.114 -0.113 0.028 0.007 0.045 0.120 0.032 -0.093 -0.192	13.180 13.199 15.089 16.039 16.227 16.556 17.683 17.798 19.550 19.560	0.282 0.355 0.302 0.311 0.367 0.415 0.409 0.469 0.422	Variable C TF_BINF(-1) DIFLNTAPROD DIFLNTAPROD(-1) DIFTENINF(-1) DIFTENINF(-2) DIFTENINF(-3) DIFTENINF(-3) DIFTER DIFTER(-1)	Coefficient 0.088231 -0.038751 -0.030770 -0.134014 -0.002342 0.000453 0.001749 0.001293 -0.030883 0.027284	Std. Error 0.016122 0.042062 0.052270 0.054079 0.003013 0.002971 0.003041 0.025519 0.026329	t-Statistic 5.472728 -0.921284 -0.588676 -2.478130 -0.777333 0.152419 0.559900 0.425141 -1.210203 1.036241	Prob. 0.000 0.363 0.560 0.018 0.442 0.879 0.579 0.673 0.234 0.307
			S.				R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Variance Inflation Factors Date 10/20/22 Time 18		Mean dependen S.D. dependent Akaike info critei Schwarz criterio Hannan-Quinn c Durbin-Watson s	var rion n rriter.	0.08151 0.10358 -1.58083 -1.17533 -1.43045 1.66267
					Series: Res Sample 20: Observatio Mean	18M05 2021M12	Variable	/12	Uncentered VIF	Centered VIF	<u>—</u> I
	L				Median Median Maximum Minimum Std. Dev. Skewness Kurtosis	0.051740 0.640180 -0.652089 0.288816 -0.190506 2.578044	TF_BINF(-1) DIFLNTAPROD DIFLNTAPROD(-1) DIFTENINF DIFTENINF(-1) DIFTENINF(-2) DIFTENINF(-3) DIFTER DIFTER(-1) C	0.018857 0.029120 0.031170 9.68E-05 9.41E-05 0.000104 9.85E-05 0.006941 0.007389 0.002770	1.369976 1.295458 1.256690 1.723727 1.666682 1.840045 1.672843 1.168543 1.243830 1.155439	1.234258 1.295036 1.252872 1.723584 1.666670 1.839542 1.669922 1.163025 1.234212	3 2 4 2 2 2 5

Thailand. Model 3. Long-Run Bound Test , ARDL Long Run Form and Bounds Test Dependent Variable: D(TF_BINF) Selected Model: ARDL(1, 1, 3, 1) Case 3: Unrestricted Constant and No Trend Date: 10/20/22 Time: 18:15 Sample: 2018M01 2021M12 Included observations: 44

Сог	nditional Error Corr	ection Regress	ion		Case	Levels Eq 3: Unrestricted Co		Frend	
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
					DIFLNTAPROD	-0.613891 0.166613	0.447533 0.054034	-1.371722 3.083454	0.1791
С	0.063049	0.052634	1.197879	0.2392	DIFTER	0.094912	0.175580	0.540565	0.5923
TF_BINF(-1)*	-0.697222	0.137320	-5.077361	0.0000					
DIFLNTAPROD(-1)	-0.428019	0.286399	-1.494484	0.1443	EC = TF_BINF - (-0.6139* *DIFTER)	DIFLNTAPROD +	0.1666*DIFTE	NINF + 0.0949	
DIFTENINF(-1)	0.116166	0.029197	3.978700	0.0003					
DIFTER(-1)	0.066175	0.120325	0.549968	0.5859					
D(DIFLNTAPROD)	-0.065121	0.170647	-0.381609	0.7051					
D(DIFTENINF)	0.030326	0.009837	3.082690	0.0041					
D(DIFTENINF(-1))	-0.062896	0.016690	-3.768488	0.0006					
D(DIFTENINF(-2))	-0.024698	0.009927	-2.488117	0.0179					
D(DIFTER)	-0.139590	0.083312	-1.675501	0.1030					
F-Bounds Test		Null Hypothesis	No levels relat	tionship					
Test Statistic	Value	Sign if.	I(0)	I(1)	t-Bounds Test		Null Hypothe	sis: No levels re	elationship
			/mptotic: = 1000		Test Statistic	Value	Signif.	I(0)	l(1)
F-statistic	12.79867	10%	2.72	3.77	t-statistic	-5.077361	10%	-2.57	-3.46
k	3	5%	3.23	4.35	1 oldiolo	0.011001	5%	-2.86	-3.78
		2.5%	2 60	4 9 0					
		2.5% 1%	3.69 4.29	4.89 5.61					-4 05
		1%	4.29	4.89 5.61			2.5% 1%	-3.13	-4.05 -4.37
		1% Finite	4.29 e Sample:				2.5%		-4.05 -4.37
Actual Sample Size	44	1% Finite	4.29 e Sample: n=45	5.61			2.5%	-3.13	
Actual Sample Size	44	1% Finite	4.29 e Sample:				2.5%	-3.13	
Actual Sample Size	44	1% Finite 10%	4.29 e Sample: n=45 2.893	5.61 3.983			2.5%	-3.13	
Adual Sample Size	44	1% Finit 10% 5% 1% Finit	4.29 e Sample: n=45 2.893 3.535	5.61 3.983 4.733			2.5%	-3.13	
Actual Sample Size	44	1% Finit 10% 5% 1% Finit	4.29 e Sample: n=45 2.893 3.535 4.983 e Sample: n=40 2.933	5.61 3.983 4.733			2.5%	-3.13	
Actual Sample Size	44	1% Finit 10% 5% 1% Finit	4.29 e Sample: n=45 2.893 3.535 4.983 e Sample: n=40	5.61 3.983 4.733 6.423			2.5%	-3.13	

Thailand model's attempt

Dependent Variable: T Method: ARDL Date: 10/21/22 Time: Sample (adjusted): 20 Included observations Maximum dependent I Model selection metho Dynamic regressors (Fixed regressors: C Number of models ev Selected Model: ARDL Note: final equation sa Variable	10:06 118M02 2021M : 47 after adjus ags: 4 (Automa od: Akaike info 4 lags, automa aluated: 100 .(1, 0, 0)	stments atic selection) criterion (AIC) ttic): DIFCOI DI than selection	sample	c Prob.*	Dependent Variable: TF Method: ARDL Date: 10/21/22 Time: 1 Sample (adjusted): 201 Included observations: - Maximum dependent la Model selection method Dynamic regressors: (A Fixed regressors: C Number of models eval Selected Model: ARDL(0:07 8M03 2021M12 46 after adjustr gs: 4 (Automati): Akaike info cri lags, automatic uated: 100 1, 0, 1)	nents c selection) iterion (AIC) c): DIFCOI DIFTI		
					Note: final equation san	ipie is larger ti	Ian Selection Sa	Inple	
TF_BINF(-1) DIFCOI DIFTIR C	0.257074 0.005166 -0.027264 0.075968	0.004355 0.681920		3 0.242 1 0.968	Variable TF_BINF(-1) DIFCOI	0.275236 0.007254	Std. Error 0.149830 0.004508	t-Statistic 1.836986 1.609013	Prob.* 0.0735 0.1153
R-squared Adjusted R-squared S.E. of regression Sum squared resid	0.076953 0.012554 0.398008 6.811639	S.D. depend Akaike info	dent var criterion	0.10617 0.40053 1.07657 1.23403	DIFTER DIFTER(-1) C	-0.018036 0.162074 0.074644	0.092503 0.099227 0.060706	-0.194982 1.633368 1.229599	0.8464 0.1100 0.2259
Log likelihood F-statistic Prob(F-statistic)	-21.29951 1.194940 0.323027	Durbin-Wat	son stat	1.13582 1.96469	R-squared Adjusted R-squared S.E. of regression	0.126074 0.040813 0.389788	Mean depender S.D. depender Akaike info crit	it var	0.116957 0.397994 1.055894
*Note: p-values and ar selection.	ny subsequent	tests do not ac	count for mo		Sum squared resid Log likelihood F-statistic Prob(F-statistic)	6.229321 -19.28557 1.478683 0.226288	Schwarz criteri Hannan-Quinn Durbin-Watsor	criter.	1.254660 1.130353 1.964771
			////		*Note: p-values and any selection.	subsequent te	ests do not acco	unt for mode	d
Dependent Variable: TF Method: ARDL Date: 10/21/22 Time: 1 Sample (adjusted): 201 Included observations : Maximum dependent la Model selection method Dynamic regressors (4 Fixed regressors : C Number of models eval Selected Model: ARDL(Note: final equation sam	0:08 8M02 2021 M12 47 after adjustr gs: 4 (Automati d: Akaike info cr lags, automatio uated: 500 1, 0, 0, 0)	nents c selection) iterion (AIC) c): LNCOP LNTE			Method: ARDL Date: 10/21/22 Time: Sample (adjusted): 20 Included observations: Maximum dependent Ii Model selection metho Dynamic regressors: C Fixed regressors: C Number of models eve Selected Model: ARDL Note: final equation sa	18M02 2021M 47 after adjus ags: 4 (Automa d: Akaike info Hags, automa Iluated: 500 (1, 0, 0, 0)	atments atic selection) criterion (AIC) tic): DIFLNCOF		P DIFTIR
Variable	Coefficient	Std. Error	t-Statistic	Prob.*	Variable	Coefficient	t Std. Error	t-Statis	tic Prob
TF_BINF(-1) LNCOP LNTEXP DIFTIR C	0.193654 0.209623 0.335746 -0.027093 -5.778411	0.150362 0.227561 0.714522 0.715691 10.59833	1.287922 0.921172 0.469889 -0.037855 -0.545219	0.2048 0.3622 0.6409 0.9700 0.5885	TF_BINF(-1) DIFLNCOP DIFLNTEXP DIFTIR C	0.238661 0.383782 0.196735 0.112450 0.081794	0.474356 0.825837 0.715270	1.56595 0.80905 0.23822 0.15721 1.29501	58 0.42 25 0.81 13 0.87
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.072858 -0.015441 0.403610 6.841851 -21.40351 0.825131 0.516645	Mean depender S.D. depender Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watsor	nt var (erion - on - criter	0.106170 0.400530 1.123554 1.320378 1.197620 1.897577	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.061425 -0.027963 0.406091 6.926223 -21.69154 0.687174 0.604879	S.D. depend Akaike info Schwarz crit Hannan-Qu Durbin-Wats	lent var criterion erion inn criter.	0.1061 0.4005 1.1358 1.3326 1.2098 1.9510
*Note: p-values and any selection.	/subsequent te	ests do not acco	unt for model		*Note: p-values and an selection.	ysubsequent	tests do not ac	count for mo	odel

Dependent Variable: TF_BINF Method: ARDL Date: 10/21/22 Time: 10:09 Sample (adjusted): 2018M03 2021M12 Included observations: 46 after adjustments Maximum dependent lags: 4 (Automatic selection) Model selection method: Akaike info criterion (AIC) Dynamic regressors (4 lags, automatic): DIFLNCOP DIFLNTFIMP DIFTER Fixed regressors: C Number of models evaluated: 500 Selected Model: ARDL(1, 0, 0, 1) Note: final equation sample is larger than selection sample

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
TF_BINF(-1) DIFLNCOP DIFLNTFIMP DIFTER DIFTER(-1) C	0.262703 0.644097 0.195458 0.003460 0.164015 0.076540	0.153771 0.487567 0.488248 0.098270 0.104507 0.062237	1.708399 1.321043 0.400325 0.035208 1.569418 1.229830	0.0953 0.1940 0.6910 0.9721 0.1244 0.2259
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.110308 -0.000904 0.398174 6.341705 -19.69682 0.991871 0.434922	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion rion n criter.	0.116957 0.397994 1.117253 1.355771 1.206603 1.953601

*Note: p-values and any subsequent tests do not account for model

selection. Dependent Variable: TF_BINF Method: ARDL Date: 10/21/22 Time: 10:13 Sample (adjusted): 2018M04 2021M12 Include do bservations: 45 after adjustments Maximum dependent lags: 4 (Automatic selection) Model selection method: Akaike info criterion (AIC) Dynamic regressors (4 lags, automatic): COP LNTFIMP TER Fixed regressors: C Number of models evaluated: 500 Selected Model: ARDL(1, 2, 3, 2) Note: final equation sample is larger than selection sample selection.

Variable	Coefficient	Std. Error	t-Statistic	Prob.*	Selected Model: ARDL(Note: final equation sat	1 - 1 - 1 - 1	han selection s	ample	
TF BINF(-1) COP	0.089982	0.169731	0.530146	0.5996	Variable	Coefficient	Std. Error	t-Statistic	
COP(-1) COP(-2) LNTFIMP LNTFIMP(-1) LNTFIMP(-2) LNTFIMP(-3) TER	0.013209 -0.025047 0.785616 0.062208 -1.181733 -1.011811 0.070992	0.020835 0.012737 0.584550 0.594230 0.591392 0.636431 0.108044	0.633985 -1.966436 1.343967 0.104686 -1.998225 -1.589821 0.657065	0.5305 0.0577 0.1881 0.9173 0.0540 0.1214 0.5157	TF_BINF(-1) LNCOP LNTFIMP DIFTER C	0.208909 0.230855 0.186534 -0.051771 -3.504812	0.149808 0.223292 0.511443 0.097978 7.225256	1.394506 1.033868 0.364721 -0.528392 -0.485078	
TER(-1) TER(-2) C	0.262476 -0.153155 13.63898	0.131406 0.110115 10.02177	1.997441 -1.390872 1.360936	0.0541 0.1736 0.1828	R-squared Adjusted R-squared	0.076580 -0.011364	Mean depende S.D. depende		0
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	0.352125 0.136166 0.369835 4.513681 -12.11237 1.630521	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watse	ent var iterion rion nn criter.	0.125778 0.397918 1.071661 1.553438 1.251262 1.647583	S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.402799 6.814384 -21.30898 0.870779 0.489463	Akaike info cr Schwarz crite Hannan-Quir Durbin-Wats	iterion rion nn criter.	1. 1. 1. 1.
Prob(F-statistic) *Note: p-values and an selection.	0.135653 ysubsequentte	ests do not acc	count for mod	el	*Note: p-values and an selection.	ysubsequent t	ests do not acc	ount for mode	əl

	Dependent Variable: TF Method: ARDL Date: 10/21/22 Time: 1 Sample (adjusted): 2011 Included observations: 4 Maximum dependent lag Model selection method Dynamic regressors: C Number of models evalt Selected Model: ARDL(1 Note: final equation sam	- 0:12 3M02 2021M1: 17 after adjustr 15: 4 (Automat : Akaike info cr ags, automati uated: 500 , 0, 0, 0)	ments ic selection) riterion (AIC) c): LNCOP LNT		
	Variable	Coefficient	Std. Error	t-Statistic	Prob.*
	TF_BINF(-1) LNCOP LNTFIMP DIFTER C	0.208909 0.230855 0.186534 -0.051771 -3.504812	0.149808 0.223292 0.511443 0.097978 7.225256	1.394506 1.033868 0.364721 -0.528392 -0.485078	0.1705 0.3071 0.7172 0.6000 0.6301
Children -	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) *Note: p-values and any selection.	0.076580 -0.011364 0.402799 6.814384 -21.30898 0.870779 0.489463 subsequent te	Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter. n stat	0.106170 0.400530 1.119531 1.316355 1.193597 1.863168
& MON STILLING	Dependent Variable: TF Method: ARDL Date: 10/21/22 Time: 1 Sample (adjusted): 201 Included observations: Maximum dependent la Model selection method Dynamic regressors (4 Fixed regressors: C Number of models eval Selected Model: ARDL(Note: final equation sar	- 0:10 8M02 2021M 47 after adjus gs: 4 (Automa d: Akaike info o lags, automa uated: 500 1, 0, 0, 0)	tments atic selection) criterion (AIC) tic): LNCOP LN		ĒR
1200	Variable	Coefficient	Std. Error	t-Statisti	c Prob.*
1 1 1	TF_BINF(-1) LNCOP LNTFIMP DIFTER C	0.208909 0.230855 0.186534 -0.051771 -3.504812	0.223292 0.511443 0.097978	1.39450 1.03386 0.36472 -0.52839 -0.48507	30.307110.717220.6000

0.106170 0.400530

1.119531

1.316355 1.193597

1.863168

Dependent Variable: TF_BINF Method: ARDL Date: 10/21/22 Time: 10:14 Sample (adjusted): 2018M03 2021M12 Included observations: 46 after adjustments Maximum dependent lags: 4 (Automatic selection) Model selection method: Akaike info criterion (AIC) Dynamic regressors (4 lags, automatic): DIFCOI DIFLNTFIMP DIFTER Fixed regressors: C Number of models evaluated: 500 Selected Model: ARDL(1, 0, 0, 1) Note: final equation sample is larger than selection sample

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
TF BINF(-1)	0.291820	0.154724	1.886070	0.0666
DIFCOI	0.007738	0.004649	1.664337	0.1039
DIFLNTFIMP	0.245192	0.484829	0.505729	0.6158
DIFTER	-0.007483	0.095658	-0.078225	0.9380
DIFTER(-1)	0.168153	0.100859	1.667212	0.1033
С	0.070658	0.061770	1.143896	0.2595
R-squared	0.131626	Mean depend	lent var	0.116957
Adjusted R-squared	0.023080	S.D. depende		0.397994
S.E. of regression	0.393375	Akaike info cr	iterion	1.092999
Sum squared resid	6.189744	Schwarz crite	rion	1.331517
Log likelihood	-19.13898	Hannan-Quin	n criter.	1.182349
F-statistic	1.212625	Durbin-Watso	on stat	1.976785
Prob(F-statistic)	0.320931			

*Note: p-values and any subsequent tests do not account for model selection.

selection. Dependent Variable: TF BINF Method: ARDL Date: 10/21/22 Time: 10:15 Sample (adjusted): 2018/M02 2021M12 Included observations: 47 after adjustments Maximum dependent lags: 4 (Automatic selection) Model selection method: Akaike info criterion (AIC) Dynamic regressors: C Number of models evaluated: 500 Selected Model: ARDL(1, 0, 0, 0) Note: final equation sample is larger than selection sample

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
TF BINF(-1)	0.258563	0.153178	1.687994	0.0988
DIFCOI	0.004753 -0.019284	0.004692 0.052379	1.013052 -0.368160	0.3168 0.7146
DIFTNEER	-0.004935 0.080989	0.046878	-0.105279 1.299096	0.9167
R-squared	0.080411	Mean depend	lontvar	0.106170
Adjusted R-squared	-0.007169	S.D. depende	ntvar	0.400530
S.E. of regression Sum squared resid	0.401963 6.786117	Akaike info cri Schwarz crite		1.115374 1.312199
Log likelihood	-21.21130	Hannan-Quin		1.189441
F-statistic Prob(F-statistic)	0.918144 0.462382	Durbin-Watso	on stat	1.960667
*Note: p-values and any	/subsequent t	ests do not acc	ount for mod	el

selection

Dependent Variable: TF_BINF Method: ARDL Date: 10/21/22 Time: 10:14 Sample (adjusted): 2018M03 2021M12 Included observations: 46 after adjustments Maximum dependent lags: 4 (Automatic selection) Model selection method: Akaike info criterion (AIC) Dynamic regressors (4 lags, automatic): DIFCOI DIFTER Fixed regressors: C Number of models evaluated: 100 Selected Model: ARDL(1, 0, 1) Note: final equation sample is larger than selection sample Variable Coefficient Std. Error t-Statistic Prob.* 1.836986 0.0735 TF BINF(-1) 0.275236 0.149830 DIFCOI 0.007254 0.004508 1.609013 0.1153 DIFTER 0.092503 -0.018036 -0.194982 0.8464 DIFTER(-1) 0.162074 0.099227 1.633368 0.1100 С 0.074644 0.060706 1.229599 0.2259 0.116957 0 126074 Mean dependent var R-squared Adjusted R-squared 0.040813 0.397994 S.D. dependent var S.E. of regression 0.389788 Akaike info criterion 1.055894 Sum squared resid 6.229321 Schwarz criterion 1.254660 Log likelihood -19.28557 Hannan-Quinn criter. 1.130353 F-statistic 1.478683 Durbin-Watson stat 1.964771 Prob(F-statistic) 0.226288 *Note: p-values and any subsequent tests do not account for model selection. Dependent Variable: TF_BINF Method: ARDL Date: 10/21/22 Time: 10:17 Sample (adjusted): 2018M02 2021M07 Included observations: 42 after adjustments Maximum dependent lags: 4 (Automatic selection) Model selection method: Akaike info criterion (AIC) Dynamic regressors (4 lags, automatic): DIFLNTLEI DIFCOI Fixed regressors: C Number of models evaluated: 100 Selected Model: ARDL(1, 0, 0) Note: final equation sample is larger than selection sample Variable Coefficient Std. Error t-Statistic Prob.* TF BINF(-1) 0.188187 0.163509 1.150923 0.2570 DIFLNTLEI -0.000171 0.000167 1.023137 0.3127 DIFCOI 0.002628 0.004510 0.582720 0.5635 126.1712 123.2510 1.023694 0.3125 С R-squared 0.064314 Mean dependent var 0.088095 Adjusted R-squared S.E. of regression -0.009556 S.D. dependent var 0.392473 0.394344 Akaike info criterion 1.067207 Schwarz criterion Sum squared resid 5.909279 1.232700 Log likelihood -18.41136 Hannan-Quinn criter. 1.127867 F-statistic 0.870632 Durbin-Watson stat 1.982756 Prob(F-statistic) 0.464769 *Note: p-values and any subsequent tests do not account for model selection.

Included observations: 46 a Maximum dependent lags: Model selection method: Ak Dvnamic regressors (4 lags Fixed regressors: C Number of models evaluate Selected Model: ARDL(1, 0, Note: final equation sample Variable C	4 (Automatic select kaike info criterion s, automatic): DIF(ed: 100 , 1) e is larger than sel	(AIC) COI DIFTER ection sample	atistic	Prob.*		Dependent Variable: T Method: ARDL Date: 10/21/22 Time: Sample (adjusted): 20 Included observations Maxim um dependent1 Model selection methe Dynamic regressors (Fixed regressors: C Number of models eve Selected Model: ARDL Note: final equation sa	10:16 18M02 2021N : 47 after adju: ags: 4 (Autom od: Akaike info 4 lags, autom aluated: 100 .(1, 0, 0)	stments atic selection) criterion (AIC) atic): DIFCOI D	IFTNEER	
			36986	0.0735		Variable	Coefficier	t Std. Erro	r t-Statisti	c Prob.*
DIFTER DIFTER(-1)	-0.018036 0.09 0.162074 0.09	92503 -0.1 99227 1.6	09013 94982 33368 29599	0.1153 0.8464 0.1100 0.2259		TF_BINF(-1) DIFCOI DIFTNEER C	0.25949 0.00530 -0.00719 0.07627	0 0.004409 7 0.046004	5 1.20299 4 -0.15643	0 0.235 6 0.876
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	0.040813 S.D. c 0.389788 Akaik 6.229321 Schw -19.28557 Hann 1.478683 Durbi 0.226288	dependent va lependent var e info criterion arz criterion an-Quinn crite n-Watson stat	r.	0.116957 0.397994 1.055894 1.254660 1.130353 1.964771		R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.07744: 0.013079 0.397903 6.80801 -21.2870 1.203200 0.32002	3 Mean depe 9 S.D. deper 2 Akaike info 7 Schwarz cr 1 Hannan-Q 0 Durbin-Wa	endent var odent var o criterion riterion uinn criter.	0.10617 0.40053 1.07604 1.23350 1.13529 1.96925
Dependent Variable: T			× J		01	*Note: p-values and an selection.	nysubsequen	t tests do not a	account for mo	del
Method: ARDL Date: 10/21/22 Time: Sample (adjusted): 20 Included observations: Maximum dependent la Model selection metho)18M04 2021M : 45 after adjus lags: 4 (Automa od: Akaike info o	tments itic selection criterion (AIC	C)			Method: ARDL Date: 10/21/22 Time: 1 Sample (adjusted): 201 Included observations: 4 Maximum dependent lag	8M02 2021M12 47 after adjustr	nents c selection)		
Fixed regressors: C Number of models eva Selected Model: ARDL	aluated: 100 .(1, 0, 2)					Model selection method Dynamic regressors (4 Fixed regressors: C Number of models eval Selected Model: ARDL(1	lags, automatio uated: 100 1, 0, 1)	c): DIFLNTIR LN		
Fixed regressors: C Number of models eva Selected Model: ARDL Note: final equation sa Variable	aluated: 100 .(1, 0, 2) ample is larger Coefficient	than selecti Std. Er	on sar ror	mple t-Statistic	Prob.*	Model selection method Dynamic regressors (4 Fixed regressors: C Number of models evall Selected Model: ARDL(1 Note: final equation sam	lags, automatio uated: 100 1, 0, 1) nple is larger th	c): DIFLNTIR LN	ample	Proh *
Dynamic regressors (4 Fixed regressors: C Number of models eva Selected Model: ARDL Note: final equation sa Variable TF_BINF(-1) DIFCOP DIFTAPI(-1) DIFTAPI(-1) DIFTAPI(-2) C R-squared	aluated: 100 .(1, 0, 2) ample is larger	than selecti Std. Er 0.1543 0.0100 0.0157 0.0159 0.0162 0.0594	on sar ror 73 20 35 96 78 10	mple t-Statistic 1.882090 1.111252 -0.532452 2.235446 -1.880175 1.449469	Prob.* 0.0673 0.2733 0.5974 0.0312 0.0676 0.1552 0.125778	Model selection method Dynamic regressors (4 Fixed regressors: C Number of models eval Selected Model: ARDL(1	lags, automatio uated: 100 1, 0, 1)	c): DIFLNTIR LN		Prob.* 0.2114 0.4406 0.5785 0.1977 0.0863

Dependent Variable: TF_BINF Method: ARDL Method: ARDL Date: 10/21/22 Time: 10:22 Sample (adjusted): 2018M05 2021M12 Included observations: 44 after adjustments Maximum dependent lags: 4 (Automatic selection) Model selection method: Akaike info criterion (AIC) Dynamic regressors (4 lags, automatic): DIFLNTIR Fixed regressors: C Number of models evaluated: 100 Selected Model: ARDL(1, 0, 3) Note: final equation sample is larger than selection

Variable Coefficient		Std. Error	t-Statistic	Prob.*
TF BINF(-1)	0.235876	0.151635	1.555543	0.1283
DIFLNTIR	0.166299	0.661930	0.251234	0.8030
DIFTENINF	0.020624	0.010471	1.969615	0.0564
DIFTENINF(-1)	0.019989	0.011011	1.815319	0.0776
DIFTENINF(-2)	0.028534	0.010823	2.636510	0.0122
DIFTENINF(-3)	0.019146	0.010782	1.775827	0.0840
C	0.076781	0.060444	1.270284	0.2119
R-squared	0.233257	Mean depend	entvar	0.110909
Adjusted R-squared	0.108921	S.D. depende		0.389668
S.E. of regression	0.367835	Akaike info cri	terion	0.982544
Sum squared resid	5.006188	Schwarz criterion		1.266392
Log likelihood	-14.61597	Hannan-Quin	n criter.	1.087809
F-statistic	1.876015	Durbin-Watson stat		2.084315
Prob(F-statistic)	0.111131			

*Note: p-values and any subsequent tests do not an selection.

Dependent Variable: TF_BINF Method: ARDL Date: 10/21/22 Time: 10:26 Sample (adjusted): 2018M04 2021M12 Included observations: 45 after adjustments Maximum dependent lags: 4 (Automatic sel Model selection method: Akaike info criterior Dynamic regressors (4 lags, automatic): LN Fixed regressors: C Number of models evaluated: 100 Selected Model: ARDL(2, 0, 3) Note: final equation sample is larger than se Variable Coefficient St

0.185881

-0.295809

-2.440547

-0.972936

5.075165

-8 770598

2.807413

20.91162

0.324010

0.196121

0.356770

4.709550

-13.06816

2 533510

0.031012

Akaike info criterion

Hannan-Quinn criter.

Durbin-Watson stat

Schwarz criterion

TF_BINF(-1)

TF_BINF(-2)

LNTNEER

LNTAPI

LNTAPI(-1)

INTAPI(-2)

LNTAPI(-3)

С

Adjusted R-squared

S.E. of regression

Log likelihood

Prob(F-statistic)

selection.

F-statistic

Sum squared resid

R-squared

ction) (AIC) LNTIR DIFTE	NINF			Maximum dependent la Model selection metho Dynamic regressors: C	45 after adjust ags: 4 (Automat d: Akaike info c lags, automati	ments tic s election) riterion (AIC)	ΤΑΡΙ	
lection samp	ole			Number of models eval Selected Model: ARDL(1, 0, 2)			
I. Error t-	Statistic	Prob.*		Note: final equation sar	mple is larger t	han selection s	ample	
	.555543 .251234	0.1283 0.8030		Variable	Coefficient	Std. Error	t-Statistic	
	.969615	0.0564		TF_BINF(-1)	0.290205	0.153720	1.887879	
11011 1	.815319	0.0776		DIFCOI	0.005000	0.004287	1.166325	
	.636510	0.0122		DIFTAPI	-0.008296	0.015685	-0.528924	
	.775827	0.0840		DIFTAPI(-1)	0.035913	0.015969	2.248903	
60444 1	.270284	0.2119		DIFTAPI(-2)	-0.030364	0.016266	-1.866720	
dependent		0.110909		С	0.085351	0.059358	1.437905	
dependent va e info criterio		0.389668	3.3.	R-s guared	0.204432	Mean depend	tent var	0
arz criterion		1.266392	1124	Adjusted R-squared	0.102436	S.D. depende		ŏ
an-Quinn cri	iter.	1.087809	11/1/1	S.E. of regression	0.376987			1
in-Watson st	at	2.084315	55555J	Sum squared resid	5.542640	Schwarz crite		1
			1	Log likelihood	-16.73292	Hannan-Quin		1
			0 =	F-statistic	2.004318	Durbin-Wats	on stat	1
not account	tor mode		9 2	Prob(F-statistic)	0.099468			
2 ments ic selectior riterion (AIC c): LNTNEI	C) ER LNT/			*Note: p-values and any selection. Dependent Variable: TF Method: ARDL Date: 10/21/22 Time: 1 Sample (adjusted): 201 Included observations: Maximum dependent la Model selection methoc Dynamic regressors: C Number of models eval Selected Model: ARDL(Note: final equation san	_BINF 0:24 8M04 2021M1: 45 after adjustr gs: 4 (Automati 1: Akaike info cr lags, automati uated: 100 2, 1, 3)	2 nents ic selection) iterion (AIC) c): DIFTNEER L	NTAPI	el
				Variable	Coefficient	Std. Error	t-Statistic	_
Std. Eri	ror t	-Statistic	Prob.*					
0.1556	26 1	.194409	0.2399	TF_BINF(-1)	0.234297 -0.279469	0.148883 0.137332	1.573702	
0.1391		2.125083	0.0403	TF_BINF(-2) DIFTNEER	0.038634	0.047379	-2.034995 0.815420	
1.7619		.385172	0.1743	DIFTNEER(-1)	-0.092640	0.048006	-1.929748	
2.1732		.447687	0.6570	LNTAPI	-1.356083	2.108745	-0.643076	
3.3271		.525379	0.1357	LNTAPI(-1)	6.509988	3.464649	1.878975	
3.3226		2.639677	0.0121	LNTAPI(-2)	-11.69219	3.544066	-3.299090	
2.2494		.248038	0.2199	LNTAPI(-3)	4.305915	2.241659	1.920861	
9.7957	90 2	2.134756	0.0395	C	11.03689	5.604688	1.969225	
Mean dep S.D. depe Akaike int	endent v	ar	0.125778 0.397918 0.936363	R-squared Adjusted R-squared	0.356410 0.213390	Mean depend S.D. depende	ent var	0. 0.

Dependent Variable: TF_BINF Method: ARDL Date: 10/21/22 Time: 10:19

Sample (adjusted): 2018M04 2021M12

.299090 0.0022 920861 0.0627 0.0567 .969225 0.125778 var 0.397918 Adjusted R-squared 0.213390 S.D. dependent var 0.397918 0.936363 S.E. of regression 0.352917 Akaike info criterion 0.931691 1.257547 4.483823 Schwarz criterion 1.293023 Sum squared resid 1.056097 Log likelihood -11.96304 Hannan-Quinn criter. 1.066392 1.951805 F-statistic 2.492033 Durbin-Watson stat 1.995741 Prob(F-statistic) 0.028980

*Note: p-values and any subsequent tests do not account for model *Note: p-values and any subsequent tests do not account for model selection

Prob.*

0.0665

0.2506

0.5999

0.0302 0.0695

0.1584 0.125778

0.397918

1.010352 1.251240

1.100153

1.813287

Prob.*

0.1243

0.0493

0.4202

0.0615

0.5242

0.0684

Dependent Variable: TF_BINF Method: ARDL Date: 10/21/22 Time: 10:27 Sample (adjusted): 2018M02 2021M12 Included observations: 47 after adjustments Maximum dependent lags: 4 (Automatic selection) Model selection method: Akaike info criterion (AIC) Dynamic regressors (4 lags, automatic): LNTNEER LNTAPROD Fixed regressors: C Number of models evaluated: 100 Selected Model: ARDL(1, 0, 0) Note: final equation sample is larger than selection sample

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
TF_BINF(-1) LNTNEER LNTAPROD C	0.199466 -1.309769 -0.203204 7.351959	0.147455 1.759718 0.200341 8.430968	1.352718 -0.744306 -1.014293 0.872018	0.1832 0.4607 0.3161 0.3880
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.081558 0.017480 0.397014 6.777654 -21.18197 1.272803 0.295720	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.106170 0.400530 1.071573 1.229033 1.130826 1.954079

*Note: p-values and any subsequent tests do not account for model

selection Dependent Variable: TF_BINF Method: ARDL Date: 10/21/22 Time: 10:29 Sample (adjusted): 2018M02 2021M12 Included observations: 47 after adjustments Maximum dependent lags: 4 (Automatic selection) Model selection method: Akaike info criterion (AIC) Dynamic regressors (4 lags, automatic): DIFTNEER DIFLNTEXP Fixed regressors: C Number of models evaluated: 100 Selected Model: ARDL(1, 0, 0) Note: final equation sample is larger than selection sample

Variable	Coefficient	Std. Error	t-Statistic	Prob.*			
TF_BINF(-1) DIFTNEER DIFLNTEXP C	0.213698 0.005444 -0.055675 0.083509	0.149174 0.046485 0.753655 0.061137	1.432535 0.117123 -0.073874 1.365925	0.1592 0.9073 0.9415 0.1791			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.046515 -0.020007 0.404517 7.036251 -22.06192 0.699243 0.557667	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.106170 0.400530 1.109018 1.266477 1.168271 1.897179			
*Note: p-values and any subsequent tests do not account for model selection.							
Dependent Variable: TF_BINF							

Method: ARDL

Date: 10/21/22 Time: 10:31 Sample (adjusted): 2018M03 2021M12 Included observations: 46 after adjustments

Maximum dependent lags: 4 (Automatic selection) Model selection method: Akaike info criterion (AIC) Dynamic regressors (4 lags, automatic): DIFLNTAPROD DIFLNTFIMP

Fixed regressors: C Number of models evaluated: 100

Selected Model: ARDL(1, 1, 0) Note: final equation sample is larger than selection sample

selection.

Std. Error t-Statistic Prob.* Variable Coefficient TF_BINF(-1) DIFLNTAPROD DIFLNTAPROD(-1) DIFLNTFIMP 0.226574 0.149725 1.513270 0 1379 -0.052273 0.7916 0.196517 -0.265995 -0.356251 0.205346 -1.734877 0.0903 0.044279 0.466182 0.094982 0.9248 0.060420 1.614069 С 0.097522 0.1142 0.116957 R-squared 0.110854 Mean dependent var Adjusted R-squared 0.024108 S.D. dependent var 0.397994 S.E. of regression Sum squared resid 0.393167 6.337807 Akaike info criterion Schwarz criterion 1.073160 1.271925 Hannan-Quinn criter. Log likelihood -19.68267 1.147618 F-statistic 1.277920 Durbin-Watson stat 1.919623 Prob(F-statistic) 0.294324

*Note: p-values and any subsequent tests do not account for model

Dependent Variable: TF_BINF Method: ARDL Date: 10/21/22 Time: 10:29 Sample (adjusted): 2018M02 2021M12 Included observations: 47 after adjustments Maximum dependent lags: 4 (Automatic selection) Model selection method: Akaike info criterion (AIC) Dynamic regressors (4 lags, automatic): DIFLNTNEER TENINF Fixed regressors: C Number of models evaluated: 100 Selected Model: ARDL(1, 0, 0) Note: final equation sample is larger than selection sample _ Variable Coefficient Std. Error t-Statistic Prob. TF BINF(-1) 0.248615 0.143398 1.733740 0.090 DIFLNTNEER -0.124242 5.212237 32 -0.023837 0.981)7 TENINF 0.024184 0.011802 2.049122 0.046 0.075420 0.058445 0.203 С 1.290439 51 80 0.131639 0.10617 R-squared Mean dependent var 0.071056 0.386038 S.D. dependent var Akaike info criterion Adjusted R-squared 0.40053 0 1.01550 S.E. of regression 80 Sum squared resid 6.408080 -19.86430 Schwarz criterion 1.17296 1.07475 '3 Log likelihood Hannan-Quinn criter. 33 F-statistic 2.172856 Durbin-Watson stat 1.99081 26 Prob(F-statistic) 0.105067 '9 *Note: p-values and any subsequent tests do not account for model selection Dependent Variable: TF_BINF Method: ARDL Date: 10/21/22 Time: 10:30 Sample (adjusted): 2018M02 2021M12 Included observations: 47 after adjustments Maximum dependent lags: 4 (Automatic selection) Model selection method: Akaike info criterion (AIC) Dynamic regressors (4 lags, automatic): DIFTNEER DIFLNTFIMP Fixed regressors: C Number of models evaluated: 100 Selected Model: ARDL(1, 0, 0) Note: final equation sample is larger than selection sample t-Statistic Variable Coefficient Std. Error Proh * TF BINF(-1) 0.218991 0.151026 1.450028 0.1543 DIFTNEER 0.005196 0.045573 0.114006 0.9098 DIFLNTFIMP 0.107144 0.478006 0.224148 0.8237 С 0.082421 0.061221 1.346279 0.1853 0.106170 R-squared 0.047507 Mean dependent var -0.018946 Adjusted R-squared S.D. dependent var 0.400530 S.E. of regression 0.404306 7.028932 Akaike info criterion 1.107977 Sum squared resid 1.265436 Schwarz criterion Log likelihood 22.03746 Hannan-Quinn criter. 1.167230 E-statistic 0714898 Durbin-Watson stat 1 905485 Prob(F-statistic) 0.548496 *Note: p-values and any subsequent tests do not account for model selection. Dependent Variable: TF_BINF Method: ARDL Date: 10/21/22 Time: 10:32 Sample (adjusted): 2018M03 2021M12 Included observations: 46 after adjustments Maximum dependent lags: 4 (Automatic selection) Model selection method: Akaike info criterion (AIC) Dynamic regressors (4 lags, automatic): DIFLNTAPROD DIFLNTEXP Fixed regressors: C Number of models evaluated: 100 Selected Model: ARDL(1, 1, 0) Note: final equation sample is larger than selection sample Std. Error Prob.* Variable Coefficient t-Statistic TF_BINF(-1) DIFLNTAPROD 0.224120 -0.048489 0.146907 0.194866 0.1348 0.8047 1.525586 -0.248831 DIFLNTAPROD(-1) -0.380059 0.207839 -1.828620 0.0747 DIFLNTEXP -0.454817 0.732759 -0.62069 0.5382 0.100275 0.060058 1.669633 0.1026 0.116957 R-squared 0.118938 Mean dependent var Adjusted R-squared 0.032980 S.D. dependent var 0 397994 S.E. of regression Sum squared resid Log likelihood 0.032980 0.391376 6.280190 -19.47262 1.064027 1.262793 1.138486 Akaike info criterion Schwarz criterion Hannan-Quinn criter F-statistic 1.383683 Durbin-Watson stat 1.908126 Prob(F-statistic) 0.256431

*Note: p-values and any subsequent tests do not account for model

selection.

Dependent Variable: TF_BINF Method: ARDL Date: 10/21/22 Time: 10:28 Sample (adjusted): 2018M02 2021M12 Included observations: 47 after adjustments Maximum dependent lags: 4 (Automatic selection) Model selection method: Akaike info criterion (AIC) Dynamic regressors (4 lags, automatic): LNTNEER TENINF Fixed regressors: C Number of models evaluated: 100 Selected Model: ARDL(1, 0, 0) Note: final equation sample is larger than selection sample

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
TF BINF(-1)	0.234085	0.143425	1.632104	0.1100
LNTNEER	-1.292117	1.698241	-0.760856	0.4509
TENINF	0.023871	0.011656	2.048018	0.0467
С	6.261304	8.130344	0.770116	0.4454
R-squared	0.143163	Mean dependent var		0.106170
Adjusted R-squared	0.083384	S.D. dependent var		0.400530
S.E. of regression	0.383468	Akaike info criterion		1.002142
Sum squared resid	6.323039	Schwarz crite	rion	1.159602
Log likelihood	-19.55034	Hannan-Quinn criter.		1.061395
F-statistic	2.394855	Durbin-Watso	on stat	1.984758

*Note: p-values and any subsequent tests do not account for model

selection. Dependent Variable: TF_BINF Method: ARDL Date: 10/21/22 Time: 10:34 Sample (adjusted): 2018M02 2021M12 Included observations: 47 after adjustments Maximum dependent lags: 4 (Automatic selection) Model selection method: Akaike info criterion (AIC) Dynamic regressors: C Number of models evaluated: 100 Selected Model: ARDL(1,0,0) Note: final equation sample is larger than selection sample

Dynamic regressors (4 lags, automatic): DIFTLEI DIFCOI Fixed regressors: C Number of models evaluated: 100 Selected Model: ARDL(1, 0, 0) Note: final equation sample is larger than selection sample

Coefficient

0.256838

-0.020006 0.004620 0.081366

0.080168

0.015994 0.397314 6.787908

-21.21750

1.249227

0.303749

*Note: p-values and any subsequent tests do not account for model

Variable

TF_BINF(-1)

DIFTLEI

DIFCOI

Adjusted R-squared S.E. of regression Sum squared resid

R-squared

Log likelihood

Prob(F-statistic)

selection

F-statistic

Variable	Coefficient	Std. Error	t-Statistic	Prob.*				
TF_BINF(-1)	0.271712	0.144361	1.882164	0.0666				
DIFLNCOP	0.811575	0.472317	1.718283	0.0929				
DIFLNGFI	-4.677377	2.257473	-2.071953	0.0443				
С	0.100861	0.058806	1.715168	0.0935				
R-squared	0.145286	Mean depend	lent var	0.106170				
Adjusted R-squared	0.085655	S.D. dependent var		0.400530				
S.E. of regression	0.382992	Akaike info criterion		0.99966				
Sum squared resid	6.307371	Schwarz criterion		1.157120				
Log likelihood	-19.49204	Hannan-Quinn criter.		1.058914				
F-statistic	2.436410	Durbin-Watson stat		1.917992				
Prob(F-statistic)	0.077614							
*Note: p-values and any subsequent tests do not account for model selection.								
Dependent Variable: TF_BI Method: ARDL	NF							
Date: 10/21/22 Time: 10:3	6							
Sample (adjusted): 2018M02 2021M12								
Included observations: 47 a								
Maximum dependent lags:								
Model selection method: Al								

Std. Error

0.150537

0.051327

0.061520

Mean dependent var

S.D. dependent var Akaike info criterion Schwarz criterion

Hannan-Quinn criter.

Durbin-Watson stat

t-Statistic

1.706141

-0.389785 1.034368 1.322605 Prob.*

0.0952

0.6986

0.1930

0.106170

0.400530 1.073085 1.230544

1.132338

1.957644

002142 159602 061395 984758	S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.384981 6.373056 -19.73550 2.263569 0.094653	Schwarz criterio	n 1.1 criter. 1.0	010021 167481 069274 976649
111	*Note: p-values and any selection.	subsequent to	ests do not accou	nt for model	
~ ~	Dependent Variable: T Method: ARDL Date: 10/21/22 Time: Sample (adjusted): 20 Included observations: Maximum dependenti. Model selection metho Dynamic regressors: C Number of models eva Selected Model: ARDL Note: final equation sa	10:35 18M02 2021N : 47 after adju ags: 4 (Autom od: Akaike info 4 lags, autom aluated: 100 (1, 0, 0)	stments atic selection) criterion (AIC) atic): DIFCOI DIF		
Prob.*	Variable	Coefficier	nt Std. Error	t-Statistic	Prob.*
0.0666 0.0929 0.0443	TF_BINF(-1) DIFCOI DIFGFI C	0.30210 0.00899 -0.04297 0.09780	6 0.004439 2 0.019911	2.086911 2.026867 -2.158180 1.680610	0.0429 0.0489 0.0365 0.1001
0.0935 06170 00530 99661 57120 58914 17992	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.16713 0.10902 0.37806 6.14614 -18.8835 2.87631 0.04699	 S.D. depend Akaike info c Akaike info c Schwarz crite Hannan-Qui Durbin-Wats 	ent var riterion arion nn criter. on stat	0.106170 0.400530 0.973767 1.131227 1.033020 1.943178
	selection. Dependent Variable: TF_ Method: ARDL Date: 10/21/22 Time: 10 Sample (adjusted): 2018 Included observations: 41 Maximum dependent lag; Model selection method: Dynamic regressors: C Number of models evalu: Selected Model: ARDL(1, Note: final equation sample	:37 M02 2021M12 7 after adjustm s: 4 (Automatic Akaike info crit ags, automatic) ated: 100 0, 0)	selection) erion (AIC) : DIFTLEI DIFTIR	e	
	Variable	Coefficient	Std. Error t-S	Statistic Pro	b.*
	TF_BINF(-1) DIFTLEI DIFTIR C	0.221838 -0.035697 -0.002529 0.090604	0.051490 -0.6 0.701647 -0.0	0.4 0.3605 0.9	426 919 971 557
	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(E-statistic)	-0.008490 0.402226 6.956801 -21.79506	Mean dependent w S.D. dependent va Akaike info criterior Schwarz criterion Hannan-Quinn crit Durbin-Watson sta	r 0.400 n 1.097 1.255 er. 1.156	530 662 121 915

0.463564

*Note: p-values and any subsequent tests do not account for model

Prob(F-statistic)

selection

Dependent Variable: TF_BINF

Date: 10/21/22 Time: 10:34

Sample (adjusted): 2018M02 2021M12

Number of models evaluated: 100

Selected Model: ARDL(1, 0, 0)

Included observations: 47 after adjustments Maximum dependent lags: 4 (Automatic selection)

Model selection method: Akaike info criterion (AIC)

Dynamic regressors (4 lags, automatic): TENINF LNTFIMP

Note: final equation sample is larger than selection sample

Coefficient

0.255402

0.024122

0.235836

-3.280367

0.136385

0.076133

0.384981

Std. Error

0.143467

0.011696

0.484552

6.895141

Mean dependent var

S.D. dependent var

Akaike info criterion

t-Statistic

1.780212

2.062444

0.486709

-0.475751

Prob.*

0.0821

0.0452

0.6289

0.6367

0.106170

0.400530

1.010021

. Method: ARDL

Fixed regressors: C

Variable

TF_BINF(-1)

TENINF

LNTFIMP

С

Adjusted R-squared

S.E. of regression

R-squared

Dependent Variable: TF_BINF Method: ARDI Date: 10/21/22 Time: 10:38 Sample (adjusted): 2018M02 2021M12 Included observations: 47 after adjustments Maximum dependent lags: 4 (Automatic selection) Model selection method: Akaike info criterion (AIC) Dynamic regressors (4 lags, automatic): DIFTLEI DIFTNEER Fixed regressors: C Number of models evaluated: 100 Selected Model: ARDL(1, 0, 0) Note: final equation sample is larger than selection sample

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
TF_BINF(-1) DIFTLEI DIFTNEER C	0.220704 -0.036081 0.007836 0.090821	0.148594 0.049700 0.045165 0.061602	1.485279 -0.725973 0.173497 1.474330	0.1448 0.4718 0.8631 0.1477
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.057941 -0.007784 0.402086 6.951937 -21.77862 0.881561 0.458200	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.106170 0.400530 1.096963 1.254422 1.156216 1.899223

*Note: p-values and any subsequent tests do not account for model

selection.

selection. Dependent Variable: TF_BINF Method: ARDL Date: 10/21/22 Time: 10:39 Sample (adjusted): 2018M04 2021M12 Included observations: 45 after adjustments Maximum dependent lags: 4 (Automatic selection) Model selection method: Akalke into criterion (AIC) Dynamic regressors (A lags, automatic): DIFTLEI DIFTAPI Fixed regressors: C Number of models evaluated: 100 Selected Model: ARDL(1, 0, 2) Note: final equation sample is larger than selection sample

Note: final equation sample is larger than selection sample					
Variable	Coefficient	Std. Error	t-Statistic	Prob.*	
TF_BINF(-1)	0.253531	0.152641	1.660963	0.1047	
DIFTLEI	-0.017153	0.052735	-0.325265	0.7467	
DIFTAPI	-0.003499	0.017202	-0.203432	0.8399	
DIFTAPI(-1)	0.031059	0.016334	1.901503	0.0646	
DIFTAPI(-2)	-0.033696	0.016265	-2.071674	0.0450	
С	0.096377	0.060509	1.592776	0.1193	
uared	0.178910	Mean depend	lent var	0.125778	
usted R-squared	0.073642	S.D. depende	ent var	0.397918	
of regression	0.382986	Akaike info cr	iterion	1.041928	
m squared resid	5.720448	Schwarz crite	rion	1.282817	
g likelihood	-17.44339	Hannan-Quin	in criter.	1.131729	
statistic	1.699571	Durbin-Wats of	on stat	1.792402	
ob(F-statistic)	0.157654				

Dependent Variable: TF Method: ARDL Date: 10/21/22 Time: Sample (adjusted): 201 Included observations: Maximum dependent la Model selection method Dynamic regressors (4 Fixed regressors: C0 Number of models eval Selected Model: ARDL(Note: final equation sar	10:33 8M02 2021M1: 47 after adjustr igs: 4 (Automati d: Akaike info cr lags, automati luated: 100 1, 0, 0)	ments ic selection) riterion (AIC) c): TENINF LNT		
Variable	Coefficient	Std. Error	t-Statistic	Prob.*
TF_BINF(-1) TENINF LNTEXP C	0.234919 0.025340 0.566919 -8.386754	0.142880 0.011718 0.674318 10.06546	1.644166 2.162422 0.840730 -0.833221	0.1074 0.0362 0.4052 0.4093
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.145671 0.086066 0.382906 6.304532 -19.48146 2.443960 0.076945	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion tion n criter.	0.106170 0.400530 0.999211 1.156670 1.058464 1.996491
*Note: p-values and any selection.	ysubsequent te	ests do not acc	ount for mode	31
 Dependent Variable: TI	F_BINF			

Method: ARDL

Date: 10/21/22 Time: 10:40

Sample (adjusted): 2018M02 2021M12

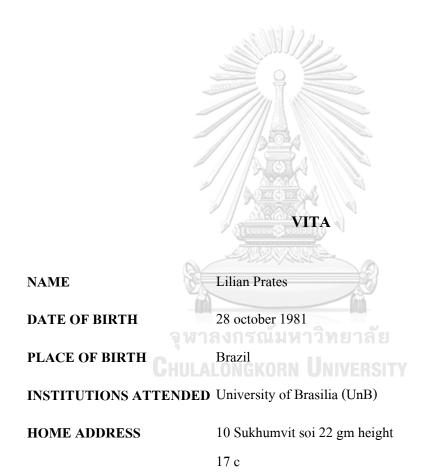
Included observations: 47 after adjustments Maximum dependent lags: 4 (Automatic selection)

Model selection method: Akaike info criterion (AIC) Dynamic regressors (4 lags, automatic): DIFTLEI TENINF

Fixed regressors: C Number of models evaluated: 100

Selected Model: ARDL(1, 0, 0) Note: final equation sample is larger than selection sample

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
TF_BINF(-1)	0.255077	0.142610	1.788633	0.0807
DIFTLEI	-0.033739	0.047387	-0.711991	0.4803
TENINF	0.023990	0.011662	2.057134	0.0458
С	0.082447	0.058925	1.399196	0.1689
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.141745 0.081867 0.383785 6.333499 -19.58918 2.367229 0.084025	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.106170 0.400530 1.003795 1.161254 1.063048 1.989316


*Note: p-values and any subsequent tests do not account for model

selection.

Dependent Variable: TF_BINF Method: ARDL Date: 10/21/22 Time: 10:40 Sample (adjusted): 2018M06 2021M12 Included observations: 43 after adjustments Included observations: 43 alter adjustments Maximum dependent lags: 4 (Automatic selection) Model selection method: Akaike info criterion (AIC) Dynamic regressors (4 lags, automatic): DIFTLEI DIFTAPROD Fixed regressors: C Number of models evaluated: 100 Selected Model: ARDL(1, 0, 4)

*Note: p-values and any subsequent tests do not account for model selection.

Variable Coefficient Std. Error t-Statistic Prob.* TF_BINF(-1) DIFTLEI 0.153328 0.054707 0.222930 1.453940 0.1549 0.054502 0.996251 0.3260 DIFTAPROD DIFTAPROD(-1) -0.000210 -0.001669 0.000962 -0.218177 -1.537340 0.8286 0.1332 -0.141906 -1.186905 -2.469758 DIFTAPROD(-2) -0.000167 0.001178 0 8880 DIFTAPROD(-3) DIFTAPROD(-4) -0.001378 -0.002875 0.001161 0.001164 0.2433 0.0185 С 0.070343 0.060227 1.167977 0.2507 R-squared 0.250584 Mean dependent var 0.103023 0.100700 0.370517 0.390711 1.018404 Adjusted R-squared S.D. dependent var Akaike info criterion S.E. of regression Sum squared resid 4.804889 Schwarz criterion 1.346069 -13.89568 1.671858 Hannan-Quinn criter. Durbin-Watson stat 1.139237 1.807598 Log likelihood F-statistic Prob(F-statistic) 0.148252 *Note: p-values and any subsequent tests do not account for model selection.

