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ABSTRACT (THAI) 
 อริสา อัมภรัตน์ : การเปรียบเทียบวิธีการจัดการข้อมูลที่ไม่สมดลุสำหรับแบบจำลองที่ไดร้ับการฝึกฝน

แล้วสำหรับวิธีการจำแนกประเภทแบบหลายลาเบลในสแต็กโอเวอร์โฟลว์. ( A COMPARISON OF 
IMBALANCED DATA HANDLING METHODS FOR PRE-TRAINED MODEL IN MULTI-LABEL 
CLASSIFICATION OF STACK OVERFLOW) อ.ที่ปรึกษาหลัก : ผศ. ดร.สรุณพรี์ ภูมิวุฒิสาร 

  
การจัดประเภทแท็กมีความสำคัญในสแต็กโอเวอร์โฟลว์ นอกจากจะช่วยให้ผู้ใช้สามารถค้นหาข้อมูล

แล้วยังช่วยเสนอวิธีแก้ปัญหาที่เกี่ยวข้องอย่างมีประสิทธิภาพมากขึ้นอีกด้วย เนื่องจากคำถามในโพสต์สามารถมีได้
หลายแท็กดังนั้นการจัดประเภทแท็กในสแต็กโอเวอร์โฟลว์จึงถือเป็นเรื่องที่ท้าทาย ซึ่งส่งผลให้เกิดปัญหาความไม่
สมดุลระหว่างแท็กกับแท็กท้ังหมด เราจึงนำโมเดลการเรียนรู้เชิงลึกท่ีได้รับการฝึกฝนแล้วพร้อมกับชุดข้อมูลขนาด
เล็กมาทดลองเพื่อเพิ่มความแม่นยำในการจำแนกหรือการทำนายแท็กได้  โดยใช้เทคนิคการสุ่มตัวอย่างใหม่ที่
เหมาะกับการจำแนกประเภทแบบหลายลาเบลโดยเฉพาะ  โดยทั่วไปแล้วเพียงแค่ใช้เทคนิคการเรียนรู้ของเครื่อง
ก็สามารถแก้ไขปัญหานี้ได้เช่นกัน แต่มีแค่ไม่กี่งานวิจัยเท่านั้นที่ทดลองว่าเทคนิคการสุ่มตัวอย่างใหม่แบบใดที่
สามารถปรับปรุงประสิทธิภาพของโมเดลเชิงลึกโดยใช้แบบจำลองที่ได้รับการฝึกฝนแล้วสำหรับการทำนายแท็ก 
เพื่อจัดการกับข้อจำกัดนี้ เราได้ทดลองเพื่อประเมินประสิทธิภาพของ ELECTRA ซึ่งเป็นโมเดลการเรียนรู้เชิงลึกท่ี
ได้รับการฝึกฝนแล้วท่ีทรงพลัง อีกทั้งยังเสริมด้วยด้วยเทคนิคการสุ่มตัวอย่างใหม่แบบหลายลาเบลเพื่อลดความไม่
สมดุลของข้อมูลที่ทำให้เกิดการติดลาเบลผิดในโพสต์ของสแต็กโอเวอร์โฟลว์ เราเปรียบเทียบเทคนิคการสุ่มใหม่ 6 
เทคนิค ประกอบไปด้วย ML-ROS, MLSMOTE, MLeNN, MLTL, ML-SOL และ REMEDIAL เพื่อหาวิธีที่ดีที่สุด
ในการลดความไม่สมดุลของข้อมูล พร้อมท้ังปรับปรุงความแม่นยำในการคาดทำนายแท็ก ซึงผลลัพธ์ของเราแสดง
ให้เห็นว่า MLTL เป็นตัวเลือกที่มีประสิทธิภาพมากที่สุดในการจัดการกับความไม่สมดุลในการจำแนกประเภท
หลายลาเบลสำหรับข้อมูลในสแต็กโอเวอร์โฟลว์ในการเรียนรู้เชิงลึก  โดยเทคนิค MLTL ทำได้ 0.517, 0.804, 
0.467 และ 0.98 จากตัวช้ีวัด Precision@1, Recall@5, F1-score@1 และ AUC ตามลำดับ แต่ MLeNN กลับ
ทำได้แค่เพียง 0.323, 0.648, 0.277 และ 0.95 จากตัววัดผลเดียวกัน 
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Tag classification is essential in Stack Overflow. Instead of combining through pages 

or replies of irrelevant information, users can easily and quickly pinpoint relevant posts and 
answers using tags. Since User-submitted posts can have multiple tags, classifying tags in Stack 
Overflow can be challenging. This results in an imbalance problem between labels in the 
whole labelset. Pretrained deep learning models with small datasets can improve tag 
classification accuracy. Common multi-label resampling techniques with machine learning 
classifiers can also fix this issue. Still, few studies have explored which resampling technique 
can improve the performance of pre-trained deep models for predicting tags. To address this 
gap, we experimented to evaluate the effectiveness of ELECTRA, a powerful deep learning pre-
trained model, with various multi-label resampling techniques in decreasing the imbalance 
that induces mislabeling in Stack Overflow's tagging posts. We compared six resampling 
techniques, such as ML-ROS, MLSMOTE, MLeNN, MLTL, ML-SOL, and REMEDIAL, to find the best 
method to mitigate the imbalance and improve tag prediction accuracy. Our results show that 
MLTL is the most effective selection to tackle the inequality in multi-label classification for our 
Stack Overflow data with deep learning scenarios. MLTL achieved 0.517, 0.804, 0.467, and 0.98 
from the metrics Precision@1, Recall@5, F1-score@1, and AUC, respectively. Conversely, 
MLeNN gained only 0.323, 0.648, 0.277, and 0.95 from the same metrics.  
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Chapter I  
INTRODUCTION 

1.1 Overview 
Coding is a crucial talent for many people today, including professional 

developers, hobby program mers, and anyone interested in acquiring th is 
technological competency. People frequently look for and follow programming 
tutorials from online sites to learn and strengthen their coding skills. Stack Overflow, 
an online Q&A site targeted and visited by programmers worldwide, is one of the 
most popular resources. The website gives answers to a variety of programming 
questions and subjects. As seen in Figure 1, Stack Overflow entries have titles, 
bodies, and tags. 

 
Figure  1: An example of Stack Overflow’s question 

 Still, the tags could be dispersed or mislabeled, resulting in a multi-label 
categorization challenge  (Pant et al., 2018). This is exacerbated by the problem of 
data imbalance. It is common in multi-label datasets and can cause bias in the 
classifier (Peng et al., 2021). Data imbalance can have a major impact on model 
performance in the case of Stack Overflow, which contains a big dataset with 
thousands of labels. To solve this data imbalance issue and increase tag classification 
accuracy, proper resampling techniques must be used. 
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 To address data imbalance in multi-label classification, resampling techniques 
are often utilized. These methods are classified as random or heuristic and include 
ML-ROS, MLSMOTE, REMEDIAL, MLeNN, MLTL, and MLSOL. Undersampling methods 
should not be used with MLDs because they can result in a large loss of potentially 
helpful information during the training phase (Charte, Rivera, Jesús, et al., 2014). LP-
ROS is eliminated from our strategy since its algorithm's pseudocode is incomplete, 
resulting in coding confusion. For severely imbalanced multi-label datasets such as 
the Stack Overflow dataset, ML -ROS, MLSMOTE, MLeNN, MLTL, ML -SOL, and 
REMEDIAL are appropriate.  

Deep learning-based pre-trained language models have recently improved 
classification models  (Zhou et al., 2019), with BERT serving as a prime example 

(Charte et al., 2017). However, some BERT variations demand a lot of processing 
power, rendering them inappropriate for computers with limited resources  (Giraldo-
Forero et al., 2013). Fortunately, there is a transformer model known as ELECTRA 
(Clark et al., 2020) that outperforms these versions of BERT on fewer computer 
resources. ELECTRA develops two transformer models for token replacement 
detection. When compared to models such as RoBERTa (Liu et al., 2019) and XLNet 
(Yang et al., 2019), this takes less time and yields higher accuracy on downstream 
tasks. ELECTRA is a suitable deep learning pre -trained model for handling Stack 
Overflow -related downstream  tasks, such as question answering and text 
categorization, and is thus a suitable model to test against multi-label resampling 
strategies. 

While ML-ROS and MLSMOTE can tackle imbalanced multi-label problems in 
deep learning contexts, they have not been examined in the Stack Overflow dataset. 
Research is scarce on tag recommendations for Stack Overflow utilizing pre -trained 
transformer-based models. Only pre-trained PTM4Tag has been developed and 
studied for multi-label classification on the Stack Overflow dataset. The multi-label 
classification challenge for Stack Overflow data using deep learning scenarios was 
addressed in this research by modifying several multi-label resampling strategies to 
deal with imbalanced datasets. To avoid ineffective resampling methods, the data 
were stratified evenly before applying pre -training ELECTRA, optimized with Adam 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

with a learning rate of 7E-5, to discover the optimal multi-label resampling approach. 
The performance of several multi-label resampling approaches was assessed using 
metrics such as Precision@k, Recall@k, F1-score@k, and AUC. MLTL achieved 0.517, 
0.804, 0.467, and 0.98 for the metrics Precision@k, Recall@k, F1 -score@k, and AUC, 
respectively.  

The paper's contributions include augmenting pre -trained models using 
various multi-label resampling strategies to handle imbalanced datasets. This had not 
before been researched or obtained high performance for multi-label classification 
issues. Based on our findings, the study indicates that MLTL is the optimal multi-label 
resampling method for the Stack Overflow dataset with deep learning scenarios. 
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Chapter II  
BACKGROUND 

2.1 Problem Formulation 
A common difficulty in multi-label datasets for classification is data imbalance 

(Pant et al., 2018), which causes classifier bias (Zhou et al., 2019). The most often 
utilized resampling techniques to handle this are LP-RUS and LP-ROS developed by 
Charte et al. (2013). These are examples of multi-label resampling approaches based 
on LP transformation. However, they are unlikely to solve the imbalance problem. 
Charte et al. (2015) also published ML -RUS, which aims to remove samples with 
majority labels, and ML-ROS, which clones samples with minority labels. Due to the 
co-occurrence of minority and majority labels, some of the minority samples chosen 
by ML-ROS contain the most common labels. Then, Charte et al. (2015) devised a 
REMEDIAL technique to address the imbalanced issue by detaching the majority and 
minority labels. Giraldo-Forero et al. (2013) used SMOTE (Synthetic Minority Over -
sampling Technique) in the heuristic oversampling method. Then, Charte et al. (2014) 
published MLeNN, the first heuristic multi-label undersampling technique. Another 
approach proposed by Charte et al. (2015) is MLSMOTE, Multilabel Synthetic Minority 
Oversampling Technique, which uses the instances as seeds to generate new 
instances. In most multi-label datasets, this is appropriate for several minority labels. 
Furthermore, Liu et al. (2019) developed MLSOL to investigate imbalance in minority 
samples based on local characteristics rather than the entire dataset. Recently, 
Pereira et al. (2020) introduced MLTL to handle the imbalance in the undersampling 
technique by using the standard Tomek Link algorithm. REMEDIAL -HwR (REMEDIAL 
Hybridization with Resampling) was proposed by Charte et al. (2019) as three hybrid 
methods that include several resampling techniques. Liu et al. (2022) recently 
modified their prior approach by incorporating MLSOL and MLUL, particularly for 
local label distribution. 

Undersampling strategies, whether random or heuristic, should not be used 
on MLDs since they are not truly unbalanced and result in a considerable loss of 
potentially relevant information during the training process. LP-ROS is removed from 
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our method since its algorithm's pseudocode is incomplete, which leads to coding 
misunderstandings. As a result, we choose ML-ROS, REMEDIAL, MLSOL, MLTL, MLeNN, 
and MLSMOTE because the former removes instances with the most common 
labelset (i.e. particular combination of label values) while the latter replicates 
examples with the fewest label sets. These are appropriate for our dataset.  

Oversampling methods such as ML-ROS, which deal with individual imbalance 
evaluations per label rather than whole labelsets, which utilize them to decide 
which instances will be cloned or eliminated  (Charte et al., 2015a), could be useful 
for our Stack Overflow with many labels and difficult to decide. The oversampling 
method MLSMOTE creates each minority sample as a seed for a new synthetic 
sample and is recommended for use with highly imbalanced multi-label datasets 
such as our Stack Overflow. Furthermore, a study of resampling approaches 
demonstrated that MLeNN and MLTL are limited by feature designing but not by 
unambiguous neighbors for large-scale learning (Peng et al., 2021). REMEDIAL and 
hybridizations do not perform well in deep learning settings because REMEDIAL 
generates a large number of virtual labelsets and modifies the label space paradigm. 
ML-ROS and MLSMOTE, on the other hand, are appropriate for resolving imbalanced 
difficulties in multi-label deep learning. MLSOL, ML-ROS, and MLSMOTE have never 
been examined for the Stack Overflow dataset, nor have MLTL, MLeNN, and 
REMEDIAL. LP-ROS is excluded from our approach due to its algorithm’s pseudocode 
is not complete to avoid misunderstanding in coding. We chose ML-ROS, REMEDIAL, 
MLSOL, MLTL, MLeNN, and MLSMOTE to compare their performance in our large -
scale software tag prediction models because of all of the methodologies described.  
 Pant et al. (2018) spotted the challenges of the multi -label classification 
problem as removing noisy data from insignificant features in high -dimensionality 
reduction, degrading data quality from the cleaning process and label dependency, 
uncertain and imbalance data, label uncertainty from adding unnecessary labels, and 
drifting labels. However, we only focus on the imbalanced data problem to avoid 
misclassification due to the classifier's bias towards the labels being increased by the 
multi-label imbalance. 
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A deep learning-based technique's pre-trained language model recently 
improved the categorization model. Devlin et al. (2019) developed the primary BERT. 
Its variations have been developed, but some of them used high computational 
techniques (Von der Mosel et al., 2022), making it troublesome and unsuitable for 
the restricted computing resources (Giraldo-Forero et al., 2013). On the other hand, 
there is a transformer that outperforms on fewer computational resources. ELECTRA 
(Clark et al., 2020), is a pre-training task that trains two transformer models for 
replacement token identification. It is faster and more efficient than RoBERTa (Liu et 
al., 2019) and XLNet (Yang et al., 2019). When completely trained, it performs better 
on downstream  tasks. As a result, it can help with Stack Overflow -related 
downstream tasks like Question Answering and Text Classification. 

There have not been many studies on tag suggestion combining pre -trained 
transformer-based models in multi-label classification issue handling with a thousand 
Stack Overflow labels. He et al. (2022) developed the pre-trained PTM4Tag including 
BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), ALBERT (Lan et al., 2019), 
CodeBERT (Feng et al., 2020), and BERTOverflow (Tabassum et al., 2020) specific for 
multi-label classification, by comparing PTM4Tag with the previous Post2Vec as a 
baseline model. There has been no previous research referencing pre -trained 
ELECTRA for tag recommendation in multi-label classification issues from Stack 
Overflow. 
2.2 Research Questions 

Which multi-label resampling method is the most effective for dealing with 
the unbalanced problem  in SO posts?  By assessing the effectiveness and 
performance of the pre-trained ELECTRA model, we examine various multi-label 
resampling approaches, such as ML-ROS, MLSMOTE, MLeNN, MLTL, ML-SOL, and 
REMEDIAL, to lessen imbalanced datasets from Q&A sites. Precision@k, Recall@k, F1-
score@k, and AUC are among the measures we use to evaluate outcomes. 
2.3 Objectives 

This work attempts to address the issue of imbalanced data by evaluating 
several multi-label resampling approaches to improve the performance of a deep 
learning pre-trained model. We concentrate primarily on multi-label classification and 
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the efficiency of ELECTRA, the pre-trained model because ELECTRA can be trained on 
a single GPU due to our constrained resources. Furthermore, it has never been 
trained for tag prediction in multi-label classification problems on the Stack Overflow 
Q&A Site. 
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Chapter III  
LITERATURE REVIEW 

3.1 Tag Recommendations 
There have been numerous ways created to classify tags for Stack Overflow 

users. Among them, TagCNN, TagRNN, TagHAN, and TagRCNN are more effective than 
classic tag recommendation algorithms (Zhou et al., 2019) such as EnTagRec (Wang et 
al., 2014), TagMulRec (Zhou et al., 2017), and FastTagRec (Liu et al., 2018). 
Convolutional Neural Networks (CNNs) were recently used as feature extractors in 
Post2Vec (Xu et al., 2022) with a sigmoid layer instead of the state-of-the-art softmax 
classification layer. Deep learning models that have been pre-trained have shown the 
potential in boosting tag categorization accuracy, especially with limited datasets. 
3.2 Multi-Label Resampling Methods for Imbalanced Data 

The scope of imbalance in traditional classification is determ ined by 
comparing the number of instances from the majority and minority classes. Typically, 
the number of samples from the minority class is significantly lower than that of the 
majority class (García et al., 2008). To overcome this issue, popular strategies focus 
on balancing the dataset through undersampling (lowering the size of the majority 
class), oversampling (raising the size of the minority class), or a mix of both. However, 
in multi-label classification, the dataset contains hundreds or thousands of labels. As 
a result, all labels must be considered. 

According to the distinction between global and local label density  (Kotze, 
2022), global label density is the proportion of the total tag of all labels relative to 
the full rank summation of all labels. Suppose the dataset has 30 label tags with 100 
instances and 3 multi-labels, global label density is calculated to be 0.1 or 10%. On 
the other hand, local label density is determined for each label separately. It 
considers class distributions by summing the total observations present for the given 
label and dividing it by the total number of samples in the dataset.  

To measure imbalanced data from a thousand labels, L for the total set of 
labels, 𝐿𝑙 for the l-th label in this set, and 𝑌𝑖 for the labelset associated with the i-th 

sample in multi-label dataset D. The same labelset can appear in several samples of 
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D. The threshold is used to cut the set of labels into minority and majority labels. 
The labels whose IRLbl is larger than MeanIR are called majority labels. On the 
other hand, the labels whose IRLbl is less than MeanIR are called minority labels 
(Charte et al., 2015a). But some approaches consider for each label, a label  l is 
defined as a minority when IRLbl(l) is above MeanIR (Charte et al., 2015b). These 
are the following measures for evaluating the level of imbalance (Charte et al., 2013): 

3.2.1 IRperLabel 
The ratio between the majority and the considered labels , the higher IRLbl 

(IRperLabel) could increase the imbalance level. 

IRLbl(l) =  
argmax

𝐿|𝐿|

𝑙′=𝑌1

(∑ ℎ(
|𝐷| 
𝑖=1 𝑙′,𝑌𝑖))

∑ ℎ(
|𝐷| 
𝑖=1

𝑙,𝑌𝑖)
 ,         ℎ(𝑙, 𝑌𝑖) =  {

1    𝑙 ∈ 𝑌𝑖

0    𝑙 ∉ 𝑌𝑖
            (1)       

3.2.2 MeanIR 
The average level of imbalance is estimated as the global imbalance level. 

MeanIR = 
1

|L|
 ∑ (𝐼𝑅𝐿𝑏𝑙

𝐿|𝐿| 

𝑙=𝐿1
(𝑙))                                                            (2) 

3.2.3 CVIR 
The coefficient of variation of IRLbl can indicate if all labels suffer from a 

similar level of imbalance or if there are huge differences. The higher CVIR induces a 
larger difference. 

CVIR = 
𝐼𝑅𝐿𝑏𝑙𝜎

𝑀𝑒𝑎𝑛𝐼𝑅
, 𝐼𝑅𝐿𝑏𝑙𝜎 = √∑

(𝐼𝑅𝐿𝑏𝑙(𝑙)−𝑀𝑒𝑎𝑛𝐼𝑅)2

|L|−1

𝐿|𝐿|

𝑙=𝑌1                          (3) 

 

3.2.4 SCRUMBLE 
Recently, there is another measurement named SCUMBLE (Charte, Rivera, del 

Jesus, et al., 2014), which is based on the Atkinson index and IRLbl, that measures 
the imbalance level of each label instead of the total set of labels, by taking each 
instance 𝐷𝑖 in a multi-label dataset D as a population, and the active labels in 𝐷𝑖 as 
individuals. If the label l is present in instance  i then 𝐼𝑅𝐿𝑏𝑙𝑖𝑙 = IRLbl(l). On the 
contrary, 𝐼𝑅𝐿𝑏𝑙𝑖𝑙 = 0. Also, 𝐼𝑅𝐿𝑏𝑙𝑖

̅̅ ̅̅ ̅̅ ̅̅  is defined as the average imbalance level of the 
labels appearing in instance i. The most common is the total number of labels |L|. 

The higher value increases inconsistent frequencies of labels. 
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SCUMBLE (D) = 
1

|D|
 ∑ [1 −  

1

𝐼𝑅𝐿𝑏𝑙𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅ 
(∏ 𝐼𝑅𝐿𝑏𝑙𝑖𝑙

|L|
𝑙=1 )1/|L|]

|D| 
𝑖=1                     (4) 

To address imbalanced data, numerous resampling strategies are accessible. 
LP-RUS (Label Powerset Random Undersampling) and LP -ROS (Label Powerset 
Random Oversampling) are the most used (Charte et al., 2013). LP-RUS removes 
instances allocated with the most frequent labelset based on LP transformation, as 
evaluating the entire labelset may not solve the imbalance problem. Later, ML -RUS 
(M ulti-Label Random  Undersam pling) and M L -ROS (M ulti-Label Random 
Oversampling) (Charte et al., 2015a) are proposed, to delete majority -labeled 
samples and cloning minority-labeled samples. However, some minority samples 
chosen by ML-ROS may contain the most common labels. REMEDIAL (Resampling 
Multilabel datasets by Decoupling Highly Imbalanced Labels) approach (Charte et al., 
2015c) was developed to deal with label concurrence by decoupling the majority 
and minority labels, whose degree is measured by SCUMBLE (Charte, Rivera, del 
Jesus, et al., 2014). This may cause additional complexity in a learning job when 
there are numerous pairs of examples with the same attributes but different labels. 

To alleviate the issue of random oversampling, SMOTE (Chawla et al., 2002) 
was used in a heuristic oversampling technique. Nonetheless, class groups were 
frequently not well defined, and some samples from the majority class may have 
infiltrated the minority class space or vice versa. The first heuristic multilabel 
undersampling approach, MLeNN (Charte, Rivera, Jesús, et al., 2014) was released. It 
outperformed the random undersampling done by LP-RUS but only handled majority 
labels and comparable labels of its neighbors heuristically (Liu & Tsoumakas, 2019). 

Another method was MLSMOTE (Charte et al., 2015b), which used samples 
with minority labels as seeds to produce new instances for multiple minority labels 
in most multilabel datasets. It was suggested for severely skewed multilabel 
datasets, but not for MLC algorithms that rely on local information. MLSOL (Liu & 
Tsoumakas, 2019) was also developed to examine the imbalance based on the local 
characteristics of minority samples rather than the entire dataset. It outperformed 
MLSMOTE in terms of performance and mistake correction, but it only concentrated 
on local label distribution.  MLTL (Pereira et al., 2020) was adapted from the standard 
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Tomek Link method to manage the imbalance in the undersampling technique. It 
can define a Hamming distance threshold to eliminate the majority label, however, it 
is difficult to apply to highly concurrent imbalanced labels. 

The REMEDIAL-HwR (REMEDIAL Hybridization with Resampling) approach 
(Charte et al., 2019) was divided into three hybrid methods: REMEDIAL -HwR-ROS, 
REMEDIAL-HwR-HUS, and REMEDIAL-HwR-SMT.  In order to improve concurrent 
imbalanced multi-label classification (MLC), this study used multiple resampling 
methods such as ML-ROS, MLeNN, and MLSMOTE. These three hybrid strategies were 
not confined to specific situations or general solutions. Recently, (Liu & Tsoumakas, 
2019), another approach for local label distribution was devised by embedding 
MLSOL and MLUL (Liu et al., 2022).  

Despite advances in resampling techniques for imbalanced multi -label 
classification, there is still a literature gap regarding the optimal resampling method 
to improve the performance of pre -trained deep models for predicting tags, 
particularly in the context of Stack Overflow's multi-label classification problem with 
a large number of labels. There hasn't been much study on tag recommendations 
that combines pre-trained transformer-based models for dealing with the issue of 
multi-label categorization with thousands of Stack Overflow labels.  

The pre-trained PTM4Tag (He et al., 2022) was developed specifically for the 
multi-label classification and compared to the previous Post2Vec as a baseline 
model, which includes BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), ALBERT 
(Lan et al., 2019), CodeBERT (Feng et al., 2020). There has been no prior research 
mentioning pre-trained ELECTRA for tag suggestion in multi-label classification 
challenges from Stack Overflow posts.  

This work attempts to address the issue of imbalanced data by evaluating 
several multi-label resampling approaches to improve the performance of a deep 
learning pre-trained model. We concentrate primarily on multi-label classification and 
the efficiency of ELECTRA, the pre-trained model because ELECTRA can be trained on 
a single GPU due to our constrained resources. It has never been trained for tag 
prediction in multi-label classification problems on the Stack Overflow Q&A Site. 
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Chapter IV  
METHODOLOGY 

4.1  Pre-processing 
The experiment was set up on Jupyter Notebook (anaconda3), Python 3. We 

choose the Stack Overflow 430,576-row dataset between the years 2009 to 2015 
from the SO dump1, which includes components such as Title, Body (description), 
and Code snippets, as well as thousands of tag labels. The code snippets are 
separated from the body, and the title and body are blended into the text after 
eliminating HTML tags, punctuation, and stopwords from the postings. Except for the 
code samples, all text is transformed to lowercase. 

 

 
 

Figure  2: A workflow of Stack Overflow’s tag classification 
To decrease noisy data, we select just the questions covered by the most 

frequent tags and remove rare tags that occur less than 50 times. This process is 

 
1 https://archive.org/download/stackexchange 
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similar to the previous approach (Xu et al., 2022), which deleted extraneous 
attributes such as rare tags that are unimportant in providing representative tags to 
users for big software information sites datasets. Rare and frequent labels in a multi -
label dataset limit the efficacy of resampling procedures (Feng et al., 2020). 
4.2 PTM-Oriented Tokenization 
 The dataset was randomized and classified into three groups: 90% for a train 
set, 5% for a validation set, and 5% for a test set. Following that, the stratified 
approach was used. To extract tokens from the sentences, we utilized the same pre-
trained tokenizer (see Figure 2). By transforming the texts into tokens, we explored 
ELECTRA . Token ization tokens were m erged w ith  unique tokens: < CLS> 
(Classification), the first token in each input sequence, and <SEP> (Separator), the 
last token in each input sequence.   
4.3 Resampling Techniques 

After the preprocessing and tokenization processes, we examined the pre -
trained model, ELECTRA. To address the issue of imbalanced data, we used 
numerous multi-label resampling strategies that were suitable for our pre-trained 
models, including ML-ROS, MLSMOTE, MLeNN, MLTL, MLSOL, and REMEDIAL. To 
improve the efficiency of processing imbalanced data, several resampling strategies 
were applied before the training phase. LP-ROS is removed from our work since its 
algorithm's pseudocode is insufficient to avoid coding misunderstandings. We 
analyzed and compared the performance of the approaches used after balancing the 
data. Define L as the total set of labels, 𝐿𝑙 for the l-th label in this set, and 𝑌𝑖 for the 
labelset associated with the i-th sample in multi-label dataset D. The same labelset 
can appear in several samples of D. The threshold is used to cut the set of labels 
into minority and majority labels. The labels whose IRLbl is larger than MeanIR are 
called majority labels. On the other hand, the labels whose  IRLbl is less than 

MeanIR are called minority labels (Charte et al., 2015a). But some approaches 
consider for each label, a label l is defined as a minority when IRLbl(l) is above 

MeanIR (Charte et al., 2015b). 
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4.3.1 ML-ROS 
ML-ROS (Charte et al., 2015a) (Multi-Label Random Oversampling), ML-ROS 

differs from LP-based approaches in that it uses individual labels to identify minority 
observations rather than label-sets to identify minority observations. Minority labels 
are identified as IRLbl > MeanIR labels. The number of samples generated is 
determined by a P% (user-defined) increase in the overall size of the dataset. The 
first approach is to find every minority label, that is, every label with IRLbl > MeanIR. 
Minority bags are used to hold observations with labels. Every observation with a 
minority label has a bag that contains all the observations with that label. The next 
stage is to oversample these minority bags. The P% increase in dataset size defines 
how many samples to clone or oversample is calculated by the P% increase in 
dataset total size. When an observation is oversampled, the number of samples to 
clone decreases by one when the number of samples to clone is more than zero.  
We loop through the label bags, oversampling one random observation from each 
bag. When the IRLbl of a label no longer exceeds the MeanIR, since it is no longer a 
minority label, a bag is removed from the bags to oversample. Sample to clone is 
estimated by the P% increase in the overall size of the dataset, as illustrated in 
Algorithm 1 and Figure 3. 

Algorithm 1. ML-ROS algorithm pseudo-code. 

Inputs: D: Dataset, P: Percentage 

Outputs: Preprocessed dataset 

1: samplesToClone =  len(D) /100 *P       ▷  P% size increment 

2: L =  lelabelsInDataset(D) * Obtain the full set of labels 

3: MeanIR =  calculateMeanIR(D, L) 

4: for each label in L do      ▷ Bags of minority labels samples 

5: 𝐼𝑅𝐿𝑏𝑙𝑙𝑎𝑏𝑒𝑙  =  calculatelRperLabel(D, label) 

6: if 𝐼𝑅𝐿𝑏𝑙𝑙𝑎𝑏𝑒𝑙 > MeanIR then 

7:  𝑚𝑖𝑛𝐵𝑎𝑔𝑖++ =  𝐵𝑎𝑔𝑙𝑎𝑏𝑒𝑙  

8: end if 

9: end for 

10: while samplesToClone > 0 do   ▷ Instances cloning loop 

11: ▷ Clone a random sample from each minority bag 

12: for each 𝑚𝑖𝑛𝐵𝑎𝑔𝑖  in minBag do 

13:  x = random(1, len(𝑚𝑖𝑛𝐵𝑎𝑔𝑖)) 

14:  cloneSample(𝑚𝑖𝑛𝐵𝑎𝑔𝑖, x) 

15:  if 𝐼𝑅𝐿𝑏𝑙𝑚𝑖𝑛𝐵𝑎𝑔 <= MeanIR then  

16:   minBag = 𝑚𝑖𝑛𝐵𝑎𝑔
𝑖
  ▷ Exclude from cloning 
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The ML-ROS algorithm’s pseudocode from (Charte et al., 2015a)  
 
 
 
 
 
  

 

 

 

 

 

 

 

 

 

 

 

 

Figure  3: A workflow of ML-ROS modified from Charte et al., 2015a & Kotze, 2022 
4.3.2 MLSMOTE 

In the Multi-label Synthetic Minority Oversampling Technique or MLSMOTE 
(Charte et al., 2015b), each label is examined to verify if it belongs to a minority 
group. A minority label is defined as IRLbl > MeanIR. If the label is a minority label, 
place all the observations that belong to it in a bag. For each m inority bag 
observation, find the k nearest neighbors. Choose one of the k neighbors at random, 
adapted from SMOTE (Chawla et al., 2002) as shown in Figure 4.  

Create a new synthetic observation with the minority observation and the 
random neighbor as parameters using. Interpolate the characteristics between the 
minority bag observation and the neighboring bag observation and assign these 
features to the synthetic observation. Generate the labelset for the new synthetic 
instance and assign the labelset to the new observation. Add the new synthetic 

17:  end if 

18:  samplesToClone 

19: end for 

20: end while 

Oversample the minority bags 

Minority label 1 Minority label 2 Minority label 3 

Labels with IRLbl > MeanIR 

Resample multi-Label Dataset 

Multi-Label Dataset 
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observation to the dataset. Repeat for all labels. If the IRLbl of a label reaches the 
MeanIR, this label is no longer oversampled as shown in Algorithm 2-3 and Figure 5. 

 

 
 

 
 
 

 
Figure  4: SMOTE from Chawla et al., 2002 

 
 
 
 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5: A workflow of MLSMOTE modified from Charte et al., 2015b & Kotze, 2022 

Iterate over all of the labels 

For all observations in bag l 
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Label l 
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Inputs: D: Dataset to oversample, k: Number of nearest neighbors 

1: L = labelsInDataset(D)  ▷ Full set of labels  

2: MeanIR = calculateMeanIR(D,L) 

3: for each label in L do 

4:  𝐼𝑅𝐿𝑏𝑙𝑙𝑎𝑏𝑒𝑙 = calculatelRperLabel(D, label)  

5: if 𝐼𝑅𝐿𝑏𝑙𝑙𝑎𝑏𝑒𝑙 > MeanIR then 

6:  ▷ Bags of minority labels samples  

7:  minBag = getAllInstancesOfLabel(label)  

8:  for each sample in minBag do 

9:   distances = calcDistance(sample, minBag) 

10:   sortSmallerToLargest(distances)  

11:   ▷ Neighbor set selection 

12:   neighbors = getHeadItems(distances, k) 

13:   refNeigh = getRandNeighbor(neighbors) 

14:   ▷ Feature set and labelset generation 

15:   synthSmpl = newSample(sample, refNeigh, neighbors) 

16:   DD + synthSmpl 

17:   end for 

18:  end if 

19: end for 

 
20: function NEWSAMPLE(Sample, refNeigh, neighbors) 

21:  synthSmpl = new Sample   ▷ New empty instance  

22: ▷ Feature set assignment 

23: for each feat in synthSmpl do 

24:  if typeOf(feat) is numeric then  

25:   diff = refNeigh.feat - sample.feat 

26:   offset = diff * randInInterval(0,1) 

27:   value = sample.feat + offset 

28:  else  

29:   value = mostFreqVal(neighbors.feat) 

30:  end if 

31:   syntSmpl.feat = value 

32: end for 

33: ▷ Label set assignment 

34: IblCounts = counts(sample.labels) 

35: IblCounts+ = counts(neighbors.labels) 

36: labels = IblCounts > (k+1)/2  

37:   synthSmpl.labels = labels 

38: return synthSmpl 

39: end function 

The MLSMOTE algorithm’s pseudocode from (Charte et al., 2015b) 

Algorithm 2. MLSMOTE algorithm pseudo-code. 

Algorithm 3. MLSMOTE algorithm pseudo-code. 
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4.3.3 MLeNN 
MLeNN (Charte, Rivera, Jesús, et al., 2014), the first heuristic multi-label 

undersampling technique, performed noticeably better than the random 
undersampling used by LP-RUS (Liu & Tsoumakas, 2019). The multi-label dataset will 
be iterated and selected for those whose labelset does not contain any labels with 
IRLbl > MeanIR as the candidates C. In this method, all instances bearing a minority 
label will be retained. Select a sample candidate C, all of them were subjected to 
MLeNN with nearest neighbors (NN) = 3 (3 neighbors) and Threshold (TH) = 0.75 (75% 
labelset difference threshold), If the C class differs from the class of at least half of 
its neighbors (that is, 2 when NN = 3), C should be removed as defined in Algorithm 4 
and Figure 6.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  6: A workflow of MLeNN modified from Charte, Rivera, Jesús, et al., 2014  
 

Inputs: D: Dataset to resample, TH: Threshold, NN: NumNeighbors 

Outputs: Preprocessed dataset 

1: for each sample in D do 

2: for each label in getLabelset(D) do  

Algorithm 4. MLeNN algorithm pseudo-code. 

Multi-Label Dataset 

Select a sample candidate C 

If C class differs from the 

class of at least half of 

their neighbors (that is 2 

when NN = 3) 

Delete the candidate C 
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3:  if IRLbl(label) > MeanIR then  

4:   Jump to next sample ▷ Preserve instance with minority labels 

5:  end if 

6: end for 

7: numDifferences = 0 

8: for each neighbor in nearestNeighbors (sample, NN) do  

9:  if adjustedHammingDist (sample, neighbor) > TH then  

10: numDifferences = numDifferences+1 

11:  end if 

12: end for 

13: if numDifferences > NN/2 then 

14:  markForRemoving(sample) 

15: end if 

16: end for 

17: deleteAllMarkedSamples(D)  

The MLeNN algorithm’s pseudocode from (Charte, Rivera, Jesús, et al., 2014)  
 

4.3.4 MLTL 
MLTL (Pereira et al., 2020) was modified from the traditional Tomek Link 

algorithm, which is finding a pair of two samples from different classes to control the 

undersampling technique's imbalance or cleaning method, which can specify a 

threshold for Hamming distance to eliminate the majority label. Figure 7 shows the 

type of selection for the undersampling or cleaning method in the resampling 

dataset as defined in Algorithm 5. A pair of two different samples from dissimilar 

classes are defined as the Tomek Link pair.  

 
 

Figure  7: The Multi-Label Tomek Link was modified from Pereira et al., 2020 
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Labels are divided into majority bags for the undersampling approach. As a result, all 

observations containing a majority class label are placed in the majority bag of the 

relevant label. The updated Hamming Distance between each observation in the 

majority bags and its nearest neighbor is determined. If the adjusted Hamming 

Distance is greater than Threshold, the observation is added to the  Tomek-Links 

array. Only the majority class observation is added to the set, not the nearest 

neighbor. An observation is not verified twice. As a result, if an observation belongs 

to more than one majority label, it is not rechecked. All of the majority of class 

observations in the Tomek-Links set is removed from the dataset as defined in 

Algorithm 6 and Figure 8. 

A similar strategy is used for cleaning. However, rather than only checking 

observations from the majority classes, all observations are checked. As a result, we 

calculate the updated Hamming Distance from each observation to its nearest 

neighbor and see if it is more than the threshold. If the updated Hamming Distance is 

greater than the threshold, the observation and its nearest neighbor are added to an 

array of Tomek-Links marked for removal, as defined in Algorithm 7 and Figure 8. 

 

Algorithm 5. Multi-Label Tomek Link. 

Inputs: D: Dataset to resample, TH: Threshold  

Output: D': Resampled dataset 

1: TL = new empty list of instances 

2: if (MLTL was chosen as a cleaning procedure) then  

3:  TL =  CLEANINGMETHOD (D, TH) 

4: else 

5:  TL = UNDERSAMPLINGMETHOD (D, TH)  

6: end if 

7: D' = new empty dataset 

8: for each sample in D do 

9:  if (sample not in TL) then 

10:  D' = D' U sample 

11: end if 

12: end for 

13: return D' 

Algorithm 6. Undersampling Method. 
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Inputs: D: Dataset to resample, TH: Threshold  

Output: TL: Tomek Link instances 

1: TL = new empty list of instances 

2: checkedSamples = new empty list of instances  

3: for each sample in D do 

4: if (sample in checkedSamples) then 

5:   continue 

6: end if 

7:  NN = NEARESTNEIGHBOR(Sample) 

8: checkedSamples =  checkedSamples U sample 

9:  dist =  ADJUSTEDHAMMINGDIST(sample, NN)  

10: if (dist ≥ TH) then 

11:   TL = TL U sample 

12: end if 

13: end for 

14: return TL 

 The MLTL algorithm’s pseudocode from Pereira et al., 2020 

Inputs: D: Dataset to resample, TH: Threshold 

Output: TL: Tomek Link instances 

1: L = LABELSINDATASET(D)  

2: MeanIR  = GETMEANIR (D) 

3: for each l in L do 

4:  iRLBI  = GETIRLBL(l) 

5: if (iRLBI < meanIR) then 

6: majBags[l] = GETINSTANCES(I) 

7: end if 

8: end for 

9: TL = empty list of instances 

10: checkedSamples = new empty list of instances 

11: for each majBag in majBags do  

12:  for each sample in majBag do 

13:  if (sample in checkedSamples) then 

14:    continue 

15:  end if 

16:   NN = NEARESTNEIGHBOR(Sample) 

17:  checkedSamples = checkedSamples U sample 

18:  dist - ADJUSTEDHAMMINGDIST(sample, NN) 

19:  if (dist TH) then 

20:   TL = TL U sample 

21:  end if 

22: end for 

23: end for 

24: return TL 

Algorithm 7. Cleaning Method. 
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Figure  8: A workflow of MLTL was modified from Pereira et al., 2020 & Kotze, 2022  
 

4.3.5 MLSOL 
MLSOL (Liu & Tsoumakas, 2019) was developed to examine the imbalance 

based on the regional features of minority samples as opposed to the entire dataset. 

While concentrating primarily on local label distribution, it outperformed MLSMOTE 

in terms of performance and mistake correction. 

To begin, identify kNN for each observation using the Euclidean distance; the k 

nearest neighbors for each observation in the dataset are calculated. Then, 

Multi-Label Data 

Find k nearest neighbors to each observation 

Undersampling Cleaning 

Identify majority bags Find NN to each 
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Delete Tomek-links 
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 23 

calculating C is an intermediary step in establishing a sampling weight for each 

observation depending on its immediate surroundings.  

Let X = ℝ𝑑 represent a d-dimensional input feature space, L= {l1, l2, …, lq} 

represent a label set containing q labels, and Y = {0,1}𝑞 represent a q-dimensional 

label space. D = {(𝑥𝑖, 𝑦𝑖)| 1 ≤ i ≤ n} is an n-instance multi-label training data set. Each 

instance (𝑥𝑖, 𝑦𝑖) is composed of a feature vector 𝑥𝑖 𝜖 X and a label vector 𝑦𝑖 𝜖 Y, 

where 𝑦𝑖𝑗 is the j-th element of 𝑦𝑖 and 𝑦𝑖𝑗 = 1(0) indicates that 𝑙𝑗 is (or is not) 

connected with the i-th instance. A multi-label technique learns from D the mapping 

function h: X → {0,1}𝑞and (or) f: X → ℝ𝑑 that, given an unknown instance x, 

outputs a label vector �̂� containing the anticipated labels of and (or) a real-valued 

vector 𝑓y containing the relevance degrees to x, respectively.  

The k nearest neighbors to every observation in the dataset are calculated. The 

result is a n by k matrix with the distance to the k closest observations for each 

observation i ∈ {1,2, …, n} in the dataset. Another n by k matrix is created with the 

index of the nearest neighbors in the original dataset as shown in equation (5).  

𝐶𝑖𝑗 =
1

𝑘
 ∑ [[𝑦𝑚𝑗  ≠  𝑦𝑖𝑗]]𝑋𝑚∈𝑘𝑁𝑁(𝑥𝑖)

  where  𝐶𝑖𝑗 ∈ {0,1}             (5) 

The MLSOL algorithm replaces seed observations with samples. The likelihood 

of selecting an observation is proportional to the number of m inority class 

observations in its immediate vicinity. C values vary from 0 to 1, with values near 0 as 

shown in equation (5) indicating a safe (hostile) neighborhood of similarly (oppositely) 

labeled instances. A result of 𝐶𝑖𝑗 = 1 might also be interpreted as an indication that 

𝑥𝑖  is an outlier in in comparison to 𝑙𝑗. 

 As a result, the likelihood of selecting an observation is weighted by the 

fraction of majority class observations in its k nearest neighbors. To obtain a single 

sampling weight 𝑤𝑖 for each observation. 𝐶𝑖𝑗 must be aggregated for each 

observation. As a result, each observation 𝑥𝑖 will be assigned a weight 𝑤𝑖 ∈ {1,2, … , 
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n}. The difficulty of correctly anticipating the minority class is represented by 𝑤𝑖. 

Larger values of 𝑤𝑖 correspond to observations that are more likely to be selected in 

the random sample of observations, while smaller values of 𝑤𝑖 correspond to 

observations that are less likely to be selected, calculated w to select the random 

seed observations depending on 𝑤𝑖, Probability Proportional to Size (PPS) sampling is 

utilized. A uniformly distributed random number between 0 and 1 is created and 

multiplied by the weighted sum (∑ 𝑤𝑖
𝑛
𝑖=1 ). The randomly chosen observation is the 

index corresponding to the interval within which the random number falls, as shown 

in equation (6). 

𝑤𝑖 =  ∑
𝐶𝑖𝑗 [[ 𝑦𝑖𝑗=1 ][[𝐶𝑖𝑗 <1]]

 
∑ 𝐶𝑖𝑗

𝑛
𝑖=1  [[ 𝑦𝑖𝑗=1 ][[𝐶𝑖𝑗 <1]]

𝑘
𝑘=1                (6) 

To discover observation types, the type of observation we are working with is 

critical for label assignment when new synthetic observations are generated. Minority 

observations will be classified into four categories: safe (SF), borderline (BD), rare (RR), 

and outlier (OT). Safe (SF) 𝐶𝑖𝑗 < 0.3 means that a region dominated by minority 

examples is a safe option. Borderline (BD) 0.3 <  𝐶𝑖𝑗 < 0.7 is located along the 

decision line between the majority and minority classes. Rare (RR) 0.7 < 𝐶𝑖𝑗 < 1 

means that the majority region is located far away from the decision boundary. 

Outlier (OT) 𝐶𝑖𝑗 = 1 it is means that surrounded by instances of the majority as 

shown in Algorithm 8-9 and Figure 9.  

Choose a random seed observation and one of the k nearest neighbors to the 

seed observation at random as a reference observation. Generate a new observation 

using the seed and reference observations. According to the pseudocode in 

algorithm 10, add the new synthetic observation to the dataset, then repea t the 

procedure of producing new observations until enough samples have been 

generated as seen in Figure 9. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 25 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure  9: A workflow of MLSOL modified from Liu & Tsoumakas, 2019 & Kotze, 2022  

Inputs: D: multi-label data set, P: percentage of instances to be generated, k: Number 

of nearest neighbors 

output: D': new data set  

1: GenNum = len(D) *P       ▷ Number of instances to be generated 

2: D' = D 

3: Find the kNN of each instance 

Algorithm 8. MLSOL algorithm pseudo-code. 
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4: Calculate C     ▷ C is the matrix storing proportion of kNNs 

with opposite class for each instance and each label 

5: Compute w  

6: T =  InitTypes(C,k)    ▷ Initialize the type of instances 

7: while GenNum > 0 do 

8: Select a seed instance (𝑥𝑠, 𝑦𝑠) from D based on the w 

9: Randomly choose a reference instance (𝑥𝑟, 𝑦𝑟) from kNN  

10: (𝑥𝑐, 𝑦𝑐) GenerateInstance ((𝑥𝑠, 𝑦𝑠), Ts, (𝑥𝑟, 𝑦𝑟), Tr) 

11: D' = D'  U (𝑥𝑐, 𝑦𝑐) 

12: GenNum =  GenNum-1 

13: return D' 

Inputs: C:  The matrix storing proportion of KNNs with opposite class for each 

instance and each label, k: Number of nearest neighbors 

output: T: types of instances 

1: for i =1 to n do     ▷  n is the number of instances  

2: for j = 1 to q do    ▷  q is the number of labels 

3:  if 𝑦𝑖𝑗 = majority class then 

4:  𝑇𝑖𝑗 =  MJ 

5:                     else 𝑦𝑖𝑗 is the minority class 

6: if 𝐶𝑖𝑗 < 0.3 then 𝑇𝑖𝑗 = SF   

7: else if 𝐶𝑖𝑗 < 0.7 then 𝑇𝑖𝑗 = BD 

8: else if 𝐶𝑖𝑗 < 1 then 𝑇𝑖𝑗 = RR 

9: else if 𝑇𝑖𝑗 = OT 

10: repeat  re-examine RR type 

11:         for i in 1 to n do  

12:                    for j in 1 to q do  

13: if 𝑇𝑖𝑗 = RR then 

14:  for each am in kNN (𝑥𝑖) do  

15:   if 𝑇𝑖𝑗= SF or 𝑇𝑖𝑗 = BD then  

16:    𝑇𝑖𝑗+ BD   

17:    break 

18: until no change in T 

19: return T 

Inputs: (𝑥𝑠, 𝑦𝑠): Seed instance, 𝑇𝑠: types of seed instance, (𝑥𝑟, 𝑦𝑟): Reference instance, 

𝑇𝑟: types of reference instance 

output: (𝑥𝑐, 𝑦𝑐): Synthetic instance 

1: for j in1 to d do 

2: 𝑥𝑐𝑗  = 𝑥𝑠𝑗  + Random(0, 1)*( 𝑥𝑟𝑗  - 𝑥𝑠𝑗)    ▷ Random (0,1) generate a random value 

between 0 and 1 

3: 𝑑𝑠 = (𝑥𝑐, 𝑥𝑠), 𝑑𝑟 = (𝑥𝑐, 𝑥𝑟)  ▷ dist return the distance between 2 instances 

4: cd  = 𝑑𝑠/(𝑑𝑠 +  𝑑𝑟) 

Algorithm 9. InitTypes. 

Algorithm 10.  GenerateInstance. 
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5: for j in 1 to q do       

6: if 𝑦𝑠𝑗 = 𝑦𝑟𝑗 then 

7:                  𝑦𝑐𝑗 =  𝑦𝑠𝑗 

8:         else  

9:                  if 𝑇𝑠𝑗 = MJ then               ▷ Ensure 𝑦𝑠𝑗  being minority class 

10: s = r       ▷ Swap indices of seed and reference instance 

11: cd =1- cd 

12:                 switch 𝑇𝑠𝑗 do 

13: case SF do  𝜃 = 0.5 break 

14: case BD do  𝜃 = 0.75 break 

15:  case RR do  𝜃 = 1+1𝑒 -5 break 

16: case SF do  𝜃 = 0 - 1𝑒 - 5 break 

17:                 if cd  ≤ 𝜃 then   

18: 𝑦𝑐𝑗 =  𝑦𝑠𝑗 

19:                 else 

20: 𝑦𝑐𝑗 =  𝑦𝑟𝑗 

21: return (𝑥𝑡, 𝑦𝑡) 

 

The MLSOL algorithm’s pseudocode from (Liu & Tsoumakas, 2019) 
 
4.3.6 REMEDIAL 

REMEDIAL (Resampling Multi-label datasets by Decoupling highly Imbalanced 
Labels) (Charte et al., 2019) method. Define IRLbl as the measures the imbalance 
level of each label instead of the total set of labels, by taking each instance 𝐷𝑖 in a 
multi-label dataset D as a population, and the active labels in 𝐷𝑖 as the individuals. 
If the label l is present in the instance i 𝐼𝑅𝐿𝑏𝑙𝑖

̅̅ ̅̅ ̅̅ ̅̅  is defined as the average imbalance 
level of the labels appearing in instance i.  

1: function REMEDIAL(MLD D, Labels L)  

2:  IRLbli = calculateIRLbl(l in L)                           ▷ Calculate imbalance levels 

3: MeanIR =  𝐼𝑅𝐿𝑏𝑙𝑖
̅̅ ̅̅ ̅̅ ̅̅                              

4: 𝑆𝐶𝑈𝑀𝐵𝐿𝐸𝑙𝑛𝑠𝑖
  =  calculateSCUMBLE(𝐷𝑖 in D)        ▷ Calculate SCUMBLE 

5: 𝑆𝐶𝑈𝑀𝐵𝐿𝐸  =   𝑆𝐶𝑈𝑀𝐵𝐿𝐸𝑖𝑛𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

6: for each instance i in D do 

7:  if 𝑆𝐶𝑈𝑀𝐵𝐿𝐸𝑙𝑛𝑠𝑖
 > 𝑆𝐶𝑈𝑀𝐵𝐿𝐸 then 

8:   𝐷𝑖
′ =  𝐷𝑖     ▷ Clone the affected instance 

9:   𝐷𝑖[𝑙𝑎𝑏𝑒𝑙𝑠𝐼𝑅𝐿𝑏𝑙≤𝐼𝑅𝑀𝑒𝑎𝑛] = 0    ▷ Maintain minority labels  

10:   𝐷𝑖
′[𝑙𝑎𝑏𝑒𝑙𝑠𝐼𝑅𝐿𝑏𝑙>𝐼𝑅𝑀𝑒𝑎𝑛] = 0   ▷ Maintain majority labels 

11:   D =  D + 𝐷𝑖
′  

12:  end if 

13: end for 

Algorithm 11. REMEDIAL algorithm 
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14: end function 

The REMEDIAL algorithm’s pseudocode from (Charte et al., 2019) 

REMEDIAL shows how to deal with the concurrence of labels by separating 
the majority and minority labels when numerous pairs of cases have similar 
attributes but different labels for instance, whose level is determined by 𝑆𝐶𝑈𝑀𝐵𝐿𝐸, 
𝑆𝐶𝑈𝑀𝐵𝐿𝐸𝑙𝑛𝑠 > 𝑆𝐶𝑈𝑀𝐵𝐿𝐸(𝐷) observations will be disconnected. As a result, any 
observations with an above -average level of 𝑆𝐶𝑈𝑀𝐵𝐿𝐸 will be disconnected. 
Decoupling means that the observations will be separated into two parts. One will 
include all of the majority labels, while the other will include all of the minority 
labels. Labels with IRLbl ≤ MeanIR constitute the majority, while labels with IRLbl > 
MeanIR constitute the minority, which is defined in Algorithm 11 and Figure 10. 

REMEDIAL is a sampling algorithm in the sense that it generates new 
observations. The decoupling process generates new obser vations while 
simultaneously altering previous ones. REMEDIAL distinguishes itself from other 
resampling algorithms by not changing the label frequencies. Even though the 
dataset's composition has changed, the number of observations corresponding to the 
majority and minority labels remains constant.   

 
 
 
 

 
 
 
 
 
 
Figure  10: A workflow of REMEDIAL was modified from Charte et al., 2019 & 

Kotze, 2022 
 

Decoupling labels New 

resampled 

Dataset 

Multi-Label Dataset 

𝑆𝐶𝑈𝑀𝐵𝐿𝐸𝑙𝑛𝑠 > 𝑆𝐶𝑈𝑀𝐵𝐿𝐸(𝐷) 
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4.4 Model Training 
The model was optimized using a constant learning rate of 7E-5 with a batch 

size of 64, utilizing the Adam optimizer. The objective function was set as binary -
cross entropy loss. The best model was selected based on the lowest loss achieved 
on the validation set.  
4.5  Evaluation Metrics 
4.5.1 Precision@k 

The average ratio of predicted ground truth tags among the list of the top -k 
recommended tags. Let the ground truth tags of a post as 𝐺  for the 𝑖-th post in the 
test set and find top-k tags by  𝑇𝑎𝑔𝑖

𝑘 that can be defined as equations (7) and 
equations (8), respectively. 

Precision@𝑘𝑖= 
|𝐺𝑇𝑖 ∩𝑇𝑎𝑔𝑖

𝑘 | 

𝑘
                                               (7) 

For average all the values of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘𝑖 : 

Precision@𝑘= 
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘𝑖

|𝑋| 
𝑖=1

|𝑋|
                                        (8)                                        

4.5.2 Recall@k 
The proportion of correctly predicted ground truth tags found in the list of 

ground truth tags with the same equation is followed by (Xu et al., 2022) which can 

be defined as equations (9) and equations (10), respectively. 

Recall@𝑘𝑖 =  {

|𝐺𝑇𝑖 ∩𝑇𝑎𝑔𝑖
𝑘 | 

𝑘
       if          |𝐺𝑇𝑖|   >   𝑘

|𝐺𝑇𝑖 ∩𝑇𝑎𝑔𝑖
𝑘 | 

|𝐺𝑇𝑖|  
       if          |𝐺𝑇𝑖|   ≤   𝑘

                                     (9)                                 

For average all the values of Recall@𝑘𝑖 : 

Recall@𝑘 =  
∑ 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘𝑖

|𝑋| 
𝑖=1

|𝑋|
                                                                            (10) 

4.5.3 F1-score@k 
Define harmonic mean of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘𝑖 and  𝑅𝑒𝑐𝑎𝑙𝑙@𝑘𝑖 that can be defined as 

equations (11) and equations (12), respectively. 

                   F1-score@𝑘𝑖 = 2 ×  
Precision@𝑘𝑖  ×  Recall@𝑘𝑖

Precision@𝑘𝑖 +  Recall@𝑘𝑖
                               (11)    

For average all the values of F1-score@𝑘𝑖 : 
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F1-score@𝑘 = 
∑ 𝐹1−𝑠𝑐𝑜𝑟𝑒@𝑘𝑖

|𝑆| 
𝑖=1

|𝑋|
                                            (12)    

4.5.3 Area Under the Curve  
To deal with the imbalance class, we use Area Under the Curve (AUC) to 

evaluate the model by the Area under the ROC (Receiver Operating Characteristic) 
curve, which consists of a True Positive Rate and False Positive Rate that can be 
defined as equations (12) and equations (13), respectively.  
 

            𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
                                               (12) 

 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
                                             (13) 
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 Chapter V 
DISCUSSION 

5.1 Generated Dataset Resampling 
Before using Stack Overflow data, we set up the resampling procedures into 

the simulated dataset on Google Colab, containing 100,000 samples with 6 classes of 
labels. Due to the visualization from the bar graph is hard to indicate the labels 
changing compared to before and after applying the various resampling techniques. 
Hence, we visualize the labels changing from each class by using the scatter plot to 
depict the distribution of circles. The size of the circle indicates the number of labels 
for each class. The size of the circle will extend equally for the balance data. Each 
color represents the total number of the label from different classes. Class 1 
represents the blue color, class 2 represents the orange color, class 3 represents the 
green color, class 4 represents the red color, class 5 represents the purple color, and 
Class 6 represents the brown color, as shown in Figure 11. Figure 11 illustrates the 
ideal balance data, in which the labels are represented as the circles from all the 
classes appear the same equal size. 

 
Figure  11: A scatter plot for the ideal balance of multi-label data 

The generated data before applying various multi-label resampling methods 

are shown in Figure 12-13. 
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    (a) 

 
(b)     (c) 

 
    (d)     (e)  

 
(f)     (g) 

Figure  12: The bar charts of the comparison between the multi-label data before 
and after applying various resampling methods (a) ML-ROS, (b) MLSMOTE, (c) MLTL, 

(d) MLeNN, (e) MLSOL, and (g) REMEDIAL 
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      (a) 

 
(b)     (c) 

 
(d)     (e)  

 
(f)     (g) 

Figure  13: The scatter plots of the comparison between the multi-label data before 
and after applying various resampling methods (a) ML-ROS, (b) MLSMOTE, (c) MLTL, 

(d) MLeNN, (e) MLSOL, and (g) REMEDIAL 
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Figure 12 (a) illustrates the bar graph of class imbalance before the generated 
data is resampled, compared to after being resampled. Each color represents the 
total number of labels per class. The scatter plot in Figure 13 (a) indicates the label 
size of the circle as the number of labels for each class, compared to the number of 
labels in the bar graph as shown in Figure 12 (a), the scatter plot illustrates the 
amount of each label from the different classes that are not the same . Before 
applying the various multi-label resampling methods, some classes contain over half 
of all labels in the dataset, but some are less than half of all labels in the dataset, 
the size of the circle is not the same according to the imbalances.  

ML-ROS-selected minority samples may include the most prevalent labels. 

Majority-labeled samples are deleted, while minority-labeled samples, such as the 

green in class 3 are cloned, and make the green color increased, as follows by the 

concept of cloning the minority labels from the samples, as shown in Figure 12-13 

(b). MLSMOTE generates seeds from minority label samples from all cla sses. The 

increased quantity of labels from all classes has influenced the overall label 

distribution, as seen by its observation, in Figure 12-13 (c). MLTL, locate a pair of two 

samples from distinct classes to manage the imbalance of the undersampling 

approach, the majority of class observations in the Tomek-Links set are all deleted 

from all classes, consequently, the number of labels in both graphs is reduced, as 

can be seen in Figure 12-13 (d). MLeNN, all occurrences with a minority label will be 

kept, but if the candidate's class varies from the class of at least half of their 

neighbors, such as class 1, they will be eliminated, which makes the number of 

labels in class 1 decreased, as shown in Figure 12-13 (e). MLSOL, locate the k nearest 

neighbors to each observation, produce a random seed observation , and pick a 

random neighbor to the seed observation, then generate a new observation , which 

increases the number of labels as seen in both graphs from Figure 12-13 (f). 

REMEDIAL is a sampling algorithm in the sense that it creates new observations. The 

decoupling process creates new observations while concurrently modifying existing 

ones. REMEDIAL separates itself from other resampling algorithms by not modifying 
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the label frequencies. Even though the dataset's composition has changed, the 

number of observations belonging to the majority and minority labels stays 

consistent, As a consequence, the number of labels from all classes for REMEDIAL 

remains the same, as shown in Figure 12-13 (g). 

Overall, the size of circles is increased after applying the multi -label 

oversampling resampling methods, ML-ROS, MLSMOTE, and MLSOL which represent 

the labels that are generated from the dataset. As a result, the number of labels is 

increased more than before applying the resampling methods, While the size of 

labels is the same for REMEDIAL, it does not work well on this generated dataset, as 

shown in Figure 12-13 (g), the small different change from REMEDIAL that was applied 

in other cases revealed the same results that REMEDIAL not good in almost every 

case (Charte et al., 2019). In contrast, the size of circles is reduced in MLTL and 

MLeNN which represent that the labels are excluded from the dataset and there are 

fewer amounts of each label than before applying the multi -label undersampling 

resampling methods. 

Hence, all resampling algorithms are endorsed by the generated data. The 
next step is to adapt these methods to our real Stack Overflow data. However, the 
multi-label resampling algorithms can work differently on individual datasets (Charte 
et al., 2015a). For more evaluation, we use the metrics for the level of imbalance, 
such as IRLbl, MeanIR, and SCUMBLE, the higher IRLbl and MeanIR could increase the 
imbalance level, and the same as SCUMBLE, the higher value increases the 
inconsistent frequencies of labels. 

 

Resampling 
Techniques 

IRLbl MeanIR SCUMBLE 

Before 
Resampling 

1.26637349 
1.00000000 

50.29488221 
1.51055213 

9.9629  0.0431 
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2.38163564 
3.323831 

ML-ROS 

1.23971835 
1.00000000 
9.96041359 
1.45121164 
2.14165026 
2.80091381 

3.0990 - 

 
MLSMOTE 

1.122086 
1.000000 

15.467196 
1.195444 
1.493664 
1.632747 

3.652 - 

MLeNN 

1.27418559 
1.000000 

48.26482535 
1.56550379 
2.41079326 
3.57312966 

9.681 - 

MLTL 

1.3080459 
1.0000000 

30.28269699 
1.58812252 
2.66423671 
4.69496222 

6.923 
 

- 

MLSOL 

1.19925469 
1.0000000        

16.02489788  
1.38878306  

4.051  
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2.05047538        
2.64186762 

REMEDIAL 

1.26637349 
1.00000000        

50.29488221  
1.51055213  
2.38163564 
3.323831 

9.963 0.0431 

Table  1: Evaluation metric for imbalance in the generated data  
According to Table 1, before resampling, there is the highest number of IRLbl 

with a value of 50.295 and MeanIR with a value of 9.963. After applying various multi-

label resampling methods, the level of imbalanced or MeanIR is decreased with a 

value of 3.099, 3.652, 9.681, 6.923, 4.051 for ML-ROS, MLSMOTE, MLTL, and MLSOL 

respectively. Additionally, in class 3 of labels that contained the highest imbalanced 

level of 50.295 before being resampled, there is a decrease of imbalance to 9.960, 

15.467, 48.265, 30.283, and 16.025 for ML -ROS, MLSMOTE, MLTL, and MLSOL 

respectively. Apart from REMEDIAL, which is only assessed by SCUMBLE (Charte et al., 

2015c), that still contains the same level of label frequency inconsistency compared 

to before resampling due to REMEDIAL generating a too large amount of virtual 

labelsets and altering the pattern of the label space. 
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Chapter VI  
RESULTS 

6.1 Experimental Results 
 After testing various multi-label resampling strategies for decreasing 

imbalanced datasets from the Q&A site, we found which multi -label resampling 
method is the most effective in addressing imbalanced problems in SO posts. 

Table  2: Precision at k of resampling techniques 

 Table  3: Recall at k of resampling techniques 
 
 

Model Name 
Precision@K 

P@1 P@2 P@3 P@4 P@5 

ELECTRA 0.477 0.305 0.231 0.203 0.186 
ML-ROS 0.503 0.320 0.237 0.209 0.187 

MLeNN 0.323 0.232 0.184 0.174 0.159 

MLTL 0.517 0.343 0.251 0.216 0.193 
MLSOL 0.470 0.300 0.228 0.201 0.184 

MLSMOTE 0.253 0.212 0.191 0.180 0.166 

REMEDIAL 0.500 0.310 0.232 0.207 0.189 

Model Name 
Recall@K 

R@1 R@2 R@3 R@4 R@5 

ELECTRA 0.415 0.495 0.552 0.667 0.776 

ML-ROS 0.429 0.515 0.563 0.683 0.779 

MLeNN 0.257 0.347 0.421 0.556 0.648 

MLTL 0.444 0.552 0.602 0.707 0.804 

MLSOL 0.396 0.471 0.531 0.643 0.752 

MLSMOTE 0.207 0.329 0.460 0.569 0.671 

REMEDIAL 0.430 0.500 0.552 0.672 0.786 
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Table  4: F1-score at k of resampling techniques 
 At first glance, among the examples of the obtained results of all resampling 
techniques, MLTL obtained high-ranking values, particularly MLTL, which surpassed 
others in all evaluation metrics. On the other hand, MLSMOTE and MLeNN, are 
significantly worse than ELECTRA, ML-ROS, MLSOL, MLTL, and REMEDIAL. 

According to the observations, MLTL obtained the maximum precision value 
for practically every k value.  MLeNN, on the other hand, had the lowest precision 
(see Table 2). MLTL had the strongest recall at 5 with a score of 0.804, while MLeNN 
had the lowest recall at 5 with a score of 0.648 (see Table 3). According to F1-score, 
MLSMOTE achieved the lowest performance at 1, with a score of 0.221 (see Table 4). 

We applied ROC curves for additional evaluation in MLTL and MLeNN due to 
the imbalanced class problem. Overall, the ROC curves had a high area under the 
curve, indicating that MLTL had strong recall and precision. In class 3, Figure 14 (d) 
shows that MLTL has the largest Area under the ROC curve (0.83). Furthermore, the 
graph displayed a high True Positive Rate at various thresholds.  

Overall, the multi-class ROC curve analysis showed that MLTL in Figure 14 (d) 
achieved the highest Area under the curve With values of 0.98, at class 9, while 
MLeNN in Figure 14 (e) performed not well in all classes, with the highest values 
from a score of 0.95 at class 9.  

 

Model Name 
F1-score@K 

F@1 F@2 F@3 F@4 F@5 
ELECTRA 0.435 0.366 0.316 0.304 0.294 

ML-ROS 0.452 0.382 0.323 0.312 0.296 
MLeNN 0.277 0.268 0.248 0.258 0.250 

MLTL 0.467 0.410 0.344 0.322 0.304 

MLSOL 0.419 0.354 0.308 0.298 0.289 
MLSMOTE 0.221 0.248 0.262 0.265 0.259 

REMEDIAL 0.452 0.371 0.317 0.318 0.298 
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              (a) 

 
(b)     (c) 

 
(d)     (e) 

 
(f)     (g) 

Figure  14: Multi-Class of the comparison between the multi-label data before and 
after applying various resampling methods ROC curve (a) ML-ROS, (b) MLSMOTE, (c) 

MLTL, (d) MLeNN, (e) MLSOL, and (g) REMEDIAL  
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The results of these studies imply that MLTL outperforms the other 
resampling techniques. The majority of labels in ML -ROS come from minority 
samples. REMEDIAL created an excessive number of virtual labelsets and altered the 
pattern of the label space. The sole focus of MLSOL is local label distribution. The 
class groups overlap as a result of MLSMOTE's generation of fresh synthetic samples 
that are added anywhere in the feature space. Because it relies on unimportant 
characteristics and neighbors, MLeNN performs worse than all  benchmarks. It is 
challenging for creating an unambiguous neighbor relationship, especially for large -
scale learning such as multi-label in deep learning settings. This eventually leads to 
the incorrect elimination of relevant samples. As a result, MLeNN has difficulty with 
characteristics and a neighbor-based technique that differ from those used by MLTL. 
To fix the imbalance, it utilizes the conventional Tomek Link technique. 
6.2 Conclusion and Future Work 

In order to address the imbalanced data in Stack Overflow posts, this 
research examines various multi-label resampling techniques and uses pre-trained 
ELECTRA to forecast tags. By comparing resampling methods with the pre-trained 
model ELECTRA on a single GPU (NVIDIA GeForce RTX 3080), this paper contributes 
by examining the effectiveness of various multi-label resampling techniques in 
improving pre-trained models to handle imbalanced data and achieving better 
performance metrics. According to the outcomes, MLTL is an appropriate choice to 
handle the imbalance in multi-label classification for our Stack Overflow data. We 
nevertheless advise adopting alternative approaches, such as the hybrid methods 
including REMEDIAL-HwR-ROS, REMEDIAL-HwR-HUS, and REMEDIAL-HwR-SMT to deal 
with the overfitting problem caused by the oversampling of the data. Performance 
can be enhanced by using additional pre-trained models, particularly when several 
GPUs are being used. However, researchers should select the resampling technique 
that is best suited for the individual dataset and specific issue. 
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