

A COMPARISON OF IMBALANCED DATA HANDLING METHODS FOR PRE-TRAINED MODEL
IN MULTI-LABEL CLASSIFICATION OF STACK OVERFLOW

Miss Arisa Umparat

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Statistics

Department of Statistics
FACULTY OF COMMERCE AND ACCOUNTANCY

Chulalongkorn University
Academic Year 2022

Copyright of Chulalongkorn University

การเปรียบเทียบวิธีการจัดการข้อมูลที่ไม่สมดุลสำหรับแบบจำลองที่ได้รับการฝึกฝนแล้วสำหรับวิธีการ
จำแนกประเภทแบบหลายลาเบลในสแต็กโอเวอร์โฟลว์

น.ส.อริสา อัมภรัตน์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาสถิติ ภาควิชาสถิติ

คณะพาณิชยศาสตร์และการบัญชี จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2565

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title A COMPARISON OF IMBALANCED DATA HANDLING METHODS FOR
PRE-TRAINED MODEL IN MULTI-LABEL CLASSIFICATION OF STACK
OVERFLOW

By Miss Arisa Umparat
Field of Study Statistics
Thesis Advisor Assistant Professor SURONAPEE PHOOMVUTHISARN, Ph.D.

Accepted by the FACULTY OF COMMERCE AND ACCOUNTANCY, Chulalongkorn
University in Partial Fulfillment of the Requirement for the Master of Science

Dean of the FACULTY OF COMMERCE
AND ACCOUNTANCY

 (Professor Wilert Puriwat, Ph.D.)

THESIS COMMITTEE

Chairman

 (Professor SEKSAN KIATSUPAIBUL, Ph.D.)

Thesis Advisor

 (Assistant Professor SURONAPEE PHOOMVUTHISARN, Ph.D.)

Examiner

 (Assistant Professor PURIPANT RUCHIKACHORN, Ph.D.)

External Examiner

 (Chalee Thammarat, Ph.D.)

 iii

ABSTRACT (THAI)
 อริสา อัมภรัตน์ : การเปรียบเทียบวิธีการจัดการข้อมูลที่ไม่สมดลุสำหรับแบบจำลองที่ไดร้ับการฝึกฝน

แล้วสำหรับวิธีการจำแนกประเภทแบบหลายลาเบลในสแต็กโอเวอร์โฟลว์. (A COMPARISON OF
IMBALANCED DATA HANDLING METHODS FOR PRE-TRAINED MODEL IN MULTI-LABEL
CLASSIFICATION OF STACK OVERFLOW) อ.ที่ปรึกษาหลัก : ผศ. ดร.สรุณพรี์ ภูมิวุฒิสาร

การจัดประเภทแท็กมีความสำคัญในสแต็กโอเวอร์โฟลว์ นอกจากจะช่วยให้ผู้ใช้สามารถค้นหาข้อมูล

แล้วยังช่วยเสนอวิธีแก้ปัญหาที่เกี่ยวข้องอย่างมีประสิทธิภาพมากขึ้นอีกด้วย เนื่องจากคำถามในโพสต์สามารถมีได้
หลายแท็กดังนั้นการจัดประเภทแท็กในสแต็กโอเวอร์โฟลว์จึงถือเป็นเรื่องที่ท้าทาย ซึ่งส่งผลให้เกิดปัญหาความไม่
สมดุลระหว่างแท็กกับแท็กท้ังหมด เราจึงนำโมเดลการเรียนรู้เชิงลึกท่ีได้รับการฝึกฝนแล้วพร้อมกับชุดข้อมูลขนาด
เล็กมาทดลองเพื่อเพิ่มความแม่นยำในการจำแนกหรือการทำนายแท็กได้ โดยใช้เทคนิคการสุ่มตัวอย่างใหม่ที่
เหมาะกับการจำแนกประเภทแบบหลายลาเบลโดยเฉพาะ โดยทั่วไปแล้วเพียงแค่ใช้เทคนิคการเรียนรู้ของเครื่อง
ก็สามารถแก้ไขปัญหานี้ได้เช่นกัน แต่มีแค่ไม่กี่งานวิจัยเท่านั้นที่ทดลองว่าเทคนิคการสุ่มตัวอย่างใหม่แบบใดที่
สามารถปรับปรุงประสิทธิภาพของโมเดลเชิงลึกโดยใช้แบบจำลองที่ได้รับการฝึกฝนแล้วสำหรับการทำนายแท็ก
เพื่อจัดการกับข้อจำกัดนี้ เราได้ทดลองเพื่อประเมินประสิทธิภาพของ ELECTRA ซึ่งเป็นโมเดลการเรียนรู้เชิงลึกท่ี
ได้รับการฝึกฝนแล้วท่ีทรงพลัง อีกทั้งยังเสริมด้วยด้วยเทคนิคการสุ่มตัวอย่างใหม่แบบหลายลาเบลเพื่อลดความไม่
สมดุลของข้อมูลที่ทำให้เกิดการติดลาเบลผิดในโพสต์ของสแต็กโอเวอร์โฟลว์ เราเปรียบเทียบเทคนิคการสุ่มใหม่ 6
เทคนิค ประกอบไปด้วย ML-ROS, MLSMOTE, MLeNN, MLTL, ML-SOL และ REMEDIAL เพื่อหาวิธีที่ดีที่สุด
ในการลดความไม่สมดุลของข้อมูล พร้อมท้ังปรับปรุงความแม่นยำในการคาดทำนายแท็ก ซึงผลลัพธ์ของเราแสดง
ให้เห็นว่า MLTL เป็นตัวเลือกที่มีประสิทธิภาพมากที่สุดในการจัดการกับความไม่สมดุลในการจำแนกประเภท
หลายลาเบลสำหรับข้อมูลในสแต็กโอเวอร์โฟลว์ในการเรียนรู้เชิงลึก โดยเทคนิค MLTL ทำได้ 0.517, 0.804,
0.467 และ 0.98 จากตัวช้ีวัด Precision@1, Recall@5, F1-score@1 และ AUC ตามลำดับ แต่ MLeNN กลับ
ทำได้แค่เพียง 0.323, 0.648, 0.277 และ 0.95 จากตัววัดผลเดียวกัน

สาขาวิชา สถิต ิ ลายมือช่ือนิสติ ..
ปีการศึกษา 2565 ลายมือช่ือ อ.ท่ีปรึกษาหลัก

 iv

ABSTRACT (ENGLISH)
6480507026 : MAJOR STATISTICS
KEYWORD: Pre-trained model tag prediction multi-label classification Stack Overflow

imbalanced data deep learning
 Arisa Umparat : A COMPARISON OF IMBALANCED DATA HANDLING METHODS FOR PRE-

TRAINED MODEL IN MULTI-LABEL CLASSIFICATION OF STACK OVERFLOW. Advisor: Asst.
Prof. SURONAPEE PHOOMVUTHISARN, Ph.D.

Tag classification is essential in Stack Overflow. Instead of combining through pages

or replies of irrelevant information, users can easily and quickly pinpoint relevant posts and
answers using tags. Since User-submitted posts can have multiple tags, classifying tags in Stack
Overflow can be challenging. This results in an imbalance problem between labels in the
whole labelset. Pretrained deep learning models with small datasets can improve tag
classification accuracy. Common multi-label resampling techniques with machine learning
classifiers can also fix this issue. Still, few studies have explored which resampling technique
can improve the performance of pre-trained deep models for predicting tags. To address this
gap, we experimented to evaluate the effectiveness of ELECTRA, a powerful deep learning pre-
trained model, with various multi-label resampling techniques in decreasing the imbalance
that induces mislabeling in Stack Overflow's tagging posts. We compared six resampling
techniques, such as ML-ROS, MLSMOTE, MLeNN, MLTL, ML-SOL, and REMEDIAL, to find the best
method to mitigate the imbalance and improve tag prediction accuracy. Our results show that
MLTL is the most effective selection to tackle the inequality in multi-label classification for our
Stack Overflow data with deep learning scenarios. MLTL achieved 0.517, 0.804, 0.467, and 0.98
from the metrics Precision@1, Recall@5, F1-score@1, and AUC, respectively. Conversely,
MLeNN gained only 0.323, 0.648, 0.277, and 0.95 from the same metrics.

Field of Study: Statistics Student's Signature
Academic Year: 2022 Advisor's Signature

 v

ACKNOWLEDGE MENTS

ACKNOWLEDGEMENTS

This thesis is supported by my family, my dedicated advisor who always recommends the
best method to get through all the obstacles, and my friends, especially Mr. Peerachai
Banyongrakkul and Mr. Passin Pornvoraphat who suggested the solutions and resolved the
challenged coding.

Also, Mr. Kantapong Visantavarakul and Ms. Manusaporn Treerungroj for clarifying the
essential evaluation metrics, Ms. Pratana Atikhomkamalasai for proofreading and editing, and
anonymous reviewers for advising.

Arisa Umparat

TABLE OF CONTENTS

 Page
ABSTRACT (THAI) ... iii

ABSTRACT (ENGLISH) .. iv

ACKNOWLEDGEMENTS ..v

TABLE OF CONTENTS ... vi

LIST OF TABLES ... ix

LIST OF FIGURES .. x

Chapter I ... 1

INTRODUCTION .. 1

1.1 Overview ... 1

Chapter II .. 4

BACKGROUND .. 4

2.1 Problem Formulation ... 4

2.2 Research Questions .. 6

2.3 Objectives ... 6

Chapter III ... 8

LITERATURE REVIEW ... 8

3.1 Tag Recommendations .. 8

3.2 Multi-Label Resampling Methods for Imbalanced Data ... 8

3.2.1 IRperLabel .. 9

3.2.2 MeanIR .. 9

3.2.3 CVIR ... 9

 vii

3.2.4 SCRUMBLE .. 9

Chapter IV ... 12

METHODOLOGY ... 12

4.1 Pre-processing .. 12

4.2 PTM-Oriented Tokenization .. 13

4.3 Resampling Techniques ... 13

4.3.1 ML-ROS ... 14

4.3.2 MLSMOTE ... 15

4.3.3 MLeNN .. 18

4.3.4 MLTL .. 19

4.3.5 MLSOL ... 22

4.3.6 REMEDIAL ... 27

4.4 Model Training ... 29

4.5 Evaluation Metrics... 29

4.5.1 Precision@k .. 29

4.5.2 Recall@k ... 29

4.5.3 F1-score@k ... 29

4.5.3 Area Under the Curve .. 30

Chapter V .. 31

DISCUSSION .. 31

5.1 Generated Dataset Resampling .. 31

Chapter VI ... 38

RESULTS .. 38

6.1 Experimental Results.. 38

 viii

6.2 Conclusion and Future Work .. 41

REFERENCES ... 42

VITA .. 46

LIST OF TABLES

 Page
Table 1: Evaluation metric for imbalance in the generated data 37

Table 2: Precision at k of resampling techniques ... 38

Table 3: Recall at k of resampling techniques .. 38

Table 4: F1-score at k of resampling techniques .. 39

LIST OF FIGURES

 Page
Figure 1: An example of Stack Overflow’s question .. 1

Figure 2: A workflow of Stack Overflow’s tag classification ... 12

Figure 3: A workflow of ML-ROS modified from Charte et al., 2015a & Kotze, 2022 .. 15

Figure 4: SMOTE from Chawla et al., 2002 ... 16

Figure 5: A workflow of MLSMOTE modified from Charte et al., 2015b & Kotze, 2022
 .. 16

Figure 6: A workflow of MLeNN modified from Charte, Rivera, Jesús, et al., 2014 18

Figure 7: The Multi-Label Tomek Link was modified from Pereira et al., 2020 19

Figure 8: A workflow of MLTL was modified from Pereira et al., 2020 & Kotze, 2022 22

Figure 9: A workflow of MLSOL modified from Liu & Tsoumakas, 2019 & Kotze, 2022
 .. 25

Figure 10: A workflow of REMEDIAL was modified from Charte et al., 2019 & Kotze,
2022 ... 28

Figure 11: A scatter plot for the ideal balance of multi-label data 31

Figure 12: The bar charts of the comparison between the multi-label data before
and after applying various resampling methods (a) ML-ROS, (b) MLSMOTE, (c) MLTL,
(d) MLeNN, (e) MLSOL, and (g) REMEDIAL .. 32

Figure 13: The scatter plots of the comparison between the multi-label data before
and after applying various resampling methods (a) ML-ROS, (b) MLSMOTE, (c) MLTL,
(d) MLeNN, (e) MLSOL, and (g) REMEDIAL .. 33

Figure 14: Multi-Class of the comparison between the multi-label data before and
after applying various resampling methods ROC curve (a) ML-ROS, (b) MLSMOTE, (c)
MLTL, (d) MLeNN, (e) MLSOL, and (g) REMEDIAL .. 40

Chapter I
INTRODUCTION

1.1 Overview
Coding is a crucial talent for many people today, including professional

developers, hobby program mers, and anyone interested in acquiring th is
technological competency. People frequently look for and follow programming
tutorials from online sites to learn and strengthen their coding skills. Stack Overflow,
an online Q&A site targeted and visited by programmers worldwide, is one of the
most popular resources. The website gives answers to a variety of programming
questions and subjects. As seen in Figure 1, Stack Overflow entries have titles,
bodies, and tags.

Figure 1: An example of Stack Overflow’s question

 Still, the tags could be dispersed or mislabeled, resulting in a multi-label
categorization challenge (Pant et al., 2018). This is exacerbated by the problem of
data imbalance. It is common in multi-label datasets and can cause bias in the
classifier (Peng et al., 2021). Data imbalance can have a major impact on model
performance in the case of Stack Overflow, which contains a big dataset with
thousands of labels. To solve this data imbalance issue and increase tag classification
accuracy, proper resampling techniques must be used.

 2

 To address data imbalance in multi-label classification, resampling techniques
are often utilized. These methods are classified as random or heuristic and include
ML-ROS, MLSMOTE, REMEDIAL, MLeNN, MLTL, and MLSOL. Undersampling methods
should not be used with MLDs because they can result in a large loss of potentially
helpful information during the training phase (Charte, Rivera, Jesús, et al., 2014). LP-
ROS is eliminated from our strategy since its algorithm's pseudocode is incomplete,
resulting in coding confusion. For severely imbalanced multi-label datasets such as
the Stack Overflow dataset, ML -ROS, MLSMOTE, MLeNN, MLTL, ML -SOL, and
REMEDIAL are appropriate.

Deep learning-based pre-trained language models have recently improved
classification models (Zhou et al., 2019), with BERT serving as a prime example

(Charte et al., 2017). However, some BERT variations demand a lot of processing
power, rendering them inappropriate for computers with limited resources (Giraldo-
Forero et al., 2013). Fortunately, there is a transformer model known as ELECTRA
(Clark et al., 2020) that outperforms these versions of BERT on fewer computer
resources. ELECTRA develops two transformer models for token replacement
detection. When compared to models such as RoBERTa (Liu et al., 2019) and XLNet
(Yang et al., 2019), this takes less time and yields higher accuracy on downstream
tasks. ELECTRA is a suitable deep learning pre -trained model for handling Stack
Overflow -related downstream tasks, such as question answering and text
categorization, and is thus a suitable model to test against multi-label resampling
strategies.

While ML-ROS and MLSMOTE can tackle imbalanced multi-label problems in
deep learning contexts, they have not been examined in the Stack Overflow dataset.
Research is scarce on tag recommendations for Stack Overflow utilizing pre -trained
transformer-based models. Only pre-trained PTM4Tag has been developed and
studied for multi-label classification on the Stack Overflow dataset. The multi-label
classification challenge for Stack Overflow data using deep learning scenarios was
addressed in this research by modifying several multi-label resampling strategies to
deal with imbalanced datasets. To avoid ineffective resampling methods, the data
were stratified evenly before applying pre -training ELECTRA, optimized with Adam

 3

with a learning rate of 7E-5, to discover the optimal multi-label resampling approach.
The performance of several multi-label resampling approaches was assessed using
metrics such as Precision@k, Recall@k, F1-score@k, and AUC. MLTL achieved 0.517,
0.804, 0.467, and 0.98 for the metrics Precision@k, Recall@k, F1 -score@k, and AUC,
respectively.

The paper's contributions include augmenting pre -trained models using
various multi-label resampling strategies to handle imbalanced datasets. This had not
before been researched or obtained high performance for multi-label classification
issues. Based on our findings, the study indicates that MLTL is the optimal multi-label
resampling method for the Stack Overflow dataset with deep learning scenarios.

 4

Chapter II
BACKGROUND

2.1 Problem Formulation
A common difficulty in multi-label datasets for classification is data imbalance

(Pant et al., 2018), which causes classifier bias (Zhou et al., 2019). The most often
utilized resampling techniques to handle this are LP-RUS and LP-ROS developed by
Charte et al. (2013). These are examples of multi-label resampling approaches based
on LP transformation. However, they are unlikely to solve the imbalance problem.
Charte et al. (2015) also published ML -RUS, which aims to remove samples with
majority labels, and ML-ROS, which clones samples with minority labels. Due to the
co-occurrence of minority and majority labels, some of the minority samples chosen
by ML-ROS contain the most common labels. Then, Charte et al. (2015) devised a
REMEDIAL technique to address the imbalanced issue by detaching the majority and
minority labels. Giraldo-Forero et al. (2013) used SMOTE (Synthetic Minority Over -
sampling Technique) in the heuristic oversampling method. Then, Charte et al. (2014)
published MLeNN, the first heuristic multi-label undersampling technique. Another
approach proposed by Charte et al. (2015) is MLSMOTE, Multilabel Synthetic Minority
Oversampling Technique, which uses the instances as seeds to generate new
instances. In most multi-label datasets, this is appropriate for several minority labels.
Furthermore, Liu et al. (2019) developed MLSOL to investigate imbalance in minority
samples based on local characteristics rather than the entire dataset. Recently,
Pereira et al. (2020) introduced MLTL to handle the imbalance in the undersampling
technique by using the standard Tomek Link algorithm. REMEDIAL -HwR (REMEDIAL
Hybridization with Resampling) was proposed by Charte et al. (2019) as three hybrid
methods that include several resampling techniques. Liu et al. (2022) recently
modified their prior approach by incorporating MLSOL and MLUL, particularly for
local label distribution.

Undersampling strategies, whether random or heuristic, should not be used
on MLDs since they are not truly unbalanced and result in a considerable loss of
potentially relevant information during the training process. LP-ROS is removed from

 5

our method since its algorithm's pseudocode is incomplete, which leads to coding
misunderstandings. As a result, we choose ML-ROS, REMEDIAL, MLSOL, MLTL, MLeNN,
and MLSMOTE because the former removes instances with the most common
labelset (i.e. particular combination of label values) while the latter replicates
examples with the fewest label sets. These are appropriate for our dataset.

Oversampling methods such as ML-ROS, which deal with individual imbalance
evaluations per label rather than whole labelsets, which utilize them to decide
which instances will be cloned or eliminated (Charte et al., 2015a), could be useful
for our Stack Overflow with many labels and difficult to decide. The oversampling
method MLSMOTE creates each minority sample as a seed for a new synthetic
sample and is recommended for use with highly imbalanced multi-label datasets
such as our Stack Overflow. Furthermore, a study of resampling approaches
demonstrated that MLeNN and MLTL are limited by feature designing but not by
unambiguous neighbors for large-scale learning (Peng et al., 2021). REMEDIAL and
hybridizations do not perform well in deep learning settings because REMEDIAL
generates a large number of virtual labelsets and modifies the label space paradigm.
ML-ROS and MLSMOTE, on the other hand, are appropriate for resolving imbalanced
difficulties in multi-label deep learning. MLSOL, ML-ROS, and MLSMOTE have never
been examined for the Stack Overflow dataset, nor have MLTL, MLeNN, and
REMEDIAL. LP-ROS is excluded from our approach due to its algorithm’s pseudocode
is not complete to avoid misunderstanding in coding. We chose ML-ROS, REMEDIAL,
MLSOL, MLTL, MLeNN, and MLSMOTE to compare their performance in our large -
scale software tag prediction models because of all of the methodologies described.
 Pant et al. (2018) spotted the challenges of the multi -label classification
problem as removing noisy data from insignificant features in high -dimensionality
reduction, degrading data quality from the cleaning process and label dependency,
uncertain and imbalance data, label uncertainty from adding unnecessary labels, and
drifting labels. However, we only focus on the imbalanced data problem to avoid
misclassification due to the classifier's bias towards the labels being increased by the
multi-label imbalance.

 6

A deep learning-based technique's pre-trained language model recently
improved the categorization model. Devlin et al. (2019) developed the primary BERT.
Its variations have been developed, but some of them used high computational
techniques (Von der Mosel et al., 2022), making it troublesome and unsuitable for
the restricted computing resources (Giraldo-Forero et al., 2013). On the other hand,
there is a transformer that outperforms on fewer computational resources. ELECTRA
(Clark et al., 2020), is a pre-training task that trains two transformer models for
replacement token identification. It is faster and more efficient than RoBERTa (Liu et
al., 2019) and XLNet (Yang et al., 2019). When completely trained, it performs better
on downstream tasks. As a result, it can help with Stack Overflow -related
downstream tasks like Question Answering and Text Classification.

There have not been many studies on tag suggestion combining pre -trained
transformer-based models in multi-label classification issue handling with a thousand
Stack Overflow labels. He et al. (2022) developed the pre-trained PTM4Tag including
BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), ALBERT (Lan et al., 2019),
CodeBERT (Feng et al., 2020), and BERTOverflow (Tabassum et al., 2020) specific for
multi-label classification, by comparing PTM4Tag with the previous Post2Vec as a
baseline model. There has been no previous research referencing pre -trained
ELECTRA for tag recommendation in multi-label classification issues from Stack
Overflow.
2.2 Research Questions

Which multi-label resampling method is the most effective for dealing with
the unbalanced problem in SO posts? By assessing the effectiveness and
performance of the pre-trained ELECTRA model, we examine various multi-label
resampling approaches, such as ML-ROS, MLSMOTE, MLeNN, MLTL, ML-SOL, and
REMEDIAL, to lessen imbalanced datasets from Q&A sites. Precision@k, Recall@k, F1-
score@k, and AUC are among the measures we use to evaluate outcomes.
2.3 Objectives

This work attempts to address the issue of imbalanced data by evaluating
several multi-label resampling approaches to improve the performance of a deep
learning pre-trained model. We concentrate primarily on multi-label classification and

 7

the efficiency of ELECTRA, the pre-trained model because ELECTRA can be trained on
a single GPU due to our constrained resources. Furthermore, it has never been
trained for tag prediction in multi-label classification problems on the Stack Overflow
Q&A Site.

 8

Chapter III
LITERATURE REVIEW

3.1 Tag Recommendations
There have been numerous ways created to classify tags for Stack Overflow

users. Among them, TagCNN, TagRNN, TagHAN, and TagRCNN are more effective than
classic tag recommendation algorithms (Zhou et al., 2019) such as EnTagRec (Wang et
al., 2014), TagMulRec (Zhou et al., 2017), and FastTagRec (Liu et al., 2018).
Convolutional Neural Networks (CNNs) were recently used as feature extractors in
Post2Vec (Xu et al., 2022) with a sigmoid layer instead of the state-of-the-art softmax
classification layer. Deep learning models that have been pre-trained have shown the
potential in boosting tag categorization accuracy, especially with limited datasets.
3.2 Multi-Label Resampling Methods for Imbalanced Data

The scope of imbalance in traditional classification is determ ined by
comparing the number of instances from the majority and minority classes. Typically,
the number of samples from the minority class is significantly lower than that of the
majority class (García et al., 2008). To overcome this issue, popular strategies focus
on balancing the dataset through undersampling (lowering the size of the majority
class), oversampling (raising the size of the minority class), or a mix of both. However,
in multi-label classification, the dataset contains hundreds or thousands of labels. As
a result, all labels must be considered.

According to the distinction between global and local label density (Kotze,
2022), global label density is the proportion of the total tag of all labels relative to
the full rank summation of all labels. Suppose the dataset has 30 label tags with 100
instances and 3 multi-labels, global label density is calculated to be 0.1 or 10%. On
the other hand, local label density is determined for each label separately. It
considers class distributions by summing the total observations present for the given
label and dividing it by the total number of samples in the dataset.

To measure imbalanced data from a thousand labels, L for the total set of
labels, 𝐿𝑙 for the l-th label in this set, and 𝑌𝑖 for the labelset associated with the i-th

sample in multi-label dataset D. The same labelset can appear in several samples of

 9

D. The threshold is used to cut the set of labels into minority and majority labels.
The labels whose IRLbl is larger than MeanIR are called majority labels. On the
other hand, the labels whose IRLbl is less than MeanIR are called minority labels
(Charte et al., 2015a). But some approaches consider for each label, a label l is
defined as a minority when IRLbl(l) is above MeanIR (Charte et al., 2015b). These
are the following measures for evaluating the level of imbalance (Charte et al., 2013):

3.2.1 IRperLabel
The ratio between the majority and the considered labels , the higher IRLbl

(IRperLabel) could increase the imbalance level.

IRLbl(l) =
argmax

𝐿|𝐿|

𝑙′=𝑌1

(∑ ℎ(
|𝐷|
𝑖=1 𝑙′,𝑌𝑖))

∑ ℎ(
|𝐷|
𝑖=1

𝑙,𝑌𝑖)
 , ℎ(𝑙, 𝑌𝑖) = {

1 𝑙 ∈ 𝑌𝑖

0 𝑙 ∉ 𝑌𝑖
 (1)

3.2.2 MeanIR
The average level of imbalance is estimated as the global imbalance level.

MeanIR =
1

|L|
 ∑ (𝐼𝑅𝐿𝑏𝑙

𝐿|𝐿|

𝑙=𝐿1
(𝑙)) (2)

3.2.3 CVIR
The coefficient of variation of IRLbl can indicate if all labels suffer from a

similar level of imbalance or if there are huge differences. The higher CVIR induces a
larger difference.

CVIR =
𝐼𝑅𝐿𝑏𝑙𝜎

𝑀𝑒𝑎𝑛𝐼𝑅
, 𝐼𝑅𝐿𝑏𝑙𝜎 = √∑

(𝐼𝑅𝐿𝑏𝑙(𝑙)−𝑀𝑒𝑎𝑛𝐼𝑅)2

|L|−1

𝐿|𝐿|

𝑙=𝑌1 (3)

3.2.4 SCRUMBLE
Recently, there is another measurement named SCUMBLE (Charte, Rivera, del

Jesus, et al., 2014), which is based on the Atkinson index and IRLbl, that measures
the imbalance level of each label instead of the total set of labels, by taking each
instance 𝐷𝑖 in a multi-label dataset D as a population, and the active labels in 𝐷𝑖 as
individuals. If the label l is present in instance i then 𝐼𝑅𝐿𝑏𝑙𝑖𝑙 = IRLbl(l). On the
contrary, 𝐼𝑅𝐿𝑏𝑙𝑖𝑙 = 0. Also, 𝐼𝑅𝐿𝑏𝑙𝑖

̅̅ ̅̅ ̅̅ ̅̅ is defined as the average imbalance level of the
labels appearing in instance i. The most common is the total number of labels |L|.

The higher value increases inconsistent frequencies of labels.

 10

SCUMBLE (D) =
1

|D|
 ∑ [1 −

1

𝐼𝑅𝐿𝑏𝑙𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅
(∏ 𝐼𝑅𝐿𝑏𝑙𝑖𝑙

|L|
𝑙=1)1/|L|]

|D|
𝑖=1 (4)

To address imbalanced data, numerous resampling strategies are accessible.
LP-RUS (Label Powerset Random Undersampling) and LP -ROS (Label Powerset
Random Oversampling) are the most used (Charte et al., 2013). LP-RUS removes
instances allocated with the most frequent labelset based on LP transformation, as
evaluating the entire labelset may not solve the imbalance problem. Later, ML -RUS
(M ulti-Label Random Undersam pling) and M L -ROS (M ulti-Label Random
Oversampling) (Charte et al., 2015a) are proposed, to delete majority -labeled
samples and cloning minority-labeled samples. However, some minority samples
chosen by ML-ROS may contain the most common labels. REMEDIAL (Resampling
Multilabel datasets by Decoupling Highly Imbalanced Labels) approach (Charte et al.,
2015c) was developed to deal with label concurrence by decoupling the majority
and minority labels, whose degree is measured by SCUMBLE (Charte, Rivera, del
Jesus, et al., 2014). This may cause additional complexity in a learning job when
there are numerous pairs of examples with the same attributes but different labels.

To alleviate the issue of random oversampling, SMOTE (Chawla et al., 2002)
was used in a heuristic oversampling technique. Nonetheless, class groups were
frequently not well defined, and some samples from the majority class may have
infiltrated the minority class space or vice versa. The first heuristic multilabel
undersampling approach, MLeNN (Charte, Rivera, Jesús, et al., 2014) was released. It
outperformed the random undersampling done by LP-RUS but only handled majority
labels and comparable labels of its neighbors heuristically (Liu & Tsoumakas, 2019).

Another method was MLSMOTE (Charte et al., 2015b), which used samples
with minority labels as seeds to produce new instances for multiple minority labels
in most multilabel datasets. It was suggested for severely skewed multilabel
datasets, but not for MLC algorithms that rely on local information. MLSOL (Liu &
Tsoumakas, 2019) was also developed to examine the imbalance based on the local
characteristics of minority samples rather than the entire dataset. It outperformed
MLSMOTE in terms of performance and mistake correction, but it only concentrated
on local label distribution. MLTL (Pereira et al., 2020) was adapted from the standard

 11

Tomek Link method to manage the imbalance in the undersampling technique. It
can define a Hamming distance threshold to eliminate the majority label, however, it
is difficult to apply to highly concurrent imbalanced labels.

The REMEDIAL-HwR (REMEDIAL Hybridization with Resampling) approach
(Charte et al., 2019) was divided into three hybrid methods: REMEDIAL -HwR-ROS,
REMEDIAL-HwR-HUS, and REMEDIAL-HwR-SMT. In order to improve concurrent
imbalanced multi-label classification (MLC), this study used multiple resampling
methods such as ML-ROS, MLeNN, and MLSMOTE. These three hybrid strategies were
not confined to specific situations or general solutions. Recently, (Liu & Tsoumakas,
2019), another approach for local label distribution was devised by embedding
MLSOL and MLUL (Liu et al., 2022).

Despite advances in resampling techniques for imbalanced multi -label
classification, there is still a literature gap regarding the optimal resampling method
to improve the performance of pre -trained deep models for predicting tags,
particularly in the context of Stack Overflow's multi-label classification problem with
a large number of labels. There hasn't been much study on tag recommendations
that combines pre-trained transformer-based models for dealing with the issue of
multi-label categorization with thousands of Stack Overflow labels.

The pre-trained PTM4Tag (He et al., 2022) was developed specifically for the
multi-label classification and compared to the previous Post2Vec as a baseline
model, which includes BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), ALBERT
(Lan et al., 2019), CodeBERT (Feng et al., 2020). There has been no prior research
mentioning pre-trained ELECTRA for tag suggestion in multi-label classification
challenges from Stack Overflow posts.

This work attempts to address the issue of imbalanced data by evaluating
several multi-label resampling approaches to improve the performance of a deep
learning pre-trained model. We concentrate primarily on multi-label classification and
the efficiency of ELECTRA, the pre-trained model because ELECTRA can be trained on
a single GPU due to our constrained resources. It has never been trained for tag
prediction in multi-label classification problems on the Stack Overflow Q&A Site.

 12

Chapter IV
METHODOLOGY

4.1 Pre-processing
The experiment was set up on Jupyter Notebook (anaconda3), Python 3. We

choose the Stack Overflow 430,576-row dataset between the years 2009 to 2015
from the SO dump1, which includes components such as Title, Body (description),
and Code snippets, as well as thousands of tag labels. The code snippets are
separated from the body, and the title and body are blended into the text after
eliminating HTML tags, punctuation, and stopwords from the postings. Except for the
code samples, all text is transformed to lowercase.

Figure 2: A workflow of Stack Overflow’s tag classification
To decrease noisy data, we select just the questions covered by the most

frequent tags and remove rare tags that occur less than 50 times. This process is

1 https://archive.org/download/stackexchange

 13

similar to the previous approach (Xu et al., 2022), which deleted extraneous
attributes such as rare tags that are unimportant in providing representative tags to
users for big software information sites datasets. Rare and frequent labels in a multi -
label dataset limit the efficacy of resampling procedures (Feng et al., 2020).
4.2 PTM-Oriented Tokenization
 The dataset was randomized and classified into three groups: 90% for a train
set, 5% for a validation set, and 5% for a test set. Following that, the stratified
approach was used. To extract tokens from the sentences, we utilized the same pre-
trained tokenizer (see Figure 2). By transforming the texts into tokens, we explored
ELECTRA . Token ization tokens were m erged w ith unique tokens: < CLS>
(Classification), the first token in each input sequence, and <SEP> (Separator), the
last token in each input sequence.
4.3 Resampling Techniques

After the preprocessing and tokenization processes, we examined the pre -
trained model, ELECTRA. To address the issue of imbalanced data, we used
numerous multi-label resampling strategies that were suitable for our pre-trained
models, including ML-ROS, MLSMOTE, MLeNN, MLTL, MLSOL, and REMEDIAL. To
improve the efficiency of processing imbalanced data, several resampling strategies
were applied before the training phase. LP-ROS is removed from our work since its
algorithm's pseudocode is insufficient to avoid coding misunderstandings. We
analyzed and compared the performance of the approaches used after balancing the
data. Define L as the total set of labels, 𝐿𝑙 for the l-th label in this set, and 𝑌𝑖 for the
labelset associated with the i-th sample in multi-label dataset D. The same labelset
can appear in several samples of D. The threshold is used to cut the set of labels
into minority and majority labels. The labels whose IRLbl is larger than MeanIR are
called majority labels. On the other hand, the labels whose IRLbl is less than

MeanIR are called minority labels (Charte et al., 2015a). But some approaches
consider for each label, a label l is defined as a minority when IRLbl(l) is above

MeanIR (Charte et al., 2015b).

 14

4.3.1 ML-ROS
ML-ROS (Charte et al., 2015a) (Multi-Label Random Oversampling), ML-ROS

differs from LP-based approaches in that it uses individual labels to identify minority
observations rather than label-sets to identify minority observations. Minority labels
are identified as IRLbl > MeanIR labels. The number of samples generated is
determined by a P% (user-defined) increase in the overall size of the dataset. The
first approach is to find every minority label, that is, every label with IRLbl > MeanIR.
Minority bags are used to hold observations with labels. Every observation with a
minority label has a bag that contains all the observations with that label. The next
stage is to oversample these minority bags. The P% increase in dataset size defines
how many samples to clone or oversample is calculated by the P% increase in
dataset total size. When an observation is oversampled, the number of samples to
clone decreases by one when the number of samples to clone is more than zero.
We loop through the label bags, oversampling one random observation from each
bag. When the IRLbl of a label no longer exceeds the MeanIR, since it is no longer a
minority label, a bag is removed from the bags to oversample. Sample to clone is
estimated by the P% increase in the overall size of the dataset, as illustrated in
Algorithm 1 and Figure 3.

Algorithm 1. ML-ROS algorithm pseudo-code.

Inputs: D: Dataset, P: Percentage

Outputs: Preprocessed dataset

1: samplesToClone = len(D) /100 *P ▷ P% size increment

2: L = lelabelsInDataset(D) * Obtain the full set of labels

3: MeanIR = calculateMeanIR(D, L)

4: for each label in L do ▷ Bags of minority labels samples

5: 𝐼𝑅𝐿𝑏𝑙𝑙𝑎𝑏𝑒𝑙 = calculatelRperLabel(D, label)

6: if 𝐼𝑅𝐿𝑏𝑙𝑙𝑎𝑏𝑒𝑙 > MeanIR then

7: 𝑚𝑖𝑛𝐵𝑎𝑔𝑖++ = 𝐵𝑎𝑔𝑙𝑎𝑏𝑒𝑙

8: end if

9: end for

10: while samplesToClone > 0 do ▷ Instances cloning loop

11: ▷ Clone a random sample from each minority bag

12: for each 𝑚𝑖𝑛𝐵𝑎𝑔𝑖 in minBag do

13: x = random(1, len(𝑚𝑖𝑛𝐵𝑎𝑔𝑖))

14: cloneSample(𝑚𝑖𝑛𝐵𝑎𝑔𝑖, x)

15: if 𝐼𝑅𝐿𝑏𝑙𝑚𝑖𝑛𝐵𝑎𝑔 <= MeanIR then

16: minBag = 𝑚𝑖𝑛𝐵𝑎𝑔
𝑖
 ▷ Exclude from cloning

 15

The ML-ROS algorithm’s pseudocode from (Charte et al., 2015a)

Figure 3: A workflow of ML-ROS modified from Charte et al., 2015a & Kotze, 2022
4.3.2 MLSMOTE

In the Multi-label Synthetic Minority Oversampling Technique or MLSMOTE
(Charte et al., 2015b), each label is examined to verify if it belongs to a minority
group. A minority label is defined as IRLbl > MeanIR. If the label is a minority label,
place all the observations that belong to it in a bag. For each m inority bag
observation, find the k nearest neighbors. Choose one of the k neighbors at random,
adapted from SMOTE (Chawla et al., 2002) as shown in Figure 4.

Create a new synthetic observation with the minority observation and the
random neighbor as parameters using. Interpolate the characteristics between the
minority bag observation and the neighboring bag observation and assign these
features to the synthetic observation. Generate the labelset for the new synthetic
instance and assign the labelset to the new observation. Add the new synthetic

17: end if

18: samplesToClone

19: end for

20: end while

Oversample the minority bags

Minority label 1 Minority label 2 Minority label 3

Labels with IRLbl > MeanIR

Resample multi-Label Dataset

Multi-Label Dataset

 16

observation to the dataset. Repeat for all labels. If the IRLbl of a label reaches the
MeanIR, this label is no longer oversampled as shown in Algorithm 2-3 and Figure 5.

Figure 4: SMOTE from Chawla et al., 2002

Figure 5: A workflow of MLSMOTE modified from Charte et al., 2015b & Kotze, 2022

Iterate over all of the labels

For all observations in bag l

Minority bag

Label l

Multi-Label Dataset

Find kNN

Select a Random Neighbor

Add synthetic instance to

new resampled dataset

• Generate features

• Generate labelset

If 𝑰𝑹𝑳𝒃𝒍𝒍𝒂𝒃𝒆𝒍 > MeanIR

Synthetic observation

Minority observation

Random Neighbor

 17

Inputs: D: Dataset to oversample, k: Number of nearest neighbors

1: L = labelsInDataset(D) ▷ Full set of labels

2: MeanIR = calculateMeanIR(D,L)

3: for each label in L do

4: 𝐼𝑅𝐿𝑏𝑙𝑙𝑎𝑏𝑒𝑙 = calculatelRperLabel(D, label)

5: if 𝐼𝑅𝐿𝑏𝑙𝑙𝑎𝑏𝑒𝑙 > MeanIR then

6: ▷ Bags of minority labels samples

7: minBag = getAllInstancesOfLabel(label)

8: for each sample in minBag do

9: distances = calcDistance(sample, minBag)

10: sortSmallerToLargest(distances)

11: ▷ Neighbor set selection

12: neighbors = getHeadItems(distances, k)

13: refNeigh = getRandNeighbor(neighbors)

14: ▷ Feature set and labelset generation

15: synthSmpl = newSample(sample, refNeigh, neighbors)

16: DD + synthSmpl

17: end for

18: end if

19: end for

20: function NEWSAMPLE(Sample, refNeigh, neighbors)

21: synthSmpl = new Sample ▷ New empty instance

22: ▷ Feature set assignment

23: for each feat in synthSmpl do

24: if typeOf(feat) is numeric then

25: diff = refNeigh.feat - sample.feat

26: offset = diff * randInInterval(0,1)

27: value = sample.feat + offset

28: else

29: value = mostFreqVal(neighbors.feat)

30: end if

31: syntSmpl.feat = value

32: end for

33: ▷ Label set assignment

34: IblCounts = counts(sample.labels)

35: IblCounts+ = counts(neighbors.labels)

36: labels = IblCounts > (k+1)/2

37: synthSmpl.labels = labels

38: return synthSmpl

39: end function

The MLSMOTE algorithm’s pseudocode from (Charte et al., 2015b)

Algorithm 2. MLSMOTE algorithm pseudo-code.

Algorithm 3. MLSMOTE algorithm pseudo-code.

 18

4.3.3 MLeNN
MLeNN (Charte, Rivera, Jesús, et al., 2014), the first heuristic multi-label

undersampling technique, performed noticeably better than the random
undersampling used by LP-RUS (Liu & Tsoumakas, 2019). The multi-label dataset will
be iterated and selected for those whose labelset does not contain any labels with
IRLbl > MeanIR as the candidates C. In this method, all instances bearing a minority
label will be retained. Select a sample candidate C, all of them were subjected to
MLeNN with nearest neighbors (NN) = 3 (3 neighbors) and Threshold (TH) = 0.75 (75%
labelset difference threshold), If the C class differs from the class of at least half of
its neighbors (that is, 2 when NN = 3), C should be removed as defined in Algorithm 4
and Figure 6.

Figure 6: A workflow of MLeNN modified from Charte, Rivera, Jesús, et al., 2014

Inputs: D: Dataset to resample, TH: Threshold, NN: NumNeighbors

Outputs: Preprocessed dataset

1: for each sample in D do

2: for each label in getLabelset(D) do

Algorithm 4. MLeNN algorithm pseudo-code.

Multi-Label Dataset

Select a sample candidate C

If C class differs from the

class of at least half of

their neighbors (that is 2

when NN = 3)

Delete the candidate C

 19

3: if IRLbl(label) > MeanIR then

4: Jump to next sample ▷ Preserve instance with minority labels

5: end if

6: end for

7: numDifferences = 0

8: for each neighbor in nearestNeighbors (sample, NN) do

9: if adjustedHammingDist (sample, neighbor) > TH then

10: numDifferences = numDifferences+1

11: end if

12: end for

13: if numDifferences > NN/2 then

14: markForRemoving(sample)

15: end if

16: end for

17: deleteAllMarkedSamples(D)

The MLeNN algorithm’s pseudocode from (Charte, Rivera, Jesús, et al., 2014)

4.3.4 MLTL
MLTL (Pereira et al., 2020) was modified from the traditional Tomek Link

algorithm, which is finding a pair of two samples from different classes to control the

undersampling technique's imbalance or cleaning method, which can specify a

threshold for Hamming distance to eliminate the majority label. Figure 7 shows the

type of selection for the undersampling or cleaning method in the resampling

dataset as defined in Algorithm 5. A pair of two different samples from dissimilar

classes are defined as the Tomek Link pair.

Figure 7: The Multi-Label Tomek Link was modified from Pereira et al., 2020

 20

Labels are divided into majority bags for the undersampling approach. As a result, all

observations containing a majority class label are placed in the majority bag of the

relevant label. The updated Hamming Distance between each observation in the

majority bags and its nearest neighbor is determined. If the adjusted Hamming

Distance is greater than Threshold, the observation is added to the Tomek-Links

array. Only the majority class observation is added to the set, not the nearest

neighbor. An observation is not verified twice. As a result, if an observation belongs

to more than one majority label, it is not rechecked. All of the majority of class

observations in the Tomek-Links set is removed from the dataset as defined in

Algorithm 6 and Figure 8.

A similar strategy is used for cleaning. However, rather than only checking

observations from the majority classes, all observations are checked. As a result, we

calculate the updated Hamming Distance from each observation to its nearest

neighbor and see if it is more than the threshold. If the updated Hamming Distance is

greater than the threshold, the observation and its nearest neighbor are added to an

array of Tomek-Links marked for removal, as defined in Algorithm 7 and Figure 8.

Algorithm 5. Multi-Label Tomek Link.

Inputs: D: Dataset to resample, TH: Threshold

Output: D': Resampled dataset

1: TL = new empty list of instances

2: if (MLTL was chosen as a cleaning procedure) then

3: TL = CLEANINGMETHOD (D, TH)

4: else

5: TL = UNDERSAMPLINGMETHOD (D, TH)

6: end if

7: D' = new empty dataset

8: for each sample in D do

9: if (sample not in TL) then

10: D' = D' U sample

11: end if

12: end for

13: return D'

Algorithm 6. Undersampling Method.

 21

Inputs: D: Dataset to resample, TH: Threshold

Output: TL: Tomek Link instances

1: TL = new empty list of instances

2: checkedSamples = new empty list of instances

3: for each sample in D do

4: if (sample in checkedSamples) then

5: continue

6: end if

7: NN = NEARESTNEIGHBOR(Sample)

8: checkedSamples = checkedSamples U sample

9: dist = ADJUSTEDHAMMINGDIST(sample, NN)

10: if (dist ≥ TH) then

11: TL = TL U sample

12: end if

13: end for

14: return TL

 The MLTL algorithm’s pseudocode from Pereira et al., 2020

Inputs: D: Dataset to resample, TH: Threshold

Output: TL: Tomek Link instances

1: L = LABELSINDATASET(D)

2: MeanIR = GETMEANIR (D)

3: for each l in L do

4: iRLBI = GETIRLBL(l)

5: if (iRLBI < meanIR) then

6: majBags[l] = GETINSTANCES(I)

7: end if

8: end for

9: TL = empty list of instances

10: checkedSamples = new empty list of instances

11: for each majBag in majBags do

12: for each sample in majBag do

13: if (sample in checkedSamples) then

14: continue

15: end if

16: NN = NEARESTNEIGHBOR(Sample)

17: checkedSamples = checkedSamples U sample

18: dist - ADJUSTEDHAMMINGDIST(sample, NN)

19: if (dist TH) then

20: TL = TL U sample

21: end if

22: end for

23: end for

24: return TL

Algorithm 7. Cleaning Method.

 22

Figure 8: A workflow of MLTL was modified from Pereira et al., 2020 & Kotze, 2022

4.3.5 MLSOL
MLSOL (Liu & Tsoumakas, 2019) was developed to examine the imbalance

based on the regional features of minority samples as opposed to the entire dataset.

While concentrating primarily on local label distribution, it outperformed MLSMOTE

in terms of performance and mistake correction.

To begin, identify kNN for each observation using the Euclidean distance; the k

nearest neighbors for each observation in the dataset are calculated. Then,

Multi-Label Data

Find k nearest neighbors to each observation

Undersampling Cleaning

Identify majority bags Find NN to each

observation

Find NN to each

observation

Delete Tomek-links

If the adjusted Hamming

Distance > TH

Add both observations to

Tomek-links
If the adjusted Hamming

Distance > TH

Add majority observation

to Tomek-links

Delete Tomek-links

 23

calculating C is an intermediary step in establishing a sampling weight for each

observation depending on its immediate surroundings.

Let X = ℝ𝑑 represent a d-dimensional input feature space, L= {l1, l2, …, lq}

represent a label set containing q labels, and Y = {0,1}𝑞 represent a q-dimensional

label space. D = {(𝑥𝑖, 𝑦𝑖)| 1 ≤ i ≤ n} is an n-instance multi-label training data set. Each

instance (𝑥𝑖, 𝑦𝑖) is composed of a feature vector 𝑥𝑖 𝜖 X and a label vector 𝑦𝑖 𝜖 Y,

where 𝑦𝑖𝑗 is the j-th element of 𝑦𝑖 and 𝑦𝑖𝑗 = 1(0) indicates that 𝑙𝑗 is (or is not)

connected with the i-th instance. A multi-label technique learns from D the mapping

function h: X → {0,1}𝑞and (or) f: X → ℝ𝑑 that, given an unknown instance x,

outputs a label vector �̂� containing the anticipated labels of and (or) a real-valued

vector 𝑓y containing the relevance degrees to x, respectively.

The k nearest neighbors to every observation in the dataset are calculated. The

result is a n by k matrix with the distance to the k closest observations for each

observation i ∈ {1,2, …, n} in the dataset. Another n by k matrix is created with the

index of the nearest neighbors in the original dataset as shown in equation (5).

𝐶𝑖𝑗 =
1

𝑘
 ∑ [[𝑦𝑚𝑗 ≠ 𝑦𝑖𝑗]]𝑋𝑚∈𝑘𝑁𝑁(𝑥𝑖)

 where 𝐶𝑖𝑗 ∈ {0,1} (5)

The MLSOL algorithm replaces seed observations with samples. The likelihood

of selecting an observation is proportional to the number of m inority class

observations in its immediate vicinity. C values vary from 0 to 1, with values near 0 as

shown in equation (5) indicating a safe (hostile) neighborhood of similarly (oppositely)

labeled instances. A result of 𝐶𝑖𝑗 = 1 might also be interpreted as an indication that

𝑥𝑖 is an outlier in in comparison to 𝑙𝑗.

 As a result, the likelihood of selecting an observation is weighted by the

fraction of majority class observations in its k nearest neighbors. To obtain a single

sampling weight 𝑤𝑖 for each observation. 𝐶𝑖𝑗 must be aggregated for each

observation. As a result, each observation 𝑥𝑖 will be assigned a weight 𝑤𝑖 ∈ {1,2, … ,

 24

n}. The difficulty of correctly anticipating the minority class is represented by 𝑤𝑖.

Larger values of 𝑤𝑖 correspond to observations that are more likely to be selected in

the random sample of observations, while smaller values of 𝑤𝑖 correspond to

observations that are less likely to be selected, calculated w to select the random

seed observations depending on 𝑤𝑖, Probability Proportional to Size (PPS) sampling is

utilized. A uniformly distributed random number between 0 and 1 is created and

multiplied by the weighted sum (∑ 𝑤𝑖
𝑛
𝑖=1). The randomly chosen observation is the

index corresponding to the interval within which the random number falls, as shown

in equation (6).

𝑤𝑖 = ∑
𝐶𝑖𝑗 [[𝑦𝑖𝑗=1][[𝐶𝑖𝑗 <1]]

∑ 𝐶𝑖𝑗

𝑛
𝑖=1 [[𝑦𝑖𝑗=1][[𝐶𝑖𝑗 <1]]

𝑘
𝑘=1 (6)

To discover observation types, the type of observation we are working with is

critical for label assignment when new synthetic observations are generated. Minority

observations will be classified into four categories: safe (SF), borderline (BD), rare (RR),

and outlier (OT). Safe (SF) 𝐶𝑖𝑗 < 0.3 means that a region dominated by minority

examples is a safe option. Borderline (BD) 0.3 < 𝐶𝑖𝑗 < 0.7 is located along the

decision line between the majority and minority classes. Rare (RR) 0.7 < 𝐶𝑖𝑗 < 1

means that the majority region is located far away from the decision boundary.

Outlier (OT) 𝐶𝑖𝑗 = 1 it is means that surrounded by instances of the majority as

shown in Algorithm 8-9 and Figure 9.

Choose a random seed observation and one of the k nearest neighbors to the

seed observation at random as a reference observation. Generate a new observation

using the seed and reference observations. According to the pseudocode in

algorithm 10, add the new synthetic observation to the dataset, then repea t the

procedure of producing new observations until enough samples have been

generated as seen in Figure 9.

 25

Figure 9: A workflow of MLSOL modified from Liu & Tsoumakas, 2019 & Kotze, 2022

Inputs: D: multi-label data set, P: percentage of instances to be generated, k: Number

of nearest neighbors

output: D': new data set

1: GenNum = len(D) *P ▷ Number of instances to be generated

2: D' = D

3: Find the kNN of each instance

Algorithm 8. MLSOL algorithm pseudo-code.

Multi-Label Dataset

Resample multi-Label Dataset

Calculate w

Find observation types

Repeat for the number of

observations to generate

Find k nearest neighbors to each

observation

Calculate C

1. Generate random seed

observation using w

2. Choose a random neighbor

to the seed observation

3. Generate a new observation

 26

4: Calculate C ▷ C is the matrix storing proportion of kNNs

with opposite class for each instance and each label

5: Compute w

6: T = InitTypes(C,k) ▷ Initialize the type of instances

7: while GenNum > 0 do

8: Select a seed instance (𝑥𝑠, 𝑦𝑠) from D based on the w

9: Randomly choose a reference instance (𝑥𝑟, 𝑦𝑟) from kNN

10: (𝑥𝑐, 𝑦𝑐) GenerateInstance ((𝑥𝑠, 𝑦𝑠), Ts, (𝑥𝑟, 𝑦𝑟), Tr)

11: D' = D' U (𝑥𝑐, 𝑦𝑐)

12: GenNum = GenNum-1

13: return D'

Inputs: C: The matrix storing proportion of KNNs with opposite class for each

instance and each label, k: Number of nearest neighbors

output: T: types of instances

1: for i =1 to n do ▷ n is the number of instances

2: for j = 1 to q do ▷ q is the number of labels

3: if 𝑦𝑖𝑗 = majority class then

4: 𝑇𝑖𝑗 = MJ

5: else 𝑦𝑖𝑗 is the minority class

6: if 𝐶𝑖𝑗 < 0.3 then 𝑇𝑖𝑗 = SF

7: else if 𝐶𝑖𝑗 < 0.7 then 𝑇𝑖𝑗 = BD

8: else if 𝐶𝑖𝑗 < 1 then 𝑇𝑖𝑗 = RR

9: else if 𝑇𝑖𝑗 = OT

10: repeat re-examine RR type

11: for i in 1 to n do

12: for j in 1 to q do

13: if 𝑇𝑖𝑗 = RR then

14: for each am in kNN (𝑥𝑖) do

15: if 𝑇𝑖𝑗= SF or 𝑇𝑖𝑗 = BD then

16: 𝑇𝑖𝑗+ BD

17: break

18: until no change in T

19: return T

Inputs: (𝑥𝑠, 𝑦𝑠): Seed instance, 𝑇𝑠: types of seed instance, (𝑥𝑟, 𝑦𝑟): Reference instance,

𝑇𝑟: types of reference instance

output: (𝑥𝑐, 𝑦𝑐): Synthetic instance

1: for j in1 to d do

2: 𝑥𝑐𝑗 = 𝑥𝑠𝑗 + Random(0, 1)*(𝑥𝑟𝑗 - 𝑥𝑠𝑗) ▷ Random (0,1) generate a random value

between 0 and 1

3: 𝑑𝑠 = (𝑥𝑐, 𝑥𝑠), 𝑑𝑟 = (𝑥𝑐, 𝑥𝑟) ▷ dist return the distance between 2 instances

4: cd = 𝑑𝑠/(𝑑𝑠 + 𝑑𝑟)

Algorithm 9. InitTypes.

Algorithm 10. GenerateInstance.

 27

5: for j in 1 to q do

6: if 𝑦𝑠𝑗 = 𝑦𝑟𝑗 then

7: 𝑦𝑐𝑗 = 𝑦𝑠𝑗

8: else

9: if 𝑇𝑠𝑗 = MJ then ▷ Ensure 𝑦𝑠𝑗 being minority class

10: s = r ▷ Swap indices of seed and reference instance

11: cd =1- cd

12: switch 𝑇𝑠𝑗 do

13: case SF do 𝜃 = 0.5 break

14: case BD do 𝜃 = 0.75 break

15: case RR do 𝜃 = 1+1𝑒 -5 break

16: case SF do 𝜃 = 0 - 1𝑒 - 5 break

17: if cd ≤ 𝜃 then

18: 𝑦𝑐𝑗 = 𝑦𝑠𝑗

19: else

20: 𝑦𝑐𝑗 = 𝑦𝑟𝑗

21: return (𝑥𝑡, 𝑦𝑡)

The MLSOL algorithm’s pseudocode from (Liu & Tsoumakas, 2019)

4.3.6 REMEDIAL

REMEDIAL (Resampling Multi-label datasets by Decoupling highly Imbalanced
Labels) (Charte et al., 2019) method. Define IRLbl as the measures the imbalance
level of each label instead of the total set of labels, by taking each instance 𝐷𝑖 in a
multi-label dataset D as a population, and the active labels in 𝐷𝑖 as the individuals.
If the label l is present in the instance i 𝐼𝑅𝐿𝑏𝑙𝑖

̅̅ ̅̅ ̅̅ ̅̅ is defined as the average imbalance
level of the labels appearing in instance i.

1: function REMEDIAL(MLD D, Labels L)

2: IRLbli = calculateIRLbl(l in L) ▷ Calculate imbalance levels

3: MeanIR = 𝐼𝑅𝐿𝑏𝑙𝑖
̅̅ ̅̅ ̅̅ ̅̅

4: 𝑆𝐶𝑈𝑀𝐵𝐿𝐸𝑙𝑛𝑠𝑖
 = calculateSCUMBLE(𝐷𝑖 in D) ▷ Calculate SCUMBLE

5: 𝑆𝐶𝑈𝑀𝐵𝐿𝐸 = 𝑆𝐶𝑈𝑀𝐵𝐿𝐸𝑖𝑛𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

6: for each instance i in D do

7: if 𝑆𝐶𝑈𝑀𝐵𝐿𝐸𝑙𝑛𝑠𝑖
 > 𝑆𝐶𝑈𝑀𝐵𝐿𝐸 then

8: 𝐷𝑖
′ = 𝐷𝑖 ▷ Clone the affected instance

9: 𝐷𝑖[𝑙𝑎𝑏𝑒𝑙𝑠𝐼𝑅𝐿𝑏𝑙≤𝐼𝑅𝑀𝑒𝑎𝑛] = 0 ▷ Maintain minority labels

10: 𝐷𝑖
′[𝑙𝑎𝑏𝑒𝑙𝑠𝐼𝑅𝐿𝑏𝑙>𝐼𝑅𝑀𝑒𝑎𝑛] = 0 ▷ Maintain majority labels

11: D = D + 𝐷𝑖
′

12: end if

13: end for

Algorithm 11. REMEDIAL algorithm

 28

14: end function

The REMEDIAL algorithm’s pseudocode from (Charte et al., 2019)

REMEDIAL shows how to deal with the concurrence of labels by separating
the majority and minority labels when numerous pairs of cases have similar
attributes but different labels for instance, whose level is determined by 𝑆𝐶𝑈𝑀𝐵𝐿𝐸,
𝑆𝐶𝑈𝑀𝐵𝐿𝐸𝑙𝑛𝑠 > 𝑆𝐶𝑈𝑀𝐵𝐿𝐸(𝐷) observations will be disconnected. As a result, any
observations with an above -average level of 𝑆𝐶𝑈𝑀𝐵𝐿𝐸 will be disconnected.
Decoupling means that the observations will be separated into two parts. One will
include all of the majority labels, while the other will include all of the minority
labels. Labels with IRLbl ≤ MeanIR constitute the majority, while labels with IRLbl >
MeanIR constitute the minority, which is defined in Algorithm 11 and Figure 10.

REMEDIAL is a sampling algorithm in the sense that it generates new
observations. The decoupling process generates new obser vations while
simultaneously altering previous ones. REMEDIAL distinguishes itself from other
resampling algorithms by not changing the label frequencies. Even though the
dataset's composition has changed, the number of observations corresponding to the
majority and minority labels remains constant.

Figure 10: A workflow of REMEDIAL was modified from Charte et al., 2019 &

Kotze, 2022

Decoupling labels New

resampled

Dataset

Multi-Label Dataset

𝑆𝐶𝑈𝑀𝐵𝐿𝐸𝑙𝑛𝑠 > 𝑆𝐶𝑈𝑀𝐵𝐿𝐸(𝐷)

 29

4.4 Model Training
The model was optimized using a constant learning rate of 7E-5 with a batch

size of 64, utilizing the Adam optimizer. The objective function was set as binary -
cross entropy loss. The best model was selected based on the lowest loss achieved
on the validation set.
4.5 Evaluation Metrics
4.5.1 Precision@k

The average ratio of predicted ground truth tags among the list of the top -k
recommended tags. Let the ground truth tags of a post as 𝐺 for the 𝑖-th post in the
test set and find top-k tags by 𝑇𝑎𝑔𝑖

𝑘 that can be defined as equations (7) and
equations (8), respectively.

Precision@𝑘𝑖=
|𝐺𝑇𝑖 ∩𝑇𝑎𝑔𝑖

𝑘 |

𝑘
 (7)

For average all the values of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘𝑖 :

Precision@𝑘=
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘𝑖

|𝑋|
𝑖=1

|𝑋|
 (8)

4.5.2 Recall@k
The proportion of correctly predicted ground truth tags found in the list of

ground truth tags with the same equation is followed by (Xu et al., 2022) which can

be defined as equations (9) and equations (10), respectively.

Recall@𝑘𝑖 = {

|𝐺𝑇𝑖 ∩𝑇𝑎𝑔𝑖
𝑘 |

𝑘
 if |𝐺𝑇𝑖| > 𝑘

|𝐺𝑇𝑖 ∩𝑇𝑎𝑔𝑖
𝑘 |

|𝐺𝑇𝑖|
 if |𝐺𝑇𝑖| ≤ 𝑘

 (9)

For average all the values of Recall@𝑘𝑖 :

Recall@𝑘 =
∑ 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘𝑖

|𝑋|
𝑖=1

|𝑋|
 (10)

4.5.3 F1-score@k
Define harmonic mean of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘𝑖 and 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘𝑖 that can be defined as

equations (11) and equations (12), respectively.

 F1-score@𝑘𝑖 = 2 ×
Precision@𝑘𝑖 × Recall@𝑘𝑖

Precision@𝑘𝑖 + Recall@𝑘𝑖
 (11)

For average all the values of F1-score@𝑘𝑖 :

 30

F1-score@𝑘 =
∑ 𝐹1−𝑠𝑐𝑜𝑟𝑒@𝑘𝑖

|𝑆|
𝑖=1

|𝑋|
 (12)

4.5.3 Area Under the Curve
To deal with the imbalance class, we use Area Under the Curve (AUC) to

evaluate the model by the Area under the ROC (Receiver Operating Characteristic)
curve, which consists of a True Positive Rate and False Positive Rate that can be
defined as equations (12) and equations (13), respectively.

 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (12)

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (13)

 31

 Chapter V
DISCUSSION

5.1 Generated Dataset Resampling
Before using Stack Overflow data, we set up the resampling procedures into

the simulated dataset on Google Colab, containing 100,000 samples with 6 classes of
labels. Due to the visualization from the bar graph is hard to indicate the labels
changing compared to before and after applying the various resampling techniques.
Hence, we visualize the labels changing from each class by using the scatter plot to
depict the distribution of circles. The size of the circle indicates the number of labels
for each class. The size of the circle will extend equally for the balance data. Each
color represents the total number of the label from different classes. Class 1
represents the blue color, class 2 represents the orange color, class 3 represents the
green color, class 4 represents the red color, class 5 represents the purple color, and
Class 6 represents the brown color, as shown in Figure 11. Figure 11 illustrates the
ideal balance data, in which the labels are represented as the circles from all the
classes appear the same equal size.

Figure 11: A scatter plot for the ideal balance of multi-label data

The generated data before applying various multi-label resampling methods

are shown in Figure 12-13.

 32

 (a)

(b) (c)

 (d) (e)

(f) (g)

Figure 12: The bar charts of the comparison between the multi-label data before
and after applying various resampling methods (a) ML-ROS, (b) MLSMOTE, (c) MLTL,

(d) MLeNN, (e) MLSOL, and (g) REMEDIAL

 33

 (a)

(b) (c)

(d) (e)

(f) (g)

Figure 13: The scatter plots of the comparison between the multi-label data before
and after applying various resampling methods (a) ML-ROS, (b) MLSMOTE, (c) MLTL,

(d) MLeNN, (e) MLSOL, and (g) REMEDIAL

 34

Figure 12 (a) illustrates the bar graph of class imbalance before the generated
data is resampled, compared to after being resampled. Each color represents the
total number of labels per class. The scatter plot in Figure 13 (a) indicates the label
size of the circle as the number of labels for each class, compared to the number of
labels in the bar graph as shown in Figure 12 (a), the scatter plot illustrates the
amount of each label from the different classes that are not the same . Before
applying the various multi-label resampling methods, some classes contain over half
of all labels in the dataset, but some are less than half of all labels in the dataset,
the size of the circle is not the same according to the imbalances.

ML-ROS-selected minority samples may include the most prevalent labels.

Majority-labeled samples are deleted, while minority-labeled samples, such as the

green in class 3 are cloned, and make the green color increased, as follows by the

concept of cloning the minority labels from the samples, as shown in Figure 12-13

(b). MLSMOTE generates seeds from minority label samples from all cla sses. The

increased quantity of labels from all classes has influenced the overall label

distribution, as seen by its observation, in Figure 12-13 (c). MLTL, locate a pair of two

samples from distinct classes to manage the imbalance of the undersampling

approach, the majority of class observations in the Tomek-Links set are all deleted

from all classes, consequently, the number of labels in both graphs is reduced, as

can be seen in Figure 12-13 (d). MLeNN, all occurrences with a minority label will be

kept, but if the candidate's class varies from the class of at least half of their

neighbors, such as class 1, they will be eliminated, which makes the number of

labels in class 1 decreased, as shown in Figure 12-13 (e). MLSOL, locate the k nearest

neighbors to each observation, produce a random seed observation , and pick a

random neighbor to the seed observation, then generate a new observation , which

increases the number of labels as seen in both graphs from Figure 12-13 (f).

REMEDIAL is a sampling algorithm in the sense that it creates new observations. The

decoupling process creates new observations while concurrently modifying existing

ones. REMEDIAL separates itself from other resampling algorithms by not modifying

 35

the label frequencies. Even though the dataset's composition has changed, the

number of observations belonging to the majority and minority labels stays

consistent, As a consequence, the number of labels from all classes for REMEDIAL

remains the same, as shown in Figure 12-13 (g).

Overall, the size of circles is increased after applying the multi -label

oversampling resampling methods, ML-ROS, MLSMOTE, and MLSOL which represent

the labels that are generated from the dataset. As a result, the number of labels is

increased more than before applying the resampling methods, While the size of

labels is the same for REMEDIAL, it does not work well on this generated dataset, as

shown in Figure 12-13 (g), the small different change from REMEDIAL that was applied

in other cases revealed the same results that REMEDIAL not good in almost every

case (Charte et al., 2019). In contrast, the size of circles is reduced in MLTL and

MLeNN which represent that the labels are excluded from the dataset and there are

fewer amounts of each label than before applying the multi -label undersampling

resampling methods.

Hence, all resampling algorithms are endorsed by the generated data. The
next step is to adapt these methods to our real Stack Overflow data. However, the
multi-label resampling algorithms can work differently on individual datasets (Charte
et al., 2015a). For more evaluation, we use the metrics for the level of imbalance,
such as IRLbl, MeanIR, and SCUMBLE, the higher IRLbl and MeanIR could increase the
imbalance level, and the same as SCUMBLE, the higher value increases the
inconsistent frequencies of labels.

Resampling
Techniques

IRLbl MeanIR SCUMBLE

Before
Resampling

1.26637349
1.00000000

50.29488221
1.51055213

9.9629 0.0431

 36

2.38163564
3.323831

ML-ROS

1.23971835
1.00000000
9.96041359
1.45121164
2.14165026
2.80091381

3.0990 -

MLSMOTE

1.122086
1.000000

15.467196
1.195444
1.493664
1.632747

3.652 -

MLeNN

1.27418559
1.000000

48.26482535
1.56550379
2.41079326
3.57312966

9.681 -

MLTL

1.3080459
1.0000000

30.28269699
1.58812252
2.66423671
4.69496222

6.923

-

MLSOL

1.19925469
1.0000000

16.02489788
1.38878306

4.051

 37

2.05047538
2.64186762

REMEDIAL

1.26637349
1.00000000

50.29488221
1.51055213
2.38163564
3.323831

9.963 0.0431

Table 1: Evaluation metric for imbalance in the generated data
According to Table 1, before resampling, there is the highest number of IRLbl

with a value of 50.295 and MeanIR with a value of 9.963. After applying various multi-

label resampling methods, the level of imbalanced or MeanIR is decreased with a

value of 3.099, 3.652, 9.681, 6.923, 4.051 for ML-ROS, MLSMOTE, MLTL, and MLSOL

respectively. Additionally, in class 3 of labels that contained the highest imbalanced

level of 50.295 before being resampled, there is a decrease of imbalance to 9.960,

15.467, 48.265, 30.283, and 16.025 for ML -ROS, MLSMOTE, MLTL, and MLSOL

respectively. Apart from REMEDIAL, which is only assessed by SCUMBLE (Charte et al.,

2015c), that still contains the same level of label frequency inconsistency compared

to before resampling due to REMEDIAL generating a too large amount of virtual

labelsets and altering the pattern of the label space.

 38

Chapter VI
RESULTS

6.1 Experimental Results
 After testing various multi-label resampling strategies for decreasing

imbalanced datasets from the Q&A site, we found which multi -label resampling
method is the most effective in addressing imbalanced problems in SO posts.

Table 2: Precision at k of resampling techniques

 Table 3: Recall at k of resampling techniques

Model Name
Precision@K

P@1 P@2 P@3 P@4 P@5

ELECTRA 0.477 0.305 0.231 0.203 0.186
ML-ROS 0.503 0.320 0.237 0.209 0.187

MLeNN 0.323 0.232 0.184 0.174 0.159

MLTL 0.517 0.343 0.251 0.216 0.193
MLSOL 0.470 0.300 0.228 0.201 0.184

MLSMOTE 0.253 0.212 0.191 0.180 0.166

REMEDIAL 0.500 0.310 0.232 0.207 0.189

Model Name
Recall@K

R@1 R@2 R@3 R@4 R@5

ELECTRA 0.415 0.495 0.552 0.667 0.776

ML-ROS 0.429 0.515 0.563 0.683 0.779

MLeNN 0.257 0.347 0.421 0.556 0.648

MLTL 0.444 0.552 0.602 0.707 0.804

MLSOL 0.396 0.471 0.531 0.643 0.752

MLSMOTE 0.207 0.329 0.460 0.569 0.671

REMEDIAL 0.430 0.500 0.552 0.672 0.786

 39

Table 4: F1-score at k of resampling techniques
 At first glance, among the examples of the obtained results of all resampling
techniques, MLTL obtained high-ranking values, particularly MLTL, which surpassed
others in all evaluation metrics. On the other hand, MLSMOTE and MLeNN, are
significantly worse than ELECTRA, ML-ROS, MLSOL, MLTL, and REMEDIAL.

According to the observations, MLTL obtained the maximum precision value
for practically every k value. MLeNN, on the other hand, had the lowest precision
(see Table 2). MLTL had the strongest recall at 5 with a score of 0.804, while MLeNN
had the lowest recall at 5 with a score of 0.648 (see Table 3). According to F1-score,
MLSMOTE achieved the lowest performance at 1, with a score of 0.221 (see Table 4).

We applied ROC curves for additional evaluation in MLTL and MLeNN due to
the imbalanced class problem. Overall, the ROC curves had a high area under the
curve, indicating that MLTL had strong recall and precision. In class 3, Figure 14 (d)
shows that MLTL has the largest Area under the ROC curve (0.83). Furthermore, the
graph displayed a high True Positive Rate at various thresholds.

Overall, the multi-class ROC curve analysis showed that MLTL in Figure 14 (d)
achieved the highest Area under the curve With values of 0.98, at class 9, while
MLeNN in Figure 14 (e) performed not well in all classes, with the highest values
from a score of 0.95 at class 9.

Model Name
F1-score@K

F@1 F@2 F@3 F@4 F@5
ELECTRA 0.435 0.366 0.316 0.304 0.294

ML-ROS 0.452 0.382 0.323 0.312 0.296
MLeNN 0.277 0.268 0.248 0.258 0.250

MLTL 0.467 0.410 0.344 0.322 0.304

MLSOL 0.419 0.354 0.308 0.298 0.289
MLSMOTE 0.221 0.248 0.262 0.265 0.259

REMEDIAL 0.452 0.371 0.317 0.318 0.298

 40

 (a)

(b) (c)

(d) (e)

(f) (g)

Figure 14: Multi-Class of the comparison between the multi-label data before and
after applying various resampling methods ROC curve (a) ML-ROS, (b) MLSMOTE, (c)

MLTL, (d) MLeNN, (e) MLSOL, and (g) REMEDIAL

 41

The results of these studies imply that MLTL outperforms the other
resampling techniques. The majority of labels in ML -ROS come from minority
samples. REMEDIAL created an excessive number of virtual labelsets and altered the
pattern of the label space. The sole focus of MLSOL is local label distribution. The
class groups overlap as a result of MLSMOTE's generation of fresh synthetic samples
that are added anywhere in the feature space. Because it relies on unimportant
characteristics and neighbors, MLeNN performs worse than all benchmarks. It is
challenging for creating an unambiguous neighbor relationship, especially for large -
scale learning such as multi-label in deep learning settings. This eventually leads to
the incorrect elimination of relevant samples. As a result, MLeNN has difficulty with
characteristics and a neighbor-based technique that differ from those used by MLTL.
To fix the imbalance, it utilizes the conventional Tomek Link technique.
6.2 Conclusion and Future Work

In order to address the imbalanced data in Stack Overflow posts, this
research examines various multi-label resampling techniques and uses pre-trained
ELECTRA to forecast tags. By comparing resampling methods with the pre-trained
model ELECTRA on a single GPU (NVIDIA GeForce RTX 3080), this paper contributes
by examining the effectiveness of various multi-label resampling techniques in
improving pre-trained models to handle imbalanced data and achieving better
performance metrics. According to the outcomes, MLTL is an appropriate choice to
handle the imbalance in multi-label classification for our Stack Overflow data. We
nevertheless advise adopting alternative approaches, such as the hybrid methods
including REMEDIAL-HwR-ROS, REMEDIAL-HwR-HUS, and REMEDIAL-HwR-SMT to deal
with the overfitting problem caused by the oversampling of the data. Performance
can be enhanced by using additional pre-trained models, particularly when several
GPUs are being used. However, researchers should select the resampling technique
that is best suited for the individual dataset and specific issue.

REFERENCES

REFERENCES

Charte, F., Rivera, A., del Jesus, M. J., & Herrera, F. (2014). Concurrence among
imbalanced labels and its influence on multilabel resampling algorithms. Hybrid
Artificial Intelligence Systems: 9th International Conference, HAIS 2014,
Salamanca, Spain, June 11-13, 2014. Proceedings 9,

Charte, F., Rivera, A. J., del Jesus, M. J., & Herrera, F. (2019). REMEDIAL-HwR: Tackling
multilabel imbalance through label decoupling and data resampling
hybridization. Neurocomputing, 326, 110-122.

Charte, F., Rivera, A. J., Jesús, M. J. d., & Herrera, F. (2013). A First Approach to Deal with
Imbalance in Multi-label Datasets. Hybrid Artificial Intelligence Systems,

Charte, F., Rivera, A. J., Jesús, M. J. d., & Herrera, F. (2014). MLeNN: A First Approach to
Heuristic Multilabel Undersampling. Ideal,

Charte, F., Rivera, A. J., Jesús, M. J. d., & Herrera, F. (2015a). Addressing imbalance in
multilabel classification: Measures and random resampling algorithms.
Neurocomputing, 163, 3-16.

Charte, F., Rivera, A. J., Jesús, M. J. d., & Herrera, F. (2015b). MLSMOTE: Approaching
imbalanced multilabel learning through synthetic instance generation. Knowl.
Based Syst., 89, 385-397.

Charte, F., Rivera, A. J., Jesús, M. J. d., & Herrera, F. (2015c). Resampling Multilabel
Datasets by Decoupling Highly Imbalanced Labels. Hybrid Artificial Intelligence
Systems,

Charte, F., Rivera, A. J., Jesús, M. J. d., & Herrera, F. (2017). Tackling Multilabel Imbalance
through Label Decoupling and Data Resampling Hybridization. ArXiv,
abs/1802.05031.

Chawla, N., Bowyer, K., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic
Minority Over-sampling Technique. ArXiv, abs/1106.1813.

Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text
Encoders as Discriminators Rather Than Generators. ArXiv, abs/2003.10555.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep

 43

Bidirectional Transformers for Language Understanding. ArXiv, abs/1810.04805.
Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T., Jiang, D.,

& Zhou, M. (2020). CodeBERT: A Pre-Trained Model for Programming and Natural
Languages. ArXiv, abs/2002.08155.

García, V., Mollineda, R. A., & Sánchez, J. S. (2008). On the k-NN performance in a
challenging scenario of imbalance and overlapping. Pattern Analysis and
Applications, 11, 269-280.

Giraldo-Forero, A. F., Jaramillo-Garzón, J. A., Ruiz-Muñoz, J. F., & Castellanos-Domínguez,
G. (2013). Managing Imbalanced Data Sets in Multi-label Problems: A Case Study
with the SMOTE Algorithm. Iberoamerican Congress on Pattern Recognition,

He, J., Xu, B., Yang, Z., Han, D., Yang, C., & Lo, D. (2022). PTM4Tag: Sharpening Tag
Recommendation of Stack Overflow Posts with Pre-trained Models. 2022
IEEE/ACM 30th International Conference on Program Comprehension (ICPC), 1-
11.

Kotze, U. (2022). Resampling Algorithms for Multi-Label Classification Stellenbosch
University]. Stellenbosch.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). ALBERT: A
Lite BERT for Self-supervised Learning of Language Representations. ArXiv,
abs/1909.11942.

Liu, B., Blekas, K., & Tsoumakas, G. (2022). Multi-label sampling based on local label
imbalance. Pattern Recognition, 122, 108294.

Liu, B., & Tsoumakas, G. (2019). Synthetic Oversampling of Multi-Label Data based on
Local Label Distribution. ECML/PKDD,

Liu, J., Zhou, P., Yang, Z., Liu, X., & Grundy, J. C. (2018). FastTagRec: fast tag
recommendation for software information sites. Automated Software
Engineering, 25, 675-701.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L.,
& Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining
Approach. ArXiv, abs/1907.11692.

Pant, P., Sabitha, A. S., Choudhury, T., & Dhingra, P. (2018). Multi-label Classification
Trending Challenges and Approaches. Advances in Intelligent Systems and

 44

Computing.
Peng, D., Gu, T., Hu, X., & Liu, C. (2021). Addressing the multi-label imbalance for neural

networks: An approach based on stratified mini-batches. Neurocomputing, 435,
91-102.

Pereira, R. M., Costa, Y. M. G., & Silla, C. N. (2020). MLTL: A multi-label approach for the
Tomek Link undersampling algorithm. Neurocomputing, 383, 95-105.

Tabassum, J., Maddela, M., Xu, W., & Ritter, A. (2020). Code and Named Entity
Recognition in StackOverflow. Annual Meeting of the Association for
Computational Linguistics,

Von der Mosel, J., Trautsch, A., & Herbold, S. (2022). On the validity of pre-trained
transformers for natural language processing in the software engineering
domain. IEEE Transactions on Software Engineering.

Wang, S., Lo, D., Vasilescu, B., & Serebrenik, A. (2014). EnTagRec++: An enhanced tag
recommendation system for software information sites. Empirical Software
Engineering, 23, 800-832.

Xu, B., Hoang, T., Sharma, A., Yang, C., Xia, X., & Lo, D. (2022). Post2Vec: Learning
Distributed Representations of Stack Overflow Posts. IEEE Transactions on
Software Engineering, 48, 3423-3441.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J. G., Salakhutdinov, R., & Le, Q. V. (2019). XLNet:
Generalized Autoregressive Pretraining for Language Understanding. Neural
Information Processing Systems,

Zhou, P., Liu, J., Liu, X., Yang, Z., & Grundy, J. C. (2019). Is deep learning better than
traditional approaches in tag recommendation for software information sites?
Inf. Softw. Technol., 109, 1-13.

Zhou, P., Liu, J., Yang, Z., & Zhou, G. (2017). Scalable tag recommendation for software
information sites. 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), 272-282.

VITA

VITA

NAME Arisa Umparat

DATE OF BIRTH 24 June 1993

PLACE OF BIRTH Bangkok, Thailand

INSTITUTIONS ATTENDED Chulalongkorn University

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter I
	INTRODUCTION
	1.1 Overview

	Chapter II
	BACKGROUND
	2.1 Problem Formulation
	2.2 Research Questions
	2.3 Objectives

	Chapter III
	LITERATURE REVIEW
	3.1 Tag Recommendations
	3.2 Multi-Label Resampling Methods for Imbalanced Data
	3.2.1 IRperLabel
	3.2.2 MeanIR
	3.2.3 CVIR
	3.2.4 SCRUMBLE

	Chapter IV
	METHODOLOGY
	4.1 Pre-processing
	4.2 PTM-Oriented Tokenization
	4.3 Resampling Techniques
	4.3.1 ML-ROS
	4.3.2 MLSMOTE
	4.3.3 MLeNN
	4.3.4 MLTL
	4.3.5 MLSOL
	4.3.6 REMEDIAL
	4.4 Model Training
	4.5 Evaluation Metrics
	4.5.1 Precision@k
	4.5.2 Recall@k
	4.5.3 F1-score@k
	4.5.3 Area Under the Curve

	Chapter V
	DISCUSSION
	5.1 Generated Dataset Resampling

	Chapter VI
	RESULTS
	6.1 Experimental Results
	6.2 Conclusion and Future Work

	REFERENCES
	VITA

