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Encoding for Identifying Types of Sentence Similarity) อ.ท่ีปรึกษาหลกั : ศ. ดร.ชิด
ชนก เหลือสินทรัพย ์

  

การหาความคลา้ยคลึงระหว่างสองประโยคใดๆประกอบดว้ยสองขั้นตอนหลกัคือ การเขา้รหัสให้กบัประโยคทั้ง
สองประโยคเพ่ือสร้างเวกเตอร์ของคุณลกัษณะท่ีมีความยาวเท่ากัน และการวดัความคลา้ยคลึงระหว่างสองประโยคตามล าดับ 

คุณภาพของวิธีการเขา้รหัสสามารถก าหนดระดับของความส าเร็จของโมเดลในการวดัความคลา้ยคลึงระหว่างสองประโยคได้  
ทั้งน้ีก็เพราะการสร้างตวัแทนท่ีดีขึ้นอยูก่บัความละเอียดในการนิยามการแยกความคลา้ยคลึง ย่ิงการนิยามความคลา้ยคลึงชดัเจน
มากเท่าใด การสร้างตวัแทนก็จะย่ิงดีขึ้นเท่านั้น ซ่ึงจะช่วยในการแยกประเภทของความคลา้ยคลึง โดยทัว่ไปแลว้ ทุกวิธีท่ีมีอยู่
ส าหรับการวดัความคลา้ยคลึงถูกออกแบบให้ขอ้มูลในรูปแบบเวกเตอร์อยู่ในพ้ืนท่ีคุณลกัษณะท่ีมีมิติตายตวั เพราะฉะนั้นการ
แปลงชุดประโยคท่ีมีความยาวต่างกนัให้กลายเป็นชุดเวกเตอร์ของคุณลกัษณะท่ีอยูใ่นมิติเดียวกนัเป็นเร่ืองท่ีส าคญัมาก ชุดขอ้มูลท่ี
ใชใ้นวิทยานิพนธ์น้ีจดัเตรียมให้ทั้งค่าความเก่ียวขอ้งเป็นตวัเลขและประเภทของความเก่ียวขอ้ง ประเภทของความเก่ียวขอ้งมีสาม
ประเภท กล่าวคือ เป็นกลาง เก่ียวขอ้ง และ ขดัแยง้ การแยกประเภทความเก่ียวขอ้งบ่งบอกชนิดของความคลา้ยคลึง นอกจากน้ี
โมเดลเขา้รหัสท่ีมีประสิทธิภาพสูงมกัเรียนรู้ก่อนหน้าโดยใชพ้ารามิเตอร์จ านวนเป็นลา้น หรือแมก้ระทั้งพนัลา้น น่ีคืออุปสรรค
หน่ึงในการเทรนโมเดลเขา้รหสัดว้ยตวัเองเน่ืองจากจ าเป็นตอ้งใชท้รัพยากรท่ีมีความสามารถทางดา้นการค านวณมหาศาล 

ในวิทยานิพนธ์น้ี เราน าเสนอวิธีการแปลงรหัสค าด้วยตนเองเพ่ือจ าแนกประเภทความเก่ียวข้องออกเป็นสาม
ประเภท ความเก่ียวขอ้งของแต่ละค าในประโยคถูกจบัไดอ้ยา่งพร้อมกนัโดยโครงสร้างการเขา้รหสัดว้ยตนเองน้ี นอกจากน้ียงัต่าง
จากโมเดลการเขา้รหัสอ่ืนๆท่ีขึ้นอยู่กบัการเรียนรู้แบบตามล าดบั เพราะโมเดลท่ีน าเสนอน้ีไม่ถูกรบกวนจากการสูญเสียความทรง
จ าท่ีเกิดจากความยาวของประโยค โครงสร้างของงานมีการคดักรองคู่ประโยคท่ีขดัแยง้ออกจากชุดขอ้มูลในขั้นตอนเบ้ืองตน้และ
ใชโ้มเดลเขา้รหัสจ านวนหน่ึงในขั้นตอนหลงั ซ่ึงตวัเขา้รหสัแต่ละตวัจะอยู่ในรูปแบบ y-x-y โดยท่ี y คือความยาวท่ีไดจ้ากการ
ต่อสองประโยคเขา้ดว้ยกนั และ x คือความยาวท่ีเหมาะสมท่ีสุดส าหรับขอ้มูลท่ีมีความยาว y นอกจากน้ีโมเดลคดัแยกประเภท
จ านวนหน่ึงยงัถูกน ามาใชแ้ยกขอ้มูลระหว่าง กลุ่มเป็นกลาง กบั กลุ่มเก่ียวขอ้ง โดยให้ค่าออกมาเป็นความน่าจะเป็น ดว้ยความ
แม่นย  ากว่า 90% ส าหรับการคดัแยกแต่ละประเภททั้งสามประเภท วิธีท่ีน าเสนอได้พิสูจน์แล้วว่าเราสามารถท าการแยก
ประเภทความเก่ียวขอ้งไดอ้ยา่งมีประสิทธิภาพโดยไม่ตอ้งใชชุ้ดขอ้มูลท่ีมีขนาดใหญ่และทรัพยากรท่ีมีความสามารถทางดา้นการ
ค านวณอยา่งมหาศาล 
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The task of finding semantic similarity of any two arbitrary sentences consists of two 

main steps, which are encoding sentences to produce feature vectors of equal length and measuring 

the similarity, respectively. The quality of an encoding technique can determine the degree of 

success a model can achieve in measuring the similarity. This is because a good representation is 

subjected to how finely established the spectrum of similarities is. The clearer the definition of 

similarity is, the better the representations can be constructed. This, in turn, helps distinguish 

between types of sentences. Generally, all existing methods for measuring similarity were designed 

for vectorized data in a feature space of fixed dimensions.  Thus, transforming a set of various-

length sentences into a set of feature vectors in the same dimension is very essential. The dataset 

used in this thesis provides both relatedness score and textual entailment. Textual entailment 

distinguishes sentence pair relations among three classes: namely, neutral, entailment and 

contradiction. The task indicates the types of entailments, which is interpreted as relatedness in this 

thesis. Additionally, powerful pretrained encoding models are usually of millions of parameters, or 

even billions. This is one obstacle in training one’s own embedding model due to the need of 

resources with heavy computing capabilities. 

In this thesis, we propose a self-encoding scheme to classify among the three classes of 

textual entailment. The relevancy of all words in a sentence is simultaneously captured by this self-

encoding structure. Unlike the other encoding methods based on sequential learning, no interference 

of memory loss due to the length of sentence occurs in this approach. The framework involves 

filtering contradiction pairs at an early stage and employing a set of y-x-y encoders, where y is the 

length after two sentences are concatenated and x is the optimal encoding size for samples of length 

y, and classifiers to output neutral and entailment probabilities. With over 90% accuracy for all 

classes, our method has proven that this task is possible to be carried out effectively without the need 

of large-scale datasets and heavy computational resources.  
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Chapter 1 
 

INTRODUCTION 

 

Communication between humans and machines has been in the trend for decades. 

That is because we have yet to find convenient ways to send and receive requests such that 

average users without knowledge in fields of Computer Science and Artificial Intelligence 

can interact, control, and operate a machine in order to complete a task. While there is a 

plenty of room for other tasks in artificial intelligence and machine learning to be explored 

and developed, it is undeniably important for machines to understand what they are needed to 

accomplish given human commands. Hence, natural language processing (NLP) tasks can be 

seen as a frontline, or a gateway, to accessing numerous possibilities a machine is capable of 

doing. 

 

Although the history of NLP has been introduced on the advent of machine 

translation in the seventeenth century, there remains several challenges that are still 

unresolved. These challenges mostly owe their existence to the properties of language. 

Generally speaking, a language inherits ambiguity owing to demographic and cultural 

influences, and specific events. The use of language evolves over time. Well-constructed 

phrases and sentences are usually loosely considered in conversations; however, the context is 

not lost because a common background knowledge is shared among the people. This reflects 

how ill-structured groups of words can still make perfect sense among groups of people. Even 

well-structured phrases and sentences have imprecise rules. Therefore, it is important for an 

NLP system to understand some world knowledge. To elaborate, “this” may implicitly be 

established by a group of people in the same conversation as referring to the same object, 

while a newcomer without any knowledge on the subject is likely to have very few, to none, 

knowledge on which object is being referred. Suppose this newcomer is an NLP system, 

“this” may never have been learnt to refer to the true object in the same conversation at all. 

This is an example of unmodeled variables where one is assumed to have known the context 

of an unmodeled representation. Ambiguity may happen at different levels. At word senses 

level, “bank” may refer to a financial institution or a land alongside a river. At part-of-speech 

level, “look” may be a noun or a verb. At syntactic structure level, “A boy can see a man with 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

a telescope” may refer to “a boy with a telescope” or “a man with a telescope”. It is not only 

words and groups of words that accumulates multiple level challenges, but also acronyms that 

a specific group of people has established and can only understand. For example, Figure 1.1 

shows a supposed sentence which contains intentional misspelled words and acronyms. In 

order to interpret the sentence, a system is required to contain some knowledge on the 

established acronyms, specific spellings, and world knowledge. The last is particularly for 

interpreting “Facebook” since this is a proper noun.  

 

Even if a system is capable of supporting one language fully, it is not as easy to 

transfer its knowledge and capability to another language and hope that things will work 

exactly as well. A language exhibits multiple variations and expressivity. That is because each 

and every individual has one’s own opinion and character. Such hindering factors occur in 

both popular languages, such as English and some other European languages, and thousands 

of moderate-to-poor-resourced languages which scales over 6,000 languages. According to 

Zipf’s law, Figure 1.2a and 1.2b, the frequency of different words in a large text corpus 

illustrates an inverse proportion when drawn against rank. That is there are numerous 

infrequent, and probably important, words regardless of how large a corpus is. The challenge 

lies in a mean to estimate probabilities for unseen, and rarely seen, information. We may sum 

up the challenges into seven parts: namely, ambiguity, variation, expressivity, scale, sparsity, 

unmodeled variables and unmodeled representations.  

Figure 1.1 Example of misspelled words and acronyms 

Figure 1.2a  Zipf’s law Figure 1.2b  Zipf’s law 
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Several core technologies, such as language modeling, part-of-speech tagging, 

syntactic parsing, named-entity recognition, word sense disambiguation and semantic role 

labeling, have been proposed and continually studied with one ultimate goal. That is to create 

a seamless natural human-to-computer communication for a machine to perform further 

advanced operations. Such applications may include machine translation, information 

retrieval, question answering, dialogue systems, information extraction, text summarization 

and sentiment analysis.  

 

A conversational agent is made up of multiple capabilities; namely, speech 

recognition, language analysis, dialogue processing, information retrieval and text-to-speech. 

A typical conversational flow begins with an automated speech recognition (ASR) which 

detects and converts an utterance into text. The information is then passed along a natural 

language understanding engine where an intent is extracted, classified, and interpreted in 

order to be solved or fulfilled by a logical unit. This could be a business logic such as 

deducting or adding a certain amount of money out of or into an account. At this stage, the 

goal is to summon useful semantic information as much as possible. This is known as slot 

values. It is believed that more information will lead to more accurate responses. NLP 

researchers and developers are generally interested in developing language technologies that 

reside inside the engine. At the end of the journey, a response is generated and passed through 

a text-to-speech unit.  

 

Information retrieval, text summarization, question-answering systems, and 

paraphrase detection are NLP tasks that require measuring the degree of similarity between 

texts, in particular, short sentences. For instance, in a question-answering system, a machine 

aims to find the most similar existing query in a database to the input query under an 

assumption that every existing query in the database contains at least one answer to it. Once a 

query is interpreted and a match with the database is found, a system can then respond with 

an appropriate answer. Pairing questions to answers, and vice versa, is also another part in 

which may require matching phrases, and sentences, based on similarity.  

 

Determining sentence similarity usually consists of two essential steps. These are 

sentence encoding and similarity measure. A simple yet popular classical encoding scheme is 
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to reserve each bit for each word at each location as shown in Figure 1.3. The resulting matrix 

consists of bits set to 1 for words appearing in the sentence in one dimension and the location, 

or position, of the words in another dimension. In this example, the dictionary used for 

encoding the sentence only contains six words. In practice, there could be billions of possible 

words which would potentially result in a tremendously sparse and huge encoding matrix. 

This is considered inefficient as it would waste memory usage without giving much 

information and could easily cause memory leak due to its inability to scale over different 

lengths of sentences. In other words, the encoding matrix wholly depends on the size of the 

dictionary. This could lead to overfitting problem. Therefore, statistical-based direct encoding 

and pretrained encoding methods are two typical approaches in performing sentence 

encoding. Statistical-based encoding generally involves measuring the frequency of word 

occurrence in forms of n-grams [1], while pretrained encoding applies long short-term 

memory (LSTM) [2] and BERT [3], for instance. 

 

The advent of the Transformers model [4] has raised the bar for many downstream 

NLP tasks, despite being originally designed as a Neural Machine Translation (NMT). This is 

also one of the fundamental elements used in BERT models which is designed to predict the 

next word. Its variants of pretrained models can be found prevalently in public for the 

community. However, many, if not all, are of hundreds and thousands of embedding 

dimensions. Perhaps, using powerful computational resources is the key to producing rich text 

representations. 

 

 

Figure 1.3 A classical encoding scheme 
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1.1 Aims and Objectives 

In this thesis, we are interested in finding the similarity between sentences. Our aim is to 

diverge from using huge computational resources to train complex models. A machine with 

ordinary computing capability should be able to replicate all stages associated with preparing 

and performing sentence similarity task presented in this work. Therefore, the objectives of 

this thesis can be summarised as follows. 

1. To measure the degree of similarity between two short sentences into three classes, 

namely, contradiction, entailment, and neutral 

2. To compare between two short sentences of different length with no maximum length 

limit using a proposed embedding technique 

3. To evaluate the proposed model on existing benchmarks and widely known dataset 

SICK-2014 [5] 

The reason for choosing to evaluate on entailment relation is that we believe the performance 

should better reflect a system’s understanding of computational semantics at a more general 

level. Instead of semantic relatedness, a system would be able to classify whether high 

relatedness means contradiction or entailment while low relatedness would naturally fall into 

neutral. 

1.2 Scope of Work 

1. Sentences are taken from SICK-2014 [5]. These sentences are generally short and 

complete. 

2. Sentences are embedded into vector representations. Regardless of sentence length, 

vector representation must result in fixed size. 

3. All sentences being accounted for are in English due to data availability. 

 

1.3 Contributions 

In Chapter 3, we demonstrated our methodology in extracting features from input 

sentences and constructing vector representations. Here, we have solved the issue on how to 

handle variable-sized sentence pairs by manipulating them at input. This means that sentences 

do not have to be truncated or padded. They are accounted for their real lengths. In Chapter 4, 

we evaluated our proposed method against some baselines. 
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The approach proposed in this work avoids heavy pre-training of millions of 

parameters and of which to be trained on large scale datasets. The constraints imposed by 

unequal lengths of input sentence pairs are compensated such that the system does not require 

truncating sentences that are too long and padding those that are too short.  
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Chapter 2 
 

LITERATURE REVIEW 

 

According to [6], we may examine methods of measuring word similarity and 

sentence similarity separately. Word similarity methods include corpus-based, knowledge-

based and string-based. Sentence similarity methods include word-based, structure-based and 

vector-based. The literature claims that finding similarity between words lies in the core of 

finding similarity between sentences. Therefore we consider methods at both levels in this 

chapter. 

 

2.1 Word Similarity Methods 

Corpus-based approach relies on big corpus analysis. It believes that semantically 

similar words would appear in similar manner; there is not much different in structure, or 

pattern, which similar words appear in. Word co-occurrence is also another key aspect which 

is used to indicate word similarity [7]. Two techniques used in analysing this approach are 

normal statistical analysis and deep learning techniques. The aim is to extract word semantic 

representation. For normal statistical analysis, this can be seen in Latent Semantic Analysis, 

or LSA. LSA’s main objective is to calculate term frequency inverse document frequency and 

uses this as weights to the corresponding words. This is under an assumption that words that 

co-occur in the same context usually have similar meaning. In LSA, a word matrix is 

constructed where vectors of words and paragraphs are the rows and the columns 

respectively. Singular Value Decomposition is used to reduce the dimensionality. Words can 

be extracted and used in calculating their cosine similarity.  

 

Deep learning techniques aim at producing word embeddings in a semantic space. 

Again, the word representation is based on co-occurrence of words in a corpus. In other 

words, a deep learning model is either trained to guess a word given its surrounding words, or 

vice versa. This is known as a Continuous Bag of Word model (CBOW) and Skip-gram 

model, respectively. Word vector representations generated from these two types of models 

are generally of size 200 to 400 based on the parameters set at training. These deep learning 
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techniques have shown promising results. The semantics of words can be captured in the 

vectors as their relations can be found via arithmetic summation and subtraction. The famous 

vector(“King”) – vector(“Man”) + vector(“Woman”) is closest to vector(“Queen”) example 

has successfully shown the semantic relations between the generated vector representations in 

Word2Vec model. Furthermore, this vector representation can be used in calculating 

similarity between words using cosine similarity as their semantic space coincides with our 

mathematical intuition. This had led to several attempts in employing high-quality word 

representation at sentence-level directly. However, a mere level transfer may not be an 

appropriate choice as sentences cannot be seen as just a group of words but their relations and 

structure should be accounted for as to interpret the true meanings. This may lead to a wider 

spectrum of NLP challenges, such as, syntactic structure, dependency parsing and semantic 

analysis. 

 

Knowledge-based approach depends heavily on handcrafted knowledge semantic 

network. The network, ideally, contains both semantics of words and relations between 

words. The famous external resource WordNet is usually employed. This is a semantic 

network which consists of grouped synsets where each group shares a single meaning. This is 

also known as a group of synonyms. Hyponyms and hypernyms add a hierarchical structure to 

the network. With a well-documented API, word senses and relations can be conveniently 

extracted. One idea of measuring similarity of this network is to count the number of hops 

from one word to another. However, hops between words of different part-of-speeches may 

not be recognised, and therefore not possible, as synsets and other relations are usually of 

same part-of-speeches.  
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s1: acdeb  s2: abcde 

 

Figure 2.1 q-gram distance 

distq-gram(s1,s2) = Σ|Pq(s1)[i] – Pq(s2)[i]| 

distq-gram(s1,s2) = 1 + 1 + 0 + 0 + 1 + 1 = 4 
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String-based approach, or terminological approach, considers a word as a sequence of 

characters. Some methods include Levenshtein distance, q-gram and Jaccard distance. For 

Levenshtein distance, the aim is to transform one string to another with minimal operations. 

The operations are insert, delete and replace. The Levenshtein distance is the number of edit 

operations. In [8], the similarity measure is the ratio between the edit distance and the length 

of the longer word. Levenshtein distance algorithm can be seen very similar to sequence 

alignment algorithms such as Needleman Wunch algorithm and Smith Waterman algorithm. 

The aims for the edit distance algorithm and sequence alignment algorithm distinguish 

between the two. While the former minimises the number of transform operations, the latter 

maximises the similarity by assigning different weights to different types of operations. For q-

gram distance in Figure 2.1, q signifies the length of substring to be compared. This is 

typically much smaller than the strings of the words. Each string is truncated into all possible 

combinations of length q. The occurrence count of each substring of length q is recorded. The 

q-gram distance is the sum of absolute difference between the occurrence counts of the two 

strings. While Levenshtein distance has O(n2) time complexity, q-gram only has O(n) time 

complexity. 

 

Some combined methods have shown improved results. [9] employs both corpus-

based and knowledge-based methods. The final similarity measure is an average of the two 

methods. In [10], Word Sense Disambiguation (WSD) first attaches every word in a corpus to 

a word sense. The word senses follow the assignments in WordNet and therefore shortest path 

distance is conveniently determined. The semantic relations in the corpus can even be found 

when exploiting the depth of words as WordNet holds information on the level of specificity. 

This is another cooperation between corpus analysis and a knowledge network. 

 

2.2 Sentence Similarity Methods 

Word-based similarity employs word-to-word similarity methods on words in 

sentences to calculate sentence similarity. This method treats a sentence as a set of words. 

One idea is that the similarity values between each word in sentence 1 and every word in 

sentence 2 are measured one at a time. For each word in sentence 1, it is compared against all 

words in sentence 2 and the average similarity is taken. This average similarity value denotes 

the word in sentence 1. Once all words in sentence 1 are measured, the sentence similarity is 
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taken by selecting the maximum average similarity value. This is known as max similarity. If 

all words in sentence 2 are also measured in the same manner, a similarity matrix can be 

constructed. With a sentence binary vector, sentence similarity can also be calculated as 

mentioned in [11]. Moreover, a semantic matching function is proposed to construct semantic 

matching vector for each word which can be used with the similarity matrix instead of a 

sentence binary vector. An example of a semantic matching function is the max similarity 

where the maximum similarity is the measure between each word in sentence 1 and every 

word in sentence 2. A modification of this semantic matching function is to consider only a 

window of words in sentence 2 when compared with each word in sentence 1. Each word is 

represented as a weighted average between the word and the window. Another matching 

function performs decomposition on generated match vectors to obtain similar and dissimilar 

parts for each vector to construct a similar matrix and a dissimilar matrix. From these two 

matrices, a sentence similarity can be computed, [12]. Using Word Sense Disambiguation 

(WSD) is another approach in measuring sentence similarity. [13] argues that, in small-sized 

text fragments such as sentences, word cooccurrence may not be the case for detecting two 

semantically similar sentences. This is because same keywords may not appear in both 

sentences; therefore, this approach employs word senses to identify synonyms by expanding 

WordNet synsets. A vector representation is formed for each sentence using word-to-word 

semantic similarity. This is done by either finding shortest path distance in WordNet or using 

Jiang and Conrath method in which the set of expanded words is considered in the formula. 

The sentence similarity is simply the cosine similarity between the two vectors. Some 

methods, [14], employ both WordNet and word embedding which produce better results than 

those using either stream. Despite the ease of implementation, word-based sentence similarity 

methods typically fail to capture structural information of given sentences. Some believe this 

could have been the key to interpreting the core semantic information. On the other hand, 

such approaches that see a sentence as a bag of words are appropriate for social media texts as 

they are usually poorly structured. 

 

Structure-based similarity exploits sentence syntactic information. Many approaches 

believe that similar sentences are those that share similar structures. This is particularly for 

short texts. Examples of such methods utilise grammar, part-of-speech and order of words. 

[15] extracts grammar links between words in sentences to construct a grammar matrix in 

which the rows represent the links of the shorter sentence and the columns are the links of the 

longer sentence. Semantic similarity values between words with links of type are measured 
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based on WordNet ontology. The weighting strategy in [16] is done by assigning weights to 

words based on their part-of-speech (POS) and the relations between POS. This method gives 

unequal importance to the words in a sentence as it believes that certain POS and their 

relations are more important. Word order is usually used along with other syntactic 

information or other methods. The benefit of adding word order information is to prevent 

similar structures being falsely classified as having similar meanings at the first place. In 

other words, having similar structures may not convey similar meanings. For example, “a 

woman kills a boy” and “a boy kills a woman” share the same set of words but have different 

meanings. This is detected using word order. Nevertheless, it is reported in the survey that 

people usually use similar structures for sentences of similar semantics.  

 

Vector-based similarity calculates similarity between sentence vectors. The key for 

this kind of approach is to come up with efficient and powerful sentence representations in 

which the features are concatenated into one vector. Obtaining such vector representations 

may be through statistical-based or learning-based methods. In a distributional method, a 

matrix of feature counts is constructed. Each row represents a sentence in a corpus and each 

column represents a feature in the sentences. Features could be n-grams or dependency pairs. 

A weighting schema is proposed to give weights to more important features. This is done by 

using the probability of existence of the feature in paraphrased and non-paraphrased 

sentences. After that, a sentence vector is extracted from matrix factorisation, and sentence 

similarity is measured, [17]. Another vector-based approach is to use an average of pre-

trained word vectors in a sentence to obtain the vector representation of the sentence. Popular 

pre-trained word vectors are GloVe, [1], and Word2Vec [18]. Cosine similarity is, again, 

usually the choice for sentence similarity measure. This method does not account for word 

relations or structure of the sentence, despite manipulating vectors in a properly defined 

semantic space for word embeddings. [19] proposed a learning-based method in which 

regarding to the word embedding techniques used, a training model, which is a modified 

Long Short-Term Memory (LSTM) model, adjusts itself to learn to find sentence similarity. 

The model is known as Manhattan LSTM (MaLSTM). The last hidden layer is used as the 

representation for the input sentence. This representation is then used to learn the semantical 

similarity measure. 
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Skip-Thought vectors are obtained from training an encoder-decoder model. This is 

essentially an unsupervised learning. The recurrent neural network (RNN) encoder aims at 

mapping words to sentence vectors and the RNN decoder aims at generating surrounding 

sentences. This is similar to training for Word2Vec, in particular, the skip-gram model. A 

linear mapping solves the difficulty in setting up unseen words in the encoder’s vocabulary 

space. This is because any word in Word2Vec can be mapped to the encoder’s vocabulary 

space. The training phase requires a large collection of text from books. One reason for doing 

so is to reassure that the model is unbiased towards any domain. This vector representation is 

said to accurately capture both semantics and syntax. A similarity learning task is then carried 

out. 

 

Although deep learning methods have shown good results, there is still room for 

improvement. Hybrid methods for measuring sentence similarity may show more promising 

results in many cases as each method treats the problems from different perspectives.  

 

2.3 Word Embeddings 

In [20], the survey explores methods of word embeddings which are of fixed-length, 

dense and distributed representations for words. This work acknowledges the importance of 

word embeddings as it mentions representations for words and documents prevail in, if not 

all, most NLP tasks. These include chunking, question answering, parsing and sentiment 

analysis. 

 

Vector representations are useful as they enable intuitive interpretation and useful 

arithmetic operations, such as, addition, subtraction and distance measures which are suited in 

manipulating machine learning strategies. An embedding layer was first introduced as a key 

feature in developing a neural network language model to mitigate the curse of dimensionality 

on language models and help generalisation. It was realised that this layer implicitly contains 

syntactic and semantic word relationships, [21]. This is shown through the work of 

Word2Vec model [22]. Another influential embedding technique emerged in [1] which 

leverages word-context matrices. This is the GloVe model. Nevertheless, both models are 

based on the assumption that words in similar contexts have the same meaning. This is the 

distributional hypothesis, which dates back to literature works including [23]. Hence word 
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embeddings can be said to be built upon word co-occurrence statistics based on the 

distributional hypothesis. Embedding models can be divided into prediction-based models and 

count-based models. Prediction-based models are those derived from neural network language 

models as they predict the next word given its context. Count-based models are matrix-based 

models which account for co-occurrence counts in global context. In order to study word 

embeddings, this survey suggests navigating through two utmost important topics, namely the 

vector space model and statistical language modelling. The former clearly aids in complex 

interpreting mathematical theories such as linear algebra and statistics and incorporating them 

into a range of machine learning methods regarding NLP tasks. The latter interestingly 

originates word embeddings as by-products upon attempts in producing more efficient and 

more accurate language modelling. It arguably has not been long since the topics in word 

embeddings are decoupled from the task of language models [24]. 

 

The Vector Space Model (VSM) can be seen back in the field of Information 

Retrieval in [25]. The encoding procedure represents each document in a collection as a t-

dimensional vector. Each element in a vector can be binary or real number. It is a distinct 

term in the document which may be normalised by a weighting scheme such as TF-IDF. The 

aim is to accentuate the difference in information of each term. Calculation of similarity 

between document vectors can be done at this point. More information of leveraging the VSM 

and its suitable applications can be read in the survey of [26]. 

 

Statistical Language Modelling is a development of probabilistic models of 

distribution of words in the language. In the early days, it aimed at recognising words and 

phrases in noisy and fault channels. A language model is intended to predict the next word 

given the words consecutively preceding it, which is also known as context. Hence a full 

probabilistic model contains the likelihood of every word in the vocabulary.  

 

Equation 1 shows a mathematical formulation of an n-gram model with window size 

T, where wt is the t-th word, wt
T is a sequence from w1 to wT. Hence P(wt|w1

t-1) is the 

(1) 
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probability of wt appearing after a sequence from w1 to wt-1. The next word prediction is done 

via maximum likelihood estimation over all words in the vocabulary.  

 

Prediction-based models began with projecting a raw word vector into the first layer 

of a neural language model. This by-product is simply called the embedding layer. [24] is 

claimed to be the first to design a model with an intent of learning embeddings only. The 

training strategy is similar to that of a language model. The objective is to predict a center 

word given both preceding and following words around the predicted word. They also trained 

the model with false and negative examples, in which the center word is replaced by a random 

word in the vocabulary, for the model to distinguish positive answers from false ones. In 

2013, [18] introduced two models for learning word embeddings, namely, CBOW and skip-

gram (SG) models. These models are log-linear models and use the two-step procedure for 

training. The two-step procedure was introduced in [27]; the first step is to train using a single 

word as a preceding context word, and the second step is to train using larger context word 

and embeddings found in the first step as initial embeddings. CBOW and SG models differ by 

loss functions. As mentioned earlier, CBOW model aims to predict a word given context 

words, whereas SG model aims to predict the surrounding context words given a center word. 

Two variants of CBOW and SG models are [18] where it uses hierarchical softmax layers and 

[28] where it uses negative sampling. A more recent prediction-based model is an 

improvement over the skip-gram model [28], also known as FastText, [29, 30]. Instead of 

word embeddings, FastText learns to model n-gram embeddings which can be used to form 

words. This is introduced under the belief that word parts may contain information in which 

can help generalise unseen words for languages that heavily rely on compositional word-

building especially highly inflectional languages. 

 

Count-based models leverage global co-occurrence of word-context in a corpus and 

are usually represented as word-context matrices [26]. In LSA [31], which is one of the 

earliest examples, the word-context matrix is a term-document matrix. This matrix is 

decomposed by singular value decomposition. Although in information retrieval, one would 

be more interested in document vectors, the rows of the factorised matrix can give word 

vectors. [32] proposed Hyperspace Analogue to Language (HAL). The idea is to calculate all 

word co-occurrences between target words and context words where each context word has a 

distance inversely proportional to the target word. The context window size is optimal at 8. 
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As there is no normalisation to the word co-occurrence counts, a disproportionate amount of 

very common words, such as, the, tends to bring about erroneous results. Therefore, [33] 

suggests using conditional co-occurrence. This rather induces a question of how much more 

likely word 1 is to occur with word 2 than another word, instead of only how much likely 

word 1 is to occur with word 2. The results show positive improvements. Additionally, 

another interesting method [34] proposes a Hellinger PCA transformation on the word-

context matrix. The well-known GloVe by [1] prompts the use of ratios of co-occurrences 

instead of raw word counts. They suggest this method is able to capture the true semantic 

information between pairs of words when trained to maximise the similarity of every pair on a 

log-linear model. 

 

The word embeddings that have been mentioned so far are either traditional or static 

word embeddings. This means that regardless of the semantic meanings or the context of a 

text surrounding the target word, the word’s embedding will always remain the same. They 

essentially aim at representing global word embeddings. However, we know that a word can 

have different meanings in different scenarios. Hence contextualised word embeddings have 

been introduced. This type of word embedding aims to grasp context-dependent 

representations of words. It is crucial that the models learn from a large-scale dataset so that 

they have as much information as possible in inferring different vector representations of 

different words. We may formulate contextualised embeddings as associated to a function of 

an entire input sequence instead of a direct one-to-one mapping. In other words, a one-to-one 

mapping may still occur to obtain a non-contextualised embedding in prior to applying an 

aggregation function to obtain a contextualised embedding. [3, 35] have shown state-of-the-

art contextual embeddings pretrained on large-scale unlabelled corpora. Their performances 

are evident in many NLP tasks, such as, text classification, text summarization, and question-

answering. Contextualised embeddings have shown more promising results as their methods 

are able to better capture sequence-level semantics than non-contextualised embeddings. The 

key feature in creating contextualised embeddings is choosing suitable aggregation functions. 

In general, pretraining methods for contextual embeddings can be done by either 

unsupervised learning via language modeling or supervised learning in machine translation or 

natural language inference. 
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Like on the previous survey [20], this survey [36] also stated that a typical method in 

learning distributed token embeddings is to learn via language modeling. It models a 

probability distribution where it learns to factorise the probability of sequence given a specific 

number of tokens. A traditional language model learns to predict a token given a sequence of 

contexts on the left of the target word. This is usually trained on large-scale unlabelled 

corpora using neural networks. 

 

ELMO [35] is a bidirectional language model consisting of L-layer LSTM both 

forward and backward. This is to encode both left and right contexts, respectively. There are 

N hidden LSTM states at each layer j which, in turn, denote N representations given contexts 

from both directions (h1,j, h2,j, …, hN,j). When applied to downstream tasks, in prior to 

advancing to higher layers, a common practice is to concatenate global word representations 

found in the lowest layers of the supervised models to ELMo’s context-dependent 

representations ELMok
task,  

 

where γtask is a task-specific constant and sj
task is a layer-wise weight normalized by softmax at 

layer j. One observation from this combination of bidirectional LSTMs is that the overall 

model does not consider the interactions between the left and right contexts. 

 

The GPT family [37] learns universal representations through unsupervised pre-

training using a language model and then supervised fine-tuning. The language model is built 

on a Transformer architecture [4]. GPT is trained on over 7,000 books from various genres 

while GPT2 [38] creates a new dataset of millions of web pages. The Transformer 

architecture has shown its superiority over the precursor recurrent networks on capturing 

global dependencies on a range of sequence learning tasks such as machine translation and 

document generation. It is an encoder-decoder model with multiple self-attention heads. The 

decoder reads from left to right and therefore can only attend to the left context. 

 

(2) 
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BERT [3] is trained on a masked language model. This means that some, typically 15 

per cent, of the tokens in the input sentence are masked with random tokens. The objective is 

to predict the correct tokens given these masked tokens. The bidirectional training strategy 

also uses a Next Sentence Prediction (NSP) objective. This means that when a language 

model is given two input sentences, it is trained to predict whether the second sentence is the 

true following sentence of the first sentence. The purpose is to improve tasks such as question 

answering and natural language inference. BERT is trained on 3,300M words and it is critical 

that a document-level corpus is used in order to extract long contiguous sequences. 

 

Both GPT and BERT use special tokens to obtain a single contiguous sequence for an 

input sentence. In BERT, the first token of an input sequence is always a special classification 

token, [CLS] token. This token holds information on the input sentence. It is a vector of size n 

where n is also the vector size of each of the remaining tokens in the input sequence. This 

[CLS] token can be extracted at the last layer of a BERT model via mean-pooling. This is one 

of the common practices in obtaining an embedding for an input sentence. Cosine similarity 

can be applied on vectors from [CLS] tokens between two sentences in order to find the 

sentence similarity. However, like GPT2, the pretrained language models do not provide any 

information on how they are able to improve on downstream tasks. Therefore, despite having 

performance improvement on several downstream tasks as per training on a huge amount of 

data, developers might still seek alternative methods that are interpretable in order to make 

their model sustainable in terms of maintenance and development. 

 

In this work, we aim at seeking methods that can bypass the need of training on large-

scale dataset and still able to capture information on given input sentence in our proposed 

word embeddings. The objective is to measure the similarity between sentences that are 

encoded using our proposed method. We acknowledge how powerful and useful the 

aforementioned models have contributed to the NLP community upon declaring 

improvements in several tasks, and we do not intend to question their supremacy. Instead, we 

are determined in pursuing an improvement in one simple task. That is to find an appropriate 

embedding for sentence similarity task. We believe that for one simple task, it is unnecessary 

to employ such huge amount of data in constructing a model. We also seek to mitigate the 

constraint such that two input sentences must be of equal length. In other words, we do not 
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wish to truncate sentences that are too long and pad sentences that are too short in order to fit 

them into the model.  

 

SICK-2014 dataset was introduced during SemEval 2014 workshop [5]. It contains 

sentence pairs with scores on semantic relatedness and textual entailment. Semantic 

relatedness is a score rating between 0 and 5, where 0 indicates no relationship between two 

sentences and 5 indicates strong relatedness between two sentences. Textual entailment 

consists of three classes, namely, entailment, neutral and contradiction. In this work, we chose 

to work on SICK-2014 dataset with textual entailment labels as they can be used in 

classification task. Our proposed method aims to classify the type of relatedness between two 

given sentences into one of the textual entailment classes; rather than calculating the degree 

of relatedness without knowing whether it is entailment or contradiction. 
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Chapter 3 
 

METHODOLOGY 

 

The proposed method builds a system that can determine whether two input sentences 

are relevant or not by measuring their semantic similarity. We classify the types 

of similarity into ENTAILMENT, CONTRADICTION and NEUTRAL. There are 

two main consecutive procedures, which are (1) word and sentence encoding, and (2) 

classification, to determine the similarity. In this work, the classification problem is addressed 

in two steps. First, the set of words and their meanings are directly extracted without any 

complex computation, such as, neural learning. This is for separating contradiction types and 

non-contradiction types. To elaborate, if there exists a phrase containing a negative cue in one 

sentence but not in the other, given a pair of sentences, then this pair is identified as a 

contradiction type. Negative cues, or negative markers, imply potential opposition between 

two sentence inputs. This is further explained in section 3.3. Second, appropriate feature 

vectors are extracted and passed into a classifier. No contradiction cases should appear in an 

ideal scenario at this stage. This is where unequal length sentence pairs must be addressed. 

Although several powerful encoding schemes have been proposed, such as Word2Vec [18], 

bag-of-word [23], and mixture of BERT [3] and LSTM [2], their space and time complexities 

are rather high. This work proposes a shallow network encoding scheme in order to achieve 

lower space and time complexities. 

 

Figure 3.1 illustrates the framework of the proposed method. The framework consists 

of five main stages. First, synonymous verbs and phrasal verbs are detected in both input 

sentences. This is to prepare for further detection and word translation in later stages. Second, 

any opposite words and negative markers are detected. If opposite words appear in both 

sentences and they refer to same entity, the sentence pair will be considered as a contradiction 

type and the process terminates. Otherwise, the sentences could be either neutral or entailment 

types. This proceeds to the next stage. The third stage translates all useful words into their 

corresponding numeric word codes. Useful words are those that remain from pre-processing. 

This stage is described in section 3.2. Once translated, the word vectors from both sentences 

are concatenated sequentially and become an input to the fourth stage. Here, a set of encoders 

is trained to obtain the vectors from the intermediate layers. These vectors are the encoded 
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vector representations with predefined lengths. This leads to the last stage which classifies 

these fixed length vectors into either neutral or entailment classes. More details are in the 

following sections. 

 

 

3.1 Input Sentences 

Ideally, the input to the system is a complete sentence. A complete sentence consists 

of a subject, a predicate which is a verb, and an optional object or subject complement. In 

general, SICK-2014 dataset contains simple sentences. However, there are occasional 

compound, complex and compound-complex sentences too. Moreover, a complete sentence 

may be an existential sentence which begins with an expletive there or it. Some examples of 

simple, compound, complex, compound-complex, and existential sentences are the 

followings. The sentences are taken from https://style.mla.org/types-of-sentences/. 

 

Simple sentence: Only a single independent clause appears. 

The girl bought an ice cream cone. 

The girl went to the park. 

                        

                    

                
                 

                
         

        
         
     

             
           

           

           

  

        

             

                       
         

                 

             

             

                

           

                      
                 

        
          

             

                

                

 

      

Figure 3.1 Proposed framework. This consists of databases of synonyms, phrasal verbs 

and opposite words, and a set of encoders and classifiers. A set of k encoders are mapped 

onto a set of corresponding classifiers. A set of z encoders are mapped to a dedicated 

classifier. The input comprises two sentences. Contradiction samples are filtered out at 

early detection. Neutral and entailment samples are encoded and classified using simple 

network architecture. 
 

https://style.mla.org/types-of-sentences/
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Compound sentence: Two or more independent clauses are joined by a coordinating 

conjunction (and, but, yet, for, or, nor, so), a conjunctive adverb (e.g. however, 

furthermore, likewise, rather, therefore), or a semicolon. 

The girl bought an ice cream cone, but she dropped it in the park. 

 

Complex sentence: One or more dependent clauses are connected to an independent clause 

by a subordinating conjunction (e.g. because, after, when) or relative pronouns (who, which, 

that). 

After she bought an ice cream cone, the girl went to the park. 

The girl, who had a freckled face and wore a striped shirt, was knocked over 

by a large dog, which ate her ice cream cone. 

 

Compound-complex sentence: One or more dependent clauses are attached to one 

or more independent clauses. 

After she bought an ice cream cone, the girl, who had a freckled face and wore 

a striped shirt, went to the park, but she was knocked over by a large dog, which ate 

her treat, so she ran home to her mother, who made her an ice cream sundae. 

 

Existential sentence: 

There is a girl buying an ice cream cone. 

 

It is important to note that SICK-2014 dataset generally contains simple sentences. 

This means that any opposite words or synonymous verbs detected between any sentence 

pairs usually refer to the same entity. This fact enables our system to avoid containing a 

complex logic unit. In such scenario, the need of a sophisticated mechanism would be 

inevitable in pairing adjectival modifiers and verbal predicates to their nominal entities to 

ensure the counterparts are comparable. This would also apply to opposite nouns where the 

whole sentence would be required to be parsed in order to ensure the nouns are comparable. 

 

3.2 Pre-processing 

Before proceeding to the encoding procedure, a sentence is lemmatized by Stanford 

CoreNLP tool [39] and stop words are removed. Non-alphabetical characters and numerical 

characters are included in the set of stop words. Punctuations are also removed from the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 22 

sentence. The stop words play no roles in semantic encoding since they do not contain truly 

relevant information. Furthermore, all contractions such as isn’t, weren’t are transformed into 

their original full forms to enable encoding. Phrasal verbs are also generalised to single 

words. A corresponding word code will be assigned to one of the words in the compound 

while the other will be discarded after the translation. Transforming multi-words into single 

ones enables simple word encoding to take place which also increases the chance of finding 

synonymous words between sentence pairs. This is because synonymous words will be 

mapped to same word codes during word code translation in later stage. Once pre-processed, 

the remaining words are generally content words; those that give meanings and appear as 

single individuals. 

 

3.3 Filtering Contradiction Class 

According to the nature of SICK-2014 dataset, we observed that sentence pairs of 

contradiction type generally contain either antonym pairs or negative markers. In the first 

scenario, this requires each of the two sentences to contain a word, or a phrase, that is 

opposite to another. In example 2 of Antonym pairs below, the opposite words, are near and 

far from. The system recognises that both entries refer to the distance of the brown horse 

from red barrel. This demonstrates that the proposed method considers the surrounding 

context in prior to deducing. Once an antonym pair is detected and confirmed to be referring 

to the same entity, the sample is then categorised as contradiction. If, for instance, an antonym 

pair exists but are seen to refer to different objects, the sample would not be deduced as 

contradiction. This is because the opposite words are likely to be in different context and 

hence the sentences would be irrelevant, which means a neutral type. As mentioned in section 

3.1, SICK-2014 dataset mostly contains simple sentences. This fact allows the system to stop 

investigating for further complex relations that could change the decision of the system. 

 

The second scenario is when there exists a negative marker in one sentence but not in 

the other. Negative markers include no, none, no one, nobody, there is no, there are not, and 

there have no. Again, the system assumes that if only one out of the two sentences contains a 

negative marker and that it refers to an entity that also appears in the other sentence, the 

sample is contradiction. For example, in example 1 of Negative markers, the negative marker 

no in the first sentence refers to biker. The second sentence also contains biker but does not 

have a negative marker attached to it. Therefore, the two sentences must be in contradiction.  
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Negative markers. 

Example 1 

- There is no biker jumping in the air. 

- A lone biker is jumping in the air. 

 

Example 2 

- A deer is jumping over a fence. 

- A deer isn’t jumping over a fence. 

 

Example 3 

- Several people are in front of a colourful building. 

- Nobody is in front of the colourful building. 

 

Example 4 

- Two people are kickboxing and spectators are not watching. 

- Two people are kickboxing and spectators are watching. 

 

Antonym pairs. 

Example 1 

- A man is jumping into an empty pool. 

- A man is jumping into a full pool. 

 

Example 2 

- The brown horse is near a red barrel at the rodeo. 

- The brown horse is far from a red barrel at the rodeo. 

 

For each input sample, the system terminates if the sample is considered 

contradiction. After filtering the contradiction cases, the rest of the samples must be either 

entailment or neutral types.  

 

3.4 Encoding Procedure 

All words must be converted into their corresponding numerical values in order to 

proceed to the encoding procedure. Words with same meanings, or synonymous words, are 

assigned to the same values. 
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The main issue being addressed in the encoding procedure is handling two sentences 

of unequal lengths. A set of encoders is employed. All encoder models have the same 

structure which consists of an input layer, an intermediate layer and an output layer. The input 

layer and the output layer have the same size. Hence, an encoder model exhibits a network 

such as y-x-y where y is the size of the input sentences combined and x is the size of the 

intermediate layer. The goal is to construct a set of encoders whereby the intermediate layers 

can be used for binary classification; the classes are neutral and entailment. The purpose of 

having multiple encoders is to handle different lengths of input samples once they are 

concatenated. The whole encoding and classification stages, in turn, could be seen as creating 

a multiplexer-like model. The length of a concatenated input sample selects which encoder 

model the data should flow into in order to achieve the output signal indicating either a 

neutral or an entailment class. The one difference this proposed workflow has with a 

multiplexer is the two output signals instead of one. This is because the classifiers return a set 

of two values each corresponding to the probability of being neutral and entailment. The one 

with higher probability wins and sets the sample to that type. 

 

Let sentence 𝑖, 𝐒(𝑖) =  {𝑤1
(𝑖)

, ⋯ , 𝑤𝑚
(𝑖)

}, consist of a set of words 𝑤𝑎
(𝑖). Each word is 

translated into its corresponding numerical word code 𝑐𝑎
(𝑖). Hence the sentence is converted 

into 𝐒(𝑖) =  {𝑐1
(𝑖)

, ⋯ , 𝑐𝑚
(𝑖)

}. Each encoder accepts a certain size of input. The input to the encoder 

model is obtained by concatenating the vector representations of both sentences. Hence an 

input is represented as 𝐈 = {𝐒(𝑖), 𝐒(𝑗) } =  {𝑐1
(𝑖)

, ⋯ , 𝑐𝑚
(𝑖)

, 𝑐1
(𝑗)

, ⋯ , 𝑐𝑛
(𝑗)

}  where 𝑚 denotes the length of 

the sentence 𝑖 and 𝑛 denotes the length of the sentence 𝑗. At the end of an encoder, the original 

input vector is expected. This is the goal of all the encoders used in this work; to make the 

output identical to the input, although not perfectly so in practice. The intermediate layer is 

then extracted and used for classification.  
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The x in the y-x-y configuration of the encoders is the size of the intermediate layer, 

or an encoding size. As shown in Figure 3.1, each encoder is adjusted to find the optimal 

encoding size for its input length y. The optimal encoding size is the size that gives the 

highest accuracy from mapping inputs to themselves. As shown in Figure 3.2, x may be 

greater than y, and vice versa. In an ideal situation, the input lengths, ys, should cover a wide 

range of possibilities. However, this is limited to the unique concatenated lengths of the 

preprocessed sentences in the dataset. The overall encoding and classification processes are 

summarised in Algorithm 1. The system is further constrained by the fact that the total unique 

lengths available in the dataset do not contain equal number of data entry. In other words, 

some ys may contain more samples than others. For those ys that contain too few samples, 

training a separate classifier for them is not feasible as the number of data entries is too low. 

Instead, the system has a dedicated classifier to accept samples whose concatenations result in 

the same length x. These samples are separately encoded to same length and accumulated. To 

simplify, xd1 to xdz all have the same length. The common optimal encoding length is found to 

be 750. This is derived from majority voting among all corresponding ys. In Figure 3.1, this is 

                                        
                  

 

 

 

   

       

       

         

   

        

  

  

  

  

  

  

  

  

  

  

  

  

    

    

    

    

 

 

 

   

        

   

        

  

  

  

  

  

  

  

  

    

    

    

    

    

    

    

    

                  
                  

          

Figure 3.2 y-x-y encoder model.The input size y, and hence output size, depends on the 

length of the two sentences after preprocessing. The intermediate layer size x can be 

greater than or less than the input size y. 
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the yd-xd-yd model. This model, in fact, is a group of encoders, with different yds, whose 

intermediate layers, xd, are of the same size. 

 

 

3.5 Classification 

All classifiers used in the work are identical. Each classifier consists of a 100d and 

300d fully connected layers, accordingly, and a Softmax layer. Both first and second layers 

use sigmoid activation functions. All classifiers are optimised using stochastic gradient 

descent with learning rate of 0.001. The input size of a classifier is the size of the intermediate 

layer of its corresponding encoder. The final output gives two values of which sum up to 1. 

These are the probabilities of being neutral and entailment. The one with higher probability 

wins and the sample input is predicted as that class. The chance of having equal probability, 

which is 0.5 each, has never happened. Although presumably a very rare case, such 

ALGORITHM 1: TRAINING ENCODING AND CLASSIFYING ALGORITHM 

 Input: a set of preprocessed sentence pairs 𝐒(𝑖) =  {𝑤1
(𝑖)

, ⋯ , 𝑤𝑚
(𝑖)

},  𝐒(𝑗) =  {𝑤1
(𝑗)

, ⋯ , 𝑤𝑛
(𝑗)

}. 

 Output: a set of encoders and classifiers 

1 
Assign word code to each 𝑤𝑎

(𝑖)
and 𝑤𝑏

(𝑗)
 to obtain 𝐒(𝑖) =  {𝑐1

(𝑖)
, ⋯ , 𝑐𝑚

(𝑖)
} and 𝐒(𝑗) =

 {𝑐1
(𝑗)

, ⋯ , 𝑐𝑛
(𝑗)

} .  

2 Concatenate 𝐒(𝑖)and 𝐒(𝑗) to obtain 𝐈 = {𝐒(𝑖), 𝐒(𝑗) } =  {𝑐1
(𝑖)

, ⋯ , 𝑐𝑚
(𝑖)

, 𝑐1
(𝑗)

, ⋯ , 𝑐𝑛
(𝑗)

}. 

3 
For each 𝑦 from 𝐈s with sufficient samples, vary 𝑥 on training 𝑦 − 𝑥 − 𝑦 model to obtain 

separate optimal encoding sizes. 

4 
For each 𝑦 from 𝐈s with few samples, vary 𝑥 on training 𝑦 − 𝑥 − 𝑦 model to obtain one 

common optimal encoding size. 

5 For each separate optimal encoding size, train separate classifiers. 

6 For common optimal encoding size, train one classifier. 

                          

                          

             

                 

                               

Figure 3.3 All classifiers are identical. 
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occurrence would result in a random assignment between neutral and entailment. After all, 

this is essentially simplified as a binary classification with an early removal of contradiction 

class. The classification stage is summarised in Algorithm 2. 

 

As a continuation of the encoding procedure, another ideal situation is that for all ys, 

the optimal encoding size is the same. This would enable the classification stage to be 

simplified to be using only one classifier. This could increase the accuracy of the 

classification problem as the system would be able to focus on training one classifier with 

more useful data. In practice, this is not the case, as mentioned in section 5, which led the 

system to have one classifier per encoder as many as possible.  

 

 The purpose of using different encoders is believed to unveil characteristics of 

different lengths of concatenated sentence pairs. For example, a sentence pair concatenated to 

length 12 could give an optimal encoding size at 25 whereas length 11 could give size 250. 

This could be interpreted that the combined length 11 generally contains overlapping words 

that the encoding dimension is 10 times higher since a more complex set of weights is needed 

to distinguish between the classes. 

 

The reason for having different classifiers instead of one after encoding is that 

different encoder inputs have different optimal encoding lengths. The proposed method uses 

these optimal encoding lengths to decide on the input lengths to the classifiers. 

  

ALGORITHM 2: SENTENCE PAIR CLASSIFICATION ALGORITHM 

 Input: preprocessed sentences 𝐒(𝑖) =  {𝑤1
(𝑖)

, ⋯ , 𝑤𝑚
(𝑖)

},  𝐒(𝑗) =  {𝑤1
(𝑗)

, ⋯ , 𝑤𝑛
(𝑗)

}. 

 Output: sentence pair type (neutral, contradiction, or entailment) 

1 If found opposite words and/or one-sided negative marker, return contradiction. 

2 
Assign word code to each 𝑤𝑎

(𝑖)
and 𝑤𝑏

(𝑗)
 to obtain 𝐒(𝑖) =  {𝑐1

(𝑖)
, ⋯ , 𝑐𝑚

(𝑖)
} and 𝐒(𝑗) =

 {𝑐1
(𝑗)

, ⋯ , 𝑐𝑛
(𝑗)

} .  

3 Concatenate 𝐒(𝑖)and 𝐒(𝑗) to obtain 𝐈 = {𝐒(𝑖), 𝐒(𝑗) } =  {𝑐1
(𝑖)

, ⋯ , 𝑐𝑚
(𝑖)

, 𝑐1
(𝑗)

, ⋯ , 𝑐𝑛
(𝑗)

}. 

4 Encode 𝐈 using optimal encoding size. 

5 Calculate probability of being neutral and contradiction using corresponding classifier. 

6 
Select class whose probability is greater than the other; randomly select one upon equal 

probability, return neutral or entailment. 
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Chapter 4 
 

RESULTS AND DISCUSSION 

 

4.1 Results 

In this chapter, we observe and report the results of our experiments. We evaluate the 

performance of our proposed methods using accuracy as complied with the existing models’ 

evaluation in SemEval 2014 Task 1 [5]. We executed our model on three different sets as 

divided in the manner of SICK-2014 dataset, namely, training set, trial set and test set. The 

reason for doing so is solely to make our results comparable to other methods as proposed in 

SemEval 2014 Task 1. 

 

We have successfully classified sentence pairs into three classes with 95.2% accuracy 

in two steps. The first step is separating contradiction sentence pairs from those of neutral and 

entailment. Our proposed model was able to recognize contradiction samples correctly by 

92% when run on training set. In addition, there are 666 samples of contradiction out of 4501 

samples in the training data. Further experiment was done on the test data which contains 720 

contradiction samples. The results validate the initial accuracy of the training data by gaining 

0.8% increase in the test data. The model was able to do so by first attempting to detect 

negative markers and antonym pairs between sentences. Then, to ensure that both cues were 

referring to the same subject, or object, in both sentences, the model looks at adjacency words 

that follow the cues within one to two tokens. If same entity is found to be described by either 

the negative markers or antonym pairs, a contradictory pair is confirmed. 

 

The second step in our experiment setup is to classify between neutral and entailment 

sentence pairs. A set of encoders and classifiers were trained to perform such task. The 

accuracy for the trial set is 97.14% for neutral and 91.09% for entailment. All encoders and 

classifiers are identical in terms of network layers. An encoder model comprises three layers 

where the input and output layers are of same size y and the intermediate layer is dependent 

on the desired encoding size x; each encoder has its own set of y and x. A classifier comprises 
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100d and 300d fully connected layers accordingly. The final layer is a Softmax layer which 

outputs two probabilities. For samples of certain length ys whose amount did not exceed 100, 

they are considered too few to be trained on a classifier on their own; otherwise, the models 

would be fed with insufficient examples. There are 15 lengths of which contain under 100 

samples. We only considered the first 10, the middle column of Table 4.1. The other five 

lengths, the right column, are extremely few that encoders cannot be trained on. An important 

point here is that we reluctantly allowed each encoder to be dedicated to each of these lengths 

because we need encoded representations of the samples of size x. The purpose for 

accumulating these representations is to serve them as training samples to one dedicated 

classifier, classifierd in Figure 3.1. 

 

Note that an optimal encoding size means the encoding size of which gives the 

highest accuracy among the others for a certain length y. An example of finding an optimal 

Length of samples, y Total Length of samples, y Total Length of samples, y Total 

8 765 7 91 27 2 

10 558 19 78 30 2 

9 447 6 78 28 1 

12 425 20 74 29 1 

11 363 22 52 32 1 

14 355 21 39   

13 312 23 23   

16 238 25 17   

15 235 24 17   

17 174 26 4   

18 148     

Table 4.1 Total number of samples based on length after two sentences are concatenated. 

 

 

                                  

                              

Figure 4.1 Determining accuracy and loss for y-x-y model where y = 8 
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encoding size for sentence pair of length 8 is shown in Figure 4.1. When accuracy is at its 

peak, the corresponding loss is not necessarily at its minimum. 

 

As shown in Table 4.2, there is no obvious correlation between sentence pair length y 

and optimal encoding size x. The optimal encoding size for sentence pair of length 12 is 1000, 

whereas that of length 11 and 13 is 750 and 250, respectively. The randomness goes as low as 

25 at length 8 and as high as 1000 at length 12 and 18. Despite encoding size of 1000, none of 

the encoders, and classifiers, contain up to 1M parameters. The training time for all models is 

of seconds and therefore proves that our system does not require heavy computational 

resources. With the accuracy achieved, our system has also proven not to be dependent on 

large-scale dataset.  

y x 

8 25 

9 250 

10 75 

11 750 

12 1000 

13 250 

14 750 

15 250 

16 250 

17 50 

18 1000 

 

In experiment setup, we first set aside all contradiction sentence pairs and fed the 

remaining samples through the encoders and eventually the classifiers. The models were 

trained and tested using TensorFlow v2.8.0. As compared to other state-of-the-art methods 

submitted in SemEval 2014 Task 1 track, our method exceeded the top performing models 

when run on both trial and test sets. We may also claim that our model has other advantages 

worth taking attention. That is our method does not require pretraining a heavy model. We 

instead employ a set of simple encoders and classifiers. The overall model is more lightweight 

and can easily be used across multiple platforms and environments. In fact, there is no need to 

train any model on a large-scale dataset and the number of parameters is not as high as 1M in 

Table 4.2 Sentence pair length y vs. Optimal encoding size x 
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any of the encoders and classifiers. This meets one of our aims which is to be independent of 

high resources in training. 

 

4.3 Benchmarks and Other Models 

Benchmarks were chosen according to SemEval 2014 Task 1. Chance, Majority, 

Probability and Overlap baselines [5] are included in Task 1 and hence should be included in 

our evaluation too. Illinois-LH [40] ranked top of the category in Task 1 and is also chosen 

for comparison. A state-of-the-art method, to the best of our knowledge, incorporates a BERT 

variant which is popular, as of the time this study is conducted, and therefore should 

undeniably be included for comparison. 

  

Regarding to dimensionality, we may compare our model to that of [41]. [41] 

attempts to classify among the three types of sentence pairs, namely, contradiction, entailment 

and neutral. It uses pretrained word embeddings, which is from a GloVe model, of 300d. Each 

sentence is represented as the sum of all word embeddings. This is a usual practice that has 

been prevalent across several methods. Our method only assigns one unique value, also 

known as word code, for each word in a sentence. Upon word representation construction, we 

only assign an array, or 1d tensor, of word codes, as opposed to 300d. In [41], both premise 

and hypothesis are fed through 100d layers in parallel before concatenating the outputs to a 

tanh layer. In our opinion, this 100d layer can be viewed as an embedding layer of the 

sentence model. Although our method may vary dramatically between 25 to 1000 encoding 

sizes, we may argue that our encoders consume much lower resources at training time. The 

total number of our training data was approximately 5000 for training the encoders which are 

divided unevenly for each of the encoder depending on the length of the concatenated 

sentence pairs. This also applies to the classifiers.  

 

Chance, Majority and Probability baselines, [5], are derived from randomness that 

they do not account for sentence semantics. The Chance baseline is presumably obtained by 

randomly assigning one of the three entailment labels to each sentence pair under a uniform 

distribution. The Probability baseline follows the same assignment procedure but its 

distribution acts accordingly to the relative frequency of the training set. The Majority 

baseline sets all labels to the most occurring entailment type which is neutral.  Our system, on 
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the other hand, seeks clarity on semantics relating to given sentence pairs. This is specially 

demonstrated by using the encoders to demystify the relations within the concatenation 

between sentence pairs. Therefore, it is no surprise that our system performs better than the 

three baselines. Moreover, the Overlap baseline finds common word occurrences in sentences 

but it also includes stop words. We viewed stop words as non-content words, which are words 

that do not give useful meanings on its own, that must not be accounted for; otherwise, this 

could lead to incorrect results especially for sentences that contain several entities which 

require preceding articles. Hypothetically, frequent appearances of non-content words, such 

as a, and, and the, could infer completely different patterns that could be misleading for the 

encoders to unravel the relations between the actual content words that matter. 

 

 

 

 

 

 

 

 

 

 

 

 

We observe that the number of contradictory sentence pairs are relatively low as 

compared to the other two types in training set, trial set and test set, despite the success rate of 

90% accuracy in identifying contradictions. Contradictory sentence pairs also mostly contain 

negative markers in one of the two sentences, [40]. The results in Table 4.3 support the 

observation. Illinois-LH model performs up to 86.4% accuracy when only use its negation 

 Accuracy 

 Neutral Entailment Contradiction 

Overlap baseline 77.3 44.8 0.0 

Illinois-LH [40] 86.5 83.3 77.0 

- negation 85.4 0.0 86.4 

Our results 97.1 91.1 94.6 

 Accuracy 

Chance baseline 33.3 

Majority baseline 56.7 

Probability baseline 41.8 

Overlap baseline 56.2 

Illinois-LH [40] 84.5 

NeuralLog [42] 90.3 

- without neural-based 71.4 

- without logic-based 74.7 

Our results 95.2 

Table 4.3 Performance on the SICK trial set 

 

Table  4.4 Performance on the SICK test set 
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feature. When all features are combined, the model only reaches 77% accuracy. In addition, 

only a few samples contradict by matching antonym pairs. This makes detection relatively 

easy but at the same time might be misleading. This is because not all negations imply 

contradiction. The dataset might just happen to contain negations in most contradictory pairs. 

Therefore, along with potential mislabeled sentence pair entries, these issues could be further 

investigated and confirmed by running the program on more samples that have more diverse 

styles of contradiction.  

 

In NeuralLog [42], a joint logic-based and neural-based method is used to perform 

natural language inference on SICK-2014 dataset. When the method is performed 

individually, the performance drops to 71.4% for logic-based method and 74.7% for neural-

based method, Table 4.4, in which both are lower than that of our program. The paper also 

emphasizes the importance of handcrafting knowledge relations. This is seen in our proposed 

method where our program contains a list of opposite words and that altering the list would 

affect the decision on classifying relation types. 

 

4.4 Our System 

We handle multiword expressions by detecting phrasal verb expressions and 

converting them into single verbs. We gathered possible phrasal verbs and their 

corresponding single verbs into one file. Each pair is collected into one line. When a phrasal 

verb is recognised, the system will change the occurrence in the sentence to its single verb 

correspondence. This increases the chance of matching synonyms between sentence pairs. 

 

When matching an entity to a descriptive word or a modifier, especially adjectives, 

the model is designed to approach by looking at the nearest noun that follows the adjective. 

This imposes a problem in one scenario. An example of this is shown between “a blond child 

…” and “a child with dark hair …”. As a human reading this, there is no doubt we can infer 

that both refer to a child having particular hair colours. According to the rule of our model, 

the first, “a blond child”, can correctly infer that “blond” belongs to a “child”, but the second, 

“a child with dark hair”, is seen that “dark” belongs to “hair” and is not related to the 

preceding “child” unless we specially mark an entity on the right of “with” to always belong 

to an entity to the left of “with”; in other words, “hair” on the right of “with” will belong to 
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“child” on the left of “with”. As for our current program, this is not yet implemented. If 

implemented, the program would be able to view that the two sentences are referring to a 

child with different hair colours and this could lead to contradiction prediction if the rest of 

the two sentences are relevant and convey similar messages. Another common example is 

“red rose” from [42]. Our program identifies a modifier of an entity only when the modifier is 

to the left of the entity. If a modifier is to the right of an entity, such as, “a rose which is red”, 

our system would ignore the modifier. This kind of phrase is prevalent in the dataset. 

However, it might not be a primary concern because although the synonymity might be 

overlooked during detection, the encoders are likely to counteract by inferring the relations 

between the words themselves. The resulting encoding models may consider entities and 

modifiers according to proximity. Additionally, extracting relations between entities and 

modifiers could be a choice of future work. 

 

For our interest, we set up an experiment to reverse the order of concatenation 

between sentences; all leading sentences became ending sentences, and ending sentences 

became leading sentences. The purpose of this experiment is to prove that our method still 

works the same way as its initial setup (i.e. before the switch). The results showed that the 

encoding vectors might differ in value but they exhibited consistent patterns. For example, if 

the first four elements and the following two elements in the encoding vector of a 

concatenation are of values a and b respectively, then the first four elements and the following 

two elements in the encoding vector of the reversed concatenation are also of values c and d 

respectively. Nevertheless, the results on the test and trial sets showed that pairs that are 

correctly classified in the initial setup are also correctly classified in the reverse setup.  

 

4.5 Dataset Controversy 

There are places in the dataset where we disagree with the labels. Mostly, these are 

neutral-labelled sentence pair entries. For example, “a group of children is playing in the 

house and there is no man standing in the background” and “a group of kids is playing in a 

yard and an old man is standing in the background” are labelled as neutral, but we argue 

that this should have been labelled as contradiction because one shows a presence of a man 

standing in the background, whereas another explicitly does not. Hence the meaning implies 

opposition rather than irrelevance. Perhaps, this could explain why neutral-labelled entries 
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outnumber the other two classes. This is a very important aspect when evaluating the results 

because this could be the main cause for having unsatisfactory accuracy. If our conjecture on 

this is true, we might never figure out the main cause of poor results, whether it is from a 

proposed model, or from poorly labelled dataset. We might even need to make an assumption 

on the former and never improve the performance no matter how well a model might perform. 

Additionally, we also agree with [42] in opposite cases. Samples of such include “the turtle is 

following the fish” and “the fish is following the turtle”. These sentences are originally 

labelled as contradiction and we could see why swapping subjects and objects could lead 

annotators to such decision. However, [42] suggests this as a neutral pair. To be a 

contradiction pair, it should either be that the second sentence keeps the turtle as the subject 

and the fish as the object and explicitly convey that the “turtle” is not following the “fish”, or 

the first sentence makes the “fish” the subject and the “turtle” the object and explicitly shows 

that the “fish” is not following the “turtle”. 

 

Table 4.5 and 4.6 show some examples that we view should have been labeled 

differently from what were given in the dataset. 

 

ID Sentence A Sentence B Proposed Label Remarks 

ENTAILMENT-labelled samples 

2272 
The woman is adding 

sugar to the meat. 

A woman is adding spices 

to some meat. 
Contradiction 

Antonymy exists between 

“sugar” and “spices”. 

2715 
The man kicking a 

boxing trainer. 

The man is kick boxing 

with a trainer. 
Neutral 

“Kicking” someone and 

“kick boxing” with someone 

are different 

2868 
Two people are stopping 

on a motorcycle. 

Two people are riding a 

bike. 
Contradiction 

“Stopping” and “riding” 

have opposite meanings. 

3580 A man is playing a flute. 
The man is not playing 

the guitar. 
Neutral 

Both refers to different kinds 

of musical instruments 

which causes irrelevancy. 

4152 A woman is cutting meat. 
There is no woman 

cutting an onion. 
Neutral 

Although could be 

contradiction, “meat” and 

“onion” are not relevant. 

6819 

There is no man on a 

bicycle riding on the 

beach. 

A person is riding a 

bicycle in the sand beside 

the ocean. 

Contradiction 

One implies presence of 

human entity while another 

implies absence. 

Table 4.5 Entailment samples 
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Note that many cases are taken from entailment and neutral samples as this type of 

sentence pairs are more challenging to determine, both manually and automatically, with high 

level of confidence. There are rarely doubtful contradiction-labelled samples. This could be 

the reason for having such a small portion of contradiction samples while a load of uncertain 

neutral samples. 

 

4.51 Synonymity 

To elaborate on the degree of similarity, synonym pairs between sentences could be 

and were used as part of the equation for determining the degree of similarity in the form of 

numerical values. For example, “the man is playing the piano with his nose” and “a man is 

playing the keyboard with his nose” are labelled as entailment. “Piano” and “keyboard” 

could further be considered by measuring the pair’s similarity, or simply be given the same 

word code. The two words could be interpreted in two ways. One is that “keyboard” is a 

musical instrument which consists of black and white keys but could differ from “piano” by 

its appearance and tone. Here, both are musically related. Alternatively, “keyboard” could be 

a device which consists of a panel of keys used in typing to operate a computer. When a high 

level of confidence in entailment means total relevancy, the second difference would deviate 

the sample pair from obtaining a high score, because of low similarity or different word code. 

This is because the different possible meanings of “keyboard” would leave some room for 

uncertainty. Another example where ambiguity between two words causes level of 

ID Sentence A Sentence B Proposed Label Remarks 

NEUTRAL-labelled samples 

1649 
The girl is recklessly 

jumping onto a vehicle. 

One girl is jumping on the 

car. 
Entailment 

In both sentences, a “girl” is 

jumping on a vehicle which 

can be a car. 

4002 
A man is climbing a 

rope. 

A man is coming down a 

rope. 
Contradiction 

Opposite meanings exist 

between “climbing” and 

“coming down”. 

4007 
A man is climbing a 

rope. 

The man is not climbing 

up a rope. 
Contradiction 

One comprises a “man” 

climbing but another 

explicitly indicates a “man” 

not climbing. 

5391 
A man is removing some 

food from a box. 

A man is putting some 

food in a box. 
Contradiction 

“Removing” and “putting” 

some food have opposite 

meanings. 

Table 4.6 Neutral samples 
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uncertainty in relevancy is between “an animated airplane is landing” and “a plane is 

landing”. In general, “plane” can mean “airplane”. This depends on the context which 

requires looking back and forth in the sentence. This example is more obvious that “plane” 

means “airplane” than “piano” to “keyboard” because only one meaning of “plane” can be 

landing, out of all the possible meanings of “plane”. In the proposed program, it is not certain 

whether same word codes are always assigned to potential synonym pairs as there is a room 

for uncertainty. 

 

For “a man is squatting in brush and taking a photo” and “a man is crouching and 

holding a camera”, “photo” and “camera” are associated to each other. The current program 

has yet to include a feature for such association. It simply finds that both words are 

synonymous and therefore shares the same word code which supports the level of confidence 

for having high similarity. One possible upgrade is to use a knowledge graph, such as, 

WordNet’s connections. If there exists a connection between two entities, or words, there is 

likely some level of relevance, either similarity or dissimilarity. The possibility of being 

classified as neutral would be lowered. 

 

A challenging synonymy occurs between “a rabbit is playing with a toy rabbit” and 

“a rabbit is playing with a stuffed bunny”. First, the program must distinguish between two 

kinds of “rabbit”, namely, an animal and a toy. Second, the program must recognize that a 

“toy rabbit” is closely related to a “stuffed bunny”, and that “bunny” is a toy. In our proposed 

method, we handcrafted the synonym list such that a “toy rabbit” is equal to a “stuffed 

bunny” and therefore entailment is deduced. This is an example where handcrafting 

synonyms could be the best option as these words are specific and do not appear often. 

 

4.52 Hypernyms and Hyponyms 

Hypernyms and hyponyms are interesting features worth taking into consideration 

when measuring the degree of similarity between two words. We speculate that this would 

have the most effect on entailment pairs among the three types. This is because in our 

proposed method, many synonyms can be further specified as hypernyms and hyponyms. For 

example, “vegetable” is a hypernym of “tomato”. In the proposed method, “tomato” is seen 

as synonymous with “vegetable”. The reason was mainly to prove that the two words are in 
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the same domain and therefore provide relevancy which leads to entailment. However, we can 

see that, in general, synonymy is bidirectional meaning x1 is x2 and x2 is x1. This is an 

assumption taken in the proposed method that is not always true because although a “tomato” 

is a “vegetable”, a “vegetable” is not always a “tomato”. In order to be more precise in 

determining similar sentence pairs, directional relation could navigate the level of specificity. 

For instance, “someone is slicing a tomato” and “the person is slicing a vegetable” 

entailment samples could be more precisely scored numerically when the program knows that 

there exists hypernymy/hyponymy instead of synonymy. Another simple example is “a dog is 

looking around” and “an animal is looking around”. 

 

4.53 Indefinite Pronouns 

Generalising entities to indefinite pronouns, such as, someone, somebody, somewhere 

and something, could promote the level of confidence in determining an entailment pair. For 

example, “the woman is cooking eggs” and “the woman is cooking something” could be 

relevant, or similar, if “something” is related to “eggs”. The truth is we would never know, 

given only such limited context. One suggestion is to make a program treat “something” as a 

wildcard and enable it to be relevant, or synonymous, to any entity in another sentence. In 

plain language, this means that “the woman is cooking” whatever is possible, and this 

includes “eggs”. In short, “something” could be “eggs”. A more prevailing case is the use of 

“person”. A “person” can refer to male and female. “Person” has multiple hyponyms that it 

could be treated as a wildcard for a single human entity. 

 

4.54 Active and Passive Voices 

An error that might have happened in our proposed program is when one sentence is 

in the active voice while the other is in the passive voice. An example of this is “a woman is 

slicing an onion” and “an onion is being sliced by a woman”. Both sentences use exact same 

content words but in reverse order. Although our program might allow this kind of situation 

to be correctly determined as an end result, the logic behind it might not align with the way 

the program works. One possible cure is to convert either voice into another, preferably 

passive voice into active voice because we are generally more familiar with the sequence 

subject followed by a verb predicate and a subject complement, respectively, and that there 

are more active voice sentences in overall. Another example is between “a bee is clinging to 
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a yellow flower” and “a yellow flower is being clung to by a bee”. These two examples show 

a complete reverse order between subjects and objects. 

 

4.55 False Logic 

An example that requires careful attention and might prove our proposed method to 

fully work, or not, is “a man is talking to the woman who is seated beside him and is driving 

a car” and “a woman is driving a car and is talking to the man who is seated beside her”. 

When extracted what each subject is doing, we would get “a man is talking and is seated 

beside a woman” and “a woman is driving a car and is talking and is seated beside a man”. 

This is an entailment type sample. However, the proposed method does not see this. This is a 

circumstance that could have given a prediction from a false logic. This is because the 

proposed method might see these sentences as neutral as the appearance between “man” and 

“woman” are in reverse order; hence the subjects of the sentences are different, and so, no 

matter what the subjects do, they are considered irrelevant.  

 

4.56 Rearranging words 

The proposed program requires simplifying groups of words in many sentences. This 

is seen in a sentence like “a man is participating a race for bmxs”. “A race for bmxs” can be 

simplified into “a bmx race”. This would promote higher level of confidence in determining 

entailment samples. For example, with a counter sentence of “a man is participating in a 

bmx race”, the similarity would gain top score because this would result in exact match after 

the simplification. This kind of situation exists throughout the dataset and therefore could be 

worth handling with a converting mechanism. 

 

4.57 Knowledge Assumption 

A not-so-rare case occurs between sentences “a child in a red outfit is jumping on a 

trampoline” and “a little boy in red clothes is jumping into the air”. Despite having a 

common action such as “jumping”, this kind of sentence pairs may require special knowledge 

to infer with higher level of confidence. “Jumping on a trampoline” implies “jumping into 

the air” because when we jump on a trampoline, we are jumping into the air. However, 

“jumping on a trampoline” does not contain any information about air directly. This shows 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 40 

that there are cases that must depend solely on context. There exists an ambiguous sample 

between “some cheerleaders are taking a break” and “some cheerleaders are dancing”. This 

is labeled as neutral. However, as we know that dancing is the main activity for cheerleading, 

or in other words, they can be synonymous, “taking a break” could mean taking a break from 

dancing. If the context was explored at a deeper level, “dancing” and “taking a break” could 

convey opposite meanings, as for cheerleading. This would eventually lead to contradiction. 

 

4.6 Semantic Relatedness vs. Textual Entailment 

SICK-2014 dataset focuses on generic semantic knowledge and semantic 

compositionality as described in [5]. This is the reason for choosing this dataset despite all the 

aforementioned doubtful cases. Generic semantic knowledge is captured in the process of 

finding similar and opposite words. Although we handcrafted a list of synonyms and 

antonyms, we did not specify any domains. Generality is also seen where we set up a list of 

common negative markers so that any detection would reverse the polarity of the context. 

Semantic compositionality is reflected through handling multiword scenarios such as phrasal 

verbs. This is when a group of words is recognised as one constituent of a sentence. We 

explicitly turn them into single words for ease in handling. The main benefit for this is to 

compare the words to that of the other sentence so that the program could recognise 

synonyms, antonyms and possibly negative markers. Moreover, we believe that choosing to 

evaluate on entailment relation over semantic relatedness, which is also a value given by the 

dataset [5], should be a better indication on how well a system understands computational 

semantics at a more general level. The program is only required to identify the type of 

relatedness instead of a specific value of relatedness. Numerical semantic relatedness values 

between zero and five may give a more specific insight to the degree of similarity but textual 

entailment classes identify relevancy between entailment and contradiction. This is the 

difference that made us go with using the latter. 

 

There is a subtle difference between how relatedness score and textual entailment 

classification are deduced. At first glance, relatedness score might seem to only be a 

numerical range for the discrete entailment classes. This means higher relatedness scores 

imply higher level of confidence for a sentence pair being contextually related. Conveniently, 

the other end of the spectrum would imply neutral as this is where sentences are irrelevant. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 41 

We can see that relatedness scores do not differentiate between entailment and contradiction 

because both would imply relevance and hence we cannot use relatedness scores as our 

primary indicators of similarity. Whether this is clearly defined and widely accepted in 

general, we observed that relatedness scores work this way in the dataset; scores of 4 to 5 are 

usually of either entailment or contradiction classes, otherwise neutral. Simple examples of 

neutral with low relatedness score include “a dog is barking noisily” and “a jet is flying”. 

However, there exists samples that are less obvious. “There is no man playing a guitar” and 

“a man is playing a piano” are originally labelled as neutral and gain a relatedness score of 

3.2 which is considered high for a neutral type. One may view these sentences as 

contradiction as the main difference is that one implies a presence of a man while another 

implies an absence. There is still relevancy as both sentences are referring to a “man” playing 

a musical instrument, just only different types. On the other hand, the sentences could be 

considered as neutral when one views “guitar” and “piano” are completely unrelated. 

However, with the relatedness score of 3.2, there must be some relevancy between the two 

sentences. This is an example of label controversy and, possibly inconsistency, which 

illustrates that when we agree with relatedness score, we might not agree with the labelled 

textual entailment class as given by the dataset. Our program would have predicted this as 

contradiction for the reason mentioned and this would only result in incorrect prediction. 

ID Sentence A Sentence B Relatedness Score Class 

5618 A man is severing the toe of an 

empty leather boot with a sword. 

A woman is severing the toe of 

an empty leather boot with a 

sword. 

4 Neutral 

6781 A black dog in the snow is jumping 

off the ground and catching a stick. 

There is no dog jumping for a 

Frisbee in the snow. 

2.65 Neutral 

8130 Several young people are posing 

for a photo and holding beers. 

Several old people are posing 

for a photo and holding beers. 

3.265 Neutral 

8199 A bride with a white dress is 

looking down. 

A bride with a white veil is 

looking down. 

4.435 Neutral 

8206 A bride with a black veil is looking 

down. 

A woman is looking down and 

is wearing a wedding veil. 

3.8 Entailment 

8742 Three people are walking across a 

rope and wood bridge over a river. 

Three people are walking across 

a rope and steel bridge over a 

river. 

4 Neutral 

9576 A dog is fetching a stick out of 

very clear water. 

A dog is fetching a stick out of 

very dirty water. 

4 Neutral 

Table 4.7 Sentence pair samples 
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Consider Table 4.7., the question seems to be what level of similarity we are 

focusing. Is stick not related to Frisbee (id 6781), as for wood to steel (id 8742), clear water 

to dirty water (id 9576), and young to old (id 8130) that these sentences made neutral? Does a 

bride with a white dress (id 8199) not imply a bride in white veil that the label is neutral, 

while black veil (id 8206) and wedding veil are basically interchangeable that the label is 

entailment? It is interesting to note that white dress and white veil in sentence pair id 8199 is 

of neutral type with a relatedness score of 4.435, whereas black veil and wedding veil in 

sentence pair id 8206 is of entailment type with lower relatedness score. Another doubtful 

label exists between a man and a woman in sentence pair id 5618. The sentences only differ 

by the gender of the subject. The relatedness score is at the high end but is also classified as 

neutral.  
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Chapter 5 
 

FUTURE WORK 

 

Our proposed encoding method converts a sentence into one-dimensional vector 

space. This represents word code for each pre-processed word. This feature may not suffice in 

many cases. Therefore, adding more features could be a possible improvement to the 

program. For example, the second dimension could be a row of binary values indicating 

action or stative verbs, or other types of verb, and the third dimension could indicate subject, 

abstract, or collective nouns, or other types of noun. Such features could make a sentence 

representation more unique and hence strengthens the level of confidence of being classified 

as such classes. 

 

New features could be identified by using the results of constituency parsing, 

specifically, a parsing tree. A parsing tree reveals relations between parent and child. Our 

program could benefit from this by grouping words under the same parent. There would be 

multiple forms extracted depending on the parent and its tree depth. The parent could be a 

clause-level or a phrase-level syntactic tag, as seen in Table 5.1. Like the POS tag set from 

Penn Treebank, the syntactic tag set is derived from the Penn Treebank [43]. In this section, 

we investigate the usefulness of Penn Treebank syntactic tag set and address any challenges 

that must be handled for the tags to be used. 

Table 5.1 The Penn Treebank syntactic tag set 
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Phrases such as a flock of birds in Figure 5.1 would be identified under a noun phrase 

and we can further derive that flock is the main entity instead of birds, or vice versa, if this is 

informative. A modifier-entity pairing problem stated in the discussion section would be 

solved, as a noun phrase would conveniently distinguish and group them under the same 

hood. A subordinate clause would be identified, as well as, the main clause. For example, his 

flight was delayed, in Figure 5.2, is ultimately under SBAR which tells that this is not the 

main message of the sentence. The main message is in the form of noun phrase followed by 

verb phrase which is typical of a complete independent sentence. Once these are known, the 

main verb-predicate could be extracted and indicated in one of the additional dimensions of 

the vector space. There are several possibilities to benefit from such tree. Different types of 

verbs, such as, infinitives and gerunds, could be filtered and marked as different descriptive 

features such as reasoning. For example, to migrate and to live in a new habitat, in Figure 

5.1, give reasons, or purposes, to the main verb-predicate gathered.  

Figure 5.1 NP VP under S tag  

Figure 5.2 Subordinate clause SBAR 
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Another benefit of using a constituency parsing tree is the ability to identify whether 

a given clause is a complete sentence, or not, by looking at the syntactic direct child tag of 

ROOT. Typically, a complete sentence would have S as the top of the tree under ROOT, or 

SQ if the sentence is in a question form; otherwise, the whole clause would descend from 

SBAR or SBARQ. There are occasional fragment tags that precede all the other constituent 

tags but we are only concerned with whether the ancestor is S, or SQ. If that is not the case, 

our program could immediately discard the given clause and refuse to proceed with the 

classification task. This is because our primary assumption in this work is that given samples 

must be complete sentences.  

 

 

 

Nouns that are considered secondary to the main entities, such as, subject and object, 

can be extracted by those under prepositional phrases, PP. For example, habitat in Figure 5.1 

and library in Figure 5.3. Prepositional phrase implies locational or temporal information and 

can be used to describe main entities, on the stage in Figure 5.5. It can also be used as a 

subject complement, Figure 5.3 and 5.4, when resides on the right of the main verb-predicate. 

For example, this applies to in a good mood but not on the stage in Figure 5.5. When acting 

as a subject complement and there is no object in the sentence, the entities in the prepositional 

Figure 5.3 Locational PP tag 

Figure 5.5 Different PP functions Figure 5.6 An adjective as entity 

Figure 5.4 Temporal PP tag 
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phrase may be included as one of the main entities of the sentence as applied to library in 

Figure 5.3. Note that entities are commonly but not limited to nouns as seen awesome in 

Figure 5.6.  

 

Another useful tag is coordinating conjunction, or CC. When two independent 

sentences are joined by a coordinating conjunction, a CC tag can be used to recognize that 

there will be two sets of main subjects, or expletive there, and two main verb-predicates, as 

shown in Figure 5.7. 

Figure 5.8 SBAR as subject  

Figure 5.7 Balanced CC between Ss 

Figure 5.9 Co-level SBAR and NP 

Figure  2 
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Constituency parsing trees may not be deduced the way we expect them to be. In 

order to derive main subjects and main verb-predicates, we ought to look for noun phrases 

and verb phrases at lower depths. However, main subjects may not explicitly be in the form of 

noun which could lead to a false extraction of main entities. A main subject could be in the 

form of SBAR, such as, What needs to be done will be done in time in Figure 5.8. Here, the  

 

main subject is the phrase what needs to be done. It is under SBAR and to make matter 

worse, there is no noun phrase residing in any branches. Although there is a WHNP, which is 

a noun phrase for an interrogative word, what, the whole phrase must be considered as the 

subject as what alone is not enough to give a meaning. The same kind of example which 

contains a co-level noun phrase is what he has given us was way beyond imagination in 

Figure 5.9. Here, us can be used as the main entity as the parent NP is right under S which is 

the head of the tree, but that would not give much context without the co-level SBAR.  

Figure 5.11 Unbalanced constituents around CC 

Figure 5.10 Balanced constituents around CC 
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Another inconsistency lies in the presence of a CC tag. There are two situations 

where a CC tag may occur. This is when a CC is delivering a set of balanced constituents 

such as two noun words are separated by and to indicate multiple items, or entities, such as 

coals and fire in Figure 5.10, and two Ss are separated by and to indicate a compound 

sentence, such as that in Figure 5.7. The constituents on both sides are balanced because they 

are at the same depth level. Another situation is when a CC tag is under SBAR, such as but in 

Figure 5.11. Although S resides both on the left and right of CC, the two Ss are not at the 

same depth level as in the first situation. This case normally results in tree branches cascading 

down from left to right. From observation, this is due to the fact that the word under the CC 

tag is a subordinate conjunction. To add more of this type of POS tag, a situation, where a 

complete sentence is falsely found, is by having a head S tag with the leftmost child being a 

CC tag, Figure 5.13. In English, a sentence must not start with a conjunction, also shown in 

Figure 5.12. From our observations, we conjecture the rule is broken as there exists an NP and 

VP pair, and the constituency parser just ignores the fact that a CC tag occurs on the leftmost 

side. We can see that having an ancestor S still requires an extra verification in order to 

deduce that a sentence is complete.  

 

Apart from constituency parser, a dependency parser would also benefit in adding 

more features and could be a faster and better way to obtain subjects and verb-predicates. 

Figure 5.16 Dependency parsing with CC tag 

Figure  5.15 Gerund as subject Figure 5.14 Expletive there at head of sentence 

Figure 5.12 Conjunction at head of sentence Figure 5.13 CC at head of sentence 
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Again, there are inconsistencies and exceptions in the parser that require careful handling for 

extracting useful information. Examples of dependency parsing are shown in Figure 5.14, 

5.15 and 5.16. Hypothetically, if any of these features are useful, the proposed method could 

be having plausible indicators in interpreting the results and explaining such classifications. 

 

The idea of using a constituency parser to aid in adding features to the vector space 

could be very problematic for low-resource languages. This is because it is unlikely to find at 

least one substantial constituency parser for those languages. Nevertheless, we believe that 

our proposed method is worth testing on different languages, by creating a word code table 

and handcrafted resources. 

 

Furthermore, training all encoders and classifiers to output all three types instead of 

two types could be a possible improvement. This would bypass the stage for detecting 

antonym pairs. By using trained models to classify contradiction samples, this could lessen 

any false predictions. In our proposed method, words in proximity to antonym pairs and 

negative cues are determined as entities being modified. This is not always true. In the case of 

red roses, the rule can be applied since roses is in proximity to red, especially that it is on the 

immediate right of the modifier. However, for roses which are not red, roses is not 

considered as the entity being referred if proximity means within two tokens to the right of 

red. In fact, preliminary results on performing a 3-class classification confirmed that filtering 

contradiction samples would produce better accuracies. We speculate that this might be due to 

the fact that the given contradiction samples mostly contain explicit negative markers or 

antonym pairs which are presumably more important attributes than relations between 

modifiers and entities. Also, contradiction samples without explicit cues can be very similar 

in structure to that of entailment samples. Further investigation could be made. 

 

Finding an ultimate common optimal encoding size could be another possible work. 

In doing so, all encoders would have the same x, where x is the optimal encoding size for each 

encoder. When x is the same for all encoders, a set of classifiers can be simplified to one 

classifier. The input to the classifier is the same. This promotes in training the model since the 

classifying module will have much more samples to one classifier and hence could lead to 

higher accuracy. 
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Chapter 6 
 

CONCLUSION 

 

In this work, a method for textual entailment is proposed to classify among 

entailment, neutral and contradiction classes. The input to the framework is a pair of 

sentences and the three output signals can be found in either the early stage for contradiction 

pairs or the final stage for the other two types. At the early stage, a database is used to detect 

synonyms and phrasal verbs. Phrasal verbs were generalised into single words in order to 

promote finding synonyms between sentence pairs. A database of opposite words is also used 

to find antonym pairs between sentence pairs. Any antonym pair detection with same entity 

reference will trigger a signal for contradiction type and the process will be terminated. This 

is also true if a negative marker is found in one sentence but not the other. Otherwise, 

subsequent processes will be executed. These include a set of encoders and classifiers. All 

encoders are configured in an y-x-y manner where y is the length after two input sentences are 

concatenated and x is the optimal encoding size. All classifiers follow the same network 

architecture and output the probabilities of being entailment and neutral types. 

 

The proposed encoding scheme gives over 90% accuracy for all types when evaluated 

on SICK-2014 dataset [5]. This indicates that it is possible to train and run samples on a 

lightweight framework such as the proposed method. By lightweight, we mean that no layers 

in any model of size over 1000 are involved and training on large-scale datasets is omitted. In 

fact, no complex neural structure was employed. We may say that our proposed model has 

low dimensionality in overall. 

 

Moreover, one possible improvement to the encoding scheme could be to associate 

more features to each word. Features such as types of verb (action, stative, etc.) and types of 

noun (abstract, collective, etc.) could be added as a new dimension to the input of the 

encoders. This could lessen any predictions with false logic, regardless of correctness. The 

inference could be deduced with more specific reasonings making the classification more 

interpretable. 
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