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CHAPTER I

UNITARY CAYLEY GRAPHS OF MATRIX ALGEBRAS

In this chapter, we provide background and results on the unitary Cayley graph

of matrix algebras. Throughout, all rings have idenity 1 ̸= 0.

1.1 Background on rings and graphs

Let R be a finite ring and R× denote the group of units of R. An ideal M of R

is maximal if M ̸= R and for every ideal J of R, if M ⊆ J ⊆ R then J = M or

J = R.

Theorem 1.1.1. ([20], Theorem 2.20) If R is commutative and M is an ideal of

R, then M is a maximal ideal of R if and only if R/M is a field.

Next, a commutative ring R is a local ring if R has a unique maximal ideal.

If R is a local ring with the maximal ideal M , then by Theorem 1.1.1, k := R/M

is a field, called the residue field. In addition, if u ∈ R× and m ∈ M , then

u+m ∈ R×.

Example 1.1.2. 1. Every field is a local ring with the maximal ideal {0}.

2. Let p be a prime and n ∈ N. Then Zpn is a local ring with the maximal ideal

pZpn and the residue field k = Zpn/pZpn
∼= Zp.

3. Since pZ is a maximal ideal of Z for all primes p, we have Z is not a local

ring.

Theorem 1.1.3. [23] Every finite commutative ring is a product of finite local

rings.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

Example 1.1.4. Let n ∈ N and n > 1. Write n = pα1
1 . . . pαk

k where p1, . . . , pk are

distinct primes and α1, . . . , αk ∈ N. Then

Zn
∼= Zp1α1 × . . .× Zp

αk
k

where Zpiαi is a finite local ring for all i ∈ {1, . . . , k}.

Let R be a finite commutative ring with identity. An R-algebra is a ring A

such that (A,+) is an R-module and r(ab) = (ra)b = a(kb) for all r ∈ R and

a, b ∈ A. For m,n ∈ N, let Mn(R) be the algebra of n × n matrices over R. The

group of all invertible matrices over R is denoted by GLn(R). Write In and 0m×n

for the n × n identity matrix and the m × n zero matrix, respectively. We write

Fq for the field of q elements, where q is a prime power.

Theorem 1.1.5. [21] |GLn(Fq)| = (qn − 1)(qn − q) . . . (qn − qn−1).

A matrix in Mn(Fq) is a linear derangement if it is invertible and does not fix

any nonzero vector. Let en be the number of linear derangements in Mn(Fq) and

define e0 = 1. According to [21], we obtain the recursion formula for en, namely,

en satisfies the recursion

en = en−1(q
n − 1)qn−1 + (−1)nq

n(n−1)
2 .

Next, we provide some terminology and results from Graph Theory. For more

details, see [2, 10]. Throughout this dissertation, our graphs are undirected and

their vertex set are finite sets. Let G be a graph with n vertices and V (G) denote

the vertex set of G. For each x ∈ V (G), the degree of x is the number of

neighborhoods of x in G. The graph G is k-regular if every vertex has degree k..

A k-regular graph G is edge regular with parameters (n, k, λ) if there exists a

parameter λ such that for any two adjacent vertices, there are exactly λ vertices

adjacent to both of them. If an edge regular graph with parameters (n, k, λ) also

satisfies an additional property that for any two non-adjacent vertices, there are

exactly µ vertices adjacent to both of them, then it is called a strongly regular



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

graph with parameters (n, k, λ, µ).

Example 1.1.6. Let G be a graph shown in figure 1.1. Then G is an edge regular

graph with parameters (4, 2, 0) and is a strongly regular graph with parameters

(4, 2, 0, 1).

Figure 1.1

A complete graph is an graph such that any two distinct vertices are adjacent.

A clique is a complete subgraph and the clique number of G is the maximum size

of cliques in G, denoted by ω(G). A set I of vertices of G is called an independent

set if no distinct vertices of I are adjacent. The independence number of G is

the maximum size of independent sets, denoted by α(G). The chromatic number

of G is the least number of colors needed to color the vertices of G so that no two

adjacent vertices share the same color. We write χ(G) for the chromatic number

of G. Note that we must use at least ω(G) colors for coloring vertices of G and

each color can be assigned to at most α(G) vertices, so we have

χ(G) ≥ max
{
ω(G),

|V (G)|
α(G)

}
.

Example 1.1.7. Let G be a graph shown in figure 1.2. Note that G contains a

3-cycle. Then χ(G) ≥ ω(G) ≥ 3. Moreover, we can use precisely 3 colors to color

each vertex of G, so χ(G) ≤ 3. It follows that ω(G) = χ(G) = 3. Next, it is easy

to see that G has an independent set of size three. For each independent set I of



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

G, I must contain at most one vertex in the 3-cycle. Since there are two vertices

outside from the 3-cycle, we have α(G) ≤ 3, so α(G) = 3.

Figure 1.2

The adjacency matrix of G with vertex set {v1, v2, . . . , vn} is the n× n sym-

metric matrix AG in which entry ajk is the number of edges (0 or 1) in G with

endpoints {vj, vk} for all j, k ∈ {1, 2, . . . , n}. An eigenvalue of G is an eigenvalue

of the adjacency matrix of G, and an eigenvector of G is an eigenvector of the

adjacency matrix of G. The spectrum of a matrix is the list of its eigenval-

ues together with their multiplicities. The spectrum of G is the spectrum of its

adjacency matrix. If λ1, . . . , λr are eigenvalues of a graph G with multiplicities

m1, . . . ,mr, respectively, we write

SpecG =

λ1 . . . λr

m1 . . . mr


to describe the spectrum of G. Let G be a graph of n vertices and let λ1, . . . λn be

its eigenvalues. The energy of G is

E(G) =
n∑

i=1

|λj|.

A graph G is hyperenergetic if

E(G) > 2(n− 1).
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We say that a graph G is bipartite is there is a partition V1, V2 of V (G) such

that any two vertices in Vi are not adjacent to each other for all i ∈ {1, 2}. It is

well-known that if G is a connected k-regular graph, then k is an eigenvalue of G

with the maximal modulus with multiplicity one [10]. Moreover, the eigenvalue

−k is an eigenvalue of G if and only of G is bipartite. A connected k-regular graph

G is Ramanujan if

|λ| ≤ 2
√
k − 1

for any eigenvalue λ of G other than k and −k.

Example 1.1.8. Let G be a graph defined in Example 1.1.6. The adjacency

matrix of G is

A =


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

 .

Its eigenvalues are −2, 0, 0 and 2. Then

Spec(G) =

−2 0 2

1 2 1

 .

Also, its energy is E(G) = 2 + 2 = 4 < 2(4 − 1), so it is not hyperenergetic.

Finally, G is 2-regular and 0 is the only eigenvalue of G other than ±2. Then G is

Ramanujan.

Let G and H be undirected graphs. The tensor product graph G⊗H is the

graph consisting of the vertex set V (G)× V (H) and the edge set

{{(x1, y1) , (x2, y2)} : x1 is adjacent to x2 in G and y1 is adjacent to y2 in H}.

Example 1.1.9. The following graphs show the tensor product of the graphs G

and H.
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Furthermore, the eigenvalues of the tensor product G⊗H can be determined from

ones of G and H.

Theorem 1.1.10. [23] Let G and H be graphs on m vertices and n vertices,

respectively. Assume that λ1, . . . , λm and µ1, . . . µn are eigenvalues of graphs G

and H, respectively. Then the eigenvalues of G ⊗ H are λiµj for i = {1, . . . ,m}

and j = {1, . . . , n}.
Example 1.1.11. According to Example 1.1.9, we have Spec(G) =

1 −1

1 1

 and

Spec(H) =

2 −1

1 2

. Then Spec(G⊗H) =

2 1 −1 −2

1 2 2 1

.

We also know that

Theorem 1.1.12. [15] For graphs G and H, χ(G⊗H) ≤ min{χ(G), χ(H)}.

Finally, we give a definition of an isomorphism of graphs. Let G and H be

graphs. We say that G is isomorphic to H, denoted by G ∼= H if there is a

bijection f from V (G) onto V (H) such that for any x, y ∈ V (G), x is adjacent to



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

y in G if and only if f(x) and f(y) is adjacent in H. If G is isomorphic to H, then

we just rename vertices of G to obtain vertices of H. Thus, two isomorphic graphs

can be viewed as the same graphs but only their vertex sets are labeled differently.

Example 1.1.13. Let G and H be graphs defined below. Define f : {A,B,C,D} →

{1, 2, 3, 4} by f(A) = 1, f(B) = 2, f(C) = 4 and f(D) = 3. Then f is a graph

isomorphism, so the graphs G and H are isomorphic.

1.2 Results on unitary Cayley graphs of matrix algebras

Let R be a finite ring. The unitary Cayley graph of R, denoted by CR, is a

graph with vertex set R and for each x, y ∈ R, x is adjacent to y if and only if

x− y ∈ R×.

Example 1.2.1. We know that Z×
8 = {1, 3, 5, 7}, so the graph CZ8 is regular of

degree 4. Each vertex a is adjacent to a+1, a+3, a+5 and a+7. We display the

graph CZ8 below.
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Note that CR is an |R×|-regular. If R = R1 × · · · × Rk where R1, . . . , Rk are

finite rings with identity 1 ̸= 0, then R× = R×
1 × · · · ×R×

k , so

CR = CR1 ⊗ · · · ⊗ CRk
.

Properties of the unitary Cayley graphs of finite rings are extensively studied in

several papers (see [1, 4, 7, 12, 14, 15, 16, 17, 23]).

For commutative rings, in 2007, Klotz et al. [17] used properties of positive

integers to study the graph CZn where n ∈ N. Klotz determined the clique number,

chromatic number, the independence number, diameter and vertex connectivity of

the graph. Akhtar et al. [1] generalized Klotz’s results by working on CR where R

is a finite commutative ring by decomposing the ring R to a product of local rings.

They also obtained an automotphism group of CR. Next, Ilić et al. [12] computed

the energy of CZn where n ∈ N and characterized all positive integers n such that

the graph CZn is hyperenergetic. In 2011, Kiani et al. [14] showed that if R is a

finite local ring with maximal ideal M of size m, then CR is a complete multipartite

graph such that each partite set is a coset of M . This gives the eigenvalues and

energy of CR, namely

Spec(CR) =

|R×| −m 0

1 |R×|
m

|R|
m
(m− 1)

 and E(CR) = 2|R×|.
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Now, let R = R1 × · · · × Rk where Ri is a finite local ring with maximal ideal

Mi of size mi for all i ∈ {1, . . . , k}. By the above decomposition, all eigenvalues

of CR are (−1)|C| |R×|∏
j∈C |R|×j /mj

with multiplicity
∏
j∈C

|R×
j |/mj where C runs over

subsets of {1, . . . , k}, 0 with multiplicity |R| −
k∏

j=1

(
1 +

|R×
j |

mj

)
, and E(CR) =

2k|R×|. Moreover, assume that |R1|/m1 ≤ · · · ≤ |Rk|/mk. Kiani showed that CR

is hyperenergetic if and only if R satisfies one of the following properties:

(a) s = 2, |R1|/m1 ≥ 3 and |R2|/m2 ≥ 4,

(b) s ≥ 3 with (|Rs−2|/ms−2 ≥ 3) or (|Rs−1|/ms−1 ≥ 3 and |Rs|/ms ≥ 4).

Hence, the unitary Cayley graphs of finite commutative rings are well-studied.

For non-commutative rings, in 2012, Kiani et al. [15] worked on the unitary

Cayley graph of the ring Mn1(Fq1) × · · · × Mnk
(Fqk) where n1, . . . , nk ∈ N. They

computed the clique number, the chromatic number and the independence number

of the graph. For k = 1, their main tools were a subfield K and a right ideal J of

Mn(Fq) recalled in the next theorem.

Theorem 1.2.2. [15] We have

(a) The ring Mn(Fq) contains a subfield K of size qn,

(b) Let J be the set of matrices in Mn(Fq) whose the entries of the first row are

all zeros. Then J is a right ideal of Mn(Fq).

Using the subfield K and the ideal J mentioned above, Kiani obtained the

clique number, the chromatic number and the independence number of CMn(Fq)

recorded in the next theorem. We include his proof in this theorem because we shall

use similar idea to determine these parameters for the subconstituents of CMn(Fq)

defined in Chapter 3. The subfield K and the ideal J mentioned in Theorem

1.2.2 also play an important role in our proofs. Kiani extended the result to

CMn1 (Fq1 )×···×Mnk
(Fqk

) by Theorem 1.1.12.

Theorem 1.2.3. [15] We have

(a) ω(CMn(Fq)) = χ(CMn(Fq)) = qn,
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(b) α(CMn(Fq)) = qn
2−n.

Proof. For (a), since the subfield K forms a clique of size qn, we have

qn ≤ ω(CMn(Fq)) ≤ χ(CMn(Fq)).

From |Mn(Fq)/J | = qn and each coset of J is an independent set, it follows that

χ(CMn(Fq)) ≤ qn

Next, we prove (b). Since each coset of J form an independent set, we have

α(CMn(Fq)) ≥ qn
2−n. Note that K is a subgroup of Mn(Fq) under addition. More-

over, each coset of K is a clique in CMn(F ), so

α(CMn(Fq)) ≤ |Mn(Fq)/K| = qn
2−n.

This completes the proof.

Later, in 2015, Kiani et al. [16] studied the regularity of CMn(Fq) where n ⩾ 2.

It is clear that CMn(Fq) is |GLn(Fq)|-regular. Furthermore, they constructed a

bijection between sets of common neighborhoods of any adjacent vertices to prove

that the graph CMn(Fq) is edge regular with parameter
(
qn

2
, |GLn(Fq)| , en

)
. In

addition, they also proved that CM2(Fq) is strongly regular with parameters

(
q4,
(
q2 − 1

) (
q2 − q

)
, q4 − 2q3 − q2 + 3q, q4 − 2q3 + q

)
,

but the graph CM3(Fq) is not stronly regular. Finally, they calculated the diameter

of the graph CMn(Fq).

Theorem 1.2.4. [16] The graph CMn(Fq) has diameter 2.

In 2020, we [23] extended Kiani’s results by proving that the graph CMn(Fq) is

strongly regular if and only if n = 2. Their idea is to see (Mn(Fq),+) as (Fn2

q ,+).

Since all characters of the group (Fq,+) is given by χa(x) = e
2πi
p

Tr(ax) for all

a, x ∈ Fq where Tr is the trace map and p is a characteristic of Fq, the eigenvalues
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of CMn(Fq) are of the form ([22] Theorem 2)

ρA =
∑

S∈GLn(Fq)

χA(S),

where A = [aij]n×n ∈ Mn(Fq) and χA =
∏

1⩽i,j⩽n χaij . We calculated eigenvalues

from the following three matrices:

A1 = 0n×n, A2 =


1 0 · · · 0

0 0 · · · 0
... ... ...

0 0 · · · 0

 and A3 =


1 1 0 · · · 0

1 0 0 · · · 0
... ... ... ...

1 0 0 · · · 0

 .

Using some combinatorial methods on GLn(Fq), it follows that

ρA1 = (qn − 1) (qn − q) . . .
(
qn − qn−1

)
,

ρA2 = − (qn − q) . . .
(
qn − qn−1

)
, and

ρA3 = q
(
qn − q2

)
. . .
(
qn − qn−1

)
.

In addition, it can be showed that if A and B are n×n matrices of the same rank,

then ρA = ρB. This means that eigenvalues ρA1 , ρA2 and ρA3 are induced from

matrices of rank 0,1 and 2, respectively. Using these eigenvalues, we can determine

a strong regularity, hyperenergeticity and Ramanujan property of CMn(Fq).

Furthermore, we worked on the ring of matrices over finite local rings. Let R

be a finite local ring with unique maximal ideal M and the residue field k. Then

Mn(R)/Mn(M) ∼= Mn(k). This gives a decomposition

CMn(R) = CMn(k)⊗M̊n(M)

where M̊n(M) is the complete graph on |Mn(M)| vertices with a loop on any

vertex. Since Spec
(

M̊n(M)
)
=

 mn2
0

1 mn2 − 1

, eigenvalues of CMn(R) can be

determined from the ones of CMn(k). Moreover, this decomposition can be used to
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determine strong regularity, hyperenergeticity and Ramanujan property of CMn(R).

Before we continue to discuss the next result, we introduce the Bruhat’s de-

composition of GLn(Fq). Let Sn denote the set of permutations on {1, . . . , n}. For

each σ ∈ Sn, define a σ-reduced matrix, denote by Wσ = [Wij]n×n, is the matrix

such that

(a) Wjσ(j) = 1 for all 1 ⩽ j ⩽ n,

(b) Wjr = 0 if r > σ(j),

(c) Wrσ(j) = 0 if r > j.

From the definition, note that a σ-reduced matrix is not uniquely determined

because there is no condition on some entries of the matrix Wσ.

Example 1.2.5. Let σ ∈ S3 defined by σ(1) = 2, σ(2) = 3 and σ(3) = 1. Then

the possible σ-reduced matrices have the form

Wσ =


a 1 0

0 b 1

1 0 0


where a, b ∈ Fq.

For A ∈ GLn(Fq), we have an uppertriangular matrix L and σ ∈ Sn such that

A = LWσ ([25] p. 94). This decomposition is called the Bruhat’s decomposition

of GLn(Fq).

Chen et al. [4] obtained all eigenvalues of CMn(Fq) using enumerative com-

binatorics. For each k ∈ {1, . . . , n}, they computed an eigenvalue ρA where

A =

 Ik 0k×(n−k)

0(n−k)×k 0(n−k)×(n−k)

. Let

Gk =
{
S = [sij]n×n ∈ GLn(Fq) | s11 + . . .+ skk ∈ ker Tr

}
.
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Assume that Fq has characteristic p > 0. It follows that

ρA = |Gk| −
|GLn(Fq)| − |Gk|

p− 1
.

To compute |Gk|, note that for each S ∈ Gk, S = LWσ for some L an upper

traingular matrix and σ ∈ Sn by the Bruhat’s decomposition. They determined

the number of possible matrices L and Wσ by counting the elements of

{
(x1, . . . , xm) ∈

(
F×
q

)m | x1 + · · ·+ xm ∈ ker Tr
}
.

They found that

|Gk| =
1

p

[
|GLn(Fq)|+ (−1)k(p− 1)q

1
2
k(2n−k−1) |GLn−k(Fq)|

]
,

so

ρA = (−1)kq
1
2
k(2n−k−1) |GLn−k(Fq)| = (−1)kq

k(k−1)
2

(
qn − qk+1

)
. . .
(
qn − qn−1

)
.

where A =

 Ik 0k×(n−k)

0(n−k)×k 0(n−k)×(n−k)

 for all k ∈ {0, . . . , n}. Since any two matri-

ces of the same rank produce the same eigenvalues, They obtained all eigenvalues

of CMn(Fq).

Theorem 1.2.6. [4] The eigenvalues of the graph CMn(Fq) are

(a) λ0(n, q) = (qn − 1) . . . (qn − qn−1) with multiplicity one,

(b) λk(n, q) = (−1)kq
k(k−1)

2 (qn−qk) . . . (qn−qn−1) with multiplicity
(
(qn − 1) . . . (qn − qk−1)

)2
(qk − 1) . . . (qk − qk−1)

for all k ∈ {1, . . . , n− 1}, and

(c) λn(n, q) = (−1)nq
n(n−1)

2 with multiplicity (qn − 1) . . . (qn − qn−1).

Results on the eigenvalues of CMn(Fq) have been extended in [19]. Huang et al.

[19] defined the Cayley graph G(m,n, r), where m,n ∈ N and 0 ≤ r ≤ min{m,n},

to be the graph whose vertex set is the set of m× n matrices over the field Fq and
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two matrices A and B are adjacent if and only if rank(A − B) = r. Note that

G(n, n, n) is indeed the unitary Cayley graph of matrix algebra. They followed the

idea of Chen’s paper and computed the eigenvalues of the graph G(m,n, r).

1.3 Objectives

In this dissertation, we examine the eigenvalues of Mn(Fq) and construct new fam-

ilies of non-commutative DU-ring, which is defined later in chapter II. Moreover,

from Theorem 1.2.4, the graph CMn(Fq) has diameter two. This leads us to define

the first and second subconstituents of CMn(Fq) and inspires us to study their spec-

tral properties. We determine the eigenvalues of the subconstituents of CM2(Fq)

and analyze their hyperenergeticity and Ramanujan property, and computing the

clique numbers, the chromatic numbers and the independence numbers of the sub-

constituents.

The second chapter consists of two sections. We define a DU-ring and review

Kiani’s work in the first section. In the next section, we compare the modulus

of each eigenvalue of CMn(Fq) obtained in [4] to show that the following rings are

DU-rings.

(a) Mn1(Fq1)× · · · × Mnk
(Fqk) where q1, . . . , qk are pairwise relatively prime.

(b) Mn1(Fq1)× Mn2(Fq2).

(c) Mm1(Fp
s1
1
) × Mn1(Fp

t1
1
) × · · · × Mmk

(Fp
sk
k
) × Mnk

(F
p
tk
k
) where p1, . . . , pk are

distinct primes and s1, . . . , sk, t1, . . . , tk ∈ N.

We divide the third chapter into five sections. We give the definition of sub-

constituents of a graph and describe the subconstituents C(1)
R and C(2)

R of unitary

Cayley graph of a finite ring R in the first section. The second section contains

terminologies of Cayley graphs of finite groups and their associated sets, and Rep-

resentation Theory used in this work. In the third section, we find the associated

set of the graph C(1)
Mn(Fq)

and prove that this set is a union of conjugacy classes.

We determine all eigenvalues of the graph C(1)
M2(Fq)

by using the character table of
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GL2(Fq). We show further that it is hyperenergetic and Ramanujan if q ≥ 3. In

the next section, we prove that the graph C(2)
M2(Fq)

is the tensor product between a

complete graph and a complete multipartite graph and obtain its spectrum. We

apply this result to conclude that C(2)
M2(Fq)

is hyperenergetic but it is not Ramanu-

jan if q ≥ 5. Finally, we compute the clique numbers, chromatic numbers and

the independence numbers of the subconstituents of the graph CM2(Fq) in the fi-

nal section. This chapter is a joint work with Y. Meemark. The paper has been

published in Finite Fields and Their Applications [24]. Finally, we conclude the

results we obtained in this dissertation in the fourth chapter.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

RING DETERMINED BY UNITARY CAYLEY GRAPHS

2.1 Kiani’s conjecture and DU-rings

Let R be a finite ring. The Jacobson radical of a ring R is the intersection of all

maximal ideals of R. It is denoted by JR. We say that the ring R is semisimple

if JR = {0}.

Example 2.1.1. 1. If R is a finite local ring with unique maximal ideal M .

then JR = M . In particular, Fq is a semisimple ring. On the other hand, Zpn

is not semisimple for all primes p and n ≥ 2.

2. For a finite ring R, we have by [8] that JMn(R) = Mn(JR). Hence, the matrix

algebra Mn(Fq) is semisimple for all n ∈ N.

By Wedderburn-Artin theorem [8], any finite semisimple ring is of the form

Mn1(Fq1)×· · ·×Mnk
(Fqk). Moreover, it is easy to see that R/JR is always semisim-

ple. Hence, the ring R/JR can be expressed to the product of matrix algebras.

Kiani et al. proved the following results.

Proposition 2.1.2. [15] Let R and S be finite rings such that CR
∼= CS. Then

(a) CR/JR
∼= CS/JS ,

(b) |JR| = |JS|, and

(c) if R is semisimple, so is S.

Proposition 2.1.3. [15]

(a) If m,n ∈ N, and CMn(Fq1 )
∼= CMm(Fq2 )

, then q1 = q2 and m = n.
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(b) If S is a finite ring and CS
∼= CMn(Fq), then S ∼= Mn(Fq).

For finite rings R and S such that CR
∼= CS, it is not neccessary that R ∼= S.

For example, we have CZ4
∼= CZ2[x]/(x2) but Z4 and Z2[x]/(x

2) are not isomor-

phic because they have different characteristics. However, we can see that Z2
∼=

Z4/JZ4
∼= Z2[x]/(x

2)/JZ2[x]/(x2). Kiani also conjectured that for any rings R and

S, if CR
∼= CS, then R/JR ∼= S/JS. They showed that the conjecture holds for

the class of finite commutative rings by examining eigenvalues of these two graphs.

Furthermore, by Proposition 2.1.2, it suffices to verify this conjecture for the class

of finite semisimple rings. This leads to study rings determined by unitary Cayley

graphs (DU-rings). A ring R is a DU-ring if for any ring S such that CR
∼= CS,

we have R ∼= S. It follows from Proposition 2.1.3 that Mn(Fq) is a DU-ring. Note

that Kiani’s conjecture is equivalent to saying that every semisimple ring is a DU-

ring. In the next section, we provide an application of eigenvalues of Mn(Fq) to

determine new families of such rings, which makes Kiani’s conjecture closer to be

true.

2.2 Constructions of DU-rings

In this section, we use the eigenvalues of the unitary Cayley graph of matrix

algebras to discover new families of non-commutative DU-ring.

According to Theorem 1.2.6, we note that∣∣∣∣λk−1(n, q)

λk(n, q)

∣∣∣∣ = qn−k+1 − 1 ≥ 1

for all k ∈ {1, . . . , n}, so we have

|λ0(n, q)| > |λ1(n, q)| > · · · > |λn−1(n, q)| ≥ |λn(n, q)|. (2.1)

Next, we prove the following lemmas.

Lemma 2.2.1. Let F = Mn1(Fq1) × · · · × Mnk
(Fqk) and E = Mm1(Fr1) × · · · ×

Mml
(Frl). If the graphs CF and CE are isomorphic, then qn1

1 . . . qnk
k = rm1

1 . . . rml
l .
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Proof. From the above discussion, the least modulus of the eigenvalues of CF is

|λn1(n1, q1)| . . . |λnk
(nk, qk)| = q

n1(n1−1)
2

1 . . . q
nk(nk−1)

2
k ,

and the least modulus of the eigenvalues of CE is

|λm1(m1, r1)| . . . |λml
(ml, rl)| = r

m1(m1−1)
2

1 . . . r
ml(ml−1)

2
l .

Since the graphs are isomorphic, we can conclude that

q
n1(n1−1)

2
1 . . . q

nk(nk−1)

2
k = r

m1(m1−1)
2

1 . . . r
ml(ml−1)

2
l .

Also, the number of their vertices are equal, so

q
n2
1

1 . . . q
n2
k

k = r
m2

1
1 . . . r

m2
l

l .

It follows that qn1
1 . . . qnk

k = rm1
1 . . . rml

l as desired.

Lemma 2.2.2. Let F = Mn1(Fq1) × · · · × Mnk
(Fqk) and E = Mm1(Fr1) × · · · ×

Mml
(Frl). Assume that the graphs CF and CE are isomorphic. The following

statements hold.

(a) If qn1
1 ≤ . . . ≤ qnk

k and rm1
1 ≤ . . . ≤ rml

l , then k = l and qni
i = rmi

i for all

i ∈ {1, . . . , k}.

(b) There is a permutation σ of {1, . . . , k} such that qi = rσ(i) for all i ∈

{1, . . . , k}.

Proof. First, we prove (a). By Lemma 2.2.1, we have

qn1
1 . . . qnk

k = rm1
1 . . . rml

l . (2.2)

Note that

λ1(ni, qi) = (qni
i − qi) . . . (q

ni
i − qni−1

i ) =
|GLni

(Fqi)|
qni
i − 1
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for all i ∈ {1, . . . , k}. Set

Q =
k∏

i=1

|GLni
(Fqi)| and R =

l∏
i=1

|GLmi
(Fri)|.

Since CF and CE are isomorphic and they are regular of degrees Q and R, respec-

tively, we have Q = R. The k eigenvalues of CF of the largest modulus smaller

than Q are
1

qnk
k − 1

Q ≤ · · · ≤ 1

qn1
1 − 1

Q,

and the l eigenvalues of CE of the largest modulus inferior to R are

1

rml
l − 1

R ≤ · · · ≤ 1

rm1
1 − 1

R.

Without loss of generality, we assume that k ≤ l. Thus,

1

qni
i − 1

Q =
1

rmi
i − 1

R

for all i ∈ {1, . . . , k}, which implies that qni = rmi for all i ∈ {1, . . . , k}. Applying

this result to (2.2) gives r
mk+1

k+1 . . . rml
l = 1 and it forces that k = l.

To prove (b), we recall that

|λni
(ni, qi)| = q

ni(ni−1)

2
i and |λn−1(ni, qi)| = q

(ni−1)(ni−2)

2
i (qni

i −qni−1
i ) = q

(ni)(ni−1)

2
i (qi−1)

for all i ∈ {1, . . . , k}. Set

M =
k∏

i=1

q
ni(ni−1)

2
i and N =

k∏
i=1

r
mi(mi−1)

2
i .

Thus, M and N come from the eigenvalue of least modulus of CF and CE , respec-

tively, so M = N . The k eigenvalues of CF of least modulus larger than M are

(q1−1)M, . . . , (qk−1)M , and the k eigenvalues of CE of least modulus larger than

N are (r1 − 1)N, . . . , (rk − 1)N . This induces a permutation σ of {1, . . . , k} such

that (qi − 1)M = (rσ(i) − 1)N , so qi = rσ(i) for all i ∈ {1, . . . , k}.
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The first main result is presented in the following theorem.

Theorem 2.2.3. Let F = Mn1(Fq1) × · · · × Mnk
(Fqk) and E = Mm1(Fr1) × · · · ×

Mml
(Frl). If the graphs CF and CE are isomorphic and q1, . . . , qk are pairwise

relatively prime, then F and E are isomorphic. Consequently, if q1, . . . , qk are

pairwise relatively prime, then Mn1(Fq1)× · · · × Mnk
(Fqk) is a DU-ring.

Proof. First, we assume that qn1
1 ≤ . . . ≤ qnk

k and rm1
1 ≤ . . . ≤ rml

l . We can

conclude from Lemma 2.2.2 (a) that k = l and qni
i = rmi

i for all i ∈ {1, . . . , k}. For

any i ∈ {1, . . . , k}, we write qi = psii and ri = ptii for some s1, . . . , sk, t1, . . . , tk ∈ N

and p1, . . . , pk are distinct prime numbers since q1, . . . , qk are pairwise relatively

prime. It follows that

sini = timi (2.3)

for all i ∈ {1, . . . , k}. Also, CF and CE have the same number of vertices, so

q
n2
1

1 . . . q
n2
k

k = r
m2

1
1 . . . r

m2
l

l .

Since q1, . . . , qk are pairwise relatively prime, we have q
n2
i

i = r
m2

i
i for all i ∈

{1, . . . , k}. This implies that

sin
2
i = tim

2
i (2.4)

for all i ∈ {1, . . . , k}. By (2.3) and (2.4), we can conclude that si = ti and ni = mi

for all i ∈ {1, . . . , k} and hence F and E are isomorphic.

Next, we prove the second main result.

Theorem 2.2.4. Let F = Mn1(Fq1)×Mn2(Fq2) and E = Mm1(Fr1)×Mm2(Fr2). If

CF and CE are isomorphic, then F and E are isomorphic. Consequently, Mn1(Fq1)×

Mn2(Fq2) is a DU-ring.

Proof. Assume that qn1
1 ≤ qn2

2 and rm1
1 ≤ rm2

2 . By Lemma 2.2.2 (a), we get qn1
1 =

rm1
1 and qn2

2 = rm2
2 . Write qi = psii and ri = ptii for i ∈ {1, 2} where p1, p2 are
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primes and s1, s2, t1, t2 ∈ N. It follows that

s1n1 = t1m1, (2.5)

and

s2n2 = t2m2. (2.6)

If p1 ̸= p2, then we are done by Theorem 2.2.3. Suppose further that p1 = p2.

Since CF and CE have the same number of vertices, we have

s1n
2
1 + s2n

2
2 = t1m

2
1 + t2m

2
2. (2.7)

By Lemma 2.2.2 (b), we have {q1, q2} = {r1, r2}. If q1 = r1 and q2 = r2, then

s1 = t1 and s2 = t2, and so n1 = m1 and n2 = m2. Now, we assume that q1 = r2

and q2 = r1. Thus, s1 = t2 and s2 = t1. By (2.5) and (2.6),

n1n2 = m1m2.

Moreover, plugging s2m1 = s1n1 and s2n2 = s1m2 into (2.7) and dividing both

sides by s1 give

n2
1 +m2n2 = m1n1 +m2

2. (2.8)

Similarly, we have

n2
2 +m1n1 = m2n2 +m2

1. (2.9)

We can conclude from (2.8) and (2.9) that n2
1+n2

2 = m2
1+m2

2. Since n1n2 = m1m2,

it follows that n1+n2 = m1+m2. Hence, the sets {n1, n2} and {m1,m2} are the set

of solutions of the equation x2−(m1+m2)x+m1m2 = 0. Then {n1, n2} = {m1,m2}.

We distinguish two cases.

Case 1. n1 = m1 and n2 = m2. By (2.5) and (2.6), we have s1 = t1 and s2 = t2, so

F and E are isomorphic.

Case 2. n1 = m2 and n2 = m1. We know that s1 = t2 and s2 = t1. It follows that

F and E are isomorphic.
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Remark 2.2.5. Unfortunately, for k ≥ 3, the above arguments do not follow easily.

For example, when k = 3 under the same set-up, we work on F = Mn1(Fp
s1
1
) ×

Mn2(Fp
s2
2
) × Mn3(Fp

s3
3
) and E = Mn1(Fp

t1
1
) × Mn2(Fp

t2
2
) × Mn3(Fp

t3
3
) with ps1n1

1 ≤

ps2n2
2 ≤ ps3n3

3 and pt1m1
1 ≤ pt2m2

2 ≤ pt3m3
3 . By Lemma 2.2.2 (a), we have psini

i = pmiti
i

for all i ∈ {1, 2, 3}. Then

s1n1 = t1m1, s2n2 = t2m2, and s3n3 = t3m3. (2.10)

In addition, by Lemma 2.2.2 (b), we have {ps11 , ps22 , ps33 } = {pt11 , pt22 , pt33 }. If p1 =

p2 = p3, then {s1, s2, s3} = {t1, t2, t3}. Assume further that s1 = t2, s2 = t3 and

s3 = t1. The system (2.10) becomes

s1n1 = s3m1, s2n2 = s1m2, and s3n3 = s2m3. (2.11)

Again, since CF and CE have the same number of vertices, we get

s1n
2
1 + s2n

2
2 + s3n

2
3 = s3m

2
1 + s1m

2
2 + s2m

2
3. (2.12)

However, it seems difficult to derive from only (2.11) and (2.12) to reach the

isomorphism of F and E as we have done in the proof of Theorem 2.2.4.

Finally, we let F = Mm1(Fp
s1
1
)× Mn1(Fp

t1
1
)× · · · × Mmk

(Fp
sk
k
)× Mnk

(F
p
tk
k
) and

E = Mu1(Fq1)×Mv1(Fr1)×· · ·×Muk
(Fqk)×Mvk(Frk), where p1, . . . , pk are distinct

primes and si’s, ti’s are positive integers. We may assume that psimi
i ≤ ptini

i for

all i ∈ {1, . . . , k}. Suppose that the graphs CF and CE are isomorphic. Let i ∈

{1, . . . , k}. According to the Lemma 2.2.2 (a), we may write qi = paii and ri = pbii ,

and psimi
i = paiui

i and ptini
i = pbivii , so we have simi = aiui and tini = bivi. Since

p1, . . . , pk are distinct primes, comparing the number of vertices of the graphs gives

sim
2
i + tin

2
i = aiu

2
i + biv

2
i . In addtion, Lemma 2.2.2 (b) implies {si, ti} = {ui, vi}.

Thus, we have the same system of equations as in the proof of Theorem 2.2.4. It

follows that Mmi
(Fp

si
i
)× Mni

(F
p
ti
i
) and Mui

(Fqi)× Mvi(Fri) are isomorphic for all

i ∈ {1, . . . , k}. Hence, F and E are isomorphic. Therefore, we have proved our



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23

final result.

Theorem 2.2.6. Let F = Mm1(Fp
s1
1
)× Mn1(Fp

t1
1
)× · · · × Mmk

(Fp
sk
k
)× Mnk

(F
p
tk
k
)

where p1, . . . , pk are distinct primes and si’s and ti’s are positive integers. Then F

is a DU-ring.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

SUBCONSTITUENTS OF UNITARY CAYLEY

GRAPHS OF MATRICES OVER FINITE FIELDS

3.1 Subconstituents of graphs

Let n ∈ N. First, we provide a definition of subconstituents of a graph. Let G be a

graph. A subgraph X of G is an induced subgraph if V (X) ⊆ V (G) and for any

x, y ∈ V (X), x is adjacent to y in X if and only if they are adjacent in G. Note

that the induced subgraph X is obtained by removing some vertices of G together

with edges containing a removed vertex.

Now, let G be a graph with diameter 2 and x ∈ V (G). Let N(x) denote the

set of neighbors of x in G. We have

V (G) = {x} ∪N(x) ∪ (V (G)∖ (N(x) ∪ {x})).

Since G has diameter 2, the set V (G) ∖ (N(x) ∪ {x}) is the set of non-adjacent

vertices to x except x itself. This leads us to define the first and the second

subconstituents of G. The first subconstituent of G at x is the subgraph of

G induced by the set N(x) and the second subconstituent of G at x is the

subgraph of G induced by the set V (G)∖ (N(x) ∪ {x}).

Example 3.1.1. Let G be the following graph.
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Consider the vertex E, we have the set of neighborhoods of E is {A,C}, so we

obtain subconstituents of G at x = E. From the graphs below, the left-hand side

displays the first subconstituents of G at x = E and the right-hand side displays

the second subconstituent of G at x = E.

Subconstituents of strongly regular graphs are studied in many graphs and

have many interesting properties. The second subconstituent of the Hoffman-

Singleton graph is determined by its spectrum in [6]. Moreover, the discovery of

which graph has strongly regular subconstituents interests mathematicians. For

example, Cameron et al. [3] used the Bose-Mesner algebra of a strongly regular

graph to classify strongly regular graphs whose subconstituents are strongly regu-

lar, and Kasikova [13] used the same tools to classify distance-regular graph which

has strongly regular subconstituents. In addition, we can use eigenvalues of sub-

constituents to prove the uniqueness of strongly regular of some parameter, e.g.,

Clebsch graph is a unique strongly regular graph with parameters (16, 5, 0, 2) (see

[10] p.230).
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According to Theorem 1.2.4, the graph CMn(Fq) has diameter 2, it motivates us

to study subconstituents of unitary Cayley graph of matrix algebras. Let R be

a finite ring. For x ∈ R, the maps f : N(0) → N(x) and g : R ∖ (N(0) ∪ {0})

→ R∖(N(x) ∪ {x}) which both send y to x−y are graph isomorphisms. Hence, we

may only study the subconstituents at x = 0 and we write C(1)
R and C(2)

R for the first

subconstituent and the second subconstituent of CR at x = 0 ∈ R, respectively.

3.2 Eigenvalues of normal Cayley graphs and a character

table of the group GL2(Fq)

Let G be a finite group and V a finite-dimensional complex vector space. A

representation of G on V is a homomorphism ρ : G → GL(V ) where GL(V )

denotes the group of automorphisms on V . Let ρ be a representation of G on V .

Then for each g ∈ G, ρ(g) is a linear transformation on V . A subspace W of V is

ρ-invariant under G if ρ(g)(W ) ⊆ W for all g ∈ G. If ρ has no proper invariant

subspace of V , then we say that ρ is an irreducible representation.

Example 3.2.1. 1. Let G be a group and V a vector space. Define ρ : G →

GL(V ) by ρ(g) = 1V where 1V is the identity map on V . Then ρ is a

representation of G on V .

2. Let z ∈ C. We know that (R,+) is an additive group. Define ρ : R → GL(C)

by

(ρ(x))(w) = ezxw

for all x ∈ R and w ∈ C. Then ρ is a representation of (R,+).

Example 3.2.2. 1. Every representation ρ : G → GL(V ) with dimV = 1 is

always irreducible.

2. Define ρ : R → GL(R2) by rotations of R2, that is,

ρ(x) =

cos x − sinx

sinx cos x
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for all x ∈ R. Since there is no one-dimensional subspace is mapped to itself

by all rotations, it follows that ρ is irreducible.

Next, we define a character of a representation. A character χ correspond-

ing to ρ is the complex-valued function on G defined by χ(g) = tr(ρ(g)) for all

g ∈ G where tr(ρ(g)) is the trace of the matrix representation of ρ(g) on V . A

character is said to be irreducible if they are induced from an irreducible rep-

resentation. The dimension of a character is the dimension of vector space V .

It is easy to see that χ(1) = dimV where 1 is the identity of the group G, and

χ(ghg−1) = tr(ρ(g)ρ(h)ρ(g−1)) = tr(ρ(g)ρ(g−1)ρ(h))) = χ(h) for all g, h ∈ G.

Thus, a character is a constant on a conjugacy class of G.

Now, we focus on characters of the group F×
q . Readers can see [18] for more

details. If F×
q = ⟨a⟩ for some a ∈ F×

q , then the irreducible characters of the group

(F×
q , ·) are χk(x) = e

2πimk
q−1 for all x = am ∈ F×

q and k ∈ {0, 1, 2, . . . , q − 2}. Write

F×
q = ⟨a⟩ where a ∈ F×

q . We have for k ∈ {0, 1, . . . , q − 2},

∑
x∈F×

q

χk(x) =

q − 1 if k = 0,

0 otherwise.

Let G be a finite group and S be a subset of G not containing the identity and

S = S−1 where S−1 = {s−1 : s ∈ S}. The Cayley graph of G associated to S

is the undirected graph Cay(G,S) whose vertex set is G and for each g, h ∈ G, g

is adjacent to h if and only if g = hs for some s ∈ S. We say that a Cayley graph

is normal if S is a union of conjugacy classes of G.

Example 3.2.3. Let G = S3 and S = {(123), (132)}. Since S is a conjugacy class

of S3, the Cayley graph Cay(G,S) is a normal Cayley graph. The graph Cay(G,S)

is shown below.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28

Eigenvalues of a normal Cayley graph can be determined by using the next

theorem.

Theorem 3.2.4. [26]

Let G be a finite group and S be a subset of G not containing the identity and

S = S−1 where S−1 = {s−1 : s ∈ S}. If S is a union of conjugacy classes of G and

χ1, . . . , χr are irreducible characters of G, then the eigenvalues of Cay(G,S) are

λj =
1

χj(1)

∑
s∈S

χj(s)

with multiplicity mj =
r∑

k=1
λk=λj

χk(1)
2 for all j ∈ {1, . . . , r}.

Now, we focus on the group GL2(Fq). The conjugacy classes of GL2(Fq) are

given in the following table. The readers can see [9] for more details.
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Representatives Number of elements Number of classes

ax =

x 0

0 x

 , x ̸= 0 1 q − 1

bx =

x 1

0 x

 , x ̸= 0 q2 − 1 q − 1

cx,y =

x 0

0 y

 , x ̸= y and x, y ̸= 0 q2 + q
(q − 1)(q − 2)

2

dx,y =

x εy

y x

 , y ̸= 0 (q is odd)

dz =

0 zq+1

1 z + zq

 , z ∈ E ∖ Fq (q is even)

q2 − q
q(q − 1)

2

Here, cx,y and cy,x are conjugate, dx,y and dx,−y are conjugate, and dz and dzq are

conjugate. Moreover, let E = Fq [
√
ε] be an extension of Fq of degree two. We can

identify the matrices dx,y as ζ = x+ y
√
ε and the matrices dz as z in E∖Fq. Now,

let α, β be distinct irreducible character of F×
q and φ an irreducible characters of

E× such that φq ̸= φ and φ is not an irreducible character of F×
q . The next table

presents all irreducible characters of GL2(Fq). As mentioned earlier, it suffices to

specify their values on each conjugacy class of GL2(Fq).

Theorem 3.2.5. [9] The character table of GL2(Fq) is presented by the following

table.

ax =

x 0

0 x

 bx =

x 1

0 x

 cx,y =

x 0

0 y

 q is odd

dx,y =

x εy

y x

 = ζ

q is even

dz =

0 zq+1

1 z + zq

 = z

Uα α(x2) α(x2) α(xy) α(ζq) α(zq)

Vα qα(x2) 0 α(xy) −α(ζq) −α(zq)

Wα,β (q + 1)α(x)β(x) α(x)β(x) α(x)β(y) + α(y)β(x) 0 0

Xφ (q − 1)φ(x) −φ(x) 0 − (φ(ζ) + φ(ζq)) − (φ(z) + φ(zq))

Moreover, Uα, Vα,Wα,β and Xφ are of dimension 1, q, q+1 and q−1, respectively.
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3.3 Spectral properties of C(1)
M2(Fq)

In this section, we study spectral properties of C(1)
M2(Fq)

. We start by showing

that C(1)
Mn(Fq)

is Cay (GLn(Fq), (In + GLn(Fq)) ∩ GLn(Fq)). To see this, let A,B ∈

GLn(Fq). Then AB−1 ∈ GLn(Fq) and

A−B ∈ GLn(Fq) ⇐⇒ (AB−1 − In)B ∈ GLn(Fq)

⇐⇒ (AB−1 − In) ∈ GLn(Fq)

⇐⇒ AB−1 ∈ (In + GLn(Fq)) ∩ GLn(Fq).

It also follows that the graph C(1)
Mn(Fq)

is regular of degree |(In + GLn(Fq)) ∩ GLn(Fq)| =

en, defined in the Chapter 1. Moreover, for A,B ∈ GLn(Fq), we have

ABA−1 ∈ (In + GLn(Fq)) ∩ GLn(Fq) ⇐⇒ ABA−1 − In ∈ GLn(Fq)

⇐⇒ A(B − In)A−1 ∈ GLn(Fq)

⇐⇒ (B − In) ∈ GLn(Fq)

⇐⇒ B ∈ (In + GLn(F )) ∩ GLn(Fq).

Thus, (In + GLn(Fq)) ∩ GLn(Fq) is a union of conjugacy classes, so C(1)
Mn(Fq)

is a

normal Cayley graph. We record this result in

Theorem 3.3.1. The graph C(1)
Mn(Fq)

is the normal Cayley graph of GLn(Fq) asso-

ciated with (In + GLn(Fq)) ∩ GLn(Fq) and it is regular of degree en.

Next, we determine all eigenvalues of C(1)
M2(Fq)

. Let k ∈ {0, 1, . . . , q − 2} and

consider χk an irreducible character of F×
q . We first handle the case q is odd by

showing some lemmas on sums of characters of F×
q .

Lemma 3.3.2. If q is odd, then for k ∈ {0, 1, . . . , q − 2},

∑
x∈F×

q

χk(x
2) =


q − 1 if k ∈

{
0,

q − 1

2

}
,

0 otherwise.
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Proof. We know that

∑
x∈F×

q

χk(x
2) =

q−2∑
m=0

χk(a
2m) =

q−2∑
m=0

e
4πimk
q−1 =

q−2∑
m=0

(
e

4πik
q−1

)m
.

Note that e
4πik
q−1 = 1 if and only if k = 0 or k =

q − 1

2
. If k ∈

{
0,

q − 1

2

}
, then∑

x∈F×
q

χk(x
2) = q − 1. Finally, if k ̸∈

{
0,

q − 1

2

}
, then

∑
x∈F×

q

χk(x
2) =

1−
(
e

4πik
q−1

)q−1

1−
(
e

4πik
q−1

) = 0,

and the proof is completed.

Lemma 3.3.3. If q is odd, then for k ∈ {0, 1, . . . , q− 2} and ε ∈ Fq ∖F2
q, we have

(a)
∑

x,y∈F×
q ∖{1}

and x ̸=y

χk(xy) =


q2 − 5q + 6 if k = 0,

−q + 3 if k =
q − 1

2
,

2 otherwise,

and

(b)
∑

(x,y)∈Fq ×F×
q

χk(x
2 − εy2) =


q2 − q if k = 0,

−q + 1 if k =
q − 1

2
,

0 otherwise.

Proof. We note that

∑
x,y∈F×

q ∖{1}
and x ̸=y

χk(xy) =

∑
x∈F×

q

χk(x)

∑
y∈F×

χk(y)

−
∑
x∈F×

q

χk(x
2)

−
∑

x∈F×
q ∖{1}

χk(x)−
∑

y∈F×
q ∖{1}

χk(y)

=

∑
x∈F×

q

χk(x)

2

−

∑
x∈F×

q

χk(x
2)

− 2

∑
x∈F×

q

χk(x)

+ 2.
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If k = 0, then applying Lemma 3.3.2 gives the right-hand side equals q2 − 5q + 6.

If k =
q − 1

2
, then the right-hand side is −q + 3. Finally, if k ̸∈

{
0,

q − 1

2

}
, then

the summands on the right-hand side are all gone and we get 2 left. This proves

(a).

For (b), since ε is not a square in Fq, E = Fq[
√
ε] is an extension of degree two

of Fq. Thus, E = {x + y
√
ε : x, y ∈ Fq}. Moreover, let NE/Fq be the norm map.

Recall that for x, y ∈ Fq, NE/Fq(x + y
√
ε) = x2 − εy2 and by Hilbert’s Theorem

90, NE/Fq is surjective with kernel of size q + 1. Consider the sum

∑
(x,y)∈Fq ×F×

q

χk(x
2 − εy2) =

∑
(x,y)∈Fq ×Fq ∖{(0,0)}

χk(x
2 − εy2)−

∑
x∈F×

q

χk(x
2)

=
∑

(x,y)∈Fq ×Fq ∖{(0,0)}

χk(NE/Fq(x+ y
√
ε))−

∑
x∈F×

q

χk(x
2)

=
∣∣ker NE/Fq

∣∣ ∑
x∈F×

q

χk(x)−
∑
x∈F×

q

χk(x
2)

= (q + 1)
∑
x∈F×

q

χk(x)−
∑
x∈F×

q

χk(x
2).

If k = 0, then the right-hand side becomes q2 − q, and if k =
q − 1

2
, then the

right-hand side is −(q − 1) by Lemma 3.3.2. Finally, for k ̸∈
{
0,

q − 1

2

}
, it also

follows that each summand on the right-hand side is 0.

Lemma 3.3.4. For k, l ∈ {0, 1, . . . , q − 2} such that k ̸= l, we have

(a)
∑
x∈F×

q

χk(x)χl(x) =

q − 1 if k + l = q − 1,

0 otherwise,
and

(b)
∑

x,y∈F×
q ∖{1}

and x ̸=y

[χk(x)χl(y)+χk(y)χl(x)] =

4 if 0 < k + l < q − 1, k, l ̸= 0,

2(3− q) otherwise.
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Proof. Let χk and χl be distinct irreducible characters of F×
q . Then we have

∑
x∈F×

q

χk(x)χl(x) =

q−2∑
m=0

e
2πi(k+l)m

q−1 .

Similar to the proof of Lemma 3.3.2, we can conclude that

∑
x∈F×

q

χk(x)χl(x) =

q − 1 if k + l ∈ {0, q − 1} ,

0 otherwise.

Since k, l are distinct, k + l ̸= 0, and so we have (a).

For (b), we consider the sum

∑
x,y∈F×

q ∖{1}
and x ̸=y

[χk(x)χl(y) + χk(y)χl(x)] = 2
∑

x,y∈F×
q ∖{1}

and x ̸=y

χk(x)χl(y)

= 2

∑
x∈F×

q

χk(x)

∑
y∈F×

q

χl(y)

−
∑
x∈F×

q

χk(x)χl(x)−
∑

x∈F×
q ∖{1}

χk(x)−
∑

y∈F×
q ∖{1}

χl(y)

 .

Since k ̸= l, k+ l ̸= 0. If k+ l = q− 1, then k, l ̸= 0 because 0 ≤ k, l ≤ q− 2. Part

(a) gives

∑
x,y∈F×

q ∖{1}
and x ̸=y

[χk(x)χl(y) + χk(y)χl(x)] = 2 (−(q − 1) + 2) = 2(3− q).

Assume that k + l ̸= q − 1. We distinguish two cases.

Case 1. k = 0 or l = 0, say k = 0. Then l ̸= 0 and so

∑
x,y∈F×

q ∖{1}
and x ̸=y

[χk(x)χl(y) + χk(y)χl(x)] = 2 (−(q − 1) + 2) = 2(3− q).

Case 2. k, l ̸= 0. Then we conclude that

∑
x,y∈F×

q ∖{1}
and x ̸=y

[χk(x)χl(y) + χk(y)χl(x)] = 2.
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This completes the proof.

Remark 3.3.5. Assume that q is odd. Before computing the eigenvalues of

C(1)
M2(Fq)

, we note that for each x, y ∈ Fq,

(a) ax ∈ GL2(Fq) ∩ (I2 + GL2(Fq)) if and only if x ̸= 1

(b) bx ∈ GL2(Fq) ∩ (I2 + GL2(Fq)) if and only if x ̸= 1

(c) cx,y ∈ GL2(Fq) ∩ (I2 + GL2(Fq)) if and only if x, y ̸= 1

(d) dx,y ∈ GL2(Fq) ∩ (I2 + GL2(Fq)) for all x ∈ Fq and y ̸= 0.

To verify (d), we suppose that there exist x ∈ Fq and y ∈ F×
q such that

det

x− 1 εy

y x− 1

 = 0,

so (x− 1)2 − εy2 = 0 in Fq. Thus, x+ y
√
ε = 1 in E. Since {1,

√
ε} is an Fq-basis

of E, we have y = 0 which is absurd.

From the character table of GL2(Fq) mentioned at the second section of this

chapter, let λχ denote an eigenvalue induced from an irreducible character χ. Since

the character Uχk
has dimension one, the above remark gives

λUχk
=

∑
x∈F×

q ∖{1}

χk(x
2) + (q2 − 1)

∑
x∈F×

q ∖{1}

χk(x
2)

+
q2 + q

2

∑
x,y∈F×

q ∖{1}
and x ̸=y

χk(xy) +
q2 − q

2

∑
(x,y)∈Fq ×F×

q

χk(x
2 − εy2).

According to Lemmas 3.3.2 and 3.3.3, we have λUχ0
= q4−2q3−q2+3q, λUχq−1

2

= q

and

λUχk
= (−1) + (q2 − 1)(−1) +

q2 + q

2
(1 + 1) = q

if k ̸∈
{
0,

q − 1

2

}
. It follows that the eigenvalues of C(1)

M2(Fq)
obtained from Uχk

are

q4 − 2q3 − q2 + 3q and q with multiplicities 1 and q − 2, respectively.
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Now, we work on Vχk
. Since Vχk

has dimension q, we have

λVχk
=

1

q

q
∑

x∈F×
q ∖{1}

χk(x
2) +

q2 + q

2

∑
x,y∈F×

q ∖{1}
and x ̸=y

χk(xy)

−q2 − q

2

∑
(x,y)∈Fq ×F×

q

χk(x
2 − εy2)

 .

Again, applying Lemmas 3.3.2 and 3.3.3 gives λVχ0
= −q2 + q + 1, λVχq−1

2

= q

and

λVχk
=

1

q

(
q(−1) +

q2 + q

2
(1 + 1)

)
= q

if k ̸∈
{
0,

q − 1

2

}
. Thus, the eigenvalues of C(1)

M2(Fq)
obtained from Vχk

are −q2+q+1

and q with multiplicities q2 and q2 + q2(q − 3) = q3 − 2q2, respectively.

Next, we consider the eigenvalues induced from the character Wχk,χl
with k ̸= l.

Since Wχk,χl
has dimension q + 1, we have

λWχk,χl
=

1

q + 1

(q + 1)
∑

x∈F×
q ∖{1}

χk(x)χl(x) + (q2 − 1)
∑

x∈F×
q ∖{1}

χk(x)χl(x)

+
q2 + q

2

∑
x,y∈F×

q ∖{1}
and x̸=y

(χk(x)χl(y) + χk(y)χl(x))

 .

First, we assume that k + l = q − 1. Thus, k, l ̸= 0. Note that there are q − 3

2
choices of such k, l. It follows from Lemma 3.3.4 that

λWχk,χl
=

1

q + 1

(
(q + 1)(q − 2) + (q2 − 1)(q − 2) + 2

(
q2 + q

2

)
(3− q)

)
= q.

If 0 < k + l < q − 1, then we have two cases to consider. If k = 0 or l = 0, then
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there are q − 2 choices of k and l, and

λWχk,χl
=

1

q + 1

(
(q + 1)(−1) + (q2 − 1)(−1) + 2

(
q2 + q

2

)
(3− q)

)
= −q(q − 2).

If k, l ̸= 0, then there are (q − 3)2

2
choices of k and l, and

λWχk,χl
=

1

q + 1

(
(q + 1)(−1) + (q2 − 1)(−1) +

(
q2 + q

2

)
(4)

)
= q.

Thus, the eigenvalues of C(1)
M2(Fq)

obtained from Wχk,χk
are −q(q − 2) and q with

multiplicities (q + 1)2(q − 2) and (q + 1)2(q − 2)(q − 3)

2
, respectively.

Finally, let φ be an irreducible character of E× such that φq ̸= φ. Hence, φ is

a non-trivial character and there are q2 − q

2
choices of φ. Since Xφ has dimension

q − 1, we have

λXφ =
1

q − 1

(q − 1)
∑

x∈F×
q ∖{1}

φ(x)− (q2 − 1)
∑

x∈F×
q ∖{1}

φ(x)

− q2 − q

2

∑
(x,y)∈Fq ×F×

q

(
φ(x+ y

√
ε) + φ(x− y

√
ε)
)

=
1

q − 1

−(q2 − q)
∑
x∈F×

q

φ(x) + (q2 − q)− (q2 − q)
∑

(x,y)∈Fq ×F×
q

φ(x+ y
√
ε)


=

1

q − 1

(
−(q2 − q)

∑
x∈E×

φ(x) + (q2 − q)

)
= q.

Hence, the eigenvalue from this case is q with multiplicity (q − 1)2(q2 − q)

2
.

Summing all multiplicities of the eigenvalue q from each character gives its total

multiplicity q4 − 2q3 − 2q2 + 4q + 1. Therefore, we obtain the spectrum of C(1)
M2(Fq)

in the case that q is odd. For q even and q ≥ 4, we can find all eigenvalues corre-

sponding to each Uχ, Vχ and Xφ in the similar manner without the case k =
q − 1

2
.

Note that the eigenvalue obtained from the case k =
q − 1

2
when q is odd is always
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q. Hence, the eigenvalues corresponding to those characters of the case q is even

and q ≥ 4 are equal to the eigenvalues in the case q is odd. As for eigenvalues

corresponding to Wχk,χl
, we have multiplicities of q become (q + 1)2(q − 2)

2
and

(q + 1)2(q − 4)(q − 2)

2
whose sum is again (q + 1)2(q − 2)(q − 3)

2
, so the multiplic-

ities of q when q is even remains the same.

Finally, if q = 2, then the graph C(1)
M2(Fq)

has (22 − 1)(22 − 2) = 6 vertices and

is two copies of K3, so its spectra are 2 of multiplicity 2 and −1 of multiplicity 4.

Thus, we completely determine the spectrum for the graph C(1)
M2(Fq)

.

Theorem 3.3.6. (a) If q = 2, then Spec C(1)
M2(Fq)

=

2 −1

2 4

 .

(b) If q ≥ 3, then Spec C(1)
M2(Fq)

=

 q4 − 2q3 − q2 + 3q q −q2 + q + 1 q3 − 2q2

1 q4 − 2q3 − 2q2 + 4q + 1 q2 (q + 1)2(q − 2)

 .

Moreover, E(C(1)
M2(Fq)

) = 2q5 − 2q4 − 8q3 + 6q2 + 8q for all q ≥ 2.

Furthermore, for all q ≥ 3, we have

E(C(1)
M2(Fq)

)− 2
(
(q2 − 1)(q2 − q)− 1

)
= 2q5 − 2q4 − 8q3 + 6q2 + 8q − 2

(
(q2 − 1)(q2 − q)− 1

)
= 2q5 − 4q4 − 6q3 + 8q2 + 6q + 2 > 2q5 − 4q4 − 6q3

= 2q3(q − 3)(q + 1) ≥ 0.

This proves hyperenergeticity of the graph C(1)
M2(Fq)

when q ≥ 3, while C(1)
M2(Z2)

is

not hyperenergetic because its energy is 8 < 2(6− 1).

Since C(1)
M2(Z2)

is disconnected, it is not Ramanujan. We show that the graph

C(1)
M2(Fq)

is Ramanujan for q ≥ 3. Since | − q2 + q + 1| > | − q(q − 2)| > q, it

suffices to show that 2
√

(q4 − 2q3 − q2 + 3q − 1 ≥ q2 − q − 1 which is equivalent
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to 4(q4 − 2q3 − q2 + 3q − 1) ≥ (q2 − q − 1)2, and we have

4(q4 − 2q3 − q2 + 3q − 1)− (q2 − q − 1)2 = 3q4 − 6q3 − 3q2 + 10q − 5

≥ 3q4 − 6q3 − 3q2 = 3q2((q − 1)2 − 2) ≥ 0.

We record this work in

Theorem 3.3.7. The graph C(1)
M2(Fq)

is hyperenergetic and Ramanujan. Moreover,

C(1)
M2(Z2)

is neither hyperenergetic nor Ramanujan.

3.4 Spectral properties of C(2)
M2(Fq)

We study the second subconstituent of CM2(Fq) in this section. We first show that

the graph is a tensor product of a complete graph and a complete multi-partite

graph and so we can calculate its eigenvalues. Let F2×1
q denote the set of column

vectors of size 2 × 1 over Fq. Since a 2 × 2 matrix is non-invertible if and only if

its column vectors are parallel, we can conclude that

M2(Fq)∖ (GL2(Fq) ∪ {02×2}})

=

 ∪̇
v⃗∈F2×1

q ∖{0⃗}

{(
av⃗ v⃗

)
: a ∈ Fq

} ∪
{(

v⃗ 0⃗
)
: v⃗ ∈ F2×1

q ∖{⃗0}
}

where 0⃗ denotes the zero vector of F2×1
q . Before giving a structure of the graph

C(2)
M2(Fq)

, we need the next lemma.

Lemma 3.4.1. Let A,B be non-invertible matrices in M2(Fq), a, b ∈ Fq and v⃗, w⃗ ∈

F2×1
q ∖{⃗0}.

(a) If A =
(
av⃗ v⃗

)
and B =

(
bw⃗ w⃗

)
, then A−B is non-invertible if and only

if a = b or v⃗, w⃗ are linearly dependent, or equivalently, A−B is invertible if

and only if a ̸= b and v⃗, w⃗ are linearly independent.
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(b) If A =
(
av⃗ v⃗

)
and B =

(
w⃗ 0⃗

)
, then A − B is non-invertible if and only

if v⃗ and w⃗ are linearly dependent.

Proof. Observe that

A−B is non-invertible ⇐⇒ (av⃗ − bw⃗) = c(v⃗ − w⃗) for some c ∈ Fq .

Assume that A−B is non-invertible and v⃗, w⃗ are linearly independent. Then a = c

and b = c, so a = b. Conversely, the case a = b is clear. If w⃗ = cv⃗ for some c ∈ Fq,

then A − B =
(
(a− bc)v⃗ (1− c)v⃗

)
is non-invertible. This proves (a). For (b),

we have

A−B is non-invertible ⇐⇒ av⃗ − w⃗ = cv⃗ for some c ∈ Fq

⇐⇒ (a− c)v⃗ = w⃗ for some c ∈ Fq,

which is equivalent to v⃗ and w⃗ being linearly dependent.

In the next step, we define two graphs G and H as follows: G is the complete

graph on q+1 vertices parametrized by the set of projective lines P1(Fq) = {[a, 1] :

a ∈ Fq}∪{[1, 0]} and the vertex set of H is F2×1
q ∖{⃗0} and for any v⃗, w⃗ ∈ F2×1

q ∖{⃗0},

v⃗ and w⃗ are adjacent if and only if v⃗ and w⃗ are not parallel. Note that H is the

complete (q + 1)-partite graph such that each partite has q − 1 vertices.

Let f : C(2)
M2(Fq)

→ G ⊗ H defined by
(
av⃗ v⃗

)
7→ ([a, 1], v⃗) and

(
v⃗ 0⃗

)
7→

([1, 0], v⃗) for any a ∈ Fq and v⃗ ∈ F2×1
q ∖{⃗0}. Thus, f is bijective. Now, let A,B be

nonzero non-invertible matrices in M2(Fq), a, b ∈ Fq and v⃗, w⃗ ∈ F2×1
q , A =

(
av⃗ v⃗

)
and B =

(
bw⃗ w⃗

)
. Lemma 3.4.1 (a) implies

A−B ∈ GL2(Fq) ⇐⇒ a ̸= b and v⃗, w⃗ are linearly independent

⇐⇒ ([a, 1], v⃗) is adjacent to ([b, 1], w⃗) .

Next, we assume that A =
(
av⃗ v⃗

)
and B =

(
w⃗ 0⃗

)
. From Lemma 3.4.1 (b), we
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have

A−B ∈ GL2(Fq) ⇐⇒ v⃗ and w⃗ are linearly independent

⇐⇒ ([a, 1], v⃗) is adjacent to ([1, 0], w⃗) .

Hence, f is a graph isomorphism, so we have the structure of the graph C(2)
M2(F ).

Theorem 3.4.2. The graph C(2)
M2(Fq)

is the tensor product of the complete graph on

q + 1 vertices and the complete (q + 1)-partite graph such that each part has q − 1

vertices, and it is a (q3 − q2)-regular graph.

Recall that eigenvalues of the tensor product can be determined by Theorem

1.1.10. Since the eigenvalues of G are q with multiplicity 1 and −1 with multiplicity

q and the eigenvalues of H are q2−q,−q+1 and 0 of multiplicities 1, q and q2−q−2,

repectively, we obtain the spectrum and energy of the graph C(2)
M2(Fq)

.

Theorem 3.4.3. We have

Spec C(2)
M2(Fq)

=

q3 − q2 −q2 + q q − 1 0

1 2q q2 q3 − 3q − 2

 .

Moreover, E(C(2)
M2(Fq)

) = 4q3 − 4q2.

Since the number of vertices of C(2)
M2(Fq)

is |M2(Fq) ∖ (GL2(Fq) ∪ {02×2}) | =

q3 + q2 − q − 1 and

4q3 − 4q2 − 2(q3 + q2 − q − 2) = 2q3 − 6q2 + 2q + 4 = 2(q − 2)(q2 − q − 1) ≥ 0.

Thus, C(2)
M2(Fq)

is hyperenergetic unless q = 2. Finally, we show that the graph

C(2)
M2(Fq)

is not Ramanujan. Since q2 − q is an eigenvalue of C(2)
M2(Fq)

, we claim that

(q2−q)2 > 4(q3−q2−1), which is equivalent to the inequality q4−6q3+5q2+4 > 0.

This holds for q ≥ 5 because q4 − 6q3 + 5q2 + 4 = q2(q − 1)(q − 5) + 4 > 0. For

q ∈ {2, 3, 4}, it is easily seen that C(2)
M2(Fq)

is Ramanjan in all cases. We record both

results in
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Theorem 3.4.4. The graph C(2)
M2(Fq)

is hyperenergetic if and only if q ≥ 3, and it

is Ramanujan if and only if q ≤ 4.

3.5 Clique numbers, chromatic numbers and independence

numbers

In this section, we compute the clique number, the chromatic number and the

independence number of subconstituents of CM2(Fq). Recall that we have a subfield

K and the right ideal J of the ring Mn(Fq) as mentioned in Theorem 1.2.2. We

start with the first subconstituent. Note that 0n×n ∈ K and so K ∖ {0n×n}

forms a complete subgraph in C(1)
Mn(Fq)

. Hence, ω(C(1)
Mn(Fq)

) ≥ qn − 1. Next, write

Mn(Fq) =

qn∪
i=1

(Bi + J) as a union of cosets of J where the coset B1 + J = J . Note

that each coset forms an independent set and 0n×n ∈ J . It follows that GLn(Fq) is a

subset of
qn∪
i=2

(Bi+J) and hence χ(C(1)
Mn(Fq)

) ≤ qn−1. Since ω(C(1)
Mn(Fq)

) ≤ χ(C(1)
Mn(Fq)

),

we have the following theorem.

Theorem 3.5.1. ω(C(1)
Mn(Fq)

) = χ(C(1)
Mn(Fq)

) = qn − 1.

Recall that if G is a graph, then α(G) ≥ |V (G)|
χ(G)

. Theorem 3.5.1 gives

α(C(1)
Mn(Fq)

) ≥ |GLn(Fq)|
χ(C(1)

Mn(Fq)
)
= (qn − q) . . . (qn − qn−1).

Consider the group K× as a multiplicative subgroup of GLn(Fq). Let X = AM

and Y = AN where M,N ∈ K× such that M ̸= N and A ∈ GLn(Fq). Then

X − Y = A(M −N) is invertible because M,N ∈ K×. It follows that each coset

forms a complete graph. This implies that α(C(1)
Mn(Fq)

) ≤ (qn − q) . . . (qn − qn−1).

Hence, we have shown

Theorem 3.5.2. α(C(1)
Mn(Fq)

) = (qn − q) . . . (qn − qn−1).
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By Theorem 3.4.2, we have the second subconstituent of CM2(Fq) is the tensor

product of the complete graph on q + 1 vertices G and the complete q + 1-partite

graph H such that each partite has q − 1 vertices. Since χ(G) = χ(H) = q + 1,

we can conclude that χ(C(2)
M2(Fq)

) ≤ q + 1. Moreover, let V (G) = {a1, . . . , aq+1}

and V1, . . . , Vq+1 be the partites of H. Choose vi ∈ Vi for all i ∈ {1, . . . , q + 1}.

We can see that the subgraph of G⊗H induced by {(a1, v1), . . . , (aq+1, vq+1)} is a

complete graph, so ω(G⊗H) ≥ q+1. Thus, we obtain the clique number and the

chromatic number of the graph C(2)
M2(Fq)

.

Theorem 3.5.3. ω(C(2)
M2(Fq)

) = χ(C(2)
M2(Fq)

) = q + 1.

Our final theorem gives the independence number of C(2)
M2(Fq)

.

Theorem 3.5.4. α(C(2)
M2(Fq)

) = q2 − 1.

Proof. Similar to the proof of Theorem 3.5.2, we know from Theorem 3.5.3 that

α(C(2)
M2(Fq)

) ≥ |M2(Fq)∖ (GL2(Fq) ∪ {02×2}) |
χ(C(2)

Mn(Fq)
)

=
q3 + q2 − q − 1

q + 1
= q2 − 1.

Write M2(Fq) =

q2∪
i=1

(Ai+K) as a union of cosets of K. Then an independent set of

C(2)
M2(Fq)

is contained in
q2∪
i=2

(Ai +K). Since each coset forms a complete subgraph,

we have α(C(2)
M2(Fq)

) ≤ q2 − 1 and the result follows.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

CONCLUSIONS

In the second chapter, we use eigenvalues of CMn(Fq) to show that the folloing rings

are DU-rings.

(a) Mn1(Fq1)× · · · × Mnk
(Fqk) where q1, . . . , qk are pairwise relatively prime.

(b) Mn1(Fq1)× Mn2(Fq2).

(c) Mm1(Fp
s1
1
) × Mn1(Fp

t1
1
) × · · · × Mmk

(Fp
sk
k
) × Mnk

(F
p
tk
k
) where p1, . . . , pk are

distinct primes and s1, . . . , sk, t1, . . . , tk ∈ N.

In the third chapter, we obtain spectral properties of substituieren of CMn(Fq)

and compute thier clique numbers, chromatic numbers and independence numbers.

First, we list the results on the graph C(1)
M2(Fq)

.

1. C(1)
Mn(Fq)

is the normal Cayley graph of GLn(Fq) associated with (In + GLn(Fq))∩

GLn(Fq) and it is regular of degree en.

2. If q = 2, then Spec C(1)
M2(Fq)

=

2 −1

2 4

 .

3. If q ≥ 3, then Spec C(1)
M2(Fq)

=

 q4 − 2q3 − q2 + 3q q −q2 + q + 1 q3 − 2q2

1 q4 − 2q3 − 2q2 + 4q + 1 q2 (q + 1)2(q − 2)

 .

4. For q ≥ 3, the graph C(1)
M2(Fq)

is hyperenergetic and Ramanujan.

Moreover, C(1)
M2(Z2)

is neither hyperenergetic nor Ramanujan.

5. ω(C(1)
Mn(Fq)

) = χ(C(1)
Mn(Fq)

) = qn − 1 and α(C(1)
Mn(Fq)

) = (qn − q) . . . (qn − qn−1).
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Finally, we list the results on the graph C(2)
M2(Fq)

.

6. The graph C(2)
M2(Fq)

is the tensor product of the complete graph on q + 1

vertices and the complete (q + 1)-partite graph such that each partite has

q − 1 vertices, and it is a (q3 − q2)-regular graph.

7. Spec C(2)
M2(Fq)

=

q3 − q2 −q2 + q q − 1 0

1 2q q2 q3 − 3q − 2

.

8. The graph C(2)
M2(Fq)

is hyperenergetic if and only if q ≥ 3.

9. The graph C(2)
M2(Fq)

is Ramanujan if and only if q ≤ 4.

10. ω(C(2)
M2(Fq)

) = χ(C(2)
M2(Fq)

) = q + 1 and α(C(2)
M2(Fq)

) = q2 − 1.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES

[1] Akhtar, R., Boggess, M., Jackson-Henderson, T., Jimenez, I., Karpman, R.,
Kinzel, A., Pritikin, D.: On the unitary Cayley graph of a finite ring, Electron.
J. Combin. 16(2009), R117.

[2] Bollobas, B.: Modern Graph Theory, Springer, New York, 1998.

[3] Cameron, P.J., Goethals, J.M., Seidel, J.J.: Strongly regular graph having
strongly regular subconstituents, J. Algebra 55(1978), 257−280.

[4] Chen, B., Huang, J.: On unitary Cayley graphs of matrix rings, Discrete
Math. 345(1)(2022), 112671.

[5] Curtin, B., Daqqa, I.: The subconstituent algebra of strongly regular graph
associated with a Latin square, Des. Codes Cryptogr., 52(2009), 263−274.

[6] Edwin, R.D., W., H.H.: Which graphs are deterrmined by their spectrum?,
Linear Algebra Appl. 373(2003), 241−272.

[7] Dejter, I, Giudici, R.E.: On unitary Cayley graphs, J. Combin. Math. Combin.
Comput. 18(1995), 121–124.

[8] Farb, B., Dennis R.K.: Noncommutative Algebra, Springer-Verlag, New York,
1993.

[9] Fulton, W., Harris, J.: Representation Theory, A First course, Springer, Ann
Arbor, 1939.

[10] Godsil, C., Royle, R.: Algebraic Graph Theory, Springer-Verlag, New York,
2001.

[11] Gu, Z., Wan, Z.-X.: Subconstituents of orthogonal graphs of odd characteris-
tics, Linear Algebra Appl. 12(434)(2011), 2430−2447 .

[12] Ilić, I.: The energy of unitary Cayley graphs, Linear Algebra Appl., 431(2009),
1881–1889.

[13] Kasikova, A.: Distance-regular graph with strongly regular subconstituent, J.
Algebr. Comb. 6(1997), 247−252.

[14] Kiani, D., Aghaei, M.M.H., Meemark, Y., Suntornpoch, B.: Energy of unitary
Cayley graphs and gcd-graphs, Linear Algebra Appl. 435(2011), 1336–1343.

[15] Kiani, D., Aghaei, M.M.H.: On unitary Cayley graphs of a ring, Electron. J.
Combin. 19(2)(2012), #P10.

[16] Kiani, D., Aghaei, M.M.H.: On the unitary Cayley graphs of matrix algebras,
Linear Algebra Appl. 466(2015), 421–428 .



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

46

[17] Klotz, W., Sander, T.: Some properties of unitary Cayley graphs, Electron.
J. Combin. 14(2007) #R45.

[18] Kowalski, E.: Exponential Sums over Finite Fields: Elementary Methods,
ETH Zürich, 2018.

[19] Huang, J., Zhang, M.: Spectral properties of Cayley graphs over Mm×n(Fq),
Finite Fields Appl., 80(2022), 102024.

[20] Hungerford, T. W.: Algebra, Springer, 1974.

[21] Morrison, K.E., Integer sequences and matrices over finite fields, J. Integer
Seq., 9(2006), Article 06.2.1.

[22] Nowroozi, F., Ghorbani, M.: On the spectrum of Cayley graphs via character
table, J. Math. Nanosci., 4(1)(2014), 1–11.

[23] Rattanakangwanwong, J., Meemark, Y.: Unitary Cayley graphs of matrix
rings over finite commutative rings, Finite Fields Appl. 65(2020), 101689.

[24] Rattanakangwanwong, J., Meemark, Y.: Subconstituents of unitary Cayley
graph of matrix algebras, Finite Fields Appl., 80(2022), 102004.

[25] Stanley, R.P.: Enumerative Combinatorics, Volume I, Second edition, Cam-
bridge Press, 2021.

[26] Zieschang, P.-H.: Cayley graphs of finite groups, J. Algebra, 118(1988),
447−454.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47

VITA

Name Mr. Jitsupat Rattanakangwanwong

Date of Birth 22 August 1995

Place of Birth Samutprakan, Thailand

Education † B.Sc. (Mathematics)(First Class Honours),

Chulalongkorn University, 2018

† M.Sc. (Mathematics), Chulalongkorn University, 2020

Scholarship 60/40 Scholarship

Publication Article

† Rattanakangwanwong, J., Meemark, Y.: Unitary Cay-

ley graphs of matrix rings over finite commutative

rings, Finite Fields Appl., 65 (2020), 101689.

† Rattanakangwanwong, J., Meemark, Y.: Subcon-

stituents of unitary Cayley graph of matrix alge-

bras, Finite Fields Appl., 80 (2022), 102004.

† Rattanakangwanwong, J., Meemark, Y.: Eigenvalues

of zero divisor graphs of principal ideal rings, Linear

Multilinear Algebra, 70(20), 5445–5459 (2022).


	Abstract in Thai
	Abstract in English
	Acknowledgements
	UNITARY CAYLEY GRAPHS OF MATRIX ALGEBRAS
	Background on rings and graphs
	Results on unitary Cayley graphs of matrix algebras
	Objectives

	RING DETERMINED BY UNITARY CAYLEY GRAPHS
	Kiani's conjecture and DU-rings
	Constructions of DU-rings

	SUBCONSTITUENTS OF UNITARY CAYLEY GRAPHS OF MATRICES OVER FINITE FIELDS
	Subconstituents of graphs
	 Eigenvalues of normal Cayley graphs and a character table of the group `3́9`42`"̇613A``45`47`"603AGL2(`3́9`42`"̇613A``45`47`"603AFq)
	Spectral properties of `3́9`42`"̇613A``45`47`"603AC`3́9`42`"̇613A``45`47`"603AM2(`3́9`42`"̇613A``45`47`"603AFq)(1)
	Spectral properties of `3́9`42`"̇613A``45`47`"603AC`3́9`42`"̇613A``45`47`"603AM2(`3́9`42`"̇613A``45`47`"603AFq)(2)
	Clique numbers, chromatic numbers and independence numbers

	CONCLUSIONS
	REFERENCES 
	VITA

