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The Cloud Radio Access Network (C-RAN) is an innovative approach that has 

the potential to significantly reduce the expenses of setting up and operating 
wireless networks. C-RAN's placement of RAN functions, which strives to reduce 
bandwidth utilization and computation costs, is a critical component. In this study, 
our main goal is to reduce the costs associated with functionally placing the RAN 
while accounting for the computational expense and the front-haul bandwidth usage 
among various users. To achieve this, we propose to apply Particle Swarm 
Optimization (PSO) to achieve effective allocation of computational resources and 
the front-haul bandwidth, ensuring an efficient and cost-effective C-RAN design. 
Experimental results on different traffic have shown that the proposed PSO can 
provide cost-effectiveness design of the C-RAN as compared to the optimal solution 
from the integer linear programing approach. 
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CHAPTER 1: INTRODUCTION 
1.1 INTRODUCTION 

The annual growth in mobile device traffic expects to continue because of 

the growing variety of services like Metaverse, Virtual Reality (VR), Augmented 

Reality (AR), self-driving cars, Internet of Things (IoT), cloud computing, and other 

cutting-edge technologies has been a significant factor in the exponential increase 

of mobile device traffic in recent years. As traffic and users increase, we will need 

to build a cost-effective network, improve the Quality of service, and diversify 

architecture technologies. So, the fifth generation (5G) will be able to solve such 

increased traffic and user problems [1]. To meet the enlarged demand, 5G needs 

to provide adequate scalability. Radio Access Network (RAN) has become a crucial 

sector of the wireless telecommunication industry and consists of Base stations 

(BS) and antennae that enable incredible speeds and mobility. To solve the 

deployment cost and RAN optimization, the operator introduced Cloud Radio 

Access Network (C-RAN) in 2011 and aims to reduce the RAN deployment costs 

using the cloud infrastructure capabilities [2] . 

A cloud radio access network (C-RAN) is an architecture for radio access 

networks that is centralized and based on cloud computing and supports 2G, 3G, 

4G, and future wireless communication protocols. This approach aims to make a 

cost-effective RAN design and energy-efficient solution for RAN. This C-RAN 

architecture helps us reduce the Base Stations' complexity, which shares signal 

capabilities with multiple antennas [3]. This thesis research aims to optimize the C-

RAN functional splits to minimize the cost. RAN optimization seeks to enhance the 

Quality of service (QoS) performance, and another ambition is to find the optimum 

set of RAN parameters [4]. It can be achieved by increasing flexibility and lowering 

the cost of infrastructure deployment by implementing the functional split in RAN. 

To reduce costs and optimize bandwidth use, we will propose the Particle Swarm 
Optimization (PSO) method in this thesis research. Additionally, we will minimize the 
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cost and bandwidth usage of front-haul by using the already-in-use integer linear 
programming (ILP) [5]. The final findings regarding bandwidth and computational cost 
will be compared to ILP and PSO. 
 
1.2 OBJECTIVE 
 
The objective of this thesis aims to optimize computational cost and utilization of 

bandwidth by focusing on the performance of Cloud RAN (C-RAN) architecture with 

Particle Swarm Optimization technique (PSO). To compare with my particle swarm 

optimization approach, we will use existing ILP algorithms. Consequently, the goal is 

to reduce the cost of RAN functional placement, which includes computational cost 

and then bandwidth utilization on the Fronthaul across the different user. 

1.3 PROBLEM STATEMENT 
 
The Cloud Radio Access Network (C-RAN) is an innovative technology that can reduce 

the expense of wireless networks. C-RAN, however, also brings different challenges, 

like optimizing bandwidth utilization and computing cost. Integer linear programming 

(ILP) is the current state-of-the-art methodology for optimizing computational cost and 

utilization of bandwidth in C-RAN. ILP techniques, on the other hand, are 

computationally complex and might be challenging to scale to extensive networks. In 

this thesis, we will provide a particle swarm optimization (PSO)-based method for 

minimizing computational cost and bandwidth utilization in C-RAN. PSO is a 

metaheuristic algorithm that is renowned for having the ability to address effectively 

challenging optimization issues. The results of this thesis will help develop C-RAN 

networks that are more effective and affordable. 

 
1.4 SCOPE OF THESIS 
The scope of this thesis paper is as follows: 
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1. To analyze how cloud radio access networks (C-RAN) might optimize 
bandwidth and computing costs using particle swarm optimization (PSO). The 
goal is to reduce the RAN operating placement cost, including computational 
expenses and Fronthaul bandwidth usage across different users. 

2. To achieve this, we will compare the performance of the new PSO-based 
method alongside existing Integer Linear Programming (ILP) methods, which 
are the most advanced technique for minimizing computational cost and 
bandwidth usage in C-RAN. 

1.5 CONTRIBUTION 
This thesis contributes to the field of cloud radio access networks (C-RAN) by exploring 

the utilization of particle swarm optimization (PSO) for optimizing bandwidth and 

processing costs. The primary objective is to minimize the RAN functional placement 

cost, which encompasses computational costs and fronthaul bandwidth utilization 

across multiple users. To achieve this goal, the performance of a novel PSO-based 

method was evaluated, revealing its effectiveness in generating good solutions. 

Through comprehensive evaluations, it was discovered that the PSO-based method 

exhibits several advantages. Firstly, it has the capability to explore a wider range of 

potential solutions, allowing for a more thorough search of the optimization space. 

Secondly, the PSO algorithm demonstrates flexibility in adapting to environmental 

changes, enabling it to adapt and optimize the system's performance based on varying 

conditions. The results obtained from the evaluations showcase the convergence of 

the PSO-based method towards optimal solutions. A notable observation is that as the 

number of iterations increases, the performance of PSO closely approximates the 

optimal solution achieved by Integer Linear Programming (ILP). This indicates that PSO 

can serve as a viable alternative to ILP for a variety of optimization problems, 

particularly those where the number of iterations is not a limiting factor. Furthermore, 

the study highlights the importance of fine-tuning the iteration parameter in the 

deployment processes to achieve desirable cost outcomes. By carefully adjusting the 

number of iterations, the deployment costs tend to stabilize and converge, providing 
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insights into optimizing the PSO-based process for reducing the cost of bandwidth and 

computing in C-RAN. The findings of this research suggest that the PSO-based approach 

holds significant promise as a new strategy for cost reduction in C-RAN, specifically in 

terms of bandwidth and computing. The integration of PSO into C-RAN optimization 

processes provides a fresh perspective and opens avenues for further investigation and 

improvement in this domain. 

In summary, this thesis contributes to the field by demonstrating the efficacy of PSO 

in optimizing bandwidth and processing costs in C-RAN. The research findings shed light 

on the benefits of the PSO-based approach, its convergence to optimal solutions. 

Ultimately, this work paves the way for leveraging PSO as a valuable tool for cost-

effective optimization in C-RAN environments. 

1.6 OUTLINE OF THESIS  
 

This thesis contains five chapters. The objectives, problem description, range of ideas, 

and contributions are all described in Chapter 1 of the thesis. Background technologies 

covered in Chapter 2 include 5G, C-RAN, Functional Split, ILP, and PSO. In Chapter 3, 

the literature reviews for this thesis project are described. The methods and simulation 

testing are shown in Chapter 4. Chapter 5 will finally wrap up the thesis research. After 

Chapter 5, references are also listed. 
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CHAPTER 2: BACKGROUND 
2.1. FIFTH GENERATION (5G) 

Modern wireless communication has become progressively more familiar with 

the development of wireless technologies. Despite 3G and 4G, which have shifted their 

focus to data and mobile internet service, 2G primarily focused on phone service. The 

wireless cellular network's initial generation was known as 2G. A maximum data rate 

of 144 kbps was available when it was first launched in the early 1990s. Despite 

supporting simple data services, such as text messaging, 2G was primarily used for voice 

conversations. In terms of wireless cellular networks, 3G was the second generation. 

With a maximum data rate of 2 Mbps, it was first launched in the late 1990s. Streaming 

video, email, and web browsing are just a few of the data services that 3G was built to 

serve. The fourth generation of wireless cellular networks is known as 4G. It was 

released in the early 2000s and had a 100 Mbps top data rate. High-definition video 

streaming and online gaming are only two examples of the additional data services 

that 4G was created to offer.  

The fifth generation of wireless technology, or 5G, has become disruptive in the 

connection and communication industries. How we live, work, and interact with 

technology will change because 5G promised previously unheard-of speed, low 

latency, and enormous capacity. Three groups of 5G services can be described, 

including eMBB, uRLLC, and mMTC. When seeking to meet with a typical end customer, 

eMBB, which stands for improving mobile broadband, is essential. Additionally, uRLLC 

stands for ultra-reliable low latency communications, employed in some remote 

factories and autonomous industries because sub-millisecond latency is typically 

required. The term "mMTC" refers to massive machine-type communication mainly 

employed in smart factories [6]. The International Telecommunication Union (TTU) 

summarized the 5G specifications by using case in Figure 1. The 5G network's internet 

rates are among its most impressive characteristics. 5G provides blazing-fast 

downloads, seamless streaming of high-definition video, and immersive virtual reality 
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experiences with peak download speeds of up to 10 gigabits per second (Gbps). This 

astounding speed creates many opportunities, from increasing telemedicine and 

remote collaboration to realizing the full potential of cutting-edge technologies like 

autonomous vehicles and augmented reality. Low latency is also another feature that 

sets 5G apart. Latency is the time elapsed between delivering a command and 

receiving a response. As little as one millisecond (ms) of ultra-low latency is available 

on 5G networks, enabling real-time interactions and applications that need immediate 

responsiveness. This ultra-low latency is essential for applications requiring split-

second judgments and actions, such as driverless vehicles, industrial automation, and 

remote surgeries. 5 G's enormous capacity allows it to accommodate an 

unprecedented number of connected devices simultaneously.  

In the Internet of Things (IoT) era, when billions of devices are connected and 

exchanging data, this feature is crucial. 5G allows seamless connectivity for various IoT 

applications, from smart cities and homes to industrial automation and agriculture. 

Additionally, 5G improves wireless networks' security and reliability. It includes strong 

encryption, authentication, and privacy methods to protect data transfer. This 

increased security is crucial as more vital infrastructure and services relieve wireless 

networks to function. 5G technology aims to provide wider bandwidth, broader 

coverage, and higher-speed internet service with high throughput. Improvement in the 

advanced data coding/modulation and smart antennas are available at 100Mbps (full 

mobility) and almost 1Gbps (low mobility) [5, 6] . In addition to high-speed internet 

service, it also provides users with the following advantages and features: 

▪ Multiple data transfer paths concurrently 

▪ More secure and better QoS (Quality of Service) 

▪ Flexible architecture and low power consumption 
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Figure:  1 5G Use Case and Capabilities for different use cases[2, 3] 
These are the 5G's benefits and drawbacks: 

Pros: 

Faster speeds: With theoretical speeds of up to 20 Gbps, 5G is far quicker than 

previous generation networks. As a result, you can stream music, play games, and 

download movies considerably more quickly than you could with 4G. 

Lower latency: The time it takes for data to go between your device and the 

network and back is known as latency. Since 5G has lower latency than 4G, your 

gadgets will respond more quickly. 

Greater capacity: Compared to 4G, 5G can accommodate more devices. This implies 

that there will be less network congestion and a lower probability of slowdowns. 

Higher bandwidth: Compared to 4G, 5G has higher bandwidth. This implies that you 

can simultaneously download and upload more data. 

Transformational Applications: 5G technology opens new avenues for creative 

programs and services. It makes advancing technologies like telemedicine, 

autonomous vehicles, virtual and augmented reality, innovative infrastructure, and 

precision agriculture possible. 

Network Slicing: The 5G standard adds the idea of network slicing, enabling network 

operators to build fictitious, separate networks suited to specific use cases. For 

sectors like healthcare, manufacturing, and transportation, this offers tailored services 

with particular performance characteristics. 
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Cons: 

Limited Coverage: Because 5G network deployment is ongoing, coverage may need 

to improve in some places. Compared to urban areas, access to 5G infrastructure 

may be delayed in rural and isolated areas. 

Device Compatibility: Users must have compatible devices to utilize 5G fully. 

Smartphones and other devices with 5G capabilities may be limited initially, and 

upgrading older machines can be expensive. 

Expensive: 5G equipment and plans cost more than 4G equivalents. However, prices 

are anticipated to decline when 5G becomes more commonplace. 

Overall, 5G technology is anticipated to change several industries, including 

manufacturing, health care, transport, and entertainment. It will allow innovative 

services and applications to take advantage of expanded capacity, dependable 

connectivity, quicker speeds, and lower latency. 

2.2 OVERVIEW OF RADIO ACCESS NETWORK (RAN) 
One of the significant parts of the network that manages radio communication is the 

Radio Access Network (RAN). To create a network connection within the mobile web, 

the User Equipment (UE) must first establish a connection to the radio access network 

(RAN). User Equipment (UE) and Core Network (CN) can connect with users directly 

over radio waves through the Radio Access Network (RAN), which also serves as a 

gateway. We have employed conventional as a component of RAN in 2G, 3G, and 4G 

cellular systems. The Baseband Processing Unit (BBU) and Radio Unit (RU), located at 

the site, comprise the traditional RAN's two primary nodes [6]. 

Traditional RAN characteristic: 

▪ Each Base Station can connect to the fixed number of 

antennas elements 
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▪ Antenna can cover small areas and can handle transmission 

and reception within the area. 

▪ Capacity is affected by such parameters that means capacity is 

limited by interference. 

These are the challenges in the traditional RAN system: 

▪ We require a larger number of base stations. 

▪ Requires initial investment, site support system, site 

management and rental, etc., 

▪ The base station utilization rate is low. 

▪ Baseband Processing Unit 

▪ Faster data service upgrade network 

2.2.1 DISTRIBUTED RADIO ACCESS NETWORK (D-RAN) 
The baseband processing units (BBUs) from the base stations are 

distributed to a central location by a radio access network design called a 
distributed radio access network (D-RAN). This enables better performance and 
the more effective use of resources. The BBUs are situated at the base stations 
in a conventional RAN architecture. Because of this, every base station has a 
unique BBU. Since not all base stations are constantly in use, this may not be 
resource efficient. 

Furthermore, the separation between the base stations and the central 
office may result in delays, impairing performance. The BBUs are relocated to a 
central place by D-RAN to overcome these problems. Resources can be used 
more effectively since several base stations can share the BBUs. Performance 
may also be enhanced by shortening the distance between the base stations 
and the central office. A crucial technology for 5G networks is D-RAN. Compared 
to 4G networks, 5G networks are anticipated to require substantially more 
bandwidth and capacity. D-RAN's improved performance and resource-use 
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efficiency can assist in meeting these demands[7]. The following are a few 
advantages of utilizing D-RAN:  
Performance improvement: D-RAN can increase performance by supplying 
additional bandwidth and lowering latency. Resource sharing across different 
base stations allows D-RAN to make better use of its resources. 
Cost savings: D-RAN can save money by minimizing the number of BBUs that 
must be deployed. 

D-RAN is a promising technology that could raise the effectiveness and 
performance of 5G networks. Figure 2 illustrates the D- RAN architecture. The 
Fronthaul interface is the link between BBU and RRU while the connection 
between BBU and Core Network is also known as Backhaul. Although the D-RAN 
architecture catered to the needs of previous generations of mobile networks, it 
would not be appropriate for 5G's rigorous list of requirements due to its lack of 
centralized coordination of radio resources. 

 

 
Figure:  2 Distributed RAN Architecture (D-RAN) 
 

2.2.2. CLOUD RADIO ACCESS NETWORK (C-RAN) 
The Cloud Radio Access Network (C-RAN) is a next-generation radio 

access network architecture that centralizes the baseband processing 
responsibilities of the RAN in a cloud computing setting. This enables better 
performance, lower costs, and more effective resource use. The baseband 
processing tasks are carried out in the traditional RAN architecture at each base 
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station. Since not all base stations are constantly in use, this may not be 
resource efficient. Furthermore, the separation between the base stations and 
the central office may result in delays, impairing performance. C-RAN addresses 
these problems by centralizing the baseband processing operations. As a result, 
numerous base stations can share the baseband processing tasks, resulting in 
more effective use of resources[8]. 

Additionally, less space between the base stations and the central 
office could lead to better performance. The primary goal of C-RAN is to divide 
the standard base station in traditional RAN into two components, like RRH, 
which primarily handles radio frequency and baseband unit processing. C-RAN 
only emphasizes three key elements. These are Front-haul network, RRH, and 
BBU pool [9]. 

 
Figure:  3 Cloud Radio Access Network (C-RAN) 
 
Sites can be challenging to manage and track on a traditional network. C-RAN is thus 
made available for centralized site management and monitoring. Furthermore, it 
saves less space because the CRAN needs more equipment. Both rent and the cost 
of energy dissipation are reduced. The 5G CRAN can also offer increased operational 
effectiveness. It is simple to meet the bandwidth and data rate needs in 4G since 
one BBU can only connect to one RRU; however, with the 5G C-RAN architecture, 
many RRUs can connect to one BBU [4]. Instead of the numerous BBUs everywhere, 
the conventional RAN employs a single central BBU (C-BBU). An optical link connects 
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the C-BBU to an IPAG, and an eCPRI interface connects it to distributed RRHs. It is a 
centralized technology-based architecture. 
Additionally, it offers different cellular technologies, including 2G, 3G, and 4G. Clean 
space, centralized management, and real-time radio integration are some of the 
primary C-RAN (centralized RAN) capabilities. Increased flexibility is provided by C-
RAN, which also adds a new communication channel called Fronthaul (FH) —the C-
RAN design attempts to improve RAN performance by integrating virtualization and 
cloud computing ideas. There are several benefits to C-RAN, as well as some 
drawbacks, which are discussed in [1],[2]. 
There are some Cloud RAN benefits and drawbacks: 
Pros: 
Increased performance: By lowering latency and supplying greater bandwidth, cloud 
RAN can increase performance. 
More effective use of resources: By distributing baseband processing tasks among 
several base stations, Cloud RAN may make better use of its resources. 
Cost savings: By lowering the quantity of baseband processing units that must be 
deployed, cloud RAN can lower costs. 
Flexibility: Cloud RAN can be readily scaled up or down to suit changing demands, 
making it more versatile than traditional RAN designs. 
Scalability: Cloud RAN can accommodate a huge number of users and devices, 
making it very scalable. 
Energy efficiency: Cloud RAN may use less energy than conventional RAN 
architectures since it can centralize baseband processing functions. 
 
Cons: 
Complexity: Cloud RAN is a sophisticated technology that calls for careful design and 
execution. 
Security: Cloud RAN presents new security issues that need to be resolved. 
Standardization: There is no single Cloud RAN standard because the technology is 
currently being developed. 
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Latency: Cloud RAN can cause latency since baseband processing operations must 
be sent over a network. 
Cost: Since cloud RAN needs the deployment of a cloud infrastructure, it may be 
more expensive than traditional RAN architecture. 
 
In conclusion, the Cloud Radio Access Network (C-RAN) offers increased efficiency, 
cost savings, flexibility, and more remarkable performance, and it marks a crucial 
turning point in mobile network architecture. With the help of C-RAN's centralized 
and virtualized approach, operators can optimize network resources, deliver 
outstanding products and services, and prepare for the coming era of mobile 
communications. C-RAN will shape the next wave of wireless connectivity as mobile 
networks develop[8]. 
 

2.2.3. CPRI vs eCPRI 
To transfer data between baseband processing units and remote radio 

heads, also known as front-haul, mobile operators used the CPRI interface in 4G. 
However, in 5G, they switched to the eCPRI interface because the CPRI interface 
is incompatible with the 5G system. The Common Public Radio Interface, or CPRI, 
outlines the requirements for the REC and RE interface. Evolved Common Public 
Radio Interface, or eCPRI, is a CPRI publication standard that was later adopted. 
Purpose of deployment of CPRI & eCPRI : 
To make the base station architecture simpler, divide the radio base station's 
functionality into two modules, such as eREC and eRE. They are linked by a 
transportation network. 
Features of CPRI 

▪ P-to-P Interface 
▪ Master ports and Slave ports are connected directly to CPRI by optical or 

electrical cables 
▪ Network Layer Function is not supported 
▪ Technologies at CPRI depend on REC / RE functionality 
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▪ CPRI can support the following logical connections: 
▪ P to P (From one REC and one RE) 
▪ Point to multipoint (from one REC to multiple RE) 
▪ REC / RE also supports Redundancy, Security, QoS 

Function and Features of eCPRI 
▪ Network includes eCPRI nodes (eREC and eRE) 
▪ At physical level, master and slave ports are not supported. 
▪ Located above the transport layer. 
▪ eCPRI maintains the complexity of the eRE with flexible functional 

decomposition and reduces the data requirements between the eREC and 
the eRE compared to CPRI. 

▪ The eCPRI specification makes it more flexible by placing it functionally within 
the physical layer of the base station. 

 
2.3 C-RAN OPTIMIZATION 

Many mobile network operators are looking for a new algorithm to solve 

the resource allocation (RA), load balancing, power efficiency, etc., problems 

to validate and streamline C-RAN deployment. Combinatorial optimizations are 

one of the effective methods [10] because they can tackle a wide range of 

issues, including scheduling, planning, and routing. These are all complicated 

issues that are challenging to tackle. One of the most excellent techniques for 

optimizing and resolving issues is linear programming (LP), which comes in two 

flavors: mixed integer linear programming (MILP) and integer linear programming 

(ILP). Managing and designing a Cloud Radio Access Network (C-RAN) network 

to achieve optimum performance is known as C-RAN optimization. This can be 

a challenging operation as there are many things to consider, including the 

number of base stations, the network's bandwidth, and user traffic patterns. To 

maximize or minimize the performance, efficacy, and cost-effectiveness of C-

RAN setups, C-RAN (Cloud Radio Access Network) optimization is a crucial 
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component. Assigning the user demand to each split and evaluating cost 

optimization are critical components of this thesis. Baseband processing for the 

Cloud RAN is centralized in a cloud-based data center. It contributes to better 

performance and more effective resource use. Still, it also creates new 

difficulties, such as balancing the functional roles of the network's split and 

centralized components. Available split describes the splitting of baseband 

functions among the central unit (CU) and the remote radio unit (RRU) [1]. There 

are three primary functional split options: 

▪ Full split: The CU is the central location for all baseband operations. 

▪ Partial split: Some baseband operations are spread to the RRUs, while 

others are consolidated in the CU. 

▪ No Split; the RRUs get all baseband functions. 

The effectiveness of Cloud RAN depends on functional split 

optimization, a challenging but crucial issue. Optimization of the functional split 

aims to identify the partition that maximizes network performance while 

minimizing expense. Functional split optimization can be done in a variety of 

different ways. One method to discover the ideal split is to define the network 

mathematically and then use optimization techniques to determine it. The use 

of simulation to compare many split choices and select the one that performs 

the best is an alternative method. Operators can enhance their networks' 

efficiency and lower costs by optimizing the functional split. 

 

The following are some advantages of functional split optimization: 

▪ Enhanced performance: Functional split optimization can enhance 

network performance by lowering latency and boosting throughput. 

▪ Reduced cost: By lowering the number of baseband units (BBUs) 

needed, functional split optimization can lower the cost of the network. 
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▪ Increased adaptability: By enabling operators to alter the split as 

necessary, functional split optimization can increase the adaptability of 

the network. 

 

The following are some difficulties with functional split optimization: 

▪ Complexity: Because there are so many variables to consider, functional 

split optimization is a challenging problem. 

▪ Lack of standards: It is challenging for operators to assess various 

solutions since there are no standards for functional split optimization. 

▪ Lack of information: Operators find it challenging to select the best split 

because there needs to be more information available on the 

effectiveness of the various functional split alternatives. 

2.4. 3GPP FUNCTIONAL SPLIT OPTIONS 
In a cellular network design, the baseband processing unit (BBU) and the radio unit 
(RU) are divided into different functional categories according to the 3rd Generation 
Partnership Project (3GPP) practical split idea. It outlines how the processing 
responsibilities are split between these two entities for a scalable and effective 
network operation. The concept of a functional split is especially applicable in the 
case of cloud radio access network (C-RAN) deployments, as the traditional baseband 
processing operations are split from the remote radio units and compiled in a BBU 
pool. This centralization enables enhanced coordination, better resource usage, and 
simpler network management. The 3GPP functional split offers a variety of 
alternatives for splitting the baseband processing tasks, allowing network operators 
and equipment suppliers to select the best configuration following their unique 
needs and deployment scenarios. 
Functional Split Options [1][2][4]: 
Option 1: RRC/PDCP - Baseband processing tasks are split between the distributed 
unit (DU) and the centralized unit (CU) in this option. In contrast to the DU, which is 
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in charge of lower-layer tasks like physical layer processing, the CU handles higher-
layer activities like RRC and PDCP. As the processing load is distributed, this division 
allows for centralized control and management. Option 1 provides a balance 
between centralization and decentralization, enabling effective resource 
management and enhanced network performance. 
Option 2: PDCP/RLC - The distributed unit (DU) and the centralized unit (CU) each 
perform a different baseband processing task in this option. While the CU is in charge 
of higher-layer functions, the DU is in charge of PDCP and RLC. The distributed 
processing of packet-level operations in Option 2 enables effective resource 
management and decreased latency. It provides a centralization/distributed 
processing trade-off for better network performance. 
Option 3: intra RLC - Option 3 separates the RLC layer into the upper RLC and the 
lower RLC. While the lower RLC is situated in the DU, the upper RLC is found in the 
CU. This split enables better performance and more effective resource use. 
Option 4: RLC/MAC - Baseband processing tasks are split between the distributed unit 
(DU) and the centralized unit (CU) in this option. While the DU is generally in charge 
of lower-layer tasks, the CU is in charge of higher-layer tasks like RLC and MAC. With 
Option 4, a sizable percentage of baseband processing may be centrally managed, 
improving network management and resource efficiency. The RLC and MAC functions 
are divided, allowing for flexibility in resource allocation and optimization tactics. As 
a result of the dispersed processing in the DU, lower-layer functions perform better, 
and the network as a whole is more efficient. 
Option 5: intra MAC - In this option, a number of distributed units (DUs), each of 
which is in charge of a portion of the MAC functions, are used to distribute the 
baseband processing functions. Control and higher-layer duties remain with the 
centralized unit (CU). Option 5 increases resource efficiency and scalability by 
enabling load balancing and parallel processing by dividing MAC functions among 
several DUs. This division maintains centralized control for higher-layer operations 
while allowing for the effective management of medium access control activities like 
scheduling and resource allocation. In order to manage the MAC layer operations 
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within the cellular network, the intra MAC split offers flexibility and chances for 
optimization.  
Option 6: MAC-PHY - Option 6 is a functional split option that is also known as the 
MAC-PHY split. In this arrangement, the distributed unit (DU) and the centralized unit 
(CU) each perform a different baseband processing task. The DU typically performs 
lower-layer tasks associated with the physical layer (PHY), whereas the CU is in 
charge of higher-layer tasks, including MAC. Option 6 enables effective resource 
allocation and optimization techniques by separating MAC and PHY functions. The 
divide improves overall network performance by enabling centralized control and 
maintenance of MAC operations while outsourcing PHY processing to the DU. This 
division allows for scalability and adaptability to various deployment circumstances 
and network requirements, offering flexibility in network deployments. 
Option 7: Intra PHY - In this approach, a number of distributed units (DUs) are used to 
distribute the baseband processing functions, with each DU being in charge of a 
different set of PHY functions. The centralized unit (CU) continues to exercise control 
and management. By dividing PHY functions across many DUs, Option 7 provides 
parallel processing and load balancing, improving resource consumption and 
enhancing scalability. Through this division, physical layer duties like modulation, 
coding, and beamforming can be handled effectively while remaining under 
centralized control for higher-layer operations. The intra PHY split gives the cellular 
network architecture's physical layer operations flexibility and chances for 
optimization. 
Option 8: PHY/RF - Baseband processing functions are split between the distributed 
unit (DU) and the centralized unit (CU) in this option. In contrast to the DU, which is 
in charge of RF-related tasks, the CU is in order of higher-layer tasks, such as PHY 
processing. Option 8 permits the division of PHY and RF operations, providing 
centralized control and management of PHY processing while dispersing RF 
operations closer to the radio units. With this division, the CU and DU can work 
together more effectively, quickly, and with better resource utilization. The cellular 
network can be deployed and optimized well with Option 8's division of the 
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processing jobs, primarily when RF processing must be carried out close to the radio 
units. 

 

   Figure:  4 3GPP Functional Split Options [2] 
2.5. INTEGER LINEAR PROGRAMMING 
A robust optimization method for solving optimization issues where decision 
variables must take integer values is the Integer Linear Programming (ILP) algorithm. 
ILP is a subfield of mathematical programming that searches for an optimal answer 
by expressing the issue as a linear program with additional constraints on integer 
variables. ILP problems are frequently used to simulate resource allocation, 
scheduling, and routing issues. Different algorithms can be used to tackle ILP 
problems. Making use of a branch-and-bound algorithm is one typical strategy [24]. 
Branch-and-bound algorithms begin by analyzing every potential answer to the 
query. After that, they divide the issue into more manageable subproblems and 
recursively solve each. The algorithm ends when it discovers an optimal solution or 
when it can demonstrate that there isn't a better one. It can be challenging to 
address ILP issues. Since they are NP-hard, no polynomial-time method has been 
discovered to solve them consistently. However, ILP algorithms can be made to 
perform better by utilizing a variety of heuristics. Numerous problems in the real 
world have been resolved using ILP algorithms. For instance, ILP algorithms have 
been used to schedule airplanes, route trucks, and distribute resources in 
manufacturing facilities. To improve the performance of already-existing networks 
and to develop brand-new wireless ones, ILP algorithms are also used. ILP issues can 
be resolved using a variety of methods, including: 
Branch and Bound: The branch and bound algorithm divide the problem space into 
smaller subproblems or branches and then iteratively explores each branch. The 
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branches that can't contain the best answer are cut off using upper and lower 
constraints. 
Cutting Plane Techniques: Cutting plane techniques lower the viable zone by 
progressively adding more limitations (cutting planes) to the ILP formulation. These 
techniques assist in simplifying the formulation and removing subpar answers. 
Heuristic: Heuristic approaches offer approximations of ILP issue solutions, which may 
not always be ideal but are computationally effective. Heuristics employ problem-
specific rules or algorithms to direct the search for practical solutions. 
Mixed Integer Programming: In mixed integer programming (MIP), when the integer 
constraints are relaxed to allow fractional solutions, ILP, and linear programming 
relaxation are combined. An initial answer is provided by the linear programming 
relaxation, which is then iteratively improved by branching and bounding on the 
integer variables.  
The following are a few benefits of employing ILP algorithms: 
Numerous real-world issues can be modeled using ILP algorithms. 
ILP algorithms can be used to locate the optimal solutions to issues. 
Even when an ideal solution cannot be identified, ILP algorithms can still identify 
workable answers to issues. 
The following are some drawbacks of employing ILP algorithms: 
ILP issues might be challenging to resolve. 
ILP algorithms can take a lot of time. 
Utilizing ILP algorithms can be costly. 
In conclusion, the Integer Linear Programming (ILP) algorithm is a powerful 
optimization technique for addressing discrete decision-based combinatorial 
optimization problems. ILP offers a mathematical framework for determining the best 
solutions by presenting the problem as a linear program with additional constraints 
on integer variables. Although ILP problems might be computationally tricky, 
numerous solution strategies can address these issues, such as branch and bound, 
cutting plane methods, and heuristics [11]. 
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2.6 PARTICLE SWARM OPTIMIZATION (PSO) 
Particle Swarm Optimization (PSO) is a well-known population-based 

optimization technique motivated by the social behavior of fish schools and bird flocks. 
Kennedy and Eberhart created it in 1995. PSO is a metaheuristic algorithm that seeks 
out the most appropriate answer in a problem space by simulating the collective 
intelligence of a collection of particles. A group of particles in PSO stands for possible 
solutions to the optimization problem. Iterative adjustments are made to each 
particle's position and speed based on its knowledge and that of the other particles. 
The best-known solution for the entire swarm (global best) and the best-known 
solution for each particle (personal best) controls how the particles move. Particles 
explore the search space iteratively as they move closer and closer to the ideal 
outcome [12]. PSO is renowned for being straightforward and successfully resolving 
various optimization issues. It applies to continuous and discrete optimization domains 
because it does not require explicit knowledge of the case or gradients. Engineering, 
economics, data mining, and machine learning are just a few domains where PSO has 
been successfully used. The algorithm's success depends on its ability to balance 
exploitation and exploration. The particles utilize knowledge from the most successful 
solutions so far while scouring the search space for new, promising places. This 
equilibrium enables PSO to efficiently explore complicated and high-dimensional 
problem spaces in pursuit of optimal or nearly optimal solutions [13]. 
Pros: 
Simplicity: PSO is comparatively simple to comprehend and apply compared to other 
optimization techniques. Users without a background in complex mathematics can 
utilize it thanks to its simple concept and few parameters. The following are some 
benefits and drawbacks of using PSO: 
Exploration at a Global Scale: PSO encourages particle search across the solution space 
at a global scale. As a result, there is a higher chance that the algorithm will find the 
overall optimum by identifying alternative solutions in uncharted territory. 
Population Diversity: PSO keeps its population of particles diversified, preventing an 
early convergence to less-than-ideal solutions. The exchange of knowledge and 
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learning among the particles enables a balanced exploration and exploitation of the 
search space. 
Flexibility: PSO can address both continuous and discrete optimization issues, so it is 
adaptable to various disciplines. It is also simple to modify and expand to consider 
certain problem restrictions or add knowledge related to that challenge [5][11].   
Cons:  
Convergence to Local Optima: Unlike many other optimization techniques, PSO does 
not always find the global optimum. Its exploration capabilities may benefit from 
careful parameter setting and adjusting. In complicated and multimodal issue spaces, 
it may converge to local optima. 
Sensitivity to Parameters: PSO performance may vary depending on the population 
size, social and cognitive characteristics, and velocity constraints. Choosing the correct 
parameter values for a particular situation requires trial and error or tweaking strategies 
to get the best results. 
Cost of computation: PSO requires assessing the fitness function for each particle in 
each iteration, which can be time-consuming or costly for complicated issues or huge 
populations. The effectiveness of the method and the rate of convergence rely on the 
difficulty of the fitness evaluation and the size of the solution space [5][11]. 
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CHAPTER 3  
LITERATURE REVIEW AND RELATED WORKS 

3.1.  LITERATURE REVIEWS  
The authors used a novel functional split orchestration scheme [5] to minimize the 
deployment cost of 5G C-RAN. They use integer linear programming (ILP) to generate 
the cost function for each split and particle swarm optimization (PSO) to optimize the 
cost function for each functional split. They proved their solutions had better 
performance for the resolution time and total deployment cost. The authors in [14] 
provide an end-to-end system analysis considering overall costs and energy usage. 
They suggest a mixed integer programming (MIP) formulation for the problem and use 
the IBM CPLEX Optimizer to analyze the impact of consumer delay requirements on 
decision-making. However, their model's application is constrained by its singular user 
emphasis. In [15], the authors provide graph-based architecture, considering the 
advantages of the resulting path established by the front-haul connection and the 
latency requirements set by each of the cells to reduce the cost of computing the 
allocation of resources (RA) at two locations. Although the fundamental characteristics 
of natural systems reflect by the assumption of RA costs and latency constraints, The 
author formulates the problem using graph clustering and applies a genetic algorithm.  

 The author in [16]provides a detailed explanation of the tele-traffic theory 
to analyze the allocation of resource periods and the resource allocation rate at the 
front-haul link. And then, based on this, the author explains in detail the purpose of 
saving energy and costs to realize a great deal for baseband processing sub-units when 
front-haul or baseband processing resources become further expensive for an 
operator. Moreover, it proves that user traffic has a high impact on segregation. The 
author formulates the issue using the tele-traffic technique and uses OPNET, a discrete 
event-based simulator. The study by the authors [17] presents a user-split 
orchestration approach that aims to reduce the front-haul link's energy and bandwidth 
consumption. The model uses quantitative models to calculate computing and link 
needs for each split. This strategy, however, is based on an inaccurate split model that 
treats the platform control function, including the MAC scheduler, as a user-centric 
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processing unit. The IBM CPLEX optimizer handles the optimization work and the 
problem construct using Mixed Integer Programming (MIP). The authors of [18] propose 
an integer linear programming (ILP) formulation of the problem and use the Lagrangian 
relaxation algorithm to minimize the number of routes that may lead to the release 
of critical services delay while also optimizing the cost of using baseband processing, 
which is used across multiple websites. Despite the network calculus technique, this 
function does not offer a quantitative standard method to calculate the cost of the 
requirements for each split. It is comprehensive to measure the delay on links on 
optical and wireless networks. 

  The authors [19] focus on choosing functional divisions despite 
considering various types of cell interference. Integer linear programming (ILP) and a 
heuristic approach solve the problem. They provide a novel heuristic technique to 
reduce the bandwidth used in the transport network and inter-cell interference. The 
functional split method performs at the cell level, which may have drawbacks in 
situations that call for a more fine-grained or user-centric approach. In the paper [20], 
a comprehensive model introduces to optimize the total cost of ownership (TCO) of a 
fiber-based RAN with split baseband processing units (BBU). The model takes 
quantifiable resource requirements for computation and links into account. Although 
it generates a split for each connected user in a cell, this coarse-grained approach 
might need to be revised. Integer linear programming (ILP) is used to define the 
problem, and the IBM CPLEX optimizer is used to resolve it.  

 In a paper [21], the authors present a technique for achieving energy 
efficiency in the 5G infrastructure that utilizes integer linear programming (ILP) and an 
LSTM-based neural network. Their strategy focuses on maximizing the functional split 
of optical transport to reduce overall energy consumption. It is crucial to remember 
that the split's deployment is generally cell-centric, which could limit its application in 
situations calling for flexibility or user-centric split setups. For RAN optimization and 
control, the author in [22] proposed deep reinforcement learning based on the double 
Q network. It focused on choosing the suitable schedule configuration for each real 
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eNodeB. They proved that the network performance outperformed the existing rule-
based algorithm by applying deep reinforcement learning to an entire RAN system. 

3.2. A COMPREHENSIVE SURVEY OF RESOURCE ALLOCATION ALGORITHMS IN 
CLOUD-RAN: AN OVERVIEW 
Table 1 provides a comprehensive survey of cloud RAN resource allocation algorithms 
found in the literature. It highlights the taxonomy of these strategies in terms of: 
Reference, Title, Objective function, Problem Modeling and Algorithm. 

Table:  1 Overview of Resource Allocations 
Ref Title Objective Function Problem 

Modeling  
Algorithm 

[5] 5G RAN: Functional 
Split Orchestration 
Optimization 
 

To minimize both front-haul 
bandwidth and computational 
resources utilized 

Integer Linear 
Problem (ILP) 

Hybrid Particle 
Swarm 
Optimization 
(PSO) 

[14] Delay-aware Green 
Hybrid CRAN 

To minimize the end-to-end 
delay, Front-haul bandwidth 
utilization and computational 
cost 

Mixed Interger 
Linear 
Programming 

IBM CPLEX 
optimizer 

[15] Graph-based 
Framework for 
Flexible Baseband 
Function Splitting 
and Placement in 
C-RAN 

To minimize Front-haul delay 
and computational costs 

Graph 
Clustering 

Genetic 

[16] Evaluating C-RAN 
fronthaul 
functional splits in 
terms of network 
level energy and 
cost savings 

To explore and analyze 
multiple split points for 
multiplexing improvements 
that relate to the cost and 
energy 

Teletraffic 
theory 

Discrete event-
based simulator - 
OPNET 
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[17] Interplay of energy 
and bandwidth 
consumption in 
cran with optimal 
function split 

To reduce the front-haul link's 
energy and bandwidth 
consumption 

MIP IBM CPLEX 
optimizer 

[18] 5G Infrastructures 
Supporting End-
User and 
Operational 
Services: The 5G-
XHaul Architectural 
Perspective 
 

-To reduce the front-haul 
network's operational costs by 
lowering power consumption 
while maintaining rigorous 
delay limitations. 
-To reduce back-haul (BH) 
network end-to-end cloud 
service delay. Both goals are 
crucial for improving the 
effectiveness and performance 
of the entire network design. 

Multi-objective 
service 
provisioning 
ILP 

Lagrangian 
Relaxation 

[19] Flexible Functional 
Split in 5G Networks 

To choose the most efficient 
split option that minimizes 
both fronthaul bandwidth 
usage and inter-cell 
interference. 

 ILP problem Heuristic 

[20] Centralize or 
distribute? A 
Techno-Economic 

To reduce the Base Station’s 
(BS) total cost of owner ship 
(TOC) in H-RAN 

Constraint 
Programming 
(CP) 

IBM CPLEX/CP 
Optimizer 
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Study to Design a 
Low-Cost Cloud 
Radio Access 
Network 

[21] Provisioning of 5G 
Services Employing 
Machine Learning 
Techniques 

To reduce the overall energy 
consumption of the 5G 
infrastructure. 

ILP Long Short-Term 
Memory (LSTM) 
NN model 

[22] Deep 
Reinforcement 
Learning-based 
Policy for Baseband 
Function Placement 
and Routing of RAN 
in 5G and beyond 

To create an effective 
placement and routing strategy 
for BBF (Baseband Function) in 
both NG-RAN and C-RAN 
environments 

ILP Deep 
Reinforcement 
Learning (DRL) 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 28 

CHAPTER 4: METHODOLOGY AND IMPLEMENTATION 
In this chapter, we aim to evaluate the computational cost and front-haul bandwidth 
utilization of Cloud Radio Access Network (C-RAN) architecture. We propose a Particle 
Swarm Optimization (PSO) algorithm and compare it with the existing Integer Linear 
Programming (ILP) approach. This chapter presents the methodology design and 
implementation to achieve our thesis objective. First, we evaluate the computation 
cost of RRU and RCC and front-haul bandwidth utilization using ILP. The ILP algorithm 
is implemented in experimental simulations to assess how well it optimizes the C-RAN 
functional split. In our study, we consider a set of K available splits that can be 
connected to N users. Each user is assigned to one division, represented by an ideal 
binary matrix. When split k is chosen for user i, each element of this binary matrix 
equals 1; otherwise, 0. We describe the RRU as a set of data units, each of which has 
a computational capacity of 𝑪𝑹𝑹𝑼 GOPS, Power Consumption (𝑷𝑼) and weight factor 
(𝜶), and Power Usefulness Effectiveness ( 𝑷𝑼𝑬𝑼). Additionally, we also describe the RCC 
as a set of data units, each of which is capable of doing computations with the 
following: computational capacity of 𝑪𝑹𝑪𝑪 GOPS, Power Consumption (𝑷𝑪), weight factor 
(𝜷), and Power Usefulness Effectiveness (𝑷𝑼𝑬𝑪).  𝑨𝒊

𝒌 (𝑬𝒊
𝒌) stands for the GOPS used at 

the RRU (or RCC) for the split k of user i, while is the front-haul bandwidth that the 
split k of user i generated. Front-haul link (FH) is used to connect RRU to RCC [15]. A 
technology-specific factor   that shows the number of operations likely per second per 
Watt (W) of power consumption can be used to multiply the BBU complexity, 
measured in Giga Operations Per Second (GOPS). This factor is 40 GOPS/W in the 
reference scenario—furthermore, a fixed number of N static users within a single cell's 
coverage area. Using already established performance criteria, we compared the 
approaches. The objective function is to find a balance between the centralized and 
decentralized levels of the C-RAN. The centralized level is weighted by 𝛽 and takes 
into account the RCC, 𝑷𝑼𝑬𝑪 , and 𝑷𝑪. The decentralized level is weighted by 𝛼 and 
takes into account the RRU,. 𝑷𝑼𝑬𝑼, and 𝑷𝑼 . The traffic load on the fronthaul is taken 
into account by calibrating the weighting factor 𝛾 [5]. 
Thus, we model as ILP problem as follows: 
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Minimize: 

  𝛼. 𝑃𝑈𝐸𝑈 .
𝑃𝑅𝑅𝑈

𝑃𝑈
  + 𝛽. 𝑃𝑈𝐸𝐶 .

𝑃𝑅𝐶𝐶

𝑃𝐶
 + 𝛾.

𝐹𝐻𝑟𝑎𝑡𝑒

𝐵
 

Subject to:  
  ∑ 𝑥𝑖

𝑘𝐾
𝑖   = 1      ∀𝑖 ∈ 𝑁    (1) 

  ∑ ∑ 𝑥𝑖
𝑘𝑅𝑖

𝑘𝐾
𝑘=0

𝑁
𝑖=1  ≤ B    (2) 

  ∑ ∑ 𝑥𝑖
𝑘𝐴𝑖

𝑘𝐾
𝑘=0

𝑁
𝑖=1  ≤ 𝐶𝑅𝑅𝑈  (3) 

  ∑ ∑ 𝑥𝑖
𝑘𝐸𝑖

𝑘𝐾
𝑘=0

𝑁
𝑖=1  ≤ 𝐶𝑅𝐶𝐶   (4) 

  𝑥𝑖
𝑘  ∈ [3] , ∀𝑖 ∈ 𝑁 , ∀𝑘 ∈ 𝐾  

  Where: 

  𝑃𝑅𝑅𝑈 = (1/𝑃𝑓). ∑ ∑ 𝑥𝑖
𝑘𝐴𝑖

𝑘𝐾
𝑘=0

𝑁
𝑖=1    

  𝑃𝑅𝐶𝐶  = (1/𝑃𝑓). ∑ ∑ 𝑥𝑖
𝑘𝐸𝑖

𝑘𝐾
𝑘=0

𝑁
𝑖=1    

𝐹𝐻𝑟𝑎𝑡𝑒 = ∑ ∑ 𝑥𝑖
𝑘𝑅𝑖

𝑘𝐾
𝑘=0

𝑁
𝑖=1                    

The 1st constraint ensures that each user can only select one split option. One RRU 

and one RCC can only serve each user. 2nd constraint specifies the total supplied rate 

of the FH link. The total amount of data that can be transferred between the RRUs, 

and the RCC.3rd constraint specifies the RRU computation cost. The cost of processing 

data at the RRU.4th constraint determines the RCC computation cost. The cost of 

processing data at the RCC. 𝑃𝑅𝑅𝑈 is used to evaluate the total power consumption 

within the Radio Remote Head (RRH). This’s specifically considers the amount of power 

utilized to operate the RRH. As well as the 𝑃𝑅𝐶𝐶  is used to evaluate the total power 

consumption within the Remote Cloud Center (RCC). This’s specifically considers the 

amount of power utilized to operate the RCC.  𝐹𝐻𝑟𝑎𝑡𝑒  is used to evaluate the total 

generated rate of the Fronthaul link. The total amount of data that can be transferred 
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between the RRUs and the RCCs [4, 5]. 

4.1. SIMULATIONS PERFORMANCE 
In this section, we will delve into the simulation performance of our system. Firstly, 
we will outline the performance metrics that we have employed to evaluate the 
effectiveness of our system. Subsequently, we will present and analyze the results 
obtained from our simulations. To provide a comprehensive understanding, Table 2 
shows the specific parameters and corresponding values that were utilized during the 
implementation of our system. 
There are a total of seven split choices included in the 3GPP functional split, referred 
to as Splits 0 through 6. Within the Cloud Radio Access Network (C-RAN) architecture, 
each split choice denotes a certain arrangement of processing operations. The 
background chapter of this article mentioned the 3GPP functional split. The processing 
tasks carried out at the Remote Radio Head (RRH) level are included in Split 0. 
Processing tasks are no longer carried out at the RRH but are subsequently offloaded 
to the cloud or Baseband Unit (BBU) as we progress from Split 0 to Split 6. A more 
centralized and adaptable strategy can be used as a result of the split of processing 
tasks, with the computational workload being handled by the cloud or BBU. The 
numerous split choices enable the C-RAN architecture to adapt to varied deployment 
environments and optimize utilization of resources.  
 Table:  2 Simulation Parameters (ILP) [5] 
Parameters   Values 

N users 30,40,50,60 
K (Splits) 7 
𝜶 , 𝜷 , 𝜸 0.8, 0.1, 0.1  

B  1228 Mbps 
𝑷𝑼𝑬𝑼 , 𝑷𝑼𝑬𝑪 2.3, 1.5 
𝑪𝑹𝑹𝑼, 𝑪𝑹𝑪𝑪 1060 GOPS 
𝑷𝒇 40 

 Results:  
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Users Assign different functional split         (b) Computational Costs 
Figure:  5 Users Assign different functional split and Computational Costs (N=30) 
The optimization process using the ILP algorithm yielded an optimal solution with a 
cost of 0.3610 when we assumed the N user is 30. Figure 5(a) illustrates the allocation 
of users across various splits using the ILP technique. Among the 30 total users, 2 users 
are assigned to Split 0, and the majority of users, 28 are distributed to Split 6. Notably, 
Splits 1 through 5 remain unassigned to any users. 
 

    
Users Assign different functional split                       (b) Computational Costs 
Figure:  6 Users Assign different functional split and Computational Costs (N=40) 
Figure 6(a) shows the ILP technique to show how the users are distributed throughout 
the various splits. Figure 6(b) illustrates how the ILP algorithm successfully produced 
an optimal solution at a cost of 0.6213. When we increased the user count to 40 and 
took into account the two categories of user demand—web and video—the 
distribution of users among the various functional divides appeared like this: 15 people 
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were also assigned to Split 6 for web, out of the total 40 users, whereas 5 users were 
assigned to Split 0 for web services. Additionally, Split 0 was given access to 6 users 
for video services, and Split 6 was given access to 14 additional users for video services. 
It is important to note that in this arrangement, none of the users had their splits 1 
through 5 assigned to them. 

 
User Assign different split           (b) Computational Costs 
Figure:  7 Users Assign different functional split and Computational Costs (N=50) 
The ILP algorithm was able to arrive at an optimal solution with a cost of 0.8817 after 
taking into account a total of 50 users. The distribution of these users among several 
splits using the ILP technique is shown visually in Figure 7(a).  6 customers were given 
Split 0, which was created especially for web services. Additionally, Split 6—which 
served web services as well—was given 19 users. Moving on to video services, Split 0 
was given to 13 customers, and Split 6 was given to another 12 people. It is significant 
to notice that in this arrangement, users were not assigned to Splits 1 through 5. 

 
(a) User Assign different split               (b) Computational Costs 
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Figure:  8 Users Assign different functional split and Computational Costs (N=60) 
Figure 8(a) displays, using an ILP technique, the distribution of 60 users among several 
splits. With a cost of 1.1420, the ILP algorithm was able to arrive at an ideal solution. 
19 users could access web services on Split 6 as well. With regard to the video services, 
Split 0 was given to 13 users, while Split 6 was given to 17 users. It is interesting to 
note that in this particular arrangement, users were not assigned to Splits 1 through 5. 
In summary, in the optimization process utilizing the ILP method, the distribution of 
users across various splits is decided depending on the objective function and 
constraints defined in the algorithm. Since it was discovered that assigning users to 
Split 0 and Split 6 provided the most effective allocation approach, it is significant that 
users are assigned to these splits in Figures 5(a), 6(a), 7, and 8(a). However, no users 
were assigned to Splits 1 through 5. Because of the costing model and linearity 
included in the ILP formulation, users were not assigned to Splits 1 through 5. The ILP 
problem's costing model takes into account a number of cost variables related to each 
split option. These cost elements may include computational costs, resource usage, 
bandwidth needs, or any other pertinent metrics. The ILP algorithm seeks to identify 
the most cost-effective user allocation to reduce overall costs by taking these costs 
into account. In the ILP problem formulation, linear constraints are used to make sure 
that the distribution of users complies with specified requirements. Limitations on the 
number of users assigned to each split and the resources that can be used in each 
split are just two examples of these restrictions.  
The ILP algorithm finds the most optimal user allocation by utilizing the costing model 
and the linear constraints to minimize costs while meeting the requirements. In this 
situation, the linearity of the ILP formulation and the costing model proposed assigning 
users mainly to Splits 0 and 6, since these splits were determined to be more effective 
and efficient in terms of cost and efficiency based on the provided costs and linear 
constraints. 
 
4.2 PARTICLE SWARM OPTIMIZATION APPROACH 

The optimization problem of the functional split, which was posed in the 

previous section III, is resolved in this section using the PSO algorithm. A population-
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based optimization technique, the PSO algorithm is motivated by the behavior of fish 

schools and bird flocks. Each particle in the population of particles used by the 

algorithm initially stands for one potential solution to the problem [6]. The three main 

characteristics of each particle in the PSO algorithm are position, velocity, and personal 

best (Pbest). While the velocity is the change vector that allows the particle to advance 

to the next position, the position represents the possible solution configuration. The 

particle's best solution configuration, as determined by its evaluation using a cost 

function, is stored in the personal best (Pbest) memory function. The best solution 

configuration among all the best local solutions for particles is what we refer to as the 

global best (Gbest). It stands for the overall best answer any swarm particle has come 

up with. It compares the Pbest values of each particle in the swarm to arrive at this 

Gbest value and choose the configuration with the lowest cost. 

The PSO algorithm enables particles to explore and optimize their solution 

configurations iteratively, seeking to converge towards the best feasible solution for 

the given problem, using these position, velocity, Pbest, and Gbest variables. After the 

algorithm has run through all steps, each particle iteratively works with the others to 

define its new velocity component[19]. (8) presents the procedure where the new 

velocity is created based on the old velocity of the previous iteration, Split P, Pbest, 

and Gbest. The coefficients 𝐶1  and 𝐶2  in (5) and inertia weight W are intended to 

enhance the process's randomness of evaluation. The random numbers 𝑟1 and 𝑟2 add 

a stochastic element to the velocity update equation, which helps prevent the swarm 

from converging too quickly to a local optimum [2, 19]. The new position P is updated 

once the new velocity has been calculated using (6). 

𝑉𝑛𝑒𝑤 =   𝑉𝑜𝑙𝑑 +  𝐶1 𝑟1( 𝑃𝑏𝑒𝑠𝑡 −  𝑆𝑝𝑙𝑖𝑡𝑃) + 𝐶2 𝑟2( 𝐺𝑏𝑒𝑠𝑡 −  𝑆𝑝𝑙𝑖𝑡𝑃)      (5) 

𝑆𝑝𝑙𝑖𝑡𝑃 =  𝑆𝑝𝑙𝑖𝑡𝑃 + 𝑉𝑛𝑒𝑤       (6) 
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4.2.1. SIMULATION PERFORMANCE (PSO) 
In this section, we will discuss how well our system performs in simulation. We will 

define the metrics that we will use to measure performance, and we will discuss the 

results of our simulations. Table (3) shows the parameters and values that we used in 

our implementation. 

Table:  3 Simulation Parameters (PSO) [5] 
 

 

 

 

 

 

 

 

 

When we consider a scenario with 30 users (N), the ILP algorithm yielded a deployment 

cost of 0.3610, as indicated in the previous results. In our implementation, we utilized 

the seed function to initialize the random number generator with a specific seed value. 

This deliberate control over the seed value ensures reproducibility in the generation 

of random numbers, resulting in consistent outcomes across multiple program 

executions. By maintaining the same seed value, the random number generator 

consistently produces the same sequence of random numbers every time the 

application is run. Moreover, we observed that increasing the maximum number of 

iterations (MaxIt) led to a reduction in deployment costs. This implies that allowing 

the algorithm to iterate more times resulted in improved optimization and decreased 

expenses. To highlight the impact of different random number generator seeds on the 

Parameters Values 
P (particle) 10 

N (user) 30,40,50 

MaxIt (maximum iteration) 10,15,20,25 
K (split option) 7 
𝛼 , 𝛽 , 𝛾 0.8, 0.1, 0.1  

B  1228 Mbps 
𝑃𝑈𝐸𝑈 , 𝑃𝑈𝐸𝐶  2.3, 1.5 
𝐶𝑅𝑅𝑈, 𝐶𝑅𝐶𝐶  1060 GOPS 
𝑃𝑓 40 
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deployment cost, Figure (9) and Table (4) present the cost values obtained for various 

seed values in our experiments. 

                    

(a)    Seed Value - 62720                                     (b) Seed Value - 34342 

                      

             (c) Seed Value - 83321                                         (d) Seed Value - 52454 

Figure:  9 Total Deployment Cost when N=30, P =10, MaxIt = 10 
In order to investigate how randomization affected the outcomes, we ran many 

optimizations runs with various seed values. We employed four distinct seed values, namely 

62720, 34342, 83321, and 52454, for a maximum of 10 iterations. For each run, a different 

beginning point was selected using these seed values at random. The following outcomes 

were attained when we ran the optimization method with each seed value: Figure 9 (a) Seed: 

62720, outcome: 0.4473 (b) Seed: 34342; outcome: 0.4247 (c) Seed: 83321; outcome: 0.4057 

(d) Seed: 52454, outcome: 0.3768. With respect to the appropriate seed value, each result 

reflects the optimization result that was attained after the specified number of iterations. 
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           (a) Seed Value - 62720                               (b)  Seed Value - 34342 

 

             

             (c) Seed Value - 83321                        (d) Seed Value - 52454 

Figure:  10 Total Deployment Cost when N =30,P =10, Maxit =15 
 

We carried on investigating the results of the optimization after increasing the iteration count 

from 10 to 15. For each seed value, the following results were obtained: Figure 10 (a) seed: 

62720, result: 0.4243; (b) seed: 34342, result: 0.3998; (c) seed: 83321, result: 0.3768;(d) seed: 

52454, result: 0.3667. 
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          (a) Seed Value - 62720                               (b) Seed Value - 34342 

                      

        (c) Seed Value - 83321                                         (d) Seed Value - 52454 

Figure:  11 Total Deployment Cost when N =30,P =10, MaxIt =20 

The optimization results were further explored while using the same set of seed values 

as we increased the number of iterations from 15 to 20. For each seed value, the 

following results were obtained: Figure 11. (a) Seed: 62720; Result: 0.4243; (b) Seed: 

34342; Result: 0.3887; (c) Seed: 83321; Result: 0.3768; (d) Seed: 52454; Result: 0.3667. 

These findings provide more information about the iterative nature of optimization and 

the effects of various seed values on the results attained. Our understanding of the 

behavior of the algorithm and its convergence to nearly ideal answers improved as we 

increased the number of iterations. 

 

           (a) Seed Value – 62720                                   (b) Seed Value - 34342 
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           (c) Seed Value - 83321                          (d) Seed Value - 52454 

Figure:  12 Total Deployment Cost when N=30, P=10, MaxIt=25 
We continued our analysis of the optimization results using the same set of seed values 

as we increased the iteration count from 20 to 25. The findings obtained for each seed 

value remained consistent and did not demonstrate any notable changes: Figure 12.(a) 

Seed: 62720, Result: 0.4243, (b) Seed: 34342, Result: 0.3887, (c) Seed: 83321, Result: 

0.3768, (d) Seed: 52454, Result: 0.3667.These findings suggest that the optimization 

process has stabilized because no substantial improvements or deviations were seen 

after the further iterations. The results' convergence indicates that the algorithm 

succeeded in finding an effective approach that consistently yields the same results.  

When N is set to 30, Table 4 provides a comprehensive summary of the deployment 

costs discovered throughout the optimization process. 

Table:  4 Summarize the results of Deployment cost when N = 30, P = 10 

 

Seed values 
Maximum iterations 

10 15 20 25 
62720 0.4473 0.4243 0.4243 0.4243 

34342 0.4247 0.3998 0.3887 0.3887 

83321 0.4058 0.3768 0.3768 0.3768 
52454 0.3768 0.3667 0.3667 0.3667 
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Figure:  13 Deployment Cost Convergence with Increasing Number of Iterations 
(N=30) 
When we assume there are 40 N users, we obtained a deployment cost of 0.6213 for 

ILP, as shown above. We use seed function to initialize the random number generator 

with a predefined seed value for each execution in our implementation. Controlling 

the seed value enables us to establish reproducibility in the generated random 

numbers, fostering consistent behavior across several program runs. The random 

number generator will reliably provide the same set of random numbers to this 

intentional initialization every time the application is run. We observed that increasing 

the maximum number of iterations (MaxIt) led to a decrease in deployment costs. 

Table (5) shows the cost of deploying a system with different random number 

generator seeds. 
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           (a) Seed Value – 62720                        (b) Seed Value - 34342 

 

               ( c ) Seed Value – 83321                          (d) Seed Value - 52454 

Figure:  14 Total Deployment Cost when N =40,P =10, MaxIt =10 

 

To find out the effect of random assignments on the results, we executed numerous 

optimizations runs with various seed values. We specifically chose the four random 

seed values 62720, 34342, 83321, and 52454 and set the maximum number of 

iterations to 10. The optimization algorithm has a different starting point for each seed 

value. The algorithm was run with each seed value, and the following results were 

attained: The following results were obtained: Figure 14. (a) Seed: 62720, Result: 0.6288 

(b) Seed: 34342, Result: 0.6529 (c) Seed: 83321, Result: 0.6721 (d) Seed: 52454, Result: 

0.6721. Each results reflect the optimization result attained for the corresponding seed 

value after the set number of iterations.  
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             (a) Seed Value – 62720                                  (b) Seed Value - 34342 

 

               (c) Seed Value – 83321                            (d) Seed Value – 52454 

Figure:  15 Total Deployment Cost when N =40,P =10, MaxIt =15  
We continued exploring the optimization results while using the same set of seed 

values as we increased the number of iterations from 10 to 15. The outcomes are as 

follows for each seed value: Figure 15. (a) Seed: 62720, Result: 0.6252; (b) Seed: 34342, 

Result: 0.6391; (c) Seed: 83321, Result: 0.6469; (d) Seed: 52454, Result: 0.6271. The 

results demonstrate the outcomes of optimization attained for each seed value 

following the number of iterations that was provided. We were able to assess the 

consistency of the outcomes across various seed values by extending the iteration 

process and gaining greater insights into the convergence and stability of the 

optimization algorithm. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 43 

 

             (a) Seed Value – 62720                             (b) Seed Value - 34342 

 

             (c) Seed Value – 83321                          (d) Seed Value – 52454 

Figure:  16 Total Deployment Cost when N =40,P =10, MaxIt =20  
We performed a more thorough investigation of the optimization results using the same 

set of seed values by increasing the number of iterations from 15 to 20. The outcomes 

for each seed value are as follows: Figure 16. (a) Seed: 62720, result: 0.6236; (b) Seed: 

34342, result: 0.6296; (c) Seed: 83321, result: 0.6305; (d) Seed: 52454, result: 0.6271. 

These results shed more light on the iterative nature of optimization and the impact 

of varying seed values on the final results. We were able to comprehend the behavior 

of the algorithm and its convergence to near-optimal solutions better by increasing 

the number of iterations.  
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            (a) Seed Value – 62720                             (b)  Seed Value - 34342 

 

           (c) Seed Value – 83321                                 (d) Seed Value – 52454 

Figure:  17 Total Deployment Cost when N =40,P =10, MaxIt =25  
We subsequently investigated the optimization results using the same set of seed 

values after increasing the number of iterations from 20 to 25. Surprisingly, the 

outcomes for every seed value remained the same and did not show any notable 

variations. Figure 17 shows the seed values in more detail. (a) Seed: 62720, Result: 

0.6231 (b) Seed: 34342, Result: 0.6305, (c) Seed: 83321, Result: 0.6305, (d) Seed: 52454, 

Result: 0.6271. These results suggest that the optimization process has stabilized 

because no appreciable advancements or departures were seen with the additional 

iterations. The repeatable findings suggest that the algorithm has reached a robust 

solution, regularly producing the same results. This consistency of the optimization 

results indicates that the method has successfully solved the optimization problem 
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within the specified limitations, and that additional iterations may not result in 

appreciable improvements. 

Table 5 offers a comprehensive summary of the deployment costs identified 

throughout the optimization process when N is set to 40. 

Table:  5 Summarize the results of Deployment cost when N =40,P = 10 

 

 

Figure:  18 Deployment Cost Convergence with Increasing Number of Iterations 
(N=40) 
Assuming a scenario with 50 users (N), the ILP algorithm yielded a deployment cost of 

0.8817, as evidenced in the preceding results. In our implementation, we employed 

the seed function to initialize the random number generator using a predetermined 

seed value for each program execution. By controlling the seed value, we ensure the 

reproducibility of the generated random numbers, ensuring consistent behavior across 

Seed values 
Maximum iterations 

10 15 20 25 
62720 0.6288 0.6252 0.6236 0.6231 

34342 0.6529 0.6391 0.6296 0.6271 
83321 0.6721 0.6469 0.6305 0.6305 

52454 0.6271 0.6271 0.6271 0.6271 
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multiple runs of the program. With the same seed value, the random number 

generator consistently generates the exact set of random numbers during each 

execution of the application. Furthermore, we observed a correlation between the 

increase in the maximum number of iterations (MaxIt) and the decrease in deployment 

costs. This indicates that allowing the algorithm to iterate for a greater number of times 

leads to improved optimization and reduced expenses. To provide further insights, 

Table (6) presents the deployment cost for different random number generator seeds, 

highlighting the impact of seed values on the system's deployment expenses. 

               

            (a) Seed Value – 62720                                   (b)Seed Value - 34342 

             

         (c) Seed Value – 83321                                  (d) Seed Value – 52454 

Figure:  19 Total Deployment Cost when N =50,P =10, MaxIt =10 
We conducted several runs using various seed values during the optimization process 

to look at the impact of randomness on the results. In particular, we defined a 

maximum iteration number of 10 and carefully chosen four random seed values: 
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62720, 34342, 83321, and 52454. Each seed value served as a crucial starting point for 

the optimization procedure. We obtained the following results by running the method 

with each seed value: Figure 19 (a) Seed: 62720, Result: 0.9065; (b) Seed: 34342, Result: 

0.8965; (c) Seed: 83321, Result: 0.9558; and (d) Seed: 52454, Result: 0.9055. 

 

            (a) Seed Value – 62720                             (b) Seed Value - 34342 

 

            (c) Seed Value – 83321                              (d) Seed Value – 52454 

Figure:  20 Total Deployment Cost when N =50,P =10, MaxIt =15 
We increased the number of iterations from 10 to 15 while using the same set of seed 

values in order to acquire more insight into the optimization results. Following are the 

outcomes for each seed value: Figure 20. (a) Seed: 62720, Result: 0.8901; (b) Seed: 

34342, Result: 0.8951; (c) Seed: 83321, Result: 0.9099; and (d) Seed: 52454, Result: 

0.8918. These results show the optimization results for each seed value after the 

predetermined number of iterations. We got deeper understanding of the convergence 
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and stability of the optimization method by extending the iteration procedure, which 

allowed us to assess the consistency of the outcomes for various seed values. 

 

         (a) Seed Value – 62720                                  (b) Seed Value - 34342 

   

          (c) Seed Value – 83321                             (d) Seed Value – 52454 

Figure:  21 Total Deployment Cost when N =50, P =10, MaxIt =20  
We raised the number of iterations from 15 to 20 while using the same set of seed 

values in order to acquire a deeper grasp of the optimization results. The outcomes 

we got for each seed value are as follows: Figure 21 (a) Seed: 62720, Result: 0.8848, 

(b) Seed: 34342, Result: 0.8840, (c) Seed: 83321, Result: 0.8908, and (d) Seed: 52454, 

Result: 0.8910. The iterative nature of the optimization process and the impact of 

various seed values on the results attained are both useful insights offered by these 

findings. We were able to comprehend the algorithm's behavior and its convergence 

to almost ideal answers by increasing the number of iterations.  
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         (a) Seed Value – 62720                                  (b) Seed Value - 34342 

            

             (c) Seed Value – 83321                             (d) Seed Value – 52454 

Figure:  22 Total Deployment Cost when N =50,P =10, MaxIt =25  
We carried out deeper studies into the optimization results utilizing the same set of 

seed values after increasing the number of iterations from 20 to 25. Surprisingly, the 

outcomes for every seed remained the same and showed no significant variations. For 

the seed values in particular: figure 22. (a) Seed: 62720, Result: 0.8840, (b) Seed: 34342, 

Result: 0.8840, (c) Seed: 83321, Result: 0.8908, and (d) Seed: 52454, Result: 0.8909. 

These results show that the optimization process has stabilized as no significant 

advancements or deviations were found with the extra iterations. This stability in the 

optimization results indicates that more iterations might not result in appreciable gains 

and that the method has successfully solved the optimization problem within the set 

limitations. 
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Table 6 offers a comprehensive summary of the deployment costs identified 

throughout the optimization process when N is set to 50. 

 Table:  6 Summarize the results of Deployment cost when P=10, N = 50 
 

 

Figure:  23 Deployment Cost Convergence with Increasing Number of Iterations 
(N=50) 
Figure 13, figure 18 and figure 23 illustrate our exploration of the impact of increasing 

the number of iterations on deployment costs. As we progressively increased the 

iterations to values of 10, 15, 20, and 25, we observed a convergence in the 

deployment costs. These results were obtained through experimentation and analysis, 

allowing us to gain insights into the relationship between iterations and costs in our 

scenario. By visualizing this data, we can better understand the effect of varying 

iterations on the convergence of deployment costs. 

Seed values 
Maximum iterations 

10 15 20 25 

62720 0.9065 0.8901 0.8848 0.8840 

34342 0.8969 0.8951 0.8840 0.8840 
83321 0.9558 0.9099 0.8908 0.8908 

52454 0.9055 0.8918 0.8910 0.8909 
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During the optimization process with N = 30, the computation time in seconds was 

recorded for various seed values and the maximum iterations. In the table below, 

the findings are summarized: 

Table:  7 The computational time in seconds for N=30, 

Seed value 
Maximum iterations 

10 15 20 25 
62720 0.132010 0.104009 0.079012 0.094023 

34342 0.087988 0.062243 0.073546 0.090364 

83321 0.079543 0.104752 0.099994 0.077290 

52454 0.089540 0.120098 0.088963 0.109535 

 

We can see from the table that the computation time varies for various seed values 

and maximum iterations. When the maximum number of iterations is increased, the 

computational time for the seed value of 62720 reduces. It starts at 0.132010 seconds 

at 10 iterations and drops to 0.094023 seconds at 25 iterations. Computing time varies 

in diverse ways across the maximum iterations for the seed values 34342, 83321, and 

52454. These findings demonstrate how the number of iterations and seed values both 

affect the amount of time needed for the optimization process to be computed. The 

effectiveness and performance of the algorithm for various problem scenarios can be 

better understood by analyzing and comprehending these changes. 

During the optimization process with N=40, the computing time in seconds for various 

seed values and maximum iterations was measured. The findings are shown in the 

table below: 

 

Table:  8 The computational time in seconds for N=40, 

Seed value 
Maximum iterations 

10 15 20 25 
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62720 0.082582 0.086007 0.073386 0.111707 

34342 0.103164 0.087823 0.086892 0.09880 
83321 0.074004 0.079721 0.085021 0.106060 

52454 0.075006 0.090069 0.080992 0.096529 

 

According to the findings, the computational time varies for various seed values and 

maximum iterations. When the maximum iterations are reached for the seed value 

62720, the computational time varies and gradually gets shorter. Between 10 and 25 

iterations, the time varies from 0.082582 to 0.111707 seconds. Likewise, the 

computational time distribution throughout the maximum iterations differs for the 

seed numbers 34342, 83321, and 52454. 

When using N=50 for optimization, the computation time in seconds was captured for 

various seed values and the maximum iterations. Given below is a summary of the 

findings in a table: 

Table:  9 The computational time in seconds for N=50, 

Seed value 
Maximum iterations 

10 15 20 25 
62720 0.081006 0.078142 0.081816 0.112000 

34342 0.097148 0.088656 0.084475 0.104992 

83321 0.072767 0.087628 0.099333 0.106663 

52454 0.068957 0.088009 0.100640 0.122741 

 

The results indicate that the outcomes, the computational time varies for various seed 

values and maximum iterations. With a range of 0.081006 seconds at 10 iterations to 

0.112000 seconds at 25, the computational time for the seed value 62720 remains 

largely constant over the maximum number of iterations. Likewise, the computational 

time distribution throughout the maximum iterations differs for the seed numbers 
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34342, 83321, and 52454. These versions demonstrate how the number of iterations, 

and the seed values affect the amount of time needed for the optimization process 

to run on a computer. For larger problems, such N=50, being aware of these trends 

can be quite helpful in understanding how well the algorithm works and performs. 
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CHAPTER 5: Conclusion 
5.1 CONCLUSION 

Cloud Radio Access Network (C-RAN) shows significant potential for cutting 

wireless network construction and maintenance expenses. The baseband processing 

tasks of a wireless network are centralized by C-RAN, which can drastically reduce the 

number of base stations needed and the equipment required at each base station. 

This may result from significant cost reductions, enhanced capacity, and performance. 

The placement of RAN functions must be optimized to reduce computational costs 

and bandwidth utilization. It necessitates considering the needs of many users and the 

resources available, which is a challenging problem. Optimizing the placement of RAN 

functions in C-RAN is something we want to do in our study by introducing a novel 

method [2, 8]. Our method is based on Particle Swarm Optimization (PSO), a 

metaheuristic method that has effectively solved various optimization issues. As we 

demonstrate by evaluating our approach, the overall cost of building a C-RAN network 

can significantly decrease. By using our method, C-RAN networks' efficiency and efficacy 

can be increased. We intend to conduct more studies in this area and create new 

systems to enhance the placement of RAN functions in C-RAN. Based on our research, 

wireless network deployment and upkeep using C-RAN may be done affordably. We 

may reduce deployment costs and boost network performance by carefully optimizing 

where RAN functionalities are placed[8]. 

In this thesis, we used particle swarm optimization (PSO) to reduce 

computational and bandwidth expenses in cloud radio access networks (C-RAN). We 

concentrated on minimizing the functional placement cost of the RAN, which 

comprises the cost of computation and the use of fronthaul bandwidth by several 

users. We thoroughly examined the PSO-based method and found that, because of its 

capacity to consider a wide variety of potential solutions and respond to 

environmental changes, it can produce effective answers. The outcomes of our 

research show that the PSO-based approach converges with the best options. When 
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comparing it to random search, we also found a number of noteworthy features. 

Notably, the performance of PSO closely resembles the optimal result obtained by 

Integer Linear Programming (ILP) as the number of iterations increases. This suggests 

that PSO can be a useful substitute for ILP for a range of optimization issues, 

particularly when the number of iterations is not a limiting constraint. We found that 

the deployment costs tend to stabilize and converge as the number of iterations 

expands through meticulous experimentation and observation. This result illustrates 

how crucial it is to optimize the iteration parameter in our deployment operations in 

order to get the desired cost results. We have shown the promise of the PSO-based 

technique as a promising method for optimizing the bandwidth as well as 

computational costs in C-RAN environments. 

Overall, our research demonstrates PSO's effectiveness in optimizing C-RAN 

systems and offers insightful information for the field's future development. In the 

context of cloud radio access networks, the PSO-based method demonstrates 

promising performance and provides a flexible and effective approach for dealing with 

challenging optimization issues. 
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List of Symbols and Abbreviations 

 

3GPP 3rd Generation Partnership Project 

BW Bandwidth 

BBU Baseband Unit 

CAPEX Capital Expenditure 

CPRI Common Public Radio Interface 

CPF Cell-centric Processing Function 

C-RAN Cloud RAN 

DL Downlink 

D-RAN Distributed RAN 

eCPRI Evolved Common Public Radio Interface 

eMBB Enhanced Mobile Broadband 

eNB Evolved NodeB 

EPC Evolved Packer Core 

FSI Functional Split Interface 

ILP Integer Linear Programming 

NFV Network Function Virtualization 

NGFI Next Generation Fronthaul Interface 

NGMN Next Generation Mobile Networks 
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MAC Media Access Control 

mMTC Massive Machine-Type Communication 

OPEX Operational Expenditure 

PDCP Packet Data Convergence Protocol 

PF Processing Function 

PUE Power Usefulness Effectiveness 

PSO Particle Swarm Optimization 

QAM Quadrature Amplitude Modulation 

RAN Radio Access Network 

RAU Radio Aggregation Units 

RB Resource Block 

RCC Radio Cloud Center 

RLC Radio Link Control 

RRU Radio Remote Units 

SCF Small Cell Forum 

TCO Total cost of Owner ship 

UL Uplink 

UPF User-centric Processing Function 

URLLC Ultra-Reliable Low-Latency Communications 
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