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คาไลน์ ผู้ผลิตหลายแห่งได้ทำการเสนอการปรับปรุงเพ่ือพัฒนาประสิทธิภาพ  และ ลดการใช้
พลังงานมาอย่างต่อเนื่อง ซึ่งทำให้ความสัมพันธ์ของตัวแปลควบคุมในกระบวนการผลิตมีค่า
แตกต่างไปจากเดิม เพ่ือวิเคราะห์ความสัมพันธ์ และ ค่าควบคุมเหมาะสมแบบเฉพาะ เทคโนโลยี
การเรียนรู้ของเครื่องถูกมาใช้ในการวิดคราะห์ความสัมพันธ์ซับซ้อนของตัวแปล ผ่านโมดูลการสร้าง
ชุดข้อมูลทำนายด้วยโครงข่ายประสาทเทียม (nftool) เพ่ือใช้ในการวิเคราะห์หาความสัมพันธ์
ระหว่าง 5 ค่าควบคุม ประกอบด้วย ความหนาแน่นกระแสไฟฟ้าต่อพ้ืนที่ (CD, KA/m2) ระยะเวลา
การเดินเครื่อง (DOL, day) อัตราการไหลของน้ำเกลือป้อนเข้า (QFB, m3/h) อัตราการไหลของ
โซดาไฟป้อนเข้า (QHD, m3/h) อุณหภูมิเซลล์ (T, degC) และ 1 ผลลัพท์ คือ แรงดันไฟฟ้าต่อ
เซลล์  (CV, V) โดยข้อมูลถูกรวบรวมมากจากฐานข้อมูลประวัติค่าควบคุมกระบวนการ
ผลิต (exaquantum) ผลการวิจัยแสดงให้เห็นว่าในการสร้างความสัมพันธ์ระหว่าง CD และ CV ให้
ค่า RMSE 0.0167 V ซึ่งให้ผลลัพธ์ดีกว่าการทดถอยสมการเส้นตรง กรณี 2 ตัวแปร DOL ที่เป็นตัว
แปรที่ 2 ช่วยส่งเสริมให้การทำนายแม่นยำขึ้นที่ RMSE 0.0065 V จากความต้านทางของเมมเบร
นสูงขึ้นตามระบะเวลาการใช้งาน ในกรณีที่เพ่ิมค่าควมคุมเป็น 3 ตัวแปร T ที่เป็นตัวแปรที่ 3 ให้
ความแม่นยำ และ เป็นรูปแบบที่สามารถทำนาย CV ได้ดีที่สุดในงานวิจัยนี้ โดยให้ค่า RMSE ที่ 
0.0043 V ซึ่งเกิดจากการปรับอุณหภูมิตามสภาะวแวดล้อมการผลิต ในส่วนของ 4 ตัวแปร ไม่พบ
ความสัมพันธ์ที่นำไปสู่การทำนายที่แม่นยำขึ้น สามารถสรุปได้ว่าการนำโครงข่ายประสาทเทียมมา
ใช้ในการหาค่าควบคุมเหมาะสมมีความสามารถเพียงพอต่อการทำนายค่า  CV ที่แม่นยำ หลังจาก
การเดินเครื่องเป็นเวลานาน และ สามารถใช้เพ่ือทดถอยหาค่า CV ที่แท้จริง เพ่ือเปรียบเทียบ
คุณภาพของเซลล์ไฟฟ้าเคมีในแต่ละสภาวะได้ 
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exchange membrane electrolysis process with artificial neural network. 
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Since ion-exchange membrane electrolysis cell has developed for 

producing Chlor-Alkali products. New higher efficiency and lower 
consumption technology are released from licensors yearly, which made the 
process correlation deviate from the original design. The machine learning is used 
with “Neural Network Fitting Tool (nftool)” in MATLAB. To find a correlation 
between 5 inputs consisting of current density (CD, KA/m2), operation day (DOL, 
day), feed brine flow rate (QFB, m3/h), feed caustic flow rate (QHD, m3/h), cell 
temperature (T, degC) and one output which is cell voltage (CV, V). Datasets were 
collected from the plant information management system “exaquantum” historian 
database. The result is shown only on CD as the predictor gives RMSE at 0.0167 V. 
In 2 predictors, DOL as the second gave RMSE at 0.0065 V, which can conclude 
that DOL (or clogging factor) has the most impact on CV increasing. In 3 predictors, 
T as the third gave RMSE at 0.0043 V, from controlled temperature set point 
change. Developed ANN optimization model can be used to optimize controlled 
parameters to predict suitable CV after a long run (high DOL) or to compare 
electrolysis effectiveness by regressing CV for comparing at the same condition. 
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CHAPTER 1 : INTRODUCTION 
 
1.1 INTRODUCTION 

Chlor-Alkali process (CA) is an industrial process used to produce Chlorine 
(Cl2), Caustic Soda (NaOH), and other valued byproducts such as Sodium 
Hypochlorite (NaOCl) and Hydrochloric acid (HCl). All products from the CA process 
are essential raw materials in various industries. Cl2 is crucial in disinfection and 
petrochemical processes such as PVC and PC polymer. NaOH in commodity products 
and pH neutralization. The high demand for CA products from the rapid growth of 
the infrastructure industry in Southeast Asia led to the development of scale with a 
2021 annual capacity of 78 million metric tons (EMR report) NaOH worldwide, and in 
Thailand, will increase to more than 1 million metric tons NaOH in 2025. 

Since 1972 [1], they are development of membrane electrolysis cell. The 
primary process of CA production is the electrolysis of brine (NaCl) aqueous solution, 
which is more environmentally compatible than mercury cells in the past. The 
electrolysis process has a high electrical energy consumption, which latest 
technology in 2022 claim power consumption at 2,000 kWh per metric ton NaOH 
(information from licensor handbook). Thus, electrical power consumption is the 
direct operating cost of the CA process and a key factor of production profit. 

Currently, CA electrolysis technology has continued to develop year by year 
both in catalyst terms and internal cell structure for improving product quality, cell 
efficiency, durability, and power consumption. All improvements in the CA 
electrolysis cell have a slight change in reaction kinetics and hydrodynamics inside 
(some improvement has a significant change in a component inside the cell for 
uniform internal brine circulation). The cell objective is to reduce the gap between 
the anode and cathode electrode from gas forming inside and causing electrical 
resistance. The reducing gap improves electrical conduction through electrolytes 
resulting in lower power consumption. 
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According to industrial plant production, many technologies operate together 
that make the conventional method (customarily calculated based on the effect of 
mass transfer flux) might be not compatible with all types of operating electrolysis 
cells. This thesis is to find the solution for predicting cell efficiency and optimum 
correlation by artificial neuron network (ANNs) – a machine learning algorithm - 
between controlled parameters, e.g., capacity current load, feed brine concentration, 
feed caustic concentration, cell temperature, and output parameters, e.g., depleted 
brine pH, product quality with unknown hidden causation individually [1]. The 
proposal is to find the optimum parameters and impact of each operation-controlled 
parameter for the electrolysis cell to operate at the lowest operation cost (mainly 
electrical power consumption) to lead to the highest production profit. 
 
1.2 OBJECTIVE 

This research aims to find the optimum parameters and impact of each 
operation-controlled parameter in CA membrane electrolysis process cells by ANNs. 
 
1.3 RESEARCH SCOPE 

1.3.1. ANNs algorithm based on scale conjugate gradient method in MATLAB 
neural network fitting tool (nftool) will be chosen to develop predictive models. 

1.3.2. The six parameters in March 2022 and February 2023 will be collected 
and pre-processed for training, validation, and testing dataset. An output parameter is 
cell voltage (CV); input parameters are five operating parameters. To predict cell 
voltage in any case of operating parameters adjustment. 

1.3.3. The optimum number of hidden nodes and hidden layers in ANNs that 
provides the highest testing performance - determined by minimum root mean 
square error (RMSE) - from varying the number of hidden nodes from 5 to 10 and 
hidden layers from 1 to 5 by trial and error will be chosen to train and compare the 
impact of each input parameter.  

1.3.4 RMSE of the train, validate, and test dataset will determine the impact 
of each input parameter. 
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1.4 RESEARCH METHODOLOGY 

 

Figure  1 Thesis methodology flow chart 
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CHAPTER 2 : LITERATURE REVIEW 
 

2.1 CHLOR-ALKALI PROCESS 
Chlor-Alkali process (CA) is an industrial process used to produce Chlorine 

(Cl2), Caustic Soda (NaOH), and other valued byproducts such as Sodium 
Hypochlorite (NaOCl) and Hydrochloric acid (HCl). All products from the CA process 
are essential raw materials in various industries. Cl2 is crucial in disinfection and 
petrochemical processes such as PVC and PC polymerization. NaOH in commodity 
products and pH neutralization. The high demand for CA products in all industries 
leads to scale growth with a 2022 annual capacity of 78 million metric tons of NaOH 
worldwide [2]. 

 

 
 

Figure  2 Products of Chlorine tree [3] 
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Since 1972 [1], It is the development of membrane electrolysis cell. The 
primary process of CA production is the electrolysis of brine (NaCl) aqueous solution, 
which is more environmentally compatible than mercury cell in the past. The 
electrolysis process has a high electrical energy consumption, and the latest 
technology in 2022 claim power consumption at 2,000 kWh per metric ton NaOH [4]. 
Thus, electrical power consumption is the direct operating cost of the CA process 
and a key factor of production profit. 

 

 

Figure  3 Chlor-Alkali process overview 
 

CA brine membrane electrolysis process [5] starts with two raw materials – 
NaCl salt (use vacuum salt according to low Ca2+, Mg2+, I- and Br- in salt, which is less 
effect on membrane operation) as anode feeding and demineralized water as 
cathode feeding. NaCl vacuum salt as solid salt from the supplier must pass four raw 
material feeding treatments before feeding to the electrolysis cell. 

1. Salt dissolver for dissolving solid salt into demineralized water to be a brine 
solution. 

2. Primary purification removes suspended solid (SS) from brine by anthracite 
bed filter. 

3. Secondary brine purification removes undesired ions, e.g., Ca2+, Mg2+, and Al3+, 
from brine by chelating resin bed towers. 
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4. Brine heater for heating purified brine at suitable operating cell temperature 
by heat balancing with heat generation from electrolysis, raw salt, 
demineralized water, and recycled output brine and controlling cell 
temperature by temperature-indicated control (TIC). 

 

 
Figure  4 Chelating resin mechanism on alkali earth ion [6] 

 

After purified brine reacted in the electrolysis cell, some NaCl solution 
remained from electrochemical conversion (depleted brine). Usually, input NaCl at a 
concentration of 300 g/L will remain in the output at 230 g/L (reaction consumed 70 
g/L of purified brine). This remaining will return to the salt dissolver as recycling of 
raw material in the process. The remaining brine output has dissolved free-Chlorines 
in the form of Cl2, HClO-, ClO- and ClO3

- from electrolysis reaction, which affects the 
recycling process because free-Chlorine in recycled brine can damage chelating resin 
in the secondary purification. Thus, depleted brine must remove dissolved free-
Chlorine before recycling to salt dissolver in dechlorination. The dechlorination 
process removes dissolved free-Chlorine with reduced depleted brine pH by HCl to 
pH below 2 for transforming all free-Chlorine species in solution into Cl2. Then, 
remove the dissolved Cl2 in the brine solution with a vacuum hydro cyclone. Cl2 gas 
in solution separates in cyclone to the gas phase and sent to combine with Cl2 gas 
product. Liquid phased from cyclone remains only depleted brine to recycle process. 
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Reaction undergoes in the anode and cathode side separately. First, Fed 
purified brine NaCl into the anode side (called anolyte). An aqueous solution of NaCl 
separated into Na+ and Cl- ion in demineralized water. Cl- ion from electricity 
become Cl2 gas and floats out separate from the liquid. Lonely ion Na+ in the anode 
side permeates through an ion-exchange membrane to the cathode side and meets 
OH- from the catholyte reaction resulting in the NaOH product. 

 

 

Figure  5 Chlor-Alkali electrolysis cell diagram [7] 
 

Anode side reaction 

  NaCl   →  Na+ + Cl-   -------- equation 1 

2Cl-   →  Cl2 + 2e-  (E0 1.36 V)  -------- equation 2 
Cathode side 

H2O   →  H+ + OH-   -------- equation 3 

2H+ + 2e-  →  H2     (E0 -0.83 V)  -------- equation 4 

Na+ + OH- → NaOH    -------- equation 5 
Total reaction 

2NaCl + 2H2O  →  Cl2 + H2 + 2NaOH  -------- equation 6 
 
 
 
 
 

 

Diluted 
NaOH 

32% 

NaOH 

Purified Brine 

NaCl 300 g/L 

Depleted Brine 
NaCl 230 g/L 
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2.2 MEMBRANE THEORY 
 The ion-exchange membrane's main component is fluoropolymer due to 
excellent chemical compatibility with base, acid, and chlorinated conditions [8]. The 
membrane consists of 2 main layers. First, the sulfonate layer on the anode side is a 
highly conductive and sacrificial fiber for reinforcement and conducts electrical 
conduction through the membrane. Second, the carboxylate layer on the cathode 
side is highly ion-selective for selecting Na+ to permeate ions. The surface of the 
membrane is applying an anti-gas stagnation coating. 

The critical performance of polymer-based ion-exchange membranes is 
membrane duration and ion-selection channel size, which control impurity, 
permeated rate, uncontrolled ion selection, and reverse diffusion. The wrong 
channel size results in high power consumption from high resistance, permeation, 
and product contamination. It occurs from reverse diffusion of product on the 
cathode side to the anode or leak of minus ion from the anode to the cathode side. 

1. Current density (CD) - current input for reaction divided by effective 
membrane area - is the driving force of ion permeation and leads reaction by 
transferring an electron to the reactant. 

2. Membrane service life (determined by the day of life, DOL) related to the 
accumulation of impurities in raw material, such as solid particles or other ion 
species in brine, can plug or penetrate inside the membrane channel leading 
to low membrane efficiency. 

3. Water content is related to brine and caustic concentration, and the flow rate 
of raw material consists of feed brine flow rate (QFB) and feed caustic flow 
rate (QHD) on the membrane surface. Water content led to polymer water 
absorption and affected channel size. 

4. Cell temperature (T) directly affects the channel size of a membrane 
according to polymer properties. The membrane sheet and the membrane's 
channel will expand at high temperatures and shrink at low temperatures. 
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Reaction developed Chlorine to free-Chlorine. 
Chlorite generation from leaked OH- 

Cl2 + OH-  →  HOCl- + Cl-   -------- equation 7 
Evolution of free-Chlorine (Hypochlorite and Chlorate) 

HClO-   →  ClO- + H+   -------- equation 8 

2HClO- + ClO- → ClO3
- + 2H+ + 2Cl-  -------- equation 9 

O2 evolution from decomposed Hypochlorite 

2ClO-   →  O2
 + 2Cl-   -------- equation 10 

O2 evolution from oxidation of OH- 

  OH-   →  O2 + 2H2O + 4e- (E0 0.40 V)  -------- equation 11 
 

 

Figure  6 Development of free-Chlorine in various pH [9] 
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2.3 CELL VOLTAGE (CV) 
 Cell voltage is directly related to power consumption (PC) by an equation of 
electrical power (P = IV in direct current) which from the rectifier supplies stable 
current (I) as the production rate required to produce desired products. The voltage 
or cell voltage appears consequently from Ohm’s law (V = IR while R is assumed 
constant). Thus, the relation between CV and CD could be a linear correlation, while 
resistance (R) is a slope of the function. There are several reasons to control cell 
resistance in commercial-scale CA plants, for example. 

1. Catalytic reaction rate from different electrode coating. 
2. Membrane channel size by cell condition (explained in membrane theory) 

and membrane material or technology. 
3. Electrolysis cell design of fluid flow or recycling inside the cell. 
4. Resistance of cell material. 
5. Brine and caustic raw material quality. 

CA electrolysis reaction rate is calculated by ‘Faraday’s law of electrolysis’ 
with the importance number 96,450 coulomb per 1 electron mole. It means that to 
produce 1 mole of Cl2 as reaction mass balance, NaCl 2 mole will be consumed and 
need electricity 96,450x2 = 192,900 coulomb (1 coulomb = 1-ampere sec) or 53.58 
ampere in 1 hour. 

Current density (CD) means electrical current intake to electrolysis reaction 
ratio to 1 m2 of membrane effective area. Usually, the membrane cell was limited 
membrane effective area by technology provider design which is optimum 
hydrodynamic circulation inside electrolysis cell maintenance and manufacturer. In 
recent technology, the membrane can operate at the highest current density, up to 
8 KA/m2. 
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Figure  7 Internal circulation improvement design to improve capacity [4] 
 

One electrolysis cell consists of many membrane cells connected in a series 
of electrical circuits to reduce loss from electrical resistance (busbar loss). The 
maximum series number is related to DC supply (in commercial use, thyristor rectifier 
to convert AC to DC). According to a higher cell number with a higher total voltage, 
I/A should match the electricity supplied on the AC side. In conclusion, nowadays, 
traditional industrial Chlor-alkali electrolysis cell operation. Bipolar design circuit in 
cell series to reduce busbar loss. The maximum CD limit was an efficient design from 
a technology provider. Maximum capacity per electrolysis cell (no. of membrane 
cells in a circuit) limited by I/A ratio. High production capacity was from the high 
number of parallel electrolysis cell operations. 
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Figure  8 Chlor-Alkali electrolysis cell configuration in commercial plant [5] 
 

According to Faraday’s law of electrolysis and electrolysis cells configuration, 
the production mass balance of Cl2 and NaOH was calculated by the following 
equation when 

1. DC current (I) Current input to the cell (related to 96,450 Faraday’s number) 
2. IEM no.  the number of the membrane in an electrolysis cell. 
3. 0.945  basis efficiency of current to each product. 

 
Chlorine production         

 
-------- equation 12 

Caustic soda production 

 
-------- equation 13 
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2.4 MACHINE LEARNING (ML) 
 Machine learning is a modern way to find the complex correlation between 
input and output data which does not have to be deeply in the numerical model [7]. 
The principle of almost ML models is to cluster input data to several groups as 
output class by trialing the most precise mathematics model. 

There are three types of machine learning model approaches based on the 
learning method: supervised, unsupervised, and reinforcement learning. Supervised 
learning requires labeled input and output data for the training phase. When the 
model has identified the relationship between the input and output data, it can use 
to classify new and unseen datasets and predict outcomes. 
 
2.5 ARTIFICIAL NEURAL NETWORK (ANNs) 

Neural networks were beginning to be the modeling of complex 
manufacturing processes [1]. These layers have a certain number of input nodes, 
hidden nodes, and output nodes. A simple ANNs workflow in Figure 9 shows a 
network with one node in the input layer, two hidden nodes, and one node in the 
output layer. ANNs will learn to find a correlation between input and output data 
through manipulation in the hidden layer. 

As a greater number of inputs, such as parameters in the chemical plant, 
make ANNs more complex and results in more complex hidden layer correlation, the 
Primary hidden node is not enough to predict precise correlation and need to be 
calculated in the more hidden layer to find a secondary, tertiary relative. However, 
too much-hidden layer correlation can make ANN's model overfitted, and too small 
might not find any correlation in the network. 

 

Figure  9 Schematics of simple ANN [10] 
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2.6 MODEL CONFIRMATION METHOD 
2.6.1 Data splitting 

 To evaluation of ANN, trained model data much be split into 2 or 3 groups. In 
the case of 2 groups, the first is the training group for performing backpropagation 
training and creating the network regression model. Second, is the test group for 
testing the accuracy of the generated network model with the unseen dataset. The 
problem of the two groups is when the model is optimized by repeat generating 
model in the training dataset and accuracy checking in the testing dataset by random 
train-test selection. The testing dataset is not totally unseen, then become the 
model bias. 

For this reason, the general data splitting is usually divided into 3 groups. By 
adding a validation dataset to use as model testing in repeating optimization models, 
before checked with the testing dataset, which is unseen.  

 

Figure  10 Data splitting; train, validate and test [11] 
 

2.6.2 Train-to-test ratio 
         Comparing results of varying train-to-test ratios is a way to evaluate the 
performance of any dataset distribution. The different train-to-test ratios can give 
different model performance results according to randomized training, validating, and 
testing dataset. The commonly train-to-test ratio is 70:30, 80:20, 90:10, or even 50:50. 
It depends on regression practice or the characteristics of each dataset. Several train-
to-test ratios should be compared to confirm the model performance of the new 
dataset in any distributed data and control the confidence interval of the training set 
to generate a network. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 15 

2.6.3 Cross validation 
 Cross-validation or k-fold cross-validation (k-fold cv) is one method to 
validate model performance by finding the average error between each iteration of 
the dataset (usually 5 or 10 iterations). In each iteration, groups of train and test 
datasets will be varied following the number of iterations to compare data training 
bias in each dataset and give a model more confidence. 

 

Figure  11 Schematic of k-fold cross validation [12] 
 

2.6.4 Hold-out validation 
 Hold-out validation is another method to validate model performance by 
holding validation data for testing the model to be unseen data. This method seems 
like a blind test of a model to use the generated model to predict output in a 
different dataset. It might be a disadvantage in the small dataset, which can occur 
overfitting data due to training and validation datasets having different data 
distributions.      

 

Figure  12 Schematic of hold-out validation [12] 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 16 

2.6.5 Under-fitting, over-fitting, and best-fitting 
 Typically, regression or model-fitting has three categories: under-fitting, best-
fitting, and over-fitting. The under-fitting model cannot regress the training dataset to 
meet accuracy criteria, and the over-fitting regression model works well in the 
training dataset. However, in the testing dataset, results become worse from too 
much fitting or noise generation. Meanwhile, the best-fitting is the optimum one that 
gives the highest accuracy in any dataset. 

 

Figure  13 Visualization of example underfit, optimal (best fit) and overfit [13] 
 

2.6.6 Early stopper 
Early stopper [14] is method to find optimum value of prediction error by 

early stopping model fitting in test group before runner to terminal epoch as train 
group. That is selecting only converge model which gave most fitted value before 
model fitting become overfitted by diverge error. 

 

Figure  14 Example plot of early stopper [14] 
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2.7 PERFORMANCE EVALUATION METHOD 
 There are several ways to measure a predictive model's performance to 
evaluate the prediction's accuracy [15]. The most practical ways are measuring fitting 
errors by different values between the actual and predicted data. 

2.7.1 Mean Absolute Error (MAE) 
 MAE is the most straightforward error measurement, calculated average 
magnitude of all regressed and actual data, the perfect fitted shown MAE at 0. 
However, MAE can easily deviate from outliers to make significant one error 
dominate overall performance, and the absolute make this evaluation method 
cannot indicate between under and overperformance. 

MAE= 
1

n
∑ |y-yi |   -------- equation 14 

While; y is actual data, yi is regressed data at the same input, n is number of data 
 

 

Figure  15 Mean Absolute Error (MAE) [15] 
 

2.7.2 Mean Absolute Percentage Error (MAPE) 
MAPE is the percentage form of MAE. The error calculation is the same as 

MAE, only converted to percentage form. MAPE also has a high effect from outliers, 
the same as MAE. The percentage is easier to understand and generalized results. 
However, MAPE has a limitation at an undefined value when data is at 0 (become 
0/0), and the percentage value is less symetric error compared to the original. 

MAE= 
100%

n
∑ |

y-yi

y
|   -------- equation 15 

While; y is actual data, yi is regressed data at the same input, n is number of data 
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2.7.3 Mean Square Error (MSE) 
         MSE is like MAE but uses a square to indicate magnitude substitute absolute. 
The MSE gives much more error due to the square value, and for this reason, MSE 
becomes non-linear (exponential growth of error) and gives a penalty to a value with 
a large error more than a small error. Similarly, MSE has an effect from outliers more 
than MAE also. 

MAE= 
1

n
∑ (y-yi)

2
  -------- equation 16 

While; y is actual data, yi is regressed data at the same input, n is number of data 
 

 

Figure  16 Mean Square Error (MSE) [15] 
 

2.7.4 Root Mean Square Error (RMSE) 
 RMSE is a square root form of MSE that converts square error to the original 
scale. RMSE can measure error as an original unit of output and is easier to 
understand. 

MAE= 
1

n
∑√(y-yi)

2
   -------- equation 17 

While; y is actual data, yi is regressed data at the same input, n is number of data 
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2.7.5 Mean Percentage Error (MPE) 
 MPE is like MAPE but without magnitude indication by absolute. MPE is in 
percentage form, which is easier to understand, but also has limitation with 
undefined value when the data is at 0. MPE can show positive and negative error 
effects because it does not have absolute or square to eliminate under and 
overperformance. However, the effect of positive and negative errors can be 
deducted from each other when the model faces a uniform dataset. MPE can show 
the trend but cannot verify the regression accuracy. 

MAE= 
100%

n
∑ (

y-yi

y
)  -------- equation 18 

While; y is actual data, yi is regressed data at the same input, n is number of data 
 

 

Figure  17 Mean Percentage Error (MPE) [15] 
 
Table  1 Summary of error measurement methods [15] 
No. Method Eliminate negative Outlier effect Easy to indicate Original scale 
1 MAE Yes Low No Yes 
2 MAPE Yes Low Yes No 
3 MSE Yes Much No No 
4 RMSE Yes Much No Yes 
5 MPE No Low Yes No 
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2.8 LITERATURE REVIEW 
In 2006, A.A. Jalali et al. [16] studied the effect of process conditions on the 

cell voltage of a Chlor-Alkali membrane cell. Five process parameters were studied: 
anolyte pH, cell temperature, electrolyte velocity, brine concentration, and current 
density on laboratory-scale Chlor-Alkali membrane cell. The analysis goes with a 
statistical method, which is an analysis of variance (ANOVA) to evaluate the 
effectiveness of operating parameters. The result found that current density and cell 
temperature were the most striking parameters of cell voltage. Current density 
contributes 69.94% effect on cell voltage in a sensitivity analysis. 

 

 

Figure  18 Plot of cell voltage with different operating parameters 
 

 

Figure  19 Sensitivity plot of each parameters impact level to CV, 
And contribution percent chart of each operating parameters 
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In 2008, T. Mirzazadeh et al. [17] studied the effect of various parameters on 
caustic current efficiency (CCE) on zero-gap oxygen-depolarized cathode (ODC) Chlor-
Alkali cell with artificial neural network (ANN) Lavenberg-Marquardt (LM) back 
propagation method. This research studies seven operating parameters: anolyte pH, 
temperature, brine flow rate, brine concentration, oxygen temperature, and oxygen 
flow rate. The study aims to find the optimum of each parameter condition with the 
best CCE. Results show that ANN with the LM method has better CCE prediction 
accuracy than actual data. The ANN-generated data can assist in trending and finding 
correlations to predict CCE. 

 

 

Figure  20 Schematic of set-up laboratory-scale Chlor-Alkali ODC membrane cell 
 

Figure  21 Analysis regression of each parameters to CCE 
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In 2008, N. Shojai Kaveh et al. [10] studied the development of a 
backpropagation (BP) algorithm, an artificial neural network (ANN) model, on various 
operating parameters to validate model prediction and study the effect of each 
parameter. The experiment undergoes six operating parameters: anolyte pH, 
temperature, brine concentration, current density, and run time in set-up lab-scale 
Chlor-Alkali electrolysis. The number of hidden nodes and hidden layers was 
selected at the optimum point by trial and error, which was 6-7-5-1 (6 input 
parameters, seven hidden nodes in the first hidden layer, five hidden nodes in the 
second layer, and one output parameter). The result of the performance model in 
this study showed an RMSE of 0.036 in the training group and 0.043 in the test group. 
Sensitivity was analyzed and plotted into the level graph to find the impact of each 
parameter. It found that current density impacts cell voltage most, with 59.26% on 
ANN prediction and 58.19% on experimental data. 

 

 

Figure  22 Regression plot of ANN result with actual cell voltage 
 

 

Figure  23 Sensitivity analysis of each parameters impact level to CV 
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In 2009, N. Shojai Kaveh et al. [18] studied to investigate the impact of 
operating parameters by the support vector machine (SVM) technique – a machine 
learning method -. The study tested with a set-up Chlor-Alkali electrolysis cell in the 
laboratory and varied operating conditions to obtain data. The research performs six 
operating parameters: anolyte pH, temperature, brine concentration, current density 
and run time, and one output as cell voltage. The result shows SVM model can be 
used to predict the impact of parameters and not only approximately, but SVM also 
can predict cell voltage with RMSE 0.161. From the sensitivity study, current density 
gave the highest impact among all operating parameters, with 54.28% on SVM 
simulation and 55.42% on experimental data. 

 

 

Figure  24 Regression plot of SVM result with actual cell voltage 
 

 
Figure  25 (Left) Schematic of set-up laboratory-scale Chlor-Alkali membrane cell 

Figure  26 (Right) Sensitivity plot of each parameters impact level to CV 
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 From the works literature review, several techniques were used for predicting 
cell voltage, giving satisfactory results. Chlor-Alkali voltage and current efficiency 
prediction are in focus because the process consumes much power in production; 
multi-operating parameters come with a highly complex relationship, and ordinary 
regression is challenging to show highly accurate prediction. Implementing machine 
learning is the new trend of correlation finding in recent years. From research 
machine learning, most of the research studies in set-up laboratory-scale Chlor-Alkali 
membrane cell, which can control environmental effects and vary operating 
parameters for testing. In commercial-scale size plant studies, there is more limit on 
testing validation but giving much more data. It is potential to study ANN regression 
with operating parameters to cell voltage in a commercial-scale Chlor-Alkali plant. 
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CHAPTER 3 : METHODOLOGY 
 

3.1 DATASET AND PREPROCESSING 
3.1.1 Data source 

The dataset for analysis in this thesis was from the Yokogawa plant 
information management system (exaquantum). Parameters in the process were 
measured by an instrument transmitter and sent to a distributed computer system 
(DCS). DCS receives the signal of the transmitter and transforms the signal into 
measurable parameter data for reading, visualizing, and controlling. After the process, 
data are in a usable format and sent this information to a server (historian database). 
Plant information management systems (PIMS) have become an integral part of the 
tools to connect DCS historian databases to users in local networks or web servers 
(exaquantum is a trademark of Yokogawa’s PIMS). Exaquantum acquires process 
information to users for data analytics, visualization, and decision-making. 

 

 

Figure  27 Yokogawa plant information management system (exaquantum) [19] 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 26 

3.1.2 Dataset 
This thesis collected operational raw data in 1 year period from March 2022 

to February 2023 in hourly intervals (a total of 8,761 data). There are six features in 
the dataset shown in the table’s column. 
Input parameters (can be called predictors in the ANN model) consisting of 

1. Current density (CD, V) is electrical current through a square-meter 
membrane. It was used for standardized operation capacity (refer to Faraday 
equation 12, 13 in terms of current, I), directly related to the permeating rate 
of substance through the membrane. 

2. Operation day (DOL, day) refers to increasing membrane resistance due to 
clogging accumulation on the membrane surface and blocking the 
permeation of substances. 

3. Feed brine flow rate (QFB, m3/h) refers to water content on the membrane 
surface, leading to membrane channel expansion or shrinking. 

4. Feed caustic flow rate (QHD, m3/h) refers to water containing the same as QFB 
but on the cathode side. 

5. Cell temperature (T, oC) is the temperature that occurs during operation. It 
can be from heat received from feed brine, feed caustic temperature, or heat 
generated from the electrolysis cell due to electrical resistance. Cell 
temperature    

Output parameters (can be called response in ANN model) is 
1. Cell voltage (V) in unit V shows the voltage across a membrane from the 

current applied and the resistance effect of operating parameters. Cell 
voltage led to power consumption and approximate membrane efficiency. 
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Table  2 List of parameters, types, ranges and units 
Type Abbr. Description Range Unit 

Output data CV Cell voltage 2.0-3.4 V 
Input data I Current 6.0-19.7 KA 
Input data 1 CD Current density 1.8-6.0 KA/m2 
Input data 2 DOL Operation day 0-365 Day 
Input data 3 QFB Feed brine flow rate 12.0-30.0 m3/h 
Input data 4 QHD Feed brine flow rate 31+1 m3/h 
Input data 5 T Cell temperature 85-95 oC 
Evaluation RMSE Root means square error - V 

 

 

Figure  28 Six features of 8,760 raw data in Mar 22 – Feb 23 in CSV file 
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3.1.3 Data preprocessing 
According to data collected from “exaquantum” data historians, which record 

hourly raw data include non-operation, calibration, and unsteady-state periods or 
raw data that come with signal loss and noise. Pre-processing performs to cut outlier 
data, clean data, and transform all parameters to the same time interval. To visualize 
a group of data, linear regression between CV and CD will be plotted. Referring to 
Ohm’s law, CV and CD direct theoretical correlation will be shown in linear. The 
deviate RSQ > 0.9. 

 
Ohm’s law 
   V = IR      -------- equation 19 

CV = CD*R    -------- equation 20 
While  CV means voltage across 1 electrolysis cell. 
 CD means current through a unit area of the membrane. 

 
In ANN model training, performance results in test group correlation might be 

biased by accidentally similar data in the train, validate, and test groups from 
random data selection. Reduce data training bias cross-checking must be performed 
to validate the test and train the group to confirm the performance of the ANN 
model. 

3.1.4 Method to remove outlier data. 
1. Cutting non-operation period by data filter method. 

a. Removing the dataset with current (I) < 6 KA. In typical operation 
practice, the minimum load was set at 6 KA because it is the lowest 
current supply for electrolysis reactions that can make on-spec 
products. 

b. Removing dataset in which cell voltage (CV) < 2 V. Referring to 
reaction equation 6, cell voltage less than 2 V is insufficient for a brine 
electrolysis reaction. 
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2. Cutting unsteady-state period by the data filter method. 
a. Removing dataset at 09:00 AM due to the load decreasing period for 

on-peak operation. During load decreasing input parameters might be 
performed lead or lag to output and effect to correlation fitting. 

b. Removing the dataset at 10:00 PM due to the load-increasing period 
for off-peak operation. During load decreasing input parameters might 
be performed lead or lag to output and effect to correlation fitting. 

3. Splitting of data before and after a turnaround. In the long operation period 
(before turnaround), cell voltage (CV) increased due to clogging accumulation 
on the membrane. After long stopping, for example, turnaround or 
commercial shutdown, CV might drop slightly due to the flushing effect 
during drainage or non-operation liquid circulation. Some impurities clogged 
on the membrane surface will loosen at this time. 
 

3.1.5 Method to reduce training data bias. 
1. Raw data will be equally separated into 5 groups. To validate and 

compare the results of each dataset. 
a. Group A (GA): 1/3 of data after preprocessing, before turnaround 
b. Group B (GB): 1/3 of data after preprocessing, before turnaround 
c. Group C (GC): 1/3 of data after preprocessing, before turnaround 
d. Group D (GD): 1/2 of data after preprocessing, after turnaround 
e. Group E (GE): 1/2 of data after preprocessing, after turnaround 

2. Raw data will be varied train-to-test ratio by 
a. Train 70%, validate 15% and test 15% (70:30) 
b. Train 80% validate 10% and test 10% (80:20) 
c. Train 90% validate 5% and test 5% (90:10) 
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Table  3 List of datasets 

Abb. Detail Period Estimate no. 

RW Original collected data 01 Mar 22 - 01 Mar 23 8,761 data 

PS Pre-processed, cut stop 01 Mar 22 - 01 Mar 23 < 8,761 data 

PU Pre-processed, cut unsteady 01 Mar 22 - 01 Mar 23 < 8,761 data 

PBT Pre-processed, before T/A 01 Mar 22 - 07 Nov 22 2 of 3 of PU 

PAT Pre-processed, after T/A 11 Nov 22 - 01 Mar 23 1 of 3 of PU 

GA Reducing bias, Group A (PBT) 01 Mar 22 - 24 Apr 22 1,186 

GB Reducing bias, Group B (PBT) 24 Apr 22 - 17 Jun 22 1,186 

GC Reducing bias, Group C (PBT) 17 Jun 22 - 10 Aug 22 1,186 

GD Reducing bias, Group D (PAT) 11 Nov 22 - 06 Jan 23 1,186 

GE Reducing bias, Group E (PAT) 06 Jan 23 - 28 Feb 23 1,186 

 
3.2 DATA ANALYTICS 
 Based on numerical method. All parameters after preprocessing will 
manipulate with 

1. Generate a correlation heatmap to see the relationship between each 
parameter, which is valid or invalid to each other when it becomes predictive. 

2. Correlation plot between each input parameter to output. And regress by 
linear regression. 

3. Trial second-order correlation plot by fixing the most accurate parameter in 
constant value to see the second relationship by heatmap of correlation. 

4. Create regression equation from correlation. 
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3.3 NEURAL NETWORK FITTING 
 This step will be performed in MATLAB via nftool. When the pre-processed 
data is prepared in a CSV file, the data will be imported to the MATLAB workspace, 
and the neural network toolbox shall be executed. 

3.3.1 Testing effect of number of hidden nodes 
After splitting into five groups, the dataset will be trained and tested with 

various hidden node numbers to find an optimum number of hidden nodes. ANN will 
be trained with 5-10 hidden nodes and validated in 3 cases of train-to-test ratio. 

1. Train 70%, validate 15% and test 15% (70:30) 
2. Train 80% validate 10% and test 10% (80:20) 
3. Train 90% validate 5% and test 5% (90:10) 

3.3.2 Testing effect of number of hidden layers 
Same as the previous section dataset will be trained and tested with various 

hidden layer numbers to find an optimum number of hidden layers. ANN will train 
with 1-5 hidden layers and validated in 3 cases of train-to-test ratio. 

1. Train 70%, validate 15% and test 15% (70:30) 
2. Train 80% validate 10% and test 10% (80:20) 
3. Train 90% validate 5% and test 5% (90:10) 

 

 
 

Figure  29 Schematic of simple ANN with 2 inputs, 3 hidden nodes, 
2 hidden layers, and 1 output. 
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3.3.3 Comparing parameters impact 
 Operating parameters will be set as predicters, and train the ANN model with 
the Scale Conjugate Gradient algorithm to find regression with CV as a response. The 
predictors will pair up with each other in one predictor, two predictors, three 
predictors, and four predictors cases. RMSE will determine the impact of each case to 
find optimum predictors that give the most accurate CV. Predictors cases in this 
study are shown in table 3. 
 

Table  4 Summary pairing of predictors cases 

Dataset 
Input 

no. 1 2 3 4 

PU 1 CD - - - 

PU 2 CD DOL - - 

PU 2 CD QFB - - 

PU 2 CD QHD - - 

PU 2 CD T - - 

PU 3 CD DOL QFB - 

PU 3 CD DOL QHD - 

PU 3 CD DOL T - 

PU 3 CD QFB QHD - 

PU 3 CD QFB T - 

PU 3 CD QHD T - 

PU 4 CD DOL QFB QHD 

PU 4 CD DOL QFB T 

PU 4 CD DOL QHD T 

PU 4 CD QFB QHD T 
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3.4 PERFORMANCE EVALUATION 
 The performance of each model will be calculated based on its error as root 
mean square error (RMSE) for eliminate effect of subtraction error and determined in 
absolute form. The preliminary result shows mean square error in the range of 
0.00001 to 0.001, which RMSE is better for comparing the slight difference in 
prediction error with the original scale. 
Root Mean Square Error (RMSE)    

MAE= 
1

n
∑√(y-yi)

2 

While; y is actual data, yi is regressed data at the same input, n is number of data 
 
3.5 BLIND TEST AND PARAMETERS OPTIMIZATION STUDY 

After testing the number of hidden nodes, number of hidden layers, and 
impact of parameters, the optimum result with the lowest RMSE will implement to 
blind-test with actual data. In this thesis, training and validate datasets were puck at 
the dataset before the turnaround, and the test performance of the model was with 
actual data in another dataset, which is the dataset after the turnaround, to see the 
accuracy of the ANN model. 

 
Table  5 Dataset for train, validate ANN model and for test model performance 

Abb. Detail Period ANN group 

PBT Pre-processed, before T/A 01 Mar 22 - 07 Nov 22 Train and Validate 

PAT Pre-processed, after T/A 11 Nov 22 - 01 Mar 23 Test 

 
Study of parameters optimization, the optimum model will be used to 

predict cell voltage (CV) in multiple cases to find results after selecting the operating 
parameter in each mode. There is plotting the result of predicted cases compared 
with the actual of each parameter's upper and lower limit. 
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CHAPTER 4 : RESULTS AND DISCUSSION 
 
4.1 DATASET AND PREPROCESSING

 
Figure  30 Raw data of CD and CV plot with time 

 
          Raw data of CD and CV appear in fluctuating trend according to practical daily 
production plans designed to operate high capacity (high CD) in off-peak periods to 
minimize power consumption in on-peak periods for operation cost optimization. 
These raw data will be preprocessed by removing outliers from stopping, removing 
unsteady state period, selected data range to avoid turnaround, respectively. To 
compare the readiness of the theoretical dataset base will be applied by referring to 
the linear correlation between CD and CV of Ohm’s law as equation 15. 
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4.1.1 Result of removing outlier data 

 
Figure  31 Linear regression of CD and CV in various dataset 

A) Linear regression of CD and CV by raw data 
B) Linear regression of CD and CV after remove outlier 

C) Linear regression of CD and CV after removing unsteady state period 
    

          Correlation plot between CD and CV, graph show in linear form as Ohm’s law. 
Figure 31 A raw data plot without preprocessing appears to scatter the outlier, which 
makes the linear regression trend deviate from result RSQ 0.4035 Figure 31 B After 
cutting the outlier by removing stopping period data result in RSQ 0.8829, which is 
much better and can be assumed to be linear. Conversely, this dataset will analyze 
with other parameters, e.g., DOL, QFB, QHD, and T, which may be found in lead or lag 
data changing during a heating-up or load-changing step. In eliminating the problem, 
data between 08.00 and 22.00 of all day will remove from all unsteady state data in 
the load-changing period between on-peak and off-peak. After cutting unsteady state 
data, the result shows RSQ 0.8848, which is like the previous step, but stabilizes 
other parameters; this step must perform. 
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4.1.2 Result of reducing training data bias 
Table  6 Summary of dataset, period and number of data 

Abb. Detail Period Amount data RSQ 

RW Original collected data 01 Mar 22 - 01 Mar 23 8,761 0.4035 

PS Pre-processed, cut stop 01 Mar 22 - 01 Mar 23 8,599 0.8829 

PU Pre-processed, cut unsteady 01 Mar 22 - 01 Mar 23 7,881 0.8848 

PBT Pre-processed, before T/A 01 Mar 22 - 07 Nov 22 5,508 0.9612 

PAT Pre-processed, after T/A 11 Nov 22 - 01 Mar 23 2,373 0.9787 

GA Reducing bias, Group A (PBT) 01 Mar 22 - 24 Apr 22 1,186 0.9983 

GB Reducing bias, Group B (PBT) 24 Apr 22 - 17 Jun 22 1,186 0.9955 

GC Reducing bias, Group C (PBT) 17 Jun 22 - 10 Aug 22 1,186 0.9955 

GD Reducing bias, Group D (PAT) 11 Nov 22 - 06 Jan 23 1,186 0.9728 

GE Reducing bias, Group E (PAT) 06 Jan 23 - 28 Feb 23 1,186 0.9955 

 
          Data after preprocess by remove outlier and unsteady state period following 
assumption of after long-term stop such as turnaround or cell maintenance, CV refer 
to Figure 23 C scatter of data seem split to 2 linear trends. To avoid dataset across 
this period data were split into 5 groups which GA, GB and GC were collected before 
turnaround and GD and GE were collected after turnaround. 
 Datasets GA, GB, GC, GD, and GE will be used to train models to compare 
each algorithm's performance, varying the number of hidden nodes and varying 
number of hidden layers. It also tests in various train-to-test ratios at 70:30, 80:20, 
and 90:10. The use of small datasets and many groups proposes to reduce data bias. 
 Datasets PBT and PAT will be used to train models to compare the impact of 
each parameter because of more data amount and cover more operation cases. PBT 
will be used in the train and validate model, and PAT will be used in the test-to-test 
model performance without bias. 
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4.2 DATA ANALYTICS 
4.2.1 Correlation between each parameter to output 

 
Figure  32 Heat map correlation between each parameter 

 
Table  7 Definition of number and parameters in heat map Figure 24 
No. Type Abbr. Description Range Unit 

1 Output data CV Cell voltage 2.0-3.4 V 
2 Input data 1 DOL Operation day 0-365 Day 
3 Input data 2 CD Current density 1.8-6.0 KA/m2 
4 Input data 3 QFB Feed brine flow rate 12.0-30.0 m3/h 
5 Input data 4 QHD Feed brine flow rate 31+1 m3/h 
6 Input data 5 T Cell temperature 85-95 oC 
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Result of correlation heat map shown 
1. Correlation from 5 inputs to output 

a. The highest correlation is CD. It directly correlates to CV fitted in linear 
regression following Ohm’s law in equation 15. Current density 
determines production capacity following Faraday’s law in equations 12, 
13. Furthermore, other operating controlled parameters will be adjusted 
to support CD in production. 

b. QFB, In production philosophy, the brine feed flow rate is adjusted to 
control the concentration on the membrane and feed NaCl as raw 
material in production. The significant correlations occur by manipulation. 

c. T, the temperature controls membrane channel sizing to achieve 
optimum voltage and impurities content. Both QFB and T are not direct 
parameters t control CV, but they are dependent variables that highly 
accurate regression from the effect of CD or production capacity. 

2. Internal correlation between 5 inputs 
There are three correlations between input parameters: CD-QFB, CD-T, 

and T-QFB. All 3 cases show an invalid relationship which is the effect of 
dependent variables (QFB and T) on the primary variable (CD), as explained in 
the previous section. 

 

 
Figure  33 Linear regression plot of CD, QFB and QHD (significant parameters) to CV 

A) Linear regression plot of CD to CV gives RSQ 0.9753 
B) Linear regression plot of QFB to CV gives RSQ 0.9584 
C) Linear regression plot of T to CV gives RSQ 0.8801 

 

A B C 
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Figure  34 Linear regression plot of CD, QFB and QHD to CD (between inputs)  

A) Linear regression plot of QFB to CD gives RSQ 0.9892 
B) Linear regression plot of QFB to CV gives RSQ 0.8801 

 

           Linear regression plot of dependent variables, QFB and T, to a primary 
variable, CV, shows the high accuracy of a linear equation to data. That shows QFB, T, 
and CV are not independent. Both are controlled parameters to support each CD 
operation. 
 

4.2.2 Correlation between each parameter to output, eliminate CD 

 
Figure  35 Heat map correlation between each parameter at constant CD (6 KA/m2) 
 
 
 

A B 
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Table  8 Definition of number and parameters in heat map Figure 27 
No. Type Abbr. Description Range Unit 

1 Output data CV Cell voltage 2.0-3.4 V 
2 Input data 1 DOL Operation day 0-365 Day 
3 Input data 3 QFB Feed brine flow rate 12.0-30.0 m3/h 
4 Input data 4 QHD Feed brine flow rate 31+1 m3/h 
5 Input data 5 T Cell temperature 85-95 oC 

 
Second-order correlation plot at constant CD 6 KA/m2. Found DOL has a 

relationship with CV in linear. Linear regression of the correlation gave RSQ 0.8829. 
While QFB and T, which correlated highly to CD and CV, do not have a significant 
relationship to CV. That means a high correlation to CV in heatmap mainly occurs by 
CD's effect.       
 

                 
Figure  36 Linear regression plot of DOL, QFB, QHD and T to CV at constant CD 

A) DOL and CV gives RSQ 0.8829        B) QFB and CV gives RSQ 0.0022 
C) QHD and CV gives RSQ 0.1087        D) T and CV gives RSQ 0.1308 

 

A B 

C D 
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4.3 NEURAL NETWORK FITTING 
4.3.1 Result of performance in comparing ANN algorithm 

Table  9 Result of performance in comparing ANN algorithm 

Dataset 

Performance (RMSE, V) on test group 

Scale Conjugate Gradient 
algorithm (SCG) 

Levenberg Marquardt 
algorithm (LM) 

Bayesian Regularization 
algorithm (BR) 

Train Validate Test Train Validate Test Train Test 

GA 0.0092 0.0111 0.0192 0.0022 0.0021 0.0028 0.0010 0.0010 

GB 0.0065 0.0067 0.0052 0.0013 0.0013 0.0017 0.0014 0.0014 

GC 0.0059 0.0061 0.0072 0.0014 0.0016 0.0017 0.0013 0.0016 

GD 0.0067 0.0077 0.0074 0.0028 0.0029 0.0056 0.0023 0.0039 

GE 0.0023 0.0022 0.0022 0.0016 0.0014 0.0016 0.0014 0.0017 

Average  0.0082 V 0.0027 V 0.0019 V 

  
         The performance result in various ANN algorithms gave acceptable RMSE 
(accept at RMSE < 0.01 V due to the original data source being used to calculate at 
two decimal numbers). BR gave the best performance result with the lowest RMSE; 
the second was LM. Usually, BR deals with small datasets and is very good at 
handling noise which might not be suitable for implementation with actual 
commercial plants. LM is usually the fastest learning algorithm, but it takes more 
memory in the calculation. SCG uses less memory than other algorithms. For the 
dataset in this research, memory efficiency seems more practical to implement, and 
all gave acceptable results also. SCG will be used as an algorithm to train ANN in the 
next section. 
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4.3.2 Finding optimum number of hidden node 
Table  10 Result of varying number of hidden node with train-to-test ratio 70:30 

Dataset 
Performance (RMSE, V) on test group 

5 nodes 6 nodes 7 nodes 8 nodes 9 nodes 10 nodes 

GA 0.0071 0.0113 0.0039 0.0056 0.0043 0.0091 

GB 0.0108 0.0062 0.0037 0.0041 0.0058 0.0065 

GC 0.0031 0.0081 0.0056 0.0060 0.0064 0.0051 

GD 0.0058 0.0051 0.0054 0.0177 0.0064 0.0097 

GE 0.0036 0.0060 0.0025 0.0030 0.0028 0.0058 

Average 0.0061 0.0037 0.0042 0.0073 0.0051 0.0062 

Accuracy rank 4 1 2 6 3 5 

 
Table  11 Result of varying number of hidden node with train-to-test ratio 80:20 

Dataset 
Performance (RMSE, V) on test group 

5 nodes 6 nodes 7 nodes 8 nodes 9 nodes 10 nodes 

GA 0.0050 0.0054 0.0070 0.0051 0.0368 0.0062 

GB 0.0170 0.0086 0.0036 0.0029 0.0085 0.0114 

GC 0.0139 0.0157 0.0087 0.0073 0.0135 0.0090 

GD 0.0070 0.0054 0.0057 0.0069 0.0069 0.0075 

GE 0.0049 0.0059 0.0076 0.0055 0.0033 0.0046 

Average 0.0096 0.0066 0.0065 0.0055 0.0122 0.0077 

Accuracy rank 5 3 2 1 6 4 
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Table  12 Result of varying number of hidden node with train-to-test ratio 90:10 

Dataset 
Performance (RMSE, V) on test group 

5 nodes 6 nodes 7 nodes 8 nodes 9 nodes 10 nodes 

GA 0.0063 0.0117 0.0081 0.0096 0.0044 0.0063 

GB 0.0066 0.0089 0.0042 0.0171 0.0086 0.0042 

GC 0.0061 0.0030 0.0099 0.0100 0.0153 0.0074 

GD 0.0083 0.0095 0.0144 0.0157 0.0167 0.0055 

GE 0.0036 0.0054 0.0048 0.0082 0.0028 0.0034 

Average 0.0062 0.0077 0.0083 0.0121 0.0076 0.0054 

Accuracy rank 2 4 5 6 3 1 

 
The results of varying hidden nodes 5 – 10 show 

1. All node numbers gave acceptable results (accept at RMSE < 0.01 V due to 
the original data source was used to calculate at two decimal numbers) 
except seven nodes in 90:10 train-to-test-ratio gave RMSE higher than 0.121 V, 
which was from dataset GC and GE, it might be close to turning around 
period. It might appear less accurate from a small test ratio. 

2. No significantly different between each number on nodes RMSE result. In the 
test-to-test ratio 70:30, 80:20, and 90:10, six hidden nodes, eight hidden 
nodes, and ten nodes gave the lowest RMSE in each case. 

3. This thesis used six hidden nodes in further study to follow rule-of-thumb 
inputs+1 (n+1) hidden nodes, and this thesis will perform with a 70:30 train-
to-test ratio to handle the amount of data. 
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4.3.3 Finding optimum number of hidden layer 
Table  13 Result of varying number of hidden layer with train-to-test ratio 70:30 

Dataset 
Performance (RMSE, V) on test group 

1 layer 2 layers 3 layers 4 layers 5 layers 

GA 0.0154 0.0081 0.0043 0.0050 0.0075 

GB 0.0063 0.0106 0.0106 0.0199 0.0107 

GC 0.0071 0.0070 0.0183 0.0171 0.0071 

GD 0.0078 0.0058 0.0136 0.0089 0.0147 

GE 0.0035 0.0043 0.0050 0.0062 0.0033 

Average 0.0062 0.0072 0.0104 0.0114 0.0087 

Accuracy rank 1 2 4 5 3 

 
Table  14 Result of varying number of hidden layer with train-to-test ratio 80:20 

Dataset 
Performance (RMSE, V) on test group 

1 layer 2 layers 3 layers 4 layers 5 layers 

GA 0.0095 0.0070 0.0076 0.0100 0.0090 

GB 0.0062 0.0168 0.0089 0.0154 0.0061 

GC 0.0037 0.0051 0.0054 0.0210 0.0196 

GD 0.0073 0.0067 0.0068 0.0118 0.0090 

GE 0.0042 0.0089 0.0072 0.0038 0.0087 

Average 0.0062 0.0089 0.0072 0.0124 0.0105 

Accuracy rank 1 3 2 5 4 
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Table  15 Result of varying number of hidden layer with train-to-test ratio 90:10 

Dataset 
Performance (RMSE, V) on test group 

1 layer 2 layers 3 layers 4 layers 5 layers 

GA 0.0073 0.0087 0.0082 0.0209 0.0121 

GB 0.0053 0.0194 0.0200 0.0169 0.0189 

GC 0.0076 0.0111 0.0050 0.0108 0.0217 

GD 0.0113 0.0065 0.0060 0.0105 0.0310 

GE 0.0070 0.0077 0.0049 0.0085 0.0063 

Average 0.0077 0.0107 0.0088 0.0135 0.0180 

Accuracy rank 1 3 2 4 5 

 
The results of varying hidden layers 1 – 5 show 

1. At 1-2, the hidden layer gave an acceptable result (accept at RMSE < 0.01 V 
due to the original data source used to calculate at two decimal numbers). At 
higher hidden layers, RMSE was also getting higher. 4-5 hidden layers have 
RMSE > 0.01 V; almost all cases that occurred from correlation in ANN overfit 
led to test results worsening RMSE. 

2. This thesis used one layer in the further study because it gave the lowest 
RMSE in all cases, all in an acceptable range. 
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4.3.4 Result of comparing parameters impact 
Table  16 Result of performance in comparing parameter impact 

Dataset 
Input Performance (RMSE, V) on test group Performance 

Ranking no. 1 2 3 4 Train Validate Test 

PU 1 CD - - - 0.0170 0.0175 0.0167 12 

PU 2 CD DOL - - 0.0059 0.0052 0.0065 4 

PU 2 CD QFB - - 0.0174 0.0186 0.0171 13 

PU 2 CD QHD - - 0.0162 0.0175 0.0184 14 

PU 2 CD T - - 0.0141 0.0156 0.0148 9 

PU 3 CD DOL QFB - 0.0062 0.0063 0.0066 5 

PU 3 CD DOL QHD - 0.0068 0.0066 0.0070 ‘6 

PU 3 CD DOL T - 0.0047 0.0044 0.0043 1 

PU 3 CD QFB QHD - 0.0142 0.0138 0.0143 8 

PU 3 CD QFB T - 0.0159 0.0161 0.0159 11 

PU 3 CD QHD T - 0.0156 0.0145 0.0149 10 

PU 4 CD DOL QFB QHD 0.0055 0.0057 0.0057 3 

PU 4 CD DOL QFB T 0.0073 0.0078 0.0081 7 

PU 4 CD DOL QHD T 0.0055 0.0051 0.0052 2 

PU 4 CD QFB QHD T 0.0227 0.0211 0.0221 15 

 
The performance in comparing parameters impact showed a case of 3 

predictors with CD, DOL, and T giving the highest accuracy in CV prediction. 
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Comparing direct correlation of CD as predictor and CV as response. 

 
Figure  37 Correlation plot between CD and CV fitting 

A) Fitting by scale conjugate gradient result in RMSE = 0.0167 
B) Fitting by linear regression result in RMSE = 0.0197 

 
          The regression plot of CD and CV complies with the theory. Found a wide 
cluster of data in step intervals, which were from the operating point of current 
density. The actual operation is performed in daily capacity swing following product 
demand. There is a practical capacity adjustment.    

The result of the correlation plot of 1 predictor between CD and CV by Scale 
Conjugate Gradient gave a lower RMSE, which is the result of non-linear fitting 
performing. 
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Comparing of selected 2 predictors to CV response 

             
Figure  38 Regression plot of 2 input predictors 

A) Regression plot 2 predictors CD, DOL by scale conjugate gradient 
B) Regression plot 2 predictors CD, QFB by scale conjugate gradient 
C) Regression plot 2 predictors CD, QHD by scale conjugate gradient 
D) Regression plot 2 predictors CD, T by scale conjugate gradient 

 

 The plot of 2 predictors. The case of CD and DOL gave the lowest RMSE, 
which can conclude that the main deviation factor in each cluster deviation in Figure 
38 A is DOL (operating time) which directly relates to clogging accumulation on the 
membrane. On the contrary, the feed flow rate of both QFB and QHD gave worse 
RMSE. Slight fluctuation of these parameters is not directly impacted cluster 
deviation in a steady state period. It might appear impaction in transient state data, 
which eliminate from the dataset in pre-processing. 
 
 

A B 

C D 
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Comparing of selected 4 predictors to CV response. 

 
Figure  39 Regression plot of 3 input predictors 

A) Regression plot CD, DOL, QFB by scale conjugate gradient 
B) Regression plot CD, DOL, QHD by scale conjugate gradient 
C) Regression plot CD, DOL, T by scale conjugate gradient 
D) Regression plot CD, QFB, QHD by scale conjugate gradient 
E) Regression plot CD, QFB, T by scale conjugate gradient 
F) Regression plot CD, QHD, T by scale conjugate gradient 

 

 The plot of 3 predictors. The CD, DOL, and T cases in Figure 31 C gave the 
lowest RMSE. Referring to the plot of 2 predictors, DOL and T were in the set that 
gave the lowest RMSE. That from in some period that T was adjusted, for example, 
steam utility management or optimizing cell voltage after long operation by 
increasing temperature. Only DOL cannot regress the model in that period to fit the 
response (T can see in disturbance). To conclude, temperature helps to deduct the 
plot of predictors CD and DOL to the standard line leading to the model becoming 
more fitted. 
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Comparing of selected 4 predictors to CV response. 

         

Figure  40 Regression plot of 4 input predictors  
A) Regression plot CD, DOL, QFB, QHD by scale conjugate gradient,  
B) Regression plot CD, DOL, QFB, T by scale conjugate gradient,  
C) Regression plot CD, DOL, QHD, T by scale conjugate gradient,  
D) Regression plot CD, QFB, QHD, T by scale conjugate gradient 

   

The plot of 2 predictors. Not found significantly better correlation than the 
three predictors. In Figures 40 A and Figure 40 C, cases of CD, DOL, QFB, QHD and CD, 
DOL, QHD, T as predictors gave RMSE the lowest, but higher than three predictors 
cases of CD, DOL, T. In the case of Figure 40 C result becomes worse after adding QHD 
as the fourth parameter from no relationship and making the model overfit with 
noise. In the case of Figure 40 A, the lowest RMSE without T in a predictive model is 
the lowest. It might be from QFB and regress deviation as T as plot in section 4.2. 
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4.3.5 Summary of accuracy in each case. 
Table  17 Summary of accuracy in each case 

Dataset 
Input Performance (RMSE, V) on test group Performance 

Ranking no. 1 2 3 4 Train Validate Test 

PU 3 CD DOL T - 0.0047 0.0044 0.0043 1 

PU 4 CD DOL QHD T 0.0055 0.0051 0.0052 2 

PU 4 CD DOL QFB QHD 0.0055 0.0057 0.0057 3 

PU 2 CD DOL - - 0.0059 0.0052 0.0065 4 

PU 3 CD DOL QFB - 0.0062 0.0063 0.0066 5 

 
DOL has the highest impact on cell voltage. The wide range of data of 

clusters in each step of operation capacity is mainly caused by membrane efficiency 
down by operation time or clogging by impurities. However, DOL cannot control; 
only feed purities can monitor to keep stable DOL (quality control was not measured 
and mentioned in this thesis). 

T was the first runner-up for highest impact. It can synergy with DOL in model 
regression. In some cases of deviation from the regular operation, for example, adjust 
T for optimum cell voltage or steam management. DOL cannot regress the model to 
a standard line because T was disturbing operation data.  

In the case of 4 predictors, the feed flow rate of both QFB and QHD, which 
mainly deviate by fluctuation, results in noise, not the adjustment of the main 
parameters. That gave worse RMSE, especially QFB. However, this research analyzes 
the steady-state dataset in which the feed flow rate was unaffected. If the dataset 
includes load changing period, it might be more impact. 
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4.4 RESULT OF BLIND TEST AND PARAMETERS OPTIMIZATION 
4.4.1 Blind test with data before turnaround 
After performing hold-on validation, the first step is to check the model 

accuracy at the same condition (before turnaround) by selecting data in March 2022 
to June 2022 to train and validate the ANN model and selecting data in August 2022 
to test for unseen testing-dataset in model evaluation. The results show that  

1. By linear regression (equation created from CD and DOL) show RMSE in the 
train group at 0.0276 V and test group at 0.0206 V 
2. By ANN prediction (model created from CD, DOL, and T) show RMSE in the 
train group at 0.0019 V and test group at 0.0181 V 

 

           

Figure  41 Linear regression fitting of test data in August 2022 
 

           

Figure  42 ANN model fitting of test data in August 2022 
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4.4.2 Blind test with data after turnaround 
The Second step is to evaluate the model with different conditions by 

training the model before turnaround and testing with data before the turnaround 
period. They selected data from March 2022 to June 2022 to train and validate the 
ANN model (same as 4.4.1) and selected data in January 2023 to test. Cell voltage 
shows they have significantly different conditions from the flushing effect during the 
turnaround. To compare with the same ANN model, It has to reduce CV by 3% to 
represent the flushing effect. The results show that 

1. By linear regression (equation created from CD and DOL) show RMSE in the 
training group at 0.0276 V and test group at 0.0137 V 
2. By ANN prediction (model created from CD, DOL, and T) show RMSE in the 
training group at 0.0019 V and test group at 0.0126 V 
 

           

Figure  43 Linear regression fitting of test data in January 2023 
 

           

Figure  44 ANN model fitting of test data in January 2022 
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4.4.2 Parameters optimization study 

 

Figure  45 ANN model fitting in predictive CV (grey) 
comparing with actual data (blue) 

 
The predictive model of ANN can handle noise from slightly fluctuating 

operating parameters, and the non-linear function seems more fitted. Some peaks 
could not be regressed at low production load after regressing CV to the standard 
line at CD 6 KA/m2. Since we regressed CD to a high load, cell temperature was not 
regressed (T was a dependent variable that can affect as input parameter). 

 

 

Figure  46 ANN model fitting in predictive CV after at CD 6 KA/m2 (orange) 
comparing with actual data (blue) 
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Figure  47 ANN model fitting in predictive CV at CD 6 KA/m2 and 82oC (blue) 
Comparing with predictive CV at CD 6 KA/m2 actual T (orange) 

 

Figure  48 ANN model fitting in predictive CV at CD 6 KA/m2 and 84oC (blue) 
Comparing with predictive CV at CD 6 KA/m2 actual T (orange) 

 

Figure  49 ANN model fitting in predictive CV at CD 6 KA/m2 and 86oC (blue) 
Comparing with predictive CV at CD 6 KA/m2 actual T (orange) 

 
 

 After regressing the temperature to see only the effect of DOL and finding CV 
growth due to operating time, it was found that temperatures below and over 82oC 
gave CV more deviation than CV at actual temperature. That means at 82oC and 
below, cell condition at various temperatures, as actual, is more stable in the wind 
range than at 82oC. However, cell temperature at 84oC gave the most stable CV in all 
ranges. Predicted values after regressing to 84oC deviate from the growth line by less 
than 0.02 V. At cell temperature, 84oC represented all CD at the same condition 
compared with other parameters. 
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CHAPTER 5 : CONCLUSION 
 

Finding an optimum number of hidden nodes and layers with scale conjugate 
gradient algorithm found that 6-8 accuracy is not significantly different between 
hidden nodes. All gave acceptable RMSE; one hidden layer gave the most accuracy. 

In comparing each parameter impact to cell voltage (CV) found that the case 
that gave minimum RMSE was three predictors consisting of current density (CD), 
operation date (DOL), and cell temperature (T) at 0.0043 in the test group. Exclude 
CD, which is theoretically directly related to CV; DOL has the highest impact on the 
cell voltage. The clusters in step of production capacity is caused by membrane 
efficiency down by operation time. The second impact parameter is T. T is directly 
related to ion-exchange efficiency by channel size to be extended or shrunk. Dataset 
some has appeared different T at the same capacity. It was to control plant stability.  
          Meanwhile, In the case of CD and DOL as predictors, RMSE was 0.0065. On the 
other hand, feed brine flow rate (QFB) and feed caustic flow rate (QHD) do not have a 
synergy to reduce RMSE after implementing additional parameters. In the case of 
implying QFB or QHD as the third or fourth predictor behind DOL and T, RMSE results 
become worse from non-related noise. It can assume that QFB and QHD control in 
range during steady-state operation. However, a dataset for training ANN removed 
the unsteady state period, which the impact of QFB and QHD might be more apparent.  

The study can conclude that CD, DOL, and T as ANN 3 predictors have 
sufficient accuracy to predict CV and, after the predict CV in blind test (hold-out 
validation), found that in different operating condition models still give enough 
accuracy in prediction. 

The study of optimum conditions by normalized CV. The result shown at 
84oC of the test and train condition dataset gave the most stable CV that can 
represent all operation CD (production capacity) with an error less than 0.02 V. This 
thesis can apply to stabilize power consumption by predicting CV after extending 
membrane service life by controlling T in optimum value or predicting corrected CV 
value to comparing another uncontrol condition for measuring the performance of 
electrolysis cells. 
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APPENDIX 
 
Neural Net Fitting product description
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Figure  50 Neural Net Fitting description [20] 
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MATLAB add-on Neural Net Fitting 

 
Figure  51 Neural Net Fitting application 

 
Acting window of Neural Net Fitting “nftool” 

 
Figure  52 Neural Net Fitting network windown 
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Result window of Neural Net Fitting “nftool” 

 
Figure  53 Neural Net Fitting result window 
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Dataset for ANN train and test (CSV file) 
GITHUB repository clone link: 
https://github.com/MACHINE11051/Thesis-ANN-Chlor-Alkali-Kittapas-Sukantowong.git 

Abb. Detail Period Estimate no. 

RW Original collected data 01 Mar 22 - 01 Mar 23 8,761 data 

PS Pre-processed, cut stop 01 Mar 22 - 01 Mar 23 < 8,761 data 

PU Pre-processed, cut unsteady 01 Mar 22 - 01 Mar 23 < 8,761 data 

PBT Pre-processed, before T/A 01 Mar 22 - 07 Nov 22 2 of 3 of PU 

PAT Pre-processed, after T/A 11 Nov 22 - 01 Mar 23 1 of 3 of PU 

GA Reducing bias, Group A (PBT) 01 Mar 22 - 24 Apr 22 1,186 

GB Reducing bias, Group B (PBT) 24 Apr 22 - 17 Jun 22 1,186 

GC Reducing bias, Group C (PBT) 17 Jun 22 - 10 Aug 22 1,186 

GD Reducing bias, Group D (PAT) 11 Nov 22 - 06 Jan 23 1,186 

GE Reducing bias, Group E (PAT) 06 Jan 23 - 28 Feb 23 1,186 

Remark: AA in GITHUB refers to dataset PBT to train, validate and test ANN model. 
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Generated script for Neural Net Fitting with scale conjugate gradient algorithm 
Dataset  : GA 
Hidden node  : 10 
Hidden layer : 1 
Spitting  : Train 70% Validate 15% Test 15% 
% Solve an Input-Output Fitting problem with a Neural Network 
% Script generated by Neural Fitting app 
% This script assumes these variables are defined: 
%   GApredictor - input data. 
%   GAresponse - target data. 
x = GApredictor'; 
t = GAresponse'; 
% Choose a Training Function 
% For a list of all training functions type: help nntrain 
% 'trainlm' is usually fastest. 
% 'trainbr' takes longer but may be better for challenging problems. 
% 'trainscg' uses less memory. Suitable in low memory situations. 
trainFcn = 'trainscg';  % Scale Conjugate Gradient backpropagation. 
% Create a Fitting Network 
hiddenLayerSize = 10; 
net = fitnet(hiddenLayerSize,trainFcn); 
% Setup Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
% Train the Network 
[net,tr] = train(net,x,t); 
% Test the Network 
y = net(x); 
e = gsubtract(t,y); 
performance = perform(net,t,y) 
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% View the Network 
view(net) 
% Plots 
% Uncomment these lines to enable various plots. 
%figure, plotperform(tr) 
%figure, plottrainstate(tr) 
%figure, ploterrhist(e) 
%figure, plotregression(t,y) 
%figure, plotfit(net,x,t) 
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Generated script for Neural Net fitting with scale lavenberg marquardt 
Dataset  : GA 
Hidden node  : 10 
Hidden layer : 1 
Spitting  : Train 70% Validate 15% Test 15% 
% Solve an Input-Output Fitting problem with a Neural Network 
% Script generated by Neural Fitting app 
% This script assumes these variables are defined: 
%   GApredictor - input data. 
%   GAresponse - target data. 
x = GApredictor'; 
t = GAresponse'; 
% Choose a Training Function 
% For a list of all training functions type: help nntrain 
% 'trainlm' is usually fastest. 
% 'trainbr' takes longer but may be better for challenging problems. 
% 'trainscg' uses less memory. Suitable in low memory situations. 
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 
% Create a Fitting Network 
hiddenLayerSize = 10; 
net = fitnet(hiddenLayerSize,trainFcn); 
% Setup Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
% Train the Network 
[net,tr] = train(net,x,t); 
% Test the Network 
y = net(x); 
e = gsubtract(t,y); 
performance = perform(net,t,y) 
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% View the Network 
view(net) 
% Plots 
% Uncomment these lines to enable various plots. 
%figure, plotperform(tr) 
%figure, plottrainstate(tr) 
%figure, ploterrhist(e) 
%figure, plotregression(t,y) 
%figure, plotfit(net,x,t) 
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Generated script for Neural Net fitting with scale Bayesian regularization 
Dataset  : GA 
Hidden node  : 10 
Hidden layer : 1 
Spitting  : Train 70% Validate 15% Test 15% 
% Solve an Input-Output Fitting problem with a Neural Network 
% Script generated by Neural Fitting app 
% This script assumes these variables are defined: 
%   GApredictor - input data. 
%   GAresponse - target data. 
x = GApredictor'; 
t = GAresponse'; 
% Choose a Training Function 
% For a list of all training functions type: help nntrain 
% 'trainlm' is usually fastest. 
% 'trainbr' takes longer but may be better for challenging problems. 
% 'trainscg' uses less memory. Suitable in low memory situations. 
trainFcn = 'trainbr';  % Bayesian Regualrization backpropagation. 
% Create a Fitting Network 
hiddenLayerSize = 10; 
net = fitnet(hiddenLayerSize,trainFcn); 
% Setup Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
% Train the Network 
[net,tr] = train(net,x,t); 
% Test the Network 
y = net(x); 
e = gsubtract(t,y); 
performance = perform(net,t,y) 
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% View the Network 
view(net) 
% Plots 
% Uncomment these lines to enable various plots. 
%figure, plotperform(tr) 
%figure, plottrainstate(tr) 
%figure, ploterrhist(e) 
%figure, plotregression(t,y) 
%figure, plotfit(net,x,t) 
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Script for testing optimum number of hidden node 
Dataset  : GA 
Hidden node  : 5 - 10 
Hidden layer : 1 
Spitting  : Train 70% Validate 15% Test 15% 
  : Train 80% Validate 10% Test 10% 
  : Train 90% Validate 5% Test 5% 
for X = 5:10  %run for loop 1 - 5 
node_layer = [X] %hidden node under for loop 1 - 5 
%__________________train-to-test ratio 90:10 
x = GCpredictor';        %input data 
t = GCresponse';         %traget data 
trainFcn = 'trainscg';  % Scaled conjugate gradient backpropagation. 
% Create a Fitting Network 
hiddenLayerSize = node_layer; 
net = fitnet(hiddenLayerSize,trainFcn); 
% Setup Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 90/100; 
net.divideParam.valRatio = 5/100; 
net.divideParam.testRatio = 5/100; 
% Train the Network 
[net,tr] = train(net,x,t); 
% Test the Network 
y = net(x); 
e = gsubtract(t,y); 
performance_MSE_90_10 = perform(net,t,y); 
performance_RMSE_90_10 = sqrt(performance_MSE_90_10); 
%__________________train-to-test ratio 80:20 
trainFcn = 'trainscg';  % Scaled conjugate gradient backpropagation. 
% Create a Fitting Network 
hiddenLayerSize = node_layer; 
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net = fitnet(hiddenLayerSize,trainFcn); 
% Setup Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 80/100; 
net.divideParam.valRatio = 10/100; 
net.divideParam.testRatio = 10/100; 
% Train the Network 
[net,tr] = train(net,x,t); 
% Test the Network 
y = net(x); 
e = gsubtract(t,y); 
performance_MSE_80_20 = perform(net,t,y); 
%__________________train-to-test ratio 70:30 
trainFcn = 'trainscg';  % Scaled conjugate gradient backpropagation. 
% Create a Fitting Network 
hiddenLayerSize = node_layer; 
net = fitnet(hiddenLayerSize,trainFcn); 
% Setup Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
% Train the Network 
[net,tr] = train(net,x,t); 
% Test the Network 
y = net(x); 
e = gsubtract(t,y); 
performance_MSE_70_30 = perform(net,t,y); 
performance_RMSE_70_30 = sqrt(performance_MSE_70_30); 
%summary table 
result_GA = [performance_RMSE_70_30 performance_RMSE_80_20 
performance_RMSE_90_10] 
end 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 70 

Script for testing optimum number of hidden layer 
Dataset  : GA 
Hidden node  : 6 
Hidden layer : 1 - 5 
Spitting  : Train 70% Validate 15% Test 15% 
  : Train 80% Validate 10% Test 10% 
  : Train 90% Validate 5% Test 5% 
for X = 1:5    %run for loop hidden layer 1 - 5 
   switch X 
   case 1  node_layer = [6]  %1 hidden layer 
   case 2  node_layer = [6 6]  %2 hidden layers 
   case 3  node_layer = [6 6 6] %3 hidden layers 
   case 4  node_layer = [6 6 6 6] %4 hidden layers 
   case 5  node_layer = [6 6 6 6 6] %5 hidden layers 
   end 
%__________________train-to-test ratio 90:10 
x = GEpredictor';        %input data 
t = GEresponse';         %traget data 
trainFcn = 'trainscg';  % Scaled conjugate gradient backpropagation. 
% Create a Fitting Network 
hiddenLayerSize = node_layer; 
net = fitnet(hiddenLayerSize,trainFcn); 
% Setup Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 90/100; 
net.divideParam.valRatio = 5/100; 
net.divideParam.testRatio = 5/100; 
% Train the Network 
[net,tr] = train(net,x,t); 
% Test the Network 
y = net(x); 
e = gsubtract(t,y); 
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performance_MSE_90_10 = perform(net,t,y); 
performance_RMSE_90_10 = sqrt(performance_MSE_90_10); 
%__________________train-to-test ratio 80:20 
trainFcn = 'trainscg';  % Scaled conjugate gradient backpropagation. 
% Create a Fitting Network 
hiddenLayerSize = node_layer; 
net = fitnet(hiddenLayerSize,trainFcn); 
% Setup Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 80/100; 
net.divideParam.valRatio = 10/100; 
net.divideParam.testRatio = 10/100; 
% Train the Network 
[net,tr] = train(net,x,t); 
% Test the Network 
y = net(x); 
e = gsubtract(t,y); 
performance_MSE_80_20 = perform(net,t,y); 
performance_RMSE_80_20 = sqrt(performance_MSE_80_20); 
%__________________train-to-test ratio 70:30 
trainFcn = 'trainscg';  % Scaled conjugate gradient backpropagation. 
% Create a Fitting Network 
hiddenLayerSize = node_layer; 
net = fitnet(hiddenLayerSize,trainFcn); 
% Setup Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
% Train the Network 
[net,tr] = train(net,x,t); 
% Test the Network 
y = net(x); 
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e = gsubtract(t,y); 
performance_MSE_70_30 = perform(net,t,y); 
performance_RMSE_70_30 = sqrt(performance_MSE_70_30); 
%summary table 
result_GA = [performance_RMSE_70_30 performance_RMSE_80_20 
performance_RMSE_90_10] 
end 
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