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ABSTRACT (THAI)  กฤษฏิ์ ประสพสันติ : การเรียนรู้ของเครื่องสำหรับตรวจสอบปัญหาวาล์วฝืดด้วยสัญญาณ
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Valve stiction presents challenges in industrial process control, leading to 
oscillations and hindering the regulation of fluid flow. This thesis addresses the 
detection of valve stiction by exploring the limitations of current methods and 
proposes a novel approach that combines wavelet reconstruction and 
convolutional neural networks (CNN) to enhance stiction detection performance. 
The proposed method utilizes preprocessed process variable versus controller 
output (PV(OP)) plots as input to the CNN model, capitalizing on the distinctive 
characteristics of stiction. Training and evaluation employ both simulated and real-
world data from the International Stiction Data Base (ISDB), with the F1 score 
serving as the primary performance metric. Results demonstrate that the modified 
PV(OP) input approach, in conjunction with the CNN classifier, achieves an 
impressive F1 score of 0.9, surpassing conventional methods. In-depth analysis of 
fault cases provides valuable insights into the strengths and limitations of the 
approach, emphasizing interpretability and robustness. The accurate detection of 
valve stiction enables proactive maintenance and targeted interventions, 
ultimately improving the performance of interconnected systems and enhancing 
safety and efficiency in industrial processes. 
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CHAPTER I 

INTRODUCTION 

1.1 Background and motivation 

Valve stiction is one of the most prominent problems in chemica l process 

monitoring. In each chemical plant there are 500 – 5,000 process control loops, most 

of them have fluid as their main element and need valve as the primary control 

equipment. As those valves tend to have irregular maintenance, they stick regularly.  

According to Raul “Stiction is a combination of the words stick and friction, created 

to emphasize the difference between static and dynamic friction. Stiction exists when 

the static (starting) friction exceeds the dynamic (moving) friction inside the valve. 

Stiction describes the valve’s stem (or shaft) sticking when small changes are 

attempted.” [1]. In other words, it is an occurrence that prevents valves from moving 

in a manner that a plant operator or controller wants because of forces of friction. 

While the problem itself is not a big deal, when combined with how typical 

controllers in the industries work, it causes limited oscillations in the fluid flowrate as 

well as all related state variables of the process. This oscillation is a major concern in 

industries as about 80% of their closed loop have the problem [2] resulting in 

excessive energy and raw materials consumption as well as safety issues. However, 

even though several surveys showed that valve stiction is a cause of around 20-30% 

of the oscillation problem [3-5], it is not the only one. The oscillation problem can 

be caused by others such as external disturbances, inadequate controller tuning or 

presence of other process non-linearities. And while the solutions of oscillation 

problems are relatively straight-forward if the causes are known, identifying the 

causes can be problematic.  
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Existing methods for valve stiction detection fall into two categories. The first 

category comprises traditional feature engineering-based approaches, which rely on 

engineering principles and domain knowledge to identify stiction behavior from 

process data. While these methods offer interpretability, they are limited in their 

applicability to real-world industrial data and often require detailed system 

knowledge. For instance, the Bicoherence and Ellipse-fitting method (BIC), introduced 

by Choudhury et al. in 2006 [6], is a prominent example and one of the best 

performed methods in this category. BIC identifies stiction behavior based on 

Gaussian and linearity tests, as well as the ellipse shape of the frequency-filtered 

Controller Output-Process Variable (PV(OP)) plot. However, these tests require long 

lengths of well-behaved data, which can restrict their usability.  

In recent years, there has been a growing interest in utilizing deep learning 

approaches for valve stiction detection. However, the application of data science 

techniques in the chemical industry is not without challenges. One major hurdle is 

the scarcity of labeled data for analysis and model training. Obtaining labeled data 

from real-world industrial processes can be difficult and time-consuming. As a result, 

many researchers have resorted to using simulation data as a substitute . Meaning, 

the sensitivity of deep learning models to how the training set is simulated is a 

significant concern. Simulation parameters and assumptions can significantly impact 

the performance of the model, making it challenging to ensure robustness and 

applicability in practical industrial settings. 

Another challenge stems from the black -box nature of deep learning 

methods. While these models can achieve impressive performance, their inner 

workings are often difficult to interpret. This lack of interpretability can hinder the 

ability to gain insights into the underlying mechanisms of valve stiction and the 

specific patterns driving its occurrence. Additionally, the reliance on small test sets 
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during model evaluation can introduce a level of uncertainty regarding the 

generalizability of the results to real-world scenarios.  

To address these issues, we have integrated traditional methods and 

fundam ental p rocess engineering know ledge in to our work to  enhance 

interpretability and reduce the dependence on simulating the train ing set. 

Specifically, we employ the main idea of Ellipse-fitting approach to transform 

simulated data and real-world industrial data to make them more similar to each 

other, regardless of the simulation parameters used. However, for the frequency 

filtering method, we only filter the signal with a frequency lower than the oscillation 

frequency of the data to retain as much information as possible, which makes the 

problematic Gaussian and linearity tests unnecessary. As for the high frequency 

components, inspired by Xu et al. valve stiction detection utilizing wavelet 

technology [7], we use wavelet reconstruction to further de-noise and prepare a 

suitable PV(OP) plot for training and testing the Convolutional Neural Network (CNN) 

model. The main selling point of our idea is, despite the additional steps involved, 

our valve stiction detection process remains automated, harness ing the advantages 

of deep learning methods in terms of time efficiency and minimal system knowledge 

requirements. By incorporating these methods and knowledge, we believe that the 

practicality and robustness of the deep learning approach can be significan tly 

enhanced.  

For the model CNN architecture is well-suited for the task of valve stiction 

detection in chemical process control. CNNs have demonstrated remarkable success 

in various domains, particularly in image and signal processing tasks. This is because 

CNNs excel at capturing and extracting meaningful patterns and features from high -

dimensional data. In the context of valve stiction detection, the PV(OP) plot can be 

considered as a form of signal data that encapsulates crucial information about 
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stiction behavior. By leveraging the inherent properties of CNNs the network can 

effectively analyze the patterns present in the PV(OP) plot.  

In conclusion, our work represents a novel integration of traditional methods 

and data science techniques to address the challenges of valve stiction detection in 

chemical process control. By combining the interpretability of traditional approaches 

and the power of deep learning, we aim to develop a reliable and practical solution 

for detecting and mitigating valve stiction. We anticipate that our approach will 

contribute to the enhancement of industrial processes, promoting energy efficiency, 

reducing material waste, and ensuring process safety.  

1.2 Research objective 

 Develop a new convolutional neural network-based valve stiction detection 

method with comparable performance with current research and is ready to employ 

in real-world environment. 

1.3 Scopes of work   

Review and analyze existing traditional feature engineering-based methods for 

valve stiction detection including their limitations and applicability to real industrial 

data. 

Explore the application of deep learning approaches for valve stiction 

detection and identify the challenges associated with employing data science 

techniques in the chemical industry. 

Develop an integrated approach that combines traditional methods, process 

engineering knowledge, and deep learning techniques to enhance interpretability, 

reduce reliance on simulated training sets, and improve the accuracy and 

adaptability of valve stiction detection. 
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Implement a frequency filtering method that focuses on retaining valuable 

information eliminating the need for Gaussian and linearity tests and prepare suitable 

PV(OP) plots for training and testing a Convolutional Neural Network (CNN) model. 

Evaluate and analyst the proposed approach using real-world industrial data 

from International Stiction Data Base (ISDB) benchmark. 

1.4 Expected benefits 

Improved process efficiency: By accurately detecting and mitigating valve 

stiction, the proposed method can significantly enhance process efficiency and 

improve overall productivity in industrial processes. 

Enhanced process safety: Stiction-induced oscillations in fluid flow can 

compromise process stability and safety. By detecting and addressing valve stiction, 

the proposed method contributes to maintaining safe operating conditions, reducing 

the risk of equipment failure, and preventing accidents in industrial settings. 

Automation and efficiency: The integration of deep learning techniques 

automates the stiction detection process, reducing the need for manual intervention. 

This improves the efficiency of monitoring and control systems, enabling faster and 

more accurate identification of stiction issues. 

Advancement of knowledge: The research contributes to the existing body of 

knowledge by integrating traditional methods with data science techniques. It 

demonstrates the potential of combining interpretability with the power of deep 

learning algorithms, fostering advancements in the field of valve stiction detection 

and process control systems in general. 

Future research opportunities: The proposed method opens avenues for 

further research and exploration. Future studies can investigate the application of 

alternative neural network architectures, explore the integration of additional 
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features or data sources, or refine the proposed method to address specific 

challenges in valve stiction detection and control loop optimization. 
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CHAPTER II 

RELATED THEORY 

In this chapter, the related theory is organized into three sections. Firstly, the 

Industrial process control loop fundamentals discusses the basic principles of 

process control that are necessary to understand valve stiction behavior. Secondly, 

the chapter explores valve stiction behavior itself. Finally, the techniques employed 

in this research are discussed. 

2.1 Industrial process control loop fundamental  

The problem of valve stiction is happened by an interactive between a sticky 

valve and process system controller, so in order to understand the problem one 

needs to know the basic of the control loop, specifically nature of single input single 

output closed loop feedback control (SISO). In industrial process control, control 

loops play a vital role in maintaining the desired performance and stability of various 

processes. These control loops are widely used in industries such as chemical, oil 

and gas, power generation, and manufacturing. Understanding the fundamental 

components and concepts of control loops is essential for comprehending the 

challenges associated with valve stiction detection. 

A basic control loop consists of four key components: a process or system, a 

measurement device, a controller, and a final control element. The proce ss or 

system represents the physical system being controlled, which could be a chemical 

reactor, a distillation column, or any other industrial process. The measurement 

device is responsible for monitoring the process variable (PV), which is the output or 

characteristic being controlled, such as temperature, pressure, or flow rate. The 

controller receives the PV from the measurement device and compares it with the 

setpoint (SP), which is the desired value for the PV. Based on this comparison, the 

controller calculates the appropriate control action (OP) to be applied. 
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The control action is then transmitted to the final control element, which is 

typically a valve responsible for adjusting the flow of a fluid or altering the input to 

the process. The valve output (MV) modifies the process conditions to bring the PV 

closer to the SP. This feedback loop continues, with the measurement device 

continuously providing information to the controller for ongoing adjustment. 

To go into greater depth, the main idea of process control is to control PV in 

a state-determined system to be as close to SP as possible. Where state variables are 

a non-unique minimum set of variables that fully describe the system and the state-

determined system model is a model which has a characteristic that a mathematical 

description of the system in terms of state variables x i together with knowledge of 

those variables at an initial time t0 and the system inputs for time t > t0, are sufficient 

to predict the future system state and outputs for all time t > t0. In other words, 

ignoring process time delay, history of the system states before the time of interest 

do not have any effect on how to control the process in the future. 

W ith th is characteristic , theoretically  any PV can be contro lled by 

manipulating system inputs, which in chemical industries usually can be achieved by 

changing some fluid flowrate by adjust valve output. Typical control structure is 

shown in Figure 1. Firstly, current PV is compared with SP then the difference is sent 

to a controller which will calculate and give OP to change MV in a direction that 

reduces the difference. There are many types of controllers in industries, but the 

most commonly used ones are some variances of proportional integral derivative 

controllers (PID) which calculates OP based on eq. 1. As the name suggests, OP of 

PID is calculated with a combination of 3 elements. Firstly, a proportional element 

(P) which adjusts the controller output to reduce error between SP and PV by 

change the output proportionally to the error, then an integral element (I) which add 

an integrator to a system to eliminate PV offset and, lastly, derivative element (D) to 

deal with process with high frequency setpoint changes. In practice however, 
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typically only 1 or 2 of these elements are applied. This is because, even though, 

derivative element improves performance and speed of the controller, it amplifies 

signal will high fundamental frequency making process more prone to noises . And 

ideally, we need exactly 1 integrator in a process, so in normal self-regulated 

processes we will use PI controller but for ramp processes which already has an 

integrator we will use only P controller. 

 

Figure  1 Control loop with a valve as an actuator 
( )( ) ( ( ) ( ) )de tu t K e t I e t dt D dt= + +                                        (1) 

2.2 Valve stiction behavior  

 In closed control loop system, valve stiction is an occurrence that prevents 

valve to move as a process controller command due to force of frictions. As of 

common knowledge, friction forces can be classified to static and dynamic forces 

which affect stationary and moving objects respectively. For a standard control loop 

as shown in Figure 1, as a controller directs valve to change its output it will  ideally 

change accordingly resulted in a straight 45 -degree line from point A as shown in 

valve signature in Figure 2. However, in the presence of valve stiction, the valve will 

not move as a driving force from controller is not enough to overcome its static 

friction force. This will force the controller to increase its output until it is higher than 

the friction. Then as the valve starts moving at point B, friction will change to 

dynamic force which is lower than its static counterpart. So, the driving force will be 

higher than friction force resulting in valve jump to point C and slip to point D. This 

jump and slip will cause valve output to change more than the controller intention 
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to point G forcing controller to command in the opposite direction and the cycle 

continues. This is the cause of a limited oscillation in fluid flowrate which can be 

represented by a quadrilateral BGHM [8]. 

 

 

Figure  2. Choudhury valve signature of stiction process 

2.3 Technique used in this research 

2.3.1 Power spectral density  

Power spectral density (PSD, Sx) is a fundamental concept in signal processing 

that characterizes the distribution of power across different frequencies in a signal. It 

provides valuable insights into the frequency content and distribution of power in a 

signal, allowing for analysis of its spectral properties. 

PSD is computed by taking the Fourier transform of the auto -covariance 

function (ACF, rxx) as shown in eq. 2 and eq. 3 leveraging the idea that ACF can 

preserve oscillation compared to raw data. Fourier transform converts a signal from 

the time domain to the frequency domain, representing the signal as a sum of 

sinusoidal components at different frequencies. Squaring the magnitude of the 

spectrum gives the power associated with each frequency component [9]. It is a 

valuable tool in signal processing for analyzing the power distribution across different 
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frequencies in a signal. It provides insights into the spectral characteristics and 

frequency content of a signal, aiding in various tasks such as signal analysis, filtering, 

and feature extraction.  
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2.3.2 Butterworth filter 

The Butterworth filter is a type of electronic filter used in signal processing to 

attenuate unwanted noise or extract specific frequency components from a signal. It 

is a type of band-pass filter [10]. The filter's key characteristic is  its frequency 

response, which exhibits a smooth and monotonic passband and a steep roll -off in 

the stopband. The filter design employs polynomial approximation, resulting in a 

maximally flat passband and a Butterworth response. 

The filter's order corresponds to the number of poles in its transfer function 

and affects the steepness of the roll-off in the stopband. Higher-order filters exhibit 

more pronounced roll-offs but are more intricate to implement. The Butterworth 

filter finds widespread application in audio processing, speech processing, biomedical 

signal processing, and various other domains.  

2.3.3 Wavelet decomposition  

Wavelet decomposition is a powerful technique used in signal and image 

processing to analyze and extract information at different scales. It involves breaking 

down a signal or an image into its constituent parts, revealing both global and local 

features. This process utilizes wavelet functions that are well-localized in both the 
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time and frequency domains as shown in eq. 4, where a, b and   are scale, 

location, and basis wavelet respectively. By convolving these wavelet functions with 

the signal or image, a set of coefficients is obtained, representing the strength of the 

wavelet at each location and scale [11]. 

1( , ) ( ) t bT a b x t aa




−

−
=                        (4)  

The wavelet decomposition process starts with the original signal or image 

and proceeds in a hierarchical manner. At each level of decomposition, the signal or 

image is divided into approximation and detail coefficients. The approximation 

coefficients capture the low-frequency components, representing the overall trends 

or coarse details, while the detail coefficients represent the high -frequency 

components, capturing the finer details or rapid variations. 

To obtain these coefficients, the wavelet functions are convolved with the 

signal or image. The convolution involves multiplying the wavelet function with the 

localized portion of the signal or image and summing the results. This operation is 

performed at different positions and scales to compute the coefficients at each level 

of decomposition. 

2.3.4 Wavelet reconstruction 

Wavelet reconstruction is the process of synthesizing a signal or an image 

from its wavelet coefficients obtained through wavelet decomposition. It is the 

inverse operation of wavelet decomposition and allows for the reconstruction of the 

original data. The reconstruction process starts with the finest level of decomposition 

and proceeds in a reverse hierarchical manner [12]. 

Wavelet reconstruction finds applications in various fields, such as image 

compression, denoising, and signal analysis. It provides a flexible and efficient 
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approach to reconstructing signals and images with high accuracy while preserving 

important features. The hierarchical nature of wavelet reconstruction allows for a 

multi-resolution analysis, enabling the reconstruction of data at different levels of 

detail and facilitating the extraction of valuable information. 

2.3.5 Artificial neural networks and convolutional neural network 

Artificial neural networks (ANNs) and Convolutional neural networks (CNNs) 

are two popular types of deep learning models used for various machine learning 

tasks. Both ANNs and CNNs are inspired by the structure and function of the human 

brain, where complex information processing and pattern recognition occur. 

An Artificial Neural Network (ANN) is a computational model composed of 

interconnected artificial neurons, also known as nodes or units. These nodes are 

organized into layers, typically consisting of an input layer, one or more hidden 

layers, and an output layer. Each node receives input signals, applies an activation 

function to them, and produces an output signal that is propagated to the next layer. 

The strength of the connections between nodes, known as weights, is adjusted 

during training to optimize the network's performance. ANNs are widely used for 

various tasks, including classification, regression, and pattern recognition. 

On the other hand, a Convolutional Neural Network (CNN) is a specialized 

type of neural network designed specifically for processing structured grid -like data, 

such as im ages. CNNs excel in im age analysis tasks due to their ability to 

automatically learn and extract hierarchical features from input data. Unlike ANNs, 

CNNs are characterized by their unique layers, including convolutional layers, pooling 

layers, and fully connected layers. 

The convolutional layers in a CNN consist of a set of learnable filters that 

convolve over the input image, performing local operations to ex tract features. 
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These filters scan the image using a sliding window approach, capturing different 

patterns and detecting features at different scales. The pooling layers, such as max 

pooling or average pooling, reduce the dimensions of the feature maps whi le 

preserving important information. Finally, fully connected layers at the end of the 

network aggregate the extracted features and make predictions based on them. 

The key advantage of CNNs lies in their ability to automatically learn spatial 

hierarchies of features from raw data. By leveraging the local connectivity and weight 

sharing of convolutional layers, CNNs can capture important patterns and structures 

in images, making them highly effective for tasks such as image classification, object 

detection, and image segmentation. 
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CHAPTER III 

LITERATURE REVIEW 

In this chapter, the literature is divided into three sections to provide a 

comprehensive understanding of the topic. Firstly, the development of various valve 

stiction models is explored, aim ing to accurately describe and simulate this 

phenomenon. Secondly, the chapter delves into the traditional methods that are 

currently employed in industries to address valve stiction. Finally, the chapter 

investigates the emerging trend of utilizing deep learning approaches as a potential 

solution to tackle this issue. 

3.1 Valve stiction model 

The aforementioned concept mentioned in the theory section is the core 

idea of the most widely accepted valve stiction models with 2 parameters, Stick + 

Deadband (S) and Slip jump (J), proposed by Choudhury [8] and Kano [13] which 

represented by flow charts shown in Figure 3 and 4 respectively. From the 

flowcharts, firstly both check whether the controller output is within 0 to 100% 

range, then calculate change in the output and compare with previous change. If the 

changes do not have the same sign or the valve stop moving, the valve got stuck 

until difference between controller output and current output is higher than S. On 

the other hand, if the changes have the same sign and the valve is moving, valve 

moves by the controller output minus dynamic fiction, (S-J)/2.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26 
 

 

Figure  3. Flow chart of Choudhury model 
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Figure  4. Flow chart of Kano model 

Nevertheless, these models assumed that that valve only stops moving when 

the controller output changes direction. this is not true in cases of severe stiction 

which leads to another widely used model was proposed by He et al. [14]. In severe 

cases, He showed that, as valve dynamic is vastly faster than rate of change in 

controller output, the valve always stops before next controller direction comes. 

They also suggested that, due to the second order nature of valve dynamic, every 

time the valve moves, it will move with an overshoot around 0.99 of the driving 

force. Those suggestions led to a valve signature in Figure 5 and flowchart in Figure 6. 

Nevertheless, it is important to note that those models are not entirely accurate 

representation of valve stiction characteristics and the behavior in real world can be 

unpredictable and stochastic. While He model may be better in cases of high 

stiction, it will give an inaccurate representation if the stiction is not severe.  
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Figure  5. He valve signature of stiction process 

 

Figure  6. Flow chart of He model 

3.2 Traditional detection methods 

 Several detection methods have been developed for valve stiction detection 

over the past decades. While this work may focus on how to improve the machine 

learning approaches, many traditional concepts were used as a fundamental to 

design the machine learning pipelines. The most prominent traditional detection 

methods can be classified into 4 groups: PV(OP) plot, Wave shape of OP or PV, Cross-

correlation and non-linear stiction model. 

 The PV(OP) plot is the most well-established stiction detection method. The 

main idea is, as shown in Figure 2, as we plot a relationship between controller 

output (OP) and valve output (MV) of the stiction control loop, we will get a 

quadrilateral graph. However, in real-world valve output data is typically not 
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available, so relationship between OP and process variable (PV) is used instead. The 

most well-known method in this category is Bicoherence and Ellipse-fitting method 

(BIC) introduced by Choudhury et al [2]. In this method, first, data is tested by 

bispectrum and bicoherence for non-Gaussian and non-linearity respectively. As both 

have been confirmed data are filtered by Wiener filter to remove their moving trend. 

Then in the case of stiction PV(OP) plot of filtered data should show elliptic pattern 

and stiction degree, S, can be determined by maximum width of the ellipse along OP 

axis. However, while this method has high performance, bispectrum and bicoherence 

require at least 1,024 (preferably 4,096) data points without any step change or 

abrupt change to be reliable making this method impractical for many real-world 

scenarios.   

 As for wave shape of OP and PV, Area-peak method (AREA) proposed by 

Salsbury and Singhal) [15], Curve-fitting method (CURVE) by He et al. [14] and Relay 

method (RELAY) by Rossi and Scali [16] are the most widespread ones. In Area-peak 

method, characteristic of the process is determined by shape of the PV signal 

between zero-crossing events, a normalized index, R is defined as ratio between area 

before and after the peak as shown in Figure 7 and it claims that, in cases of stiction, 

the R value will be significantly higher than one. Then in curve-fitting method, the 

idea is a first integrated signal after valve output, which is OP in case of self-regulated 

process and PV in case of ramp process, should be in a triangular shape in stiction 

cases, whereas the signal should be in sine shape if the oscillation is caused by any 

other means. At last, the Relay method is a variation of the Curve-fitting method, but 

instead of only 2 mentioned shapes, this method also tries fitting a shape of a relay 

system and use one that has better approximation between the relay and the 

triangular shape to calculate stiction parameters. 
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Figure  7. A normalized index for stiction and aggressive control cases 

Another feature engineering-based detection method discussed in this study 

is Xu’s idea of utilizing wavelet technology for wave shape-based striction detection. 

In 2009, Xu showed that due to Lipschitz regularity theory, the jump of the PV signal 

from valve stiction can be differentiated from the jump from noise via wavelet 

reconstruction. As the magnitude of the noise wavelet coefficients decays as scales 

increase, it gets filtered out in the reconstruction process, while the magnitude of the 

valve stiction wavelet coefficients remain the same. Therefore, they can detect the 

stiction behavior by looking at a jump after the reconstruction.  

 For a Cross-correlation-based detection (CORR) (Horch et al.) [17], the crux of 

the method is that for self-regulation processes, in cases of valve stiction, OP and PV 

wave should have phase lag ~ π whereas in other cases such as external 

disturbances the phase lag is ~ 2π. So, if cross-correlation between OP and PV is an 

odd function, there is stiction problem otherwise, the oscillation is happened by 

other causes. However, this method requires the presence of PI controller, so it 

cannot be used in ramp control loop. In case of ramp processes, Hoch proposed a 

histogram detection method (HIS). The main idea of the method is, for striction 

process, distribution of second derivative of the process output will only have 1 peak 
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while the second derivative of process output oscillated by other causes will has 2 

peaks as shown in Figure 8. 

 

Figure  8. Distributions of second derivative of process output in  

(a) stiction, (b) other cases 

 Lastly, for of non-linear stiction model, Hammerstein-model-based Methods 

(Jelali [18], Lee el al. [19], Karra and Karim [20]) are used to represented 

characteristics of stiction processes. In addition of process model, Hammerstein 

structures also add some form of stiction model discussed in previous sector. Then, 

in order to connect S and J to physical values, they are represented by static (fs) and 

dynamic friction (fd) as a relationship shown in eq. 5 and 6. Differences between 3 

methods, HAMM1, HAMM2 and HAMM3, are that each uses difference optimization 

method to find those parameters. As Jelali’s HAMM1 uses grid search, Lee’s HAMM2 

uses multi-start adaptive random search and Karra’s HAMM3 uses an Extended 

ARMAX model.  

2
s df f

S
+

=                            (5)  

2
s df f

J
−

=                     (6) 
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  For the performance of each detection method, in 2010, Jelali collaborated 

with Choudhury, He, Thornhill and Huang provided a benchmark called, international 

stiction data base (ISDB), consisted of 93 different data sets from different process 

industries, including chemicals, pulp and paper mills, commercial building, and metal 

processing. Examples of the database are shown in Figure 9.  And in 2020 

Kamaruddin et al. [21] filtered some of those data sets and provided a comparision 

of those techniques as shown in Table 1.   

 

Figure  9. Examples of the data in ISDB 

As shown in Table  1 , m ost m ethods provide rather unsatisfactory 

performance with F1 score only around 0.5 – 0.7. And while BIC method gives much 

more acceptable result, as discussed earlier, it requires at least 1,024 data points 

without abrupt change which many plants cannot provide [22].  
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Table 1. Comparison of classical detection methods 
Method F1 score 

BIC 0.84 

CORR 0.51 

HIST 0.58 

RELAY 0.63 

CURVE 0.58 

AREA 0.60 

HAMM2 0.64 

HAMM3 0.66 

 

3.3 Machine learning detection methods 

As the main problem of traditional methods is that, even though 

characteristics of stiction signal are known as discussed in previous sections, real 

world data are usually corrupted by noise, disturbances and controller commands to 

the point that detecting those characteristics is impractical in many cases. As of 

today, there is also no universal way to clean the data without losing some of the 

stiction features [23]. On the other hand, it is almost effortless to simulate corrupted 

real-world-like data. So, in an expectation that with enough corrupted data, with and 

without stiction traits, a well-built machine learning model should be able to learn 

and extract stiction characteristics and classify the data, recent trend in valve stiction 

detection is shifted to machine learning approaches.  

 One of the first machine learning detection methods was proposed about a 

decade ago. In 2009, Farenzena [24] purposed an idea of estimate valve stiction 

parameters based on pattern recognition. As aforementioned the main challenge is 

that there is practically no real-world dataset to train a model.  So, he, as well as 

every method that will be mentioned afterward in this section, simulated their own 
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training and test set with Choudhury’s stiction model by varying controller and 

process parameters, stiction parameters: S and J, as well as variance of white noise. 

More details of the data generation process are shown in Appendix A. The model is a 

basic regression artificial neural network model (ANN) with 1 10-neurons hidden layer 

with difference between the maximum and minimum value in PV and OP as well as 

number of zero-crossings in the autocovariance function as inputs. And while he 

concluded that the model performed slightly worse than traditional methods, it 

showed some potential especially when considering its simplicity and low 

computational time.  

In the same year, Zabiri et al. proposed 2 research on the subject [25] [26]. In 

those papers, they compare performance on estimating the stiction parameters of 

different types of neural network including basic feedforward backpropagation, 

nonlinear autoregressive network with exogenous inputs (NARX) and recurrent 

networks with MV and PV as inputs. In their conclusion, only recurrent networks were 

able to give acceptable performance for the simulation data, but they also noted 

that it was highly unlikely to be able to perform with real-world data due to low 

robustness in the presence of external disturbances.  

Nevertheless, as in real process MV data is commonly unknown, in 2012, 

Venceslau et al. [27] proposed a model using OP and PV data as inputs. In their 

model 40-sized seqeunce of d-value defined as eq. 7 is used as the model input and 

the model is an ANN with 1 15-neurons hidden layer with estimation of S and J as 

outputs. In 2019, Amiruddin et al. [28] adopt the idea and developed their own ANN 

model (SDN) with 2 20-neural hidden layers and 500-sized d-value as input. However, 

in this case, insted of estimate value of S and J it is a classification model that return 

whether a process has valve stiction problem or not. 
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Then In 2019, Dambos et al. [29] propose a new method to prepare an input 

for ANN models. Inspired by Choudhury PV(OP) plot method, instead of using d-value 

as input, they used an 8x8 pixels of PV(OP) plot from 1,000 data points each as 

shown in Figure 10. Although there is not extensive tested, they believed that this 

method should be more robust to signals with different lengths and sampling time, 

since they do not change the shape of PV(OP) plot. In 2020 Kamaruddin et al. [21]. 

proposed another way to process picture-based inputs, butterfly shape-based 

detection (BSD). The main idea of this method is similar to Dambos’s as they did not 

use the fix size time series to avoid the signal length problem. But, instead of PV(OP) 

plot, they proposed a relationship between |OP(k-1)-PV(k-1)|(PV(k)) which theoretically 

should form a butterfly shape in cases of stiction as shown in Figure 11. Then after 

they confirmed the shape using Identification of Round Objects Method (IROM) 

method, they use the picture as an input for a convolutional neural network (CNN) 

to classify degree of stiction (weak, moderate, or strong). The structure of their model 

is shown as in Table 2.  

 

Figure  10. 8x8 pixels input for Dambos model 

 

Figure  11. Input shape of BSD method 
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Table 2. Structure of Kamaruddin BSN CNN model 
Layer Name 

(Number) 

Filter 

Size 

Number of 

Filters 

Layer Name 

(Number) 
Size 

Movement 

Method 

Movement 

Size 

Convo (1) 5 20 
Max pooling 

(1) 
2 Stride 2 

Convo (2) 5 40 
Max pooling 

(2) 
2 Stride 2 

Convo (3) 5 80 
Max pooling 

(3) 
2 Stride 2 

Lastly in 2021, Zhang et al. [30] proposed a way to utilize a more complex 

model for valve stiction detection. They combined 2 CNN models with structure as 

show in Table 3, first model (Netfix) used Euclidean distance of PV and OP with fixed 

range, size 50x50 as an equation shown in eq.8. The second one (Netunfix) used 

PV(OP) plot like in Dambos’s work but with 32 x 32 pixels.  

Table 3. Structure of Zhang CNN models 
Model Main Setting 

Netfix 

Net: 

Cov2d (3,8,5,1) > ReLu()  > Maxpool2d (2,2) 

> Conv2d (8,25,5,1) > ReLU() > Maxpool2d (2,2) 

> Fc (625,120) > ReLU()> Fc(120,84)>ReLU()>FC(82,2) 

Data: 

Format: 2D- matrix 

Input Size: 50 x 50 

Training Timescale: 200,300,400,600 

Test Timescale: 50, 75, 100, 200 
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Netunfix 

Net: 

Cov2d (3,8,5,1) > ReLu()  > Maxpool2d (2,2) 

> Conv2d (8,25,5,1) > ReLU() > Maxpool2d (2,2) 

> Fc (625,120) > ReLU()> Fc(120,84)>ReLU()>FC(82,2) 

Data: 

Format: .jpg 

Image Size: 32 x 32 pixels 

Training Timescale: 200,300,400,600 

Test Timescale: 50, 75, 100, 200 
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In this research, Zhang compared the results of the combined model, each 

individual model, result using other machine learning model like SVM and Lenet-5 as 

well as Amiruddin’s SDN and Kamaruddin’s BSD. Then, they claimed that their model 

had the best performance as shown in Table 4. In addition of the claim there are 2 

more interesting points from the table, firstly while method like Randomforest (RF) 

and Xgboost failed to give a result, BSD, SDN and using LENet-5 model structure all 

provide F1 score higher than 0.7 without many limitations like BIC method. Secondly, 

when comparing 3 Zhang’s models, the model with unfix input give F1 score closed 

to the final model and much better than the model with fix input. 
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Table 4. Comparison of machine learning detection methods 

Method 
Stiction Non-Stiction 

P R F1 P R F1 

Zhang 0.87 0.9 0.89 0.9 0.87 0.88 

LR 0.57 0.53 0.55 0.56 0.6 0.58 

RF 0.74 0.47 0.57 0.61 0.83 0.7 

SVM 0.68 0.7 0.69 0.69 0.67 0.68 

Xgboost 0.63 0.4 0.49 0.56 0.77 0.65 

LeNet-5 0.8 0.8 0.8 0.8 0.8 0.8 

BSN 0.75 0.73 0.74 0.77 0.79 0.78 

SDN 0.8 0.8 0.8 0.73 0.73 0.73 

Netfix 0.76 0.63 0.69 0.69 0.8 0.74 

Netunfix 0.86 0.77 0.85 0.81 0.97 0.88 
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CHAPTER IV 

METHODOLOGY 

This chapter focuses on our stiction detection approach. We begin by 

presenting the data generation method utilized to train our deep learning model. 

Subsequently, we delve into the data preprocessing step, which aims to improve 

interpretability and minimize reliance on simulating the training set. Following that, 

we showcase the architecture of our Convolutional Neural Network model. Finally, 

we discuss the test set and evaluation criteria employed in our study. 

4.1 Data generation for model training 

 To train our CNN model, we employed simulated data, following standard 

practices in the field. Our simulation system, illustrated in Fig. 1, consisted of a first-

order process with predefined gain and time constant values of 1 and 0.2 minutes, 

respectively. Choudhury's valve model represented the valve transfer function, while 

a simplified form of the PI controller, as described in eq.9, represented the 

controller. The parameter values used in the simulations are presented in Table 5. 

Specifically, for the stiction case, we varied the controller gain between 2 and 5 with 

a step size of 1, the integral gain between 300 and 500 with a step size of 100, and 

the white noise variance between 0 and 0.05 with a step size of 0.005. These 

parameter settings aimed to simulate well-tuned and slightly aggressive systems with 

moderate white noise. Additionally, we varied the stiction parameters fs (between 2 

and 5) and fd (between 1 and fs) with a step size of 1 for both. 

 For the stiction case, we extended the range of the first three parameters to 

2-7, 200-700, and 0-0.1 for the controller gain, integral gain, and white noise variance, 

respectively. These adjustments allowed us to simulate more aggressively tuned 

systems with increased levels of noise. To ensure a stable initial state, we initialized 

the process setpoint (SP) to 0 and transitioned it to 1 at the beginning of each 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40 
 
simulation. Data collection commenced from the 1st minute of the simulation, to 

ensure a stable initial state, and involved recording the output of the process 

variable (PV) and the controller output (OP) at a sampling rate of 0.01 minutes. 

Consequently, each simulation generated time series data for both PV and OP, with a 

length of 800 data points for each variable. 

 Importantly, we note that while specific parameter choices were made in our 

simulations, these choices should not significantly impact the model's performance 

as long as they are reasonably selected. This allows for flexibility in adapting the 

simulation settings to match real-world scenarios and diverse operating conditions. 

  𝑂𝑃(𝑆) = 𝐾𝑝𝐸(𝑆) +
𝐾𝑖𝐸(𝑆)

𝑆
         (9) 

Table 5. Parameters of data generation 
Kc  Ki fs fd Variancenoise 

[2:1:7] [200:100:600] 0 0 [0:0.01:0.1] 

[2:1:5] [300:100:500] [2:1:5] [1:1:fs] [0:005:0.05] 

 

4.2 Data preprocessing 

For the data preprocessing step, we employed a multi-step approach. Firstly, 

we estimated the oscillation frequency of the data using the PSD on PV. The primary 

idea is that ACF can preserve oscillation characteristics of the data while provide a 

better representation of the signal-to-noise ratio compared to raw data itself and 

Fourier transform was used to decompose the signal into frequencies, making it 

easier to distinguish and measure oscillatory components. We then applied a high -

pass filter to clean out low-frequency components (less than 0.8 of the oscillation 

frequency we found) of the data. If no oscillation frequency was found, we skipped 

this step.  
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Next, we use wavelet reconstruction to de-noise the filtered data. The idea is 

we decompose the data to coefficient array of wavelet in different scales. Then we 

identify the scales with insignificant coefficients by setting a threshold for the 

standard deviation of each coefficient array. If the standard deviation is less than the 

threshold, we set the entire array to zeros. Otherwise, we keep the original array. 

Lastly reconstruct the signal. This step can de -noise our data while preserving 

striction characteristic due to Lipschitz regularity theory as mentioned in the previous 

section. For this work, we use Daubechies 2 as wavelet basis, do 7 levels of 

decomposition and use the standard deviation threshold = 0.5. 

For the last step of the Data preprocessing, we create grayscale PV(OP) plots 

of both filtered data before the reconstruction and reconstruct ion data. Then we 

convert each of them to a 64x64 array. So, for each data series we get an input for 

our CNN model with a shape (64,64,2) regardless of data series length. And for the 

training of the model, the simulated data was with split 80:20 ratio fo r train and 

validation. 

4.3 Convolutional neural network model architecture 

For this study, we implemented a CNN to classify whether a valve is 

experiencing stiction or not, based on the preprocessed data generated as described 

above. It consists of two convolutional layers, each using a 5x5 kernel size and 

having 16 and 32 output filters, respectively. These convolutional layers are followed 

by max-pooling layers with a 3x3 pool size, which help downsample the feature 

maps and extract the most relevant information. Subsequently, we utilize two fully 

connected layers with 100 and 1 neurons, respectively, with a dropout layer in 

between to mitigate overfitting by randomly disabling some neurons during training. 

To introduce non-linearity and enable effective learning, Rectified Linear Unit 

(ReLU) activation functions are employed for all layers except the output layer. The 
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output layer uses a sigmoid activation function to produce a binary classification 

output indicating the presence or absence of stiction. The CNN model is trained using 

the Adam optimizer, which is known for its efficiency in handling large datasets. We 

utilize a binary cross-entropy loss function to measure the difference between the 

predicted and actual labels. The model is trained for 100 epochs with a batch size of 

64, allowing it to iteratively adjust its parameters to minimize the loss and improve 

classification performance. 

 

Figure  12. Convolutional neural network model architecture 

 

4.4 Test set and evaluation 

To evaluate our model, we used 29 data from the ISDB dataset which have 

been manually labelled and were used to compare traditional features based in 

Mohieddine’s study. The test set consists of data from 4 industries, several types of 

control loops including flow, temperature, level, pressure, concentration, and gauge 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

43 
 
and with varied sampling time. Of the 29 data, 15 loops have the stiction problem, 

whereas the other 14 have other or no problem. 

For evaluation, our primary evaluation metric to assess the performance of 

our CNN model is F1 score which is a commonly used evaluation metric in machine 

learning and classification tasks. It is a measure of a model's performance that 

combines both precision and recall into a single value. The F1 score ranges from 0 to 

1, with a value of 1 indicating perfect precision and recall, and a value of 0 indicating 

the opposite. By considering both precision and recall, the F1 score provides a 

balanced evaluation of a model's performance on both classes and is often 

preferred over other metrics such as accuracy. The score is calculated as in eq. 10, 

eq. 11 and eq. 12 where TP, FP and FN are a number of true positive, false positive 

and false negative cases, respectively. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)            (10) 

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)            (11) 

                   F1 = 2 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)   (12) 
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Table 6. Test dataset 
Loop Name Comments Loop Name Comments 

CHEM 1 Striction CHEM 32 Striction 

CHEM 2 Stiction CHEM 33 Disturbance 

CHEM 3 Quantisation CHEM 40 No clear oscillation 

CHEM 6 Stiction CHEM 54 No clear oscillation 

CHEM 10 Stiction CHEM 62 No clear oscillation 

CHEM 11 Stiction PAP 2 Stiction 

CHEM 12 Stiction PAP 4 
Deadzone and tight 

tuning 

CHEM 13 Faulty sensor PAP 5 Stiction 

CHEM 14 Faulty sensor PAP 7 Disturbance 

CHEM 16 Interaction PAP 9 No striction 

CHEM 18 Stiction MIN1 Stiction 

CHEM 23 Stiction MET1 Disturbance 

CHEM 24 Stiction MET2 Disturbance 

CHEM 28 Stiction MET3 No oscillation 

CHEM 29 Stiction   
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CHAPTER V 

RESULT AND DISCUSSION 

In this chapter, the results and discussions are structured into six sections for 

a comprehensive analysis. Firstly, we delve into the outcome of the data 

preprocessing step and its impact on interpretability. Secondly, we explore the 

overall performance of the proposed approach, compare it with other methods, and 

look at their fault cases. Next, we conduct a sensitivity analysis to assess the 

robustness of our method. Lastly, we address the exploration of alternative deep 

learning models.  

5.1 Model input interpretability 

 To gain insights into the data preprocessing technique, we performed an 

analysis of the PV(OP) plots obtained from both non-strict and strict cases. Figure 13 

illustrates the results of this analysis, where we compared the raw data with the 

plots after applying the PSD and high-pass filter. Initially, when examining the raw 

data, the presence of non-stationary slowly varying trends made it challenging to 

discern the plot's shape accurately. However, by applying the PSD and high-pass 

filter, we successfully reduced these effects, resulting in a much clearer and more 

comprehensible plot. Surprisingly, we observed that there was little discernible 

difference between the shapes of the PV(OP) plots in the non-strict and strict cases, 

posing a significant challenge for accurate classification. 
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Figure  13. PV(OP) Plots obtained from both non-strict and strict cases 

 To overcome this challenge, we employed the wavelet reconstruction data, 

which provided enhanced differentiation between the two cases. In the non-strict 

case, the denoising effect of the wavelet reconstruction caused the PV(OP) plot to 

lose its shape, making it distinct from the strict case. We validated this observation 

across both simulated and real data in the test set, reinforcing the robustness of our 

approach to variations in the training set generation. Furthermore, we discovered that 

setting the threshold for wavelet reconstruction to 0.5 resulted in the clearest 

distinction between the two cases and yielded the best overall performance. This 

finding elucidates the reason behind its superior performance and highlights the 

significance of utilizing both the filtered and wavelet reconstruction PV(OP) plots as 

inputs to the model. The contrasting shapes of these plots provide crucial insights 

that improve the model's ability to accurately classify stiction behavior. 
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5.2 Performance evaluation 

 The performance evaluation of our proposed model on the test set yielded 

compelling results, showcasing its effectiveness in stiction detection. The model 

achieved an impressive F1 score of 0.90, indicating a harmonious balance between 

precision and recall. With a precision of 0.87 and a recall of 0.93, the model 

exhibited a high level of accuracy in correctly identifying instances of stiction. 

Notably, the model exhibited minimal errors, with only two false positives and one 

false negative. The Confusion Matrix in Figure 14 provides a detailed breakdown of 

the model's classification results, showcasing the true positives, true negatives, false 

positives, and false negatives. This visual representation further emphasizes the 

model's accurate performance in detecting stiction. 

 To assess the model's performance in greater detail, we computed an 

accuracy rate of 90%, highlighting its remarkable capability to correctly classify the 

majority of instances. This performance is further demonstrated through a direct 

comparison with the widely utilized BIC metho. The BIC method attained an F1 score 

of 0.80 and an accuracy rate of 76% on the same dataset. It is important to note that 

the BIC method yielded six false positives and one false negative, indicating a less 

precise identification of stiction occurrences compared to our proposed model.  

  
Predicted 

  
Negative Positive 

Actual 
Negative 12 2 

Positive 1 14 

Figure  14. Confusion matrix 

  Another support to the idea can be seen as we investigated feature map 

visualization of the model. As shown in examples of the outputs of second 

convolutional layers of the model in Figure 15-19, as it demonstrates that in addition 
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to the ellipse shape of the plot, model also looking for the difference between 

wavelet reconstruction (red) and high pass filtered data (blue) as clearly shown in 

filter number three.  

 

Figure  15. Model input examples for feature map visualization 

 

Figure  16. Second convolutional layers output of Stiction 1 example 
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Figure  17. Second convolutional layers output of Stiction 2 example 

 

Figure  18. Second convolutional layers output of Non-Stiction 1 example 
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Figure  19. Second convolutional layers output of Non-Stiction 2 example 

 Furthermore, the Receiver Operating Characteristic (ROC) curve, illustrated in 

Figure 20, highlights the trade-off between the true positive rate and the false 

positive rate across different classification thresholds. The curve exhibits a high Area 

Under the Curve (AUC) of 0.92, indicating the model's excellent ability to discriminate 

between instances of valve stiction and non-stiction. 

 The AUC value of 0.92 demonstrates that the proposed method achieves a 

high true positive rate while maintaining a low false positive rate. This suggests that 

the model has a strong discriminatory power, effectively distinguishing between cases 

of valve stiction and non-stiction. The ROC curve, located in the upper-left quadrant, 

further supports the high performance of the model, as it approaches the ideal point 

of perfect classification. 
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Figure  20. ROC curve  

  These results substantiate the superiority of our proposed method over other 

approaches in stiction detection. The model's higher F1 score, accuracy rate, and 

minimized false positives and false negatives demonstrate its potential to outperform 

existing methods, thereby offering a promising solution to address the challenges 

associated with stiction detection in process systems. 

5.3 Result comparison 

 In this section we compared results of our proposed method with some 

existing ideas from Zhang’s research albeit using our generated training set and using 

entire data length for both training and test model instead of only the first fixed 

length. Specifically, we compared three different types of model input: our proposed 

approach utilizing two layers of grayscale modified PV(OP) plots, the PV(OP) plots of 

raw data as used in Zhang's research, and the PV(OP) plots of high pass filtered data. 

For the classifier, we employed SVM, RF, and CNN. It is worth noting that for the 

other two input types, we utilized the LeNet-5 architecture, which was consistent 

with Zhang's research. 

 For other models, we utilized the scikit-learn library to implement both the 

SVM model and the RF Classifier. For the SVM model, the sklearn.svm.SVC class was 

employed with default settings. It utilizes the Radial Basis Function (RBF) kernel to 
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capture non-linear relationships in the data. The regularization parameter (C) was set 

to its default value of 1.0, while the gamma parameter was set to 'scale' to 

automatically calculate its value based on the input data. Regarding the Random 

Forest Classifier, we used the sklearn.ensemble. RandomForestClassifier class with 

default settings as well. This classifier constructs an ensemble of 100 decision trees, 

where each tree is built using a random subset of features and training data to 

ensure diversity. The random_state parameter was set to 42 to seed the random 

number generator and ensure result reproducibility. Default values for other settings 

were also maintained.  

 Based on the comparison of F1 scores presented in Table 7, it is evident that 

our proposed modified PV(OP) input approach, in conjunction with the CNN classifier, 

achieved the highest F1 score of 0.9. While other methods demonstrated similar 

performance levels, the combination of our modified approach and the CNN 

classifier proved to be the most effective in accurately detecting valve stiction. This 

finding highlights the synergistic relationship between our modified input approach 

and the CNN classifier, resulting in superior performance for valve stiction detection. 

Table 7. Comparision of F1 Score with different models and inputs 
Method  Our proposed input High pass filtered input Raw data input 

CNN 0.90 0.77 0.79 

SVM 0.77 0.71 0.78 

RF 0.73 0.74 0.71 

 

5.4 Fault cases analysis 

To gain deeper insights into the classification process, we conducted an 

analysis of the fault cases classified by each input type using the CNN classifier and 

the traditional BIC method. Table 8 provides an overview of all the fault cases, with 
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PV(OP) plots of raw data, high pass filtered data, and wavelet reconstruction data 

represented by green, blue, and red lines, respectively. 

Starting with the cases where our proposed method outperformed the others, 

such as CHEM14, CHEM16 and CHEM54, these demonstrate the desired effects of our 

modified input approach. Without the wavelet reconstruction data, these plots 

exhibited clear indications of stiction, resembling textbook stiction cases. Similarly, in 

the case of PAP5, although the shape was ambiguous, the preservation of the shape 

through wavelet reconstruction enabled correct classification. 

On the other hand, let's examine the cases where our model misclassified 

the faults. In the cases of CHEM13 and CHEM29, our approach exhibited weaknesses 

as other methods had no difficulty in classifying them correctly. Particularly in the 

case of CHEM29, the absence of wavelet reconstruction data resulted in an 

unmistakable stiction plot, but the reconstruction process filtered out the shape, 

leading to misclassification. In future research with larger datasets, it would be worth 

reevaluating the hyperparameters for the wavelet reconstruction threshold to 

address such challenges. 

Furthermore, interesting findings emerged when comparing the results 

between the other input types. Although the model with raw data input slightly 

outperformed the one with high pass filtered input, the actions of the former were 

more difficult to comprehend. For example, in the case of  CHEM3, a well-known 

challenging case for classification where most traditional methods, except BIC, tend 

to misclassify, the model's lack of exposure to similar shapes during training could 

lead to accidental correct predictions, especially considering its incorrect prediction 

of non-stiction for CHEM24 with the similar raw data PV(OP) shape. This underscores 

the notion that simulating data to accurately represent the vast array of real -world 

scenarios is nearly impossible, particularly without appropriate data preprocessing. 
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Additionally, there were cases where only the BIC method yielded incorrect 

predictions, likely due to inaccuracies in the Gaussian and linearity tests, which our 

approach successfully avoided. 

Overall, this fault case analysis provides valuable insights into the strengths 

and weaknesses of our proposed method and the different input types. It 

underscores the importance of considering the interpretability of the model's 

predictions and the challenges associated with simulating real-world data. 

Table 8. Fault cases of different methods 

Data PV(OP) plot Striction 
Proposed 

input 

High pass 

filtered 

input 

Raw 

data 

input 

BIC 

CHEM3 

 

NO NO YES NO NO 

CHEM13 

 

NO YES NO NO NO 

CHEM14 

 

NO NO YES NO YES 

CHEM16 

 

NO NO NO YES YES 
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CHEM24 

 

YES YES NO NO YES 

CHEM28 

 

YES YES YES YES NO 

CHEM29 

 

YES NO YES YES YES 

CHEM33 

 

NO NO YES NO YES 

CHEM40 

 

NO NO YES YES NO 

CHEM54 

 

NO NO YES YES YES 

CHEM62 

 

NO NO YES YES NO 
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PAP4 

 

NO YES NO YES YES 

PAP5 

 

YES YES NO NO YES 

PAP9 

 

NO NO NO NO YES 

 

5.5 Sensitivity analysis 

 For sensitivity analysis, we explored the influence of some model parameters 

on its performance. We varied various parameters including the number of training 

epochs within a reasonable range of 50 to 200, number of filters in each CNN layer 

and different values of the learning rate, ranging from 0.001 to 0.1. As shown in Figure 

21-23, except for the too high leaning rate and too few filters, we observed the 

adjusting the numbers had a negligible impact on the model's accuracy. The model 

consistently achieved an average F1 score of around the same across different 

model parameters. These findings suggest that our model is robust and stable across 

a wide range of parameter values, further supporting its reliability for stiction 

detection tasks.  
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Figure  21. Model performance with different number of epochs 

 

 

Figure  22. Model performance with different number of output filters in 

convolutional layers 
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Figure  23. Model performance with different leaning rate 

 W hile we d iscovered that various factors had little  im pact on the 

performance of our model. However, one intriguing factor that significantly 

influenced the results was the threshold for wavelet reconstruction, as depicted in 

Figure 10. By varying the threshold between 0.3 and 0.7, we observed changes in 

performance within the range of 0.76 to 0.9. Notably, a threshold of 0.5 yielded the 

best result. The threshold serves as a critical parameter in determining which wavelet 

resolutions should be filtered out. Setting the threshold too high may inadvertently 

allow unwanted factors like white noise to pass through, while setting it too low can 

lead to the removal of crucial valve stiction characteristics. It is important to note 

that although a threshold of 0.5 provided the optimal result in our study, it may not 

necessarily be the most suitable setting for real-world scenarios. Further data 

collection and analysis would be necessary to determine the appropriate threshold 

for such scenarios. 
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Figure  24. Model performance with different wavelet reconstruction threshold 

 Another aspect we examine in this section is the impact of randomness in the 

data generation process. While we aimed to create a training set that best represents 

the target concept, inherent randomness, especially from the generated noise, 

introduced variations in the quality of the training set and consequently affected the 

model's performance. As shown in Figure 21, out of the 20 simulation sets, the 

model did not consistently achieve the outstanding F1 score of 0.9; however, it still 

demonstrated relatively strong performance with an average F1 score of 0.855 and a 

standard deviation (SD) of 0.03. 

 

 

Figure  25. Model performance distribution with 20 different training sets 
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Furthermore, we conducted experiments by varying the process time 

constant value from 0.2 minutes to 0.1 and 0.4 minutes, each with 10 simulation 

sets. The average F1 scores for these cases were 0.825 and 0.842, respectively, with 

SD values of 0.002 for both cases. The slight decrease in performance can be 

attributed to the specific parameter selections, such as the range of the controller 

gain, which were tailored for the original time constant value. 

 

 

Figure  26. Model performance distribution with process time constant = 0.1 minutes 

for10 different training sets 

 

 

Figure  27. Model performance distribution with process time constant = 0.4 minutes 

for10 different training sets 
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5.6 Other neural networks  

 In our exploration, we investigated the performance of alternative models to 

compare them against our proposed model. Specifically, we considered a simple 

fully connected artificial neural network (ANN) and a recurrent neural network (RNN) 

model with long short-term memory (LSTM) cells. 

 However, when evaluating these alternative models, we found that their 

performance was relatively lower compared to our proposed model. The fully 

connected ANN achieved F1 scores ranging from 0.6 to 0.7, indicating limitations in 

capturing the complex patterns and relationships inherent in the valve stiction 

detection task. This outcome emphasized the significance of leveraging the 

specialized architecture and capabilities offered by convolutional neural networks 

(CNNs) for addressing this specific problem. 

 Regarding the RNN model with LSTM cells, which is specifically designed for 

handling sequential time series data, we encountered significant challenges when 

adapting it to the valve stiction detection task. One of the main difficulties we faced 

was determining the appropriate sequence length to feed into the model. Given the 

considerable variations in data length, oscillation frequency, and sampling time 

between the test set and real-world scenarios, finding a uniform sequence length 

that adequately represented the data proved to be problematic. As a result, the 

performance of the RNN model was hindered, yielding F1 scores similar to those 

obtained with the fully connected ANN. 

  To address the challenges associated with varying data lengths, we attempted 

a different approach. Instead of using a fixed time window, such as 200 samples from 

200-time steps, which could be too short or too long for individual data and might 

not capture the characteristic oscillation patterns effectively, we introduced flexibility 

in the sampling window. By leveraging the information obtained from the power 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

62 
 
spectral density (PSD) analysis to determine the data's oscillation frequency, we 

calculated a suitable window length, approximately 3-4 times the period of the 

oscillation. We then interpolated the collected data to form a 200-sample length 

input, which we fed into our model. Although this approach did not yield results 

comparable to our CNN model, we believe it holds potential and could be worth 

further investigation in future research endeavors. 
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CHAPTER VI 

CONCLUSION 

In this study, we have proposed a new method for detecting valve stiction in 

control loops based on a combination of wavelet reconstruction and convolutional 

neural networks. Our proposed method showed strong performance in detecting 

stiction in various types of control loops and achieved an F1 score of 0.90 on a test 

set of 29 data from the ISDB dataset. Compared to the traditional BIC method, our 

proposed method outperformed it in terms of F1 score and accuracy rate. 

Our method relied on two key components: wavelet reconstruction and 

convolutional neural networks. We showed that using wavelet reconstruction to 

preprocess the data, in combination with a high-pass filter and PSD, improved the 

clarity of the PV(OP) plot and allowed for better detection of stiction. This is because 

wavelet reconstruction can remove noise from the data and make the shape of the 

PV(OP) plot clearer. We also demonstrated that using both the filtered and wavelet 

reconstruction data as input to the CNN model can provide better performance, as 

the contrast in their shapes can provide vital insights for accurate classification. 

Our study also investigated the effects of different parameters. While most 

tests had little effect on the model's performance, the threshold for wavelet 

reconstruction proved to be an interesting factor. We found that setting the 

threshold for wavelet reconstruction to 0.5 resulted in the clearest distinction 

between the two cases and the best performance. Moreover, we observed that the 

choice of model input significantly affected performance, as shown in Table 7, where 

other inputs reduced F1 scores around 0.7-0.8.  

The accurate automatic detection of valve stiction in control loops holds 

immense significance for the industrial sector. The presence of stiction can severely 

impact the safety, efficiency, and overall performance of industrial processes, leading 
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to suboptimal control, increased energy consumption, and potential equipment 

failures. In this context, our proposed method, which combines wavelet 

reconstruction and convolutional neural networks, offers a highly effective solution 

to tackle this critical issue. 

By accurately identifying stiction in various types of control loops, our method 

enables proactive maintenance and targeted interventions, preventing costly 

downtime and optimizing process control. The implications extend beyond individual 

control loops, as improved stiction detection can have a cascading effect, enhancing 

the performance of interconnected systems and ensuring smoother operations. 

Moreover, the proposed method equips operators and engineers with a powerful 

tool for identifying and addressing stiction-related issues promptly, minimizing the risk 

of safety incidents and maximizing the overall efficiency of industrial processes. 

Through our research, we have showcased the potential of our method to 

significantly advance stiction detection, thereby facilitating safer, more reliable, and 

economically viable industrial operations. 

 In conclusion, our proposed method demonstrates great potential for 

detecting stiction in control loops, which can have a positive impact on the safety 

and efficiency of industrial processes. By combining wavelet reconstruction with 

convolutional neural networks, we have achieved impressive performance on a 

diverse range of data from various industries and control loop types. Our results 

emphasize the importance of selecting appropriate model inputs and applying field 

knowledge and principles when developing models, rather than relying solely on its 

black-box nature. Although our study focused on a specific dataset, we believe that 

our proposed method can be applied to other datasets and real-world scenarios as 

long as the data has a similar structure. Future research could investigate the use of 

other neural network architectures, such as transformers or attention-based models, 

or the incorporation of additional features or data sources to enhance performance. 
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Overall, we hope that our proposed method will contribute to the development of 

more efficient and reliable industrial processes. 
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APPENDIX A 

DATA GENERATION IN LITERATURES 

 Due to limitations of the industries, data generation is an essential step to 

apply computer science techniques to chemical processes. In this appendix data 

generation methods of the prominent research cited in this work are shown and 

discussed. 

 Firstly, in Farenzena’s work, training data were generated by simulation as 

shown in a diagram in Figure 1 where the controller is a PI controller discussed in 

section 2.1, the valve was represented by Choudhury’s 2-parameter valve stiction 

model discussed in section 2.2, and the process was represented by a first order 

transfer function in Laplace domain as shown in equation A.1. Parameters in each 

component in the diagram as well as variance of white noise that adds right after the 

process are varied for each simulation scenario as shown in Table A.1 resulted in a 

dataset of 360,000 unique scenarios. 

1
1pG s

=
+

                                                                        (A.1) 

Table A.1 Variable parameters used in the Farenzena’s data generation 
Parameter Description Interval 

Kc Controller gain [0.1:0.2:1.1, 2:1:5] 

τi Controller time constant [0.3T:0.3T,3T] 

Τ Process time constant [5:5:20, 30:10:100] 

S Static band [0.5:0.5:5] 

J Slip Jump [0.5:0.5:5] 

σ2 White noise variance [100 10 1] 
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Even though a lot of data were generated in Farenzena’s work, most of those 

data are redundance and represent some scenarios that will not happen in the real 

world. So, in Amiruddin’s work data are created using a single process transfer 

function as shown in equation A.2 with 1 second sampling time, and to represent 

each real-world scenario including well-tuned and tightly tuned non-stiction cases, 

process disturbed by external oscillations non-stiction cases and stiction cases with 

parameter in Table A.2, A.3 and A.4 respectively. 

3 (1.45 1)
0.8p

z zG z

− −
=

−
                                                              (A.2) 

Table A.2 Variable parameters used in the Amiruddin’s data generation in well- 
tuned and tightly tuned non-stiction cases 

Parameter Description Interval 

Kc Controller gain [0.1: 0.01: 0.3] 

I (1/τi) Final controller integral value [0.01: 0.01: 0.27] 

σ2 White noise variance [0, 0.010, 0.020, 0.030, 0.040, 0.050] 
 

 
Table A.3 Variable parameters used in the Amiruddin’s data generation in process 
disturbed by external oscillations non-stiction cases with Kc and I equal to 0.15 and 
0.15 s-1 respectively 
Parameter Description Interval 

A Amplitude [1, 1.5, 2, 2.5] 

f Frequency of oscillation, in 

rad/s 

[0.01: 0.01: 0.11] 

σ2 White noise variance [0, 0.010, 0.020, 0.030, 0.040, 0.050] 

Φ Phase/lag of oscillation, in rad [0, 0.25Π, 0.5Π, 0.75Π, Π, 1.25Π, 1.5Π, 1.75Π] 
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Table A.4 Variable parameters used in the Amiruddin’s data generation in stiction 
cases 
Parameter Description Interval 

S Static band [0.1: 0.25: 10] 

J Slip Jump [0.1: 0.25: 10] 

σ2 White noise variance [0, 0.010, 0.020, 0.030, 0.040, 0.050] 

 

 And in Zhang’s work, types of process are also considered as 2 transfer 

functions were used to represent self-regulated and ramp processes as shown in 

equation A.3 and A.4 respectively. Furthermore, controller input commands were 

also added in forms of sine wave and step change. Variable parameters used in this 

work are shown in Table A.5. 

1
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