

Leverage Graph Neural Network for Molecular Properties

Prediction

Mr. Kamol Punnachaiya

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering in Computer Engineering

Department of Computer Engineering

FACULTY OF ENGINEERING

Chulalongkorn University

Academic Year 2022

Copyright of Chulalongkorn University

การปรับปรุงเครือข่ายชนิดกราฟเพื่อท านายคุณสมบติัของสารประกอบทางโมเลกลุ

นายกมล ปุณณชยัยะ

วิทยานิพนธ์น้ีเป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวิศวกรรมศาสตรมหาบณัฑิต
สาขาวิชาวิศวกรรมคอมพิวเตอร์ ภาควิชาวิศวกรรมคอมพิวเตอร์

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลยั
ปีการศึกษา 2565

ลิขสิทธ์ิของจุฬาลงกรณ์มหาวิทยาลยั

Thesis Title Leverage Graph Neural Network for Molecular

Properties Prediction

By Mr. Kamol Punnachaiya

Field of Study Computer Engineering

Thesis Advisor Associate Professor DUANGDAO WICHADAKUL,

Ph.D.

Thesis Co Advisor Associate Professor PEERAPON VATEEKUL, Ph.D.

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn University

in Partial Fulfillment of the Requirement for the Master of Engineering

Dean of the FACULTY OF

ENGINEERING

 (Professor SUPOT TEACHAVORASINSKUN, D.Eng.,

Ph.D.)

THESIS COMMITTEE

Chairman

 (Assistant Professor PITTIPOL KANTAVAT, Ph.D.)

Thesis Advisor

 (Associate Professor DUANGDAO WICHADAKUL,

Ph.D.)

Thesis Co-Advisor

 (Associate Professor PEERAPON VATEEKUL, Ph.D.)

External Examiner

 (Thanapat Kangkachit, Ph.D.)

 iii

ABSTRACT (THAI)
 กมล ปุณณชยัยะ : การปรับปรุงเครือข่ายชนิดกราฟเพื่อท านายคุณสมบติัของสารประกอบทางโมเลกุล. (

Leverage Graph Neural Network for Molecular Properties Prediction) อ.ท่ี
ปรึกษาหลกั : รศ.ดวงดาว วิชาดากุล, อ.ท่ีปรึกษาร่วม : รศ. ดร.พีรพล เวทีกูล

ในยุคของเทคโนโลยีการเรียนรู้เชิงลึก (deep learning) ท่ีแสดงให้เห็นถึงศกัยภาพท่ีส าคญัในการลดตน้ทุน
และส่งเสริมการพฒันาทางการแพทยอ์ย่างรวดเร็ว การท านายคุณสมบัติของโมเลกุลเป็นงานหน่ึงท่ีได้รับความนิยมและใช้
ประโยชน์จากความสามารถของเทคโนโลยีการเรียนรู้เชิงลึก วิทยานิพนธ์ฉบบัน้ีน าเสนอแบบจ าลองกราฟซ่ึงรวมโมดูลท่ีเรียนรู้
ชุดขอ้มูลเดียวกนัจากหลากหลายรูปแบบ (multimodal Graph Neural Network) และใช้ขอ้มูลทอพอโลยีท่ี
ไดรั้บจากกราฟโมเลกุลผา่นแบบจ าลองกราฟท่ีใชเ้ป็นเส้นฐาน วิทยานิพนธ์น้ีเพิ่มประสิทธิภาพของแบบจ าลอง CMPNN ท่ี
ใชเ้ป็นเส้นฐาน โดยส ารวจวิธีการต่างๆ ท่ียงัไม่ไดน้ ามาใช ้วิธีการเหล่าน้ีรวมถึงการรวมโมดูลเขา้ดว้ยกนักบัแบบจ าลองกราฟ

เช่น โมดูล LSTM สองทิศทาง ท่ีสามารถประมวลผลล าดบัของตวัอกัษรในรูปแบบ SMILES หรือโมดูลท าสังวตันาการ
ของกราฟดว้ยสเปกตรัม (spectral graph convolution) นอกจากน้ียงัเพิ่มกลไกการเรียนรู้โดยรวมความใส่ใจดว้ย
ตนเอง (self-attention) เขา้ในแบบจ าลอง CMPNN โดยใชว้ิธีการค านวณตวัเลขอลัฟา (alpha coefficient

method) จาก GATConv ผลการทดลองแบบจ าลองกราฟท่ีน าเสนอซ่ึงรวมโมดูลท่ีเรียนรู้ชุดข้อมูลเดียวกันจาก
หลากหลายรูปแบบ มีประสิทธิภาพโดยรวมดีกวา่แบบจ าลองท่ีใชเ้ป็นเส้นฐานในการท านายคุณสมบติัโมเลกุล จาก 7 ใน 8 ชุด
ขอ้มูลจากโมเลกุลเน็ท ซ่ึงประกอบดว้ย 5 ชุดขอ้มูลในการจ าแนกหมวดหมู่ และสามชุดขอ้มูลในการท านายค่า ผลการวิจยัน้ี
เปิดโอกาสในดา้นต่างๆ ในสาขาเคมี โดยเฉพาะอยา่งยิง่ในงานคน้พบยา

สาขาวิชา วิศวกรรมคอมพิวเตอร์ ลายมือช่ือนิสิต ..

ปีการศึกษา 2565 ลายมือช่ือ อ.ท่ีปรึกษาหลกั
 ลายมือช่ือ อ.ท่ีปรึกษาร่วม

 iv

ABSTRACT (ENGLISH)
6470133921 : MAJOR COMPUTER ENGINEERING

KEYWOR

D:

 Kamol Punnachaiya : Leverage Graph Neural Network for Molecular

P ro p e r tie s P re d ic tio n . A d v iso r : A sso c . P ro f . D U A N G D A O

W IC H A D A K U L, Ph.D . C o -advisor: A ssoc. Prof. PE ER A PO N

VATEEKUL, Ph.D.

During the age of deep learning technologies, which have exhibited

significant potential in reducing costs and expediting medical development,

predicting molecular properties has become a prevalent task that capitalizes on the

capabilities of deep learning. This thesis proposed a multimodal Graph Neural

Network (GNN) model that utilizes the topology information obtained from

molecular graphs through a baseline GNN, facilitating precise property predictions.

The thesis improves the baseline CMPNN model by exploring various methods to

address potential missing gaps. These methods include incorporating the

multimodal module, such as a Bidirectional LSTM module capable of processing

text sequences in SMILES format or a spectral graph convolution module.

Moreover, self-attention integration into the CMPNN model was implemented

using the alpha coefficient method from GATConv. The experimental results show

that the proposed multimodal GNN models performed better than the baseline

model for predicting molecular properties in seven out of eight datasets from

MoleculeNet, including five classification and three regression tasks. These

findings show the potential of this methodology across various domains within the

field of chemistry, with particular relevance to drug discovery.

Field of Study: Computer Engineering Student's Signature

...............................

Academic

Year:

2022 Advisor's Signature

..............................

 Co-advisor's Signature

.........................

 v

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to my esteemed advisors,

Associate Professor Dr. Duangdao Wichadakul and Associate Professor Dr. Peerapon

Vateekul. Their unwavering support and encouragement have been instrumental in my

academic journey. Whenever I encountered difficulties or experienced a lack of

confidence, I could always rely on their attentive ears and genuine guidance.

I am profoundly thankful to Assistant Professor Dr. Pittipol Kantavat and Dr.

Thanapat Kangkachit for graciously serving as members of my thesis committee and

providing invaluable comments and suggestions.

Kamol Punnachaiya

TABLE OF CONTENTS

 Page

ABSTRACT (THAI) ... iii

ABSTRACT (ENGLISH) ... iv

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS .. vi

LIST OF TABLES .. ix

LIST OF FIGURES ... x

Chapter 1 Introduction .. 1

1.1 Motivation .. 1

1.2 Objectives .. 1

1.3 Scope .. 1

1.4 Expected Results .. 2

1.5 Research Plan ... 2

1.6 Publication ... 2

Chapter 2 Related Theories and Literature Review .. 3

2.1. Related Theories .. 3

2.1.1 Hierarchy of graph neural network (GNN) terminology 3

2.1.1.1 Category: Recurrent and Convolutional GNNs 3

2.1.1.2 Variant: Spectral and Spatial .. 5

2.1.1.3 Approach: GCNs and MPNNs ... 6

2.1.2 K-Hop neighbors .. 7

2.1.3 Message Passings’ categorization ... 7

2.1.3.1 Atom message passing .. 8

2.1.3.2 Bond message passing .. 8

2.1.3.3 Undirected graph message passing ... 8

2.1.3.4 Directed graph message passing ... 8

 vii

2.2 Spatial Conv-GNNs with MPNN approach ... 9

2.2.1 MPNN (Gilmer, J., et al.) ... 9

2.2.2 DMPNN .. 9

2.2.3 CMPNN .. 14

2.2.4 GROVER .. 15

2.3 Spatial Conv-GNNs with GCN approach .. 16

2.3.1 GCNConv ... 16

2.3.2 GATConv .. 16

2.3.3 GINConv .. 18

2.3.4 Graph Transformer ... 19

2.4 Spectral graph convolution .. 20

2.4.1 Spectral designed convolution support/filter .. 21

2.4.2 GNNML3 (MATLANG 3 Layer) ... 22

Chapter 3 Methods .. 24

3.1 Data preparation and Preprocessing .. 24

3.2 Preprocessing stage .. 25

3.3 Attention mechanisms and Alpha coefficients computations 26

3.4 Multimodal/External feature extraction models for MLP classifier 29

3.4.1 Text Multimodal Module Using Bi-LSTM .. 30

3.4.1.1 Raw one-hot encoded text feature matrix for Bi-LSTM 30

3.4.1.2 Further improvement on the initial one-hot encoding SMILES

using embedding lookup table .. 31

3.4.2 Spectral features multimodal .. 33

3.5 Model Architecture and Training Procedure .. 33

3.5.1 Model Hyperparameters ... 33

3.5.2 Details of training and Predicting Process ... 33

3.6 Evaluation Metrics ... 35

3.6.1 Classification Tasks .. 35

3.6.2 Regression Tasks .. 36

 viii

Chapter 4 Results and Discussion ... 37

4.1 Performance of the Baselines .. 37

4.2 Performance of the CMPNN variants .. 38

Chapter 5 Conclusion .. 41

REFERENCES .. 42

VITA .. 44

LIST OF TABLES

 Page

Table 1: Semi-supervised classification accuracy as reported from GATConv 20

Table 2: MoleculeNet dataset details [15] ... 24

Table 3: Chemprop’s features .. 25

Table 4: Proposed MPNN Layer's parameters ... 34

Table 5: MLP for prediction depth = 1 .. 34

Table 6: Learning rate scheduler .. 34

Table 7: Five-fold cross-validation results of our implemented baseline models 37

Table 8: Datasets' average number of atoms and bonds .. 38

Table 9: Model performance of CMPNN variants compared with the baseline. 39

Table 10: Number of winning tasks of CMPNN variants compared with the baseline

(numbers within the parenthesis are the wining classification and regression tasks) .. 39

LIST OF FIGURES

 Page

Figure 1: Recurrent GNN vs Convolutional GNN [2] ... 4

Figure 2: Visualization of K-Hop layers, based on [3] .. 7

Figure 3: Aggregation of green incoming messages .. 10

Figure 4: Subtraction out red overlapping messages from the outgoing message 10

Figure 5: Edge message passing from DMPNN [5] .. 11

Figure 6: DMPNN’s code: message selection ... 11

Figure 7: DMPNN’s code: subtraction of overlapping message when passing

messages to its neighbors ... 12

Figure 8: DMPNN’s node update .. 12

Figure 9: DMPNN’s edge message update .. 13

Figure 10: Message booster based on [6] .. 14

Figure 11: Multi-head attention from transformer [8] ... 15

Figure 12: GATConv alpha calculation [10] .. 17

Figure 13: Simplified distinction between GCN and GAT based on DSG IITR [11].. 18

Figure 14: Attention mechanism visualization on neighboring messages 27

Figure 15: Multimodal GNN architecture .. 29

Figure 16: SMILES sequence one-hot encoding to text feature matrix. 30

Figure 17: LSTM predictions ... 31

Figure 18: Bi-LSTM concatenation ... 31

Figure 19: SMILES indices vector .. 31

Figure 20: Indices lookup from embedding table .. 32

Figure 21: Batching of 2D SMILES matrices .. 32

Figure 22: Final concatenation and mean of both forward and backward 33

Figure 23: Output of LSTM ... 33

Figure 24: Training flow .. 35

Chapter 1

Introduction

1.1 Motivation

Previously, to develop a new drug for treatment in the medical field, scientists needed

to discover each compound's properties in the laboratories experimentally. A manual

approach to such a large combination of compounds and ways to experiment will

hinder the speed of finding new drugs, not even including the amount of funds and

resources to sink into these experiments.

In recent times, the pandemic of COVID-19 has destroyed many lives, and it

is incredibly fast to evolve and improve in their resistance to vaccines; However, the

amount of time and resources needed to research new drugs/vaccines for fighting

these diseases are enormous. Hence, the disease remains spreading infection an

expansive and fast-paced manner.

With the help of recent blooming technology, Machine-Learning and Deep-

Learning play a considerable role in substantially decreasing the time and resources

needed to develop a new drug/vaccine to fight constantly mutated diseases. We can

now develop machine-learning models to precisely predict molecule properties by

feeding molecular representation vectors into the model to train and learn to predict

an unseen molecule’s properties, bypassing the experimental steps in the process.

Their primary use is to help screen for potential compounds that can be used for

making new drugs. Hence, its contributions to the medical field are invaluable.

This thesis aims to discover new ways for an improved precise way to predict

molecular-level properties by using their molecule’s graph structure and features,

which the results can be further used to assist in developing new drugs.

1.2 Objectives

Try to improve graph neural network deep learning model architecture by integrating

new modern methods into the existing molecular properties prediction model and

obtain better performance metrics than the state-of-the-art methods.

1.3 Scope

The models will be evaluated on graph benchmarks from MoleculeNet datasets [1]

including BBBP, ClinTox, SIDER, Tox21, HIV, ESOL, FreeSolv, and Lipophilicity.

 2

1.4 Expected Results

Obtain a deep learning model that achieves higher performance metrics than the

baseline model.

1.5 Research Plan

1. Research state-of-arts methods for graph neural networks.

2. Research state-of-arts methods for graph neural networks focusing on drug

property predictions.

3. Investigate if any method can integrate with current work and obtain better

performance.

4. Prepare the datasets.

5. Implement new methods into the model and evaluate the model performance.

6. Evaluate and analyze the results.

7. Summarize and publish the research results.

8. Defend the thesis.

1.6 Publication

K. Punnachaiya, P. Vateekul and D. Wichadakul, "Multimodal Modules and Self-

Attention for Graph Neural Network Molecular Properties Prediction Model" April

21st-23rd, 2023 11th International Conference on Bioinformatics and Computational

Biology (ICBCB), Hangzhou, China, 2023.

 3

Chapter 2

Related Theories and Literature Review

2.1. Related Theories

Before studying previous works, it would be beneficial to investigate some essential

background and overview for easier understanding. Therefore, in this section, it will

consist of the following subsections:

1. Hierarchy of graph neural network (GNN) terminology

2. K-hop neighbors

3. Message Passings’ categorization specifically in this thesis.

2.1.1 Hierarchy of graph neural network (GNN) terminology

2.1.1.1 Category: Recurrent and Convolutional GNNs

The main difference between recurrent GNNs and convolutional GNNs is

how they propagate information through the graph structure.

1. Recurrent GNNs: recurrent GNNs propagate information through the

graph by sequentially updating the hidden state of each node based on its

neighboring nodes' hidden states. At each time step, the hidden state of a

node is updated by aggregating and transforming the hidden states of its

neighboring nodes. This process is repeated for a fixed number of

iterations or until convergence. Recurrent GNNs are often used for tasks

that require capturing complex temporal dependencies or for graphs with

variable-sized neighborhoods.

2. Convolutional GNNs: convolutional GNNs, also known as spatial

GNNs, propagate information through the graph by applying convolution

operations to the node features and their local neighborhoods. Instead of

updating nodes sequentially, convolutional GNNs operate on the entire

graph simultaneously (please note that updating nodes on the entire graph

does not necessarily needs the whole graph structure to be precomputed;

instead, it can use their direct neighbors). Each node's updated feature is

computed by aggregating information from its local neighborhood using a

convolutional operation, similar to how convolutional neural networks

operate on images. Convolutional GNNs are suitable for tasks that can

benefit from local neighborhood information.

Sharing weights across multiple message passings or convolution

operations does not count towards being categorized as Recurrent GNNs.

To be Recurrent GNNs there needs to be RNNs within and utilize

temporal dependencies. The node update stage needs to explicitly depend

on the previous step rather than just purely on the current step.

 4

Figure 1 shows two approaches of graph neural networks (GNNs):

recurrent graph neural network (Rec-GNN) and convolutional graph

neural network (Conv-GNN) [2].

The main difference between these two variants is that Rec-GNNs

have connections between perceptron that can form cycles, or their

outputs are re-inputted into the model for multiple iterations, which allows

them to reuse information from previous hidden layers and retain

memories from the past. In contrast, the weights in each layer of Conv-

GNNs are not shared, so the parameters of each layer are not affected by

the previous layer.

Figure 1: Recurrent GNN vs Convolutional GNN [2]

Sharing weights can reduce the number of parameters and being

computationally more efficient than non-shared weight layers. This

efficiency means the layer gains a form of dynamic memory that can store

information from previous timesteps, but this memory can be overwritten

or updated by new information, which is not the case in separate weight

layers.

The node vector update formula for Rec-GNNs is given below in

Equation 1 and Conv-GNNs in Equation 2 [2].

ℎ𝑢
(𝑡)

 = ∑ 𝜌(𝑀𝑤([𝑥𝑢, 𝑥𝑢,𝑣
𝑒 , 𝑥𝑣 , ℎ𝑢

(𝑡−1)
]))𝑣∈𝑁(𝑢) (1)

Equation 1: Rec-GNN node update formula

.

𝐻𝑡 = 𝜌(𝐴𝐻𝑡−1𝑊(𝑡)) (2)

Equation 2: Conv-GNN node update formula

 5

2.1.1.2 Variant: Spectral and Spatial

Spectral GNNs

Spectral GNNs are inspired by spectral graph theory and leverage the

eigenvalues and eigenvectors of the graph's Laplacian matrix. Spectral

GNNs use the graph's spectral domain, which is analogous to the

frequency domain in signal processing. Spectral GNNs transform the

graph data into a spectral representation by performing eigenvalue

decomposition of the Laplacian matrix.

In spectral GNNs, graph convolution is performed by filtering the

graph's spectral representation by applying filters in the spectral domain to

capture different frequency components of the graph. By convolving the

graph's spectral features with these filters, spectral GNNs can capture

global structural patterns and relationships across the graph. Spectral

GNNs are particularly effective for tasks that require capturing long-range

dependencies in the graph.

They are effective for tasks requiring understanding the overall

graph structure and spectral characteristics. The only downside being

computationally expensive and may struggle with large graphs due to the

eigenvalue decomposition process.

Spatial GNNs

Spatial GNNs, on the other hand, operate in the spatial domain of the

graph, which is similar to the time domain in signal processing. Spatial

GNNs propagate information through the nodes and edges of the graph in

a localized manner. They typically aggregate information from

neighboring nodes and update node representations based on this local

neighborhood information.

In spatial GNNs, graph convolution is performed by aggregating

features from neighboring nodes and combining them with the current

node's features. This allows spatial GNNs to capture local connectivity

patterns and propagate information across the graph. Spatial GNNs, e.g.,

graph convolutional networks (GCNs), and message passing neural

networks (MPNNs), are well-suited for tasks that require capturing local

interactions and dependencies within the graph. They are also more

scalable and suitable for larger graphs.

 6

2.1.1.3 Approach: GCNs and MPNNs

An approach refers to different methods used within the broader category

variant, in this thesis, we will study two types of spatial GNNs

approaches: GCNs and MPNNs.

GCN has two functions, which are aggregation and readout, while MPNN

has three functions, which are message function (equivalent to

aggregation in GCN approach), update function, and readout function.

The difference between the two approaches is the additional

update function in MPNN. However, either the aggregate function in

GCN or the message function in MPNN involves multiplying the feature

matrix with an adjacency matrix.

Below are the most straightforward functions for each approach as

stated in [2], with the following symbols definitions t - timestep, ρ - non-

linearity function, w - weight, M - message, O - readout, N(u) - neighbors

of vertex u, G - graph, v - vertex, h - hidden node representation, ˆy -

graph representation.

GCN:

ℎ𝑢
(𝑡) = ∑ 𝜌(𝑀𝑤𝑖

(𝑡−1)ℎ𝑣
(𝑡−1))

𝑣∈𝑁(𝑢)

�̂� = 𝑂𝑤𝑗
(∑ℎ𝑣

(𝑡)

𝑣∈𝐺

)

MPNN:

𝑚𝑢
(𝑡) = ∑ 𝜌(𝑀𝑤𝑖

(𝑡−1)ℎ𝑣
(𝑡−1))

𝑣∈𝑁(𝑢)

ℎ𝑢
(𝑡) = 𝑈𝑤𝑘

(𝑡−1)([ℎ𝑢
(𝑡−1)

, 𝑚𝑢
(𝑡−1)])

�̂� = 𝑂𝑤𝑗
(∑ℎ𝑣

(𝑡)

𝑣∈𝐺

)

 7

2.1.2 K-Hop neighbors

Figure 2 depicts the message passing framework, in which messages from k-hop

distant neighbors are passed to the target node through multiple iterative/depth

update steps in the Message Passing Neural Network [2].

Figure 2: Visualization of K-Hop layers, based on [3]

2.1.3 Message Passings’ categorization

In this thesis specifically, we studied/summarized four variants of message

passing neural networks from the following papers: [4] [2] [5] and [6]. All fall

under the spatial convolutional graph neural networks and utilize the MPNN

approach.

 8

2.1.3.1 Atom message passing

In Atom Message Passing, messages are situated directly within the

graph’s nodes. The process starts with aggregating information from

neighbors. Initial messages are oriented in atoms, only containing atom

features.

The neighboring messages, atoms, and bonds must be indexed and

selected separately. The selected neighboring atom/bond message types

are then concatenated at a hidden dimension and aggregated as the total

incoming message using standard summation. These aggregated messages

are then passed directly to their neighboring atoms via the connectivity

matrix in the next iteration.

2.1.3.2 Bond message passing

The messages are located on the edges of the graph, each edge containing

two hidden states (messages), one for each direction.

The initial message, which is oriented/stored at bonds, is combined

with the atom features that the bonds originate from. This results in the

message being different in opposite directions. As the bond message is

already combined with atom features, only one step for selecting

incoming neighboring messages is required.

The reverse bond message (either the initial outgoing bond

message or the outgoing bond message from the previous step) is

subtracted from the updated node representations. The subtracted message

becomes the new neighboring bond message when passing the message to

neighboring atoms through connecting edges in the next iteration.

Having the atom and bond messages updated concurrently in each

iteration of the message passing positively affects the model's

performance.

2.1.3.3 Undirected graph message passing

In an undirected graph, edges do not have a specific direction, meaning

both directions of an edge are equivalent and constant.

For bond message passing, where bi-directional messages from

each direction containing different information are possible, both

messages are averaged to eliminate the direction distinction. On the other

hand, atom message passing does not change the message as there is no

direction in the first place. This algorithm provides base results.

2.1.3.4 Directed graph message passing

This type of message passing is only applicable in bond-oriented message

passing because of the presence of two directions in a single bond.

In this approach, the direction of the message is significant and

can differ (bi-directional: outgoing and incoming). The selected

neighboring messages for updating the node representation are only from

the incoming messages in the direction of the target atom.

 9

This algorithm enables the model to avoid passing redundant

messages to its neighbors.

Summary

In short, bond message passing (i.e., directed) has been improved from atom

message passing (i.e., undirected) stores messages within the graph’s edge and

updates both node and edges simultaneously and utilizes both directions of an

edge while atom message passing only store messages within its node and

update only nodes within 1 iteration.

Previously, machine learning in the medical/chemical fields was limited to traditional

machine learning methods. However, with the advancements in deep neural networks,

graph neural networks have become a popular choice for molecular properties

prediction, as presented below.

2.2 Spatial Conv-GNNs with MPNN approach

2.2.1 MPNN(Gilmer, J., et al.)

MPNN is an approach to graph neural networks introduced by Gilmer et al. in

the paper "Neural Message Passing for Quantum Chemistry" [4]. The model

focuses on creating high-quality node embeddings using undirected graphs and

atom message passing. The authors emphasized the importance of making the

model invariant to graph isomorphism, as a graph has no inherent order to

nodes. Furthermore, they noted that its performance might suffer if the model is

given or injected with low-quality node positional encodings as additional

features.

2.2.2 DMPNN

This work [5] introduces a new method to message passing by using directed

graphs and subtracting overlapping bond messages when passing messages to

neighbors. This subtraction separates the relevance of the two-direction bond

messages in the same bond, optimizing the message passing process and

avoiding passing messages to unnecessary loops. The improved quality of the

final node embeddings directly leads to better results after pooling the node

embeddings into graph embeddings.

The MolGraph class developed by the authors in [5] and used in

DMPNN is crucial as it serves as a molecule feature extraction method. It

allows for a bi-directional message passing through the edge, and its success has

been utilized in several other studies on molecular property predictions. The

authors also created a framework, Chemprop [5], based on this MolGraph class.

Figure 3 and Figure 4 illustrate the most simplistic overview of edge

message passing. Figure 3 shows the first step to aggregate all incoming green

messages to the yellow atom. In the second step, Figure 4, the blue aggregated

incoming message is then passed along the outgoing bonds subtracting out the

 10

initial red outgoing messages to not pass overlapping messages to the

neighboring atoms.

Figure 3: Aggregation of green incoming messages

Figure 4: Subtraction out red overlapping messages from the outgoing message

 11

Figure 5 shows the original figure describing the directed message passing from

DMPNN, which will also be explained for another perspective of understanding.

Figure 5: Edge message passing from DMPNN [5]

Consider atom number 2 (blue number), which has two incoming orange

bonds and one incoming grey bond in the opposite direction to the outgoing red

bond. After aggregation (note that this is not the updated node representation), it

creates a total incoming neighboring message. When sending off the aggregated

and updated message by using the outgoing bonds indices of atom number 2,

the red outgoing message will get subtracted by the initial outgoing message

(initial message 2->1) so as not to create a redundantly updated initial incoming

message for atom number 1 in the next iteration.

Figure 6 and Figure 7 demonstrate the code of edge message passing,

where Figure 6 represents the aggregation of all initial incoming bond

messages. a_message becomes the total incoming messages. Figure 7 shows the

initialization of reverse bond messages selection for every bond in the matrix,

which means the outgoing bond index the incoming bond and vice versa. This

gave outgoing bond messages as a result.

Figure 6: DMPNN’s code: message selection

a_message[b2a] is then expanded by indexing each aggregated message

(i.e., a_message) with an outgoing bond index (i.e., b2a[.]) This gives the

current outgoing messages, which needs to be subtracted by initial outgoing

messages. Subtractions are performed to avoid sending the overlapping of the

 12

outgoing message, which will then be used as incoming messages for

neighboring atoms.

Figure 7: DMPNN’s code: subtraction of overlapping message when passing

messages to its neighbors

Figure 8 illustrates how DMPNN updates a node’s state, which consists of two

steps: update node representation and update edge message.

Figure 8: DMPNN’s node update

DMPNN’s node update

In the code implementation of bond-message passing, it first creates a

bidirectional bond messages matrix that consists of each message being the

featured bond itself concatenated with the atom features that the bond came

from. The two bond directions are the outgoing and the incoming directions. As

seen in Figure 8, the green and red bond messages of the same bond

connectivity align directly below one another.

The adjacent indices are obligatory to get neighboring messages for

example, the more commonly used edge adjacency list or adjacency matrix.

In this case, DMPNN introduced a new type of graph connectivity

matrix called N-Dimensional neighbor mappings. The blue matrix on the left is

 13

the bond index mappings for each atom incorporated with zero paddings at the

end of each row to the maximum number of current bonds neighboring an atom

in the present molecular graph.

With access to both the bidirectional bond messages and bond mappings

for each atom, the model can select the neighboring message to get the next

green matrix containing the neighboring messages of each atom.

At this stage, the model has done the aggregation between columns to

create aggregated neighboring messages for each atom. This aggregated/reduced

matrix is then used to update the representations of the nodes/atoms in the

MPNN using an update function. Figure 9 illustrates the neighboring message

update.

Figure 9: DMPNN’s edge message update

DMPNN’s edge message update

In this step, the bidirectional bond messages matrix will be reused

together with the bond to reverse bond mappings. After performing normal

indexing, the model creates a matrix of the same shape as the bidirectional bond

messages; however, containing messages with reverse direction instead,

swapping each pair of rows as in the upper middle of Figure 9.

Next, the model indexes the updated node representation matrix with the

bond to atom mappings to expand the number of rows and matches atom

 14

representations with their corresponding incoming bonds. Now, the augmented

matrix can be directly subtracted out of the reverse bond message from the

earlier swapping matrix. The resulting matrix will then be used as the new

bidirectional bond message matrix in the next iterations.

2.2.3 CMPNN

The authors of CMPNN [6] suggested a new way to improve the existing

DMPNN model by introducing a message booster N-D aggregation. This

message booster works by sum aggregating node representations and element-

wise multiplying with max aggregation of node representations. This message

booster (Figure 10) helps preserve more information from the local sub-

structures after aggregation.

Figure 10: Message booster based on [6]

Additionally, the authors modified gated recurrent units (GRU) to handle

batch mol graphs from the data loader successfully.

They used GRU for its update and reset gates which helps the model

learn to keep or discard certain long-range information from the past, in this

case, generalization of graph expressiveness from node representations updating

with their neighboring messages. The Bi-directional GRU reads a concatenation

of aggregated node representations, aggregated neighboring messages, and

initial atom embeddings at the hidden dimension.

The GRU takes the above-mentioned concatenated node representations

as input and initializes the GRU cell hidden weight matrix to be the same as the

concatenated node matrix.

Lastly, the input messages are each added with a learnable bias and then

activated with ReLU activation function. The row-wise matrix zero paddings to

the maximum number of atom rows in the current molecular batch are needed

for consistency in the shape of sequence messages length. The padding is

obligatory to feed into the GRU successfully.

Finally, the output of GRU resulted in a more fine-grained hidden node

representation. This final representation of node embeddings is then processed

 15

with mean pooling to produce a better graph representation than typical pooling,

which only uses an order-invariant function without the GRU refinement.

After extensive studies in the code implementation of CMPNN

architecture, we found some questionable implementations. First, the update

node stage did not include the Communicative function. Second, the BatchGRU

proposed receives concatenated node representations as input but initializes the

GRU cell hidden representation shaped as the concatenated node matrix instead

of a more logical aggregated neighboring message. After some revision, the

cause of the second whole aggregation was to be more aware and optimize all of

them at once with more learnable capability than using just an aggregated

neighboring messages matrix as input. We may further investigate those

mentioned above and whether the changed implementation can improve model

performance.

2.2.4 GROVER

This work [7] proposes a new architecture for molecular graph encoding, using

multi-head attention blocks (i.e., auxiliary module) inspired by the transformer

in Natural Language Processing (NLP) but without node positional encoding.

The molecular graph is encoded into high-dimensional vectors using a

message passing network encoder (MPNEncoder), which is a type of graph

neural network (GNN), in place of the linear modules in the original transformer

architecture (as seen in Figure 11 pink-highlighted). In this work, the authors

use DMPNN as the MPNEncoder.

Figure 11: Multi-head attention from transformer [8]

The logits or prediction vectors generated from each MPNEncoder are

used as Value, Key, and Query, and each is later fed into a linear module and

calculated the same way as a multi-headed attention function in the transformer

model. The formula of scaled dot product attention Equation 3 and Equation 4.

attention scores = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾

√𝑑𝑘
), attention scores (i.e., alpha coefficients) (3)

Equation 3: alpha coefficients

predictions = V * attention scores, predictions (i,e., logits) (4)

Equation 4: Final scaled predictions

 16

This multi-headed attention mechanism lets the model see the data's

hidden features from different angles.

2.3 Spatial Conv-GNNs with GCN approach

2.3.1 GCNConv

The graph convolutional network (GCN) [9] proposed by Kipf and Welling is a

type of spatial GNN that operates on the graph structure using the normalized

graph Laplacian matrix. GCN employs the Chebyshev polynomial

approximation of the spectral filter to simplify the convolution operation.

In GCN, the convolutional operation is defined as a propagation rule

aggregating and combining information from a node's local neighborhood. This

operation can be formulated in terms of the graph Laplacian, which represents

the connectivity structure of the graph. The graph Laplacian matrix captures the

relationships between nodes and their neighboring nodes.

To simplify the spectral filter, GCN utilizes the Chebyshev polynomial

approximation. By approximating the spectral filter with a Chebyshev

polynomial of order K=2, GCN can effectively capture information from up to

2-hop neighbors of a node. This approximation allows GCN to capture localized

information and learn hierarchical representations of the graph structure.

To ensure stability and avoid issues related to scaling, GCN normalizes

the graph Laplacian matrix before applying the Chebyshev polynomial

approximation. This normalization step involves dividing the graph Laplacian

by the maximum eigenvalue, which scales the matrix and ensures that the

convolution operation remains stable during training.

2.3.2 GATConv

The Graph Attention Network (GAT) [10] proposed a self-attention mechanism

in addition to GCN [9].

The steps for implementing self-attention mechanisms are as follows

1. Initialization: Given an input graph with nodes and their corresponding

feature representations, GATConv initializes learnable parameters, including

weight matrices, for each node.

2. Attention coefficients: For each node, GATConv calculates attention

coefficients by computing a compatibility score calculation that involves

concatenating the node's feature vector ℎ⃗ 𝑖 and the neighboring node's feature

vector ℎ⃗ 𝑗 using the concatenation operator (∣∣) and then applying a linear

transformation using the weight matrix 𝑊. The concatenation is passed through

 17

the activation function (LeakyReLU) to obtain the compatibility score 𝑒𝑖𝑗

(Equation 5).

𝑒𝑖𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇(𝑊ℎ⃗ 𝑖 || 𝑊ℎ⃗ 𝑗)); (5)

where 𝑎𝑇 is the transpose of the learnable attention vector.

Equation 5: Attention function on edges features

3. Attention weights: The compatibility scores are then passed through a

SoftMax function, which normalizes the scores across all neighboring nodes,

ensuring that the weights sum up to 1. This step creates attention weights that

reflect the relative importance of the neighboring nodes for the central node.

The attention weight for each edge (i, j) is given by Equation 6 as follows.

𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗(𝑒𝑖𝑗) =
exp (𝑒𝑖𝑗)

∑ exp (𝑒𝑖𝑘)𝑘∈𝑁𝑖

 (6)

Equation 6

where Ni represents the set of neighboring nodes of node i.

4. Aggregation: The attention weights are used to compute a weighted

sum of the neighboring node features. The features of the neighboring nodes are

multiplied by their corresponding attention weights and summed together to

obtain a weighted feature representation.

The aggregated feature representation for node i is given by Equation 7 below.

ℎ́𝑖 = 𝜎(∑ 𝑎𝑖𝑗 ∙ 𝑊ℎ𝑗𝑗∈𝑁𝑖
) (7)

Equation 7

where σ is an activation function, such as ReLU or LeakyReLU.

Figure 12: GATConv alpha calculation [10]

 18

Comparison between GCN and GAT

Equation 8 shows GCN, fixed and normalized alpha by degree, while GAT is

dynamic learnable, as shown in Equation 9.

Figure 13: Simplified distinction between GCN and GAT based on DSG IITR [11].

𝛼𝑖𝑗 =
1

√𝑑𝑒𝑔(𝑣𝑖)𝑑𝑒𝑔(𝑣𝑗)
 (8)

Equation 8

𝛼𝑖𝑗 =
exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(�⃗� 𝑇[𝑊ℎ⃗⃗ 𝑖||𝑊ℎ⃗⃗ 𝑗]))

∑ exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(�⃗� 𝑇[𝑊ℎ⃗⃗ 𝑖||𝑊ℎ⃗⃗ 𝑘]))𝑘∈𝑁𝑖

 (9)

Equation 9

2.3.3 GINConv

GINConv [12] introduced the following algorithm.

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎: 𝑾𝑳 − 𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 (𝑾𝒆𝒊𝒔𝒇𝒆𝒊𝒍𝒆𝒓 & 𝑳𝒆𝒉𝒎𝒂𝒏, 𝟏𝟗𝟔𝟖)

𝑰𝒏𝒑𝒖𝒕: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑛𝑜𝑑𝑒𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔(ℎ1
(0)

, ℎ2
(0)

, … , ℎ𝑁
(0)

)

𝑶𝒖𝒕𝒑𝒖𝒕: 𝐹𝑖𝑛𝑎𝑙 𝑛𝑜𝑑𝑒 𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔 (ℎ1
(𝑇)

, ℎ2
(𝑇)

, … , ℎ𝑁
(𝑇)

)

𝑡 ← 0;
repeat

 𝑓𝑜𝑟 𝑣𝑖 ∈ 𝑉 𝒅𝒐

 ℎ𝑖
(𝑡+1) ← ℎ𝑎𝑠ℎ(∑ ℎ𝑗

𝑡
𝑗 ∈ 𝑁𝑖

)

 𝑡 ← 𝑡 + 1;
until stable node coloring is reached;

The algorithm is based on the Weisfeiler-Lehman (WL) isomorphism test, also

known as a graph coloring algorithm. It handles the issue of graph isomorphism,

where multiple graphs have the same number of nodes, degree, and connectivity

but appear differently tangled.

ℎ𝑣
(𝑘)

= 𝑀𝐿𝑃(𝑘)((1 + 𝜖(𝑘) ∙ ℎ𝑣
(𝑘−1)

+ ∑ ℎ𝑢
(𝑘−1)

𝑢∈𝑁(𝑣))) (10)

Equation 10: GIN

 19

 n

Equation 10, the proposed learnable epsilon at the target node feature

representation allows the model to adjust the relative importance of the central

node's representation compared to its neighbors and MLP to learn a complex

injective function to map node representations to unique high dimensional

vectors.

The study found that sum aggregation is a practical order-invariant

function. Most importantly, it proposed an injective function (in this case, MLP,

a 1 to 1 function) which operates on multisets of node features and maps them

to a unique high dimensional vector. The resulting high-dimensional space

allows for improved mapping of isomorphic graphs [12].

2.3.4 Graph Transformer

The authors [7] of this paper added node positional encoding as an additional

input feature in the model, which is derived from eigenvector decompositions

and the WL algorithm. However, this approach did not help generalize the

model to unseen graphs and instead reduced the validation loss.

The paper also stated that injecting a node’s positional encodings

without careful consideration could lead to a worse performance due to the

added noise, as it violates the inductive bias of permutation equivariance that

graph neural networks (GNNs) are designed for [13].

Summary

DMPNN and CMPNN enhance the accuracy of graph regression and

classification by removing unneeded loops in the message passing process with

edge-oriented, directed message passing, leading to more refined node

representations.

Other baseline Conv-GNNs do not use bi-directional message passing.

Hence the importance of edge-message passing makes CMPNN a good

candidate for improvement. Moreover, GROVER does not modify the message

passing paradigm directly. Thus, CMPNN is selected as the baseline to be

explored in this thesis.

Table 1 shows the semi-supervised classification accuracy from GATConv on

three datasets - Citeseer, Cora, and Pubmed. The results show that GAT

outperforms GCN [10] with an accuracy of 83.0% ± 0.7%, 72.5% ± 0.7%, and

79.0% ± 0.3%, respectively. The performance of GATConv and the ability to be

used on any graph with self-attention mechanisms make it an appealing option

for baseline improvement. Hence, this thesis also tried implementing self-

attention mechanisms into the selected baseline.

 20

Table 1: Semi-supervised classification accuracy as reported from GATConv

 Citeseer Cora Pubmed

GCN 81.5% 70.3% 79.0%

GAT 83.0 ± 0.7% 72.5 ± 0.7% 79.0 ± 0.3%

Besides using CMPNN as the baseline and deciding to incorporate self-attention

mechanisms into CMPNN, we revisited the origin of GCN, which was supposed to be

from the spectral domain, for additional ideas of baseline improvement.

2.4 Spectral graph convolution

True spectral graph convolutional neural networks (GCNNs) are based on the

convolution theorem. The convolution theorem states that the Fourier transform of the

convolution of two functions equals the element-wise product of their Fourier

transforms.

In spectral GCNNs, the graph signal (node features) and the graph filter

(spectral weights) are transformed into the spectral domain using the graph Fourier

transform. The graph Fourier transform diagonalizes the graph Laplacian matrix and

allows us to operate on the graph signals in the frequency (spectral) domain.

Once the graph signal and filter are in the spectral domain, the convolution

theorem can be applied. The convolution operation is performed by element-wise

multiplication of the Fourier transforms of the graph signal and the graph filter. This

allows for efficient computation and propagation of information through the graph.

However, this approach must apply the convolution filter to the entire graph in

the spectral domain, making it challenging to scale to larger graphs and requiring pre-

computed graph connectivity.

As a result, this method is limited to transductive tasks; the model only learns

on a pre-computed and fixed graph structure, meaning that the graph structure is

known before the learning process starts and remains constant. Unlike in inductive

tasks, the model must be able to learn arbitrary and unknown graph structures,

meaning that the graph structure is not known beforehand and can change during the

learning process. The steps to perform spectral graph convolution are as follows:

1. Obtain the graph's Laplacian matrix (or adjacency matrix). This matrix

represents the connectivity of the graph.

2. Compute the eigenvalues and eigenvectors of the Laplacian matrix. The

eigenvalues represent the frequencies or spectral components of the graph.

3. Select a set of eigenvalues (frequency centers) to be used as the convolution

supports. These eigenvalues will determine the frequency range over which

spectral convolution will operate.

 21

4. Design a filter function that assigns weights to the eigenvalues based on their

proximity to the selected frequency centers. This filter function should

determine the contribution of each eigenvalue to the spectral convolution.

5. Multiply the Laplacian matrix by the filter function to obtain the convolution

supports in the spectral domain. This will result in a modified Laplacian

matrix where the entries correspond to the weights assigned to each

eigenvalue.

6. Use the modified Laplacian matrix in the spectral convolution operation to

propagate node features across the graph.

This paper [14] mainly aims for graph isomorphism tasks. The authors did

their work by designing a graph spectral filter. Also, they studied matrix language to

break the limit of MPNN for the model to gain the ability to distinguish cospectral

graphs.

In the frequency/spectral domain, we can transform graphs into a signal for

spectral graph convolution as a type of graph signal filtering. We must first convert

the convolution kernel to its Fourier form (spectral domain) to calculate graph

convolution in the spectral domain. Then after the graph signals have been filtered,

the results are converted back to the original time domain.

From spectral graph theory, signals are defined on a graph, where the graph

structure defines the convolution operation. Spectral graph convolutions are often

performed in the graph Fourier domain, obtained from the eigenvectors of the graph

Laplacian matrix (L). Eigen decomposition of the graph’s Laplacian matrix generates

𝑈 and 𝜆 as eigenvalues and eigenvectors, respectively.

𝐿 = 𝑈⋀𝑈𝑇, ⋀ is a diagonal matrix with eigenvalues (𝜆) of L; ⋀ = 𝑑𝑖𝑎𝑔(𝜆)

The steps for applying the spectral filter/frequency response function to the

graph signals are as follows. First, apply Fourier transform to the graph signal

(features) 𝑥. Then apply with a spectral filter 𝐹(𝜆) (i.e., �̂�(⋀)). Lastly, reverse

Fourier transforms back to the original domain. This results in the final filtered graph

signal x. These steps are given below.

 1. 𝑈𝑇𝑥 2. �̂�(⋀)𝑈𝑇𝑥 3. 𝑈�̂�(⋀)𝑈𝑇𝑥 4. 𝑥𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝑈�̂�(⋀)𝑈𝑇𝑥

 There are many ways to design a spectral filter, as mentioned by [14], where

the authors [14] proposed to design a filter function as described in the following

section.

2.4.1 Spectral designed convolution support/filter

The spectral convolution support is related to the spatial domain power of the

graph's adjacency matrix; instead, the spectral uses eigenvalues and

eigenvectors, both determine the extent of the interaction between nodes. The

convolution support (𝐶′), as shown below, determines the set of nodes

 22

considered in the computation of the output signal for a given node and is used

to control the smoothness of the output signal.

𝐶′ = 𝑈𝑑𝑖𝑎𝑔(𝐹(𝜆))𝑈𝑇, 𝑤ℎ𝑒𝑟𝑒 𝐹(𝜆) 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑓𝑖𝑙𝑡𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑥_𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝑈𝑑𝑖𝑎𝑔(𝐹(𝜆))𝑈𝑇𝑥

The filtered graph signal x applied by frequency response function 𝐹(𝜆)

resulted from using eigenvalues of Laplacian matrix as 𝑖𝑛𝑝𝑢𝑡 (𝑖. 𝑒. , 𝜆), where

𝐹(𝜆) had to be learnt by back propagation (𝛷𝑠(𝜆) is an alias of 𝐹(𝜆)).

The authors [13] proposed using spectral graph convolution to break

through the limit of MPNN, which mostly has a ceiling of 1-WL performance.

In the paper, frequency response functions were designed to be sensitive to each

spectrum of the graph signal, as in the following formula.

Φs(λ) = −𝑏(λ − 𝑓𝑠)
2, 𝑓𝑠 ∈ [λ𝑚𝑖𝑛, λ𝑚𝑎𝑥], where b is the bandwidth of the

bandpass filter (i.e., spectral filter). Hence, the full spectral convolution supports

𝐶′ can fully be written as

𝐶′ = 𝑈𝑑𝑖𝑎𝑔(Φs(λ))𝑈
𝑇

This convolution support could be seen as extracted edge features. These

features are then multiplied with a sparse connectivity matrix mask, which will

propagate the features through the graph’s structure defined as 𝑀  ∗  𝐶′ =

𝑈𝑑𝑖𝑎𝑔(Φs(λ))𝑈
𝑇,where 𝑀 is a sparse connectivity matrix and can be a power

of adjacency matrix, which encodes the number of walks possible from 𝑛𝑜𝑑𝑒𝑖

to 𝑛𝑜𝑑𝑒𝑗 in a matrix entry ij. The paper used these filtered signals x as edges

features and multiplied with a learnable weight to be learnt through

backpropagation. This sums up how the graph spectral convolution works.

The authors reported the results being theoretically as powerful as 3-WL

or 2-FWL. Still, they stated that in most real-world datasets with a lot of node

and edge features, 1-WL would suffice. After that, with 𝐶 = 𝑀 ∗ 𝐶′ as

mentioned above, the authors proposed a convolution in Equation 11.

𝐻𝑙+1 = 𝜎(∑ 𝐶(𝑠)
𝑠 𝐻(𝑠)𝑊(𝑙,𝑠))|𝑚𝑙𝑝5(𝐻

𝑙 ⊙ mlp6(𝐻
(𝑙))) (10)

Equation 11: Full convolution for GNNML3 [14]

2.4.2 GNNML3 (MATLANG 3 Layer)

Matrix Language (MATLANG), The author [14] studied this theory and found

that trace and element-wise multiplication matrix operations are needed to break

the limit of 1-WL MPNN to 3-WL. Each Lx is a set of operations at x-WL

levels where . is a dot product, 𝑑𝑖𝑎𝑔 is diagonalize, tr is trace, ⊙ elementwise,

 23

1 is column vector full of 1 and 𝑓 is element-wise custom function operating on

scalars or vectors.

𝐿1 = {. , 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒, 1, 𝑑𝑖𝑎𝑔}
𝐿2 = {. , 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒, 1, 𝑑𝑖𝑎𝑔, 𝑡𝑟}

𝐿3 = {. , 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒, 1, 𝑑𝑖𝑎𝑔, 𝑡𝑟,⊙}

 𝐿+ = 𝐿 ∪ {+,×, 𝑓} 𝑤ℎ𝑒𝑟𝑒, 𝐿 ∈ {𝐿1, 𝐿2, 𝐿3}

𝑡𝑟(𝐴) = ∑ 𝑎𝑖𝑖
𝑛
𝑖=1 , Trace matrix operation is the sum of diagonal elements.

By defining convolution supports in the spectral domain to filter graph signals,

we can propagate features using spectral structure features of the graph. Spectral

GNNs main advantages were to provide rich global information and dependencies of

a huge complex graph. This thesis also incorporated GNNML3 as a multimodal

module.

 24

Chapter 3

Methods

3.1 Data preparation and Preprocessing

MoleculeNet [15] is a widely used benchmark for evaluating the performance of deep

learning models on molecular data. It provides data in a CSV format, with each row

representing a molecule in the form of SMILES strings and its target properties.

The characteristics of each dataset used in this paper are detailed in Table 2.

These datasets consist of 2D molecular graphs represented only in SMILES format

and do not include 3D molecular information. Therefore, they differ from other

datasets in MoleculeNet, such as quantum mechanics datasets, which contain 3D

molecular information.

Table 2: MoleculeNet dataset details [15]

Dataset Type #Tasks #Compunds

ESOL Regression 1 1128

Tox21 Classification 12 7831

BBBP Classification 1 2039

Lipophilicity Regression 1 4200

ClinTox Classification 2 1478

SIDER Classification 2 1427

HIV Classification 1 41127

FreeSolv Regression 1 642

We experimented on the following dataset for regression tasks:

1. ESOL - Water solubility data

2. FreeSolv - Calculated hydration free energy of molcules in water

3. Lipophilicity - Octanol/water distribution coefficient

We experimented on the following dataset for classification tasks:

1. BBBP - Binary labels of blood-brain barrier penetration

2. ClinTox – Binary Clinical trials results for toxicity

3. SIDER - Marketed drugs and adverse drug reactions (ADR)

4. Tox21 - Qualitative toxicity measurements

5. HIV - Abilities to inhibit HIV replication

SMILES (Simplified Molecular Input Line Entry System) [16] is a string

format system that uses a string sequence to represent the molecule.

The rules of the notation can include Branches, Rings, Charged Atoms, Atom

chirality, Aromatic, stereochemistry, and explicit Hydrogens. These rules allow the

 25

SMILES sequence to contain all the information to reconstruct back to its 2D

molecular graph.

3.2 Preprocessing stage

The data preprocessing was done using the RDKit [17] and Chemprop libraries [5].

We used RDKit to process SMILES strings and MolGraph from Chemprop to extract

molecular features, including one-hot encoded and normalized raw values, as listed in

Table 3.

Table 3: Chemprop’s features

Atom Features Type Description

 Atomic number Range 0~99.

Degree Range 0~5. The atoms directly

connected bonds and whether the

Hydrogen is explicit in the molecular

graph.

Formal charge Range -2~2

Chiral tag Range 0~3. Chirality refers to the

property of a non-superimposable

molecule on its mirror image. In other

words, a chiral molecule exists in two

forms that are mirror images of each

other, and these two forms cannot be

superimposed on one another. The

chiral tag of an atom specifies its

configuration in space.

Number of

Hydrogens

Range 0~4. Number of hydrogens in

direct neighbors.

Hybridization type 5 types. Ex. sp, sp2, sp3, sp3d, sp3d2

Aromatic A compound that exhibits aromaticity.

Aromaticity is a property of some

organic compounds characterized by a

ring of atoms that is unusually stable

and has a high degree of delocalization

of the electrons in the ring.

Atomic mass * 0.01 for scaling

Bond Features Type Description

 Bond type Range0~4 Ex. zero padding, sing,

double, triple, aromatic.

Conjugate whether the bond is conjugated.

In ring whether the bond is within a closure

ring of the molecule.

Stereo Range 0~6. Spatial arrangement of

 26

atoms around a double bond or a triple

bond.

Custom edges

matrices

Type Description

 a2a Mappings of atom to their neighboring

atoms. 2D Matrix’s shape (num atoms,

max num atoms).

a2b Mappings of atom to their incoming

bonds indices. 2D Matrix’s shape (num

atoms, max bonds).

b2a Mappings of bonds to atom that they

came from. 1D Matrix’s shape (2*num

bonds).

Note for custom

edges matrices

Mappings do not contain the elements to be mapped, only the

indices being mapped to. However, the sequence all

corresponds to the SMILES string sequence. For the bonds,

pair-wise combination indices bonds between atoms are

created.

Note that we can convert molecular representation in RDKit (RDKit.Mol) to

PyTorch Geometric [18] or PyG graph object; however, PyG objects only support

edge-list or sparse adjacency matrix in COO format, which may not allow for bi-

directional message passing. Nevertheless, the significance of bi-directional message

passing for updating node embeddings has been highlighted in the literature, so this

thesis decided to use the Chemprop library for featurization as the basis.

With the data and features extracted and adopting CMPNN as the baseline, we

proposed improving CMPNN with the following entities.

- Attention mechanisms

- Multimodal

1. Text features

2. Spectral features

3.3 Attention mechanisms and Alpha coefficients computations

We proposed combining GATConv and a shared-weight convolution kernel to

CMPNN to allow the model to capture better the overall information and relationships

in the target matrix. In addition, to avoid inaccuracies, zero padding in the atom-to-

bond indices (i.e., a2b) mapping matrix from Chemprop is ignored during the

computation of alpha coefficients.

Initially, the linear modules used for projection were not allowed to have an

additive bias, as this would result in non-zero values after the attention mechanism

was applied. However, after redesigning, we used a mask created from the a2b matrix

in conjunction with masked SoftMax to ignore zero indices after kernel

multiplication.

 27

This implementation distributes a learnable percentage to each neighboring

bond connected to an atom, allowing the model to learn whether it should amplify or

reduce each neighboring message before aggregation. We illustrate the matrix

operations and details of this self-attention in Figure 14.

Figure 14: Attention mechanism visualization on neighboring messages

The first green matrix is the N-Dim selected neighboring messages with zero-

adding in the column dimension if that atom has a smaller number of bonds than the

maximum number of bonds in this batch of molecular graph. The purple vector will

multiply every element in the green matrix to create a blue matrix. We considered this

blue matrix an attention filter. as in computer vision. The grey vectors can be added

and used like the first purple vector. Both the purple and grey vectors will create

multiple blue attention filters. These attention filters can then be aggregated to

become an attention filter ready for the last step.

In the last step, the aggregated attention filter will be activated using masked

SoftMax attention to distribute the attention/focus of the model whether it should pay

attention to which corresponding edges while ignoring the zero padding indices for

each atom in the molecular graph.

 28

The fully modified algorithm from CMPNN can be displayed in Algorithm 1.

Algorithm 1: CMPNN based formula

ℎ0(𝑒𝑣,𝑤) ← 𝑥𝑒𝑣,𝑤
, ∀𝑒𝑣,𝑤 ∈ 𝐸; ℎ0(𝑣) ← 𝑥𝑣, ∀𝑣 ∈ 𝑉

𝑓𝑜𝑟 𝑘 = 1…𝐾 𝑑𝑜

 𝑓𝑜𝑟 𝑣 ∈ 𝑉 𝑑𝑜

 {ℎ𝑘−1(𝑒𝑢,𝑣), ∀𝑢 ∈ 𝑁(𝑣)} ← 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑒𝑑𝑔𝑒𝑠({ℎ𝑘−1(𝑒𝑢,𝑣), ∀𝑢 ∈ 𝑁(𝑣)})

 𝑚𝑘(𝑣) ← 𝐴𝐺𝐺𝑅({ℎ𝑘−1(𝑒𝑢,𝑣), ∀𝑢 ∈ 𝑁(𝑣)})

 ℎ𝑘(𝑣) ← 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒(𝑚𝑘(𝑣), ℎ𝑘−1(𝑣))

 𝑒𝑛𝑑 𝑓𝑜𝑟

 𝑓𝑜𝑟 𝑒 ∈ 𝐸 𝑑𝑜

 𝑚𝑘(𝑒𝑣,𝑤) ← ℎ𝑘(𝑣) − ℎ
𝑘−1

(𝑒𝑣,𝑤)

 ℎ𝑘(𝑒𝑣,𝑤) ← 𝜎 (ℎ0(𝑒
𝑣,𝑤)

+ 𝑊. 𝑚𝑘(𝑒𝑣,𝑤))

 𝑒𝑛𝑑 𝑓𝑜𝑟

𝑒𝑛𝑑 𝑓𝑜𝑟

𝑚(𝑣) ← 𝐴𝐺𝐺𝑅({ℎ𝐾(𝑒𝑢,𝑣), ∀𝑢 ∈ 𝑁(𝑣)})

ℎ(𝑣) ← 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒(𝑚(𝑣), ℎ𝐾(𝑣), 𝑥(𝑣))

𝑧 ← 𝑅𝑒𝑎𝑑𝑜𝑢𝑡({ℎ(𝑣), ∀𝑣 ∈ 𝑉})

𝐴𝐺𝐺𝑅({ℎ𝑘−1(𝑒𝑢,𝑣), ∀𝑢 ∈ 𝑁(𝑣)})

= 𝑠𝑢𝑚({ℎ𝑘−1(𝑒𝑢,𝑣), ∀𝑢 ∈ 𝑁(𝑣)}, 𝑑𝑖𝑚 = 1)

∗ max({ℎ𝑘−1(𝑒𝑢,𝑣), ∀𝑢 ∈ 𝑁(𝑣)}, 𝑑𝑖𝑚 = 1) ;𝑤ℎ𝑒𝑟𝑒

∗ 𝑖𝑠 ℎ𝑎𝑟𝑑𝑎𝑚𝑎𝑛𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑎𝑛𝑑 dim1 𝑖𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛.

𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒 𝑜𝑟 𝑢𝑝𝑑𝑎𝑡𝑒(𝑚𝑘(𝑣), ℎ𝑘−1(𝑣)) = ℎ𝑘−1(𝑣) + 𝑚𝑘(𝑣);𝑤ℎ𝑒𝑟𝑒 +

𝑖𝑠 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑤𝑖𝑠𝑒 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛. This function applies for 1 to K-1 iterations.

𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒𝐾𝑜𝑟 𝑢𝑝𝑑𝑎𝑡𝑒
𝐾(𝑚𝑘(𝑣),ℎ𝑘−1(𝑣),𝑥(𝑣))

= 𝐺𝑅𝑈(𝑐𝑜𝑛𝑐𝑎𝑡(𝑚𝑘(𝑣), ℎ𝑘−1(𝑣), 𝑥(𝑣) 𝑎𝑡 dim1)); 𝑤ℎ𝑒𝑟𝑒 dim1 𝑖𝑠 ℎ𝑖𝑑𝑑𝑒𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛.

𝑅𝑒𝑎𝑑𝑜𝑢𝑡({ℎ(𝑣), ∀𝑣 ∈ 𝑉}) = 𝑚𝑒𝑎𝑛({ℎ(𝑣), ∀𝑣 ∈ 𝑉}, 𝑑𝑖𝑚 = 0);𝑤ℎ𝑒𝑟𝑒 dim0 𝑖𝑠 𝑟𝑜𝑤.Averaging node

features to graphs feature correspondingly to atom scope from Chemprop.

𝑎𝑙𝑝ℎ𝑎 = 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑊𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛. (lin({ℎ𝑘−1(𝑒𝑢,𝑣), ∀𝑢 ∈ 𝑁(𝑣)})))))

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑒𝑑𝑔𝑒𝑠 = 𝑎𝑙𝑝ℎ𝑎 ∗ {ℎ𝑘−1(𝑒𝑢,𝑣), ∀𝑢 ∈ 𝑁(𝑣)}; 𝑤ℎ𝑒𝑟𝑒 ∗ 𝑖𝑠 ℎ𝑎𝑟𝑑𝑎𝑚𝑎𝑛𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡.

 29

3.4 Multimodal/External feature extraction models for MLP classifier

We proposed two multimodal modules that can be trained concurrently with the

CMPNN, and the concatenated graph vectors are injected into an MLP classifier, as

shown in Figure 15.

The multimodal module box can be either one of the following: a multimodal

text module that extracts additional features by transforming each character in the

SMILES to a one-hot vector, then feeding it into a Bi-directional LSTM (a popular

NLP module) to memorize long-term dependencies from the sequence.

Alternatively, we can use the GNNML3 [14] module, which uses Matrix

Language 3 to perform graph signal processing for spectral graph features and is

believed to retain more global structure information [2]. The MLP is created by

stacking two linear layers with 300 default dimensions and ReLU activation between

the layers. The output molecular vector from the GNN (our baseline CMPNN) has

300 hidden features, while the Bi-LSTM has 300*2 features.

Figure 15: Multimodal GNN architecture

 30

3.4.1 Text Multimodal Module Using Bi-LSTM

3.4.1.1 Raw one-hot encoded text feature matrix for Bi-LSTM

In this experiment, we introduced encoding each character in a SMILES

sequence into a matrix. The dimension of each one-hot vector of a

character will be according to all possible numbers of characters in ASCII

format, which is 128.

As in Figure 16, a 2D square matrix contains a one-hot vector of

each character in the SMILES string, and the total number of vectors is

equal to the total number of characters in that SMILES string. We used

zero padding to make the number of vectors in each square matrix

consistent. Each square matrix gets batched together in the 3rd dimension

according to the batch size for batching.

Figure 16: SMILES sequence one-hot encoding to text feature matrix.

The above one-hot setting resulted in the final dimension of (batch size,

max SMILES length, max ASCII). These matrices were fed into Bi-

LSTM to read and learn the processed text feature matrices. Bi-LSTM

helps ensure the model understands the context of a SMILES sequence’s

forward and backward directions, as there is no canonical character order

in the SMILES sequence.

 31

Each LSTM predicts the next character feature vector (i.e., next

one-hot character vector) of this SMILES sequence, but after the model

learns/optimizes, it can output a molecular vector representing the whole

SMILES sequence instead (Figure 17).

Figure 17: LSTM predictions

The result of both directions of LSTMs’ predictions and their final

cell states were then concatenated into a batch of molecular vectors.

Subsequentially, both outputs from each direction of LSTM were then

aggregated using mean operation. These molecule vectors are then further

concatenated with other molecular vectors from other modules to feed

into MLP for the final prediction (Figure 18).

Figure 18: Bi-LSTM concatenation

3.4.1.2 Further improvement on the initial one-hot encoding SMILES

using embedding lookup table

We could optimize the text feature matrix before feeding into Bi-LSTM

utilizing an embedding layer. First, we made a list containing the ASCII

number of each character in the SMILES string and zero-padding to the

maximum number of SMILES length (Figure 19).

Figure 19: SMILES indices vector

 32

We passed this indices’ vector into an embedding lookup table to

index and get the corresponding learnable vector from the table for each

index (i.e., each ASCII character becomes a learnable word in the

embedding layer) (Figure 20).

Figure 20: Indices lookup from embedding table

We then batched all resulting 2D matrices for all SMILES in each

batch (Figure 21).

Figure 21: Batching of 2D SMILES matrices

Finally, we fed the batch to the Bi-LSTM, which read each 2D

matrix of the batch containing a character-embedded vector in each row.

Once the LSTM reads the whole sequence, it will learn the context of the

SMILES string. In this case, we concatenated both the final hidden state

of Bi-LSTM and the final cell state (Figure 22). Final hidden state, which

arguably predicts the next character embedding vector, will eventually

work as an aggregator, turning the SMILES string vectors into a

representation vector for that molecule (i.e., global pooling). In addition

to this, the final cell state contains crucial information about the long-term

learning dependencies throughout the training process (Figure 23).

 33

Figure 22: Final concatenation and mean of both forward and backward

Figure 23: Output of LSTM

All these processes result in a batch of molecular features

extracted from Bi-LSTM. The model can transform the SMILES string

into a learnable vector by adding this embedding layer.

3.4.2 Spectral features multimodal

We tried directly computing spectral filter for each batch graph while training

instead of precomputing a whole graph of the dataset (and arguably impossible

since the data in the dataset are not the type that all connected as a single huge

graph) and used the unmodified GNNML3 from [14] as a multimodal module.

3.5 Model Architecture and Training Procedure

3.5.1 Model Hyperparameters

The model hyperparameters include k-hop depth, hidden feature sizes, dropout

probabilities, and the number of feed-forward linear layers in the last MLP

before prediction.

These parameters can be optimized using grid search, but for fair out-of-

the-box comparisons with the baseline CMPNN, the unoptimized version of 300

hidden size was used. In addition, we used ReLU as the activation function

between layers before feeding into the MLP. The details parameters are listed in

Table 4 and Table 5.

3.5.2 Details of training and Predicting Process

We trained the model using Chemprop's default five-fold cross-validation with

the recommended split type from MoleculeNet into three subsets: train,

validation, and test, with aspect ratios of 0.8, 0.1, and 0.1.

 34

Stochastic gradient descent was used as the optimizer, with a normalized

and scheduled learning rate for 30 epochs and a batch size of 50. To further

improve the training process, we also utilized Chemprop's early stopping

mechanism, where the best model based on the validation loss was saved and

checkpointed for testing on unseen data.

A norm learning rate scheduler with a piecewise linear increase and

exponential decay from the "Attention is All You Need" paper was also

incorporated [8].

Table 4: Proposed MPNN Layer's parameters

Linear Atom input 133, 300

Linear Bond input 133+14, 300

Depth/K-hop 3

Depth 0 bond linear 300, 300

Depth 1 bond linear 300, 300

BatchGRU 300, 300*2 (bi-directional)

Linear out after bi-directional

BatchGRU

600, 300

Table 5: MLP for prediction depth = 1

Linear 300, 300

ReLU 1 activation

Linear 300, number of tasks in dataset

We employed the learning rate scheduler because it can help the model

converge faster by adjusting the learning rate to allow the model to make

progress early on while avoiding getting stuck in local minima. In addition, the

normalization can help ensure that the learning rate is appropriate for the

model's current state, improving the training process’s stability. It can also

potentially improve the final accuracy of the model by fine-tuning the learning

rate during the training process. Learning rate scheduler details can be seen in

Table 6.

Table 6: Learning rate scheduler

Initial learning rate 1e-4

Maximum learning rate 1e-3

Final learning rate 1e-4

Warmup epochs 2

 35

The model training flow starts by creating and initializing the model’s

weights with one fixed seed. The model was then trained and tested for five

iterations, each iteration with a different dataset split seed. Finally, the five test

results were used to calculate the mean and standard deviation (Figure 24).

Figure 24: Training flow

3.6 Evaluation Metrics

The molecular properties prediction tasks comprise two categories: graph regression

and graph classification tasks. We used the evaluation metrics of each category as

follows.

3.6.1 Classification Tasks

We evaluated the model's performance for the classification task using a true

positive rate (tpr) and false positive rate (fpr), as shown in Equation 12 and

Equation 13,

𝑡𝑝𝑟 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑁) (12)
Equation 12: True Positive Rate

 𝑓𝑝𝑟 = 𝐹𝑃 / (𝐹𝑃 + 𝑇𝑁) (13)

Equation 13: False Positive Rate
where TP is true positive, TN is true negative, FP is false positive, and FN is

false negative. We then plotted the receiver operating characteristic (ROC)

curve using tpr as y- and fpr as x-axes and calculated the area under the curve

(AUC). The higher, the better.

 36

3.6.2 Regression Tasks

We calculated Root Mean Square Error (RMSE) using Equation 14, where 𝑌ˆ

and Y are the predicted and observed values, respectively. The lower, the better.

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑌^ − 𝑌)2 (14)

Equation 14: RMSE

RMS

 37

Chapter 4

 Results and Discussion

This chapter presents the experimental results of CMPMM incorporated with various

modules or techniques for drug property prediction tasks.

4.1 Performance of the Baselines

We describe the naming definitions of each model implementation of the baselines as

follows.

• CMPNN: The baseline GNN that took advantage of the disconnected bi-

directional edge messages.

• GNNML3: The spectral baseline model utilizing spectral graph convolution

with MATLANG3 from [14] with the second power of adjacency (K=2)

(direct hop per message passing like normal spatial GNN).

Table 7 shows the baselines’ performance implemented in this thesis and evaluated by

five-fold cross-validation using recommended split types from MoleculeNet.

Table 7: Five-fold cross-validation results of our implemented baseline models

 Five-fold

cross

valida-

tion

Classification Regression

BBBP ClinTox SIDER Tox21 HIV ESOL Free-

Solv

Lipophi-

licity

CMPNN

(Base-

line)

0.958077 +/-

0.017582
0.915815

+/-

0.015748

0.640620

+/-

0.039283

0.851490

+/-

0.009426

0.808721

+/-

0.020270

0.582865

+/-

0.048626

0.969931

+/-

0.335350

0.583237

+/-

0.021075

GNNML3

(Spec-

tral)

(K=2)

0.761271 +/-

0.058912
0.431808

+/-

0.130315

0.558689

+/-

0.016746

0.742669

+/-

0.025536

0.707289

+/-

0.037594

1.364229

+/-

0.156225

3.520960

+/-

0.320290

1.128885

+/-

0.043017

Even though CMPNN was entirely better than the MATLANG3 layer, we keep in

mind that the MATLANG3(spectral) was designed to be used in the graph

isomorphism task rather than the graph classification/regression tasks like CMPNN.

The spectral features and the extracted graph isomorphism information may still be

useful for prediction.

 38

Table 8 shows the calculated average molecular graph size and average denseness of

each dataset's direct neighboring bonds of an atom. This information may help us

analyze the results in the future (Section 4.2).

Table 8: Datasets' average number of atoms and bonds

Classification Regression

ESOL Tox21 FreeSolv BBBP Lipophi-

licity

ClinTox SIDER HIV

Avg

atoms

13.289 18.574 8.722 24.064 27.04 26.157 33.641 25.510

Avg

bonds

0.988 1.009 0.915 1.066 1.089 1.049 1.021 1.072

*Avg atoms: Avg number of heavy atoms per smiles; Avg bonds: Avg number of bonds per heavy

atom

4.2 Performance of the CMPNN variants

This section presents the results of CMPNN incorporated with various techniques and

multimodal modules. We describe the naming definitions of each CMPNN variant as

follows.

• AttnMaskedSM: Self-attention at edges, distributed along the target node’s

edge with the masked SoftMax function.

• GNNML3: The spectral graph convolution using the second adjacency power

(K=2), a spectral multimodal module running concurrently with the standard

CMPNN.

• S2SPool: Popular attention pooling operator from Set2Set [19] used for

pooling node feature matrix to a molecular graph vector.

• Bi-LSTM: The multimodal module, Bi-directional LSTM, fed with raw one-

hot vectors of characters in SMILES string.

• Bi-LSTM+EMB: Bi-LSTM with pre-processing of transforming SMILES

string to learnable vector via a lookup table.

Table 9 shows the overall performance of CMPNN variants compared with the

baselines, and Table 10 summarizes the number of winning tasks of each CMPNN

variant compared with the baseline.

 39

Table 9: Model performance of CMPNN variants compared with the baseline.

Five-fold

cross-

validation

Classification Regression

BBBP ClinTox SIDER Tox21 HIV ESOL FreeSolv Lipophilicity

CMPNN

(Baseline)
0.958077

+/-

0.017582

0.915815

+/-

0.015748

0.64062

0 +/-

0.03928

3

0.8514

90 +/-

0.0094

26

0.8087

21 +/-

0.0202

70

0.5828

65 +/-

0.0486

26

0.969931

+/-

0.335350

0.583237 +/-

0.021075

GNNML3

(Spectral)

(K=2)

0.761271

+/-

0.058912

0.431808

+/-

0.130315

0.55868

9 +/-

0.01674

6

0.7426

69 +/-

0.0255

36

0.7072

89 +/-

0.0375

94

1.3642

29 +/-

0.1562

25

3.520960

+/-

0.320290

1.128885 +/-

0.043017

CMPNN+
AttMaskedSM

(v6)

0.959694

+/-

0.014363

0.901515

+/-

0.032833

0.63833

2 +/-

0.03948

6

0.8490

45 +/-

0.0150

64

0.7872

12 +/-

0.0434

80

0.5764

24 +/-

0.0602

59

0.947268

+/-

0.313322

0.625929 +/-

0.028989

CMPNN+

S2SPool
0.960700

+/-

0.015843

0.876158

+/-

0.071887

0.65079

5 +/-

0.03766

9

0.8479

87 +/-

0.0111

03

0.7888

79 +/-

0.0350

26

0.5792

05 +/-

0.0573

59

1.043572

+/-

0.409796

0.578896 +/-

0.029028

CMPNN+

GNNML3

(K=2)

0.957175

+/-

0.017800

0.913060

+/-

0.018448

0.65572

4 +/-

0.03911

4

0.8468

81 +/-

0.0121

81

0.7846

01 +/-

0.0297

80

0.5697

37 +/-

0.0721

57

0.933951

+/-

0.250933

0.575096 +/-

0.016584

CMPNN+

Bi-LSTM
0.959280

+/-

0.022079

0.918462

+/-

0.018300

0.64019

3 +/-

0.04240

9

0.8531

41 +/-

0.0104

25

0.7796

33 +/-

0.0342

16

0.5692

97 +/-

0.0426

68

0.989492

+/-

0.310800

0.570735 +/-

0.030575

CMPNN+Bi-

LSTM+ EMB

0.963301

+/-

0.015882

0.973677

+/-

0.008969

0.65187

5 +/-

0.04036

8

0.8502

33 +/-

0.0110

02

0.7972

70 +/-

0.0364

07

0.5676

32 +/-

0.0627

55

0.945355

+/-

0.279276

0.569006 +/-

0.026226

Table 10: Number of winning tasks of CMPNN variants compared with the baseline

(numbers within the parenthesis are the wining classification and regression tasks)

CMPNN

(Baseline)

GNNML3

(Spectral)

(K=2)

CMPNN+

AttMaskedSM

(v6)

CMPNN+

S2SPool

CMPNN+

GNNML3

(K=2)

CMPNN+

Bi-LSTM
CMPNN+

Bi-LSTM+EMB

Better - 0 3(1,2) 4(2,2) 4(1,3) 5(3,2) 6(3,3)

Best 1 0 0 0 2(1,1) 1(1,0) 4(2,2)

 40

In this thesis, we introduced and experimented with the variants of a graph

neural network (GNN) with CMPNN as the core component for molecular property

predictions. We introduced modern techniques such as edge attention and multimodal

modules into or as a part of the model architecture.

From our experimental results, various techniques could help improve the

overall performance of the baseline CMPNN for some datasets. For example, the

introduced Bi-LSTM and GNNML3 beats all other models and got the best

performance on 1 and 2, dataset(s), respectively, with an even better version of Bi-

LSTM+EMB (embedding+Bi-LSTM) which got 4 best performance over the baseline

CMPNN and all other variants. The use of edge attention also improved the

performance of the baseline CMPNN but still did not win other techniques. Even

though GNNML3 were made for graph isomorphism tasks, CMPNN+GNNML won 2

of the arguably difficult datasets which are SIDER (extreme class imbalances) and

FreeSolv (super small dataset with small molecular graphs as stated in Table 8).

Overall, our results demonstrate that the multimodal text modules could help improve

the performance of the baseline CMPNN for molecular property prediction.

 41

Chapter 5

Conclusion

This thesis focuses on improving the baseline CMPNN model for molecular

properties prediction, specifically in the graph classification/regression task. The work

begins with a comprehensive literature review covering various spatial GNN

approaches such as DMPNN, CMPNN, GCN, and GAT. Additionally, the thesis

revisits spectral GNNs and their procedures, highlighting the breakthrough GNNML3

model.

Building upon the existing literature, the thesis proposed two methods for

enhancing the baseline CMPNN model. Firstly, we introduced a self-attention

mechanism inspired by the Graph Attention Network (GAT) upon CMPNN. This self-

attention allows the model to pay attention to the relevance of source node features to

the target node features. Secondly, we developed a multimodal module to extract

diverse information perspectives from the same dataset, which were then provided to

the same MLP classifier/predictor. The proposed modules employed two different

methods. The first method involved using a bidirectional LSTM and an embedding

layer to embed SMILES representations, thereby capturing text-based features. The

second method utilized GNNML3 for spectral feature extraction, enabling the

extraction of graph frequencies, spectrums, and long-range dependencies.

The thesis evaluated the proposed methods through rigorous experimentation

and compared their performance against other approaches. The combination of

CMPNN, Bi-LSTM, and Embedding among the assessed models gave the best results.

This thesis contributes to the field of molecular properties prediction by

improving the baseline CMPNN model and incorporating self-attention and

multimodal techniques. The findings highlight the importance of extracting text

features for more accurate predictions, and the proposed approach showcases its

effectiveness through superior performance compared to alternative models.

REFERENCES

REFERENCES

1. Zhenqin Wu, B.R., Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.

Pappu, Karl Leswing and -.P.G. Stanford. MoleculeNet Dataset Collection.

[cited 2022; MoleculeNet Datasets]. Available from:

https://moleculenet.org/datasets-1.

2. Wieder, O., et al., A compact review of molecular property prediction with

graph neural networks. Drug Discovery Today: Technologies, 2020. 37: p. 1-12.

3. Jin, Z., et al., GNNVis: A Visual Analytics Approach for Prediction Error

Diagnosis of Graph Neural Networks. 2020.

4. Gilmer, J., et al., Neural Message Passing for Quantum Chemistry. arXiv e-

prints, 2017: p. arXiv:1704.01212.

5. Yang, K., et al., Analyzing Learned Molecular Representations for Property

Prediction. Journal of Chemical Information and Modeling, 2019. 59(8): p.

3370-3388.

6. Song, Y., et al. Communicative Representation Learning on Attributed

Molecular Graphs. in IJCAI. 2020.

7. Rong, Y., et al., Self-Supervised Graph Transformer on Large-Scale Molecular

Data. 2020: arXiv.

8. Vaswani, A., et al., Attention Is All You Need. arXiv.

9. Kipf, T.N. and M. Welling, Semi-Supervised Classification with Graph

Convolutional Networks. arXiv e-prints, 2016: p. arXiv:1609.02907.

10. Veličković, P., et al., Graph Attention Networks. arXiv e-prints, 2017: p.

arXiv:1710.10903.

11. Dagar, A. Understanding Graph Attention Networks (GAT). Tuesday, Jan 21,

2020 20/11/2022]; Available from: https://dsgiitr.com/blogs/gat/.

12. Xu, K., et al., How Powerful are Graph Neural Networks? 2018: arXiv.

13. Wang, H., et al., Equivariant and Stable Positional Encoding for More Powerful

Graph Neural Networks. arXiv e-prints, 2022: p. arXiv:2203.00199.

14. Muhammet, B., et al., Breaking the Limits of Message Passing Graph Neural

Networks, in Proceedings of the 38th International Conference on Machine

Learning (ICML). 2021.

15. Wu, Z., et al., MoleculeNet: a benchmark for molecular machine learning.

Chemical Science, 2018. 9(2): p. 513-530.

16. Weininger, D., SMILES, a chemical language and information system. 1.

Introduction to methodology and encoding rules. Journal of Chemical

Information and Computer Sciences, 1988. 28(1): p. 31-36.

17. RDKit: Open-Source Cheminformatics Software. 21 Feb 2023]; Available from:

https://www.rdkit.org.

18. Fey, M. and J.E. Lenssen, Fast Graph Representation Learning with PyTorch

Geometric. arXiv e-prints, 2019: p. arXiv:1903.02428.

https://moleculenet.org/datasets-1
https://dsgiitr.com/blogs/gat/
https://www.rdkit.org/

VITA

VITA

NAME Kamol Punnachaiya

DATE OF BIRTH 13 April 1998

PLACE OF BIRTH Bangkok

INSTITUTIONS

ATTENDED

Chulalongkorn University

PUBLICATION K. Punnachaiya, P. Vateekul and D. Wichadakul,

"Multimodal Modules and Self-Attention for Graph Neural

Network Molecular Properties Prediction Model" April

21st-23rd, 2023 11th International Conference on

Bioinformatics and Computational Biology (ICBCB),

Hangzhou, China, 2023.

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Scope
	1.4 Expected Results
	1.5 Research Plan
	1.6 Publication

	Chapter 2 Related Theories and Literature Review
	2.1. Related Theories
	2.1.1 Hierarchy of graph neural network (GNN) terminology
	2.1.1.1 Category: Recurrent and Convolutional GNNs
	2.1.1.2 Variant: Spectral and Spatial
	2.1.1.3 Approach: GCNs and MPNNs

	2.1.2 K-Hop neighbors
	2.1.3 Message Passings’ categorization
	2.1.3.1 Atom message passing
	2.1.3.2 Bond message passing
	2.1.3.3 Undirected graph message passing
	2.1.3.4 Directed graph message passing

	2.2 Spatial Conv-GNNs with MPNN approach
	2.2.1 MPNN (Gilmer, J., et al.)
	2.2.2 DMPNN
	2.2.3 CMPNN
	2.2.4 GROVER

	2.3 Spatial Conv-GNNs with GCN approach
	2.3.1 GCNConv
	2.3.2 GATConv
	2.3.3 GINConv
	2.3.4 Graph Transformer

	2.4 Spectral graph convolution
	2.4.1 Spectral designed convolution support/filter
	2.4.2 GNNML3 (MATLANG 3 Layer)

	Chapter 3 Methods
	3.1 Data preparation and Preprocessing
	3.2 Preprocessing stage
	3.3 Attention mechanisms and Alpha coefficients computations
	3.4 Multimodal/External feature extraction models for MLP classifier
	3.4.1 Text Multimodal Module Using Bi-LSTM
	3.4.1.1 Raw one-hot encoded text feature matrix for Bi-LSTM
	3.4.1.2 Further improvement on the initial one-hot encoding SMILES using embedding lookup table

	3.4.2 Spectral features multimodal

	3.5 Model Architecture and Training Procedure
	3.5.1 Model Hyperparameters
	3.5.2 Details of training and Predicting Process

	3.6 Evaluation Metrics
	3.6.1 Classification Tasks
	3.6.2 Regression Tasks

	Chapter 4 Results and Discussion
	4.1 Performance of the Baselines
	4.2 Performance of the CMPNN variants

	Chapter 5 Conclusion
	REFERENCES
	VITA

