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ABSTRACT (THAI) 
 กมล ปุณณชยัยะ : การปรับปรุงเครือข่ายชนิดกราฟเพื่อท านายคุณสมบติัของสารประกอบทางโมเลกุล. ( 

Leverage Graph Neural Network for Molecular Properties Prediction) อ.ท่ี
ปรึกษาหลกั : รศ.ดวงดาว วิชาดากุล, อ.ท่ีปรึกษาร่วม : รศ. ดร.พีรพล เวทีกูล 

  

ในยุคของเทคโนโลยีการเรียนรู้เชิงลึก (deep learning) ท่ีแสดงให้เห็นถึงศกัยภาพท่ีส าคญัในการลดตน้ทุน
และส่งเสริมการพฒันาทางการแพทยอ์ย่างรวดเร็ว การท านายคุณสมบัติของโมเลกุลเป็นงานหน่ึงท่ีได้รับความนิยมและใช้
ประโยชน์จากความสามารถของเทคโนโลยีการเรียนรู้เชิงลึก วิทยานิพนธ์ฉบบัน้ีน าเสนอแบบจ าลองกราฟซ่ึงรวมโมดูลท่ีเรียนรู้
ชุดขอ้มูลเดียวกนัจากหลากหลายรูปแบบ (multimodal Graph Neural Network) และใช้ขอ้มูลทอพอโลยีท่ี
ไดรั้บจากกราฟโมเลกุลผา่นแบบจ าลองกราฟท่ีใชเ้ป็นเส้นฐาน วิทยานิพนธ์น้ีเพิ่มประสิทธิภาพของแบบจ าลอง CMPNN ท่ี
ใชเ้ป็นเส้นฐาน โดยส ารวจวิธีการต่างๆ ท่ียงัไม่ไดน้ ามาใช ้วิธีการเหล่าน้ีรวมถึงการรวมโมดูลเขา้ดว้ยกนักบัแบบจ าลองกราฟ 

เช่น โมดูล LSTM สองทิศทาง ท่ีสามารถประมวลผลล าดบัของตวัอกัษรในรูปแบบ SMILES หรือโมดูลท าสังวตันาการ
ของกราฟดว้ยสเปกตรัม (spectral graph convolution) นอกจากน้ียงัเพิ่มกลไกการเรียนรู้โดยรวมความใส่ใจดว้ย
ตนเอง (self-attention) เขา้ในแบบจ าลอง CMPNN โดยใชว้ิธีการค านวณตวัเลขอลัฟา (alpha coefficient 

method) จาก GATConv ผลการทดลองแบบจ าลองกราฟท่ีน าเสนอซ่ึงรวมโมดูลท่ีเรียนรู้ชุดข้อมูลเดียวกันจาก
หลากหลายรูปแบบ มีประสิทธิภาพโดยรวมดีกวา่แบบจ าลองท่ีใชเ้ป็นเส้นฐานในการท านายคุณสมบติัโมเลกุล จาก 7 ใน 8 ชุด
ขอ้มูลจากโมเลกุลเน็ท ซ่ึงประกอบดว้ย 5 ชุดขอ้มูลในการจ าแนกหมวดหมู่ และสามชุดขอ้มูลในการท านายค่า ผลการวิจยัน้ี
เปิดโอกาสในดา้นต่างๆ ในสาขาเคมี โดยเฉพาะอยา่งยิง่ในงานคน้พบยา 
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During the age of deep learning technologies, which have exhibited 

significant potential in reducing costs and expediting medical development, 

predicting molecular properties has become a prevalent task that capitalizes on the 

capabilities of deep learning. This thesis proposed a multimodal Graph Neural 

Network (GNN) model that utilizes the topology information obtained from 

molecular graphs through a baseline GNN, facilitating precise property predictions. 

The thesis improves the baseline CMPNN model by exploring various methods to 

address potential missing gaps. These methods include incorporating the 

multimodal module, such as a Bidirectional LSTM module capable of processing 

text sequences in SMILES format or a spectral graph convolution module. 

Moreover, self-attention integration into the CMPNN model was implemented 

using the alpha coefficient method from GATConv. The experimental results show 

that the proposed multimodal GNN models performed better than the baseline 

model for predicting molecular properties in seven out of eight datasets from 

MoleculeNet, including five classification and three regression tasks. These 

findings show the potential of this methodology across various domains within the 

field of chemistry, with particular relevance to drug discovery. 
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Chapter 1  

Introduction 

 

1.1 Motivation 

 

Previously, to develop a new drug for treatment in the medical field, scientists needed 

to discover each compound's properties in the laboratories experimentally. A manual 

approach to such a large combination of compounds and ways to experiment will 

hinder the speed of finding new drugs, not even including the amount of funds and 

resources to sink into these experiments. 

 

In recent times, the pandemic of COVID-19 has destroyed many lives, and it 

is incredibly fast to evolve and improve in their resistance to vaccines; However, the 

amount of time and resources needed to research new drugs/vaccines for fighting 

these diseases are enormous. Hence, the disease remains spreading infection an 

expansive and fast-paced manner. 

 

With the help of recent blooming technology, Machine-Learning and Deep-

Learning play a considerable role in substantially decreasing the time and resources 

needed to develop a new drug/vaccine to fight constantly mutated diseases. We can 

now develop machine-learning models to precisely predict molecule properties by 

feeding molecular representation vectors into the model to train and learn to predict 

an unseen molecule’s properties, bypassing the experimental steps in the process. 

Their primary use is to help screen for potential compounds that can be used for 

making new drugs. Hence, its contributions to the medical field are invaluable.  

 

This thesis aims to discover new ways for an improved precise way to predict 

molecular-level properties by using their molecule’s graph structure and features, 

which the results can be further used to assist in developing new drugs. 

 
1.2 Objectives 

 

Try to improve graph neural network deep learning model architecture by integrating 

new modern methods into the existing molecular properties prediction model and 

obtain better performance metrics than the state-of-the-art methods. 
 

1.3 Scope 

 

The models will be evaluated on graph benchmarks from MoleculeNet datasets [1] 

including BBBP, ClinTox, SIDER, Tox21, HIV, ESOL, FreeSolv, and Lipophilicity.  
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1.4 Expected Results 

 

Obtain a deep learning model that achieves higher performance metrics than the 

baseline model.  
 
1.5 Research Plan 

1. Research state-of-arts methods for graph neural networks. 

2. Research state-of-arts methods for graph neural networks focusing on drug 

property predictions.  

3. Investigate if any method can integrate with current work and obtain better 

performance. 

4. Prepare the datasets. 

5. Implement new methods into the model and evaluate the model performance. 

6. Evaluate and analyze the results. 

7. Summarize and publish the research results. 

8. Defend the thesis. 

 

1.6 Publication 

K. Punnachaiya, P. Vateekul and D. Wichadakul, "Multimodal Modules and Self-

Attention for Graph Neural Network Molecular Properties Prediction Model" April 

21st-23rd, 2023 11th International Conference on Bioinformatics and Computational 

Biology (ICBCB), Hangzhou, China, 2023. 
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Chapter 2  

Related Theories and Literature Review 

2.1. Related Theories 

 

Before studying previous works, it would be beneficial to investigate some essential 

background and overview for easier understanding. Therefore, in this section, it will 

consist of the following subsections: 

 

1. Hierarchy of graph neural network (GNN) terminology  

2. K-hop neighbors 

3. Message Passings’ categorization specifically in this thesis.  

 

2.1.1 Hierarchy of graph neural network (GNN) terminology  

 

2.1.1.1 Category: Recurrent and Convolutional GNNs 

The main difference between recurrent GNNs and convolutional GNNs is 

how they propagate information through the graph structure. 

 

1. Recurrent GNNs: recurrent GNNs propagate information through the 

graph by sequentially updating the hidden state of each node based on its 

neighboring nodes' hidden states. At each time step, the hidden state of a 

node is updated by aggregating and transforming the hidden states of its 

neighboring nodes. This process is repeated for a fixed number of 

iterations or until convergence. Recurrent GNNs are often used for tasks 

that require capturing complex temporal dependencies or for graphs with 

variable-sized neighborhoods. 

 

2. Convolutional GNNs: convolutional GNNs, also known as spatial 

GNNs, propagate information through the graph by applying convolution 

operations to the node features and their local neighborhoods. Instead of 

updating nodes sequentially, convolutional GNNs operate on the entire 

graph simultaneously (please note that updating nodes on the entire graph 

does not necessarily needs the whole graph structure to be precomputed; 

instead, it can use their direct neighbors). Each node's updated feature is 

computed by aggregating information from its local neighborhood using a 

convolutional operation, similar to how convolutional neural networks 

operate on images. Convolutional GNNs are suitable for tasks that can 

benefit from local neighborhood information. 

 

Sharing weights across multiple message passings or convolution 

operations does not count towards being categorized as Recurrent GNNs. 

To be Recurrent GNNs there needs to be RNNs within and utilize 

temporal dependencies. The node update stage needs to explicitly depend 

on the previous step rather than just purely on the current step. 
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Figure 1 shows two approaches of graph neural networks (GNNs): 

recurrent graph neural network (Rec-GNN) and convolutional graph 

neural network (Conv-GNN) [2]. 

 

The main difference between these two variants is that Rec-GNNs 

have connections between perceptron that can form cycles, or their 

outputs are re-inputted into the model for multiple iterations, which allows 

them to reuse information from previous hidden layers and retain 

memories from the past. In contrast, the weights in each layer of Conv-

GNNs are not shared, so the parameters of each layer are not affected by 

the previous layer. 
 

 
Figure 1: Recurrent GNN vs Convolutional GNN [2] 

 

Sharing weights can reduce the number of parameters and being 

computationally more efficient than non-shared weight layers. This 

efficiency means the layer gains a form of dynamic memory that can store 

information from previous timesteps, but this memory can be overwritten 

or updated by new information, which is not the case in separate weight 

layers. 

 

The node vector update formula for Rec-GNNs is given below in 

Equation 1 and Conv-GNNs in Equation 2 [2].  

ℎ𝑢
(𝑡)

 =  ∑ 𝜌(𝑀𝑤([𝑥𝑢, 𝑥𝑢,𝑣
𝑒 , 𝑥𝑣 , ℎ𝑢

(𝑡−1)
]))𝑣∈𝑁(𝑢)                          (1) 

Equation 1: Rec-GNN node update formula 

. 

𝐻𝑡  =  𝜌(𝐴𝐻𝑡−1𝑊(𝑡))                                              (2) 

Equation 2: Conv-GNN node update formula 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 5 

2.1.1.2 Variant: Spectral and Spatial 

Spectral GNNs 

 

Spectral GNNs are inspired by spectral graph theory and leverage the 

eigenvalues and eigenvectors of the graph's Laplacian matrix. Spectral 

GNNs use the graph's spectral domain, which is analogous to the 

frequency domain in signal processing. Spectral GNNs transform the 

graph data into a spectral representation by performing eigenvalue 

decomposition of the Laplacian matrix. 

 

In spectral GNNs, graph convolution is performed by filtering the 

graph's spectral representation by applying filters in the spectral domain to 

capture different frequency components of the graph. By convolving the 

graph's spectral features with these filters, spectral GNNs can capture 

global structural patterns and relationships across the graph. Spectral 

GNNs are particularly effective for tasks that require capturing long-range 

dependencies in the graph. 

 

They are effective for tasks requiring understanding the overall 

graph structure and spectral characteristics. The only downside being 

computationally expensive and may struggle with large graphs due to the 

eigenvalue decomposition process. 

  

Spatial GNNs 

 

Spatial GNNs, on the other hand, operate in the spatial domain of the 

graph, which is similar to the time domain in signal processing. Spatial 

GNNs propagate information through the nodes and edges of the graph in 

a localized manner. They typically aggregate information from 

neighboring nodes and update node representations based on this local 

neighborhood information. 

 

In spatial GNNs, graph convolution is performed by aggregating 

features from neighboring nodes and combining them with the current 

node's features. This allows spatial GNNs to capture local connectivity 

patterns and propagate information across the graph. Spatial GNNs, e.g., 

graph convolutional networks (GCNs), and message passing neural 

networks (MPNNs), are well-suited for tasks that require capturing local 

interactions and dependencies within the graph. They are also more 

scalable and suitable for larger graphs. 
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2.1.1.3 Approach: GCNs and MPNNs 

 

An approach refers to different methods used within the broader category 

variant, in this thesis, we will study two types of spatial GNNs 

approaches: GCNs and MPNNs. 

GCN has two functions, which are aggregation and readout, while MPNN 

has three functions, which are message function (equivalent to 

aggregation in GCN approach), update function, and readout function.  

 

The difference between the two approaches is the additional 

update function in MPNN. However, either the aggregate function in 

GCN or the message function in MPNN involves multiplying the feature 

matrix with an adjacency matrix. 

 

Below are the most straightforward functions for each approach as 

stated in [2],  with the following symbols definitions t - timestep, ρ - non-

linearity function, w - weight, M - message, O - readout, N(u) - neighbors 

of vertex u, G - graph, v - vertex, h - hidden node representation, ˆy - 

graph representation. 

 

GCN: 

ℎ𝑢
(𝑡) =  ∑ 𝜌(𝑀𝑤𝑖

(𝑡−1)ℎ𝑣
(𝑡−1))

𝑣∈𝑁(𝑢)

 

 

�̂� = 𝑂𝑤𝑗
(∑ℎ𝑣

(𝑡)

𝑣∈𝐺

) 

 

MPNN: 

 

𝑚𝑢
(𝑡) =  ∑ 𝜌(𝑀𝑤𝑖

(𝑡−1)ℎ𝑣
(𝑡−1))

𝑣∈𝑁(𝑢)

 

ℎ𝑢
(𝑡) = 𝑈𝑤𝑘

(𝑡−1)([ℎ𝑢
(𝑡−1)

,  𝑚𝑢
(𝑡−1)]) 

 

�̂� = 𝑂𝑤𝑗
(∑ℎ𝑣

(𝑡)

𝑣∈𝐺

) 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 7 

 

2.1.2 K-Hop neighbors 

 

Figure 2 depicts the message passing framework, in which messages from k-hop 

distant neighbors are passed to the target node through multiple iterative/depth 

update steps in the Message Passing Neural Network [2]. 

 

 
Figure 2: Visualization of K-Hop layers, based on [3] 

 

2.1.3 Message Passings’ categorization  

 

In this thesis specifically, we studied/summarized four variants of message 

passing neural networks from the following papers: [4] [2] [5] and [6]. All fall 

under the spatial convolutional graph neural networks and utilize the MPNN 

approach.  
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2.1.3.1 Atom message passing  

In Atom Message Passing, messages are situated directly within the 

graph’s nodes. The process starts with aggregating information from 

neighbors. Initial messages are oriented in atoms, only containing atom 

features.  

The neighboring messages, atoms, and bonds must be indexed and 

selected separately. The selected neighboring atom/bond message types 

are then concatenated at a hidden dimension and aggregated as the total 

incoming message using standard summation. These aggregated messages 

are then passed directly to their neighboring atoms via the connectivity 

matrix in the next iteration. 

 

2.1.3.2 Bond message passing  

The messages are located on the edges of the graph, each edge containing 

two hidden states (messages), one for each direction.  

The initial message, which is oriented/stored at bonds, is combined 

with the atom features that the bonds originate from. This results in the 

message being different in opposite directions. As the bond message is 

already combined with atom features, only one step for selecting 

incoming neighboring messages is required. 

The reverse bond message (either the initial outgoing bond 

message or the outgoing bond message from the previous step) is 

subtracted from the updated node representations. The subtracted message 

becomes the new neighboring bond message when passing the message to 

neighboring atoms through connecting edges in the next iteration.  

Having the atom and bond messages updated concurrently in each 

iteration of the message passing positively affects the model's 

performance. 

 

2.1.3.3 Undirected graph message passing  

In an undirected graph, edges do not have a specific direction, meaning 

both directions of an edge are equivalent and constant.  

For bond message passing, where bi-directional messages from 

each direction containing different information are possible, both 

messages are averaged to eliminate the direction distinction. On the other 

hand, atom message passing does not change the message as there is no 

direction in the first place. This algorithm provides base results. 

 

2.1.3.4 Directed graph message passing  

This type of message passing is only applicable in bond-oriented message 

passing because of the presence of two directions in a single bond. 

In this approach, the direction of the message is significant and 

can differ (bi-directional: outgoing and incoming). The selected 

neighboring messages for updating the node representation are only from 

the incoming messages in the direction of the target atom. 
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This algorithm enables the model to avoid passing redundant 

messages to its neighbors. 

 

Summary 

In short, bond message passing (i.e., directed) has been improved from atom 

message passing (i.e., undirected) stores messages within the graph’s edge and 

updates both node and edges simultaneously and utilizes both directions of an 

edge while atom message passing only store messages within its node and 

update only nodes within 1 iteration. 

 

Previously, machine learning in the medical/chemical fields was limited to traditional 

machine learning methods. However, with the advancements in deep neural networks, 

graph neural networks have become a popular choice for molecular properties 

prediction, as presented below.  

 

2.2 Spatial Conv-GNNs with MPNN approach 

2.2.1 MPNN(Gilmer, J., et al.) 

MPNN is an approach to graph neural networks introduced by Gilmer et al. in 

the paper "Neural Message Passing for Quantum Chemistry" [4]. The model 

focuses on creating high-quality node embeddings using undirected graphs and 

atom message passing. The authors emphasized the importance of making the 

model invariant to graph isomorphism, as a graph has no inherent order to 

nodes. Furthermore, they noted that its performance might suffer if the model is 

given or injected with low-quality node positional encodings as additional 

features. 

 

2.2.2 DMPNN 

This work [5] introduces a new method to message passing by using directed 

graphs and subtracting overlapping bond messages when passing messages to 

neighbors. This subtraction separates the relevance of the two-direction bond 

messages in the same bond, optimizing the message passing process and 

avoiding passing messages to unnecessary loops. The improved quality of the 

final node embeddings directly leads to better results after pooling the node 

embeddings into graph embeddings. 

 

The MolGraph class developed by the authors in [5] and used in 

DMPNN is crucial as it serves as a molecule feature extraction method. It 

allows for a bi-directional message passing through the edge, and its success has 

been utilized in several other studies on molecular property predictions. The 

authors also created a framework, Chemprop [5], based on this MolGraph class.  

 

Figure 3 and Figure 4 illustrate the most simplistic overview of edge 

message passing. Figure 3 shows the first step to aggregate all incoming green 

messages to the yellow atom. In the second step, Figure 4, the blue aggregated 

incoming message is then passed along the outgoing bonds subtracting out the 
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initial red outgoing messages to not pass overlapping messages to the 

neighboring atoms. 

 

 

 
Figure 3: Aggregation of green incoming messages 

  

Figure 4: Subtraction out red overlapping messages from the outgoing message  
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Figure 5 shows the original figure describing the directed message passing from 

DMPNN, which will also be explained for another perspective of understanding. 

 
Figure 5: Edge message passing from DMPNN [5] 

 

Consider atom number 2 (blue number), which has two incoming orange 

bonds and one incoming grey bond in the opposite direction to the outgoing red 

bond. After aggregation (note that this is not the updated node representation), it 

creates a total incoming neighboring message. When sending off the aggregated 

and updated message by using the outgoing bonds indices of atom number 2, 

the red outgoing message will get subtracted by the initial outgoing message 

(initial message 2->1) so as not to create a redundantly updated initial incoming 

message for atom number 1 in the next iteration.  

Figure 6 and Figure 7 demonstrate the code of edge message passing, 

where Figure 6 represents the aggregation of all initial incoming bond 

messages. a_message becomes the total incoming messages. Figure 7 shows the 

initialization of reverse bond messages selection for every bond in the matrix, 

which means the outgoing bond index the incoming bond and vice versa. This 

gave outgoing bond messages as a result. 

 

 

Figure 6: DMPNN’s code: message selection 

 

a_message[b2a] is then expanded by indexing each aggregated message 

(i.e., a_message) with an outgoing bond index (i.e., b2a[.]) This gives the 

current outgoing messages, which needs to be subtracted by initial outgoing 

messages. Subtractions are performed to avoid sending the overlapping of the 
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outgoing message, which will then be used as incoming messages for 

neighboring atoms. 
 

 

Figure 7: DMPNN’s code: subtraction of overlapping message when passing 

messages to its neighbors 

 

Figure 8 illustrates how DMPNN updates a node’s state, which consists of two 

steps: update node representation and update edge message. 

 
Figure 8: DMPNN’s node update 

 

DMPNN’s node update 

In the code implementation of bond-message passing, it first creates a 

bidirectional bond messages matrix that consists of each message being the 

featured bond itself concatenated with the atom features that the bond came 

from. The two bond directions are the outgoing and the incoming directions. As 

seen in Figure 8, the green and red bond messages of the same bond 

connectivity align directly below one another.  

 

The adjacent indices are obligatory to get neighboring messages for 

example, the more commonly used edge adjacency list or adjacency matrix.  

 

In this case, DMPNN introduced a new type of graph connectivity 

matrix called N-Dimensional neighbor mappings. The blue matrix on the left is 
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the bond index mappings for each atom incorporated with zero paddings at the 

end of each row to the maximum number of current bonds neighboring an atom 

in the present molecular graph. 

 

With access to both the bidirectional bond messages and bond mappings 

for each atom, the model can select the neighboring message to get the next 

green matrix containing the neighboring messages of each atom. 

 

At this stage, the model has done the aggregation between columns to 

create aggregated neighboring messages for each atom. This aggregated/reduced 

matrix is then used to update the representations of the nodes/atoms in the 

MPNN using an update function. Figure 9 illustrates the neighboring message 

update. 

 
Figure 9: DMPNN’s edge message update 

 

DMPNN’s edge message update 

In this step, the bidirectional bond messages matrix will be reused 

together with the bond to reverse bond mappings. After performing normal 

indexing, the model creates a matrix of the same shape as the bidirectional bond 

messages; however, containing messages with reverse direction instead, 

swapping each pair of rows as in the upper middle of Figure 9. 

 

Next, the model indexes the updated node representation matrix with the 

bond to atom mappings to expand the number of rows and matches atom 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 14 

representations with their corresponding incoming bonds. Now, the augmented 

matrix can be directly subtracted out of the reverse bond message from the 

earlier swapping matrix. The resulting matrix will then be used as the new 

bidirectional bond message matrix in the next iterations. 

 

2.2.3 CMPNN  

The authors of CMPNN [6] suggested a new way to improve the existing 

DMPNN model by introducing a message booster N-D aggregation. This 

message booster works by sum aggregating node representations and element-

wise multiplying with max aggregation of node representations. This message 

booster (Figure 10) helps preserve more information from the local sub-

structures after aggregation. 

 

 
Figure 10: Message booster based on [6] 

  

Additionally, the authors modified gated recurrent units (GRU) to handle 

batch mol graphs from the data loader successfully.  

 

They used GRU for its update and reset gates which helps the model 

learn to keep or discard certain long-range information from the past, in this 

case, generalization of graph expressiveness from node representations updating 

with their neighboring messages. The Bi-directional GRU reads a concatenation 

of aggregated node representations, aggregated neighboring messages, and 

initial atom embeddings at the hidden dimension.  

The GRU takes the above-mentioned concatenated node representations 

as input and initializes the GRU cell hidden weight matrix to be the same as the 

concatenated node matrix.  

 

Lastly, the input messages are each added with a learnable bias and then 

activated with ReLU activation function. The row-wise matrix zero paddings to 

the maximum number of atom rows in the current molecular batch are needed 

for consistency in the shape of sequence messages length. The padding is 

obligatory to feed into the GRU successfully.  

Finally, the output of GRU resulted in a more fine-grained hidden node 

representation. This final representation of node embeddings is then processed 
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with mean pooling to produce a better graph representation than typical pooling, 

which only uses an order-invariant function without the GRU refinement. 

After extensive studies in the code implementation of CMPNN 

architecture, we found some questionable implementations. First, the update 

node stage did not include the Communicative function. Second, the BatchGRU 

proposed receives concatenated node representations as input but initializes the 

GRU cell hidden representation shaped as the concatenated node matrix instead 

of a more logical aggregated neighboring message. After some revision, the 

cause of the second whole aggregation was to be more aware and optimize all of 

them at once with more learnable capability than using just an aggregated 

neighboring messages matrix as input. We may further investigate those 

mentioned above and whether the changed implementation can improve model 

performance. 
 

2.2.4 GROVER 

This work [7] proposes a new architecture for molecular graph encoding, using 

multi-head attention blocks (i.e., auxiliary module) inspired by the transformer 

in Natural Language Processing (NLP) but without node positional encoding.  

 

The molecular graph is encoded into high-dimensional vectors using a 

message passing network encoder (MPNEncoder), which is a type of graph 

neural network (GNN), in place of the linear modules in the original transformer 

architecture (as seen in Figure 11 pink-highlighted). In this work, the authors 

use DMPNN as the MPNEncoder. 

 

 

Figure 11: Multi-head attention from transformer [8] 

 

The logits or prediction vectors generated from each MPNEncoder are 

used as Value, Key, and Query, and each is later fed into a linear module and 

calculated the same way as a multi-headed attention function in the transformer 

model. The formula of scaled dot product attention Equation 3 and Equation 4. 

attention scores = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾

√𝑑𝑘
), attention scores (i.e., alpha coefficients)  (3) 

Equation 3: alpha coefficients 

predictions = V * attention scores, predictions (i,e., logits)                (4) 

Equation 4: Final scaled predictions 
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This multi-headed attention mechanism lets the model see the data's 

hidden features from different angles. 

 

 
2.3 Spatial Conv-GNNs with GCN approach 

2.3.1 GCNConv 

The graph convolutional network (GCN) [9] proposed by Kipf and Welling is a 

type of spatial GNN that operates on the graph structure using the normalized 

graph Laplacian matrix. GCN employs the Chebyshev polynomial 

approximation of the spectral filter to simplify the convolution operation. 

 

In GCN, the convolutional operation is defined as a propagation rule 

aggregating and combining information from a node's local neighborhood. This 

operation can be formulated in terms of the graph Laplacian, which represents 

the connectivity structure of the graph. The graph Laplacian matrix captures the 

relationships between nodes and their neighboring nodes. 

 

To simplify the spectral filter, GCN utilizes the Chebyshev polynomial 

approximation. By approximating the spectral filter with a Chebyshev 

polynomial of order K=2, GCN can effectively capture information from up to 

2-hop neighbors of a node. This approximation allows GCN to capture localized 

information and learn hierarchical representations of the graph structure. 

 

To ensure stability and avoid issues related to scaling, GCN normalizes 

the graph Laplacian matrix before applying the Chebyshev polynomial 

approximation. This normalization step involves dividing the graph Laplacian 

by the maximum eigenvalue, which scales the matrix and ensures that the 

convolution operation remains stable during training. 
 

2.3.2 GATConv 

The Graph Attention Network (GAT) [10] proposed a self-attention mechanism 

in addition to GCN [9]. 

The steps for implementing self-attention mechanisms are as follows 

 

1. Initialization: Given an input graph with nodes and their corresponding 

feature representations, GATConv initializes learnable parameters, including 

weight matrices, for each node. 

 

2. Attention coefficients: For each node, GATConv calculates attention 

coefficients by computing a compatibility score calculation that involves 

concatenating the node's feature vector ℎ⃗ 𝑖 and the neighboring node's feature 

vector ℎ⃗ 𝑗 using the concatenation operator (∣∣) and then applying a linear 

transformation using the weight matrix 𝑊. The concatenation is passed through 
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the activation function (LeakyReLU) to obtain the compatibility score 𝑒𝑖𝑗 

(Equation 5). 

𝑒𝑖𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇(𝑊ℎ⃗ 𝑖 || 𝑊ℎ⃗ 𝑗));    (5) 

                       

where 𝑎𝑇 is the transpose of the learnable attention vector. 

Equation 5: Attention function on edges features 

3. Attention weights: The compatibility scores are then passed through a 

SoftMax function, which normalizes the scores across all neighboring nodes, 

ensuring that the weights sum up to 1. This step creates attention weights that 

reflect the relative importance of the neighboring nodes for the central node. 

The attention weight for each edge (i, j) is given by Equation 6 as follows.  

𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗(𝑒𝑖𝑗) =  
exp (𝑒𝑖𝑗)

∑ exp (𝑒𝑖𝑘)𝑘∈𝑁𝑖

   (6) 

Equation 6 

where Ni represents the set of neighboring nodes of node i. 

 

4. Aggregation: The attention weights are used to compute a weighted 

sum of the neighboring node features. The features of the neighboring nodes are 

multiplied by their corresponding attention weights and summed together to 

obtain a weighted feature representation. 

The aggregated feature representation for node i is given by Equation 7 below.  

ℎ́𝑖 = 𝜎(∑ 𝑎𝑖𝑗 ∙ 𝑊ℎ𝑗𝑗∈𝑁𝑖
)       (7) 

Equation 7 

where σ is an activation function, such as ReLU or LeakyReLU. 

 
Figure 12: GATConv alpha calculation [10] 
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Comparison between GCN and GAT 

Equation 8 shows GCN, fixed and normalized alpha by degree, while GAT is 

dynamic learnable, as shown in Equation 9. 

 

 

Figure 13: Simplified distinction between GCN and GAT based on DSG IITR [11]. 

 

𝛼𝑖𝑗  =  
1

√𝑑𝑒𝑔(𝑣𝑖)𝑑𝑒𝑔(𝑣𝑗)
     (8) 

Equation 8                                                 

𝛼𝑖𝑗 = 
exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(�⃗� 𝑇[𝑊ℎ⃗⃗ 𝑖||𝑊ℎ⃗⃗ 𝑗]))

∑ exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(�⃗� 𝑇[𝑊ℎ⃗⃗ 𝑖||𝑊ℎ⃗⃗ 𝑘]))𝑘∈𝑁𝑖

                                (9) 

Equation 9 

                                

2.3.3 GINConv 

GINConv [12] introduced the following algorithm. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎: 𝑾𝑳 −  𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 (𝑾𝒆𝒊𝒔𝒇𝒆𝒊𝒍𝒆𝒓 & 𝑳𝒆𝒉𝒎𝒂𝒏, 𝟏𝟗𝟔𝟖) 

𝑰𝒏𝒑𝒖𝒕: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑛𝑜𝑑𝑒𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔(ℎ1
(0)

, ℎ2
(0)

, … , ℎ𝑁
(0)

) 

𝑶𝒖𝒕𝒑𝒖𝒕: 𝐹𝑖𝑛𝑎𝑙 𝑛𝑜𝑑𝑒 𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔 (ℎ1
(𝑇)

, ℎ2
(𝑇)

, … , ℎ𝑁
(𝑇)

) 

𝑡 ← 0; 
repeat 

 𝑓𝑜𝑟 𝑣𝑖 ∈  𝑉 𝒅𝒐 

  ℎ𝑖
(𝑡+1) ←  ℎ𝑎𝑠ℎ(∑ ℎ𝑗

𝑡
𝑗 ∈ 𝑁𝑖

) 

 𝑡 ← 𝑡 + 1; 
until stable node coloring is reached; 

The algorithm is based on the Weisfeiler-Lehman (WL) isomorphism test, also 

known as a graph coloring algorithm. It handles the issue of graph isomorphism, 

where multiple graphs have the same number of nodes, degree, and connectivity 

but appear differently tangled. 
 

ℎ𝑣
(𝑘)

= 𝑀𝐿𝑃(𝑘)((1 + 𝜖(𝑘) ∙ ℎ𝑣
(𝑘−1)

+ ∑ ℎ𝑢
(𝑘−1)

𝑢∈𝑁(𝑣) ))                       (10) 

Equation 10: GIN 
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                    n 

Equation 10, the proposed learnable epsilon at the target node feature 

representation allows the model to adjust the relative importance of the central 

node's representation compared to its neighbors and MLP to learn a complex 

injective function to map node representations to unique high dimensional 

vectors. 

 

The study found that sum aggregation is a practical order-invariant 

function. Most importantly, it proposed an injective function (in this case, MLP, 

a 1 to 1 function) which operates on multisets of node features and maps them 

to a unique high dimensional vector. The resulting high-dimensional space 

allows for improved mapping of isomorphic graphs [12]. 

 

2.3.4 Graph Transformer 

The authors [7] of this paper added node positional encoding as an additional 

input feature in the model, which is derived from eigenvector decompositions 

and the WL algorithm. However, this approach did not help generalize the 

model to unseen graphs and instead reduced the validation loss.  

 

The paper also stated that injecting a node’s positional encodings 

without careful consideration could lead to a worse performance due to the 

added noise, as it violates the inductive bias of permutation equivariance that 

graph neural networks (GNNs) are designed for [13].  

 

Summary 

 

DMPNN and CMPNN enhance the accuracy of graph regression and 

classification by removing unneeded loops in the message passing process with 

edge-oriented, directed message passing, leading to more refined node 

representations.  

 

Other baseline Conv-GNNs do not use bi-directional message passing. 

Hence the importance of edge-message passing makes CMPNN a good 

candidate for improvement. Moreover, GROVER does not modify the message 

passing paradigm directly. Thus, CMPNN is selected as the baseline to be 

explored in this thesis. 

 

Table 1 shows the semi-supervised classification accuracy from GATConv on 

three datasets - Citeseer, Cora, and Pubmed. The results show that GAT 

outperforms GCN [10] with an accuracy of 83.0% ± 0.7%, 72.5% ± 0.7%, and 

79.0% ± 0.3%, respectively. The performance of GATConv and the ability to be 

used on any graph with self-attention mechanisms make it an appealing option 

for baseline improvement. Hence, this thesis also tried implementing self-

attention mechanisms into the selected baseline. 
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Table 1: Semi-supervised classification accuracy as reported from GATConv 

 

 Citeseer Cora Pubmed 

GCN 81.5% 70.3% 79.0% 

GAT 83.0 ± 0.7% 72.5 ± 0.7% 79.0 ± 0.3% 

 

Besides using CMPNN as the baseline and deciding to incorporate self-attention 

mechanisms into CMPNN, we revisited the origin of GCN, which was supposed to be 

from the spectral domain, for additional ideas of baseline improvement. 

 

2.4 Spectral graph convolution 

True spectral graph convolutional neural networks (GCNNs) are based on the 

convolution theorem. The convolution theorem states that the Fourier transform of the 

convolution of two functions equals the element-wise product of their Fourier 

transforms. 

In spectral GCNNs, the graph signal (node features) and the graph filter 

(spectral weights) are transformed into the spectral domain using the graph Fourier 

transform. The graph Fourier transform diagonalizes the graph Laplacian matrix and 

allows us to operate on the graph signals in the frequency (spectral) domain. 

Once the graph signal and filter are in the spectral domain, the convolution 

theorem can be applied. The convolution operation is performed by element-wise 

multiplication of the Fourier transforms of the graph signal and the graph filter. This 

allows for efficient computation and propagation of information through the graph. 

However, this approach must apply the convolution filter to the entire graph in 

the spectral domain, making it challenging to scale to larger graphs and requiring pre-

computed graph connectivity.  

As a result, this method is limited to transductive tasks; the model only learns 

on a pre-computed and fixed graph structure, meaning that the graph structure is 

known before the learning process starts and remains constant. Unlike in inductive 

tasks, the model must be able to learn arbitrary and unknown graph structures, 

meaning that the graph structure is not known beforehand and can change during the 

learning process. The steps to perform spectral graph convolution are as follows: 

1. Obtain the graph's Laplacian matrix (or adjacency matrix). This matrix 

represents the connectivity of the graph. 

2. Compute the eigenvalues and eigenvectors of the Laplacian matrix. The 

eigenvalues represent the frequencies or spectral components of the graph. 

3. Select a set of eigenvalues (frequency centers) to be used as the convolution 

supports. These eigenvalues will determine the frequency range over which 

spectral convolution will operate. 
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4. Design a filter function that assigns weights to the eigenvalues based on their 

proximity to the selected frequency centers. This filter function should 

determine the contribution of each eigenvalue to the spectral convolution. 

5. Multiply the Laplacian matrix by the filter function to obtain the convolution 

supports in the spectral domain. This will result in a modified Laplacian 

matrix where the entries correspond to the weights assigned to each 

eigenvalue. 

6. Use the modified Laplacian matrix in the spectral convolution operation to 

propagate node features across the graph. 

 

This paper [14] mainly aims for graph isomorphism tasks. The authors did 

their work by designing a graph spectral filter. Also, they studied matrix language to 

break the limit of MPNN for the model to gain the ability to distinguish cospectral 

graphs. 

In the frequency/spectral domain, we can transform graphs into a signal for 

spectral graph convolution as a type of graph signal filtering. We must first convert 

the convolution kernel to its Fourier form (spectral domain) to calculate graph 

convolution in the spectral domain. Then after the graph signals have been filtered, 

the results are converted back to the original time domain. 

From spectral graph theory, signals are defined on a graph, where the graph 

structure defines the convolution operation. Spectral graph convolutions are often 

performed in the graph Fourier domain, obtained from the eigenvectors of the graph 

Laplacian matrix (L). Eigen decomposition of the graph’s Laplacian matrix generates 

𝑈 and 𝜆 as eigenvalues and eigenvectors, respectively.  

 

𝐿 =  𝑈⋀𝑈𝑇, ⋀ is a diagonal matrix with eigenvalues (𝜆) of L;  ⋀  =  𝑑𝑖𝑎𝑔(𝜆) 

The steps for applying the spectral filter/frequency response function to the 

graph signals are as follows. First, apply Fourier transform to the graph signal 

(features) 𝑥. Then apply with a spectral filter  𝐹(𝜆) (i.e., �̂�(⋀)). Lastly, reverse 

Fourier transforms back to the original domain. This results in the final filtered graph 

signal x. These steps are given below. 

 

  1.   𝑈𝑇𝑥   2.   �̂�(⋀)𝑈𝑇𝑥   3.   𝑈�̂�(⋀)𝑈𝑇𝑥   4.  𝑥𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝑈�̂�(⋀)𝑈𝑇𝑥 

 There are many ways to design a spectral filter, as mentioned by [14], where 

the authors [14] proposed to design a filter function as described in the following 

section. 

2.4.1 Spectral designed convolution support/filter 

The spectral convolution support is related to the spatial domain power of the 

graph's adjacency matrix; instead, the spectral uses eigenvalues and 

eigenvectors, both determine the extent of the interaction between nodes. The 

convolution support (𝐶′), as shown below, determines the set of nodes 
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considered in the computation of the output signal for a given node and is used 

to control the smoothness of the output signal. 

𝐶′ = 𝑈𝑑𝑖𝑎𝑔(𝐹(𝜆))𝑈𝑇, 𝑤ℎ𝑒𝑟𝑒 𝐹(𝜆) 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑓𝑖𝑙𝑡𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑥_𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝑈𝑑𝑖𝑎𝑔(𝐹(𝜆))𝑈𝑇𝑥 

The filtered graph signal x applied by frequency response function 𝐹(𝜆) 

resulted from using eigenvalues of Laplacian matrix as 𝑖𝑛𝑝𝑢𝑡 (𝑖. 𝑒. , 𝜆), where 

𝐹(𝜆) had to be learnt by back propagation (𝛷𝑠(𝜆) is an alias of   𝐹(𝜆)). 

 

The authors [13] proposed using spectral graph convolution to break 

through the limit of MPNN, which mostly has a ceiling of 1-WL performance. 

In the paper, frequency response functions were designed to be sensitive to each 

spectrum of the graph signal, as in the following formula. 

 

Φs(λ) = −𝑏(λ − 𝑓𝑠)
2, 𝑓𝑠 ∈ [λ𝑚𝑖𝑛, λ𝑚𝑎𝑥], where b is the bandwidth of the 

bandpass filter (i.e., spectral filter). Hence, the full spectral convolution supports 

𝐶′ can fully be written as 

𝐶′ = 𝑈𝑑𝑖𝑎𝑔(Φs(λ))𝑈
𝑇 

This convolution support could be seen as extracted edge features. These 

features are then multiplied with a sparse connectivity matrix mask, which will 

propagate the features through the graph’s structure defined as 𝑀  ∗  𝐶′ =

𝑈𝑑𝑖𝑎𝑔(Φs(λ))𝑈
𝑇,where 𝑀 is a sparse connectivity matrix and can be a power 

of adjacency matrix, which encodes the number of walks possible from 𝑛𝑜𝑑𝑒𝑖 

to 𝑛𝑜𝑑𝑒𝑗 in a matrix entry ij. The paper used these filtered signals x as edges 

features and multiplied with a learnable weight to be learnt through 

backpropagation. This sums up how the graph spectral convolution works. 

 

The authors reported the results being theoretically as powerful as 3-WL 

or 2-FWL. Still, they stated that in most real-world datasets with a lot of node 

and edge features, 1-WL would suffice. After that, with 𝐶 = 𝑀 ∗ 𝐶′ as 

mentioned above, the authors proposed a convolution in Equation 11. 

 

𝐻𝑙+1  =  𝜎(∑ 𝐶(𝑠)
𝑠 𝐻(𝑠)𝑊(𝑙,𝑠))|𝑚𝑙𝑝5(𝐻

𝑙 ⊙ mlp6(𝐻
(𝑙)))            (10) 

Equation 11: Full convolution for GNNML3 [14] 

2.4.2 GNNML3 (MATLANG 3 Layer)  

Matrix Language (MATLANG), The author [14] studied this theory and found 

that trace and element-wise multiplication matrix operations are needed to break 

the limit of 1-WL MPNN to 3-WL. Each Lx is a set of operations at x-WL 

levels where . is a dot product, 𝑑𝑖𝑎𝑔 is diagonalize, tr is trace,  ⊙ elementwise, 
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1 is column vector full of 1 and 𝑓 is element-wise custom function operating on 

scalars or vectors. 

𝐿1  =  {. , 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒, 1, 𝑑𝑖𝑎𝑔} 
𝐿2  =  {. , 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒, 1, 𝑑𝑖𝑎𝑔, 𝑡𝑟} 

𝐿3 = {. , 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒, 1, 𝑑𝑖𝑎𝑔, 𝑡𝑟,⊙} 

  𝐿+  =  𝐿 ∪  {+,×, 𝑓} 𝑤ℎ𝑒𝑟𝑒, 𝐿 ∈  {𝐿1, 𝐿2, 𝐿3} 

𝑡𝑟(𝐴)  =  ∑ 𝑎𝑖𝑖
𝑛
𝑖=1 , Trace matrix operation is the sum of diagonal elements. 

By defining convolution supports in the spectral domain to filter graph signals, 

we can propagate features using spectral structure features of the graph. Spectral 

GNNs main advantages were to provide rich global information and dependencies of 

a huge complex graph. This thesis also incorporated GNNML3 as a multimodal 

module. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 24 

Chapter 3  

Methods 

  

3.1 Data preparation and Preprocessing 

MoleculeNet [15] is a widely used benchmark for evaluating the performance of deep 

learning models on molecular data. It provides data in a CSV format, with each row 

representing a molecule in the form of SMILES strings and its target properties. 

 

The characteristics of each dataset used in this paper are detailed in Table 2. 

These datasets consist of 2D molecular graphs represented only in SMILES format 

and do not include 3D molecular information. Therefore, they differ from other 

datasets in MoleculeNet, such as quantum mechanics datasets, which contain 3D 

molecular information. 

 

Table 2: MoleculeNet dataset details [15] 

 

Dataset Type #Tasks #Compunds 

ESOL Regression 1 1128 

Tox21 Classification 12 7831 

BBBP Classification 1 2039 

Lipophilicity Regression 1 4200 

ClinTox Classification 2 1478 

SIDER Classification 2 1427 

HIV Classification 1 41127 

FreeSolv Regression 1 642 

 

We experimented on the following dataset for regression tasks:  

1.  ESOL - Water solubility data 

2.  FreeSolv - Calculated hydration free energy of molcules in water 

3.  Lipophilicity - Octanol/water distribution coefficient 

 

We experimented on the following dataset for classification tasks:  

1.  BBBP - Binary labels of blood-brain barrier penetration 

2.  ClinTox – Binary Clinical trials results for toxicity 

3.  SIDER - Marketed drugs and adverse drug reactions (ADR) 

4.  Tox21 - Qualitative toxicity measurements 

5.  HIV - Abilities to inhibit HIV replication 

 

SMILES (Simplified Molecular Input Line Entry System) [16] is a string 

format system that uses a string sequence to represent the molecule.  

The rules of the notation can include Branches, Rings, Charged Atoms, Atom 

chirality, Aromatic, stereochemistry, and explicit Hydrogens. These rules allow the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 25 

SMILES sequence to contain all the information to reconstruct back to its 2D 

molecular graph.  

 

3.2 Preprocessing stage 

The data preprocessing was done using the RDKit [17] and Chemprop libraries [5]. 

We used RDKit to process SMILES strings and MolGraph from Chemprop to extract 

molecular features, including one-hot encoded and normalized raw values, as listed in 

Table 3. 

 

Table 3: Chemprop’s features 
 

Atom Features Type Description 

 Atomic number Range 0~99. 

Degree Range 0~5. The atoms directly 

connected bonds and whether the 

Hydrogen is explicit in the molecular 

graph. 

Formal charge Range -2~2 

Chiral tag Range 0~3. Chirality refers to the 

property of a non-superimposable 

molecule on its mirror image. In other 

words, a chiral molecule exists in two 

forms that are mirror images of each 

other, and these two forms cannot be 

superimposed on one another. The 

chiral tag of an atom specifies its 

configuration in space. 

Number of 

Hydrogens 

Range 0~4. Number of hydrogens in 

direct neighbors. 

Hybridization type  5 types. Ex. sp, sp2, sp3, sp3d, sp3d2 

Aromatic A compound that exhibits aromaticity. 

Aromaticity is a property of some 

organic compounds characterized by a 

ring of atoms that is unusually stable 

and has a high degree of delocalization 

of the electrons in the ring. 

Atomic mass  * 0.01 for scaling 

Bond Features Type Description 

 Bond type Range0~4 Ex. zero padding, sing, 

double, triple, aromatic. 

Conjugate whether the bond is conjugated. 

In ring whether the bond is within a closure 

ring of the molecule. 

Stereo Range 0~6. Spatial arrangement of 
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atoms around a double bond or a triple 

bond. 

Custom edges 

matrices 

Type Description 

 a2a Mappings of atom to their neighboring 

atoms. 2D Matrix’s shape (num atoms, 

max num atoms). 

a2b Mappings of atom to their incoming 

bonds indices. 2D Matrix’s shape (num 

atoms, max bonds). 

b2a Mappings of bonds to atom that they 

came from. 1D Matrix’s shape (2*num 

bonds). 

Note for custom 

edges matrices 

Mappings do not contain the elements to be mapped, only the 

indices being mapped to. However, the sequence all 

corresponds to the SMILES string sequence. For the bonds, 

pair-wise combination indices bonds between atoms are 

created. 

 

Note that we can convert molecular representation in RDKit (RDKit.Mol) to 

PyTorch Geometric [18] or PyG graph object; however, PyG objects only support 

edge-list or sparse adjacency matrix in COO format, which may not allow for bi-

directional message passing. Nevertheless, the significance of bi-directional message 

passing for updating node embeddings has been highlighted in the literature, so this 

thesis decided to use the Chemprop library for featurization as the basis. 

With the data and features extracted and adopting CMPNN as the baseline, we 

proposed improving CMPNN with the following entities. 

- Attention mechanisms 

- Multimodal 

1. Text features 

2. Spectral features 

  

3.3 Attention mechanisms and Alpha coefficients computations 

We proposed combining GATConv and a shared-weight convolution kernel to 

CMPNN to allow the model to capture better the overall information and relationships 

in the target matrix. In addition, to avoid inaccuracies, zero padding in the atom-to-

bond indices (i.e., a2b) mapping matrix from Chemprop is ignored during the 

computation of alpha coefficients. 

 

Initially, the linear modules used for projection were not allowed to have an 

additive bias, as this would result in non-zero values after the attention mechanism 

was applied. However, after redesigning, we used a mask created from the a2b matrix 

in conjunction with masked SoftMax to ignore zero indices after kernel 

multiplication. 
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This implementation distributes a learnable percentage to each neighboring 

bond connected to an atom, allowing the model to learn whether it should amplify or 

reduce each neighboring message before aggregation. We illustrate the matrix 

operations and details of this self-attention in Figure 14. 

 
Figure 14: Attention mechanism visualization on neighboring messages 

  

The first green matrix is the N-Dim selected neighboring messages with zero-

adding in the column dimension if that atom has a smaller number of bonds than the 

maximum number of bonds in this batch of molecular graph. The purple vector will 

multiply every element in the green matrix to create a blue matrix. We considered this 

blue matrix an attention filter. as in computer vision. The grey vectors can be added 

and used like the first purple vector. Both the purple and grey vectors will create 

multiple blue attention filters. These attention filters can then be aggregated to 

become an attention filter ready for the last step.  

 

In the last step, the aggregated attention filter will be activated using masked 

SoftMax attention to distribute the attention/focus of the model whether it should pay 

attention to which corresponding edges while ignoring the zero padding indices for 

each atom in the molecular graph. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 28 

The fully modified algorithm from CMPNN can be displayed in Algorithm 1. 

 

Algorithm 1: CMPNN based formula 

 

ℎ0(𝑒𝑣,𝑤) ← 𝑥𝑒𝑣,𝑤
, ∀𝑒𝑣,𝑤 ∈ 𝐸; ℎ0(𝑣) ← 𝑥𝑣, ∀𝑣 ∈ 𝑉 

𝑓𝑜𝑟 𝑘 = 1…𝐾 𝑑𝑜 

 𝑓𝑜𝑟 𝑣 ∈ 𝑉 𝑑𝑜 

  {ℎ𝑘−1(𝑒𝑢,𝑣), ∀𝑢 ∈ 𝑁(𝑣)}  ← 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑒𝑑𝑔𝑒𝑠({ℎ𝑘−1(𝑒𝑢,𝑣), ∀𝑢 ∈ 𝑁(𝑣)}) 

  𝑚𝑘(𝑣) ← 𝐴𝐺𝐺𝑅({ℎ𝑘−1(𝑒𝑢,𝑣), ∀𝑢 ∈ 𝑁(𝑣)}) 

  ℎ𝑘(𝑣) ← 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒(𝑚𝑘(𝑣), ℎ𝑘−1(𝑣) ) 

            𝑒𝑛𝑑 𝑓𝑜𝑟 

 𝑓𝑜𝑟 𝑒 ∈ 𝐸 𝑑𝑜 

 𝑚𝑘(𝑒𝑣,𝑤) ← ℎ𝑘(𝑣) −  ℎ
𝑘−1

(𝑒𝑣,𝑤) 

 ℎ𝑘(𝑒𝑣,𝑤) ← 𝜎 (ℎ0(𝑒
𝑣,𝑤)

+ 𝑊. 𝑚𝑘(𝑒𝑣,𝑤))  

 𝑒𝑛𝑑 𝑓𝑜𝑟 

𝑒𝑛𝑑 𝑓𝑜𝑟 

𝑚(𝑣) ← 𝐴𝐺𝐺𝑅({ℎ𝐾(𝑒𝑢,𝑣), ∀𝑢 ∈ 𝑁(𝑣)}) 

ℎ(𝑣) ← 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒(𝑚(𝑣), ℎ𝐾(𝑣), 𝑥(𝑣)) 

𝑧 ← 𝑅𝑒𝑎𝑑𝑜𝑢𝑡({ℎ(𝑣), ∀𝑣 ∈ 𝑉}) 

 

𝐴𝐺𝐺𝑅({ℎ𝑘−1(𝑒𝑢,𝑣), ∀𝑢 ∈ 𝑁(𝑣)})

= 𝑠𝑢𝑚({ℎ𝑘−1(𝑒𝑢,𝑣), ∀𝑢 ∈ 𝑁(𝑣)}, 𝑑𝑖𝑚 = 1)

∗ max({ℎ𝑘−1(𝑒𝑢,𝑣), ∀𝑢 ∈ 𝑁(𝑣)}, 𝑑𝑖𝑚 = 1) ;𝑤ℎ𝑒𝑟𝑒

∗ 𝑖𝑠 ℎ𝑎𝑟𝑑𝑎𝑚𝑎𝑛𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑎𝑛𝑑 dim1 𝑖𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛. 

 

𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒 𝑜𝑟 𝑢𝑝𝑑𝑎𝑡𝑒(𝑚𝑘(𝑣), ℎ𝑘−1(𝑣)) =  ℎ𝑘−1(𝑣) + 𝑚𝑘(𝑣);𝑤ℎ𝑒𝑟𝑒 +

𝑖𝑠 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑤𝑖𝑠𝑒 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛. This function applies for 1 to K-1 iterations. 

𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒𝐾𝑜𝑟 𝑢𝑝𝑑𝑎𝑡𝑒
𝐾(𝑚𝑘(𝑣),ℎ𝑘−1(𝑣),𝑥(𝑣))

=  𝐺𝑅𝑈(𝑐𝑜𝑛𝑐𝑎𝑡(𝑚𝑘(𝑣), ℎ𝑘−1(𝑣), 𝑥(𝑣) 𝑎𝑡 dim1)); 𝑤ℎ𝑒𝑟𝑒 dim1 𝑖𝑠 ℎ𝑖𝑑𝑑𝑒𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛. 

 
𝑅𝑒𝑎𝑑𝑜𝑢𝑡({ℎ(𝑣), ∀𝑣 ∈ 𝑉}) = 𝑚𝑒𝑎𝑛({ℎ(𝑣), ∀𝑣 ∈ 𝑉}, 𝑑𝑖𝑚 = 0);𝑤ℎ𝑒𝑟𝑒 dim0 𝑖𝑠 𝑟𝑜𝑤.Averaging node 

features to graphs feature correspondingly to atom scope from Chemprop. 

 

𝑎𝑙𝑝ℎ𝑎 = 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑊𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛. (lin({ℎ𝑘−1(𝑒𝑢,𝑣), ∀𝑢 ∈ 𝑁(𝑣)}))))) 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑒𝑑𝑔𝑒𝑠 = 𝑎𝑙𝑝ℎ𝑎 ∗ {ℎ𝑘−1(𝑒𝑢,𝑣), ∀𝑢 ∈ 𝑁(𝑣)};  𝑤ℎ𝑒𝑟𝑒 ∗  𝑖𝑠 ℎ𝑎𝑟𝑑𝑎𝑚𝑎𝑛𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡. 
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3.4 Multimodal/External feature extraction models for MLP classifier 

We proposed two multimodal modules that can be trained concurrently with the 

CMPNN, and the concatenated graph vectors are injected into an MLP classifier, as 

shown in Figure 15. 

 

The multimodal module box can be either one of the following: a multimodal 

text module that extracts additional features by transforming each character in the 

SMILES to a one-hot vector, then feeding it into a Bi-directional LSTM (a popular 

NLP module) to memorize long-term dependencies from the sequence. 

 

Alternatively, we can use the GNNML3 [14] module, which uses Matrix 

Language 3 to perform graph signal processing for spectral graph features and is 

believed to retain more global structure information [2]. The MLP is created by 

stacking two linear layers with 300 default dimensions and ReLU activation between 

the layers. The output molecular vector from the GNN (our baseline CMPNN) has 

300 hidden features, while the Bi-LSTM has 300*2 features. 

 

 

 

Figure 15: Multimodal GNN architecture 
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3.4.1 Text Multimodal Module Using Bi-LSTM 

3.4.1.1 Raw one-hot encoded text feature matrix for Bi-LSTM 

In this experiment, we introduced encoding each character in a SMILES 

sequence into a matrix. The dimension of each one-hot vector of a 

character will be according to all possible numbers of characters in ASCII 

format, which is 128. 

  

As in Figure 16, a 2D square matrix contains a one-hot vector of 

each character in the SMILES string, and the total number of vectors is 

equal to the total number of characters in that SMILES string. We used 

zero padding to make the number of vectors in each square matrix 

consistent. Each square matrix gets batched together in the 3rd dimension 

according to the batch size for batching. 

 
Figure 16: SMILES sequence one-hot encoding to text feature matrix. 

  

The above one-hot setting resulted in the final dimension of (batch size, 

max SMILES length, max ASCII). These matrices were fed into Bi-

LSTM to read and learn the processed text feature matrices. Bi-LSTM 

helps ensure the model understands the context of a SMILES sequence’s 

forward and backward directions, as there is no canonical character order 

in the SMILES sequence.  
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Each LSTM predicts the next character feature vector (i.e., next 

one-hot character vector) of this SMILES sequence, but after the model 

learns/optimizes, it can output a molecular vector representing the whole 

SMILES sequence instead (Figure 17). 

 
Figure 17: LSTM predictions 

 

The result of both directions of LSTMs’ predictions and their final 

cell states were then concatenated into a batch of molecular vectors. 

Subsequentially, both outputs from each direction of LSTM were then 

aggregated using mean operation. These molecule vectors are then further 

concatenated with other molecular vectors from other modules to feed 

into MLP for the final prediction (Figure 18). 

 
Figure 18: Bi-LSTM concatenation 

 

3.4.1.2 Further improvement on the initial one-hot encoding SMILES 

using embedding lookup table 

We could optimize the text feature matrix before feeding into Bi-LSTM 

utilizing an embedding layer. First, we made a list containing the ASCII 

number of each character in the SMILES string and zero-padding to the 

maximum number of SMILES length (Figure 19).  

 

 

Figure 19: SMILES indices vector 
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We passed this indices’ vector into an embedding lookup table to 

index and get the corresponding learnable vector from the table for each 

index (i.e., each ASCII character becomes a learnable word in the 

embedding layer) (Figure 20). 

 

Figure 20: Indices lookup from embedding table 
 

We then batched all resulting 2D matrices for all SMILES in each 

batch (Figure 21). 

 

Figure 21: Batching of 2D SMILES matrices 
 

Finally, we fed the batch to the Bi-LSTM, which read each 2D 

matrix of the batch containing a character-embedded vector in each row. 

Once the LSTM reads the whole sequence, it will learn the context of the 

SMILES string. In this case, we concatenated both the final hidden state 

of Bi-LSTM and the final cell state (Figure 22). Final hidden state, which 

arguably predicts the next character embedding vector, will eventually 

work as an aggregator, turning the SMILES string vectors into a 

representation vector for that molecule (i.e., global pooling).  In addition 

to this, the final cell state contains crucial information about the long-term 

learning dependencies throughout the training process (Figure 23).  
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Figure 22: Final concatenation and mean of both forward and backward 

 

Figure 23: Output of LSTM 

  

All these processes result in a batch of molecular features 

extracted from Bi-LSTM. The model can transform the SMILES string 

into a learnable vector by adding this embedding layer.   

3.4.2 Spectral features multimodal 

We tried directly computing spectral filter for each batch graph while training 

instead of precomputing a whole graph of the dataset (and arguably impossible 

since the data in the dataset are not the type that all connected as a single huge 

graph) and used the unmodified GNNML3 from [14] as a multimodal module. 

 

3.5 Model Architecture and Training Procedure 

3.5.1 Model Hyperparameters 

The model hyperparameters include k-hop depth, hidden feature sizes, dropout 

probabilities, and the number of feed-forward linear layers in the last MLP 

before prediction.  

 

These parameters can be optimized using grid search, but for fair out-of-

the-box comparisons with the baseline CMPNN, the unoptimized version of 300 

hidden size was used. In addition, we used ReLU as the activation function 

between layers before feeding into the MLP. The details parameters are listed in 

Table 4 and Table 5. 

 

3.5.2 Details of training and Predicting Process 

We trained the model using Chemprop's default five-fold cross-validation with 

the recommended split type from MoleculeNet into three subsets: train, 

validation, and test, with aspect ratios of 0.8, 0.1, and 0.1.  
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Stochastic gradient descent was used as the optimizer, with a normalized 

and scheduled learning rate for 30 epochs and a batch size of 50. To further 

improve the training process, we also utilized Chemprop's early stopping 

mechanism, where the best model based on the validation loss was saved and 

checkpointed for testing on unseen data. 

 

A norm learning rate scheduler with a piecewise linear increase and 

exponential decay from the "Attention is All You Need" paper was also 

incorporated [8].  
 

 

Table 4: Proposed MPNN Layer's parameters 

 

Linear Atom input 133, 300 

Linear Bond input  133+14, 300 

Depth/K-hop 3 

Depth 0 bond linear 300, 300 

Depth 1 bond linear 300, 300 

BatchGRU 300, 300*2 (bi-directional) 

Linear out after bi-directional 

BatchGRU 

600, 300 

 

Table 5: MLP for prediction depth = 1 

 

Linear  300, 300 

ReLU 1 activation 

Linear 300, number of tasks in dataset 

 

We employed the learning rate scheduler because it can help the model 

converge faster by adjusting the learning rate to allow the model to make 

progress early on while avoiding getting stuck in local minima. In addition, the 

normalization can help ensure that the learning rate is appropriate for the 

model's current state, improving the training process’s stability. It can also 

potentially improve the final accuracy of the model by fine-tuning the learning 

rate during the training process. Learning rate scheduler details can be seen in 

Table 6. 

 

Table 6: Learning rate scheduler 
 

Initial learning rate 1e-4 

Maximum learning rate 1e-3 

Final learning rate  1e-4 

Warmup epochs 2 
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The model training flow starts by creating and initializing the model’s 

weights with one fixed seed. The model was then trained and tested for five 

iterations, each iteration with a different dataset split seed. Finally, the five test 

results were used to calculate the mean and standard deviation (Figure 24). 

 

 
Figure 24: Training flow 

 

 

 

3.6 Evaluation Metrics 

The molecular properties prediction tasks comprise two categories: graph regression 

and graph classification tasks. We used the evaluation metrics of each category as 

follows.  

 

3.6.1 Classification Tasks 

We evaluated the model's performance for the classification task using a true 

positive rate (tpr) and false positive rate (fpr), as shown in Equation 12 and 

Equation 13, 

     

𝑡𝑝𝑟 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁)                                         (12) 
Equation 12: True Positive Rate 

    𝑓𝑝𝑟 =  𝐹𝑃 / (𝐹𝑃 +  𝑇𝑁)                                         (13) 

Equation 13: False Positive Rate 
where TP is true positive, TN is true negative, FP is false positive, and FN is 

false negative. We then plotted the receiver operating characteristic (ROC) 

curve using tpr as y- and fpr as x-axes and calculated the area under the curve 

(AUC). The higher, the better. 
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3.6.2 Regression Tasks 

We calculated Root Mean Square Error (RMSE) using Equation 14, where 𝑌ˆ 

and Y are the predicted and observed values, respectively. The lower, the better.  

  

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑌^ − 𝑌)2                                         (14) 

Equation 14: RMSE 

RMS 
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Chapter 4 

 Results and Discussion 

 
This chapter presents the experimental results of CMPMM incorporated with various 

modules or techniques for drug property prediction tasks.  

 
4.1 Performance of the Baselines 

We describe the naming definitions of each model implementation of the baselines as 

follows.  

 

•  CMPNN: The baseline GNN that took advantage of the disconnected bi-

directional edge messages. 

• GNNML3: The spectral baseline model utilizing spectral graph convolution 

with MATLANG3 from [14] with the second power of adjacency (K=2) 

(direct hop per message passing like normal spatial GNN). 

 

Table 7 shows the baselines’ performance implemented in this thesis and evaluated by 

five-fold cross-validation using recommended split types from MoleculeNet. 

 

Table 7: Five-fold cross-validation results of our implemented baseline models 

 

 Five-fold 

cross 

valida-

tion 
 

Classification Regression 

BBBP  ClinTox SIDER Tox21 HIV  ESOL Free-

Solv 

Lipophi-

licity 

CMPNN 

(Base- 

line) 

0.958077 +/- 

0.017582 
0.915815 

+/- 

0.015748 

0.640620 

+/- 

0.039283 

0.851490 

+/- 

0.009426 

0.808721 

+/- 

0.020270 

0.582865 

+/- 

0.048626 

0.969931 

+/- 

0.335350 

0.583237 

+/- 

0.021075 

GNNML3 

(Spec- 

tral) 

(K=2) 

0.761271 +/- 

0.058912 
0.431808 

+/- 

0.130315 

0.558689 

+/- 

0.016746 

0.742669 

+/- 

0.025536 

0.707289 

+/- 

0.037594 

1.364229 

+/- 

0.156225  

3.520960 

+/- 

0.320290  

1.128885 

+/- 

0.043017 

 

Even though CMPNN was entirely better than the MATLANG3 layer, we keep in 

mind that the MATLANG3(spectral) was designed to be used in the graph 

isomorphism task rather than the graph classification/regression tasks like CMPNN. 

The spectral features and the extracted graph isomorphism information may still be 

useful for prediction. 
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Table 8 shows the calculated average molecular graph size and average denseness of 

each dataset's direct neighboring bonds of an atom. This information may help us 

analyze the results in the future (Section 4.2).  
  

Table 8: Datasets' average number of atoms and bonds  

 

  

  

Classification Regression 

 
ESOL  Tox21  FreeSolv  BBBP  Lipophi-

licity  

ClinTox  SIDER  HIV  

Avg 

atoms 

13.289 18.574 8.722 24.064 27.04 26.157 33.641 25.510 

Avg 

bonds 

0.988 1.009 0.915 1.066 1.089 1.049 1.021 1.072 

 
*Avg atoms: Avg number of heavy atoms per smiles; Avg bonds: Avg number of bonds per heavy 

atom 

 

4.2 Performance of the CMPNN variants 

This section presents the results of CMPNN incorporated with various techniques and 

multimodal modules. We describe the naming definitions of each CMPNN variant as 

follows.  

• AttnMaskedSM: Self-attention at edges, distributed along the target node’s 

edge with the masked SoftMax function. 

•   GNNML3: The spectral graph convolution using the second adjacency power 

(K=2), a spectral multimodal module running concurrently with the standard 

CMPNN. 

• S2SPool: Popular attention pooling operator from Set2Set [19] used for 

pooling node feature matrix to a molecular graph vector. 

• Bi-LSTM: The multimodal module, Bi-directional LSTM, fed with raw one-

hot vectors of characters in SMILES string.  

• Bi-LSTM+EMB: Bi-LSTM with pre-processing of transforming SMILES 

string to learnable vector via a lookup table. 
 

Table 9 shows the overall performance of CMPNN variants compared with the 

baselines, and Table 10 summarizes the number of winning tasks of each CMPNN 

variant compared with the baseline. 
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Table 9: Model performance of CMPNN variants compared with the baseline. 
 

Five-fold 

cross-

validation 
 

Classification Regression 

BBBP ClinTox SIDER Tox21 HIV ESOL FreeSolv Lipophilicity 

CMPNN 

(Baseline) 
0.958077 

+/- 

0.017582 

0.915815 

+/- 

0.015748 

0.64062

0 +/- 

0.03928

3 

0.8514

90 +/- 

0.0094

26 

0.8087

21 +/- 

0.0202

70 

0.5828

65 +/- 

0.0486

26 

0.969931 

+/- 

0.335350 

0.583237 +/- 

0.021075 

GNNML3 

(Spectral) 

(K=2) 

0.761271 

+/- 

0.058912 

0.431808 

+/- 

0.130315 

0.55868

9 +/- 

0.01674

6 

0.7426

69 +/- 

0.0255

36 

0.7072

89 +/- 

0.0375

94 

1.3642

29 +/- 

0.1562

25  

3.520960 

+/- 

0.320290 

1.128885 +/- 

0.043017 

CMPNN+ 
AttMaskedSM 

(v6) 

0.959694 

+/- 

0.014363 

0.901515 

+/- 

0.032833 

0.63833

2 +/- 

0.03948

6 

0.8490

45 +/- 

0.0150

64 

0.7872

12 +/- 

0.0434

80 

0.5764

24 +/- 

0.0602

59 

0.947268 

+/- 

0.313322 

0.625929 +/- 

0.028989 

CMPNN+ 

S2SPool 
0.960700 

+/- 

0.015843 

0.876158 

+/- 

0.071887 

0.65079

5 +/- 

0.03766

9 

0.8479

87 +/- 

0.0111

03 

0.7888

79 +/- 

0.0350

26 

0.5792

05 +/- 

0.0573

59 

1.043572 

+/- 

0.409796 

0.578896 +/- 

0.029028 

CMPNN+ 

GNNML3 

(K=2) 

0.957175 

+/- 

0.017800  

0.913060 

+/- 

0.018448 

0.65572

4 +/- 

0.03911

4 

0.8468

81 +/- 

0.0121

81 

0.7846

01 +/- 

0.0297

80 

0.5697

37 +/- 

0.0721

57 

0.933951 

+/- 

0.250933 

0.575096 +/- 

0.016584 

CMPNN+ 

Bi-LSTM 
0.959280 

+/- 

0.022079 

0.918462 

+/- 

0.018300 

0.64019

3 +/- 

0.04240

9 

0.8531

41 +/- 

0.0104

25 

0.7796

33 +/- 

0.0342

16 

0.5692

97 +/- 

0.0426

68 

0.989492 

+/- 

0.310800 

0.570735 +/- 

0.030575 

CMPNN+Bi-

LSTM+ EMB 

0.963301 

+/- 

0.015882 

0.973677 

+/- 

0.008969 

0.65187

5 +/- 

0.04036

8 

0.8502

33 +/- 

0.0110

02 

0.7972

70 +/- 

0.0364

07 

0.5676

32 +/- 

0.0627

55 

0.945355 

+/- 

0.279276 

0.569006 +/- 

0.026226 

 

 

Table 10: Number of winning tasks of CMPNN variants compared with the baseline 

(numbers within the parenthesis are the wining classification and regression tasks) 
 

 
CMPNN 

(Baseline) 

GNNML3 

(Spectral) 

(K=2) 

CMPNN+ 

AttMaskedSM 

(v6) 

CMPNN+ 

S2SPool 

CMPNN+ 

GNNML3 

(K=2) 

CMPNN+ 

Bi-LSTM 
CMPNN+  

Bi-LSTM+EMB 

Better - 0 3(1,2) 4(2,2) 4(1,3) 5(3,2) 6(3,3) 

Best 1 0 0 0 2(1,1) 1(1,0) 4(2,2) 
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In this thesis, we introduced and experimented with the variants of a graph 

neural network (GNN) with CMPNN as the core component for molecular property 

predictions. We introduced modern techniques such as edge attention and multimodal 

modules into or as a part of the model architecture.  

 

From our experimental results, various techniques could help improve the 

overall performance of the baseline CMPNN for some datasets. For example, the 

introduced Bi-LSTM and GNNML3 beats all other models and got the best 

performance on 1 and 2, dataset(s), respectively, with an even better version of Bi-

LSTM+EMB (embedding+Bi-LSTM) which got 4 best performance over the baseline 

CMPNN and all other variants. The use of edge attention also improved the 

performance of the baseline CMPNN but still did not win other techniques. Even 

though GNNML3 were made for graph isomorphism tasks, CMPNN+GNNML won 2 

of the arguably difficult datasets which are SIDER (extreme class imbalances) and 

FreeSolv (super small dataset with small molecular graphs as stated in Table 8). 

Overall, our results demonstrate that the multimodal text modules could help improve 

the performance of the baseline CMPNN for molecular property prediction.  
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Chapter 5  

Conclusion  

 

This thesis focuses on improving the baseline CMPNN model for molecular 

properties prediction, specifically in the graph classification/regression task. The work 

begins with a comprehensive literature review covering various spatial GNN 

approaches such as DMPNN, CMPNN, GCN, and GAT. Additionally, the thesis 

revisits spectral GNNs and their procedures, highlighting the breakthrough GNNML3 

model. 

Building upon the existing literature, the thesis proposed two methods for 

enhancing the baseline CMPNN model. Firstly, we introduced a self-attention 

mechanism inspired by the Graph Attention Network (GAT) upon CMPNN. This self-

attention allows the model to pay attention to the relevance of source node features to 

the target node features. Secondly, we developed a multimodal module to extract 

diverse information perspectives from the same dataset, which were then provided to 

the same MLP classifier/predictor. The proposed modules employed two different 

methods. The first method involved using a bidirectional LSTM and an embedding 

layer to embed SMILES representations, thereby capturing text-based features. The 

second method utilized GNNML3 for spectral feature extraction, enabling the 

extraction of graph frequencies, spectrums, and long-range dependencies. 

The thesis evaluated the proposed methods through rigorous experimentation 

and compared their performance against other approaches. The combination of 

CMPNN, Bi-LSTM, and Embedding among the assessed models gave the best results. 

This thesis contributes to the field of molecular properties prediction by 

improving the baseline CMPNN model and incorporating self-attention and 

multimodal techniques. The findings highlight the importance of extracting text 

features for more accurate predictions, and the proposed approach showcases its 

effectiveness through superior performance compared to alternative models. 
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