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ABSTRACT (THAI)  ออล เอเคอร์ นายาน : -. ( Mediastinal Lymph Node Detection and Segmentation using Deep 

Learning) อ.ท่ีปรึกษาหลกั : บุญเสริม กิจศิริกุล, อ.ท่ีปรึกษาร่วม : ยจิู ไอวาโฮริ 
  

การแบ่งกลุ่มและตรวจจับต่อมน ้ าเหลืองส าหรับการระบุระยะของโรคมะเร็งแบบอัตโนมัติเป็นเร่ืองท่ีซับซ้อน ในทางการแพทย ์
(ในระยะท่ีต้องเฝ้าระวังผู ้ป่ วย) การถ่ ายภาพ รังสีโดยใช้คอมพิวเตอร์ (CT) และการถ่ ายภาพ รังสีด้วยการปล่อยโพซิตรอน  (PET) 

ส า ม า ร ถ ใ ช้ ใ น ก า ร ร ะ บุ ต่ อ ม น ้ า เ ห ลื อ ง ท่ี มี ลั ก ษ ณ ะ ผิ ด ป ก ติ ไ ด้  ถึ ง อ ย่ า ง ไ ร ก็ ต า ม 

วิ ธีการดังกล่ าว ก็ มีข้อจ ากัด ใน เร่ืองของการจ าแนกความแตกต่ างและความหลากหลายใน เชิ งขน าดและรูป ร่างของต่ อมน ้ า เห ลือง 
การแบ่งกลุ่มต่อมน ้ าเหลืองยงัคงเป็นงานท่ีทา้ทาย วิธีการเรียนรู้แบบอตัโนมติัดว้ยการเลียนแบบการท างานของโครงข่ายประสาทของมนุษย ์(Deep 

Convolutional Neural Network) จึงมกัเป็นวิธีท่ีถูกใชใ้นการแบ่งกลุ่มส่ิงต่างๆ บนภาพฉายส าหรับทางการแพทย์ เทคนิคท่ีทนัสมยัต่างๆ 

จึงมกัท าลายความละเอียดของภาพฉายผ่านเทคนิคการกรองขอ้มูลของรูปภาพ เช่น การท า Image Pooling และ Image Convolution 

ด้วยเหตุ น้ี เอง  รูปแบบ ท่ีถูกส ร้าง ข้ึน เหล่ านั้ น  จึ งมักให้ ผลลัพ ธ์ ท่ี ไม่ น่ าพึ งพอใจ  เม่ื อ คิด ถึ งปัญหาเหล่ า น้ี ต่ อไป  เทคนิค  UNet++ 

ท่ีเป็นเทคนิคการเรียนรู้ขั้นสูงท่ีเป็นท่ีรู้จกักนัอย่างแพร่หลาย จึงถูกปรับปรุงโดยการน าเทคนิคการสุ่มระดบัสีจากรูปภาพเดิมอย่างเทคนิค Bilinear 

Interpolation พร้อมทั้งกลยทุธการวิเคราะห์ความสัมพนัธ์ระหว่างตวัแปรต่างๆ อย่างกลยทุธ Total Generalized Variation-based 

Upsampling มาใช้ในการแบ่งกลุ่มและตรวจจบักลุ่มต่อมน ้ าเหลืองบริเวณทรวงอกด้านหน้า (Mediastinal Lymph Nodes) เทคนิค 
Unet++ ท่ี ถู ก ป รั บ ป รุ ง น้ี ย ั ง ค ง ใ ห้ สั ม ผั ส ถึ ง ค ว า ม ท่ี ไ ม่ ต่ อ เ น่ื อ ง  เ ลื อ ก ใ ช้ บ ริ เ ว ณ ท่ี มี จุ ด ร บ ก ว น ใ น ภ า พ 

แ ล ะ ค้ น ห า จุ ด ส ม ดุ ล ท่ี เห ม า ะ ส ม ผ่ า น เท ค นิ ค ก า ร ท า โ ค ร ง ข่ า ย ป ร ะ ส า ท เที ย ม แ บ บ ย้ อ น ก ลั บ  (Backpropagation) 

และสร้างความละเอียดของภาพข้ึนมาใหม่ งานวิจยัน้ีไดร้วบรวมขอ้มูลภาพฉายรังสีจาก TCIA จากกลุ่มผูป่้วย 5 รายและใชชุ้ดขอ้มูลสาธารณะอย่าง 
ELCAP ซ่ึ ง เ ป็ น ชุ ด ข้ อ มู ล ท่ี ถู ก จั ด เ ต รี ย ม ข้ึ น โ ด ย ผู ้ เ ช่ี ย ว ช า ญ ท า ง ก า ร แ พ ท ย์ ห ล า ก ห ล า ย ท่ า น 

และใชข้อ้มูลเหล่าน้ีเป็นพื้นฐานในการวิเคราะห์และประมวลผลดว้ยเทคนิค UNet++ การผสมผสานขอ้มูลท่ีแตกต่างกนัถึง 3 แบบถูกใชเ้พื่อทดสอบ 

ผ ล ป ร าก ฎ ว่ า  รู ป แ บ บ ท่ี ไ ด้ จ าก เท ค นิ ค ดั ง ก ล่ า ว  ให้ ผ ล ลั พ ธ์ ท่ี มี ค ว าม แ ม่ น ย  า ถึ ง  94.8% แ ล ะ ได้ ดั ช นี  Jaccard 91.9% 

อี ก ทั้ ง ย ั ง มี อั ต ร า ก า ร เ รี ย ก คื น ข้ อ มู ล  (Recall) สู ง ถึ ง  94.1% แ ล ะ มี ค่ า  Precision สู ง ถึ ง  93.1% จ า ก ข้ อ มู ล ทั้ ง  3 

ชุด สมรรถภาพของมนัถูกวดัดว้ยชุดขอ้มูลท่ีแตกต่างกนัถึง 3 ชุดขอ้มูล รวมถึงยงัมีการเปรียบเทียบสมรรถนะของมนักบัเทคนิคทนัสมยัอ่ืนๆ อีกดว้ย 
และผลปรากฎวา่ รูปแบบท่ีไดจ้าก Unet++ ท่ีผสมผสานการใชก้ลยทุธต่างๆ ท่ีกล่าวมาขา้งตน้นั้น ท างานไดดี้กวา่รูปแบบท่ีไดจ้ากเทคนิคอ่ืนๆ 
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UNet++ 

 Al-Akhir Nayan : Mediastinal Lymph Node Detection and Segmentation using Deep 

Learning. Advisor: BOONSERM KIJSIRIKUL Co-advisor: Yuji Iwahori 

  

Automatic lymph node (LN) segmentation and detection for cancer staging are critical. In 

clinical practice, computed tomography (CT) and positron emission tomography (PET) imaging 

detect abnormal LNs. Despite its low contrast and variety in nodal size and form, LN segmentation 

remains a challenging task. Deep convolutional neural networks frequently segment items in medical 

photographs. Most state-of-the-art techniques destroy image's resolution through pooling and 

convolution. As a result, the models provide unsatisfactory results. Keeping the issues in mind, a 

well-established deep learning technique UNet++ was modified using bilinear interpolation and total 

generalized variation (TGV) based upsampling strategy to segment and detect mediastinal lymph 

nodes. The modified UNet++ maintains texture discontinuities, selects noisy areas, searches 

appropriate balance points through backpropagation, and recreates image resolution. Collecting CT 

image data from TCIA, 5-patients, and ELCAP public dataset, a dataset was prepared with the help 

of experienced medical experts. The UNet++ was trained using those datasets, and three different 

data combinations were utilized for testing. Utilizing the proposed approach, the model achieved 

94.8% accuracy, 91.9% Jaccard, 94.1% recall, and 93.1% precision on COMBO_3. The 

performance was measured on different datasets and compared with state-of-the-art approaches. The 

UNet++ model with hybridized strategy performed better than others. 
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CHAPTER 1:  INTRODUCTION 

 With 59.9 million cases of death each year, cancer holds the record for the highest mortality rate 

[1]. The percentage of cancer patient’s survival rate is minimized with time. UK Cancer Research 

Centre found that just 5% of patients would survive if they had been ill for ten years, whereas 

approximately 30% would survive if they had been sick for a year [2]. Therefore, early discovery, 

diagnosis, and treatment are essential to increase the cancer survival rate. CT scans have benefited 

cancer studies due to the advancement of radiology in recent years. Lymph nodes (LNs) significantly 

manage cancer and evaluate therapeutic responses [3]. However, segmenting and detecting LNs on CT 

images is challenging due to their oblique boundary and low contrast with surrounding tissue and 

organs [4]. In addition, manually assessing and counting LNs in medical images by human observers is 

time-consuming and prone to inaccuracy [5]. 

Recent years have seen a rise in the use of deep learning algorithms for medical image analysis. It 

performs better than conventional statistical and atlas-based machine learning algorithms and maintains 

good speed and accuracy [6]. Fully convolutional networks (FCNs) have been prominent in 

applications for medical image segmentation [7]. Following FCNs, several different convolutional 

neural network-based segmentation architectures have been developed, including SegNet [8], U-Net 

[9], and DeepLab [10]. However, there are not many published works on segmenting LNs using deep 

learning. FCNs were taught to recognize lymph node clusters or contour probabilistic output maps in 

[11], and conditional random fields were used to segment lymph nodes. A 3D U-Net was utilized to 

partition mediastinal LNs and other anatomical features such as lungs, airways, aortic arches, and 

pulmonary arteries to regulate the balance of sizes between the target classes in [12]. 

Deep learning algorithms in the field of medical image segmentation face significant challenges. 

The need for radiologists to name the anatomical objects in the images makes it somewhat expensive to 

construct a vast dataset (like ImageNet [13]). Additionally, when the deep segmental neural network is 

trained, some insignificant or peculiar observations will cause label imbalance. Due to insufficient 

datasets and an excellent segmentation approach, previous investigations on mediastinal LN 

segmentation reveal several problems. Additionally, most research has given minor importance to the 

small but significant portion of medical images and ignored information loss issues brought on by the 

max pool and convolution process. Those models' performance is subpar due to such ignorance. 

This thesis addresses the shortcomings of earlier strategies by proposing a new strategy for 

medical image segmentation and detection. A dataset was created with the assistance of experienced 

medical experts. The proposed method uses the UNet++ model, which introduces a trainable 

upsampling technique for restoring the image resolution lost during the max pooling and convolution 

process. This tactic enables an information-loss-free training method for neurons. The hybridized 

UNet++ model was tested using various combinations of multiple datasets, including TCIA, 5-patients, 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

and the public dataset ELCAP, and compared to state-of-the-art methods such as Auto LNDS, SegNet, 

and AlexNet. The best approach was determined using accuracy, precision, dice score, recall, and F1. 

The thesis is structured into different sections. Section 2 discusses related research works, their 

benefits, and their downsides. Section 3 explains the architecture of the improved model, the suggested 

upsampling method, and the evaluation procedure. Section 4 discusses the model's performance on 

several datasets and compares it with other cutting-edge techniques. Section 5 explains the limitations 

of the thesis. Finally, in Section 6, the entire thesis is summarized and concluded. 
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CHAPTER 2:  RELATED WORKS 

 Previously, many studies on computer-aided detection (CADe) systems have focused on using 3D 

data from volumetric CT images to detect lymph nodes (LNs). Barbu et al. utilized feature extraction 

and integration based on boosting to create a reliable binary classifier for specific features. Their 

method was tested on 131 volumes with 371 LNs to identify axillary LNs, and the results demonstrated 

an 83.0% detection rate with only 1.0 False Positive (FP) per volume. However, this investigation had 

limited training specimens available, and 3D CT scans had more dimensions [14]. 

A technique based on convolutional networks was presented by Oda et al. to detect and segment 

mediastinal lymph nodes from chest CT volumes. The evaluation indicated that 95% of lymph nodes 

could be detected with 16.3 False Positives (FP) per CT volume. However, the model may have been 

overfitting due to its numerous parameters. To address the size discrepancy between classes, additional 

portions of the chest anatomy should be included in the dataset [12]. 

Bouget et al. developed a 3D convolutional neural network using either slab-wise or downsampled 

complete volume methods to segment tissue based on nearby anatomical characteristics, such as similar 

lymph node attenuation values. The performance of the approach was evaluated using a dataset of 120 

contrast-enhanced CT volumes and a 5-fold cross-validation method. For the 1178 lymph nodes with a 10 

mm diameter, the technique achieved a patient-wise recall of 92% and a segmentation overlap of 80.5%, 

with a false positive rate of 5.0 per patient. The best results were obtained by combining both slab-wise 

and full-volume techniques. However, the most notable findings required more than four organs, 

highlighting the need for extensive sample size [15]. 

To identify abdominal lymph nodes (ALNs) and mediastinal lymph nodes (MLNs) in CT images, 

Tekchandani et al. recommended attention U-Net-based deep learning architecture variants with complete 

and partial transfer learning. The attention U-Net was chosen because it could focus more on the target 

structures with trainable parameters. To address the small image dataset, full and partial transfer learning 

(TL) was employed. The attention U-Net was trained on MLN and ALN CT images and multiple tests 

were conducted to evaluate the effectiveness of the proposed approach. SegNet, U-Net, and ResUNet 

were compared with the suggested strategy. Although the model appeared overfitted when segmenting 

MLNs, the maximum achievable sensitivity and Dice scores for ALNs were 91.69% and 93.08%, 

respectively [16]. 

Seff et al. [17] proposed a solution for addressing 3D identification issues in CT scans by dividing 

the task into 2D detection subtasks. The authors divided a prospect into 27 CT slices to mitigate the curse 

of dimensionality problems. They used Histogram of Oriented Gradients (HOG) to extract features and 

performed linear classification. For the mediastinal and abdominal datasets, the sensitivity was 78.0% at 6 

False Positives (FP) per volume or 86.1% at 10 FP per volume, and 73.1% at 6 FP per volume or 87.2% 

at 10 FP per volume, respectively. In addition, they utilized baseline HOG methods and a state-of-the-art 

deep CNN [18] to identify mediastinal LNs, achieving sensitivities of 78% vs. 70% at 3 FP per scan and 
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88% vs. 84% at 6 FP per scan, respectively. Nonetheless, a more practical approach was needed to 

improve accuracy and sensitivity.  

Roth et al. introduced a 2.5D detection technique to increase the number of samples. Their approach 

quickly decomposed each 3D volume of interest (VOI) by resampling 2D reformatted orthogonal views, 

which were then used to train the CNN classifier. The authors' experiment yielded a sensitivity of 70% / 

83% at 3 False Positives (FP) per volume and a sensitivity of 84% / 90% at 6 FP per volume [19]. 

Zhu et al. proposed a multi-branch detection by segmentation network for detecting and segmenting 

cancerous lymph nodes. Their framework included an efficient distance-based gating method that 

mimicked the protocols used by oncologists in daily practice. However, since a PET/CT scan is usually 

obtained later in the diagnostic process, optimal processing of the initial CT volume is necessary before 

considering the PET/CT modality [20]. 

Liu et al. tackled the mediastinal lymph node detection and station mapping issue using a two-stage 

pipeline. They also segmented eight anatomical structures to aid in the station mapping process. Each 

lymph node candidate was allocated a station based on its centroid location in relation to surrounding 

structures, following IASLC guidelines. The final segmentation and instance detection results took over 

half an hour to produce and required five stages. However, the use of hand-crafted features and multiple 

steps restrict the method's generalization and practical applicability. Fully end-to-end approaches may be 

better suited to address both limitations simultaneously [21] [22].  

Xu et al. put forward a method to perform pixel-wise semantic segmentation using the DeepLabv3+ 

architecture, which utilizes atrous spatial pyramid pooling at various grid scales to improve boundary 

segmentation. They studied the use of focal loss, which helps the network focus on voxels that are 

difficult to segment while preventing overfitting on non-challenging voxels of the other category. This 

approach is particularly effective for simple pixel-wise semantic segmentation tasks [23]. 

Lai et al. [24] utilized deep Convolutional Neural Networks (CNNs) to identify and amplify lymph 

nodes (LNs), leading to a significant improvement in the efficiency of training set amplification and 

feature extraction from three-dimensional (3D) images. They also incorporated a novel method of using 

three continuous parallel images, in addition to the standard approach of decomposing 3D images into 

three orthogonal two-dimensional (2D) images. Furthermore, they devised a vote algorithm to integrate 

various possibilities and their respective values. During the initial experiment, they trained on 90% of 

candidate slices from each patient and tested on the remaining samples, achieving a sensitivity of up to 

99%. However, to account for identical samples, they trained on 80% of patient slices and tested on the 

remaining 20%, resulting in a sensitivity of 98%. Nonetheless, the model appeared to be overfitted since it 

produced a linear line in the ROC curve.  

In their study, Paing et al. [25] suggested a pipeline that combines traditional methods of extracting 

image features, such as thresholding, watershed, and Hessian eigenvalues, with a 3D neural network for 

classifying lymph node candidates and false lesions. Meanwhile, Nogues et al. focused on segmenting 
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lymph node clusters in mediastinal and abdominal contexts [11]. They addressed the challenge of reduced 

intensity and texture contrast among neighbouring lymph nodes by proposing the use of 2D holistically 

nested neural networks for embedded edge detection. To refine the segmentation, structured optimization 

techniques such as conditional random fields and graph cuts were recommended. 

Singh et al. [26] employed U-Net in the candidate generation stage to achieve a 100% sensitivity 

rate, albeit at the cost of high levels of false positives, for generating volumes of interest (VOI). They 

comprehensively analyzed different input representations to train Convolutional Neural Networks (CNN) 

and 3D CNN classifiers and Support Vector Machines (SVMs) trained on features extracted from the 

aforementioned models to reduce false positives and detect lymph nodes. They evaluated their approaches 

on a dataset of 90 CT volumes containing 388 mediastinal lymph nodes. Their best approach achieved 

84% sensitivity at 2.88 false positives per volume in the mediastinum of chest CT volumes. 

Ono et al. [27] proposed a novel approach to detect abdominal lymph nodes in contrast-enhanced 

CT images by utilizing R2U-Net to suppress over-detection, detect and integrate lymph nodes. The 

authors evaluated three methods, each with different parameters. In method 1, the entire contrast-

enhanced CT image (512 × 512) was used for learning and detection by R2U-Net. In method 2, the entire 

image was strided by 64 pixels (the same size as the patch image) with a kernel of 64 × 64, and detection 

was performed. Finally, method 3's kernel was set to a stride of 32 pixels each (half the size of the patch 

image) of method 2, and detection was performed. During the patch-based detection of the lymph node 

region, the image was cropped out with a stride of 1/2 pixel for the size of the image. The proposed 

method 3 achieved a recall of 0.76, outperforming the other methods. 

Numerous investigations on LN segmentation have shown several issues and resulted in suboptimal 

detection accuracy. These problems emphasize the need for an efficient approach to improve the 

sensitivity and accuracy of LN segmentation. Our goal was to develop a method that surpasses other 

methods in performance. 
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CHAPTER 3:  RESEARCH METHOD 

1. DATASET 

CT images from TCIA [28], 5-patients [29], and ELCAP [30] public datasets were acquired, 

prepared, and used for training the proposed network. Data from those three datasets were combined in 

a ratio, and test datasets were built. Figure 1 displays some sample images and their masks. 

 

 
(a) Image 

 
(b) Mask 

 
(a) Image 

 
(b) Mask 

Figure  1. Dataset Sample a) Image, b) Mask 

Three radiologists with different experience levels (21, 20, and 30 years, respectively) suggested 

the mediastinal LN datasets for this thesis. The VGG Image Annotation Toolkit was used to mask all 

LNs by two experienced radiologists with 21 and 20 years of experience. If there was a discrepancy, a 

third senior radiologist (30 years of expertise) was called in to decide about the presence of LN. In 

total, 28830 LNs were masked in the training dataset, which was used to train the model. Three 

additional testing datasets, each with an average of 8500 images, were segmented for testing and 

assessing the model's performance. 

A. DATA PROCESSING 

The experiment used high-resolution CT images because they produced the most significant 

diffusion effects. The background tissue signal is effectively suppressed on high-resolution CT scans, 

allowing the high signal intensity LNs to be seen and recognized. Images were manually cropped in a 

512x512 matrix. The training dataset included 28830 processed images, and the testing dataset 

included three additional datasets, each with 8500 images. The model was trained separately using the 

TCIA, 5-patients, and ELCAP datasets to investigate its performance on different dataset images. 

There were three combinations for testing. The first combination (COMBO 1) was created by gathering 

80% of images from TCIA, 10% from the 5-patients, and 10% from the ELCAP public dataset. The 

second combination (COMBO 2) was built with 60% images from TCIA, 20% from the 5-patients, and 

20% from the ELCAP dataset. The third combination (COMBO 3) was created by collecting 50% of 

images from TCIA, 25% from the 5-patients, and 25% from the ELCAP dataset. The training dataset 

was divided into training and validation using the Python data split library. 

B. DATA AUGMENTATION 

Artificial data augmentation is a standard method used by CNN to provide enough training data. 

When the dataset is insufficient, augmentation teaches the network the needed invariances and 
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resilience characteristics [31]. The Python data augmentation program improved the training dataset in 

this thesis. The following operations were carried out on the images: image cropping, affine 

adjustments, vertical and horizontal flipping, noise and blur reduction, and contrast and brightness 

management. This study's testing data was left un-augmented, whereas the training dataset was 

augmented. 

2. UNET MODEL ARCHITECTURE & UPSAMPLING TECHNIQUE 

The UNet model is a convolutional neural network architecture that was originally proposed for 

medical image segmentation tasks in 2015 by Olaf Ronneberger, Philipp Fischer, and Thomas Brox 

[9]. It is named after its U-shaped architecture, which consists of a contracting path (left side) and an 

expanding path (right side) with a bottleneck in between. The architecture is shown in Figure 2.  

 

Figure  2. UNet Model Architecture 

The UNet architecture is designed to handle the challenges of medical image segmentation, such 

as dealing with small training datasets and capturing fine-grained details in images. The contracting 

path is on the left side of the U and consists of several convolutional and pooling layers. The 

convolutional layers extract features from the input image and increase the number of channels (feature 

maps). The pooling layers reduce the feature maps' spatial size while keeping the essential features. 

The contracting path is designed to learn high-level features that capture the global structure of the 

image. As the spatial size of the feature maps decreases, the network can focus on the most relevant 

features while reducing the computational cost. The bottleneck of the U shape is where the contracting 

path ends and the expanding path begins. The bottleneck layer has a minimal spatial size, which limits 

the receptive field and encourages the network to learn more local features.  
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The expanding path is on the right side of the U and consists of several convolutional and 

upsampling layers. The convolutional layers recover the spatial resolution of the feature maps and 

reduce the number of channels. The upsampling layers increase the spatial resolution by a factor of two 

(or more) and allow the network to produce a segmentation map that has the same size as the original 

image. The expanding path is designed to refine the segmentation mask by adding fine-grained details. 

The skip connections that connect the corresponding layers between the contracting and expanding 

paths allow the network to combine both coarse and fine-grained information. The skip connections 

concatenate feature maps from the contracting path with the corresponding feature maps in the 

expanding path. This allows the network to learn to localize objects and retain fine-grained 

information. 

The final layer of the UNet network is a pixel-wise classification layer that produces a binary 

segmentation map of the input image. This map assigns a class label to each pixel, indicating whether it 

belongs to the object of interest or not. 

One of the critical features of the UNet architecture is its use of transpose convolutions, also 

known as deconvolutions or upsampling convolutions [32]. Transpose convolution is an operation that 

can upsample an input image, meaning that it increases its spatial resolution while keeping the number 

of channels constant. The transpose convolution operation can be considered the opposite of a regular 

convolution operation. While a regular convolution operation takes a small filter (kernel) and applies it 

to each pixel of the input image to produce an output feature map, a transpose convolution operation 

takes a larger filter and applies it to each pixel of the output feature map to produce an upsampled input 

image (figure 3). 

Figure  3. An Example of Transpose Convolution 

In the UNet architecture, transpose convolutions are used in the decoder part of the network to 

increase the spatial resolution of the feature maps. The transpose convolutional layers in the UNet 

architecture are typically implemented using the so-called "convolution transpose" operation, which is 

also sometimes called "fractional stride convolution." This operation works by taking an input feature 

map with dimensions (H, W, C), where H and W are the height and width of the feature map, and C is 

the number of feature maps, and applying a learned kernel of size (K, K, C', C), where K is the kernel 
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size, C' is the number of output feature maps, and C is the number of input feature maps. The 

convolution transpose operation is similar to a regular one but with the spatial dimensions reversed. 

Specifically, instead of sliding the kernel over the input feature map, as in a regular convolution, the 

kernel is slid over the output feature map, and the values in the kernel are multiplied by the 

corresponding values in the input feature map. 

3. PROPOSED MODEL ARCHITECTURE 

A modified UNet++ network was used to identify potential lymph node candidates from 

mediastinal CT data. The UNet++ is a convolutional network based on U-Net for segmenting 

biological images quickly and precisely. The network can be divided into a contracting-expansive path 

or an encoder-decoder path. Two 3x3 convolutions were used repeatedly to create the encoder. After 

each convolution, there was a batch normalizing and ReLU. Each layer could learn more independently 

of the others because of batch normalization’s reduced covariate shift. 2x2 max-pooling was used to 

minimize the spatial dimensions. Before max-pooling, a dropout layer acts as a regularizer and 

prevents overfitting. At each step of the downsampling process, the spatial dimensions were reduced by 

half while the number of feature channels was doubled. Every step in the expanding route started with 

an upsampling of the feature map. Total generalized variation (TGV) and bilinear interpolation were 

used to restore image resolution, preserve texture discontinuities, pick out noisy regions, and find the 

right balance points using backpropagation. Before concatenation, nested and dense skip connections 

[33] were used to fill the semantic gap between the encoder and decoder's feature maps. The modified 

UNet++ model architecture is shown in Figure 4, where thick convolution blocks on the skip paths are 

green and blue. We combined a 3x3 convolutional feature map from the contracting path with an equal 

feature map. Each 16-component feature vector was mapped using a 1 x 1 convolution, guaranteeing 

accurate image segmentation at the top layer. 

 

Figure  4. Modified UNet++ Model Architecture 
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4. PROPOSED UPSAMPLING TECHNIQUE 

The feature map is an essential component of the UNet++ design since it generates the spatial 

information of the feature map by upsampling. Transpose convolution is used by default in the 

upsampling section of the network. Nevertheless, this execution strategy is quite time-consuming 

because of the large number of learnable parameters and the requirement to train new weights by 

kernels. Additionally, as demonstrated in Figure 5, it may lead to uneven overlap and artifacts at 

different scales. 

An alternative to the traditional deconvolution, bilinear interpolation was employed in the decoder 

section of the model to avoid artifacts. This approach has no artifacts because of its normal behavior. 

The image's 𝑔 (𝑥1, 𝑥2) nearest neighbors are the image coordinates 𝑓 (𝑥10, 𝑥20), 

𝑓 (𝑥11, 𝑥21), 𝑓 (𝑥12, 𝑥22) and 𝑓 (𝑥13, 𝑥23). The interpolated image's 𝑔 (𝑥1, 𝑥2) intensity values are 

evaluated as follows: 

 

𝑔 (𝑥1, 𝑥2) =  𝐵0 + 𝐵1𝑥1 + 𝐵2𝑥2 + 𝐵3𝑥1𝑥2       (1) 

 
(a) 

 
(b) 

 

Figure  5. Artifact issue created by the transposed convolution: (a) checkerboard problem, (b) uneven 

overlap 

Equation (1) denotes a bilinear function that has coordinates (𝑥1, 𝑥2). Here, 𝑔 refers to an intensity 

value of interpolated image matrix in (𝑥1, 𝑥2) coordinates, Bs are the bilinear weights, and f refers 

intensity value given at (𝑥10, 𝑥20), (𝑥11, 𝑥21), (𝑥12, 𝑥22) and (𝑥13, 𝑥23) pixel locations before 

performing interpolation. The bilinear weights, 𝐵0,  𝐵1,  𝐵2 𝑎𝑛𝑑  𝐵3 are calculated by evaluating the 

matrix mentioned in Equation (2): 

 

[

𝐵0
𝐵1
𝐵2
𝐵3

] =  [

1 𝑥10 𝑥20 𝑥10𝑥20
1 𝑥11 𝑥21 𝑥11𝑥21
1 𝑥12 𝑥22 𝑥12𝑥22
1 𝑥13 𝑥23 𝑥13𝑥23

]   (2) 

 As an outcome, 𝑔 (𝑥1, 𝑥2) is determined as a linear combination of its four closest neighbor's gray 

levels. According to Equation (1), when the perfect least‐squares planar fit is made to those four 

neighbors, the value is assigned to 𝑔 (𝑥1, 𝑥2). This optimal averaging methodology provides smoother 
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outcomes considering the low-and high-resolution map's size difference. The bilinear interpolation 

technique is depicted in Figure 6. 

 

Figure  6. Example of bilinear interpolation 

 The result generated by bilinear interpolation contains the equal size as processed maps in the 

encoding stage. These maps refer to the entered image and are seen as noisy areas. The TGV treats the 

processed maps for denoising resolution. The mathematical term used for the model is mentioned in 

Equation (3): 

{𝛾 𝑙𝑜𝑠𝑠 (𝑢, 𝑥) + 𝑇𝐺𝑉𝛼
𝐾(𝑣)}𝑢

𝑚𝑖𝑛   (3) 

 Here, image fidelity is represented by 𝑙𝑜𝑠𝑠 (𝑢, 𝑥),  𝛾 is utilized for global optimization, and the 

term 𝑇𝐺𝑉𝛼
𝐾(𝑣) is the regularization term.  

 Convolutional computations may effectively extract and generalize features, and their outputs can 

be visualized as a set of features. To better comprehend the semantics of an image, the smoothness of 

textures and border edges are essentially used for the feature maps. The mentioned technique maintains 

texture discontinuities by incorporating different channel information.  

 For our work, a second-order TGV-based technique was enough. That is why the utilized Equation 

(4) was: 

𝑇𝐺𝑉𝑎
2(𝑣) =  {𝑝1  ∫ |∇𝑣 − 𝑤| + 𝑝2  ∫ |𝜀(𝑤)|

 

Ω

 

Ω

}
𝑤

𝑚𝑖𝑛

     (4) 

 Here, v indicates the minimum TGV over complex vector fields w in the bounded domain. The 

symmetric derivative is represented by 𝜀(𝑤).  𝑝1 and 𝑝2 are responsible for balancing the first and 

second derivatives.  

 Combining loss function and Equation (3), the term TGV can be defined as  
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{
 

 
𝜆

2
 ||𝑢 (𝐶𝑖𝑛𝑝𝑢𝑡) − 𝐶𝑖𝑛𝑝𝑢𝑡̅̅ ̅̅ ̅̅ ̅̅ ||

2

2

+

𝑝1  ∫ |∇𝑣 − 𝑤| + 𝑝2  ∫ |𝜀(𝑤)|
 

Ω

 

Ω }
 

 

𝑤

𝑚𝑖𝑛

             (5) 

 Taking weights 𝑝1 and 𝑝2 into backpropagation, an appropriate balance point was decided by the 

network. 

5. BACKPROPAGATION 

 Backpropagation is a supervised algorithm used for adjusting the weights 𝑝1, 𝑝2 and the network's 

deviation. As a result, the output and the targeted vectors can be closer. It compares the error sum, and 

the training is finished if the network's output layer's error is evaluated as lower than the specified 

error. The network's deviation and weight are stored. The process is performed following the steps: 

1. Setting nonzero coefficient and initial weight 𝑝𝑖𝑘 but 𝑝𝑖,𝑛+1 = −𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

2. Entering sample 𝐴 = (𝐴1, 𝐴2, … . . ) and getting the desired output 𝐵 = (𝐵1, 𝐵2, … . . ).  

3. Calculating output of all layers. For output 𝐴𝑖
𝑗
there is: 

𝑋𝑖
𝑗
= ∑ 𝑝𝑖𝑘

𝑚+1
𝑘=1 𝐴𝑘

𝑗−1
   (6) 

 

𝐴𝑖
𝑗
= 𝑓(𝑋𝑖

𝑗
)     (7) 

 

4. Finding learning errors for each layer. For the output layer, j=n: 

 

𝑒𝑖
𝑛 = 𝐴𝑖

𝑛(1 − 𝐴𝑖
𝑛)(𝐴𝑖

𝑛 − 𝐵𝑖
 ) (8) 

 

5. Modify weight and threshold.  

∆𝑝𝑖𝑘
 (ℎ + 1) = ∆𝑝𝑖𝑘

 (ℎ) −  η. 𝑒𝑖
𝑛. 𝐴𝑘

𝑗−1
 )  (9) 

 

6. Ensure the quality of weights according to the requirement. If the requirement is not filled up, 

return to step 3. The process will be repeated until the requirement is satisfied.  

6. EVALUATION PROCESS 

 The parameter's value was determined using the following method: True Positives (TP) are 

accurately predicted positive values that show both the projected and actual class values to be true. 

True Negatives (TN) are precisely anticipated negative values, indicating that the actual and projected 

class values are zero. When the actual and the projected classes are different, false positives and 

negatives occur. False Positives (FP) happen when the projected class is yes, but the actual class is no. 

False Negatives (FN) occur when the projected class is negative but the actual class is positive. The 

model's performance was measured using precision, recall, F1, and accuracy. A higher value indicates 
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better performance. The ratio of accurately predicted observations to all observations is known as 

accuracy. Equation (10) was used to calculate the model's accuracy. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
               (10) 

 The ratio of accurately predicted positive observations and total expected positive observations is 

precision. The precision of the model was calculated following Equation (11). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                         (11) 

 The ratio of accurately predicted positive observations and all actual yes class observations are 

known as recall. Precision and recall are weighted into the F1. As a result, false positives and negatives 

are considered while calculating this score. When there is an unequal distribution of classes, F1 is 

usually more helpful. Recall and F1 are calculated following Equations (12) and (13) accordingly.  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                    (12) 

𝐹1 =
2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                  (13) 

7. LYMPH NODE SEGMENTATION CRITERIA 

 The Dice similarity coefficient (DSC) measures the similarity between the segmentation results 

and the ground truth. The DSC is a number from 0 to 1, with a more excellent value indicating better 

segmentation accuracy. The DSC was established as follows: 

𝐷𝑆𝐶 (𝑅, 𝑇) =  
2𝑃(𝑅 ∩ 𝑇)

𝑃(𝑅) + 𝑃 (𝑇)
                   (14) 

 Here R is the segmentation result of the segmentation method, T is the ground truth, and P is the 

number of pixels in the corresponding set. 
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CHAPTER 4:  RESULT AND ANALYSIS 

1. EXPERIMENTAL ENVIRONMENT SETUP 

 An Ubuntu 18.04 workstation with 32 Intel CPUs, a Tesla 16 Gb GPU, and 64 GB of RAM was 

used to train the UNet++ model. The layers were trained using an Adam Optimizer with the default 

value (b1 = 0.9, b2 = 0.999) and 32 images per batch. Table 1 illustrates the training hyperparameters. 

10% of the 28830 images in the training dataset were utilized to evaluate the deep-learning model's 

learning effect (as a validation set), while the rest were employed to train the model. 

Table  1. Model Parameters 

Parameter Name Value 

Epochs 100 

Learning Rate 1. e - 4 

Batch Size 32 

Optimizer Adam 

Input Image 512 * 512 

 The study used a 10-fold cross-validation approach to validate CT data. The entire dataset was 

split into two subgroups for a cross-validation run: the training and the validation sets. Several cross-

validations with different random partitions were frequently executed. The model performance was 

calculated using the average validation data acquired from numerous cross-validation rounds. The 

model's loss changes were examined on the validation set during the training phase to consider 

alternate options for the learning rate and other parameters. If the loss of the validation set did not 

minimize for ten epochs, the learning rate would be cut in half from its current level. If the loss of the 

validation set does not decrease for 20 epochs, the training procedure must be terminated early to 

prevent over-fitting. The final product of the network was a probability map for the foreground and 

background. The train set received primary data augmentation, whereas the test set remained unaltered. 

The final prediction results were assessed by averaging the model's outputs over the enriched data. 

2. PERFORMANCE MEASUREMENT ON TCIA DATASET 

A. TRAINING ACCURACY MEASUREMENT 

 The updated UNet++ model was trained on 34 mediastinal LN slices from the TCIA dataset, each 

with an average of 600 pictures, after being reviewed by three radiologists with varying levels of 

experience (21, 20, and 30 years) in mediastinal LNs imaging diagnosis. 10% of the training set's 

images were used to fine-tune the model's learning capabilities and trained for 100 epochs.  

 Figure 7(a) displays the model's training accuracy and loss on the TCIA dataset, while 7(b), 7(c), 

7(d), and 7(e) show the validation accuracy and loss, intersect of union (IOU) score, dice coefficient 

score, and recall, respectively. The model achieved a validation accuracy of 93.4% and a training 

accuracy of 97.1%. Although there was a significant loss at the start of the training process, it was 

quickly reduced as the number of epochs increased, indicating that the model could learn quickly. The 

IOU, dice coefficient, and recall scores were 90.8%, 92.5%, and 94.4%, respectively. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure  7. Training Score Evaluation a) Train Accuracy vs. Loss, b) Validation Accuracy vs. Loss, c) 

Intersect of Union (IOU), d) Dice Coefficient, e) Recall 

B. TESTING ACCURACY MEASUREMENT 

 To evaluate the accuracy of our model on diverse datasets, we generated three distinct testing 

datasets by combining CT images from the TCIA, ELCAP, and 5-patient datasets. Each testing dataset 

(COMBO 1, COMBO 2, and COMBO 3) contained 8500 mediastinal lymph node CT scans and their 

corresponding masks. Expert radiologists with years of experience in this field created and validated 

the testing datasets. 

I. EXPERIMENTAL ANALYSIS ON COMBO_1 

 We began by evaluating the model's performance on COMBO 1, a combination of CT images 

from TCIA (80%), the 5-patient dataset (10%), and the ELCAP public dataset (10%). We assessed the 

model's performance using five criteria - accuracy, Jaccard, precision, recall, and F1.  

 The performance of the model on the COMBO 1 dataset is presented in Figure 8, where the 

accuracy, Jaccard score, precision, recall, and F1 parameter values are shown in 8(a), 8(b), 8(c), 8(d), 

and 8(e), respectively. The model achieved remarkable results, with 91.1% accuracy, 89.0% Jaccard 

score, 87.4% precision, 89.7% recall, and 88.5% F1 score. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure  8. Testing Accuracy Measurement on Test Dataset COMBO_1, a) Accuracy, b) Jaccard, c) 

Precision, d) Recall, e) F1 

II. EXPERIMENTAL ANALYSIS ON COMBO_2 

 The COMBO_2 dataset was created by combining 60% of images from TCIA, 20% from the 5-

patients, and 20% from the ELCAP public dataset. The model's performance on this dataset is 

presented in Figure 9, where (a) shows the accuracy parameter, (b) displays the Jaccard score, (c) 

illustrates precision, (d) exhibits recall, and (e) presents the F1 parameter value. The model achieved an 

accuracy of 92.7%, a Jaccard score of 90.5%, a precision of 89.3%, a recall of 91.4%, and an F1 of 

90.3%. 

III. EXPERIMENTAL ANALYSIS ON COMBO_3 

 The COMBO_3 dataset was created by combining 50% of the images from TCIA, 25% from the 

5-patients dataset, and 25% from the ELCAP public dataset. Figure 10 presents the model's 

performance on the COMBO_3 dataset, with (a) displaying the accuracy parameter, (b) showing the 

Jaccard score, (c) depicting the precision parameter, (d) showing the recall parameter, and (e) 

displaying the F1 parameter. The model achieved an accuracy of 93.8%, a Jaccard score of 91.71%, a 

precision of 89.81%, a recall of 93.21%, and an F1 of 91.51%. The COMBO_3 dataset produced better 

results. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure  9. Testing Accuracy Measurement on Test Dataset COMBO_2, a) Accuracy, b) Jaccard, c) 

Precision, d) Recall, e) F1 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure  10. Testing Accuracy Measurement on Test Dataset COMBO_3, a) Accuracy, b) Jaccard, c) 

Precision, d) Recall, e) F1 
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3. PERFORMANCE MEASUREMENT ON ELCAP DATASET 

A. TRAINING ACCURACY MEASUREMENT 

 A modified UNet++ model was trained on 20 mediastinal LN slices from the ELCAP dataset, each 

containing an average of 250 images. To fine-tune the model's learning capabilities, 10% of the training 

set's images were used. The model was trained for 100 epochs, and Figure 11 presents the computed 

parameter values.  

 Figure 11(a) shows the accuracy and loss of the model during training on the ELCAP dataset, 

while Figure 11(b) displays the accuracy and loss during validation. The IOU score is shown in Figure 

11(c), the dice coefficient score in Figure 11(d), and the recall score in Figure 11(e). With 95.04% 

validation accuracy and 97.1% training accuracy, the model initially showed a significant loss in both 

training and validation, which was quickly reduced, indicating faster learning. The IOU, dice 

coefficient, and recall scores were 89.8%, 91.58%, and 93.88%, respectively, demonstrating the 

model's excellent performance. 

B. TESTING ACCURACY MEASUREMENT 

I. EXPERIMENTAL ANALYSIS ON COMBO_1 

 In Figure 12, the accuracy parameter value is depicted in (a), the Jaccard score in (b), precision in 

(c), recall in (d), and the F1 parameter score in (e). The model achieved an accuracy of 92.1%, a 

Jaccard score of 89.6%, a precision of 88.2%, a recall of 91.8%, and an F1 score of 89.9%. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure  11. Training Score Evaluation a) Train Accuracy vs. Loss, b) Validation Accuracy vs. Loss, c) 

Intersect of Union (IOU), d) Dice Coefficient, e) Recall 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure  12. Testing Accuracy Measurement on Test Dataset COMBO_1, a) Accuracy, b) Jaccard, c) 

Precision, d) Recall, e) F1 

II. EXPERIMENTAL ANALYSIS ON COMBO_2 

 The model's performance on COMBO_2 was satisfactory, with an accuracy of 94.1%, Jaccard 

score of 93.6%, precision of 90.2%, recall of 93.8%, and F1 score of 91.9%, as demonstrated in Figure 

13. 

III. EXPERIMENTAL ANALYSIS ON COMBO_3 

 Figure 14 displays the performance metrics of the model, with (a) showing the accuracy, (b) the 

Jaccard score, (c) the precision, (d) the recall, and (e) the F1 score. The model achieved an accuracy of 

93.6%, a Jaccard score of 91.7%, a precision of 90.1%, a recall of 92.9%, and an F1 score of 91.5%. 

4. PERFORMANCE MEASUREMENT ON 5-PATIENTS DATASET 

A. TRAINING ACCURACY MEASUREMENT 

 The modified UNet++ model was trained using five mediastinal LN slices from the 5-patient 

dataset, with an average of 436 images per slice. To improve the model's learning capabilities, 10% of 

the training set's images were used for fine-tuning. The model underwent 100 epochs, and Figure 15 

displays the estimated parameter values.  

 Figure 15 presents a comprehensive evaluation of the model's performance on the 5-patient 

dataset. Specifically, 15(a) shows the training accuracy and loss, 15(b) illustrates the validation 

accuracy and loss, 15(c) depicts the intersection over union (IOU) score, 15(d) displays the dice 

coefficient score, and 15(e) indicates the recall score. The model performed remarkably well, 

maintaining its high training accuracy of 97.9% while achieving a validation accuracy of 94.1%. 
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Additionally, the IOU score, dice coefficient score, and recall score were also impressive, at 92.8%, 

91.6%, and 95.7%, respectively. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure  13. Testing Accuracy Measurement on Test Dataset COMBO_2, a) Accuracy, b) Jaccard, c) 

Precision, d) Recall, e) F1 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure  14. Testing Accuracy Measurement on Test Dataset COMBO_3, a) Accuracy, b) Jaccard, c) 

Precision, d) Recall, e) F1 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure  15. Training Score Evaluation a) Train Accuracy vs. Loss, b) Validation Accuracy vs. Loss, c) 

Intersect of Union (IOU), d) Dice Coefficient, e) Recall 

B. TESTING ACCURACY MEASUREMENT 

I. EXPERIMENTAL ANALYSIS ON COMBO_1 

 In Figure 16, the accuracy parameter is shown in (a), the Jaccard score in (b), precision in (c), 

recall in (d), and the F1 score in (e). The model achieved 93.2% accuracy, 89.4% Jaccard, 91.3% 

precision, 92.9% recall, and 92.0% F1. 

II. EXPERIMENTAL ANALYSIS ON COMBO_2 

 In Figure 17, (a) shows the accuracy parameter, (b) shows the Jaccard score, (c) represents 

precision, (d) indicates recall, and (e) illustrates the F1 parameter's score. The model obtained 94.1% 

accuracy, 90.6% Jaccard, 91.6% precision, 93.4% recall, and 92.5% F1. 

III. EXPERIMENTAL ANALYSIS ON COMBO_3 

 Figure 18 presents the evaluation metrics for the model, including accuracy (a), Jaccard score (b), 

precision (c), recall (d), and F1 score (e). The model performed exceptionally well on this dataset, 

achieving 94.8% accuracy, 91.9% Jaccard score, 93.1% precision, 94.1% recall, and 93.5% F1 score, 

making it the best-performing combination. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure  16. Testing Accuracy Measurement on Test Dataset COMBO_1, a) Accuracy, b) Jaccard, c) 

Precision, d) Recall, e) F1 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure  17. Testing Accuracy Measurement on Test Dataset COMBO_2, a) Accuracy, b) Jaccard, c) 

Precision, d) Recall, e) F1 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure  18. Testing Accuracy Measurement on Test Dataset COMBO_3, a) Accuracy, b) Jaccard, c) 

Precision, d) Recall, e) F1 

5. MEASUREMENT SUMMARY 

 The proposed model performed better on the COMBO 3 test dataset and the 5-patient dataset. 

Those datasets' mean and standard deviation were examined to determine the actual cause. We found 

0.1881, 2085, and 0.2272 standard deviation scores and 0.2207, 0.4070, and 0.2226 mean scores for 

TCIA, ELCAP, and 5-patient. The standard deviation measures observed values or data deviation from 

the mean. The measured values converge toward the mean when the standard deviation is near zero. 

The values or data are distributed far from the mean when the standard deviation is high. When the 

standard deviation is 0, we can state that all the data are equal. A higher standard value indicates an 

image with a sharp contrast, and a sharp contrast image emphasizes the comparison of various pixel 

colors. The model can learn different pixel values more accurately on high-contrast image datasets that 

directly impact the model's performance. The suggested model performs better because the 5-patient 

dataset has a more considerable standard deviation than previous datasets. The proposed architecture 

performed better on the other two datasets even though the 5-patient dataset gave it the best accuracy. 

The model has maintained 91+% accuracy and 90+% precision score on both TCIA and ELCAP, 

which demonstrates the model's capability in segmenting and detecting LNs from different dataset 

images. 

6. PERFORMANCE COMPARISON 

 The model's performance was compared to other cutting-edge methods, including U-Net 

(unmodified), AlexNet, SegNet, and Auto-LNDS (Mask RCNN-based Auto Lymph Node Detection 
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and Segmentation, a proposed model by X. Zhao et al. [34]). The TCIA, ELCAP, and 5-patient datasets 

were used to train those models, and the COMBO 1, COMBO 2, and COMBO 3 test datasets were 

used to test them. The parameter values for the models were kept constant, as shown in Table 1. 

A. PERFORMANCE MEASUREMENT USING OLD_U-NET 

 This study used new upsampling methods to modify the UNet++ model; the preceding section 

covers the changed approach. A second experimental analysis was completed using the default 

transpose convolution for upsampling to compare the performance of the modified UNet++ and the 

original U-Net. No dense layer and no TGV-based technique were used. The model's performance was 

estimated on three datasets and three test combinations, as in Table 2. 

Table  2. Old_U-Net Model’s Performance 

Dataset Combo FP/Vol Accuracy Dice F1 Recall Precision 

TCIA 1 3.7 82.4% 81.7% 74.7 74.6% 74.9% 

2 3.09 82.2% 75.6% 78.1 74.5% 82.1% 

3 2.7 84.9% 76.7% 72.6 66.6% 79.7% 

ELCAP 1 3.0 86.1% 79.5% 81.7 79.8% 83.7% 

2 2.4 85.9% 80.7% 77.5 69.1% 88.3% 

3 2.9 86.7% 79.1% 78.4 72.5% 85.4% 

5-Patients 1 2.5 87.02% 81.7% 75.3 75.5% 75.1% 

2 2.48 87.9% 77.5% 79.1 72.6% 86.9% 

3 2.36 89.01% 79.2% 84.3 80.8% 88.2% 

 According to Table 2, Old_U-Net acquired the highest accuracy on the 5-patients training dataset 

and COMBO_3 test dataset. Still, its highest precision was developed on the ELCAP training dataset 

and COMBO_2 test dataset. Compared with the AlexNet, SegNet, and Auto-LNDS model's 

performance, the Old_U-Net scored the highest precision, but its accuracy was lower than that of 

AlexNet and SegNet. The model's overall performance maintains its second position among the four 

models. 

B. PERFORMANCE MEASUREMENT USING ALEXNET 

 AlexNet has eight layers, three are entirely connected, and five are convolutional layers. Two 

crucial components of the AlexNet are overlapping pooling and rectified linear units (ReLU) [35]. 

Compared to the standard tanh function, ReLU nonlinearity enables substantially faster training. The 

overlapping pooling produces nearby clusters of neurons without overlapping, lowering training error 

[36]. The TCIA, ELCAP, and 5-patient datasets were used independently to train the network, and the 

test dataset combinations were used to evaluate it. In Table 3, the performance is mentioned. 

Table 3 shows AlexNet obtained the best accuracy and precision on the COMBO 3 test dataset and 

5-patient training dataset. The model's maximum accuracy exceeded SegNet, Auto-LNDS, and Old U-

Net, but its precision lagged behind Auto-LNDS and Old U-Net. Overall, the model outperformed 

SegNet, and among all models trained on the TCIA dataset, AlexNet performed with higher precision 

and accuracy. 
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Table  3. AlexNet Model’s Performance 

Dataset Combo FP/Vol Accuracy Dice F1 Recall Precision 

TCIA 1 2.37 82.1% 72.6% 74.1% 73.5% 74.7% 

2 2.77 83.9% 71.3% 78.3% 78.7% 77.9% 

3 2.39 89.7% 82.2% 81.5% 80.7% 82.3% 

ELCAP 1 2.41 87.3% 80.06% 81.3% 83.7% 79.03% 

2 2.38 89.01% 83.03% 79.9% 81.9% 78.01% 

3 2.25 88.5% 80.2% 81.05% 82.1% 80.04% 

5-Patients 1 2.43 88.4% 84.04% 82.1% 82.2% 82.05% 

2 2.20 89.03% 83.08 81.05% 79.3% 82.9% 

3 2.32 90.01% 84.2% 84.02% 84.0% 84.03% 

C. PERFORMANCE MEASUREMENT USING SEGNET 

 SegNet comprises an encoder and decoder network and a pixel-wise classification layer. The 

encoder network has 13 convolutional layers that match the first 13 convolutional layers of the VGG16 

[37]. We deleted the eventually linked layers from the SegNet encoder network to reduce the number 

of parameters and keep higher resolution feature maps at the deepest encoder output. There are 13 

layers in the decoder network, with one for each encoder layer. A multi-class softmax classifier 

receives the output of the final decoder and generates class probabilities for each pixel. Each encoder in 

the encoder network performs convolution with a filter bank to produce a set of feature maps. Then, 

each element is given a rectified-linear nonlinearity (ReLU) [38]. The TCIA, ELCAP, and 5-patient 

datasets were used independently to train the network, and the test dataset combinations were used to 

evaluate it. In Table 4, the performance is mentioned. 

Table  4. SegNet Model’s Performance 

Dataset Combo FP/Vol Accuracy Dice F1 Recall Precision 

TCIA 1 2.43 82.8% 72.4% 75.7% 75.7% 75.7% 

2 2.50 86.5% 74.9% 78.3% 87.1% 71.1% 

3 2.71 87.6% 77.6% 76.4% 73.6% 79.4% 

ELCAP 1 3.02 86.01% 74.1% 79.01% 77.1% 81.06% 

2 2.78 88.03% 75.02% 77.04% 73.4% 81.05% 

3 3.00 88.5% 76.1% 78.02% 74.4% 82.03% 

5-Patients 1 2.56 87.05% 75.1% 78.03% 75.2% 81.09% 

2 2.39 89.01% 77.05% 77.02% 71.8% 83.08% 

3 2.28 89.8% 78.02% 80.01% 76.3% 84.00% 

 SegNet achieved the highest accuracy and precision on the 5-patient training and COMBO_3 test 

dataset shown in Table 4. The model performed poorly than AlexNet, Old_U-Net, and Auto-LNDS, 

but the model's precision on the ELCAP training dataset was more reasonable than Auto-LNDS and 

AlexNet. 

D. PERFORMANCE MEASUREMENT USING AUTO-LNDS (MODIFIED 

MASK RCNN) 

 Auto-LNDS employs the Mask RCNN [39] as its primary network, which is a system capable of 

efficiently identifying objects in an image while producing a high-quality segmentation mask for each 

instance. The Auto-LNDS consists of the Feature Pyramid Network (FPN) [40], the Region Proposal 

Network (RPN) [41], and the head network Mask R-CNN. To overcome the degradation problem and 
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enable training of the deeper network, Resnet-101 was selected as the backbone of Mask R-CNN [42]. 

Since the quantity and size of LNs vary from patient to patient, Mask R-CNN was chosen for nodal 

recognition and segmentation. Table 5 summarizes the performance of the Auto-LNDS model, which 

was trained on TCIA, ELCAP, and the 5-patients dataset separately and tested on various combinations 

of test datasets.   

Table  5. Auto-LNDS Model’s Performance 

Dataset Combo FP/Vol Accuracy Dice F1 Recall Precision 

TCIA 1 3.01 89.4% 85.7% 81.0% 81.5% 80.5% 

2 3.75 85.9% 80.1% 82.6% 84.9% 80.4% 

3 2.62 87.4% 84.7% 80.1% 77.5% 82.9% 

ELCAP 1 3.11 87.03% 75.08% 76.01% 78.1% 74.03% 

2 2.90 88.02% 77.3% 79.01% 78.9% 79.1% 

3 2.73 87.1% 74.7% 77.9% 77.7% 78.06% 

5-Patients 1 2.33 87.5% 76.09% 78.02% 76.1% 80.07% 

2 2.89 87.9% 78.03% 78.05% 74.4% 82.02% 

3 2.40 89.02% 78.9% 81.03% 77.4% 85.05% 

 The model outperformed itself in terms of accuracy when using the TCIA dataset and COMBO_1 

test dataset. Notably, the model trained on the 5-patients dataset and tested on COMBO_3 achieved a 

higher precision score than those trained on TCIA and ELCAP datasets. The Auto-LNDS model 

achieved a precision score of 85.05%, which was higher than that of AlexNet and SegNet but lower 

than that of Old_U-Net. However, regarding the accuracy, the Auto-LNDS model ranked third among 

the four models. 

7. DETECTION, SEGMENTATION, AND PRECISION CAPABILITY 

ANALYSIS 

 Table 6 showcases several instances of how effectively different models segment lymph nodes. 

Upon examining the segmented images, medical experts have unanimously concluded that each model 

accurately divided the lymph node parts in the first row. However, some models, including Old U-Net, 

AlexNet, and Auto-LNDS, missed out on a lymph node part in the second row. SegNet and the 

proposed model, on the other hand, performed better by correctly segmenting the data. Factors such as 

the small size of the section, poor image quality, or the proximity of two challenging-to-disentangle 

portions could have contributed to this issue. Row three also presented similar challenges, but the 

Auto-LNDS and suggested model outperformed the rest. Apart from Old U-Net and SegNet, all models 

correctly segmented the lymph node in row four. Only the proposed model could detect the tiny lymph 

node section in row five, which other models missed due to its small size, iso-intensity, or partial 

volume effect. The models accurately identified the lymph node parts in rows six and seven. However, 

row eight presented a similar issue to row five, but the proposed model was able to segment the lymph 

node part appropriately. Medical professionals have commended the proposed approach for 

successfully segmenting small or closely spaced lymph node sections. 
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Table  6. Lymph Node Segmentation and Prediction by Several Models 

 Precision 

CT 

Image Actual Old_U-Net AlexNet SegNet Auto-LNDS 

Proposed 

Model 

       
       

       
       

       
       

       
       

       
       

       
       

       
       

       

 Table 7 provides examples of how various models have been utilized to find lymph nodes. Upon 

examining the detected photographs, medical experts have concluded that the proposed model correctly 

identified lymph nodes in both large and small sizes, starting from the fifth column. Due to the thin 
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dimension, some versions of models, including Auto-LNDS, Old U-Net, SegNet, and AlexNet, skipped 

one lymph node in the second row. In row four, AlexNet and SegNet missed one lymph node due to 

low image resolution and an unobtrusive display on the lymph node image. Two lymph nodes in row 

five were disregarded by Old U-Net, AlexNet, and SegNet due to poor picture resolution or partial 

volume effects. Medical experts have asserted that the proposed model's performance is superior to 

others in recognizing lymph node portions affected by the minute shape, size, insufficient resolution, or 

partial volume effect. 

Table  7. Lymph Node Detection by Different Models 

 LN Detection 

CT Image Old_U-Net AlexNet SegNet Auto-LNDS Proposed Model 
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CHAPTER 5:  DISCUSSION & LIMITATION 

 The initial step in treatment involves identifying every LN, which can be a time-consuming and 

laborious task. However, we have developed an innovative deep-learning approach that enables quick 

and accurate detection and segmentation of mediastinal LNs. With the help of this technology, 

radiologists can now obtain an LN map quickly, which can aid in diagnostic interpretation. This is the 

first attempt to detect and segment LNs using CT data automatically. Previous efforts were focused on 

contrast-enhanced or small-diameter LNs, utilizing various methods. Moreover, earlier methods 

struggled with CT images that have tiny LN sections. Several methods overlapped or missed the small 

LN component during segmenting. To address this, we prioritized the minor component to reduce 

knowledge loss during training. 

 Our approach involved achieving information lossless upsampling through a hybridized bilinear 

interpolation method, while the TGV-based methodology reduced noise and smoothed the image. The 

vivid contrast and quality of the processed datasets significantly contributed to accuracy, allowing the 

model to outperform cutting-edge methods with a maximum accuracy score of 94.8%, a Jaccard score 

of 91.9%, a recall score of 94.1%, and a precision score of 93.1%. 

 However, there are several limitations to this thesis. Our primary objective was to identify and 

separate mediastinal lymph nodes from CT scans. We used a modified deep-learning algorithm called 

UNet++ to address slight concerns with chunk detection in medical photos. The proposed approach 

aimed to preserve texture discontinuities, pick noisy regions, find the right balance points by 

backpropagation, and restore image resolution. Due to time constraints, we utilized high-resolution CT 

images instead of contrast-enhanced CT pictures for training and testing. While we examined three 

datasets and compared the model's accuracy with four different methodologies, more open datasets and 

methods are available. Additionally, the model may not perform well in real-time LN detection since 

detection and segmentation quality were given more weight in this thesis.  
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CHAPTER 6:  CONCLUSION 

 The identification of lymph nodes is crucial in detecting cancer and providing patients with the 

necessary treatment. This thesis presents an innovative approach to segment and detects mediastinal 

lymph nodes from CT images using a modified UNet++ model. The model's efficiency was enhanced 

using a combination of bilinear interpolation and a total generalized variation (TGV)-based upsampling 

technique. With the aid of medical experts, a dataset containing three different combinations was 

processed. The performance metrics for the modified UNet++ model were evaluated against state-of-

the-art tactics and outperformed other methods with an impressive 94.8% accuracy and 93.1% 

precision accuracy, with a minimal 4.7 false-positive rate per volume. The model's performance was 

calculated across multiple datasets, with a satisfactory outcome achieved. It can be confidently inferred 

that the suggested technique provides precise detection and segmentation of mediastinal lymph nodes 

using the UNet++ model. Future plans involve optimizing the filter settings to reduce the image's noise 

and further enhance the model's performance. 
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