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CHAPTER I

INTRODUCTION

Quantum computer are promised to solve certain difficult problems in computer

science, such as factoring prime number, searching algorithms and running simu-

lations of quantum mechanical system faster than classical one. Quantum com-

puters use a quantum system instead of a classical system, storing information as

well as operating computation under the principle of quantum mechanics. The-

ory of quantum computation has been developed since the last nineteen century,

and today there are many quantum systems such as Nuclear Magnetic Resonance

(NMR), Trapped Ion, Optical, Solid State, and Superconducting that are used to

build quantum computers[1].

Solid state and superconducting devices have been shown to attract more

attentions for quantum computation because they are relatively easy to build and

scale up with existing fabrication technologies. Josephson junction is one of the

promising devices to be used as a quantum bit (qubit) in a quantum computer[2].

Josephson junction is a superconducting device which consists of two superconduc-

tors separated by a thin insulating barrier such as Nb/AlOx/Nb and Al/AlOx/Al.

The quantum behaviors of the Josephson junction appear in macroscopic system

because the phase difference of the macroscopic wave function of the two super-

conductors is a macroscopic variable. The dynamics of a current-biased Josephson

junction can be described by using a simple model known as the Resistively and

Capacitively Shunted Junction (RCSJ) model, which is analogous to the classical

motion of a fictitious particle moving in a tilted washboard potential. This poten-

tial is the key to study the quantum properties of the Josephson junction such as

energy levels in the potential well, state wave functions, tunneling rates through

the barrier, transition rate between the energy levels and the decoherence times of
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the states. These results are basic knowledge necessary for the experimental work

in quantum computation.

In this work, the quantum mechanical properties of the Josephson junction

to be used as a quantum bit in quantum computers are studied. First, the en-

ergy levels in the washboard potential which the information states 0 and 1 can

be stored in the ground state |0〉 and the first excited state |1〉 of the junction,

respectively. Second, the tunneling rate in the Josephson junction that the parti-

cle can tunnel through the potential barrier. This quantum tunneling effect is a

problem in computation because a particle prepared in a state inside the well can

leave the system. Third, the state wave functions of the qubit that describe the

probability of finding the state and the quantum behaviors. Fourth, the transition

rates of the states of qubit when interacting with an electromagnetic radiation. A

microwave current is applied as a perturbation to observe the transition between

the states. Finally, the decoherence times of the Josephson junction in the pres-

ence of current noise can be observed by considering the Rabi’s oscillations and

determine the feasibility of using Josephson junction as a qubit.

In chapter 2, I will discuss the basic concept of quantum computation in-

volving the history of quantum computation, the theory of computation and the

necessary conditions for quantum computation. The basics of Josephson junction

is described in chapter 3. I will explain the characteristics of ideal Josephson

junction and a useful model for describing the junction. In addition, the classical

dynamics of the Josephson junction that describe the electrical property of the

junction will be shown. In chapter 4, I will present the approximation methods

and the calculation details of finding the quantum properties of the Josephson

junction. Finally, chapter 5 is the conclusions of this thesis and suggestions for

future work.



CHAPTER II

REVIEW OF QUANTUM

COMPUTATION

In this chapter, the basic concepts of quantum computation are reviewed. First,

the history and the development of quantum computation will be presented for

realizing the limit of classical computer. Second, the differences between classical

bits and quantum bits are compared, as well as the potential and the power of

quantum computer. Finally, the necessary conditions of a quantum computer

known as DiVincenzo’s criteria will be described.

2.1 History of Quantum Computation

The history of Quantum Computation started in 1982 by a suggestion of R. P.

Feynman[3]. He showed the difficulties of simulating quantum mechanical systems

on a classical computer and suggested to build a computational device based on

the principle of quantum mechanics for avoiding the problems. The potential of

simulation capability is important for finding new phenomena in quantum physics,

which lead to create new technologies as challenging for physicists and scientists.

In 1964, Gordon Moore, who is now a chairman emeritus of Intel, Corp.,

proposed the restriction of feature size of transistor on an area of a silicon chip,

known as “Moore’s law”: the numbers of transistor doubly increase every eighteen

months[4]. Therefore the feature size decreases continuously as shown in Fig. 2.1.

He predicts that the end of the classical device (CMOS) is around year 2015 and

leads to the new quantum age. Quantum devices based on quantum mechanics
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Figure 2.1: The number of chip components in the past to the future[4].

will take place instead of the classical devices. Scientists realize this problem, so

they must find new computational devices to replace the classical one.

In 1994, Peter Shor, AT&T’s Bell Labs scientist, proposed a quantum al-

gorithm known as “Shor’s algorithm” for factoring prime numbers, running in

O((log N)3) steps[5], where N is a factoring number. Comparing with classical

algorithm, the well known factoring algorithm runs in O(exp[(64/9)1/3(ln N)1/3(ln

ln N)2/3]) steps which is an exponential problem on the classical computer, de-

pending on the digit number of N . This problem cannot be solved for a large

number. For example, N is a 129 digit number, the entire factorization with this

algorithm takes about eight months in computing on 1600 workstations around

the world (RSA129)[6]. If N is increased to 250 digit number, the factorization

will take about 800,000 years with the same computing power. This problem is

almost impossible to solve on the classical computer. On the contrary, the quan-

tum computational device can reduce the running steps to a polynomial problem

that can be solved in relatively much shorter time.

There is also another advantage of quantum computer over classical one such

as the security problem. Today, the information is very important and valuable.

The public-key cryptography is necessary for the information security. The compo-

nents of the cryptography are the information and a secret code. A sender encrypts

the information with the secret code and send to the public. A receiver, who has
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a specific key, decrypts the public message and then obtains the true information.

It has been concerned that the public-key cryptography will be breakdown in the

future if a quantum computer is successfully realized.

2.2 Classical Bit and Quantum Bit

In the classical computation, the information are represented by the binary digit

(bit) either 0 or 1, and use the classical systems such as ON state and OFF state

of a switch, or the classical voltage levels representing the state of a classical bit

as shown in Fig. 2.2. For multiple bits, the state of N bits can be written by 2N

integer value, 00...0, 00...1, ..., and 11...1. For example, the state of 5 bits may

be written as 10110 and can be represented by the voltage signal as shown in Fig.

2.3. The states of classical bits will be operated by Boolean logic gates such as

AND gate, OR gate and XOR gate etc., which have specific characteristics. The

integrated circuits that consist of a set of Boolean logic gates are used to compute

the information.

In the quantum computation, the basic concepts are based on the classical

computation but under the laws of quantum mechanics. Quantum computation

uses a quantum system instead of the classical system to store information and

perform computing. The information states 0 and 1 can be stored in the quantum

state of a quantum system, which can be considered as for example a two-level

system such as a system of ground state and first excited state of an atom or a

Voltage Voltage

Voltage 0 V             0 Voltage +5 V          1

tt0 V

+5 V

Figure 2.2: The voltage level for representing a classical bit.
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Figure 2.3: The voltage signal for representing a state of 5 bits.

system of spin up and spin down of an electron as shown in Fig. 2.4 and Fig.

2.5, respectively. Usually, the lower state is represented by a qubit |0〉 and the

higher state is represented by a qubit |1〉. In general, state of a qubit |Ψ〉 can be

a superposition of basis states |0〉 and |1〉, given by

|Ψ〉 = α|0〉 + β|1〉, (2.1)

where α and β are complex numbers representing a probability amplitude of a

system being found in |0〉 state and |1〉 state, respectively, and thus |α|2+ |β|2 = 1.

Considering a state of multiple qubits, e.g. the state of two qubits can be written

in the superposition of four basis states as

|Ψ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉, (2.2)

where |a|2 + |b|2 + |c|2 + |d|2 = 1. In general, the state of N qubits is the super-

position of 2N basis states represented by

|Ψ〉 =
11...1∑
00...0

cx|x〉, (2.3)

and
∑

|cx|
2 = 1 or represented by a vector in 2N dimensions (Hilbert space) as

shown in Fig. 2.6. For the quantum computation, the state of qubits is operated

by quantum gates such as Pauli gate, Hadamard gate, and Controlled-Not gate

etc[7]. The integrated of the quantum gates called quantum circuits are used for

computing on quantum computer. The superposition principle permits all basis

states of qubits to be operated simultaneously. Thus there are a large number of

computations at a time. For an example, if a state of N qubits is operated by

a quantum gate, the 2N basis states of qubits are performed at the same time.
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0

1
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Figure 2.4: The ground state and the first excited state of atom for representing

qubit.

1Spin Up

electron

0Spin Down

electron

Figure 2.5: The spin up and spin down of an electron for representing qubit.

Hence, quantum computer is more powerful equipment than any existing or the

future classical computer[7].

2.3 DiVincenzo’s criteria

DiVincenzo’s criteria is the necessary conditions of quantum computation that

involve the capability for using a quantum system to build a quantum computer.

The quantum system will be a good candidate, if it fulfils the five criteria[1]:

1. A scalable physical system of well-characterized qubits.

2. The ability to initialize the state of the qubits to a simple fiducial state.
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c2

c3

c1

Figure 2.6: The 2N dimension of Hilbert space.

3. Long (relative) decoherence times, much longer than the gate-operation time.

4. A universal set of quantum gate.

5. A qubit-specific measurement capability.

And the two additional criteria, which are necessary conditions for quantum com-

puter networkability are:

1. The ability to interconvert stationary and flying qubits, and

2. The ability to faithfully transmit flying qubits between specified locations.

Today, there are many quantum systems such as NMR, Trapped Ion, Optical, Solid

State, and Superconducting devices, proposed to build quantum computers[7].

The nuclear magnetic resonance (NMR) is the first physical system to be used for

building a quantum computer. A qubit is represented by the spins of an atomic

nucleus. The state |0〉 and |1〉 can be initialized by polarizing the spins in a

strong magnetic field. The quantum operations or quantum gates are constructed

from magnetic field pulses applied to the spins. The precessing magnetic moment

induces a voltage signal for reading out the state of qubit. The drawback of this

system is that it cannot scale up in the number of qubits because the effective
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pure state preparation schemes reduce the signal exponentially with the number

of qubits and the NMR implementation is too large.

The ion trap quantum computer use hyperfine (nuclear spin) state of an

atom and the lowest level vibration modes (phonon) of trapped atoms to rep-

resent qubits. The initial state can be prepared by cooling the atom into their

motional ground state, and hyperfine ground state (by trapping and using optical

pumping). The quantum gates are constructed from the application of laser pluses

for manipulating the atomic states and the state of qubit can be readout by mea-

suring the population of hyperfine states. The drawback of ion trap is that the

phonon lifetimes are short and the ions are difficult to prepare in their motional

ground states.

The optical photon quantum computer uses the location of single photon

between two modes, |01〉 and |10〉, or polarization to represent qubit. The initial

state can be prepared by creating single photon states (by attenuating laser light).

The quantum gates are constructed from phase shifters, beamsplitters, and non-

linear Kerr media, which allow two single photons to cross phase modulation. The

single photon can be detected by using a photomultiplier tube for reading out the

state of qubit. The drawback of the optical photon is that the absorption loss of

the nonlinear Kerr media with large ratio of cross phase modulation strength is

difficult to realize.

The solid state based quantum dot quantum computer uses the spin of a

single electron confined in a quantum dot to represent qubit. The quantum dot

can be defined by 50-nm-wide electrostatic gates on top of a AlGaAs/GaAs two-

dimensional electron gas (2-DEG), or by three-dimensional (3-D) confinement in a

patterned semiconductor heterostructure. The initial state is in the ground state

spin-up, prepared by place in the equilibrium at 300 mK and 5 tesla. The quantum

gates are constructed from an all-electrical control of spin via electrical gates. The

charge and coulomb interactions of the electrons allow fast gate operation and

readout the state of qubit.

The superconducting qubit is made with the Josephson junctions that the

information can be stored in either the charge on a nanoscale superconducting

island, the flux or phase drop in a circulating current, or in the energy levels in a
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single junction. The initial state can be prepared by cooling the qubit to extremely

low temperature about millikelvin (mK). The quantum gates are constructed by

using pulses of microwave radiation to perform qubit operations. The state of

the qubit can be read out by measuring the switching current in phase qubit

or by measuring the inductance in flux qubit. The inherently low dissipation

of superconductors make possible long coherence times, and integrated circuit

technology allows scaling to large and complex circuits.

The solid state and the superconducting systems are available on the Di-

Vincenzo’s criteria because they will be relatively easy to build and scale up with

existing fabrication technology. The initializing the state can be prepared by

cooling the system, and a decoherence time is long enough. In this work, I am

interested in the superconducting system using the energy levels in a single Joseph-

son junction as a candidate for qubit. I will study the classical characteristics and

quantum properties of Josephson junction for using the junction as a quantum bit

in quantum computer.

2.4 Summary

In this chapter, the basic concepts of quantum computation have been briefly dis-

cussed. The problems of simulating quantum systems and the restriction of feature

size of transistor lead to the end of classical computer. The theory of quantum

computation are based on the classical computation under the laws of quantum

mechanics. The basic unit of quantum computation is a quantum bit that can be

represented by a quantum system. There are many quantum systems proposed to

build quantum computers. Josephson junction is a one of the promising devices to

be used as a quantum bit in a quantum computer. Josephson junction is also on

the DiVincenzo’s criteria and has the quantum behaviors appeared in macroscopic

system. The theoretical background of Josephson junction will be discussed in the

next chapter.



CHAPTER III

THEORETICAL

BACKGROUND OF

JOSEPHSON JUNCTION

In this chapter, the theoretical background of Josephson junction is described.

First, the characteristics of Josepson junction that involve the structure and the

properties will be explained. Second, a simple model that describes the dynamics

of the Josephson junction is used to find the classical equation of motion and the

potential energy of the system. Finally, I will show how to obtain the solution for

equation of motion and describe the electrical property of the junction.

3.1 The characteristics of Josephson junction

A superconductor was discovered in 1911 by Heike Kamerlingh-Onnes who showed

that, below a critical temperature, a superconductor can conduct electricity with-

out electrical resistance. He found that a high magnetic field could destroy the

superconductivity. Then, in 1933, W. Meissner and R. Ochsenfeld discovered the

ideal diamagnetism of a superconductor. In the presence of an applied magnetic

field, a superconductor can expel the magnetic field from the interior, thus the

field inside becomes zero. The superconductivity was not well understood on the

theoretical basis until 1975. John Bardeen, Leon Cooper and Robert Schrieffer

published the BCS theory for explaining the properties of superconductor in the

microscopic scale[8]. In superconductor, two electrons bind together to form a
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Cooper pair. The attractive interaction between the electrons involves the inter-

action between the electrons and the vibrating crystal lattice (phonons). When

an electron moves through a conductor, it will cause an increasing of the positive

charges concentration in the lattice around it, however the net charge is still the

same. This can attract another electron with momentum opposite to the first for

holding together. A Cooper pair has a certain binding energy that is higher than

the energy provided by collisions from oscillating atoms in the conductor. The

electron pair will stick together and resists all collisions, thus not experiencing a

resistance. An electron has a spin of 1/2 and thus the total spin of the Cooper

pair can be either S = 0 (singlet state) or S = 1 (triplet state). The wave function

of the Cooper pair is the product of the orbital and spin parts that is asymmetric

under the interchange of the pair. Therefore, the orbital angular momentum of

the wave function for a spin-singlet is symmetric that is L = 0 (s-wave) and L = 2

(d-wave), and that for a spin-triplet is asymmetric L = 1 (p-wave). The conven-

tional Cooper pair has the total spin of zero with the s-wave pairing. The Cooper

pair acts as a boson that can occupy the same quantum state. These bosons show

the Bose-Einstein condensation in which the states of Cooper pair form a coherent

matter. This refers to a macroscopic wave function that is the key property of

superconducting state.

The discovery of high-temperature superconductors lead to many appli-

cations of superconductor that have been used in various fields. For example,

magnetic-levitation can be used in transport vehicles. In Japan, the Yamanashi

MLX01 MagLev train can be made to float on the strong superconducting magnets

for eliminating the frictions between the train and its tracks. Although the speed

of the train is incredible at speed of 361 mph (581 kph), the strong magnetic fields

can create a bio-hazard to human. In medicine, Magnetic Resonance Imaging

(MRI) is used to create images of opaque organ in living organisms by impinging

a strong superconductor-derived magnetic field into the body. The hydrogen atom

in the human body such as water and fat molecules are forced to accept energy

from the magnetic field. Then, they release the energy with a resonance frequency

that can be detected and converted graphically by a computer. The MRI is a useful

mechanism for saving human life. A very sensitive measurement of magnetic fields
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can be made with the Superconducting Quantum Interference Devices (SQUIDs),

which can detect the changes of magnetic flux in order of less than 10−14Wb.

These devices have applications in medicine, geology and other fields. However,

the BCS theory is not well suited for explaining high-temperature superconductor

because it cannot describe some aspects of the high-temperature superconductor

such as its high critical temperature, the small change of the critical temperature

with the implantation of paramagnetic impurities, etc.

Josephson junction is a superconducting device, which consists of two su-

perconductors separated by a thin insulating barrier such as Nb/AlOx/Nb and

Al/AlOx/Al as shown in Fig. 3.1. The two structures are made of conventional

superconductor. One can also build Josephson junction from high-temperature su-

perconductor. Considering the structure of Josephson junction, the Cooper pair

can pass through a thin insulating barrier because of quantum mechanical effect

called “tunneling effect”. The tunneling current in the junction was predicted

by Brian D. Josephson[9] who received the Nobel prize in 1973. The two sepa-

rated superconductors can be described by two wave functions Ψ1 and Ψ2. The

time-dependent Schrödinger equations of the two systems are

∂Ψ1

∂t
=

−iE1Ψ1

�
, (3.1)

∂Ψ2

∂t
=

−iE2Ψ2

�
. (3.2)

However, there is a weak coupling between the systems due to the exchange of the

Cooper pairs between the superconductors[10]. Hence the coupling terms K may

Superconductor

Superconductor

Insulator

Superconductor

Superconductor

Insulator

Figure 3.1: The structure of Josephson junction.
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be added into Eq.(3.1) and Eq.(3.2)

∂Ψ1

∂t
=

−i

�
(E1Ψ1 + KΨ2), (3.3)

∂Ψ2

∂t
=

−i

�
(E2Ψ2 + KΨ1). (3.4)

In the condensation of the electrons pairs, the states of the Cooper pairs occupy the

same ground state and form a coherent matter wave that refers to a macroscopic

wave function. The wave function of the macroscopic two states system can be

written in terms of particle density ns and phase of the wave function φ as

Ψ1 =
√

ns1e
iφ1 , (3.5)

Ψ2 =
√

ns2e
iφ2 , (3.6)

corresponding to the superconductor 1 and 2, respectively. Inserting Ψ1 and Ψ2

into the Eq.(3.3) and Eq.(3.4), one obtains

ṅs1

2
√

ns1

eiφ1 + i
√

ns1e
iφ1φ̇1 =

−i

�
(E1

√
ns1e

iφ1 + K
√

ns2e
iφ2), (3.7)

ṅs2

2
√

ns2

eiφ2 + i
√

ns2e
iφ2φ̇2 =

−i

�
(E2

√
ns2e

iφ2 + K
√

ns1e
iφ1). (3.8)

By comparing the real and the imaginary parts from both sides of Eq.(3.7) and

Eq.(3.8), the relations are found

1

2

ṅs1
√

ns1

=
K

�

√
ns2 sin(φ2 − φ1), (3.9)

1

2

ṅs2
√

ns2

=
K

�

√
ns1 sin(φ1 − φ2), (3.10)

i
√

ns1φ̇1 =
−i

�
(E1

√
ns1 + K

√
ns2 cos(φ2 − φ1)), (3.11)

i
√

ns2φ̇2 =
−i

�
(E2

√
ns2 + K

√
ns1 cos(φ1 − φ2)). (3.12)

Following the conditions that the exchange rate of the Cooper pairs between su-

perconductor 1 and 2 must be equal, therefore ns1 = −ns2 and the two supercon-

ductors are identical ns1 = ns2. According to Eq.(3.9) and Eq.(3.10), one obtains

ṅs1 =
2K

�
ns1 sin(φ2 − φ1) = −ṅs2. (3.13)

If one multiplies the particle density with the volume of superconductor Vp that

yields the change of the particle numbers, and the charge of the Cooper pair 2e,

the electric current Is called the “supercurrent” is got

Is = Ic sin(φ2 − φ1), (3.14)
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where Ic = 4KeVpns/� is the critical current of the junction. This is the first

Josephson relation or known as the dc Josephson relation. The supercurrent de-

pends on the critical current and the phase different across the two superconduc-

tors. From Eq.(3.11) and Eq.(3.12), one found

d

dt
(φ1 − φ2) =

2eV

�
, (3.15)

where E2 −E1 = 2eV and V is a finite voltage across junction. This is the second

Josephson relation or known as the ac Josephson relation in case of no magnetic

fields. The voltage depends on the time derivative of the phase difference. If the

voltage across junction is applied, the phase difference will increase linearly with

time

φ1 − φ2 =
2π

Φ0

V t + φ(t = 0). (3.16)

Note that Φ0 = h/2e (2.07×10−15Wb) is the flux quantum. In general, if magnetic

field is applied to the Josepson junction described by a vector potential �A (�∇× �A =

�B), and by using the theory of symmetry and invariance principle, the phase

difference can be replaced by the gauge-invariance phase difference across the

junction defined by[11]

γ = φ2 − φ1 −
2π

Φ0

∫
2

1

�A · d�l. (3.17)

Hence, the first Josephson relation can be rewritten as

Is = Ic sin(γ), (3.18)

and the second Josepson relation becomes

V =
�

2e

dγ

dt
. (3.19)

3.2 RCSJ model

The Josephson junction can be considered by using the equivalent circuit diagram

known as the RCSJ (Resistively and Capacitively Shunted Junction) model as

shown in Fig. 3.2. This model was proposed by W.C. Stewart and D.E. McCumber

[12, 13]. Because the geometry of Josephson junction is similar to a parallel plate
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capacitor, it has a finite capacitance C. The real junction has a shunted resistance

R due to a finite voltage across the junction. The magnitude of the resistance

depends on the type of junction such as S-c-S junction, S-N-S junction and S-

I-S junction where S, I, N and c are superconductor, insulator, normal metal,

and constriction, respectively as seen in Fig. 3.3. J.J. is a circuit symbol of the

Joephson junction described by the Josephson relation. By using the Kirchhoff’s

current law, the total bias current Idc through the junction can be written as

Idc = C
dV

dt
+

V

R
+ Ic sin γ. (3.20)

Note that, a current noise is neglected from the junction. The first term on the

right hand side is the displacement current across the capacitor. The second term

is the current through the resistance and the last term is the supercurrent through

the junction. Inserting the second Josephson relation into Eq.(3.20), one obtains

Idc = C[
�

2e
]
d2γ

dt2
+

1

R
[
�

2e
]
dγ

dt
+ Ic sin γ. (3.21)

This is a non-linear second order differential equation. The numerical solution of

the differential equation will be discussed in next section. Multiplying Eq.(3.21)

with �/2e, one obtains

C[
�

2e
]2

d2γ

dt2
+

1

R
[
�

2e
]2

dγ

dt
+

d

dγ
(−

�

2e
(Ic cos γ + Idcγ)) = 0. (3.22)

By comparing Eq.(3.22) with the classical equation of motion

m
d2x

dt2
+ 2η

dx

dt
+

dU

dx
= F (t), (3.23)

C J.J.
V

R

Idc

Figure 3.2: The equivalent circuit diagram of Josephson junction.
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Figure 3.3: The several type of Josephson junction (a) S-I-S (b) S-N-S and (c)

S-c-S.

one can see that γ is the dynamical variable in the Josephson junction, C[ �

2e
]2 is

equivalent to a mass m, 1

R
[ �

2e
]2 is corresponding to the dragging term and

U(γ) = −
�

2e
Ic(cos γ +

Idc

Ic

γ) (3.24)

is the potential energy of the system. This potential is known as the tilted wash-

board potential as seen in Fig. 3.4. The tilt of the potential depends upon the

applied current Idc. This potential will be used to find the energy quantization

and study other quantum behaviors of the Josephson junction such as tunneling

rates, wave functions, transition rates, and decoherence times in the next chapter.
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Idc = 0

0 < Idc < Ic

Figure 3.4: The tilted washboard potential.

3.3 Classical dynamics of Josephson junction

In this section, the solution to the equation of motion will be found and describe

the electrical property of the Josephson junction. Since Eq.(3.21) cannot be solved

analytically, I use a numerical method to solve the equation of motion. From the

equation of motion

C[
�

2e
]
d2γ

dt2
+

1

R
[
�

2e
]
dγ

dt
+ Ic sin γ = Idc, (3.25)

I introduce a dimensionless variable τ = (2eIcRt)/� called “dimensionless time”

and substitute with time t. The second order differential equation is obtained

β
d2γ

dτ 2
+

dγ

dτ
+ sin γ =

Idc

Ic

, (3.26)

where β = (2eIcR
2C)/� is called a damping parameter. There are two important

parameters β and Idc/Ic. The parameter β depends on the junction design and the

other parameter is the ratio of the applied bias current and the critical current.

The value of the parameters and the initial condition γ(t = 0) and γ̇(t = 0)

are set before solving the differential equation. Note that, the dot is now the

derivative with respect to the dimensionless time. By using the approximation of
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the derivative defined by

γ̇(Δτ) = γ̈(0)Δτ + γ̇(0), (3.27)

γ(Δτ) = γ̇(0)Δτ + γ(0), (3.28)

this approximation can be applied to the differential equation. When the bias

current is below the critical current, the phase difference is a constant as shown

in Fig. 3.5 thus the voltage across the junction is zero by the second Josephson

relation. When the bias current is more than the critical current of the junction,

the phase difference increases and oscillates in time, thus a finite voltage across

the junction occurs, as shown in Fig. 3.6. The average voltage V can be calculated

from the solution of dimensionless time derivative of the phase difference as shown

in Fig. 3.7 using the relation

γ̇av =
1

T

∫
T

0

γ̇(τ)dτ =
Vav

IcR
. (3.29)

The electrical property of the junction can be described by I-V characteristic that

depends on the parameters β and Idc/Ic. Figure 3.8 is an I-V characteristic of the

junction for a small damping parameter (β = 0.1). There is an average voltage

when the bias current is more than the critical current. In the other case, for

a damping parameter β > 1, there are two stable solutions of the differential

equation in some region where Idc < Ic. One solution is the normal solution

V = 0 (for the initial condition γ̇(0) = 0 and γ(0) = 0) as shown in Fig. 3.9.

The second solution is that there is an average voltage (for the initial condition

γ̇(0) = constant and γ(0) = constant) as shown in Fig. 3.10. Therefore, the

I-V characteristic becomes hysteretic as shown in Fig. 3.11 when β > 1. The

hysteretic curve of I-V characteristic can be explained by considering a model of a

massive particle sliding down the tilted washboard potential as shown in Fig. 3.12.

When Idc = 0, one can see that the particle stays at a minimum of the potential

well. If the bias current Idc is raised, the well becomes shallow but the particle

still stays in the well. When the bias current is more than the critical current,

the particle can roll down the washboard potential, resulting in the change of the

phase difference i.e. a finite voltage across the junction occurs. When the bias

current is decreased below the critical current, the massive particle is still under

motion due to the inertia of the particle (mass). The inertia depends on the value
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of damping parameter β. The particle return trapped in the well when the bias

current reach a retrapping current (IR) where the effect of inertia is less than the

effect of damping. The voltage across the junction becomes zero.
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Figure 3.5: The solution of γ when Idc < Ic.
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Figure 3.7: The solution of γ̇ when Idc = 1.2.
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Figure 3.8: The current-voltage characteristic of Josephson junction with β = 0.1.
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Figure 3.9: The first solution of I-V characteristic with β = 4.
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Figure 3.10: The second solution of I-V characteristic with β = 4.
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Figure 3.11: The hysteretic curve of I-V characteristic with β > 1.

Figure 3.12: Model of a massive particle moving in the tilted washboard

potential[14].
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3.4 Summary

In this chapter, I have briefly described the theoretical background of Joseph-

son junction and discussed the characteristics of Josephson junction. Then, the

RCSJ model was used to describe and explain the classical dynamic of Josephson

junction related to the electrical properties of the junction. The current-voltage

characteristic of the Josephson junction can be explained by using a model of a

particle sliding down the tilted washboard potential. This potential is to be used

for investigating the quantum behaviors of the junction. The energy-level quan-

tization in current-biased Josephson junction has been observed since 1985[15].

The calculation of quantum behaviors of the Josepson junction will be described

in the next chapter.



CHAPTER IV

CALCULATION OF

QUANTUM BEHAVIORS OF

THE JOSEPHSON JUNCTION

In this chapter, I will present the method and the calculation details for finding

quantum behaviors of Josephson junction such as the quantized energy levels in

the approximation washboard potential, the tunneling rates through the potential

barrier, the state wave functions, transition rates between energy levels due to

electromagnetic radiation and decoherence times caused by current noise in the

junction. This knowledge is very useful for simplifying an experiment and shows

that the two-level system of Josephson junction is possible to be used as a quan-

tum bit in quantum computer. The theory of quantum mechanics as well as the

semiclassical methods is used to calculate and explain the quantum behaviors.

4.1 The Hamiltonian of the Josephson junction

From the RCSJ model, I have shown how to obtain the effective potential of the

Josephson junction system known as the washboard potential. In this section,

I will use this potential to find a Hamiltonian of the system. According to the

Lagrangian,

L = T − U

=
1

2
CV 2 +

�

2e
Ic cos γ +

�

2e
Idcγ

=
1

2
C(

�

2e
)2γ̇2 +

�

2e
Ic cos γ +

�

2e
Idcγ,
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the kinetic energy of the system is the energy stored in a charged capacitor. From

the generalized momenta pi = ∂L/∂q̇i, the Hamiltonian can be written as

H = piq̇i − L

=
p2

γ

2m
−

�

2e
Ic cos γ −

�

2e
Idcγ

=
p2

γ

2m
− mω2

0
cos γ −

�

2e
Idcγ,

where m = C(�/2e)2 is the mass of the system and ω0 =
√

2eIc/�C is called

plasma frequency. The quantum mechanical behaviors can be observed when the

bias current is slightly smaller than the critical current Idc � Ic.

4.2 Energy level

The energy-level quantization in the zero-voltage state of a current-biased Joseph-

son junction was directly measured by spectroscopy[15, 16]. In this section, I

will show how to calculate the quantized energy levels in the potential well us-

ing the semiclassical method known as Bohr Sommerfeld quantization rule. The

washboard potential can be approximated by a cubic parabola potential, that is

defined by a polynomial function with degree less than or equal to 3, when the

applied bias current is close to the critical current. This approximation is helpful

in calculating the energy levels and the wave functions because a non-linear term

is rather difficult to solve in the differential equation. The potential can be written

as

U(q) = 3U0[
q

q0

]2[1 −
2

3

q

q0

], (4.1)

where q = γ − sin−1 I ′, I ′ = Idc/Ic, and q0 = 2(1 − I ′2)1/2/I ′ is the position of

the maximum of the barrier being considered and U0 = �Ic(1 − I ′2)3/2/3eI ′2 is

the height of the barrier, given in terms of the junction parameters. The cubic

potential is shown schematically in Fig. 4.1, where q3 = x3q0 , q2 = x2q0 and

q1 = x1q0 are the classical turning points at energy E. The calculation details are

described in Appendix A.

According to the Bohr Sommerfeld quantization rule for no rigid wall[17], I
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Figure 4.1: The cubic parabola potential.

have
1

�

∫
q2

q3

√
2m(E − U)dq = π(n +

1

2
) : n = 0, 1, 2, . . . . (4.2)

The left hand side of Eq.(4.2) can be written as
∫

q2

q3

√
2m(E − U)dq =

∫
q2

q3

√
2m(E − 3U0[

q

q0

]2[1 −
2

3

q

q0

])dq

= q0

∫
x2

x3

√
2m(E − 3U0x2[1 −

2

3
x])dx

= q0

√
2mU0

∫
x2

x3

√
E

U0

− 3x2 + 2x3dx

= 2q0

√
mU0

∫
x2

x3

√
x3 −

3

2
x2 +

E

2U0

dx,

where x3(E) < x2(E) < x1(E) are the roots of the equation x3 − 3

2
x2 + E

2U0

. I can

rewrite this equation as

x3 −
3

2
x2 +

E

2U0

= (x − x3)(x2 − x)(x1 − x). (4.3)

Let t = (x − x3)/(x2 − x3); x = x23t + x3; dx = x23dt and x23 = x2 − x3, thus

2q0

√
mU0

∫
x2

x3

√
x3 −

3

2
x2 +

E

2U0

dx = 2q0

√
mU0

∫
x2

x3

√
(x − x3)(x2 − x)(x1 − x)dx

= 2q0

√
mU0

∫
1

0

√
x23t(x23 − x23t)(x13 − x23t)dt

= 2q0

√
mU0x

2

23
x

1/2

13

∫
1

0

√
t(1 − t)(1 −

x23

x13

t)dt.
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Using the integral formula
∫

1

0
xλ−1(1−x)μ−1(1−βx)

−ν

dx = B(λ, μ)2F1(ν, λ; λ+μ; β)

where B(λ, μ) is the beta function (Euler’s integral of the first kind)[18] and

2F1(ν, λ; λ + μ; β) is the Gaussian hypergeometric function[19], then

2q0

√
mU0

∫
x2

x3

√
x3 −

3

2
x2 +

E

2U0

dx = 2q0

√
mU0x

2

23
x

1/2

13
B(

3

2
,
3

2
)2F1(−

1

2
,
3

2
; 3;

x23

x13

).

(4.4)

Note that beta function is defined by B(λ, μ) =
∫

1

0
tλ−1(1 − t)μ−1dt, therefore

B(3

2
, 3

2
) =

∫
1

0

√
t(1 − t)dt = π/8. The quantized energy levels calculated by the

Bohr Sommerfeld quantization rule are∫
q2

q3

√
2m(E − U)dq = 2q0

√
mU0x

2

23
x

1/2

13
(
π

8
)2F1(−

1

2
,
3

2
; 3;

x23

x13

)

= π�(n +
1

2
) : n = 0, 1, 2, . . . .

The energy levels inside the well depend on the junction parameters such as the

critical current (Ic) and the capacitance (C) as well as the applied bias current

(Idc). When the bias current is raised, the potential well becomes shallow, thus

decreasing the number of energy levels. The values of the two energy levels inside

the well vs. bias current are shown in Fig. 4.2 and the energy level spacing
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Figure 4.2: The energy levels of ground state and first excited state.
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Figure 4.3: The energy levels spacing of ground state and first excited state.

in the range of microwave frequency (GHz) is shown in Fig. 4.3 (the junction

parameters are Ic = 20μA and C = 4pF ). A microwave current can be applied as

a perturbation to observe the transition between the two lowest lying states. The

results agree with the previous result by P. Kopietz et al.[20] but the solution is

presented in another function.

4.3 Tunneling rate

Two energy levels of Josephson junction may be used as qubits correspond to bit

1 and 0 respectively by representing the ground state with |0〉 and the first excited

state with |1〉. However, a quantum effect known as tunneling effect can occur,

i.e. a particle can tunnel through the potential barrier as shown in Fig. 4.4. In

this section, the tunneling rates at each energy level of the Josephson junction will

be calculated using the semiclassical method. According to the WKB formula[21],

the tunneling rate from the nth energy level is

Γn =
1

T (En)
exp(−

2Sf (En)

�
), (4.5)
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Figure 4.4: The tunneling effect and the transition in the washboard potential.

where T (En) is the period of the classical motion at energy En, defined by T (E) =∮
∂p

∂E
dx =

∮
dx

v
. From the momentum p =

√
(2m(E − U)), I obtain

T (En) = 2

∫
q1

q2

m√
2m(U − En)

dq

= q0

√
m

U0

∫
x1

x2

dx√
−x3 + 3

2
x2 − En

2U0

= q0

√
m

U0

∫
x1

x2

dx√
(x − x3)(x − x2)(x1 − x)

,

and using the integral formula in[19], the period of classical motion is

T (En) = 2q0

√
m

U0

1
√

x1 − x3

EllipticK(k), (4.6)

where k =
√

x1−x2

x1−x3

and EllipticK(k) is the complete elliptic integral of the first

kind[22]. The Euclidean action across the classically forbidden region (region 1)

is

Sf (En) =

∫
q1

q2

√
2m(U − En)dq

= 2q0

√
mU0

∫
x1

x2

√
−x3 +

3

2
x2 −

En

2U0

dx

= 2q0

√
mU0

∫
x1

x2

√
(x − x3)(x − x2)(x1 − x)dx.
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Let t = x−x2

x1−x2

, x = x12t + x2, and dx = x12dt, thus

Sf (E) = 2q0

√
mU0

∫
1

0

√
(x12t + x23)(x12t)(x12 − x12t)dt

= 2q0

√
mU0x

2

12
x

1/2

23

∫
1

0

√
t(1 − t)(1 −

x12

x23

t)dt.

Using the integral formula
∫

1

0
xλ−1(1−x)μ−1(1−βx)

−ν

dx = B(λ, μ)2F1(ν, λ; λ+μ; β).

The Euclidean action can be written as

Sf (E) = 2q0

√
mU0x

2

12
x

1/2

23
B(

3

2
,
3

2
)2F1(−

1

2
,
3

2
; 3;−

x12

x23

) (4.7)

= 2q0

√
mU0x

2

12
x

1/2

23
(
π

8
)2F1(−

1

2
,
3

2
; 3;−

x12

x23

). (4.8)

The tunneling rate describing the transmission of the particle through the po-

tential barrier is exponentially decay with the action per a period of time. The

states at higher energy level are more easily to tunnel through the barrier than the

lower states. The transmission coefficients of ground state and first excited state

exponentially increase with the bias current as shown in Fig. 4.5. For the energy

level near the top of the barrier, the transmission coefficient becomes unity. The

tunneling rates of the ground state and the first excited state are shown in Fig.

4.6. It can be seen that the tunneling rates of the first excited state is about 3
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Figure 4.5: The transmission coefficient of ground state and first excited state.
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Figure 4.6: The tunneling rate of ground state and first excited state.

orders of magnitude more than that of the ground state. In experiment, if the

tunneling occurs, the voltage across the junction will be observed because the

particle has a phase difference evolving in time. This is an obstacle for quantum

computation because the primary states cannot be kept to perform computation.

For the results presented here, the time scale of the ground state of the particle

is more than 100 ns before the tunneling occurs. The lifetime of the zero-voltage

state can be described by a master equation[20, 23]. This result is equal to the

previous work by P. Kopietz et al. but the solutions are represented in another

function.

4.4 Wave function

In quantum mechanics, the probability of finding a particle can be described and

observed the quantum property from the wave function. In this section, I will show

how to find the energy levels and the wave functions of the cubic parabola potential

by solving the time independent Schrödinger equation numerically. According to
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the one dimensional Schrödinger equation

−
�

2

2m

∂2Ψn

∂x2
+ V (x)Ψn = EnΨn, (4.9)

the approximation wave function (w
(n)

j
) is considered in an interval (a,b) under

the three conditions[24]

1. xj = lj ; j = 1, 2, 3, ..., N − 1

2. w
(n)

j
= Ψn(xj)

3. w
(n)

0
= w

(n)

N
= 0 (boundary condition), where x0 = a , xN = b and l is the

step size defined by l = (b − a)/N .

The interval of the wave function is divided to N points and the wave function

(Ψn(xj)) at any point xj is approximated with approximation wave function (w
(n)

j
),

as well as using the boundary condition at the ends of the interval. Following the

derivative approximations,

Ψ′′
n
(xj) �

1

l2
{w

(n)

j−1
− 2w

(n)

j
+ w

(n)

j+1
}, (4.10)

Ψ′
n
(xj) �

1

2l
{w

(n)

j+1
− w

(n)

j−1
}, (4.11)

the approximated wave function can be inserted into the Schrödinger equation,

and obtained a system of equations for solving the eigenvalue problem. At the

first point (j = 1) on the solution,

−
�

2

2m

1

l2
{0 − 2w

(n)

1
+ w

(n)

2
} + V (x1)w

(n)

1
= Enw

(n)

1
, (4.12)

at the second point (j = 2) on the solution,

−
�

2

2m

1

l2
{w

(n)

1
− 2w

(n)

2
+ w

(n)

3
} + V (x2)w

(n)

2
= Enw

(n)

2
, (4.13)

and at the last point (j = N − 1) on the solution,

−
�

2

2m

1

l2
{w

(n)

N−2
− 2w

(n)

N−1
+ 0} + V (x2)w

(n)

N−1
= Enw

(n)

N−1
. (4.14)

These can be rewritten in a matrix form as a tridiagonal matrix represented by⎛
⎜⎜⎜⎜⎜⎜⎝

�
2

2m

2

l2
+ V (x1) − �

2

2m

1

l2
0 0

− �
2

2m

1

l2
�
2

2m

2

l2
+ V (x2) − �

2

2m

1

l2
0

...
...

. . .
...

0 0 · · ·
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

w
(n)

1

w
(n)

2

...

w
(n)

N−1

⎞
⎟⎟⎟⎟⎟⎟⎠

= E(n)

⎛
⎜⎜⎜⎜⎜⎜⎝

w
(n)

1

w
(n)

2

...

w
(n)

N−1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(4.15)
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I then need to solve the eigenvalue problem of (N − 1)× (N − 1) matrix to obtain

the energy eigenvalues and the eigenfunctions of the system. The error of this

approximation depend on the step size in O(l2). This method is applied to the

cubic parabola potential. The Schrödinger equation can be rewritten as

−
�

2

2m

∂2Ψn

∂q2
+ 3U0[

q

q0

]2[1 −
2

3

q

q0

]Ψn = EnΨn

−
�

2

2mq2

0

∂2Ψn

∂x2
+ 3U0x

2[1 −
2

3
x]Ψn = EnΨn,

and choose the interval of the wave function x0 = −1 and xN = 2 by considering

the shape of the potential that the wave function vanishes at the ends of the

interval. By setting N = 500, a system of 499 equations is obtained for solving the

eigenvalue problem. A large number of energy eigenvalues and eigenfunctions can

be found but only the eigenvalues and the eigenfunctions inside the well (E < U0)

are interested. The energy eigenvalues is in good agreement with the quantization

energies. It was found that the difference never exceed 2 % depending on the

number of matrix used as shown in Fig. 4.7 for the first five levels. The numerical

wave functions of the first five states are shown in Figs. 4.8-4.12. The wave

functions plotted in the cubic parabola potential is shown in Fig. 4.13. It can

be seen that they are somewhat similar to the wave functions of the harmonic

oscillator because the shape of cubic parabola potential is almost similar to the

parabola potential. This result can be used to approximate the operators of this

system with the operators of the harmonic oscillator system.
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Figure 4.7: The error of the eigen-energy and the quantized energy.
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Figure 4.8: The ground state wave function of Josephson junction.
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Figure 4.9: The first excited state wave function of Josephson junction.
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Figure 4.10: The second excited state wave function of Josephson junction.
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Figure 4.12: The fourth excited state wave function of Josephson junction.

4.5 Transition rate

In this section, I will show how to find the transition rates between the ground

state and the first excited state due to an electromagnetic radiation. I first keep

only a two-state system and apply the electromagnetic radiation by a microwave

current that is an ac current with angular frequency ω as a perturbation. The

time-dependent perturbation theory is used to solve the transition rate between

the ground state and the first excited state. According to the time-dependent

Hamiltonian,

H = H0 + H ′(t), (4.16)

H =
p2

γ

2m
−

�

2e
(Ic cos γ + Idcγ) −

�

2e
Iμwγe−iωt, (4.17)
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Figure 4.13: The five state wave functions in the cubic parabola potential.

the non-perturbed Hamiltonian can be written in a matrix notation as

H0 =

⎛
⎝ 〈0|H0|0〉 〈0|H0|1〉

〈1|H0|0〉 〈1|H0|1〉

⎞
⎠ =

⎛
⎝ E0 0

0 E1

⎞
⎠ . (4.18)

The matrix representation of the perturbed Hamiltonian is H ′ = − �

2e
Iμwγ̂e−iωt

and can be rewritten as

H ′ = −
�

2e
Iμw

⎛
⎝ 0 〈0|γ̂|1〉eiωt

〈1|γ̂|0〉e−iωt 0

⎞
⎠ , (4.19)

where Iμw is the amplitude of the microwave current. Consider the zero-voltage

state of the Josephson junction, the particle sits at the bottom of the well where

one may approximate the washboard potential as a harmonic oscillator. The

coordinate operator of harmonic oscillator is x̂ =
√

�

2mω
(â+â†), where ω =

√
k/m

is a normal mode of vibration corresponding to the energy En = �ω(n+ 1

2
). For the

junction system, the ω can be written in terms of energy spacing (E1−E0)/� = ω10.

Following this approximation, the matrix element of γ̂ can be approximated by

〈0|γ̂|1〉 =
√

�

2mω10

, where ω10 is the frequency corresponding to energy spacing.
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The matrix representation of the perturbed Hamiltonian is

H ′ = −

√
�

2Cω10

Iμw

⎛
⎝ 0 eiωt

e−iωt 0

⎞
⎠ = ε

⎛
⎝ 0 eiωt

e−iωt 0

⎞
⎠ . (4.20)

The state of the two-level system can be written in a superposition of the basis

states |0〉 and |1〉, given by

|Ψ(t)〉 = e−iE0t/�c0(t)|0〉 + e−iE1t/�c1(t)|1〉, (4.21)

or rewritten in a matrix notation as

|Ψ(t)〉 =

⎛
⎝ e−iE0t/�c0(t)

e−iE1t/�c1(t)

⎞
⎠ . (4.22)

According to the Schrödinger equation, i�
d|Ψ(t)〉

dt
= H|Ψ(t)〉, finding the exact

solution of the probabilities c0(t) and c1(t) will explain the transition between the

two energy levels due to the applied microwave current by substituting the full

Hamiltonian and the state wave function into the Schrödinger equation, the left

hand side, one obtains

i�
d|Ψ(t)〉

dt
= i�

⎛
⎝ − iE0

�
e−iE0t/�c0(t) + e−iE0t/�ċ0(t)

− iE1

�
e−iE1t/�c1(t) + e−iE1t/�ċ1(t)

⎞
⎠ ,

and on the right hand side, one obtains

H|Ψ(t)〉 =

⎛
⎝ E0e

−iE0t/�c0(t) + εeiωte−iE1t/�c1(t)

E1e
−iE1t/�c1(t) + εe−iωte−iE0t/�c0(t)

⎞
⎠ .

The matrix equation is in the form of⎛
⎝ e−iE0t/�i�ċ0(t)

e−iE1t/�i�ċ1(t)

⎞
⎠ =

⎛
⎝ εeiωte−iE1t/�c1(t)

εe−iωte−iE0t/�c0(t)

⎞
⎠ .

Thus the two ordinary differential equations are given by

i�ċ0(t) = εeiωte−i(E1−E0)t/�c1(t), (4.23)

i�ċ1(t) = εe−iωtei(E1−E0)t/�c0(t). (4.24)

Let (E1 − E0)/� = ω10 and substitute it into the differential equations,

i�ċ0(t) = εei(ω−ω10)tc1(t),

i�ċ1(t) = εe−i(ω−ω10)tc0(t).
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From Eq.(4.24), the probability c0(t) is related to the probability c1(t) by

c0(t) =
1

ε
ei(ω−ω10)ti�ċ1(t).

Differentiating c0(t) and inserting it into Eq.(4.23), one obtains a second-order

differential equation of c1(t) as

c̈1(t) + i(ω − ω10)ċ1(t) +
ε2

�2
= 0. (4.25)

The differential equation is solved by using the standard technique. Considering

c1(t) ∝ eiαt, the differential equation becomes

−α2 − (ω − ω10)α +
ε2

�2
= 0

α =
(ω − ω10) ±

√
(ω − ω10)2 + 4ε2/�2

−2
.

The general solution of the differential equation can be written as

c1(t) = A1e
iα1t + A2e

iα2t, (4.26)

where α1 =
−(ω−ω10)−

√
(ω−ω10)2+4ε2/�2

2
, α2 =

−(ω−ω10)+

√
(ω−ω10)2+4ε2/�2

2
and A1, A2

are constants. From the relation between c0(t) and c1(t), The general solution of

c0(t) is

c0(t) = −
�

ε
ei(ω−ω10)t(A1α1e

iα1t + A2α2e
iα2t). (4.27)

The initial conditions of the state are given by c0(0) = 1 and c1(0) = 0, that the

system starts out from the ground state. Following these conditions, the constants

A1 and A2 can be obtained by

c1(0) = A1 + A2 = 0

c0(0) = −
�

ε
(A1α1 + A2α2) = 1

A1 = −A2 =
ε/�√

(ω − ω10)2 − 4ε2/�2
.

The final solutions of differential equation are

c0(t) = e
i

2
(ω−ω10)t{

−i(ω − ω10)√
(ω − ω10)2 + 4ε2/�2

sin(
1

2

√
(ω − ω10)2 + 4ε2/�2t)

+ cos(
1

2

√
(ω − ω10)2 + 4ε2/�2t),
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c1(t) = −ie−
i

2
(ω−ω10)t

2ε/�√
(ω − ω10)2 + 4ε2/�2

sin(
1

2

√
(ω − ω10)2 + 4ε2/�2t). (4.28)

When the microwave current is applied at a resonance frequency, i.e. ω = ω10,

the transition probability will oscillate between zero and unity with the frequency

Iμw/
√

2�ω10C as shown in Figs. 4.14 and 4.15. This frequency is known as “Rabi

frequency” and the probability |c1|
2 and |c0|

2 are given by

|c1(t)|
2 = sin2

Iμw√
2�ω10C

t, (4.29)

|c0(t)|
2 = cos2

Iμw√
2�ω10C

t. (4.30)

The period of the oscillation depends on the amplitude of the microwave current

and the energy spacing between the ground state and the first excited state. A

least time used in the transition from the ground state to the first excited state is

t =
π
√

�ω10C/2

Iμw

.

This time corresponds to a gate time used to perform qubit. Considering the fre-

quency of the microwave current, the transition probability is sharply maximum at

the resonance frequency ω10 and decreases rapidly when the microwave frequency

shifts from the resonance frequency as shown in Fig. 4.16 where Ωi is the ith

0 2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0

(Abs c
0
)

2

Time (ns)

|c0|
2

Figure 4.14: The ground state probability when applied a microwave radiation.
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Figure 4.15: The first excited state probability when applied a microwave radia-

tion.
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Figure 4.16: The transition probability for a fixed time t by considering the fre-

quency of microwave current.

minimum point of the transition probability. The rate of the transition is con-

sidered when t is large. The transition rate can be calculated from the transition

probability per unit time defined by
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Γ(i → j) = lim
t→∞

P (i → j, t)

t
. (4.31)

Considering for a small perturbation where 2I2

μw
/�ω10C 	 (ω − ω10)

2. The tran-

sition rate is given by

Γ(0 → 1) = lim
t→∞

2I2

μw
/�ω10C

(ω − ω10)2t
sin2(ω − ω10)t/2. (4.32)

By using the approximation, limt→∞ sin2 yt/πy2t, the final result of transition rate

is

Γ(0 → 1) =
πI2

μw
t

ω10C
δ(�(ω − ω10)). (4.33)

The transition rate is maximum at the frequency of microwave current equal to

the frequency of the energy spacing as expected.

4.6 Decoherence time

In the previous work of P. Kopietz and S. Chakravarty[20], the dissipation in

Josephson junction can be explained by using a quantum statistical technique,

a master equation, to describe the density of states under an influence of the

environment. The escape rate from a zero voltage state is calculated from the

master equation[20]. In quantum computation, qubit operations are performed

under the environmental interactions that affect states of the qubits. For the

Josephson junction, noise current is one of the cause of decoherence in the qubit.

In this section, I introduce a model for calculating a decoherence time in the

Josephson junction due to the current noise using the time dependent perturbation

theory. Similar to the previous section, the Rabi’s oscillations of the two-state

system under the influence of the noise current are being interested and used

observe a decay of the probability of the states. The microwave current and noise

current are applied as the perturbations to the system. According to the time-

dependent Hamiltonian,

H = H0 + H ′(t), (4.34)

H =
p2

γ

2m
−

�

2e
(Ic cos γ + Idcγ) −

�

2e
Iμwγe−iω10t −

�

2e
Inoise(t)γ. (4.35)
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The perturbed Hamiltonian can be written in a matrix form as

H ′ =

⎛
⎝ In(t)

2
(∂E10

∂Idc

) Iμw

√
�

2Cω10

eiω10t

Iμw

√
�

2Cω10

e−iω10t − In(t)

2
(∂E10

∂Idc

)

⎞
⎠ , (4.36)

where E10 is the energy spacing between the ground state and the first excited

state, In(t) is a gaussian random noise and Iμw is the amplitude of microwave

current with the resonance frequency ω10. I assume that the noise current causes

an energy shift of the ground state and the first excited state. From the section

4.2, it was shown that the energy spacing (E10) depends on the bias current (Idc)

as shown in Fig. 4.3. If a noise current is added to the junction, the total bias

current (Idc +In) will change the value of energy spacing. The energy shift term of

the ground state and the first excited state is given by the term In(t)

2
(∂E10

∂Idc

). Note

that, the opposite sign refers to the increasing and the decreasing of the energy

level. In the interaction picture, the Hamiltonian of system can be written as

H = H0 + H ′

H =

⎛
⎝ E0 + In(t)

2
(∂E10

∂Idc

) Iμw

√
�

2Cω10

eiω10t

Iμw

√
�

2Cω10

e−iω10t E1 −
In(t)

2
(∂E10

∂Idc

)

⎞
⎠ ,

and the state of the two-level system can be written in a superposition of basis

states |0〉 and |1〉, given by

|Ψ(t)〉 = e−iE0t/�c0(t)|0〉 + e−iE1t/�c1(t)|1〉,

|Ψ(t)〉 =

⎛
⎝ e−iE0t/�c0(t)

e−iE1t/�c1(t)

⎞
⎠ .

According to the Schrödinger equation, i�
d|Ψ(t)〉

dt
= H|Ψ(t)〉, inserting the Hamilto-

nian and the state of qubit into the Schrödinger equation, one obtains two ordinary

differential equations

i�ċ0(t) =
In(t)

2
(
∂E10

∂Idc

)c0(t) + Iμw

√
�

2Cω10

c1(t), (4.37)

i�ċ1(t) = −
In(t)

2
(
∂E10

∂Idc

)c1(t) + Iμw

√
�

2Cω10

c0(t). (4.38)

The 2nd order Runge-Kutta method, i.e. midpoint method as described in Ap-

pendix B, is used to solve the system of differential equations. A set of random
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Figure 4.17: The probability density function of the normal distribution.

number is generated using a normal distribution with a standard deviation of one

as shown in Fig. 4.17, and define the noise current function by

In(t) = IA exp(−i|R(t)|), (4.39)

where IA is an amplitude of noise current and R(t) is a random number at any

time. Inserting the parameters into the differential equations, one obtains

ċ0(t) =
1

i�
[
IA

2
(
∂E10

∂Idc

)e−i|R(t)|c0(t) + Iμw

√
�

2Cω10

c1(t)] (4.40)

ċ1(t) =
1

i�
[−

IA

2
(
∂E10

∂Idc

)ei|R(t)|c1(t) + Iμw

√
�

2Cω10

c0(t)], (4.41)

or rewrites in a simple form as

dc0

dt
= f(t, c0, c1)

dc1

dt
= g(t, c0, c1).

The initial conditions of the state is chosen by c0(0) = 1 and c1(0) = 0 that the

system starts out from the ground state and evolves in time. Then I calculate the

transition between the ground state and the first excited state under the influence

of the noise current. The numerical solutions of the probability |c0(t)|
2 and |c1(t)|

2

are shown in Figs. 4.18 and 4.19, respectively. It can be seen that the probability
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of |c0(t)|
2 and |c1(t)|

2 oscillate (Rabi’s oscillation) and exponentially decay with

time t in the order of nanoseconds. From the previous section, It was shown that

the oscillation frequency depended on the amplitude of the microwave current.

Now I am interested in the amplitude of the noise current that cause the decay of

the Rabi’s oscillation. When the noise current increases, the probability of finding

the state decays faster and the decoherence time becomes shorter as shown in

Table. 4.1.
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Figure 4.18: The probability of |c0|
2 when perturbing with the current noise.
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Figure 4.19: The probability of |c1|
2 when perturbing with the current noise.
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Noise current(nA) Decoherence time(ns)

1 21

5 4.2

10 2.0

15 1.4

20 1.0

Table 4.1: The decoherence time in Josephson junction with noise current
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Data: Data1_B

Model: ExpDec1 

Chi^2/DoF = 2.89E-6

R^2 =  0.99997

y0 0 ±0

A1 0.99871 ±0.0015

t1 4.56353 ±0.01188

Time (ns)

 B

 ExpDec1 fit of Data1_B

Td = 4.56 ns

|c0|
2

Figure 4.20: The exponential envelop of the probability of |c1|
2 for finding the

decoherence time.

Here, the decoherence time is defined as the time when the amplitude of the

envelop of the probability reduces by 1/e ≈ 0.37. For example, a 10 nA of the

noise current, the decoherence time is about 4 ns as shown in Fig. 4.20. This

result is a good agreement with the experimental work by A. J. Berkley et al. as

shown in Fig. 4.21[25]. The energy spacing with the number of energy levels

is shown in Fig. 4.22 for calculating the decoherence time and the decoherence

time with the bias current is shown in Fig. 4.23. This suggests that if one wants

a longer decoherence time, one must reduce the noise current in the system. For

an example, for the decoherence time of 1 μs, one must reduce the noise current

to the order of 10 pA.
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Figure 4.21: The experimental results of the energy spacing, the amplitude of

current noise and the decoherence time[25].
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Figure 4.22: The energy spacing and the number of energy levels.
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Figure 4.23: The decoherence time with the bias current.

4.7 Summary

In this chapter I present how to calculate the quantum behaviors of the Josephson

junction such as energy levels, tunneling rates, wave functions, transition rates and

decoherence times. The energy levels in the approximated washboard potential

are quantized by using the Bohr-Sommerfeld quantization rule and thus used as

a qubit in quantum computation. Then, I calculate the tunneling rates at each

energy level and showed the state wave functions in the potential well. Finally, I

discuss the external perturbations such as a microwave current and a noise current,

that affect states of the qubits. The microwave current causes the transition

between energy levels and the noise current causes the decoherence times in the

junction.



CHAPTER V

CONCLUSIONS

In this thesis, the characteristic and quantum properties of Josephson junction

have been studied. They are necessary for using the Josephson junction as a quan-

tum bit. The mathematical methods and the approximation method in quantum

mechanics are used to calculate and describe the behavior of the Josephson junc-

tion. The classical dynamic of the Josephson junction can be solved from the

classical equation of motion for describing the electrical property of the Josephson

junction. It was found that the I-V characteristic of Josephson junction could be

hysteretic and the retrapping current depended on the damping parameter of the

junction. In the quantum regime, the tilted washboard potential was used to study

the quantum behaviors of the Josephson junction. By using Bohr-Sommerfeld

quantization rule, the energy levels in the potential well can be quantized and

thus used the two-energy levels as a quantum bit in a quantum computer. The

number of energy levels inside the well decreases when the bias current of the

junction increases. The energy spacing between the ground state and the first

excited state is in the microwave range. The tunneling rate of the particle from

the nth energy level can be calculated by using the WKB approximation and de-

scribe the tunneling effect in the system. The tunneling rate of the higher level

is more than the lower level and the tunneling rate of the ground state is less

than the first excited state about three orders of magnitude. The probability of

finding the fictitious particle can be explained by the wave functions which can

be determined from solving the eigenvalue of Schrödinger equation numerically.

The energy eigenvalue is in good agreement with the quantization energy and

the eigenvector is qualitatively similar to the harmonic oscillator’s because of the

shape of the potential. The transition rate between the ground state and the first
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excited state can be calculated analytically by considering the two-level system

with a perturbation of the microwave current. If the frequency of the microwave

current is equivalent to the energy spacing, the qubit oscillates between the ground

state and the first excited state. The transition rate is important for building a

quantum gate. Finally, the decoherence time of the Josephson junction due to

a current noise can be calculated by observing the decay of the Rabi’s oscilla-

tion. The decoherence time depends on the amplitude of the noise current and

the deviation of the energy spacing with the bias current. The calculation is good

agreement with the experiment.

These results show that the Josephson junction phase qubit satisfies the Di-

Vincenzo’s criteria and is a good candidate for a quantum computer. First, the

energy levels in a single junction are well characterization for representing qubit

and the physical system can be scaled-up in numbers utilizing existing fabrication

technology. Second, the initial state can be prepared by cooling the system to

extremely low temperature about millikelvin (depending on the kind of supercon-

ductors). Third, the Rabi’s oscillation between the two states can be observed by

using the microwave current with the frequency equivalent to the energy spacing.

The period of the oscillation or the gate time is in order of nanosecond. Fourth, the

quantum gates are constructed by using pulses of microwave current to perform

qubit operations. Finally, one want to reduce the current noise in the junction

to obtain a long decoherence time. For the 1000 operations, one must reduce the

noise current to the order of 10 pA.

In this thesis, I studied a single Josephson junction as a qubit that is a basic

knowledge of quantum computation. For the future work, the two or more qubits

will be studied by coupling the Josephson junctions with a capacitance. The

interaction between the junctions involving the effect of the coupling is very inter-

esting. The equation of motion for the coupled circuit gives a new Hamiltonian

for studying the quantum mechanical properties.
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APPENDIX A

CUBIC PARABOLA

POTENTIAL

The cubic parabola potential can be approximated from the washboard potential,

U(γ) = −
�

2e
Ic(cos γ +

Idc

Ic

γ). (A.1)

The washboard potential is a series of the potential wells with the minimum points

at γ0 = sin−1 I ′, where Idc/Ic = I ′. When the bias current is close to the critical

current (Idc → Ic) we can approximate this potential for considering only a po-

tential well by changing the variable γ → q(γ) where q(γ) = γ − sin−1 I ′. The

potential is rewritten as

U(q) = −
�

2e
Ic{cos(q + sin−1 I ′) + I ′(q + sin−1 I ′)}

= −
�

2e
Ic{(1 − I ′2)1/2 cos q − I ′ sin q + I ′(q + sin−1 I ′)}. (A.2)

The extremum points of the potential can be found by the condition U ′(q0) = 0,

(1 − I ′2)1/2 sin q0 + I ′ cos q0 − I ′ = 0 (A.3)

sin q0 =
I ′

(1 − I ′2)1/2
(1 − cos q0)

2 sin
q0

2
cos

q0

2
=

I ′

(1 − I ′2)1/2
(2 sin2

q0

2
)

tan
q0

2
=

(1 − I ′2)1/2

I ′

q0 = 2 arctan
(1 − I ′2)1/2

I ′
. (A.4)

From Eq.(A.3), the minimum point is q0 = 0 and the maximum point is in

Eq.(A.4). By using the approximation, cos q ≈ 1 − q2/2 and sin q ≈ q − q3/6,
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the potential is rewritten as

U(q) = −
�

2e
Ic{(1 − I ′2)1/2 + I ′ sin−1 I ′ − (1 − I ′2)1/2

q2

2
+ I ′ q

3

6
}. (A.5)

At the maximum point, q0 can be approximated by 2 arctan(1− I ′2)1/2/I ′ ≈ 2(1−

I ′2)1/2/I ′ when I ′ → 1. The barrier height of the potential can be calculated by

U0 = U(q0 = 2
(1 − I ′2)1/2

I ′
) − U(q0 = 0) (A.6)

=
�

2e
Ic

2

3

(1 − I ′2)3/2

I ′2
. (A.7)

The potential parameters q0 and U0 are given in terms of the critical current and

the ratio of the bias current and the critical current. From Eq.(A.5), the potential

with the reference at the minimum point (q0 = 0) can be written as

U(q) =
�

2e
Ic{(1 − I ′2)1/2

q2

2
− I ′ q

3

6
}

=
�

2e
Ic

2(1 − I ′2)3/2

I ′2
{(

q

q0

)2 −
2

3
(
q

q0

)3}

= 3U0(
q

q0

)2(1 −
2

3

q

q0

). (A.8)

This potential is known as the cubic parabola potential for representing the wash-

board potential when the bias current is close to the critical current (Idc → Ic).



APPENDIX B

THE MIDPOINT METHOD

The midpoint method is one of the 2nd order Runge-Kutta methods for solving an

ordinary differential equation numerically. Considering an initial value problem

dx

dt
= f(t, x, y) (B.1)

dy

dt
= g(t, x, y) (B.2)

with the initial conditions x(t0) = α and y(t0) = β over an interval a ≤ t ≤ b, the

numerical solutions of the differential equations can be estimated by

dx = f(t, x, y)dt (B.3)

dy = g(t, x, y)dt (B.4)

xi+1 = xi + h[f(ti +
h

2
, xi +

h

2
f(ti, xi, yi), yi +

h

2
g(ti, xi, yi))] (B.5)

yi+1 = yi + h[g(ti +
h

2
, xi +

h

2
f(ti, xi, yi), yi +

h

2
g(ti, xi, yi))] (B.6)

where x0, x1, ..., xN and y0, y1, ..., yN are the approximations of x(t) and y(t) at

any step time, respectively under the step size h = ((b − a)/N). The local error

of this method is in O(h3), and the global error is in O(h2)[26]. The numerical

solutions of x(t) and y(t) can be calculated from Eq.(B.5) and Eq.(B.6).
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APPENDIX C

THE HYPERGEOMETRIC

FUNCTION

The hypergeometric functions are solutions of the hypergeometric differential

equation

z(1 − z)y′′ + [c − (a + b + 1)z]y′ − aby = 0 , (C.1)

which has a regular point at the origin. The hypergeometric function can be

derived by using the Frobenius method to reduce the differential equation to

∞∑
n=0

(n + 1)(n + c)An+1 − [n2 + (a + b)n + ab]Anz
n = 0 , (C.2)

giving the indicial equation

An+1 =
(n + a)(n + b)

(n + 1)(n + c)
An . (C.3)

Inserting the relation into the ansatz series

y =
∞∑

n=0

Anz
n (C.4)

then gives the solution

y = A0[1 +
ab

1!c
z +

a(a + 1)b(b + 1)

2!c(c + 1)
z2 + ...] . (C.5)

This is called the regular solution, defined by

2F1(a, b; c; z) = 1 +
ab

1!c
z +

a(a + 1)b(b + 1)

2!c(c + 1)
z2 + ... (C.6)

=
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
, (C.7)

where (a)n are Pochhammer symbols. The hypergeometric series is convergent for

arbitrary a, b, and c for real −1 < z < 1, and for z = ±1 if c > a + b.
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