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Chapter I

INTRODUCTION

1.1 Introduction and Overview
Recently robotics field increasingly plays an important role in life. Neverthe-

less, many autonomous robotics tasks still pose challenging problems. One clear

example is the DARPA Grand Challenge from the Defense Advanced Research

Projects Agency in the United States of America. Going up a set of stairs, a very

easy task for humans has proven to be surprisingly hard for a humanoid robot. For

a robot to balance itself, it requires a fair amount of sensors and highly complex

calculations, since the robot has many degrees of freedom with each one for each

joint motion that the robot can move. This calculation is usually too expensive to

carry out, so we have to do an approximation. Hence, we need to balance out the

trade-off between time and accuracy. Apart from humanoid robots, other types of

robots also face similar challenges, especially aerial vehicles which have a higher

degree of freedom as we need to take into account roll and pitch as well as drastic

changes in height.

This thesis explores an important task for aerial vehicles, how the robots local-

ize themselves in an unknown environment. Moreover, the thesis will focus more on

a specific type of environment, a transition between indoor and outdoor GPS-denied

environments. Usually, aerial vehicle, such as drone, uses multiple sensors to de-

tect their locations on the map. For an outdoor flight, it relies on Global Positioning

System (GPS) for localization, and it uses cameras to do obstacles avoidance. For

an indoor flight, where GPS is unreliable, it can use Laser sensors combined with

Inertial Measurement Unit (IMU) to localize itself in an X-Y plane in Cartesian co-

ordinates on an unknown map. Then, it can use a downward single-point laser to get

a Z coordinate. However, the transition between indoor and outdoor environments



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

is still a hard problem. On one hand, the GPS signal near buildings or tall objects

is usually unusable due to signal loss or multipath problems. On the other hand,

Laser sensors do not work well in an environment with little structure like in front

of a building. The speed and angular velocity of the robot are also limited by the

range of laser scans.

Even though the problem seems to limit the robot’s movement in this uncertain

environment, between indoor and outdoor environments, we can still exploit the fact

that the robot needs to go through an opening for it to enter a building. We can use

this information for localization. For simplicity, in this case, we assume that the

robot needs to go through a window or a door. We can use cameras to do object

detection and use the position and distance of the frame to increase the accuracy

of the localization module. Thus, we need to combine these three scenarios for the

robot to safely navigate from the outdoor to the indoor environment and vice versa.

1.2 Objective
The main objective of this thesis is to design and build a system and com-

bine, adjust, and improve existing algorithms for localization in an unknown indoor/

outdoor environment for unmanned aerial vehicles (UAVs) using door/window de-

tection. The main challenge is that the GPS signal inside and in nearby indoor en-

vironments is too unreliable. These types of environments are common in forests,

Skytrain (BTS), or warehouses. For military use, this type of challenge has many

applications such as intelligence, surveillance, target acquisition, or reconnaissance.

For civilian use, drones will tremendously help in agriculture, warehouse manage-

ment, or plant and factory inspection. At present, most of these tasks in complex

environments require experienced pilots for manual flights. Hence, this thesis will

enable the robotics community to explore indoor/outdoor localization more, lead-

ing to a better, faster, and cheaper way to do autonomous navigation in an unknown

environment.
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1.3 Scope
This research covers four scopes.

1. This work will build a system and adjust and combine existing algorithms

and methods to localize for indoor/outdoor unknown environments with both

2D-laser scanners and cameras with window detection.

2. The work uses a self-created hexacopter with multiple different sensors for

experiments. The technique achieved from this work should be able to apply

to other types of robots, but the performance is not guaranteed to be the same.

3. This work focuses only on the localization part. It will not focus on the control,

mapping, and navigation parts. Therefore, our datasets will be collected by

hand-holding the robot.

4. All the doors and windows in this experiment are represented by large rectan-

gular empty spaces framed by some obstacles. The window is not necessarily

real windows.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter II

BACKGROUND
The background for this work comprises five main topics: State Estimation,

Mapping, Optical Flow, Scan Matcher, and Object Detection.

2.1 State Estimation
State estimation is a process of determining a robot’s state from sensor mea-

surements and control actions. The state of the robot or a robot’s pose usually in-

dicates its location and orientation. The pose for a standard aerial vehicle has six

degrees of freedom (6-DOF). Three degrees for its position (X, Y, and Z) and an-

other three for its orientation (roll, pitch, and yaw). The technique used in this thesis

is a common technique called the Extended Kalman Filter (EKF), a non-linear ver-

sion of the Kalman Filter (Thrun et al., 2005).

Kalman Filter is a type of Bayesian Filters that holds Markov assumption and

assumes the system to be a linear Gaussian system. States of the robot, control

actions noises, and sensor measurement noises are all Gaussian distributions. The

state distribution is a linear function of its previous state probability, the current

control action, and additive noise. The measurement probability is also a Gaussian

distribution with different additive noise. These can be expressed by the following

equations:

State transition

xt = Atxt−1 +Btut + εt (2.1)

Measurement

zt = Ctxt + δt (2.2)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

Where xt and xt−1 are the robot states at time t and t − 1 respectively. ut is a

control action and zt is a measurement. εt and δt are normal distribution noises.

At, Bt, and Ct are transition matrix for the system.

Kalman Filter has two main steps: 1) the prediction step and 2) the measure-

ment update step. The algorithm recursively runs these two steps to update the mean

and variance of the robot state. For the prediction step, it calculates the predicted

belief (state’s mean and variance) by incorporating the control action shown in the

state transition equation 2.1. For the update step, the algorithm updates the pre-

dicted belief by taking in the sensors’ measurements according to 2.2. The result

will be the new mean and variance of the new state. The algorithm is depicted below

Input ( µt−1, Σt−1, ut, zt)

Prediction Step
µt = Atµt−1 +Btut

Σt = AtΣt−1A
T
t +Rt

(2.3)

Update Step
Kt = ΣtC

T
t (CtΣtC

T
t +Qt)

−1

µt = µt +Kt(zt − Ctµt)

Σt = (I −KtCt)Σt

(2.4)

Output ( µt, Σt)

Where µ and Σ is the mean and variance of the state. Rt and Qt are the variances

of the normal distribution noises of the control action and measurement. Kt is a

temporary variable called Kalman gain.

The system can be nonlinear for the Extended Kalman Filter, which is a more

general case of the Kalman Filter. It follows the same procedure as in Kalman Filter

but linearizes the system beforehand. EKF approximates the nonlinear system using

first-order Taylor expansion. Since EKF does not require the system to be linear, the
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algorithm is more practical in real-world systems such as quadrotors.

2.2 Mapping
To represent the map of an environment in three dimensions (3D), I choose

Occupancy Grid (Moravec and Elfes, 1985; Thrun et al., 2005). This technique

evenly divides the environment in all dimensions into small and equal spaces form-

ing blocks of cells. Each cell will associate with a random variable representing the

state of that space in the environment. The random variables can be binary random

variables, whose values will indicate whether the associated spaces are occupied

by obstacles or not. The random variables can also be probabilities that show the

likelihood of the spaces being occupied. Occupancy grid representation is straight-

forward. It is easy to understand and visualize humans. One downside is that this

representation needs high computation power as the complexity is the cubic of the

cell’s resolution.

2.3 Optical Flow
The optical flow technique estimates a camera’s motion from its sequential im-

ages (Horn and Schunck, 1981). The main idea is that neighbor pixels usually have

relatively the same motions and intensities. The technique tries to track multiple

key points appearing in one image to the next one. Then, it estimates the camera’s

instantaneous motion from the respective key points’ displacements in consecutive

images. The integral of camera instantaneous motions is the trajectory of the cam-

era, which at the same time is the trajectory of the drone attached to that camera.
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2.4 Scan Matcher
Since we mainly rely on scans from 2D laser for our estimation of the X-Y

plan, we need to convert the change from two consecutive scans into the change

of the robot’s motion. One popular method of scan matching, first introduced by

Besl, is the Iterative Closest Point (ICP) algorithm, which iteratively aligns a set of

measured points (from the current sensor scan) to a reference set of points (from

a previously mapped, known environment, or previous scan) by minimizing the

distance between corresponding points (Besl and McKay, 1992). The algorithm

estimates the rigid transformation (translation and rotation) that best aligns the two

point sets.

Since then, several variations and improvements to the basic ICP algorithm

have been proposed, such as using point-to-plane distance metrics, incorporating

covariance estimation, or adding robustness to outliers. The Scan Matcher algo-

rithm that we used in this work is proposed by Censi (Censi, 2008). Her Scan

Matcher algorithm uses a Point-to-Line Iterative Closest Point technique (PL-ICP).

In ICP, we repeatedly estimate the transformation from one scan to another by as-

suming that point from one scan and its closest point in another scan are the same

points after applying the transformation. In PL-ICP, the technique is similar but in-

stead of matching point to point, it matches point from one scan to an estimated line

in another scan. This technique performs better as well as more robust to noises.

2.5 Object Detection
Object detection or object recognition is a task where you have to classify

and locate objects in images into different classes that interest us. In this work,

the classes that we consider are windows and doors which we assume that they

are the gateway between indoor and outdoor environments. We decide to use the

well-known YOLOv5 or You Only Look Once V5 for its high accuracy and small

size (Jocher, 2020). YOLOv5 is a Convolutional Neural Network (CNN) object
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detection model. CNN is a type of neural network model that uses convolution op-

eration to automatically extract meaningful features from images in multiple levels

from small features to larger ones. A more detailed explanation of YOLOv5 can be

found in Section 4.6.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter III

LITERATURE REVIEW
The literature review for this thesis focuses on real-time localization for both

mobile and aerial robots in an unknown environment with only onboard sensors.

Usually, the localization topic is tightly coupled with the mapping topic, so both

topics will be discussed here.

3.1 SLAM
SLAM or Simultaneous Localization and Mapping is one of the famous prob-

lems in robotics. It is a problem for a robot to navigate in an unknown environment.

The robot needs to know the environment map and also at the same time be able to

locate itself on the map. Usually, an unmanned aerial vehicle (UAV), uses multiple

sensors to solve this problem. The most commonly used sensor is the Inertial Mea-

surement Unit (IMU), which combines an accelerometer and a gyroscope. IMU

provides the current acceleration and angular velocity for the robot. Still, IMU is

not perfect. Long integration throughout flight trajectory for calculating the robot’s

position and orientation proves to be too inaccurate and unreliable. Hence, a com-

bination of other types of sensors is used to improve the accuracy. Also, another

unanswered question is mapping, since IMU provides no information about the map.

Other types of sensors that interact with the environment are needed.

We can categorize SLAM using two criteria either by the environment the

robot is in or by the sensors the robot is using. The types of environments are indoor,

outdoor, or hybrid, including both indoor and outdoor environments. The sensor

types are laser-based sensors, camera-based sensors, or hybrid. We can break down

camera-based sensors further into monocular (single camera), stereo (two cameras),

or multiple cameras. For the work in this thesis, the environment will be hybrid and
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the sensors used will also be hybrid.

3.2 SLAM by Sensor

Laser-based SLAM
Generally, there are two approaches to the SLAM problem and each one uses

different types of sensors. Many of the early works are laser-based. They use laser

scanners that send out a beam array of lasers in a 2D fashion and measure a rela-

tively accurate detail of that planar portion of the map. With multiple scans, we can

do iterative closest points (ICP) to determine the change in positions and orienta-

tion. Integrating this change over time will give the current position and orientation.

Their downsides are their limited range and heavy weight. The affordable laser

scanner has roughly about 30-50 meters in range. With the limited range, robots

or drones can only move slowly in a small-scale and well-structured environment.

Their upsides are their precise measurement of the map and that they have zero con-

cern about lightning conditions in the environment but these also come with high

cost.

Some previous works show that laser-based SLAM work well indoor and well-

structured outdoor environment. In 2004, Lingemann uses a laser-based approach

for tracking the pose of a high-speed mobile robot (Lingemann et al., 2004). In 2005,

Diosi improves the scan matching algorithm with polar coordinates and proves that

Kalman Filter works well for a robot in a 2D environment (Diosi and Kleeman,

2005). In 2014 Urcola proposes a seamless indoor and outdoor transition for a 2D

robot (Urcola et al., 2014). He uses GPS quality to switch between each situation

where a robot needs to rely on different sensors. Our work is similar to his work

but our domain is in 3D and we separate the environment into three zones: indoor,

outdoor, and in-between zone. We also use object detection techniques to combat

uncertainty in the in-between zone. In 2018, Dowling manages to get an accurate

3D indoor map with a drone equipped with a laser scanner and an ultrasonic sensor
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using EKF (Dowling et al., 2018).

Camera-based SLAM
Another approach is to use cameras. The downside of camera-based is the

computation power. Processing an image usually require much more computation

resource than laser-based. However, computers are becoming more and more pow-

erful, so the camera approach is now computable in real-time. There are three types

of camera sensors: monocular, stereo, and multiple cameras. Since batter time

or flight time for an aerial vehicle is determined by the power consumption rate

which is directly proportional to the weight of that vehicle, all components are de-

sirable to have small sizes, light weights, and minimum power consumption (SWAP)

(Bertran and Sànchez-Cerdà, 2016). Thus, monocular cameras are one of the obvi-

ous choices.

3.3 SLAM by Technique

Filter-based
Two main techniques for camera-based SLAM are filter-based SLAM and

keyframe-based SLAM. The filter-based SLAM is similar to the laser-based one.

Instead of doing an ICP on the laser scans to determine the change in the pose of

the robot, filter-based SLAM can calculate the change from two consecutive im-

ages. In 2003, Davison proposed a novel real-time approach for monocular SLAM.

He used extended Kalman filtered (EKF) to estimate the camera pose and mapping

(Davison, 2003). However, since EKF has high computational complexity, the se-

lected feature must be sparse. This approach only works on small-size problems.

In 2007, Nuchther et al. used particle filters instead of EKF and achieved a 3D out-

door SLAM increasing the environment flight space hugely (Nuchter et al., 2006).

In 2009, Huang et al. managed to use Unscented Kalman Filter (UKF) in real-time

by creating a new sampling strategy to reduce the number of states it required to
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compute (Huang et al., 2009).

Keyframe-based
For keyframe-based SLAM, the main idea is to remember the location of each

distinguishable landmark. When the next time the robot comes around and sees

the same landmark, it can localize itself. The landmarks sometimes are distinct

edge features or corner features. The image that contains the landmarks is called

a keyframe. In 2007, Klein and Murray designed the first keyframe-based SLAM,

PTAM, working for a small indoor workspace environment with sparse mapping

(Klein and Murray, 2007). In 2011, Newcombe’s work, DTAM, improved PTAM

by using a GPU parallel computation (Newcombe et al., 2011). Instead of a sparse

feature, he used a dense one (at all pixels). His approach achieved both dense track-

ing and mapping for indoor environments. In 2015, Mur-Artal created an ORB-

SLAM algorithm that works for both indoor and outdoor environments (Mur-Artal

and Tardos, 2014). The author uses a semi-dense reconstruction technique.

3.4 Recent Approaches
For stereo and multiple cameras SLAM, the technique used is the same as in

the monocular SLAM. They have more information on the depth of the images, so

in terms of localization and mapping, they usually perform better. One example is

Yang’s work (Yang et al., 2017). The author integrated views from multiple cameras

on micro aerial vehicles (MAVs) and achieved high accuracy for the robot’s pose.

Nevertheless, the extra weight of another camera sometimes is undesirable. Many

tasks require small drones which can carry only some small weight. This is not the

case for this thesis work, so we will use a stereo camera.

Another recent approach is to combine both laser-based SLAM and camera-

based SLAM. Laser-based SLAM is good for local navigation and mapping while

camera-based is good for the global ones. Newman used this technique for a mo-
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bile robot (Newman et al., 2006). The author used the laser to build a simple lo-

cal environment geometry while using the camera to detect loop closure to im-

prove the global map for navigation tasks. Another example is Bachrach’s exper-

iment (Bachrach et al., 2010). His work shows that a micro aerial vehicle (MAV)

can achieve a full SLAM using EKF from a laser scanner and stereo camera. For

our work, we use both lasers and cameras but we will prioritize using laser-based

SLAM. We will cameras only for object detection and depth estimation.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter IV

INDOOR AND OUTDOOR LOCALIZATION

WITH WINDOW DETECTION
In this chapter, we will discuss our approach to localizing a drone in an un-

known environment transitioning between indoor and outdoor using door/window

detection. One major assumption is that the drone has to go through an opening like

a door or a window to move from an indoor environment to an outdoor environment.

The proposed method is to separate the environment into three groups: indoor with

high structure data for laser-based method, outdoor with reliable GPS signals, and

outdoor near buildings with unreliable GPS. First, we will talk about the procedure

of the thesis, then reasoning, and finally our method.

4.1 Procedure

1. Build a drone: Build a self-created hexacopter that can fly manually. We use

this drone for experiments in this work as well as other projects that I am a

part of.

2. Sensors combination: Add single-point laser, 2D laser, and IMU to the drone.

3. Indoor and Outdoor Localization research: Research various techniques for

indoor and outdoor localization.

4. Indoor Localization: Integrate all the sensors (single-point laser, 2D laser, and

IMU) into Extended Kalman Filter (EKF).

5. External sensor integration: Integrate ZED2 stereo camera into our system

and use RGB and depth image for opening detection.
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6. Window/Door detection: Build and train window/door detection model using

YOLOv5.

7. GPS integration: Integrate GPS data into the EKF.

8. Field Testing: Design and collect data from handheld tests of our system.

9. Analyze the result of the experiment.

4.2 Reasoning
The main reason for this separation is that from the past literature, robots can

localize themselves extremely well in both indoor and outdoor environments but not

between. This approach will still use state-of-the-art for those two types of environ-

ments. For outdoor, GPS will be the main localization module. For indoors, since

the environment provides enough structure data for localization, the main core will

use a 2D planar laser with a scan-matcher algorithm. However, for the transition be-

tween environments, these two techniques are inapplicable. On one hand, the GPS

signal is unreliable because of a multipath signal from the surrounding buildings

or the lower strength signal. On the other hand, the 2D planer laser does not work

well because there is not enough structure for localization. Hence, we will exploit

the assumption that there is a window between indoors and outdoors. We will use

object detection to detect the window and approximate the distance and size of the

window for localization.

4.3 Mode Switching
We partition the environment into three zones: indoor, outdoor, and in-

between zone, where the in-between zone is an outdoor area near a building where

the GPS signal is unreliable. For each zone of the environments, we use different

algorithms for localization and call them ’mode’. This section here shows how we

switch from one mode to another. The diagram in Figure 4.1 depicts the criteria for



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

Figure 4.1: Mode switching diagram

mode switching. First, we start in an outdoor mode. We will mainly use GPS as our

localizer. When the drone flies closer to the indoor environment and can detect a

window using the stereo camera on the drone. It will start approaching the window

and the GPS will become less and less reliable. When the GPS is unreliable, then

the drone will change to hybrid mode. This mode will manage the localization part

using the distance and the size of the window as a landmark similar to the approach

in keyframe-based SLAM. The technical idea will be discussed in a later section.

When the robot flies through the window, it will switch the mode to indoor mode.

In this mode, the robot uses a laser scanner to localize itself similar to a laser-based

SLAM.

When the robot decides to leave the indoor environment, it will either explore

around to find a window or fly back to the original window it enters. When it detects

the window and flies through it and the EKF will start becoming unreliable, the

mode will switch back to hybrid mode. During this part, the drone needs to rely

on EKF and the unstable GPS since it no longer detects the window behind itself.

We can easily remedy this problem by setting up another camera on the back of

the drone. However, flying outside briefly until the GPS signal improves is less

dangerous than flying in through a window, so we omit setting up a second camera.

When the GPS signal comes back, the mode will transition back to an outdoor mode.

This mode-switching cycle is an overview of the whole process.
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Outdoor mode
For outdoor mode, we use GPS, IMU, and a downward-facing single-point

LIDAR as prime sources for localization. We use EKF to smooth and filter out

the jumps in GPS. For the position data in the X-Y plane, we directly use GPS

data. For height, we use the single-point laser as it is more reliable than the altitude

of the GPS. For orientation data, we use both IMU and the change in GPS for the

heading. To convert GPS latitude and longitude to our coordinates in the X-Y plane,

first, we measure the true heading by adding the magnetic heading at the start of

the experiment facing forward and the magnetic declination that we look up at our

experiment location (National Centers for Environmental Information, 2018). Then,

we convert GPS latitude and longitude into Universal Transverse Mercator (UTM).

For each GPS point, we subtract the origin point and then transform them from the

UTM reference frame to the experiment reference frame. The UTM reference frame

uses true north for Y-axis, while our experiment reference frame uses a forward

direction at the beginning of the experiment as the X-axis and uses the start location

as an origin.

Indoor mode
For indoor mode, we directly use indoor EKF laser-based SLAM. We use

three main sensors: IMU, a 2D laser scanner, and a downward-facing single-point

LIDAR. We feed all the processed measurements to EKF for localization. IMU

gives information about the roll, pitch, and yaw of the vehicle. We install the single-

point LIDAR pointing downward from the vehicle, so it can measure the height. For

the laser scanner, we use Scan Matcher. Scan Matcher is a technique for computing

the change between two laser scans. In this case, we do PL-ICP on consecutive

laser scans to calculate the change in the X-Y direction. With these three sensors,

we manage to measure all six degrees of freedom of the drone. The EKF algorithm

then will update the pose of the robot in both position and heading.
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Hybrid mode
Our hybrid mode is similar to a local planner for the drone to fly through the

window or small spaces. Since global localization and mapping usually suffer from

the drift of the IMU over time, it is difficult to navigate the drone through the window

that requires an exact maneuver. The local planner or our hybrid mode is needed to

compute the current pose of the robot in the surrounding environment. For hybrid

mode, we use a stereo camera, an IMU, a 2D laser scanner, and a downward-facing

single-point LIDAR on the EKF algorithm. Similar to Indoor mode, we use IMU

to update the roll, pitch, and yaw of the robot and use downward-facing LIDAR for

measuring the height. However, we use a stereo camera and a laser scan to calculate

the changes in the X-Y plane.

After detecting a window using YOLOv5 object detection on the rectified

RGB images from the stereo camera, the first step is to calculate the distance and

the size of the window. We can effectively detect the edges of a door or window by

leveraging a depth sensor, which registers a substantial depth measurement when

scanning through the doorway, whereas it detects a much smaller depth when en-

countering the rim of the edge. With simple geometric formulas, we can estimate

the distance and the size of the window in Figure 4.2, where the angle can be calcu-

lated directly from the ratio of the object size in pixels to the image size multiplied

by the field of view (FOV) of the camera and the estimated width and height from

the law of cosine.

We then align the window to the previous scan to calculate the change of the

robot poses in the X-Y plane respective to the robot reference frame seen in Figure

4.3. Knowing the configuration of the camera and other sensors, where the camera is

mounted directly on top of the laser scanner shown in Figure 5.2, we can determine

which horizontal line of the image the laser scan is measuring. Calculating this

alignment is similar to Scan Matcher in Indoor mode, except we only align the edge

of the window to the corresponding measurement in the laser scan. Finally, we

update the change in robot pose to the EKF.
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Figure 4.2: Distance from window detection

Figure 4.3: Image on the left shows a door detection on a rectified RGB
image. The image in the middle shows the associated detected door on the
depth registered image. The image on the right shows the associate door
(labeled as a red square) in the laser scan.

4.4 Reliability
Reliability also plays an important role in mode switching. Here are our main

criteria to decide if the GPS or the EKF becomes too unreliable.

For GPS

• Signal strength: The signal strength of the GPS is directly proportional to the

reliability of the GPS.

• Number of satellites: We will have a minimum cutoff for the number of visible

satellites. If the number of satellites goes below this number, we will classify

the GPS as unreliable.
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• Position covariance: We can calculate the position covariance from previous

GPS data. If the covariance becomes bigger, the reliability becomes lesser.

• Reliability: Some GPSs also report data reliability. However, in our case, we

use the GPS Logger application from a phone, so we do not have this data.

For EKF

• Number of laser scans: EKF depends on the structure of the environment.

The more structure the better. Hence, we can use the number of laser beams

that fall below a certain range as an indicator of EKF reliability.

• Position covariance: Same as in GPS case.

4.5 Evaluation
To evaluate our localization performance, we will compare the trajectory from

our proposed method to the other four: approximated ground truth from a ZED2

camera with optimum environmental conditions, GPS only, laser-based only, and

estimated path from manual measurement based on ground markers. To compare

two trajectories, we compute trajectory alignment between the two. Trajectory

alignment is a least squares optimization problem where you want to minimize the

summation of the difference the robot poses between two trajectories at each time

step. Comparing each trajectory to the ground truth trajectory will give us insight

into how well our method performs. We use the RPG Trajectory Evaluation tool

from an open-source algorithm which will be explained in detail in Section 4.6.

For the estimated ground truth path from manual measurement, we manually

put markers on the ground and measure the distance with measuring tape. The

path can be seen in Section 5.3 of Figure 5.3. We review images in each frame of

the video to determine the timestamp of important images that contain key point

locations such as when we reach a bend, when we stop, and when we make a turn.
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We use these timestamps to create an estimated ground truth path assuming we move

with a constant velocity and a constant angular velocity.

For trajectory from ZED2, we decide to directly use a localization module

from the ZED2 camera. In the experiment, we set up the environment for ZED2

to work optimally and accurately, so that we can use the trajectory as an alternative

ground truth. The camera has no direct sunlight and the indoor environment is

well-lighted. Please refer to Section 5.2 for more detail.

For GPS-only trajectory, we simply use all the GPS data during the experiment

with the timestamps as the trajectory even when the drone is indoors and we might

lose some GPS signals. We believe this trajectory will have a higher error in the

indoor portion of the path.

Similar to GPS-only trajectory, we compute laser-based only trajectory from

purely laser scanner, IMU, and single-point laser. We can see this trajectory as a

GPS-denied trajectory. Similarly, we believe this trajectory will have a higher error

in the outdoor portion of the trajectory or it might not work at all if the open space

is larger than the laser range.

4.6 Open-source Algorithms
Apart from our method described previously, we use other open-source algo-

rithms and systems.

ROS
ROS, which stands for Robot Operating System, is an open-source framework

designed to facilitate the development of robotic systems (Stanford Artificial Intel-

ligence Laboratory et al.). It provides a collection of software libraries, tools, and

conventions that enable developers to create robust and modular robot applications.

ROS has a node-based architecture. It adopts a distributed architecture where in-
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Figure 4.4: ROS nodes graph of our system

dividual software modules, called nodes, communicate with each other by passing

messages. The message passing is the main communication between nodes based

on a publish-subscribe model. Nodes can publish messages on a specific topic; other

interested nodes can subscribe to receive those messages. This loose coupling en-

ables decoupled and scalable systems suitable for robotic operating systems. Figure

4.4 shows our ROS node without its external sensors.

ROS also organizes software into packages, which are self-contained units

that can be easily shared and reused. Packages can contain nodes, libraries, datasets,

configuration files, and other resources needed for a specific robot application. ROS

provides tools for managing packages, such as building, installing, and versioning.

It also provides a rich set of libraries and tools that simplify the development of

robotic systems. These include libraries for handling sensor data, robot kinemat-

ics, motion planning, perception, visualization, and more. Additionally, ROS has

a graphical user interface (GUI) tool called RViz, which we use to visualize sensor

data, robot models, and localization and mapping.

Robot localization module
The Robot Localization module (http://wiki.ros.org/robot_

localization) is a software package within ROS that provides state esti-

mation capabilities for robotic systems for robot localization tasks, determining

the robot’s position and orientation within its environment. The module utilizes

http://wiki.ros.org/robot_localization
http://wiki.ros.org/robot_localization
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various sensor measurements, such as odometry, GPS, IMU, and other sensor

data, to estimate the robot’s pose accurately. It combines these sensor inputs

using filtering techniques, such as Extended Kalman Filters (EKFs) and Unscented

Kalman Filters (UKFs), to generate an optimized estimate of the robot’s state. It

also uses keyframe-based for processing each scan helping with drifting problem.

In our thesis, we use the EKF filtering technique.

YOLOv5
YOLOv5 is an open-source object detection algorithm developed by Ultralyt-

ics (Jocher, 2020). It is an evolution of the YOLO (You Only Look Once) model

family, known for its real-time object detection capabilities. It builds upon the pre-

vious versions by introducing several improvements in terms of accuracy and speed.

The YOLOv5 algorithm follows a single-stage object detection approach, meaning

it directly predicts bounding boxes and class probabilities in a single pass over the

input image. This makes it faster than two-stage detectors like Faster R-CNN, which

perform region proposal and object classification in separate steps.

YOLOv5 employs a more streamlined architecture compared to its predeces-

sors. It uses a variant of the Darknet as a backbone network along with feature

pyramid networks (FPN) to capture multi-scale information and enhance detection

performance. Similar to modern models, it implements a technique called ”model

scaling” that allows users to trade-off between accuracy and inference speed by ad-

justing the model size. The larger the model, the more parameter and the longer

the inference time it takes. It also improves detection accuracy by introducing focal

loss, which focuses training on unbalance datasets. The model also incorporates

various data augmentation techniques during training, such as mosaic augmenta-

tion, random-sized cropping, and color distortion. As a result, it achieves better

performance and faster inference times compared to the previous model suitable for

our work. For this work, we decide to use model size S (small) for fast inference

time.
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RPG Trajectory Evaluation
Trajectory alignment is a process of comparing and evaluating the similarity

between two or more robot trajectories in the field of robotics. We use an open-

source tool from the University of Zurich’s Robotics and Perception Group (UZH-

RPG) (Zhang and Scaramuzza, 2018). The repository provides tools and metrics for

both trajectory alignment and evaluation. It offers methods to align trajectories by

finding the best translation and rotation that minimizes the difference between them

relying on least-squares optimization and iterative closest point (ICP) algorithms.

It measures absolute and relative trajectory errors, position errors, rotation errors,

scale drift, and other statistical measurements. This alignment process is crucial

because it enables a fair and meaningful comparison between different trajectory

estimation algorithms or ground truth trajectories which we compare in Section

5.5.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter V

EXPERIMENT AND RESULT
This section shows our experiment and results. First, we will go over the

hardware and sensors specification of the custom-built drone for this experiment.

Then we will explain our experiment setup and finally the result. The experiment

was conducted at Baan Klang Mueang Sathon-Taksin 2, Soi Suan Luang, Bang Kho,

Chom Thong, Bangkok 10150 on sunny days with high GPS availability outdoors.

5.1 Hardware
The drone is a 6-axle foldable hexacopter. I manually built it from the ground

up with the help of the SR-RcTech shop. The mainframe I used is carbon fiber

for its tensile strength and its lightweight. The arms and landing gear are aluminum

because they are low-cost and easily replaceable. The drone’s general setup is shown

in Figure 5.1. A list of each hardware component of the drone can be found below.

Drone Overview

1. Total Weight: 2.5 kg.

2. Wingspan : 92.71 cm.

3. Number of propellers: 6 propellers

4. Onboard computer: NUC Intel i5

5. Propeller Size: 27.94 cm. (11 inches)

6. Height: 30.48 cm.

7. Motor: Gartt Motor ML3508 580kV

8. Speed: Hobbywing 40A, 2-6S Lipo
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Figure 5.1: The drone’s general setup

9. Battery: Dupu 2600 mAh, 14.8V

5.2 Sensors
We have three onboard sensors on the drone and two external sensors that we

used specifically for this experiment. The three onboard sensors are IMU, single

point laser, and a planar laser. The two external sensors are a stereo camera and

GPS. Specifications of each sensor are specified below.

IMU
Inertial Measurement Unit or IMU is a combination of an accelerometer and

gyroscope. It measures both the acceleration and angular velocity of the robot. We

directly use the IMU from Pixhawk which is an auto-pilot module that we only use
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for sending PWM commands to motors. The Pixhawk is at the center of the drone

shown in Figure 5.1. The IMU on Pixhawk is MPU-6000 giving a reading at 50 Hz.

The sensitivity error of acceleration measurement is ±3% while the sensitivity error

of angular velocity is±2%. For the EKF algorithm, we set the process noise variance

for acceleration on X and Y-axis to 0.1 m2/s4 and on Z-axis to 0.015 m2/s4 and for

angular velocity on Roll and Pitch-axis to 0.025 1/s2 and on Yaw-axis to 0.04 1/s2.

We assume no correlation between different variables.

Hokuyo
The planar laser that we use is Hokuyo UST 20LX. It’s range is 30 m with an

accuracy of ±40 mm and it operates at 40 Hz. It has a scan angle of 270 degrees

with a resolution of 0.25 degrees. We set the Hokuyo facing the same direction as

the drone’s forward, so its 90-degree blind spot is directly behind the drone shown

in Figure 5.1. We mainly use this sensor for calculating the change in a pose in X

and Y-axis using the Scan Matcher technique. The process noise variance that we

set for X and Y is 0.05 m2.

LIDAR-Lite
For height measurement, We use LIDAR-Lite v3, a single-point laser. We

mounted it downward so the laser will point toward the ground in Figure 5.1. We

get the measurement at 10 Hz. The range is at a maximum of 40 m and an accuracy

of ±2.5cm when the range is under 5 meters and an accuracy of ±10cm when it is

over 5 meters. The resolution of the reading is ±1cm%. Since our operating height

for the experiment is always under 5 meters, we set process noise variance for Z to

be relatively small at 0.05 m2.

GPS
Global Positioning System (GPS) is the most prevalent Global Navigation

Satellite System (GNNS) today, so we decide to use an already available external
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source GPS from my Redmi 5G Android phone. We attached the phone on the right

arm of the drone to log GPS data through GPS Logger, a free application on Google

Play Store shown in Figure 5.2. Another reason is that we do not want to modify

the drone too much as it is also needed for another project as well as the fact that we

are already required to use an external camera which is explained in the next sub-

section. Even though the data we gathered from this application is at 1 Hz, we also

receive the number of satellites available. We use this number to determine when

the drone enters a GPS-unstable zone when the number reaches two fixed points.

We determine these exact points by recording the number of satellites present in

each of the three zones for five minutes varying between standing still and moving.

Then, we find the best cut between each zone by modeling the number of satellites

in each zone as a separated Gaussian distribution.

ZED2
For object detection, we also use an already available stereo camera ZED2.

It offers RGB and depth (RGBD) images as well as other various measurements,

e.g., real-time synchronized inertial, elevation, and magnetic field. It operates at

15 Hz and has a field of view (FOV) of 110° x 70°. ZED2 also provides its precise

localization which we will only use as an alternative ground truth for comparison

in this experiment. For our algorithm, we will only use its RGBD images for ob-

ject detection. It is important to note that this sensor by itself might already seem

to solve our indoor and outdoor localization because but actually, it does not. The

sensor does not perform well in direct sunlight or low-light environments. In con-

trast, our GPS is unaffected by sunlight and our laser can work in a completely dark

environment. We set up our experiment environment to be in a way that ZED2 will

work optimally and accurately so that we can use both its RGBD images as input

and its localization as alternative ground truth.

There is another challenge working with ZEDS. It requires NVIDIA graphic

cards for it to work which our onboard computer does not have. Therefore, we need
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Figure 5.2: Drone setup with external sensors of ZED2 and a GPS on a phone

an external laptop with NVIDIA graphic card for running the sensor. We attached

the sensor on top of the drone directly above Hokuyo so there is no obstruction in the

view of the stereo camera shown in Figure 5.2. Then, we connect it to the external

laptop that we carry along during the experiment. We log the sensor data in the

external laptop and then combine all the logs from the onboard computer, external

laptop, and my phone before processing the data using the timestamp in each log

entry. Hence, there might be some error introduced in this experiment contributing

to the time synchronization of the sensor.

5.3 Experiment Setup
We experiment at Baan Klang Mueang Sathon-Taksin 2 and we select sunny

days with high GPS availability outdoors. Our objective of this experiment is to
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prove that our method can be used to safely localize a robot when transitioning be-

tween indoor and outdoor environments if we can detect a gateway between the two

environments and use it as an anchor for the robot. The drone setup with exter-

nal sensors is shown in Figure 5.2. We hand-carry the drone for the experiment as

we cannot fly it due to having two external sensors as well as the need to carry an

external laptop.

The experiment path is relatively simple and is outlined in Figure 5.3. The

path starts outdoors then walk indoors and comes back out on the same path. We

start from the Start marker outdoors and walk forward along the ground markers

for 14.6 meters. Then, we turn left 90 degrees and continually walk forward for

another 15.2 meters passing the door at the 9.4 meters mark. Finally, we turn

180 degrees and walk back along the same path stopping at the Start marker. We

put markers on the ground along the predefined path every two meters outdoors

and every one meter indoors manually measuring the distance between markers

with measurement tape with examples in Figure 5.4. An example video of the ex-

periment setup can be found at https://drive.google.com/drive/folders/

1E-6_Sj9hDVjgmg2AAtAbkFFFuWMaCCzo?usp=sharing. For the indoor path,

We also use the tile line so that our estimated path in the result comparison is even

more accurate. The GPS unreliable zone is the area right in front of the house and

the area inside right next to the door.

Since the laser scanner that we use is Hokuyo UST 20LX and it has a range

of 30 meters, but the experiment location does not have that much range of open

space, we decide to limit the range of the laser scanner. If the laser range is over 5

meters, we will report the max range for that laser indicating that the laser does not

hit anything.

We conduct the same experiment a total of five times. Each time, we record all

the data using rosbag, a logging package available in ROS, for onboard computers

and also for external laptops while the GPS data on my phone is recorded from the

https://drive.google.com/drive/folders/1E-6_Sj9hDVjgmg2AAtAbkFFFuWMaCCzo?usp=sharing
https://drive.google.com/drive/folders/1E-6_Sj9hDVjgmg2AAtAbkFFFuWMaCCzo?usp=sharing


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

Figure 5.3: Experiment setup path

GPS Logger application written to a text file. Then, we combine all data sources

and process them together to compute the localization path with our method. We

have five localization paths for comparison: our method, estimated ground truth,

GPS only, Laser-based only, and finally estimated ground truth from the predefined

path.

5.4 Door Detection
We use the YOLOv5 object detection model to detect a door which from our

assumption represents a gateway between indoor and outdoor environments (Jocher,

2020). To train the model, we collected a total of 500 RGB images of the door

and the environment of our experiment from multiple perspectives using our ZED2

stereo camera on the same day as the experiment. The image size is 640x360 pix-
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Figure 5.4: Ground markers

els. All the images we use have been rectified internally into the common reference

frame from the left and the right camera images. In our dataset, there are a total of

174 images containing the door that partition between indoor and outdoor environ-

ment while the rest are images of the environment. We ignore all other windows and

doors. We split the dataset into a train set, a validation set, and a test set at a ratio

of 70:25:5 respectively. We use an open-source Label Studio tool for labeling the

data (Tkachenko et al., 2020-2022). Figure 5.5 shows some of our training images.
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Figure 5.5: Example images that we use for training the YOLOv5 model
collected from the ZED2 camera. The top two images contain our interested
door; the pink bounding boxes are the door labels. The middle two images
are environment images with doors that we ignore. The bottom two images
are environment images.

We use YOLOv5 size S (small) as our architecture and use their de-

fault hyperparameters for training. We train the model using AWS (Ama-

zon Web Service) on g4dn.12xlarge multi-GPU instance type from Ama-

zon EC2 (Amazon Elastic Compute Cloud) and we train it for a to-

tal of 700 epochs in under 30 minutes. The model weight file and its

train result can be seen in https://drive.google.com/drive/folders/

1cs0OfxypP47wowqG7WrW3MRE2yVLnNhz?usp=sharing. From the result, we

can see that it correctly detects our interested door with almost 100 percent accuracy

in both the validation set and the test set, which implies that the model might overfit

https://drive.google.com/drive/folders/1cs0OfxypP47wowqG7WrW3MRE2yVLnNhz?usp=sharing
https://drive.google.com/drive/folders/1cs0OfxypP47wowqG7WrW3MRE2yVLnNhz?usp=sharing
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the dataset. Therefore, this model might not generalize well in our test experiment.

However, when we use this model to predict each frame in our experiment videos

layout in Section 5.3, it turns out to perform extremely well.

In the five videos of our experiment, we have a total of 13911 images. We

use our model to predict each image using only CPU computation from an In-

tel(R) Core(TM) i5-8300H laptop. It achieves a runtime of five frames per sec-

ond which is still not suitable for a real-time flight but we can increase the infer-

ence time with GPU acceleration as well as letting it only processes some frames

instead of every frame. Nevertheless, trying to achieve an object detection mod-

ule with a high frame rate is not in the scope of this work, so we simply use

this model to process the data offline with our current laptop. The videos of our

prediction can be viewed in https://drive.google.com/drive/folders/1f_

FlEHHUUDDOc_oAIMFqBHtbAJ5IjZQx?usp=sharing. Some example experiment

images can be seen in Figure 5.6. We can see that there are fewer than ten false

positives and false negatives in all videos. From this result, we decide to use this

model for this work. Please note that this model is likely to be overfitted to only

our interested door, so for any other doors, windows, or entrances, the model will

not recognize them. We will discuss how to combat this problem in future work in

Section 6.2.

5.5 Result

Trajectories
This section presents a comparison of four different methods against estimated

ground truth from manual measurement. We experimented a total of five times. Our

experiment reference frame is that the X-axis is a forward direction at the beginning

of the experiment and the origin is at the start marker. Figure 5.7 shows trajectories

from each experiment and from each method. For GPS-only trajectory we convert

latitude and longitude in a similar way to the outdoor mode layout in Section 4.3.

https://drive.google.com/drive/folders/1f_FlEHHUUDDOc_oAIMFqBHtbAJ5IjZQx?usp=sharing
https://drive.google.com/drive/folders/1f_FlEHHUUDDOc_oAIMFqBHtbAJ5IjZQx?usp=sharing
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Figure 5.6: Example images from the experiment. The first three images
show how the model can correctly detect our interested door. The last image
shows that the model can ignore other doors. In each image, the small green
blobs on the bottom right corner of the image are the propeller of the drone
and it does not affect detection accuracy.

For the Laser-based only trajectory, since the range of the laser scanner is 30 meters

and our experiment location does not have that much open space, we limit the laser

scan range to 5 meters. From this limitation, there is a big drift in the outdoor part

of the trajectory since the Scan Matcher algorithm does not when there are a few

structures in the environment. For cleaner comparison, we omit this drift from the

trajectory and start the trajectory right before the indoor part. We rotate and translate

the trajectory so that the indoor location are aligned.

We can see that our method performs better in the outdoor part of the trajec-

tory than that of the laser-based method as the laser-based does not have enough

structure for the Scan Matcher algorithm and it cannot create a sensible outdoor

trajectory. Similarly, our method is more accurate than the GPS-only method in the

indoor part as the GPS signal is less accurate indoors. When compared with the

manually estimated path and ZED2 path with optimum operation conditions, our

result performs worse but the result is relatively similar given that ZED2 will not
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Figure 5.7: List of figures showing trajectories from each experiment (col-
umn) and each method (row). Columns from left to right are test number
one to test number five. Rows from top to bottom are estimated ground truth
from manual measurement, our method, GPS only, Laser-based only, and
finally ZED2 optimum condition.

work in the dark or have direct sunlight, but our method can. Hence, our method

still gives a good localizer for a robot in an indoor and outdoor environment.

Problems with our method
Figure 5.8 shows a better resolution of our method trajectories in the five ex-

periments. There are three problems with our method. First, in experiment number

four, the path right after GPS mode is wrong as it almost does not have a hybrid

mode. The problem comes from the fact that by counting from the number of satel-

lites the GPS receives the GPS signals report that they are reliable until the drone

almost reaches the threshold of the doorway. Therefore, the trajectory is only a

GPS-only path and a Laser-based only path combined. To solve this problem, we

might need to use doorway detection to help verify GPS quality.
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Second, in experiment number two and number five, the indoor path has a big

error in rotation. This error arises when we switch from the hybrid mode to the

indoor mode with the end of the hybrid path having a rotation error. When we start

the indoor mode, the Scan Matcher algorithm will not know if the heading at the

start is biased or not. To solve this problem, we need to share collected data between

operation modes so that we can use keyframes from camera sensors for detecting

loop closure when we come out from the building.

Third, in experiment number three and number five, there is a pose jump when

switching from hybrid mode to outdoor mode shown in Figure 5.9. Since hybrid

mode on the way out only relies on unstable GPS and unstable laser-based EKF,

there is a drift in the trajectory, when switching to GPS mode and receiving an

absolute pose update, the jump occurs. To remedy this problem, we need just need

to do a loop closure at the start of the GPS pose update, and the whole drift with be

accounted for. This loop closure will also alleviate our second problem.

Trajectory alignment
For the RPG Trajectory Evaluation tool, figure 5.10 depicts the comparison of

trajectories of each method to estimated ground truth from the manual measurement

of test number one. Table 5.1 also shows the differences as errors from the estimated

ground truth trajectory using the RPG Trajectory Evaluation tool. The error that we

report is the root mean square error on the trajectory alignment error with the unit

in the meter. We can see that our method outperforms in every test for both GPS-

only and laser-based methods as expected. However, with the problems mentions

in the previous subsection, it performs worse than that of the ZED2 with optimum

operating conditions.

Mode switching
Mode switching depends on GPS reliability and door detection. For

GPS reliability, we decide to use the cut-off for GPS unreliable when the
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Figure 5.8: Trajectories of our method from the five experiments order from
left to right and from top to bottom.

number of satellites is less than 30 satellites for three consecutive times.

The GPS data can be seen in https://drive.google.com/drive/folders/

1Ib3uzv2hIX7kXRhHyBg8SwIrNMj_f9YS?usp=sharing. Figure 5.11 shows

segments of the path where the GPS is unreliable as well as the associated path

(one row for the way in and another for the way out) in the estimated ground truth.

We can see how in experiment number four the associated ground truth for the way

in the GPS falsely reports reliability until the drone almost reaches the door. Fur-

thermore, in all experiments, the GPS becomes unreliable closer to the building than

on the way out.

https://drive.google.com/drive/folders/1Ib3uzv2hIX7kXRhHyBg8SwIrNMj_f9YS?usp=sharing
https://drive.google.com/drive/folders/1Ib3uzv2hIX7kXRhHyBg8SwIrNMj_f9YS?usp=sharing
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Figure 5.9: Pose jumps when switching from hybrid mode to outdoor mode
indicated in red.

Our hybrid mode operation zone for the way in is the zone when the GPS is

unreliable and the drone can detect the gateway which can be seen in Figure 5.12.

We can see that in all experiments we can detect the door right after turning in the

predefined path, so the operation mode gets switched from outdoor mode to hybrid

mode only when the GPS is unreliable and switched from hybrid mode to indoor

door when it can no longer detect the door.

Method \ Test # 1 # 2 # 3 # 4 # 5

Proposed method 1.45 2.11 1.73 3.16∗ 1.93

GPS only 2.53 3.39 4.32 4.21 3.88

Laser-based only 3.89 3.80 2.80 3.71 3.11

ZED2 optimum condition 0.69 0.89 0.72 1.86 0.65

Table 5.1: Comparison of four different methods against estimated ground
truth from manual measurement. The unit in the table is in meters.
* Test No. 4 of our method fails because the GPS reports that it is reliable
until the drone reaches the doorway when in truth the GPS is not reliable.
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Figure 5.10: Trajectories alignment of each method again estimated ground
truth from the manually estimated predefined path from experiment num-
ber one. From left to right and from top to bottom, the alignments are our
method, GPS only, Laser-based only, and finally ZED2 optimum condition.
The purple line is the estimated ground truth, the blue line is each method
we compare, and the grey lines are matching in both trajectories according
to pose and timestamp.
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Figure 5.11: List of figures showing GPS reliability of each experiment (by
columns). The top row is the GPS path. The second and third rows are associ-
ated with the ground truth path on the way in and on the way out respectively.
The red indicates the GPS is unreliable.

Figure 5.12: List of figures showing hybrid mode operation zone for each
experiment (by columns) on the way in. The first row is our method path.
The second row is the associated ground truth path on the way in. The third
row is the path where object detection detects the door. The red indicates the
hybrid mode operation zone.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter VI

CONTRIBUTION AND DISCUSSION

6.1 Contribution and Discussion
This research provides a guideline system for autonomous UAVs to localize

in such an environment with both 2D-laser scanners and cameras when only vision-

based or only ranged-based fails to do so. The work aims to build a self-created

hexacopter that can localize itself indoors and outdoors in an unknown environment.

Even though we have not achieved a test flight due to hardware limitations, we still

have proven multiple points.

Firstly, we have proven that in transitioning between outdoor and indoor envi-

ronments, we can use an opening between those two environments to safely localize

the robot. In the experiment, the opening is a doorway, but it can be anything like

windows, archways, or even a cave entrance.

Secondly, in an area with minimal structure and an unstable GPS signal, we

can find a distinguishable landmark for localization. We can use that landmark as

an anchor for the robot for a short period until it finds a new anchor or move out of

that environment safely.

Thirdly, this work can be further adapted and improved for numerous appli-

cations such as autonomous inspection in challenging environments like orchards,

subways, and drainage systems. It could also improve search and rescue operations

in thick forests and cave systems.
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6.2 Future Work
In the experiment, we had to use external sensors since our onboard computer

does not have an NVIDIA graphic card for processing the sensor mentioned in Sec-

tion 5.2. Hence, we cannot run the whole system in real-time. Even though most of

the algorithms we used processed during the experiment time, our object detection

from YOLOv5 did not. Despite using a small-size model for faster inference time,

YOLOv5 could potentially take too much time to process in real-time. To combat

this problem, we will need to select only some frames for object detection which

will result in a fewer frame rate and could affect the localization. Finding a balance

between frame rate and model size for real-time processing is our next challenge.

The other problem with carrying external sensors is that we cannot fly the

drone. Therefore, in our experiment, the sensors’ measurement and images from

the camera have less vibration than flying. We are still not certain if vibration will

affect our localization method or not. Moreover, we need to find out if our trajectory

alignment result from our experiment will be similar to the result from flying the

drone. The speed of the drone will not be similar to walking and the drone will

need to pitch forward more which might cause the laser scanner to be not usable.

Nevertheless, we will leave these further studies as future work.

As we have mentioned in Section 5.4, right now our model can only detect the

door in our experiment. For general use, we need to detect any arbitrary entrances

between indoor and outdoor environments and if the robot can pass through those

entrances safely. One simple fix is to detect all doors, windows, and entrances and

then reject the ones that are unavailable from depth images. An available entrance

means that the entrance has to be large enough for the robot and it must be open. We

can calculate the entrance size directly from the object’s size in the depth map. To

detect its open state we can also check from the depth map that it must have much

greater depth in the center of the object.
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6.3 Open Problems
This thesis only focuses on localization tasks, but for a robot to be fully au-

tonomous, it still needs many other systems to operate coherently. The robot needs

to have a robust control system to navigate a complex environment. It also needs

both local and global mapping modules as well as a navigation system. Hence, there

are still many open problems to solve before we can truly have fully autonomous

robots perform missions in such environments.
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