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This dissertation sheds light on a collateralized debt obligation (CDO) since
it resulted in the financial crisis between 2007 and 2008. Because of damage of
this crisis, several authors have attempted to approximate loss on a tranche of
a CDO. For instance, in 2009, Karoui and Jiao used a normal random variable
to approximate the loss on a tranche of a CDO containing independent assets.
However, in this work, we are attentive to dependence structure among assets in a
CDO. We present two types of dependent condition: local dependence (LD) and
disjoint local dependence (DLD). They roughly mean that defaults of some assets
may influence defaults of other assets in their neighborhood but some assets are
not correlated. An average loss on a tranche of a CDO is approximated by an
average of a call function for the standard normal random variable. The uniform
and non—uniform bounds are presented under the LD and DLD conditions by using
the Stein’s method. Moreover, we illustrate two examples under the DLD condition

and propose numerical bounds.
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CHAPTER 1
INTRODUCTION

A collateralized debt obligation (CDO) is a family of reference assets which are
ranked by a credit rating agency and assigned to a specific class called tranche. A
CDO roughly consists of senior, mezzanine and equity tranches. A senior tranche
contains low-risk assets with low return while the mezzanine tranche contains assets
with moderate risk and moderate return. On the other hand, assets with high risk
and high return are contained in an equity tranche. The priority of payment and
interest is arranged from the senior, mezzanine and equity tranches, respectively.
Conversely, the equity tranche first bears risk and loss at the expense of high
interest rate until the loss reaches equity tranche’s limit called a detachment point

(DP). The remaining loss passes through the mezzanine and senior tranches,

DP,
Senior Low risk
Low interest
dit rati
Credit rating AP —DP
agency s M
Portfolio of .
- > Mezzanine
assets
AP =DP,
. High risk
Equity High interest
AP,
Tranche

Figure 1.1: The structure of CDO

respectively, due to their starting points of lost absorbing called attachment points
(AP). The structure of CDO is shown in Figure 1.1, where the notations APk,
APy and APg stand for the attachment point of senior, mezzanine and equity
tranches, respectively and DPs, DPy and DPg stand for detachment point of
senior, mezzanine and equity tranches, respectively. Note that APy = 0, APy =

DPg, APy = DPy; and D Ps = 1. Consequently, from this structure, we concentrate



on loss on a tranche of a CDO.

A CDO is popular and crucial because it was a cause of the financial crisis
between 2007 and 2008 which made an extensive damage to the world. After this
crisis, financial institutions have seriously discovered a way to handle future crises.
On the one hand, many countries have restricted the proportion of investment
in CDO. However, the possible return from CDO attracts investors to manage a
risk instead of limiting an investment. One way to hedge a risk is to know an
average loss on a tranche of a CDO before investing. Thus, we need to predict
a default time of each asset and find a total loss on a CDO. For example, 2], [3]
and [10] used one factor Gaussian copula model to determine the probability of
default for each asset. Then, correlation structure among assets was concentrated
to deduce the loss distribution. This model was also used to treat default correla-
tion among assets ([4]). After that, the expected loss on each tranche of CDO was
investigated by using Monte Carlo and analytic methods. Moreover, the model
was extended to multifactor copula model ([9], [11]) which was used to establish
a distribution of default. Hull and White ([11]) calculated loss distribution by
using recurrence relation and probability bucketing. Furthermore, [10] and [18]
used the Archimedean copula process to model dependence between default time
while [14] used one factor normal inverse Gaussian copula model. In one factor
copula model, parameters are generally deterministic, but [1] and [2] investigated
a stochastic correlation model which is a slight extension of one factor Gaussian
copula model.

Nowadays, an approximation approach is famous and suitable for this problem.
For instance, in [19], Yang, Hurd and Zhang used saddle point approximation
method to compute loss distribution. The total loss on a CDO was represented
by a series of random walk which is a series of independent assets by Pagés and
Wilbertz ([15]). They reduced the number of steps for random walk by using
the dual quantization method and approximated the loss on a tranche of CDO
by the optimal dual quantization. Moreover, in 1972, Stein ([16]) introduced the

Stein’s method which is a powerful and brilliant method for approximation since



the method can be applied in a problem with dependent structure and the error
in the approximation can be obtained.

Karoui and Jiao ([7], [8]) examined the total loss of a CDO to be a series of loss
for independent assets. They used the Stein’s method to approximate loss on a
tranche of a CDO by a normally distributed random variable and obtained bounds
of the approximation. After that, Jongpreechaharn and Neammanee ([12], [13])
improved the bound under the same condition. The results from [13] are stated

below.

sup |E(W — k)t - E(Z~ k)+| < 3ZE|Xz‘|3

k>0 Py

and

|E(W — k)" — E(Z — k)]

1/2

n n 1/2 n
6.54 | 1
§2.86e‘3"’2/8§ E|XZ~|3+T ﬁ(E EX?JFS) +1 (E EXf) :
=1 =1 =1

n
where * = max{x,0} for any real number z, W = ZX" with zero mean and

=1
unit variance, Z is the standard normal random variable and k is a positive real

number.

However, assets in a CDO may be correlated, i.e., a default of one asset may
induce defaults of relevant assets. Meanwhile, some assets are independent. For
instance, if a restaurant owner runs out of money, then the restaurant is closed
due to a shortage of materials. Consequently, all staff are unemployed and hence,
they default. Employees in the same industry who are in debt may simultaneously
default, if the industry goes bankrupt. An agriculturist in the red may default
when a flood ruins crops. This damage leads to a default of a processing factory
because of no raw material. Since the lack of export goods, the loan of an export
company defaults. But, defaults of employees who are unemployed do not affect

the product of the processing factory or we can say that they do not influence the



Employee 1  Employee 2 Agriculturist

' @ Processing
. factory

Employee 4  Employee 3 Export
company

Figure 1.2: Example of locally dependent assets

default of the processing factory (Figure 1.2).

Remark that an edge in Figure 1.2 represents the correlation among two assets,
and the assets that have no link are independent.

From the above example, we can see that some assets are relative in the sense
that they have some common structures such as they are in the same organization
or they have common resources. If an asset defaults, other correlated assets may
default as well, but the other assets that have no connection with the original asset
will not default.

Consequently, in this dissertation, we concentrate on dependent structures
among assets including local dependence (LD) and disjoint local dependence (DLD).
Note that the dependence structures in this work are motivated by Chen and Shao
(16).

Before proposing the definition of LD and DLD conditions, we first define
notations used in this work. Consider a standard CDO with n underlying assets.
The it" asset is assumed to have a deterministic recovery rate R; and a default
time 7;. We can obtain the total loss on the portfolio at the time T by

1
L(T) ==Y (1-R)I(r; <T),

n <
=1

where I(A) is the indicator function of a set A. Note that in the real situation, we
do not know the value of the default time 7;. Hence, the key of hedging the risk
in CDO is to compute an average loss on a tranche of the CDO defined by the



difference of averages for call functions

E(L(T) — AP)* — E(L(T) — DP)*.

Therefore, our problem is approximating
N+
E <L(T) - k:> ,

where k is a positive real number and 0 < k < 1. Note that, when k = 0, EL(T)"
is easily calculated.
N+
Let Z be a standard normal random variable. To approximate £ (L(T) — k;)

by a call function of the standard normal random variable, we need to normalize

L(T). Let
(1—Ry)[I(r; <T) = pi

n+/Var L(T) ’

where p; = P(I(1; <T)=1) and let W = ZXZ" Then

=N

Xz':

with
EW =0 and VarW = 1.

Notice that, to determine the rate of convergence of Var L(T), we assume that
{I(r; < T)}, are independent and identically distributed. Then, by setting

R=R;,p=mp;fori=1,2,3,...,nand ¢ =1 — p, we obtain that

vaxT)=§115931ZC)(%).

k— BL(T)

Next, we let k =
Var L(T)

. Then,



‘E (L(T) . 12:>+ — NVar L(DE (Z — k)*
= /Var L(T) |[E(W — k)" — E(Z — k)*|.

Hence, the problem is transformed to find a bound for |E(W — k)™ — E(Z — k)*|.

Notice that, we assume k& > 0 in this work. Let

5(n,k)=|EW — k)" — E(Z - k)*|
and §(n) =sup [E(W —k)* — E(Z — k)*|.

k>0

We next introduce the LD condition which is taken from [6]. For A C {1,2,3,...,n},
let X4 denote {X;,i € A}.

Definition 1.1 (LD condition). We say that random variables X, Xo, X3,..., X,
satisfy the local dependence condition if for each ¢ = 1,2,3,...,n, there exist
A € By € G € {1,2,3,...,n} such that X; is independent of Xj,e, Xy, is

independent of X Be and Xp, is independent of Xce.
The following is the uniform bound on normal approximation for LD CDO.

Theorem 1.2 (Uniform Bound). Under LD condition, we have

1 1
e ( (mmw) -0 (varrm)

1
Furthermore, if Var L(T) = O (—) , then
n

5(n) = O (%) |

To present a non—uniform bound for LD CDO, we let the following notations

throughout this work:



LY;=) Xj;

JEA;

2.pp=P(r <T)=1),¢s=1-p;and p;; = P(I(1; <T) = L,I(7; < T) = 1);
3. |A| = max |A;| and |B|= max |B;l;

1<i<n 1<i<n
4. Ry = max max{|C;|, |C; !} where C; ' = {j | i € C}};

5. ke = max {|N(B;)|}, where N(B;) ={j | B; N B; # &};

1<i<n

6. k3 = max max{| B, |B{1|}, where B{l ={j|ie B;}
7. k = max{Ki, Ko, K3}

Remark 1.3. We observe from the definition of s that, when « is large, it means
that there are many correlated assets in a CDO. Hence, when an asset in this CDO
defaults, the whole CDO may be defaulting. Therefore, the CDO manager should
limit the number of correlated assets in the CDO to hedging risk. Consequently,

we assume in this work that k = max{r, k2, k3} does not depend on n.

Notice in the case of independent random variables that they satisfy the LD
condition with |4;| = |B;| = |B;!| = |Ci] = |G| = |N(B;)| = 1 for every i.
Consequently, x = 1 does not depend on n.

From the above notations and assumption in Remark 1.3, we have the non—

uniform bound on normal approximation for the LD CDO as shown.

Theorem 1.4 (Non-uniform Bound). Under LD condition and for k > 2, we have

1 1

1 1
¢ <n2 (VarL(T))3/2) ’




2K

h 1 (k 2 G

where 1(,/4:)—( —I—?) _27#{:2—1-% +W
e k2

and Co(k, k) =k .

- _|_ —
Vork?  k

1
Furthermore, if Var L(T) = O (—) , then
n

5(n, k) = (Cl(k:, k) + Colk, 1) + %) 0 (%) |

Next, we define a special and realistic case of the LD condition, called disjoint

local dependence (DLD) condition.

Definition 1.5 (DLD condition). We say that random variables X1, Xo, X3,..., X,
satisfy the disjoint local dependence condition if there exists a partition {A4;}%, of
{1,2,3,...,n}, where d < n such that for eachi = 1,2,3,...,d, X, is independent
of X Ac.

Notice that the DLD condition is a special case of the LD condition when
A; = B; = C; and {A4;} is a partition of {1,2,3,...,n}. Although we can directly
apply Theorem 1.2 and Theorem 1.4 under LD condition to obtain error bounds
for DLD condition, a direct proof for DLD condition gives sharper bounds than
those obtained from the LD condition.

From the structure of DLD condition, we can classify assets due to their re-
lation. Hence, assume that the n assets can be split into d groups and the *®
company has m; — m;_; indebted personnel (for i = 1,2,...,d when my = 0 and
mg = n) as shown in Figure 1.3.

From this structure, we have the uniform and non—uniform bounds as follows.

Theorem 1.6 (Uniform Bound). Under the DLD condition, we have

1/2

d d 1/2 d
§(n) <24.97) "E[Yi]* +0.8 (Z EY;*) + (dEW4 > Eyf)
=1 i=1 =1



4 N\ N\ N\ )
1 m+1 m, ,+1
2 m,+2 m, 2
m, m, m,
1% compan: nd dt
\ pany Y, (2 company \_ \/ company )

Figure 1.3: Classification of assets in a DLD CDO

Furthermore, if we use the fact that

|Ai] " d|Al*
V| < ————— and EW" <3+ ,
i n+/Var L(T) n* (Var L(T))*
we have
24.97d|A)? BV d|A|?
5(n) < 97||32 28\/'||
n3 (Var L(T))*? ~ n?Var L(T)

+<3+ d|AJ* )”2 d|Af*
nt (Var L(T))*/) b (Var L(T))*

Theorem 1.7 (Non-uniform Bound). Under the DLD condition with k > 2, we

have

1/2

d d 1/2 d
S(n,k) < Ci(k)) BIYil® + Ca(k) (ZEYf) + Cy(k) (dZEYf) :

_ 55e M2 55 1

where Ok =" Tk T
e k2
W= e Tk
|
and Cy(k) = (3\/EW6 +15.69VEWA + 18.24) .

Furthermore, if we use the fact that

| Ay

n+/Var L(T)’

Vi| <
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4
EW* <3+ i 2
nt (Var L(T))
6 4
and EW® <15+ (1 +10d) d|A|3 A 2
né (Var L(T)) n* (Var L(T))
we have
S k) < CHMIAP__ CoVAAP | Gy)dIAP
T s (Var L(T))3/2 n?Var L(T) ~ n3(Var L(T))%/?’
where
1 1+ 10d) d|Al° 1dAlF O\
Cy(k) = + 3<15+<+ e - 2)
k né (Var L(T)) n* (Var L(T))

+ 15.69 (3 % A 2) +18.24| .
n* (Var L(T))

Moreover, we give two examples for Theorem 1.6 and Theorem 1.7 under the

DLD condition where we classify assets in the CDO according to their workplace.
In the first situation, we consider a CDO containing bankrupt assets. The assets
correspond with loans of personnel from d companies. Each company tends to
face bankruptcy due to the global crisis. If a company goes bankrupt, then all
personnel in the company are unemployed. Consequently, they default. In other
words, when an asset defaults, then other assets in the same company also default.
In addition, bankruptcy of a company does not affect other companies. Let p,,, be

the probability that the i** company defaults. The following are our results.
Example 1.8. Under the bankrupt assets situation, we have

1. the uniform bound for loss on a tranche of CDO containing bankrupt assets
1S

3(n) < 24.97743 + 0.875/F + [dvas (3 +va0)]"”;

2. for k > 2, the non-uniform bound for loss on a tranche of CDO containing



11

bankrupt assets is

3(n, k) < Cr(k)vas + Co(k)vys + Ca(k) (dyag) ',

where Var = VarL EE meZsz (ot +an ) (Z(l - Rj)) ;

JEA;
EW* <3+ a4,
EW® <15 + 746 + 15744 + 10775

2
and Var L(T meﬂmz <Z (1— Rj)> .

JEA

When we set parameters: d =n/2,p = p;, R = R; and m; — m;_; = 2, we have

the bounds for loss on a tranche of the CDO with bankrupt assets for k > 2 are

5(n) < 24.97V2(p* + ¢%) f 0.8/2(0% + ¢3) L [ +e) (3 . M)

N N np?q> npq

and

5(n k)<\/§(p + %) L V2P +E) )Os(k 2(p? +q5)03(k>

T \/npq N np?q? ’
2 3 3
where Wt <34 20t T)
npq
and Ew® < 154 20+ @) | 3007+ ) + 2007+ )"
- (npq)? npq

Moreover, if we set R = 0.7 and p = 0.5, then we have the result shown in Figure

1.4.
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Bankrupt assets
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Figure 1.4: Uniform and non-uniform bounds for loss on a tranche of CDO with
bankrupt assets

In the second situation, we consider a CDO containing laid—off assets. Under
an economic contraction around the world, many companies must manage their
financial status. One of many solutions to reduce the exceeding cost is a layoff. The
n assets in the CDO are split into a number of groups, and each group represents
a company or a department. We suppose that each organization plans to lay off at
most one employee. Hence, if our colleague is laid off, then we are still employed.
On the other hand, the layoff of other companies does not affect our company.

Moreover, it is possible that no coworker in the same company are laid off.
Example 1.9. Under the laid—off assets situation, we have

1. the uniform bound for loss on a tranche of CDO containing laid-off assets is

3(n) < 24.97845 + 0.88y% + [dBas (3 + Baa)]*;

2. for k > 2, the non-uniform bound for loss on a tranche of CDO containing

laid-off assets is

3(n, k) < C1(k)Bas + Colk)By/L + Cs(k) (dBas) ",
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where EW* <3+ Ba,as

EW® <15+ Bag + 15844 + 1057 5,

T

1—R; =Y (1—R)p

leA;

+ (1 —pa,) (Z(l - Rj)%‘) ]

JEA;

and Var L(T) = % Z Z(l — R;)’p; — (Z(l - Rj)pj>

JEA;

] d
Par = n"(Var L(T))"/? Z LeA_pj

i=1

Next, we compare the bounds by applying Example 1.9 with the following
parameters: d =n/2,p = p; and m; — m;_; = 2. We obtain that

S(n) < 22ITVAP ) OSVAP AT 200+ P) (3 L2000 q3))
- Vnpq Vnpq np*q’ npgq
and
V2(0° + )Ci(k) | V2008 + @) Co(k) 2(p° + @
5(”7 k) < nﬁq : + npq— : + nﬁQq_Q )C (k)7
where D = 2p,
=3 —3
EW*< 3+ Q(IJ—T_Q)
npq
and EWS <15 + 4@5 + (f’) + 30(]73 + q3) + 20@2 + (12)2.
B (npq)? npq

By setting additional parameters R = 0.7 and p = 0.4, we obtain uniform and

non—uniform bounds as shown in Figure 1.5.
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Laid-off assets
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Figure 1.5: Uniform and non-uniform bounds for loss on a tranche of the CDO
with laid-off assets

This dissertation is organized as follows. In Chapter II, we introduce the Stein’s
method on normal approximation for the call function. We also provide properties
of the Stein solution and its derivative which are useful and important in this
work. Next, the definitions of LD and DLD conditions are proposed in Chapter
IIT together with some examples. In each condition, we determine Var L(7T") and
upper bounds for the forth and the sixth moments of W that are contained in our
results. Moreover, under DLD condition, we illustrate two examples to provide
the exact value of Var L(T') and the absolute moments of Y;. In Chapter IV, we
establish uniform and non—uniform bounds on normal approximation for the LD
CDO while uniform and non—uniform bounds on normal approximation for the
DLD CDO are presented in Chapter V. Furthermore, we illustrate bounds for
CDO containing bankrupt assets and laid—off assets in Chapter V together with
the numerical bounds under some specific parameters. Finally, we propose some

further research in Chapter VI.



CHAPTER 11
STEIN’S METHOD ON NORMAL APPROXIMATION
FOR CALL FUNCTION

In this chapter, we introduce a powerful and brilliant method for obtaining a bound
and the rate of convergence on normal approximation discovered by Stein ([16])
in 1972, called the Stein’s method. We consider the solution of the Stein equation
for the call function and obtain the bounds for the solution.

Let Z be a standard normal random variable and f : R — R be an absolutely
continuous function with F'|f’(Z)| < oo. The Stein’s method begins with the

characterization of standard normal random variable Z,

EZf(Z) = Ef(Z).

From this characterization, we have the Stein equation on normal approximation

for a given function h as follows:

zf(x) — f'(z) = h(x) — Eh(Z).

To apply the Stein’s method with the CDO tranche pricing problem, we con-

centrate on a call function

for a fixed positive real number k where (x —k)* = max{z —k,0}. Thus, we obtain

the Stein equation on normal approximation for the call function

efil@) — fl@) = (@ — k)" — B(Z — k)", (2.1)
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From this equation, substituting x by a random variable W and taking expectation

on both sides of the equation, we obtain

EW fi(W) = Eff(W) = E(W — k)" — E(Z = k)", (2.2)

where f; is the solution of (2.1). Notice that, a bound from approximating
E(W —k)* by E(Z—Fk)" is obtained by computing the term |EW f,(W) — E f,(W)].
This is a core of the Stein’s method for normal approximation.

In order to bound |EW f,(W) — Ef;(W)|, the properties of Stein solution fj

and its derivative f; are essential. Notice that

ome”" I2E(Z — k)t ®(x) if # <k;
Jr(@) = (2.3)
1 —\2xe® Pk + E(Z — k)*]|®(—z) ifz >k

and
E(Z — k)" <1 + v/ 27rx¢(93)e$2/2> if v < k;

[k + E(Z — k)] (1 T mxcb(—x)ew?ﬂ) it x>k,

1 * 2
(see [12]), where ®(x) = s / e t/2dt, for x € R, is the cumulative distribu-
T J—00

- =

tion function of Z. Observe that, f; is not differentiable only at the point k. Hence,

to make (2.1) valid, we conventionally let
Fi(k) = kfilk) + E(Z = k) = B(Z = k)* (14 Varko(k)e/2)
This implies that

BE(Z —k)* (1 + \/%ccb(x)ex?/?) if 7 < &
(@) = (2.4)
[k + E(Z — k)] (1 - \/%m(—x)em) if 2 > k.

In the following propositions, we give some properties of fi and f; which are

used in our work.
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1
Proposition 2.1. For k > 1, we have | fi(z)] < o for all x < k.

Proof. Let k> 1 and x < k. We note that fi(z) > 0. If |x| < k, then by the fact
that

12
o~k /2

v 2mk?

E(Z -k < for k>1 (2.5)

(see [12], p.116), we have
1
ful@) < =X
Suppose that x < —k. By the fact that

—a2/2

?(-a) <

fora >0 (2.6)

(see [17], p.23) and (2.5), we have

E(Z =kt _ e®2 1
<

< < —.
o) ST TS e S e
Hence,
1
| fr(@)] < o for x < k. O

Before proving the next proposition, we let ||g|| = sup |g(x)| for any real valued
zeR

function g on R.

sz/ 1
+
\/2 k2

Proof. By the expression of f; in (2.4), we divide the proof into 2 cases. The first

Proposition 2.2. For k > 1, we have ||f}] <

case is ¢ < k. If x < 0, then we have
0<1+V2rad(x)e”/? <1

where we use (2.6) in the first inequality. By (2.5), we have

_ 1.2
o—k2/2

v 2mk?

for x < 0.

0 < file) <



Suppose that > 0. Then, f;(xz) > 0. By (2.5), we have

—k2/2 1
0< f(z <EZ—k+(1+\/27rk:ek2/2 < © 4=
>~ fk;( )— ( ) ) — \/%/{32 k
Therefore,
e k2 q
0< fi(z) < + - forz<k
fk:( )— \/%kQ k

for 0 <z <k.

18

The second case is © > k. By (2.6), we obtain v/272®(—xz)e* /2 < 1. Then,

fi.(z) > 0. On the other hand, note that

(see [12], p.116). Thus,

2 1 1
V2rzd(—x)e” /2 > 1~ i 1-— =k
From this fact and (2.5), we obtain
k+ E(Z -kt Vi e/
() < < - :
Sulz) RS SN =X
Hence,
, e k2
0< fi(x) < + — forax > k.
Combining 2 cases, we obtain
LAl < G
+ — for :
MU= ok k -

O

Proposition 2.3. For real numbers x,t with [t| < 1 and a positive real number k,

we have

\fo(z+1t) — fi(z)| < 222t + 10.46|z|[t] + 12.16[t|.
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Proof. From (2.1), we have

fr(z +1) = fi(z)
=(@+t)fe(z+t)—afi(x)—(x+t—k)T+(@—k)7

((:r+t)fk($—|—t)—:rfk(:v)—t if 2 >kand 2+t >k
@O ) - 2 fil@) if 2 <kandx+1t <k
- (x+t)fu(z+1t) —xfi(zx)+ (x — k) ifx>kandx+t<k;

@+ fulz+t) —afi(e) + (e +t—k) Hfr<kandz+t>k

Case 1: x > k and x + ¢t > k. We note from Lemma 2.4 in [5], p.16 that

17kl < 2 (2.8)

and 175l < \/g (2.9)

Since fi is continuous on (k,00), we can use the mean value theorem, (2.8) and

(2.9) to show that

[fi(z + 1) — fi(@)] = | [fulx + 1) — fule)] + tfi(x + 1) — 1]
< [af|fe(e + 1) = fe(@)| + [t (1fu(z + )] + 1)
< [l fx ] + 3¢

< 0.8]z|[t| + 3.

Case 2: r < k and x +t < k. By the same argument as shown in Case 1 with

the fact that f; is a continuous function on (—oo, k], we can conclude that
(@ +1) = fi(@)] < [allfu(@ + 1) = fu(@)] + [t]fr(x + 2)] < 0.8[a]|t] + 2J¢].
Case 3: k < x < k —t. We note from (2.4) that

file +1) = fi(z) = Bi+ By + Bs,
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where By = (x+ t)eH* 212 _
By = (z + )V 2rke® 2 [0(k) — d(x + )],
By = V27 (k+ E(Z = k)") [n1(2) — g (w + 1)]
and 91(s) = e’ D(—s).

Note that

By = (x +t)e@H 2RI 4t > 0) 4 (24 £)e@H 2Rz 4 < 0) — k

<(z+t)—k

VAN

0.

To find a lower bound for By, we separate B; into 3 cases including —k < x +t <0,

—1<z+t<—-kandO<z+4+t<k If —=k<x+1t<0, then
Thus,

-] <B <0 for —k<z+t<0. (2.10)

If -1 <x+t< -k, then (x +t)> — k* > 0 and k < 1. Note that

2 2
@ty /2—k2/2 Al ((x‘gt) 1) %) o1

t)? K
(z+1) -5 By using the fact that —1 < x4+t + %k <0 and

—1<t<az+t—k<0,wehave 0< (z+1)?—k*<|t| <1. Hence,

for some 0 < 1 <

B fie (E52 - 8)n)

Vel

>r+t+
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> —1.83|t] for —1<z+t<—k.

Therefore,
—183|t|] < By <0 for —1<a+t< —k. (2.11)

(x+t)* k?
2
value theorem, we have 1 — ™ = —xqe™, ie., ™ = 1 + rge™ for some x; < 0.
2 2 2 2
x t k
Note that zg = 5 + xt + 373 >t + 7 Hence,

Suppose that 0 < x4+t < k. Let p = . Then, xy < 0. By the mean

By = (x+1t) (1 +x0e™) — k

2
>z +t+(z+1) (:ct+%) —k

t3
> = 2] - 0

> —2%t| = 1.5]t] for0<az+t<k.
Thus,
— 2t - 15| < B <0 forO<ax+t<k. (2.12)

By (2.10)-(2.12), we obtain
|By| < 2®|t| +1.83|t| fork <ax <kt

Next, we consider By. If  +t < 0, then By < 0. By the mean value theorem,

there exists ¢ € (x + ¢, k) such that

I
Ok)—P(x+t) =P (c)(k—x—t) < ——.
(k) — @(z +1) = '(c)( )< oo
Since x +t < 0,k <x < —t <1 Bythisfactand -1 <t<k+t<x+t<0, we

have

By > (z + t)ke 2t > —\/e|t| > —1.65t| for z+t < 0.
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Then,
—1.65|t]| < By <0 for x4+t <0.

Suppose that = +¢ > 0. Then, By, > 0. Note that

6—(12/2

— OL:L be_82/23 —a or a
®(b) — P(a) \/%/a ds < m(b ) for 0 <a<hb. (2.13)

From (2.13) and the fact that x + ¢ < k < x, we have
0 < By < (x4 t)k|t] < ka|t] < 2?|t| for x4+t > 0.

Hence,

|By| < 2*[t| +1.65|t| for x +t € R.

To bound Bjs, we first show that

lg1(s)] < 3.18 for s > —1. (2.14)
To show (2.14), we note that ¢g(s) = — S D(—s)es2(s2 +1). If |s| < 1,
. V2T
then |g/(s)| < —— + 2@ (1)e'/? < 3.18. Suppose that s > 1. By (2.6) and (2.7),
\/27r1

we have [g](s)] Hence,

< —.
T2

gi(s)] <3.18 for s > —1.

By (2.14) and the fact that

(2.15)
(see [12], p.116), we have

1
|Bs| < V2rm <x - \/_2_71') |y ()]t < 7.98)z||t] + 3.18]¢]
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for some s € (z +t,2) C [—1, 00).

Consequently,
iz + 1) — fu(x)] < 22%t| + 7.98|z|[t| + 6.66]t| for k <z <k —t.
Case 4: k —t <z < k. By (2.3), we obtain

frlx +1t) = filz) = C1 + Cy + Cs,

where Cy =V2r [k+ B(Z = k)] [g1(z) — gi(z + 1),
Co =V2rkze” *[®(x) — (k)]

and C3 =— ze® 127K 4k
By (2.14), (2.15) and the fact that 0 < k <z +t < 2 + 1, we can deduce that

1| < Vor (yx\ +14 ) 19, (8)||t] < 7.98]2||t] + 11.16]¢]

1
2T
for some s € (z,x +1t) C [~1,00).

If x > 0, then Cy < 0 and by (2.13), we have

~Cy = Vamhae” [B(k) ~ ()] < ka(k — 2) < (| + Dlellt] = 2] + ol 1.

Hence,

— 22t — |z|[t| < Cy <0 for x> 0. (2.16)

Suppose that < 0. Then, Cy > 0. Since k —t < x < 0,k <t < 1. By this fact

and —1 <k —t <x <0, we have

Cy = k.ﬂ:e“”2/2/ e~ /2ds
k

k
:klm\e’”2/2/ e 2ds
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< [a]e” (k- x)
< Velz|[t]

< 1.65|z||¢].
Hence,
0 < Cy <1.65|x||t|] for z <O0. (2.17)

By (2.16) and (2.17), we obtain
|Cy| < 2?|t| + 1.65|z||t| for z € R.

Consider C5. If <0, then C3 > 0. If z > 0, then 0 < x < k. This implies that
C3 > —x+ k > 0. Hence,
C3>0 forxeR (2.18)

Next, we give an upper bound for Cs. To do this, we consider the possible value
of xin3cases: —k<x<0,-1<zx<-—-kand0<zx<k.

If —k <x <0, then

C3 < —z+ k< |t (2.19)
If -1 <2 < —k, then 22 — k> > 0 and k < 1. By the mean value theorem, we
) ) SL’2 k2 § 1 513'2 ]{72
have e /2-+°/2 _ 1 = (5 — 5) e” that is e” /27F/2 = 1 + <3 - 3) e* for

2 /{,‘2
some 0 < zg < %—? By the fact that —1 < x+k <0and -1 < -t <x—k <0,

we have 0 < 22 — k? < |t| < 1. Hence,

2 k?
03:—$ |:1+<E—§)6$0:| +k’

t
< —z— \/E;| |+x+t
<0.83|z||t] + |t| for — 1<z < —k. (2.20)

Suppose that 0 < x < k. Then, we have 22 — k* < 0. By the mean value
2 k2
theorem, we have e®/27F*/2 = 1 4 (% — ?) e™ for some r; < 0. Note that
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0<k*—2*=(k—2x)(k+x) <t(2x +t) < t(2x +1). This implies that

< 22[t| + 0.5|z|[t| +|t| for 0 < < k. (2.21)
From (2.18)—(2.21), we have
0 < C3 < 2°[t|+ 0.83||[t] + |[t| fork—t<ax <k,
Consequently,
|folx +1) — fi(z)] < 22°|t| + 10.46]x||t| + 12.16]t|] for k —t < x < k.
From Cases 1-4, we can conclude that

|fo(z+1t) = fi(z)| < 22%|t] + 10.46|z|[t] + 12.16[¢|. O



CHAPTER I1I1
BOUNDS OF MOMENTS FOR LOCALLY AND
DISJOINT LOCALLY DEPENDENT CDO

In this work, we aim to provide bounds for approximating loss on a tranche of a
locally dependent CDO by using the call function of the standard normal random
variable. To do that, we need to determine moments of locally and disjoint locally
dependent CDO which are provided in this chapter.

First, consider a standard CDO containing n assets. Assume that the i'" asset
has a recovery rate R; and a default time 7; for ¢ = 1,2,3,...,n. Then, the total

loss on a CDO at time 7' is

n

L(T) = %2(1 LRI (r < T).

In this work, we are attentive to the loss on a tranche of a CDO defined by
(L(T) = AP)" — (L(T) = DP)",

where AP and DP stand for attachment and detachment points of a tranche,

respectively. Hence, the problem is restricted to approximating

where k is a positive real number and 0 < k < 1. Note that, when k= 0,
EL(T)" = EL(T) is easily calculated.
N\
Let Z be a standard normal random variable. To approximate F (L(T) - k)

by a call function of the standard normal random variable, we need to normalize



27

L(T). Let
(1-R)[I(r; £T) — py]

ny/Var L(T') ’

where p; = P(I(1; <T)=1) and let W = ZXi' Then

i=1

X; =

W L(T)— EL(T)
Var L(T')
with
EW =0 and VarW = 1.
Let k = ﬂ Then,
Var L(T)

‘E (L(T) - 1%)+ —/Var L(TE (Z — k)"
— WVar L(T) [E(W — k)t — B(Z — k)" .

Hence, the problem is transformed into finding a bound for |[E(W — k)" — E(Z — k)7|.
Next, to obtain a bound for |[E(W — k)" — E(Z — k)*|, we introduce the local
dependence (LD) condition defined by Chen and Shao ([6]) in 2004.

Definition 3.1 (LD condition). We say that random variables X, X5, X3,..., X,
satisfy the local dependence condition if for each ¢ = 1,2,3,...,n, there exist
A; € B € G € {1,2,3,...,n} such that X; is independent of Xj4e, Xy, is
independent of Xpe and Xp, is independent of Xce.

We can transform the LD condition into a chart. For example, consider random
variables X, X5, X3,..., X109 with local dependence structure as shown in Figure

3.1
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)
®  ©
@ 66—09—1

Figure 3.1: Example of locally dependent random variables

Note that, if two vertices are not adjacent, then they are independent. From

Figure 3.1, we have

Al == {1727 3}7 Bl = {172’37 47 5777 8}7 Ol == {1727 37 475?67 77 8}7
Ay ={1,2,7,8}, B, ={1,2,3,7,8}, Cy = {1,2,3,4,5,7,8}, etc.

We have that X is independent of {X,j # 1,2,3}, {X1, Xs, X3} is independent
of {Xe, Xo, X10} and { X1, Xo, X3, X4, X5, X7, X5} is independent of { Xy, X10}. On
the one hand, we can rewrite Figure 3.1 into a diagram as shown in Figure 3.2 for

eacht=1,2,3,...,10.

701 ) 702 i
/ - . \ S \
S 4 S A, 4
/ — / // —
“‘ 2 6 L |3 9

10 10

o N
AN — / RN — /5
\ T \ — /

Figure 3.2: Example of Ay, By, C; and As, By, Cs

In a real world problem, assets are correlated when they have some common
structure. For example, they are in the same organization or they use the same
resource in their occupation. In addition, people in a family may be related,

because they help each other when someone default. The next Figure 3.3 shows a
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real world example about a local dependence relation.

Farmer Son of 4
Working in frozen Department
food industry store owner

Daugh
o1 B
Husband <2> 6 Fish \. Salesperson
of 3 isherman @ in the shop
1y

Owner of shop in
the department store

Father

of 3 1

Colleague Son of 6
of 3

Figure 3.3: Example of local dependence relation

We can see that, when the daughter of 4 defaults, then her husband and her
father may be affected because they are sharing money in their family. But other
people are absolutely not disturbed. Consider the situation that farmer, his son
and his daughter default. A default of 5 who works in a frozen food industry may
be correlated with a fisherman due to the financial status of the industry or the lack
of raw material from the oceans. A default of 3 may correlate with the financial
status of her husband. But, other people are not interrupted. Conversely, a default
of a department store owner does not affect other people except the owner of shop
in the store and the salesperson in the shop.

From the definition of the LD condition and the given examples, we see that the
structure of local dependence is quite complicated. Consequently, before proving
the result about the LD assumption, we give a special and realistic case of the LD

condition, called the disjoint local dependence (DLD) condition.

Definition 3.2 (DLD condition). We say that random variables X1, Xo, X3,..., X,
satisfy the disjoint local dependence condition if there exists a partition {A;}¢ | of
{1,2,3,...,n}, where d < nsuch that for eachi = 1,2,3,...,d, X4, is independent
of X Ac

From the definition, we give an example of random variables X7, X5, X3,..., X9

that satisfy the DLD condition as follows.



30

Gvﬁ
©® 10)

Figure 3.4: Example of the disjoint locally dependent random variables

From Figure 3.4, we have

A=Ay = Ay = {1,2,3),
Ay = As = {4,5},
A = {6}
and Ay = Ay = Ag = Ayy = {7,8,9,10}.

It can be concluded that assets form different groups are independent. For example,
X, is independent of Xy, and Xg is independent of X,.
In the real world situation, we can classify assets into groups due to their rela-

tion such as occupation, region or common resources. From Figure 3.5, we classify

0009

Company A Company B Company C  Company D

Figure 3.5: Example of disjoint local dependence relation

assets into groups due to their workplace. Notice that, each ¢« = 1,2,3,...,10
represents a staff in each company that is indebted and is contained in a CDO.
When a company encountered a problem, their staff may be affected but other
companies are not disturbed.

Now, we propose bounds for moments of the LD CDO in Section 3.1 and
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moments of the DLD CDO in Section 3.2. They are useful facts for obtaining
bounds for loss on a tranche of a CDO.

Throughout this work, we let

LY;=) Xj;

JEA;

2.pp=P(I(r; <T)=1),¢; =1-p;and p;; = P(I(r; <T)=1,I(1; <T) =1);
3. |A| = max |4;| and |B|= max |B;;

1<i<n 1<i<n
4. Ky = max max{|C;|, |C; 1}, where C; ' = {j | i € C,}.

From the above notations, we notice from Figure 3.1 that C; ' = {1,2,3,...,8},
Cyt=1{1,2,3,4,5,7,8}, C;* = {1,2,3,...,9}, etc. In addition, we have x; = 9.
From this example, we can see that «; is closed to n = 10. But, in the real situation,
n is mostly greater than 100. From this fact and by Remark 1.3, we assume in this

work that x; does not depend on n.

3.1 Bounds for Moments of Locally Dependent CDO

In this section, we provide a formula for Var L(T"), upper bounds for the forth and

the sixth moments of W under the local dependence condition.

Theorem 3.3. Under the LD condition, we have

1. Var L(T) = % > (1= R)(1 = Ry)piy — pivsl;

i=1 jEA;

2. EW*=3+0 (n3 (VarlL(T))Q) ;

Y EX;YWH =340 ! o5 |
i=1 n*(Var L(T)) /

1
CEWS =154 0 .
/ " <n2 (VarL(T))3/2>

3.

1
Furthermore, if Var L(T) = O (—) , then
n
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1. EW4:3+(’)<—);

n

1
6 _
2. EW _15+O<\/ﬁ)'

Proof. 1. By the expression of L(T'), we have

Var L(T) = — > ) (1= R)(1 = R;)Cov(I(r < T,7; < T))
= Z > (1= Ri)(1 = Ry)[pij — piy)-

2. By Lemma 3.1 in [6], we have

EW*<3+22:3 Y EX}.
=1

By the fact that

' ny/Var L(T) ~ ny/Var L(T)’ '
we have
yo— 1
EW*=3+0 (n3 (Var L(T))2> )

3. Fori=1,2,3,...,n,let Z; = Z X;. By the fact that X;Y; and W — Z; are
JEB;
independent, we have

En: EX, Y W4
=1

=Y E(X;\Y,)E(W — Z)* + > EX)Y; (W' — (W - Z,)*)
=1 =1

=Y E(X;Y,))E(W*—AW3Z, + 6W*Z] — AW Z} + Z})
=1

+ Y EXY; (AWPZ; — 6W?Z} + AW ZP — Z})

i=1

32



= Zn: E(X,Y,)E(W*) — 4 Zn: E(X,Y;) E(W°Z;)
+6 i E(X;Y;)E(W?Z2) — 4 i E(X.Y,)E(WZ})

i=1 =1
n

+ Y E(X\Y)E(Z})+4Y EXY,ZW® -6 EX,Y;Z'W*

=1 =1 =1

+4 zn: EX,Y; Z2W — zn: EX,Y,Z}.

i=1 i=1

By considering in the same manner with (3.1), we have

"7 ny /Var L(T n\ /Var L(T)
B
and |Z;| < |5l 5]

ny/Var L(T n\/\/ar L(T)

These imply that

n 3 2) 1/2

Il
©

— n* (Var L(T 5/2
|A||B|4

| A

=0

and

n® (Var L(T n® (Var L(T

) |
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3/4
3 |Al|B] (EW™)
W*Z;)| < e O 2 (Var L(T))"? )~

4(Var L(T 5/2>

n? (Var L(T
Xn:E(XiYi)E(W2Zf) = |AHB‘2EW2 = (9( )
: — n3(Var L(T n3 (Var L(T
« A||B|3(EW2 il
E(X,Y;)) E(WZ})| < | =0 :
Z ( B ) n (Var L(T))"/* 4 (Var L(T))"/*
ST I ( )
— = 05 (Var L(T))° n® (Var L(T ’
iEX-Y-ZW/V3 < |A]1B] <EW4 3/4 =0
pa o = n2(Var L(T))*? 2 (Var L(T))*? ]’
zn:EXQYZ?WQ < |A”B|2EW2 _ (9( )
— e — n3(Var L(T n3 (Var L(T ’
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These imply that

zn: EX, Y, W4

i=1

<

zn: BE(X,Y;) E(W*)

1
+O<MWMMﬂWJ' (3.3)

By the fact that X; and W —Y; are independent and EX; = 0, we have

Z E(XY)EW") = EWH S S E(X.X))

i=1 jeA;

=EWHY ) E(XX))

i=1 j=1
= EW*EW?
= EW4,

From this fact, (3.3) and Theorem 3.3(2), we have

:3+o( 1 )
n? (Var L(T))*?

4. By the fact that X; and W — Y, are independent and EX; = 0, we have

Zn: EX. Y, W4

i=1

EW® = zn: EW°X,
i1
- Z EX; [W? — (W = Yi)’]
i1
= zn: EX; (5W*Y; — 10W°Y? 4+ 10W?Y? — 5WY* + V)
i1
=5 i EX;Y,W* —10 i EX;YW? 410 i EX;Y2W?

i=1 =1 i=1

—5 i EX, YW + i EX;Y?.

i=1 =1

By (3.1) and (3.2), we have
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¢ A2 (BW > 1
Y EXYWE < g 72 =0\ 57 |
Py n? (Var L(T)) n? (Var L(T))
n 3 2
= n? (Var L(T)) n? (Var L(T))
- Al (EW?)!? 1
ZEXiKAtW < =0 5/2
— n* (Var L(T)) n* (Var L(T))
n 5
and  |Y EX;Y?| < il s = (9( ! 3>.
— n® (Var L(T)) n® (Var L(T))

From this fact and Theorem3.3(3), we have

. 1
EWS =5y EX;;,W' +0O
; <n2 (VarL(T))B/Q)
1
=15+0 . 0
<n2 (Var L(T))3/2>
3.2 Bounds for Moments of Disjoint Locally Dependent

CDO

In this section, we present moments of W under the DLD condition. From the
structure of DLD condition, we can group assets due to their relation. Hence,
assume that the n assets can be classified into d groups and the i*" company has
m; — m;_1 indebted personnel (for i = 1,2,...,d when mg = 0 and my = n) as
shown in Figure 3.6. Notice under the DLD condition that for ¢ = 1,2,3,...,d,
Ai={mi1+1,mi1+2,...,m;}.

Next, we use this classification to determine the moments of W.

Theorem 3.4. Under the DLD condition, we have

1. Var L(T) = % 3> (1= R)(A = R)lpj — pipl;

i=1 jEA; IEA;
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- N N N p
1 m1+1 md71+1
2 m,+2 m, 2
m, m, m,
15" compan nd dm
\ ey ) (Z company \_ \ " company )

Figure 3.6: Classification of assets in a DLD CDO

d
2. EW* <3+ EY);

=1

d d d 2
3. EWC <154 EYS+15) EY!+10 <ZEY5’> :
=1 =1 =1

Proof. 1. By the expression of Var L(T) in Theorem 3.3(1) and the fact that

{A;}4, are disjoint, we have

d
Var L(T) = %Z Z Z )(1 — Ry)[pji — pipul-
—1 jeA; leA,

2. By the DLD condition, we have that Y; and Y; are independent for i # j.
From this fact and EY; = 0, we have

Xd:EW ZEY2 + ZZEYEY E (Z Y) —EW?=1. (34)

o= =gl
J#i

Observe that EY}Y;, = EY?Y,Y;, = EY;Y,;,Y,.Y;, = 0 for distinct index

J17J2+%73 J1+J92+93% 4
Ji- Hence,
d 4
(5
d d d
_ZEYZ4+4Z Z EY}Y;, +62 Z EY?Y?

J1=1 jo=1 Ji=1 jo=1
J2#1 J2<j1
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d d d d d d d
+123° 3 N By, 24> Y TN By YLy,

J1=1 j2=1 j3=1 J1=1 j2=1 j3=1 ju=1
JeFd1 J3Fn Jo<j1 j3<j2 ja<js
J3<J2

<ZEY4+3ZZEY2Y2

=1 j=1
JFi

d d 2
<) EY!+3 (Z Eyf)
=1 =1

d
<3+ > EY! (3.5)

i=1

3. By (3.4) and using the same argument as in (3.5), we have

Z EYS +15 Z Z EY/EY?+ 10 Z Z EY}EY

== =1 j=1
J#i j#i
+ 15ZZZEY2EY2EY2
i=1 j=1 ll;él
J7#i 1

d d d 2
< ZEYf +15 (Z E}ff) (Z EYf) +10 (Z EYf’)
=1 ! i;l J=q =1
+ 15 (Z EYf)

i=1
d d d 2
<N EYF+15) BY+10 (ZEY;’) +15. O
=1 =1 i=1

Corollary 3.5. Under DLD condition, we have
dAf*

n* (Var L(T))*’

(1+10d) d|A|® 15d| A|*

n® (Var L(T))*> ~ n4 (Var L(T))*

Proof. By (3.2), we have

1. EW* <3+

2. EW® <15+
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d 2 9
Al
and ZEYZ‘?’ < T 5
, nS (Var L(T))
From these facts, Theorem 3.4(2) and Theorem 3.4(3), we have

EW* <3+ diAl
N n* (Var L(T))*

(1+10d) d|Al® 15d| Al*
né (Var L(T))*>  n* (Var L(T))*

and EWS < 15+ O]

Next, we present two situations under DLD condition when we classify assets
from their workplace and divide assets into d group as shown in Figure 3.6. The
first situation deals with companies that tend to go bankrupt. While the second
situation is a group of companies that may lay off some staff to maintain the
financial liquidity of the companies. Under each situation, the explicit formula for

moments of Y; can be obtained.

Example 3.6 (Bankrupt assets). Consider a CDO containing bankrupt assets.
The assets correspond with loans of personnel from d companies. Each company
tends to go bankrupt due to the global crisis. If a company goes bankrupt, then all
personnel in the company are unemployed. Consequently, they default. In other
words, when an asset defaults, then other assets in the same company also default.
In addition, bankruptcy of a company does not affect other companies. Let p,,, be

the probability that the i** company defaults. Then,

J 2
1. Var L(T) = % meﬂmi (Z(l — Rj)> ;

JEA;

PrmaGms (Pt + gl 1) o
9. ElY;|r = 2 i 1—R)| fori=1,2,3,...,4d.
¥l ' (Var L(T))/2 D (L=Ry) | fori 3

JEA;
Proof. 1. Consider the i*" company. Observe that, the probability of default

for each asset in the i® company is p,,, and for the j* and the '} assets
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which are in the i** company, we have the probability that the ;' and the

™" assets simultaneously default is

PI(r; <T)=1,1(7 < T =1)) = pp..

From these facts and Theorem 3.4(1.), we obtain that

Var L(T Z Z Z (1-— — R)[pji — pipi]

i=1 jeA; l€A;

. pml pa) Y Y (1=R)(1-R)

JEA; lEA;

melqmz (Z Qe Rj)>2.

JEA

2. From the situation, we know that if an asset defaults, then other assets in
the same company default. Then, for the 7 and the I*" assets which are in

the same company, we have
PI(r; <T)=1,I(n<T)=0)=0,

and the probability that all assets in the i*® company simultaneously default
iS pm,. These imply that the chance that there is no default assets in the

company is 1 — p,,,. Hence, we can conclude that, for each i, and x; € {0, 1},

P (]I (TmFlH < T) =, 1 (Tmi71+2 < T) =Zo, ..., (T, <T) = xmi_miil)
(
Pmi T =20=" =Ty, = 1;

=\, fxi=a20="=Tp,_m_, =0;

0 otherwise.

\
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This implies that, for i =1,2,...,d and r > 1,

T

E|> (1= R)(I(r; <T) —py)

JEA;

= 2

T1,X25 5 Tm;—my; _q

r

> (1=R)) (z; —p;)

JEA;

x P (]I (Tm7;71+1 < T) =1, I (Tmi71+2 < T) = X9,... ,I[ (Tmi < T) = xmi,miil)

(3.6)
= <Z(1 - Rj)f]j) Pm; + <Z(1 - Rj)pj> G,
JEA; JEA;
= P, (Z(l - Rj>> + D G, (Z(l - Rj>>
JEA; JEA;
JEA;
This implies that
EYi"=E|) X,
JEA;
1 1— R, '
- F L (I < T) — ps
(VarL(T))T/Q ‘Z n ( (TJ — ) p])
JEA;
PrniGm; (D + i) '
= : 1—-R; ) ]
nr(var L(T))T/Z ;( ])

Under an economic contraction around the world, many companies must man-
age their financial status. One of many solutions to reduce the exceeding cost is
a layoff. As a result, we consider a CDO containing laid-off assets in the next

situation.

Example 3.7 (Laid-off assets). The n assets in the CDO are split into a number
of groups, and each group represents a company or a department. We suppose that
each organization plans to lay off at most one employee. Hence, if our colleague

is laid off, then we are still employed. On the other hand, the layoff of other
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companies does not affect our company. Moreover, it is possible that no coworker

in the same company are laid off. Then,

d 2
1
1. Var L(T) = ;Z > (1-R;)’p; - (Z(l - Rj)pj> ;
2. E|Yi" = ~ VarL 7 Y pi|l-R; =) (1-Rp
JEA; leA;
1 T
1—pa 1— R;)p;
* n"(Var L(T))"/? (1 =pa,) (J%;( R])p]> ’

where pa, =>4 pj, fori=1,2,3,... . d.

Proof. 1. Let ¢ # j be assets in the same department. We know that each

company can lay off at most one employee; as a result, there is no chance for

layoff at least two employees. Hence
pij =PI(r, <T)=11(r; <T)=1)=0 fori#j.
From this fact and Theorem 3.4(1), we have

Var L(T')

:% ZZ (1= Ry)[pji — pipi]
:% Sa- pj—nizz ST (- R)(1 - Ropp

i=1 jeA;lecA;,—{j}

>
Z
i

A
> (1= Ry)’p; - <Z(1 - Rj)ﬁj)
JEA; JEA;

2. Consider the i*" department for i = 1,2, .

1
n2

.,d. Notice that it is impossible

that at least two assets simultaneously default. If only one asset in this group
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defaults, say 7¢, then
P(H(Tl S T) =0forallle Az - {io},H(TZ‘O S T) = ].) = Diy-

Thus, the probability that only one asset in the i*" group defaults is Z Dj-
JEA;
Denote py, = Z p;j. On the other hand, we obtain the chance that no assets
JEA;
in this group are laid off is 1 — p4,. From these facts and (3.6), we have

r

E|) (1-R;)(I(r; <T) - p))

JEA;

T

:Z (1—-R)(1—p)— Z (1= R))p;| m

leA; jeA;—{l}

+ (Z(l - Rj)Pj) (1 —pa,)

=Y 1-R—> (1-R)p, pl-i-(Z(l_Rj)pj) (1—pa,)-

leA; jEAi JEA;
Consequently,
1 1-R, '
EY,|"=————+——+F L (I(r; <T) —p;
| Z| (VarL(T))T/Q Z n ( (T] — ) p])
JEA;
1 T
- 1= R- (- Ry
T r/2 Z l Z 777
n"(Var L(T))"/ [leAi =
+ <Z(1 - Rj)%’) (1 —PAZ-)] :
JEA;

]



CHAPTER IV
BOUNDS ON NORMAL APPROXIMATION FOR
LOCALLY DEPENDENT CDO

In this chapter, we concentrate on a locally dependent CDO. We first give a uniform
bound

5(n) = sup |E(W — k)t — E(Z — k)|

for LD random variables in Section 4.1. The non-uniform bound
5(n,k) == |E(W — k)" — B(Z — k)|

which is a refinement of a uniform bound is provided in Section 4.2.

Continued from the previous chapter, we let

1 = s {IN(B)|}, whete N(B) = {j | B, B: # 2}
2. K3 = lrgza;;max{]Bi], |B; 1}, where B; ' = {j | i € B;};
3. k = max{ky, Ka, K3}

From Figure 3.1, we have N(B;) = {1,2,3,...,9}, N(By) = {1,2,3,...,8},
N(Bs) = {1,2,3,...,10}, By = {1,2,3,4,5,7,8} and By = {1,2,3,7,8}. Addi-
tionally, we have k5 = 10 and k3 = 7. Hence, from these facts and by an example
of k1 in Chapter 3, p.31, we have k = 10. Under the same reason in Remark 1.3,

we assume that x does not depend on n.

4.1 TUniform Bound

In this section, we present a uniform bound on normal approximation for locally

dependent random variables. The bound does not depend on k. The proof of this



44

theorem is mainly motivated by the proof in Theorem 2.1 and Theorem 2.2 in [6].
Chen ([6]) introduced the LD condition for general random variables in 2004 and
dealt with the Stein equation for h(z) = I(z < k) for a fixed real number k. In this
work, we consider a call function h(x) = (x — k)T which is used to determine loss
on a tranche of a CDO. Hence, the modified proof in this work is slightly different
from [6] because of the property of fi in Proposition 2.3.

Theorem 4.1 (Uniform Bound). Under LD condition, we have

1 1
om)=0 <n2 (Var L(T))3/2> 50 (n3/2 VarL(T)) .
Furthermore, if Var L(T) = O (l) , then
n

5(n) =0 (%) .

Proof. By modification of arguments in Theorem 2.1 and Theorem 2.2 in [6], p.
2009-2013, we have

|E(W — k)" —E(Z —k)"| < Ry + Ro + Rs, (4.1)

where Ry = || fillyns + L fill (k2yma) 2, (4.2)
2 /

Ry = —”g’f”%,g, (4.3)

Ry — ]E /| VOV ) W] Koy

l?(t):iXi[H(_YiSt<O)—H(0§t§—Yi)]

n

and Yor = Y (EIXi|" + EYi[") .

=1
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By (2.9), we have

R, < \/7%3—1‘\/7/?2%4 1/2 (4.4)
and R2 g\/77n3 (45)

Hence, it remains to determine R3. By Proposition 2.3 and the fact that
~ 1<
[ R < 5> (v A, (4.6)
<1 2=
where a A b = min{a, b} for any real number a,b (see [6], p.2010), we obtain

Ry < 2E W2|t| K (t)dt + 10.46E/

\t|<1 |t\<1

|W||t]f((t)dt+12.16E/ R (1)dt

[t]<1

<EW2Z|X! Y2A1)+523E|W|Z|X\ (VA1) +6082E|Xy (YEATL).

=1
From this fact and the facts that
E]W\Z]X\Yz/\l e, (4.7)
555 — 3 3 " ’
2
d E|X|(Y2AAD) <= 4.8
an Z X072 AT) < S, (18)

where k3 = max max{|B;|, | B; |}, (see [6], p.2012-2013), we have

» 20.92
Ry < EW?) |Xi(Y2 A1)+ < : 3 fe?,) Vn3-

=1

Hence, it remains to determine EW? Z |X;|(Y? A 1). By the fact that

i=1

=1

(i ai> < d"! i ar, (4.9)
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for a; > 0 and k,d € N, we have

F (Z X2 A 1)) <B (Z |X1|Y£>

i=1 i=1

<n i EXZYH
i=1

< nz (EX?)I/IS (E}/;6)2/3
=1
n - 6 6
<3 ;(EXZ- +2BY)
2n

< —v 6. 4.10
_3’7,6 ( )

From this fact and using the Hélder’s inequality, we obtain

97 1/2

EW? i X\ (VAL < (BWHY? | B (i X[ (V2 A 1))

=1
9 1/2
S (?nEWZLF}/n,G) .

Consequently, we conclude that

) o 20.92
ms(gmwwa +GM+ 3“)%3 (4.11)

Combining (4.1), (4.4), (4.5) and (4.11), we obtain

2n

1/2
EW )

5(n) < (8.88 + 6.98K) Yu3 + 0.8 (Kya) '/ + (

where £ = max{ka, Kk3}.

By (3.1) and (3.2), we have

Vg < Lt || ;=0 ! -] (4.12)
nr=1 (Var L(T))"/ nr=1 (Var L(T))"/
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From this fact and Theorem 3.3(2), we have

1 1
o) =0 <n2 (Var L(T))3/2> "o (n3/2 Var L(T)) ' .

4.2 Non-uniform Bound

In this section, we improve the uniform bound in Section 4.1 by proposing a
non-uniform bound on normal approximation under local dependence. The non-

uniform bound is sharper than the uniform bound when £ is large enough.

Theorem 4.2 (Non-uniform Bound). Under LD condition and for k > 2, we have

1 1
§(n, k) = Cy(k,k)O <n2 (VarL(T))3/2> + Cy(k, K)O (W)
1 1
- EO 2 3/2. )7
n? (Var L(T))
2K e k*/2 1 1
where = (2 - ?) (mk T z) T3
e=k2/2 1
and CQ(]C,H):\/E mﬁ-g .

1
Furthermore, if Var L(T) = O (—) , then
n

5(n, k) — (cwf, k) + Col, ) + %) % (%) |

Proof. By Proposition 2.2, (4.2) and (4.3), we have

|E(W — k)" = E(Z = k)|

3\ V2mk? K ’ V2rk?  k 7
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Thus, it remains to bound R3. We use truncation technique to rewrite R3 as

shown:

R3 < R31 + R3p + Ras, (4.13)

where R3; = E/ |fL(W +t) — fLOV)|I(W > k)K (t)dt,
[t]<1
R3o = E/ 1fo(W +1) — fa(W) | I(W +t >k, W < k)K(t)dt
<1

and Ry — E/ LV +6) = FLW) [ T(W + £ < ks W < k)R (8)dt.
|t <1
By Proposition 2.3 , we obtain that

Ry1 < E (2W? 4 10.46|W| + 12.16) I(W > k)/ | K (t)dt

[tI<1

and Rss < E (2W? + 10.46|W| + 12.16) I(W > k — 1)/ I\ K (t)dt.

[t[<1

In each term of Rs 1, we use the Holder’s inequality, Markov’s inequality, (4.6) and

(4.10) to obtain that

Ry < {2[EWIW > 1)) + 1046 [EW?LOW > )] +12.16 [P(W > k)]

51 1/2
« B (/ |t|f<(t)dt)
<t
57 1/2
1 n
< (VEWS +5.23VEW? +6.08) | B (Z X (V2 A 1))
=1
1 2176\
<z <\/EW6 + 5.23VEW? + 6.08) ( ;“) . (4.14)

Using the same argument of bounding R3;, we obtain
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1 M, 1/2
Ryp < 7 (\/EWG +5.23VEWT + 6.08> ( ”g ﬁ)

2 o s\ /2
<7 (\/ 6 +523VE +608> ( "; ’6> , (4.15)

where we use the fact that

2
< z for £ > 2 in the last inequality.
To bound Rj3 3, consider |fi(x +1t) — fi(z)| where x +t < k and x < k. We use

Stein equation (2.1), Proposition 2.1 and Proposition 2.2 to obtain

[fi(w + 1) = fil@)] = [e(fule +8) = fi2)) + tfi(z + 1)
<l il e+ (e + )1

—k2/2 1 w
e
< z||t| + -, 4.16

where we use the mean value theorem in the first inequality. From this fact and

(4.6)—(4.8), we have

e A e R(t)d
R, o= — £ (t)dt
— W /MSIII (v
L[ ek 1 2 2
<o E— Y EIWX|(Y2 A1) EIX,|(Y2 A1
<3 \/%k2+k WX (Y7 A WZ Xl (Y AL
e—k*/2 1 —k2/2 1
< ”3 c Y- (4.17)
\/27Tk2 k? \/27rk2
Combining (4.13)—(4.15) and (4.17), we obtain
2\ [ e F2 1 1 e~k?/2 IRANY
2+ )+ = s+ e
( ) (\/27rk2 ) 3z | e TV <\F k)
1 92 1/2
+7 (3\/EW6+15.69\/EW4+18.24) < ”;”6> .

R33 < E

d(n, k) <




By (4.12), Theorem 3.3(2) and Theorem 3.3(4), we have

1
d(n, k) = Ci(k,k)O <n2 Var L(T))3/2> + Cy(k, k)O (

0( 1 )
n? (Var L(T))*/?

+

| =

1

n3/2Var L(T)

)

20



CHAPTER V
BOUNDS ON NORMAL APPROXIMATION FOR
DISJOINT LOCALLY DEPENDENT CDO

In this chapter, we consider a disjoint locally dependent CDO when each asset can
be classified into disjoint group. Each group represents a company or a department.
We use the Stein’s method together with properties of the Stein solution f; and
its derivative f, presented in Chapter 2 to determine uniform bound in Section
5.1 and non-uniform bounds in Section 5.2 on normal approximation for disjoint
locally dependent CDO. Moreover, we propose the bounds for bankrupt assets and
the bounds for laid-off assets in Section 5.3.

Notice that, we use the notation appeared in Chapter 3 about the structure of
DLD CDO throughout this chapter. Assume that there are d groups of disjoint

assets from n assets, and the i*" group has m; — m,_; indebted personnel (for

i=1,2,...,d when mg =0 and my = n).
( N\ N\ N\ )
1 m+1 m, +1
2 m,+2 m, +2
m, m, m,
\1“ company \2“‘ company )\ ) \d“‘ company )

Classification of assets in a DLD CDO.

5.1 Uniform Bound

d

Notice from the fact that {A4;}% | are disjoint, so we can rewrite W = Z Y. We
i=1

next modify the argument in Theorem 4.1 to prove the following result.



Theorem 5.1 (Uniform Bound). Under the DLD condition, we have

d d 1/2 d 1/2
d(n) <24.97) "E|Yi[* +0.8 (Z EY;*) + (dEW‘*ZEyf) .

=1 =1 =1

Furthermore, if we use the fact that

|Ail 4 d|A[*
V| < ———— and EW* <3+ ,
il n/Var L(T) n* (Var L(T))?
we have
24.97d| A SVd|AJ]?
§(n) < 2L ITAP g8f||
n3 (Var L(T))*? = n?Var L(T)

+(+ dAl* )W daf
nd (Var L(T))? ) n3 (Var L(T))*?

52

Proof. By the fact that X4, and X4 are independent, we have that ¥; and W —Y;

are independent. Hence,
d
EW fo(W) =Y " EY; [fe(W) = fe(W — Y;)]
i=1

d 0
= ;EY[Y fr(W + t)dt
:E/OO FLW + O R (1)dt,

d
where K (t) :ZY;[]I(—Y,- <t<0)—1I(0<t<-Y;)]. Note that

0o c~ d
| Rwa- ["Yvpevisi<o-10<i< -y

d

:ZY; (/0 I(Y; >0)dt—/0_Yi11(Yi §0)dt)

i=1 —Y;

(5.1)



Then,

. d
E/ K(t)dt =Y EY?=EW’=1.
o i=1
From this fact, (5.1) and (2.2), we have

EW — k)" = E(Z - k)" = EW fi(W) = Ef;(W)

23

_ E/OO FLW + O R (t)dt — E/OO FLW)ER (#)dt

251+SQ+S3,

where / — EK(t )]d
/W LW + 1) — F(W)] R(t)de

and

FR(W 4 8) = fL(W)] K (t)dt.

<1
By (5.2), we obtain

d

Z ~ EY?)

151l < I fill &

d
To bound F

=1

Then, we can follow the proof of Theorem 2.2 in [6], p.2013 to show that

d
Z (}/;2 EY2

=1

E

d
< B|3 (V2 - B2 I(Vil < 1)
=1
d
<E|) (Y, - EY))

=1

d

d
+2) EYAI(Yi] > 1)

=1

S (VP -EY?)| let V; = YAU(Y;| < 1) for i = 1,2,3,...

Z — BEY?)I(|Y;] > 1)

(5.3)

(5.5)



d 1/2 d
< <Varzz~) +2) ElY.
=1 =1

Since Y;’s, i = 1,2,3,...,d, are independent,

o4

(5.6)

d d d d
Var (Z?) =Y va¥ <Y BV <Y BY (5.7)
=1 =1 =1 =1

By (2.9) and (5.5)—(5.7), we obtain

d 1/2
54| < 12| (ZEYf) +2|| £
=i

d
1By (5.8)
=1

d 1/2 d

2 2
<, /Z EY* 2\/i E|Y;3. 5.9
_\/;<i§:1 ) R ”;:1 |Yil (5.9)

Consider Sy. By (2.9) and the fact that

K (t)dt

[t|>1

iyi/ M(—-Y; <t<0)—T(0<t<—Y)dt
i=1 ‘

<

<

t|>1

zd:yi U|t>1]1<yi > 0)I(-Y; §t<0)dt—/

[t|>1

iYi V_Yl I(Y; > 1)dt — /ly I(Y; < _1)dt}
i Yl UO I(Y; > 1)dt + /O_Yi I(Y; < _1)dt}

d
Vi (I(Y; > 1) = I(Y; < —1))
> Wi (Yi[I(Y; > 1) + |V [I(Y; < —1))

=1

d
> YR > 1)
=1

I(Y; <0)I(0 <t < —Yj)dt
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d
<> Wi,
=1

we have

d d
_ 2
S| <21l E K(t)dt < 2| EYi3<2\/j E|Y;|?. 5.10
|S2| < 2[| £l (t)dt < 2[ fi ] ;:1 Yi|]” < 7?;:1 Y] (5.10)

[t|>1

For S35, by Proposition 2.3 and the fact that

/ )R (1)t
<1

d

:Zy;/ | [1(~Y; <t<0)—1(0<{<-Y,)|dt
i=1 [tI<1

d

=) Y V [t (I(Y; > 0)I(=Y; <t < 0) =I(Y; <O[(0 <t < _Yi))dt]
< <1

=1

d 0 In=-Y;
=3y (/ tI(Y; > 0)dt —/ tI(Y; < O)dt)

i1 ~Y;v—1 0

1 d
< = Y, Y2A1 11
_Q;II(M), (5.11)

we have

|S5| < 2F W2\t K (t)dt + 10.46E/

[t]<1 [t]<1

|W||t|f<(t)dt+12.16E/ | (£)dt
[t|<1
d

d d
<EW?Y |Vi[(Y2 A1) +5.23E[W[ ) [V|[(Y2 A1)+ 608> E[V|(Y2 A1)

i=1 i=1 i=1

= 531 + S32 + S33.

By (4.9), we have

d 2 d 2 d
E (Z Vil (Y2 A 1)) <E (Z mﬁ) <d» EY!. (5.12)
=1 i=1 =1
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Hence,

97 1/2

d d 1/2
Ss1 < (EWH'? |E (Z Y;|(Y2 A 1)) < (dEWA‘ZEYf) . (5.13)
=1

i=1
Modifying the idea in [6], p.2013, we obtain
EWY[(Y? A1) < E|W = Y|BlY;|(Y? A1) + EYZ(Y? A L)

< (1+ EYDEYI(Y2 A1) + EY;P

< 2B + EYi|EY;

< 3E|Y;>. (5.14)
This implies that
d
Ss2 < 15.69)  E|Yi[. (5.15)
=1
Moreover,
d d
Ss3=6.08)  E|Yi|(Y7 A1) <6.08)  E|Yi[*. (5.16)
i=1 1=1

We conclude from (5.13) and (5.15)—(5.16) that
d 1/2 d
|85 < (dEW“ZEYf) +21.77> B (5.17)
i=1 i=1
Combining (5.3), (5.9), (5.10) and (5.17), we obtain
1/2

d d 1/2 d
5(n) <24.97) E[Yi]* +0.8 (Z EY[*) + (dEW4 > EY?) : H
i=1 i=1 =1

Next, we provide a non-uniform bound on normal approximation for disjoint lo-

cally dependent CDO. The bound is a refinement of the uniform bound in Theorem
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5.2 when £k is large enough.

5.2 Non-uniform Bound

Theorem 5.2 (Non-uniform Bound). Under the DLD condition with k > 2, we

have
1/2

d d 1/2 d
S(n,k) < Ci(k) D EIYil® + Ca(k) (ZEYf) + Cy(k) (dZEYf) :

i=1

_ 55eE 2 5E—=]

where Ci(k) = W—f—?—i‘ﬁ?
—k%/2 1
(&
Cg(k) = ——27Tk:2 + E
1
and Cy(k) = (3\/EW6 +15.69VEW + 18.24) .

Furthermore, if we use the fact that

|Ail
Mapse—————
i ny/Var L(T')
4
EW* <3+ 44| 5
n* (Var L(T))
6 4
and EW < 15 + (1+10d) al|A|3 15d| A N
nS (Var L(T))”  n*(Var L(T))
we have
5(n. k) < CaR)IAP Cok)VAAP | Cs(k)d|A]®
C T 3 (Var L(T))Y? n*Var L(T)  n3(Var L(T))%/?
where
1 (1+ 10d) d| A[® 15d|A* \
Cs(k) = = 3(15+ 5 + 2)
k n® (Var L(T))”  n*(Var L(T))
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d|AJ* 1/2
+ 15693+ 3 +18.24| .
n* (Var L(T))

Proof. By (5.3), (5.4), (5.8) and (5.10), we have

|E(W — k)t — E(Z — k)*| < |Si] + 92| + [S3], (5.18)

d 1/2 d
whore sl < 17 (zw) L2y By
=1 =1

d
S <271 S Bl
=1
and S| < B /| OV 0 = o) Ky
t|<1

From Proposition 2.2, we obtain

2 1/2 d
o—k?/2
15| < ( > (Z EY4> +2) By (5.19)
\/_k2 =1

and |So| <2 <\/_k2 ) ZE'YP (5.20)

Thus, it remains to consider S3. By using the argument in (4.13), we have

|S3] < Sz1+ S32+ Sz, (5.21)

where Ss1 = E/ |FLW + 1) — FLOV)| I(W > k) K (t)dt,
tl<1
Sy = E/ FLOV ) — FLOV)| IOV £ > kW < k)R (t)dt
[t]<1

and Sas = E/ LV 4+6) = FLW) [ T(W +£ < &, W < k)R (£)dt.
[t|<1
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By Proposition 2.3 , we obtain that

S31 < E(2W? +10.46|W| 4 12.16) [(W > k:)/ It K (t)dt

[t<1

and  Syy < B (2W 1 1046[W| + 12.16) (W > k 1)/ 1 R (¢t

[t1<1
By using the Hoélder’s inequality, Markov’s inequality, (5.11) and (5.12), we obtain

1/2 1/2

Sox < {2 [BW'IW > B)]"* 4+ 1046 [EWL(W > )] + 1216 [P(W > )]}

E (ASI |t|i€(t)dt>2] "

97 1/2

X

?vl»—*

(\/—+523\/ +608> E(iIYiI(Y?M)>

Pvl»—

N 1/2
<= (VEWS +5.23VEW3 +6.08) (dY Ei/f) . (5.22)
i=1
Using the same argument of bounding S5, we obtain
. d 1/2
Sz < 1 (\/ EWS +523vVEW* + 6.08) (dz EY;G)
i=1

p 1/2
% (\/— 4 5.23VEW + 6. 08) (d; EYf) , (5.23)

2
where we use the fact that < z for k > 2 in the last inequality.

To bound Ss 3, we use (4.16), (5.11) and (5.14) to obtain
—k2/2 1 1 ~
e
—— | W]+ = / t|K(t)dt
(rkg )| | [ 1RO
_k2/2 2 3
EWY (Y A1) EY;
Vo Z WY A WZ d

1
2
k2/2 1 5
r T o e ;Em“ (5:24)

Sz3 < K

IN




60

Combining (5.18)—(5.24), we obtain

1/2
5.5¢ /2 R NS
Sn, k) < +— E|Y;|® + EY!
o< (B e g ) S (o) (3
d
1
+E<3\/EW6+15.69\/EW4+18.24) (dZEYf) . O
=1

Next, we provide two situations under DLD condition. In each situation, we
d

compute Var L(T') and find the exact value of Z E|Y;|" for r > 1.
i=1

5.3 Examples of Disjoint Locally Dependent CDO

In this section, we provide uniform and non-uniform bounds for loss on a tranche
of the DLD CDO under two situations. Additionally, we set specific parameters

to compare the bounds.
Example 5.3. Under the situation in Example 3.6, we have

1. the uniform bound for loss on a tranche of CDO containing bankrupt assets
Is

3(n) <24.97745 +0.87v5% + [dvas (3 + 740"

2. for k > 2, the non-uniform bound for loss on a tranche of CDO containing

bankrupt assets is

3(n. k) < Cr(k)vas + Colk)vys + Ca(k) (dyas)

where Var = VarL EE melqm (ot +ant) (Z(l — Rj)) ;

JEA;
EW* <3+ 744,

EW® <15 4 46 + 15744 + 1073
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2
and Var L(T meﬂmz <Z (1-— Rj)> .

JjeEA

The proof of Theoerm 5.3 is completed by applying Example 3.6, Theorem 3.4,
Theorem 5.1 and Theorem 5.2.

To compare the uniform and non-uniform bounds, we consider Example 5.3
with the following parameters: d = n/2,p = p;, R = R; and m; — m;_; = 2.
Therefore, the bounds for loss on a tranche of the CDO with bankrupt assets for

k > 2 are

5(n) < 24.97v/2(p* + ¢%) 08\/ p +q 2(p° + ¢°) - 2(p3+q3)>
o v/ pq

np*q? npq

and

5
5@Jﬂ§\@@_+q N2+ @)k 2p-+qn%%%
N N np?q>

where C(k), Co(k) and C5(k) are presented in Theorem 5.2,

2 3 3
Ewt < 34 25T
npq
4 5 5 30 3 3 20 2 2\2
and EW® <15+ (p +Z>+ (p° +q°) +20(p —i—q)‘
(npq) npq

The numerical results of uniform and non-uniform bounds for loss on a tranche

of the CDO containing bankrupt assets (y/Var L(T)0(n) and /Var L(T)d(n, k))

are presented with parameters R = 0.7 and p = 0.5 as follows.
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Non-uniform

n  Uniform

k=03 k=05 k=07 k=09
50  0.16509 0.07704 0.03299 0.02099 0.01539
100 0.08253 0.02711 0.01161 0.00739 0.00542
150  0.05502 0.01474 0.00631 0.00402 0.00295
200 0.04126 0.00956 0.00410 0.00261 0.00192

Table 5.1: Uniform and non-uniform bounds for loss on

a tranche of CDO with bankrupt assets

Bankrupt assets

0 20 40 60 80 100 120 140 160 180 200
n

—~Uniform —Non-uniform k =0.3 «Non-uniform k =0.5 +Non-uniform k =0.7 «Non-uniform k =0.9

Figure 5.1: Uniform and non-uniform bounds for loss on a tranche of CDO with
bankrupt assets

From Table 5.1 and Figure 5.1, observe that a uniform bound steadily declines
when n grows but non-uniform bounds have diminished dramatically, especially,
when % tends to 1. Moreover, when n is fixed, non-uniform bounds are significantly
smaller than the uniform bound.

In the next example, we make use of the situation in Example 3.7. We approx-
imate an average of loss on a tranche of the CDO containing laid-off assets and

propose the uniform and non-uniform bounds from the approximation.
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Example 5.4. Under the situation in Example 3.7, we have

1. the uniform bound for loss on a tranche of CDO containing laid-off assets is

3(n) < 24.97845 + 0.8657 + [dBas (3 + Baa)]?;

2. for k > 2, the non-uniform bound for loss on a tranche of CDO containing

laid-off assets is

3(n, k) < Cr(k)Bas + Calk) YL + Ca(k) (dBas) ',

where EW* <3+ Ba.as

EWS® <15+ By 4 15844 + 105237

o= R R

1-R; =) (1-R)p

i=1 [jea l€A;
+ (1 —pa,) <Z(1 - Rj)}?j) ]
JEA;
1% i
and Var L(T) = 2 Z Ryor;— <Z(1 — Rj)pj>
i=1 |[jeA; JEA;

The proof of Theoerm 5.4 is completed by applying Example 3.7, Theorem 3.4,
Theorem 5.1 and Theorem 5.2.

Next, we compare the bounds by applying Example 5.4 with the following
parameters: d =n/2,p = p; and m; — m;_; = 2. We obtain that

24.97V2(5% + ) 0.8/2(5° + & 2P + G 2 + g3
\/_(P+Q)+ 7+ | (P+Q)(3+ (P+C])>

o(n) < — — —— —
(n) V/npgq N np?q> npq

< V2(p* + @) (k) L V2P POk 200+ 6)
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where C}(k), Cy(k) and Cs(k) are presented in Theorem 5.2,

D= 2p,
2 =3 ~3
Ewt <3y 20 HT)
npq
4 =5 =5 30 =3 ~3 20 =2 ~2\2
and Ew <154 AT S0P HT) 20+ T)
(npq) npq

Notice that uniform and non-uniform bounds for loss on a tranche of the CDO

containing laid-off assets are \/Var L(T)d(n) and /Var L(T)d(n, k), respectively.
By setting additional parameters R = 0.7 and p = 0.4, we obtain uniform and

non-uniform bounds as follows.

Non-uniform bounds

n  Uniform bound — S ~ =
k=03 k=05 k=07 k=09

20 0.11622 0.02590 0.01227 0.00804 0.00598
100 0.05648 0.00658 0.00312 0.00204 0.00152
150 0.03718 0.00298 0.00141 0.00093 0.00069

200 0.02768 0.00170 0.00081 0.00053 0.00040

Table 5.2: Uniform and non-uniform bounds for loss on

a tranche of the CDO with laid-off assets

Laid-off assets

0.08 -
0.06 -

o001 -

Error bound

0.02

0.00 T T
0 20 40 60 80 100 120 140 160 180 200

n

‘ —~Uniform —Non-uniform k =0.3 «Non-uniform k =0.5 +Non-uniform k =0.7 «Non-uniform k =0.9

Figure 5.2: Uniform and non-uniform bounds for loss on a tranche of the CDO
with laid-off assets
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From Table 5.2 and Figure 5.2, we see that when n grows, both uniform and
non-uniform bounds are actually declined. For each n, the non-uniform bounds
decrease when k goes up and the non-uniform bound is the sharpest bound when
k = 1. In addition, the non-uniform bound is exactly smaller than the uniform

bound when % is only 0.3.



CHAPTER VI
FURTHER RESEARCH

In this dissertation, we concentrate on loss on a tranche of a CDO under some
dependent structure. We approximate an average loss on a tranche of a CDO by
an average of call function for a standard normal random variable. In addition,
uniform and non—uniform bounds for the approximation are proposed. While
proving the non—uniform bounds, the sixth moments of W is appeared. Moreover,

1
the rate of convergence of the uniform bound is —=, while the rate of convergence

Vn
of the non—uniform bound is ﬁ, where £ is an attachment or a detachment
point for the tranche of a CDO.
Additionally, we present two situations under the disjoint local dependence
condition. The first example is a CDO containing bankrupt assets and the second
one is a CDO containing laid—off assets. In the CDO containing laid—off assets, we

assume that each company can lay off at most one employee.

Therefore, some interesting questions arise for a future research as follows.

1. Although the rate of convergence of the non—uniform bound is many

1
ky/m’
terms in the bound have an exponential rate in terms of k. Moreover, each
random variable X; in the scenario of CDO is bounded. Therefore, the
question is that “can we refine a non—uniform bound from a polynomial

1
rate, T to an exponential rate?”

2. In [7], they focused on a CDO containing independent assets and proposed
a correction term that makes the rate of convergence of the bound to be —.

n

Thus, an interesting question is that “can we improve the rate of convergence

by proposing some correction terms?”

3. Can we reduce the sixth moments of W appeared by using the Hoélder’s
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inequality in the non—uniform bound?

4. Can we generalize the condition in the CDO containing laid—off assets to be

laying off at most ¢; employees in each i** company for positive integer ¢;?
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