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�NOTATION

P(H) the power set of a set H

P∗(H) the power set of a set H excluding the empty set

|H| the cardinality of a set H

N the set of natural numbers

R the set of real numbers

N0 the set of natural numbers including 0

|x| the absolute value of a real number x

ann(x) the set of annihilators of x in an R-hypermodule M

End0(M) the set of hypermodule homomorphisms f : M → M

with f(0) = 0

M ∼= M ′ R-hypermodules M and M ′ are isomorphic

N ≤ M N is a subhypermodule of an R-hypermodule M

N ≤⊕ M N is a direct summand of an R-hypermodule M

N ≤p M N is a projection invariant subhypermodule of

an R-hypermodule M

N ≤ess M N is an essential subhypermodule of an R-hypermodule M

N ≤cl M N is a closed subhypermodule of an R-hypermodule M

N ≤tess M N is a t-essential subhypermodule of an R-hypermodule M

N ≤tcl M N is a t-closed subhypermodule of an R-hypermodule M

Z(M) the singular subhypermodule of an R-hypermodule M

Z2(M) the second singular subhypermodule of an R-hypermodule M



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER I

INTRODUCTION

Extending modules (also known as CS-modules) are an interesting topic in module

theory which has been studied for several years. Let R be a ring with identity.

According to Tercan and Yücel [14], an R-module M is called an extending module

if every submodule of M is essential in a direct summand of M. There are many

generalizations of extending modules which have been studied by many authors;

for examples, Smith et al. [5, 12, 13], Birkenmeier et al. [3, 4] and Asgari et al.

[1, 2]. One of generalizations of extending modules is C11-modules which have

been investigated by Smith and Tercan [12], Birkenmeier and Tercan [4]. An R-

module M is called a C11-module if every submodule of M has a complement in

M which is a direct summand of M ; moreover, a ring R is called a C11-ring if R

is a C11-module (R is viewed as an R-module). In 2011, Asgari and Haghany [1]

provided the concept of t-extending modules which is also another generalization

of extending modules. According to Asgari and Haghany [1], an R-module M is

called a t-extending module if every t-closed submodule of M is a direct sumand

of M. In the same way as C11-rings, a ring R is called a t-extending ring if R is

a t-extending module. Ones can observe that there are many results concerning

extending modules, C11-modules, C11-rings and t-extending rings. However, there

are few works concerning the concepts of extending modules, C11-modules, C11-

rings and t-extending rings by using the structures of hypermodules and hyperrings.

In this research, we extend the notions of extending modules, C11-modules, C11-

rings and t-extending rings to extending hypermodules, C11-hypermodules, C11-

hyperrings and t-extending hyperrings, respectively, which is the main purpose

of this research. It is well-known that there are different notions of hyperrings

and hypermodules (see [7, 8, 11]). In this research, we focus on hyperrings and



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

hypermodules investigated by Siraworakun [11] in 2012. Furthermore, we would

like to mention that although most of properties in this work are similar to those in

modules, the important point is to develop tools in hypermodules and hyperrings

to prove those properties.

In Chapter I, we introduce canonical hypergroups, hyperrings and hypermod-

ules in Section 1.1, Section 1.2 and Section 1.3, respectively. In addition, their

examples are presented in this chapter.

In Chapter II, we first give the concept of direct sums and then introduce hy-

permodule homomorphisms used in order to define projection invariant subhyper-

modules. Moreover, some results concerning direct sums, hypermodule homomor-

phisms and projection invariant subhypermodules are presented in this chapter.

Especially, isomorphism theorems for hypermodules are given in Section 2.2.

In Chapter III, the notions of essential subhypermodules, complements, closed

subhypermodules, the singular subhypermodule, the second singular subhyper-

module, t-essential subhypermodules and t-closed subhypermodules of an R-hyper-

module are given. These subhypermodules play important roles in order to define

extending hypermodules, C11-hypermodules and t-extending hyperrings in Chap-

ter IV. In addition, some characterizations of closed subhypermodules, the singular

subhypermodule and the second singular subhypermodule are provided.

In Chapter IV, we present characterizations of extending hypermodules, C11-

hypermodules and t-extending hyperrings in Section 4.1, Section 4.2 and Sec-

tion 4.3, respectively. Moreover, we give some results concerning C11-hypermodules

in the case that they can be decomposed as a direct sum of two subhypermodules

in Section 4.2 and also provide some properties of C11-hyperrings in Section 4.3.

1.1 Canonical Hypergroups

In this section, we present the notion of canonical hypergroups (see [6]) introduced

by Mittas in 1970 which play an important role in order to define hyperrings and

hypermodules in Section 1.2 and Section 1.3, respectively.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

For a nonempty set H, let P(H) denote the power set of H, P∗(H) = P(H)\{∅}

and |H| the cardinality of H.

Definition 1.1.1. [6] A hyperoperation on a nonempty set H is a function from

H × H into P∗(H). A hypergroupoid is a pair (H, ◦) of a nonempty set H and

a hyperoperation ◦ on H.

Let (H, ◦) be a hypergoupoid. For nonempty subsets X and Y of H and a ∈ H,

let

X ◦ Y =
∪

x∈X,y∈Y

x ◦ y, X ◦ a = X ◦ {a} and a ◦X = {a} ◦X.

A hypergroupoid (H, ◦) is said to be commutative if

x ◦ y = y ◦ x for all x, y ∈ H.

A hypergroupoid (H, ◦) is called a semihypergroup if

x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, z ∈ H.

A semihypergroup (H, ◦) is called a hypergroup if

H ◦ x = x ◦H = H for all x ∈ H.

Example 1.1.2. [6] Let H be a nonempty set. Define a hyperoperation on H by

x ◦ y = H for all x, y ∈ H.

Then (H, ◦) is a hypergroup. This hypergroup is called the total hypergroup.

Example 1.1.3. [6] Let G be a group. For x, y ∈ G, define a hyperoperation ◦

on G by

x ◦ y = ⟨x, y⟩, the subgroup of G generated by x and y.

Then (G, ◦) is a hypergroup.

Example 1.1.4. [6] Let N be a normal subgroup of a group G. Define a hyper-

operation ◦ on G by



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

x ◦ y = xyN for all x, y ∈ G.

Then (G, ◦) is a hypergroup.

Definition 1.1.5. [6] Let (H, ◦) be a hypergroupoid. An element a in H is called

an identity of H if x ∈ (x ◦ a)
∩

(a ◦ x) for all x ∈ H. Moreover, an element e in

H is called a scalar identity of H if x ◦ e = e ◦ x = {x} for all x ∈ H.

In general, an identity of a hypergroupoid may not be unique. For a total hy-

pergroup (H, ◦) with |H| ≥ 2, it can be seen that every element in H is an identity

of H. However, a scalar identity of a hypergroupoid is unique. In fact, if e and e∗

are scalar identities of a hypergroupoid (H, ◦), then {e} = e ◦ e∗ = {e∗}, so e = e∗.

Definition 1.1.6. [6] Let (H, ◦) be a hypergroup endowed with at least one iden-

tity. An element x′ ∈ H is called an inverse of x ∈ H if there exists an identity a

of H such that a ∈ (x ◦ x′)
∩

(x′ ◦ x).

For a total hypergroup (H, ◦) with |H| ≥ 2 and x ∈ H, we see that all ele-

ments in H are inverses of x. This concludes that an inverse of each element in

a hypergroup may not be unique.

Definition 1.1.7. [6] Let (H, ◦) be a hypergroup endowed with at least one iden-

tity. Then (H, ◦) is said to be reversible if for any x, y, z ∈ H with x ∈ y ◦ z, there

exist inverses y′ of y and z′ of z such that y ∈ x ◦ z′ and z ∈ y′ ◦ x.

Next, we provide the definition of canonical hypergroups which generalize

abelian groups. The role of canonical hypergroups in hyperrings and hypermodules

is similar to abelian groups in rings and modules, respectively.

Definition 1.1.8. [6] Let (H, ◦) be a hypergroup. Then (H, ◦) is called a canonical

hypergroup if it satisfies the following properties:

(i) (H, ◦) is commutative;

(ii) (H, ◦) has the scalar identity;



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

(iii) each element x ∈ H has a unique inverse, denoted by x−1; and

(iv) (H, ◦) is reversible.

Definition 1.1.9. [6] Let (H, ◦) be a canonical hypergroup. For a nonempty

subset X of H, let

X−1 = {x−1 : x ∈ X}.

Proposition 1.1.10. [10] Let (H, ◦) be a canonical hypergroup. Then (x−1)−1 = x

and (x ◦ y)−1 = x−1 ◦ y−1 for all x, y ∈ H.

Proposition 1.1.11. [11] Let (H, ◦) be a canonical hypergroup with the scalar

identity 0. Then for all nonempty subsets A,B and C of H,

(i) A ◦B = B ◦ A;

(ii) A ◦ {0} = A;

(iii) (A ◦B) ◦ C = A ◦ (B ◦ C); and

(iv) (A ◦B)−1 = A−1 ◦B−1.

Next, we provide some examples of canonical hypergroups used in order to

establish some examples of hyperrings and hypermodules in Section 1.2 and Sec-

tion 1.3, respectively.

Example 1.1.12. [11] Let H be a nonempty set with |H| ≥ 2. Choose an element

in H and denote it by 0. Define a hyperoperation ◦ on H by, for any a, b ∈ H,

a ◦ b =



{a}, if b = 0,

{b}, if a = 0,

H, if a = b ̸= 0,

{a, b}, if a ̸= b, a ̸= 0 and b ̸= 0.

Then (H, ◦) is a canonical hypergroup with 0 as the scalar identity, and the inverse

of each element in H is itself.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

Example 1.1.13. [10] Let t ∈ R be such that 0 < t ≤ 1 and M = [0, t] or

M = [0, t). Define a hyperoperation ⊕ on M by, for any x, y ∈ M,

x⊕ y =

 {max{x, y}}, if x ̸= y,

[0, x], if x = y.

Then (M,⊕) is a canonical hypergroup with 0 as the scalar identity, and the inverse

of each element in M is itself.

Proposition 1.1.14. Let (M,⊕) be the canonical hypergroup defined in Example

1.1.13 and α, β ∈ M with α ≤ β. Then [0, α]⊕ [0, β] = [0, β].

Proof. By Proposition 1.1.11(i) and (ii), we obtain that [0, β] = {0} ⊕ [0, β] ⊆

[0, α] ⊕ [0, β]. To show that [0, α] ⊕ [0, β] ⊆ [0, β], let γ ∈ [0, α] ⊕ [0, β]. Then

there exist α1 ∈ [0, α] and β1 ∈ [0, β] such that γ ∈ α1 ⊕ β1. If α1 = β1, then

α1 ⊕ β1 = [0, β1], so γ ∈ [0, β1] ⊆ [0, β]. Suppose that α1 ̸= β1. If α1 > β1, then

α1⊕β1 = {max{α1, β1}} = {α1}, so γ = α1 ∈ [0, α] ⊆ [0, β] since α ≤ β. Moreover,

if α1 < β1, then α1 ⊕ β1 = {max{α1, β1}} = {β1} which implies that γ = β1 ∈

[0, β]. This shows that [0, α]⊕ [0, β] ⊆ [0, β]. Hence, [0, α]⊕ [0, β] = [0, β].

Example 1.1.15. [10] Let a ∈ R be such that a ≥ 1 and R = [a,∞) ∪ {0} or

R = (a,∞) ∪ {0}. Define a hyperoperation ⊕ on R by, for any x, y ∈ R,

x⊕ y =



{y}, if x = 0,

{x}, if y = 0,

[x,∞) ∪ {0}, if x = y ̸= 0,

{min{x, y}}, if x ̸= y, x ̸= 0 and y ̸= 0.

Then (R,⊕) is a canonical hypergroup with 0 as the scalar identity, and the inverse

of each element in R is itself.

Example 1.1.16. [10] Let a ∈ R be such that 0 < a ≤ 1 and R = [−a, a] or

R = (−a, a). Define a hyperoperation ⊕ on R by, for any x, y ∈ R,

x⊕ y =



{x}, if y = x,

[−|x|, |x|], if y = −x,

{x}, if |y| < |x|,

{y}, if |y| > |x|,
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where |z| denotes the absolute value of a real number z. Then (R,⊕) is a canonical

hypergroup with 0 as the scalar identity of R, and −x is the inverse of x ∈ R.

1.2 Hyperrings

In general, there are different concepts of hyperrings (see [7]). However, we are

mainly interested in hyperrings investigated by Siraworakun [11] in this research.

In this section, we provide the concept of hyperrings and their examples. Finally,

the concept of quotient hyperrings is introduced. From now on, for a canonical

hypergroup (H,+), let 0 and −a denote the scalar identity of H and the inverse of

a ∈ H, respectively; moreover, for any x1, x2, . . . , xk ∈ H with k ∈ N, let
∑k

i=1xi

denote x1+x2+ · · ·+xk and for the case k = 1, ‘‘z ∈
∑k

i=1xi” represents ‘‘z = x1”

for all z ∈ H.

Definition 1.2.1. [11] A hyperring is a structure (R,+, •) where + and • are

hyperoperations on R satisfying the following properties:

(i) (R,+) is a canonical hypergroup;

(ii) (R, •) is a semihypergroup;

(iii) a • (b+ c) ⊆ (a • b)+ (a • c) and (b+ c) •a ⊆ (b •a)+ (c •a) for all a, b, c ∈ R;

and

(iv) a • (−b) = (−a) • b = −(a • b) for all a, b ∈ R.

If equalities hold in (iii), then the hyperring R is said to be strongly distributive.

A hyperring (R,+, •) is said to be commutative if a • b = b • a for all a, b ∈ R.

For convenience, we sometimes abbreviate a hyperring (R,+, •) by a hyperring

R and a • b by ab for all a, b ∈ R; moreover, we abbreviate A • B by AB for all

∅ ̸= A,B ⊆ R.

Example 1.2.2. [11] Let R be an abelian group with |R| ≥ 2. Define a hyperop-

eration + on R by a+ b = {ab} for all a, b ∈ R. Moreover, define a hyperoperation
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• on R by a • b = ⟨a, b⟩, the subgroup of R generated by the set {a, b}, for all

a, b ∈ R. Then (R,+, •) is a hyperring.

Example 1.2.3. [10] Let (R,+) be the canonical hypergroup defined in Exam-

ple 1.1.15. Then (R,+, •) is a strongly distributive hyperring where • is the hyper-

operation on R defined by a•b = {a·b} for all a, b ∈ R (· is the usual multiplication

on R).

Proposition 1.2.4. Let (R,+) be the canonical hypergroup defined in Example

1.1.12 where R = N ∪ {0} := N0. Then (N0,+, •) is a hyperring where • is the

hyperoperation on N0 defined by a • b = {a · b} for all a, b ∈ N0 (· is the usual

multiplication on N0).

Proof. It is easy to see that (N0, •) is a semihypergroup since (N0, ·) is a semigroup.

Note that −r = r for all r ∈ N0. This implies that a • (−b) = (−a) • b = −(a • b)

for all a, b ∈ N0. It remains to show that a • (b + c) ⊆ (a • b) + (a • c) and

(b+ c) • a ⊆ (b • a)+ (c • a) for all a, b, c ∈ N0. Let a, b, c ∈ N0. First, we show that

a • (b+ c) ⊆ (a • b) + (a • c).

Case 1: b = 0 or c = 0. Without loss of generality, assume that b = 0. Then

a • (b+ c) = a • {c} = {a · c} and (a • b) + (a • c) = {0}+ (a • c) = {a · c}.

Case 2: b ̸= 0 and c ̸= 0.

Subcase 2.1: b = c. Then b+ c = N0. If a = 0, then

a • (b+ c) = 0 • N0 =
∪
d∈N0

(0 • d) = {0} = {0}+ {0} = (a • b) + (a • c).

Suppose that a ̸= 0. Then a · b = a · c ̸= 0, so (a• b)+(a• c) = {a · b}+{a · c} = N0.

Therefore,

a•(b+c) = a•N0 =
∪
d∈N0

(a•d) =
∪
d∈N0

{a·d} = {a·d : d ∈ N0} ⊆ N0 = (a•b)+(a•c).

Subcase 2.2: b ̸= c. Then b + c = {b, c}. If a = 0, then a • (b + c) =

0 • {b, c} = {0} = (a • b) + (a • c). In the case a ̸= 0, we get a · b, a · c ̸= 0 and
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a · b ̸= a · c. Hence,

a • (b+ c) = a • {b, c} = {a · b, a · c} = {a · b}+ {a · c} = (a • b) + (a • c).

This shows that a • (b + c) ⊆ (a • b) + (a • c). Since (N0, •) is commutative,

(b+ c) • a ⊆ (b • a) + (c • a). Therefore, (N0,+, •) is a hyperring.

In the hyperring (N0,+, •) given in Proposition 1.2.4, one can see that

2 • (2 + 2) = 2 • N0 =
∪
n∈N0

(2 • n) =
∪
n∈N0

{2 · n} = 2 · N0,

but

(2 • 2) + (2 • 2) = {4}+ {4} = N0

which means that 2 • (2 + 2) ̸= (2 • 2) + (2 • 2). Hence, the hyperring (N0,+, •) is

not strongly distributive.

Proposition 1.2.5. [11] Let A,B and C be nonempty subsets of a hyperring R.

The following statements hold.

(i) (−A)B = A(−B) = −(AB).

(ii) A(B + C) ⊆ AB + AC.

(iii) (A+B)C ⊆ AC +BC.

Definition 1.2.6. [11] Let R be a hyperring. A nonempty subset I of R is called

a subhyperring of R if I is a hyperring under the same hyperoperations on R.

Definition 1.2.7. [11] Let I be a subhyperring of a hyperring R. We say that I is

a left (right) hyperideal of R if ra ⊆ I (ar ⊆ I) for all a ∈ I and r ∈ R. Moreover,

I is called a hyperideal of R if I is both a left and a right hyperideal of R.

Proposition 1.2.8. [11] Let I be a nonempty subset of a hyperring R. Then I is

a left (right) hyperideal of R if and only if a − b ⊆ I and ra ⊆ I (ar ⊆ I) for all

a, b ∈ I and r ∈ R.

Next, we give some examples of hyperideals of a hyperring.
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Proposition 1.2.9. Let (R,+, •) be the hyperring defined in Example 1.2.3 where

R = [1,∞) ∪ {0}. Then [α,∞) ∪ {0} is a hyperideal of R for all α ≥ 1.

Proof. Let α ≥ 1. Suppose that a, b ∈ [α,∞)∪{0} and r ∈ [1,∞)∪{0}. Note that

−x = x for all x ∈ [1,∞) ∪ {0}. Then a− b = a+ b.

Case 1: a = 0 or b = 0. Without loss of generality, let a = 0. Then a + b =

{b} ⊆ [α,∞) ∪ {0}.

Case 2: a ̸= 0 and b ̸= 0. If a = b, then a + b = [a,∞) ∪ {0} ⊆ [α,∞) ∪ {0}.

Assume that a ̸= b. Then a + b = {min{a, b}} ⊆ [α,∞) ∪ {0}. This shows that

a− b ⊆ [α,∞) ∪ {0}.

Next, we show that r • a ⊆ [α,∞)∪{0}. If r = 0 or a = 0, then r • a = {ra} =

{0} ⊆ [α,∞) ∪ {0}. If r ≥ 1 and a ̸= 0, then ra ≥ a, so that r • a = {ra} ⊆

[ra,∞)∪{0} ⊆ [a,∞)∪{0} ⊆ [α,∞)∪{0}. Since R is commutative, r • a = a • r.

By Proposition 1.2.8, we conclude that [α,∞) ∪ {0} is a hyperideal of R.

Proposition 1.2.10. Let (N0,+, •) be the hyperring defined in Proposition 1.2.4.

Then only {0} and N0 are hyperideals of N0.

Proof. It is clear that 0−0 = {0} and r •0 = {0} = 0•r for all r ∈ N0. Hence, {0}

is a hyperideal of N0 by Proposition 1.2.8. Moreover, assume that I is a nonzero

hyperideal of N0. Let 0 ̸= a ∈ I. Thus, N0 = a+ a = a− a ⊆ I ⊆ N0. This implies

that I = N0.

Proposition 1.2.11. [11] Let I and J be left (right) hyperideals of a hyperring R.

Then I + J and I ∩ J are also left (right) hyperideals of R.

Corollary 1.2.12. Let I and J be hyperideals of a hyperring R. Then I + J and

I ∩ J are also hyperideals of R.

Next, we provide the concept of quotient hyperrings (see [11]) established by

Siraworakun in 2012. Let P be a hyperideal of a hyperring R. Then the relation

ρ on R defined as follows:

aρb if and only if a+ P = b+ P for all a, b ∈ R
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is an equivalence relation. The set of equivalence classes of elements in R is denoted

by R/P, i.e., R/P =
{
[a]ρ : a ∈ R

}
where [a]ρ is the equivalence class of a ∈ R.

According to Siraworakun [11], it can be shown that R/P = {a+ P : a ∈ R} and

a ∈ b + P if and only if a + P = b + P for all a, b ∈ R; moreover, he verified that

(R/P,⊕,⊗) is a hyperring where ⊕ and ⊗ are hyperoperations on R/P defined

by, for all a, b ∈ R,

(a+P )⊕ (b+P ) = {x+P : x ∈ a+ b} and (a+P )⊗ (b+P ) = {y+P : y ∈ ab}.

In addition, P is the scalar identity of (R/P,⊕), and (−r) + P is the inverse of

r + P ∈ R/P. The hyperring (R/P,⊕,⊗) is called the quotient hyperring.

1.3 Hypermodules

It is similar to hyperrings that there are several types of hypermodules (see [8]).

However, we only focus on hypermodules investigated by Siraworakun [11] in 2012.

In this section, we introduce the definition of hypermodules and their examples;

moreover, some preliminary properties involving hypermodules are provided. Fi-

nally, the concept of quotient hypermodules are presented.

Definition 1.3.1. [11] Let (R,+, •) be a hyperring. An R-hypermodule is a struc-

ture (M,⊕, ⋄) such that (M,⊕) is a canonical hypergroup, and ⋄ is a multivalued

scalar operation, i.e., a function from R×M into P∗(M), such that for all a, b ∈ R

and x, y ∈ M :

(i) a ⋄ (x⊕ y) ⊆ (a ⋄ x)⊕ (a ⋄ y);

(ii) (a+ b) ⋄ x ⊆ (a ⋄ x)⊕ (b ⋄ x);

(iii) (a • b) ⋄ x = a ⋄ (b ⋄ x); and

(iv) a ⋄ (−x) = (−a) ⋄ x = −(a ⋄ x).

If equalities hold in both (i) and (ii), then the R-hypermodule is said to be strongly

distributive.
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For convenience, we sometimes abbreviate an R-hypermodule (M,⊕, ⋄) by

an R-hypermodule M, denoted by RM, and a ⋄ x by ax for all a ∈ R and x ∈ M.

Form now on, for an R-hypermodule M, we use the symbol + for the canoni-

cal hypergroups (R,+) and (M,+) in the hyperring R and the R-hypermodule

M, respectively; however, they are not the same unless we specify. Moreover, it

is clear that a hyperring (R,+, •) can be viewed as an R-hypermodule by con-

sidering the hyperoperation • as the multivalued scalar operation. Let M be an

R-hypermodule. For ∅ ̸= A ⊆ R, ∅ ̸= X ⊆ M, r ∈ R and y ∈ M, let

AX =
∪

a∈A,x∈X

ax, Ay = A{y} and rX = {r}X.

Proposition 1.3.2. [11] Let M be an R-hypermodule. Then for any nonempty

subsets A and B of R and nonempty subsets X and Y of M :

(i) A(X + Y ) ⊆ AX + AY ;

(ii) (A+B)X ⊆ AX +BX;

(iii) (AB)X = A(BX); and

(iv) A(−X) = (−A)X = −(AX).

Definition 1.3.3. [11] A nonempty subset N of an R-hypermodule M is called

a subhypermodule of M, denoted by N ≤ M, if N is an R-hypermodule under the

same hyperoperation on M and the multivalued scalar operation.

Proposition 1.3.4. [11] Let N be a nonempty subset of an R-hypermodule M.

Then N is a subhypermodule of M if and only if x − y ⊆ N and rx ⊆ N for all

x, y ∈ N and r ∈ R.

For a hyperring R, if we view R as an R-hypermodule, then subhypermodules of

R and left hyperideals of R are identical; moreover, in the case that the hyperring

R is commutative, we obtain that subhypermodules of R and hyperideals of R

coincide.
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Example 1.3.5. Let (R,+, •) be the hyperring defined in Example 1.2.2. If

(R,+, •) is viewed as an R-hypermodule by considering • as the multivalued scalar

operation, then only R is the subhypermodule of itself.

As the previous example, only R is the subhypermodule of RR and |R| > 1,

so {0} is not a subhypermodule of RR. This means that {0} may not be a subhy-

permodule in general. However, we focus on hypermodules which {0} must be a

subhypermodule throughout this research. Such an R-hypermodule exists as the

following proposition.

Proposition 1.3.6. Let (R,⊕, •) be the hyperring defined in Example 1.2.3 where

R = [s,∞) ∪ {0} with s ≥ 1 and let (M,+) be the canonical hypergroup defined

in Example 1.1.13 where M = [0, t] with 0 < t ≤ 1. Define a multivalued scalar

operation ⋄ by, for any a ∈ R and x ∈ M,

a ⋄ x =

 {0}, if a = 0,

[0,
x

a
], if a ̸= 0.

Then (M,+, ⋄) is a strongly distributive R-hypermodule and {0} is a subhypermod-

ule of M.

Proof. Let a, b ∈ R and x, y ∈ M. First, we show that a⋄ (x+y) = (a⋄x)+(a⋄y).

If a = 0, then a ⋄ x = {0} = a ⋄ y, so

a ⋄ (x+ y) =
∪

z∈x+y

(0 ⋄ z) = {0} = {0}+ {0} = (a ⋄ x) + (a ⋄ y).

Suppose that a ≥ s.

Case 1: x ̸= y. Without loss of generality, assume that x < y. Then

a ⋄ (x+ y) = a ⋄ {max{x, y}} = a ⋄ {y} = [0,
y

a
].

Note that x

a
<

y

a
. By Proposition 1.1.14,

(a ⋄ x) + (a ⋄ y) = [0,
x

a
] + [0,

y

a
] = [0,

y

a
].
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Case 2: x = y. Then x+ y = [0, x]. Thus,

a ⋄ (x+ y) = a ⋄ [0, x] =
∪

z∈[0,x]

(a ⋄ z) =
∪

z∈[0,x]

[0,
z

a
] = [0,

x

a
].

By Proposition 1.1.14, (a ⋄ x) + (a ⋄ y) = [0,
x

a
] + [0,

x

a
] = [0,

x

a
]. This shows that

a ⋄ (x+ y) = (a ⋄ x) + (a ⋄ y).

Next, we show that (a⊕ b) ⋄ x = (a ⋄ x) + (b ⋄ x).

Case 1: a = 0 and b = 0. Hence,

(a⊕ b) ⋄ x = {0} = {0}+ {0} = (a ⋄ x) + (b ⋄ x).

Case 2: a = 0 and b ≥ s. In this case, we obtain

(a⊕ b) ⋄ x = {b} ⋄ x = [0,
x

b
] = {0}+ [0,

x

b
] = (a ⋄ x) + (b ⋄ x).

Case 3: a ≥ s and b = 0. This case is similar to Case 2.

Case 4: a ≥ s and b ≥ s.

Subcase 4.1: a = b. In this case, we get a⊕ b = [a,∞) ∪ {0}. Hence,

(a⊕ b) ⋄ x =
(
{0} ∪ [a,∞)

)
⋄ x = {0} ∪

( ∪
d∈[a,∞)

(d ⋄ x)
)

= ∪
( ∪
d∈[a,∞)

[0,
x

d
]
)
= [0,

x

a
].

By Proposition 1.1.14,

(a ⋄ x) + (b ⋄ x) = (a ⋄ x) + (a ⋄ x) = [0,
x

a
] + [0,

x

a
] = [0,

x

a
].

Subcase 4.2: a ̸= b. Without loss of generality, assume that a < b. Then

a⊕ b = {min{a, b}} = {a}. Thus, (a⊕ b) ⋄ x = {a} ⋄ x = [0,
x

a
]. Note that x

b
≤ x

a
.

By Proposition 1.1.14, (a ⋄ x) + (b ⋄ x) = [0,
x

a
] + [0,

x

b
] = [0,

x

a
]. This shows that

(a⊕ b) ⋄ x = (a ⋄ x) + (b ⋄ x).

Next, we show that (a • b) ⋄ x = a ⋄ (b ⋄ x). If a = 0 or b = 0, then (a • b) ⋄ x =

{0} = a⋄(b⋄x). Suppose that a ≥ s and b ≥ s. Then ab ̸= 0 since s ≥ 1. Therefore,
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(a • b) ⋄ x = {ab} ⋄ x = [0,
x

ab
] and

a ⋄ (b ⋄ x) = a ⋄ [0, x
b
] =

∪
z∈[0,x

b
]

(a ⋄ z) =
∪

z∈[0,x
b
]

[0,
z

a
] = [0,

x

ab
].

This shows that (a • b) ⋄ x = a ⋄ (b ⋄ x).

Finally, we show that a ⋄ (−x) = (−a) ⋄ x = −(a ⋄ x). Note that −c = c

for all c ∈ R and −z = z for all z ∈ M. Hence, a ⋄ (−x) = a ⋄ x = (−a) ⋄ x.

Moreover, −(a ⋄ x) = {−z : z ∈ a ⋄ x} = {z : z ∈ a ⋄ x} = a ⋄ x. This implies that

a ⋄ (−x) = (−a) ⋄ x = −(a ⋄ x).

We conclude that (M,+, ⋄) is a strongly distributive R-hypermodule. Note

that 0 − 0 = {0}. Moreover, for any r ∈ R, if r = 0, then r ⋄ 0 = {0}. Note that

r ⋄ 0 = [0,
0

r
] = {0} in the case r ̸= 0. Therefore, {0} is a subhypermodule of M

by Proposition 1.3.4.

From now on, only R-hypermodules such that {0} is a subhypermodule are

considered.

Proposition 1.3.7. All subhypermodules of the R-hypermodule M = [0, t]

(0 < t ≤ 1) defined in Proposition 1.3.6 are {0}, [0, x] and [0, x) for some x ∈ (0, t].

Proof. Recall that {0} is a subhypermodule of M by Proposition 1.3.6. Let N be

a nonzero subhypermodule of M. Then N is nonempty and bounded above. This

implies that supN exists, say x. It follows that x ∈ (0, t] because {0} ≠ N ⊆ [0, t].

Case 1: x ∈ N. In this case, we claim that N = [0, x]. It is obvious that

N ⊆ [0, x]. Moreover, [0, x] = x+ x ⊆ N. Hence, N = [0, x].

Case 2: x /∈ N. Claim that N = [0, x). Clearly, N ⊆ [0, x) since x = supN

and x /∈ N. To show that [0, x) ⊆ N, let α ∈ [0, x). Then α < x. Thus, there exists

y ∈ N such that α < y < x. Therefore, α ∈ [0, y] = y + y ⊆ N since N ≤ M. This

shows that N = [0, x).

Conversely, recall that R = [s,∞) ∪ {0} (s ≥ 1). Let z ∈ (0, t]. To show

that [0, z] is a subhypermodule of M , let a, b ∈ [0, z] and r ∈ R = [s,∞) ∪ {0}.

Without loss of generality, assume that a ≤ b. By Proposition 1.1.14, we obtain
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that [0, a] + [0, b] = [0, b]. Hence,

a− b = a+ (−b) = a+ b ⊆ [0, a] + [0, b] = [0, b] ⊆ [0, z].

If r = 0, then ra = {0} ⊆ [0, z]. Moreover, ra = [0,
a

r
] ⊆ [0, a] ⊆ [0, z] in the

case r ≥ s ≥ 1. Therefore, [0, z] is a subhypermodule of M by Proposition 1.3.4.

Similarly, [0, z) is a subhypermodule of M.

Example 1.3.8. Let (N0,+, •) be the hyperring defined in Proposition 1.2.4. Con-

sider N0 as an N0-hypermodule whose multivalued scalar operation is the hyperop-

eration •. By Proposition 1.2.10, only {0} and N0 are hyperideals of N0. Therefore,

there are only two subhypermodules of N0, namely {0} and N0.

By considering N0 as an N0-hypermodule in the previous example, we observe

that N02 =
∪

n∈N0
n•2 =

∪
n∈N0

{n·2} = {n·2 : n ∈ N0} is not a subhypermodule of

N0 since only {0} and N0 are subhypermodules of N0. Hence, for an R-hypermodule

M, m ∈ M and a left hyperideal I of R, Im = {y ∈ am : a ∈ I} may not be a

subhypermodule of M ; however, Im is always a subhypermodule of M provided

that M is strongly distributive as shown in the following proposition.

Proposition 1.3.9. Let M be a strongly distributive R-hypermodule, I a left

hyperideal of R and m ∈ M. Then Im is a subhypermodule of M.

Proof. Note that ∅ ̸= 0m ⊆ Im, so Im ̸= ∅. To show that Im ≤ M, let x, y ∈ Im

and r ∈ R. Then there exist a1, a2 ∈ I such that x ∈ a1m and y ∈ a2m. Since M

is strongly distributive, a1m+ (−a2)m = (a1 + (−a2))m. Therefore,

a1m− a2m = a1m+ (−(a2m)) = a1m+ (−a2)m = (a1 + (−a2))m = (a1 − a2)m.

Note that a1 − a2 ⊆ I since I is a left hyperideal of R. Hence,

x− y ⊆ a1m− a2m = (a1 − a2)m ⊆ Im.

Moreover, rx ⊆ r(a1m) = (ra1)m ⊆ Im. We conclude that Im ≤ M by Proposi-

tion 1.3.4.

In order to define the singular subhypermodule in Section 3.3, the following

definition is needed.
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Definition 1.3.10. Let M be an R-hypermodule and x ∈ M. An element r in R

is called an annihilator of x if rx = {0}. The set of all annihilators of x is denoted

by ann(x), i.e.,

ann(x) =
{
r ∈ R : rx = {0}

}
.

Example 1.3.11. Let (R,+, •) be the hyperring defined in Example 1.2.2. Con-

sider R as an R-hypermodule, and let 0 ̸= x ∈ R. Then r • x = ⟨r, x⟩ ̸= {0} for all

r ∈ R. Hence, ann(x) = ∅.

In genaral, for an R-hypermodule M and x ∈ M, we see that ann(x) may be

the empty set as in the previous example; however, if ann(x) is nonempty, then it

forms a left hyperideal of R. Note that {0} is a subhypermodule. Hence, for an

R-hypermodule M and r ∈ R, we obtain r{0} ⊆ {0} from Proposition 1.3.4 but

r{0} ̸= ∅, so r{0} = {0}.

Proposition 1.3.12. Let M be an R-hypermodule and x ∈ M. If ann(x) is

nonempty, then ann(x) is a left hyperideal of R.

Proof. Assume that ann(x) ̸= ∅. Let a, b ∈ ann(x) and r ∈ R. Then ax = {0} = bx.

To show that a − b ⊆ ann(x), let c ∈ a − b. Thus, cx ⊆ (a − b)x ⊆ ax − bx =

{0}−{0} = {0}. This implies that cx = {0}, i.e., c ∈ ann(x). Hence, a−b ⊆ ann(x).

Next, let d ∈ ra. Then dx ⊆ (ra)x = r(ax) = r{0} = {0}. This forces that

dx = {0}. Thus, d ∈ ann(x). This shows that ra ⊆ ann(x). By Proposition 1.2.8,

we conclude that ann(x) is a left hyperideal of R.

Proposition 1.3.13. [11] Let K and N be subhypermodules of an R-hypermodule M.

Then K +N and K ∩N are subhypermodules of M.

Recall that for subhypermodules K and N of an R-hypermodule M,

K +N =
∪

x∈K,y∈N

x+ y =
{
z ∈ M : ∃x ∈ K∃y ∈ N, z ∈ x+ y

}
.
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Therefore, for any subhypermodules N1, N2, . . . , Nk of an R-hypermodule M with

k ∈ N, we can define
∑k

i=1Ni to be N1 +N2 + · · ·+Nk, i.e.,

k∑
i=1

Ni = N1+N2+· · ·+Nk = {x ∈ M : ∃n1 ∈ N1∃n2 ∈ N2 . . . ∃nk ∈ Nk, x ∈
k∑

i=1

ni}.

Corollary 1.3.14. Let N1, N2, . . . , Nk be subhypermodules of an R-hypermodule

M where k ∈ N. Then
∑k

i=1Ni and
∩k

i=1Ni are subhypermodules of M.

Next, we give a proposition which is similar to the modularity condition in

module theory. The proof of this proposition is straightforward, but it is quite

important to our works because we can transform between the sum of subhyper-

modules and the intersection of subhypermodules.

Proposition 1.3.15. (Modularity Condition) Let H,K and L be subhypermodules

of an R-hypermodule M such that K ⊆ H. Then H ∩ (K + L) = K + (H ∩ L).

Proof. Let x ∈ H ∩ (K + L). Then x ∈ H and there exist k ∈ K and l ∈ L such

that x ∈ k+l. Thus, l ∈ x−k ⊆ H. This means that l ∈ H∩L, so x ∈ K+(H∩L).

Hence, H ∩ (K + L) ⊆ K + (H ∩ L). Next, K + (H ∩ L) ⊆ H + (H ∩ L) ⊆ H

because K ⊆ H. Clearly, K+(H ∩L) ⊆ K+L. Then K+(H ∩L) ⊆ H ∩ (K+L).

Therefore, H ∩ (K + L) = K + (H ∩ L).

Next, the concept of quotient hypermodules investigated by Siraworakun [11]

is presented.

Let N be a subhypermodule of an R-hypermodule M. Siraworakun defined

M/N to be the set {x + N : x ∈ M} and proved that x ∈ y + N if and only

if x + N = y + N for all x, y ∈ M . Especially, x + N = N if and only if

x ∈ N ; moreover, he proved that (M/N,⊞,⊡) is an R-hypermodule where ⊞ is

the hyperoperation on M/N and ⊡ is the multivalued scalar operation defined by

(x+N)⊞ (y +N) = {t+N : t ∈ x+ y} and r ⊡ (x+N) = {t+N : t ∈ rx}

for all x, y ∈ M and r ∈ R. The scalar identity of (M/N,⊞) is N (we sometimes

use the symbol 0̄ instead), and (−x) + N is the inverse of x + N ∈ M/N, i.e.,



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19

−(x + N) = (−x) + N for all x ∈ M. The R-hypermodule (M/N,⊞,⊡) is called

the quotient R-hypermodule.

Furthermore, Siraworakun provided the form of subhypermodules of quotient

hypermodules as follows.

Proposition 1.3.16. [11] Let N be a subhypermodule of an R-hypermodule M.

Then every subhypermodule of M/N is in the form K/N, where K is a subhyper-

module of M containing N.

Next, we give a result concerning the uniqueness of subhypermodules of quo-

tient hypermodules in the previous proposition.

Proposition 1.3.17. Let N be a subhypermodule of an R-hypermodule M and K̃

a subhypermodule of M/N. Then there exists uniquely K ≤ M containing N such

that K̃ = K/N.

Proof. By Proposition 1.3.16, there exists K ≤ M containing N such that K̃ =

K/N. Let K ′ be a subhypermodule of M containing N such that K/N = K ′/N.

Suppose that k ∈ K. Then k+N ∈ K/N = K ′/N. Thus, there exists k′ ∈ K ′ such

that k +N = k′ +N. Then k ∈ k′ +N ⊆ k′ +K ′ = K ′. Hence, K ⊆ K ′. Similarly,

K ′ ⊆ K. Therefore, K = K ′.

Let (M/N,⊞,⊡) be the quotient hypermodule and let N ′ be a subhypermodule

of M containing N. We can define a hyperoperation ⊎ on (M/N)/(N ′/N) and

a multivalued scalar operation ⊛ by

[(x+N)⊞(N ′/N)]⊎[(y+N)⊞(N ′/N)] = {(t+N)⊞(N ′/N) : t+N ∈ (x+N)⊞(y+N)},

r ⊛ ((x+N)⊞ (N ′/N)) = {(t+N)⊞ (N ′/N) : t+N ∈ r ⊡ (x+N)}

for all x, y ∈ M and r ∈ R. Then ((M/N)/(N ′/N),⊎,⊛) is also the quotient

R-hypermodule.

In this thesis, for any subhypermodules N and N ′ of an R-hypermodule M

with N ′ ≤ N, we use the symbols ⊞ and ⊡ for the quotient R-hypermodule M/N



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

throughout this work; moreover, the symbols ⊎ and ⊛ are used for the quotient

R-hypermodule (M/N)/(N ′/N).

We end this section with some results regarding annihilators of an element in

quotient hypermodules.

Proposition 1.3.18. Let (M/N,⊞,⊡) be the quotient R-hypermodule and x ∈ M,

∅ ̸= I ⊆ R. Then I ⊡ (x+N) = {N} if and only if Ix ⊆ N. In particular,

ann(x+N) = {r ∈ R : r ⊡ (x+N) = {N}} = {r ∈ R : rx ⊆ N}.

Proof. By the definition of quotient hypermodules, we obtain that

I ⊡ (x+N) =
∪
r∈I

r ⊡ (x+N) =
∪
r∈I

{t+N : t ∈ rx}

= {t+N : t ∈
∪
r∈I

rx} = {t+N : t ∈ Ix}.

It is straightforward that {t+N : t ∈ Ix} = {N} if and only if Ix ⊆ N.

Proposition 1.3.19. Let K and N be subhypermodules of an R-hypermodule M

such that K ∩ N = {0}. Then ann(k + N) = ann(k), i.e., {r ∈ R : rk ⊆ N} =

{r ∈ R : rk = {0}} for all k ∈ K.

Proof. Let k ∈ K. If r ∈ ann(k), then rk = {0} ⊆ N, so r ∈ ann(k + N). This

implies that ann(k) ⊆ ann(k +N). Next, let s ∈ ann(k +N). Then sk ⊆ N. Since

K ≤ M, we obtain sk ⊆ K. Thus, sk ⊆ K ∩N = {0}. This forces that sk = {0}.

This means that s ∈ ann(k). Hence, ann(k + N) ⊆ ann(k). We conclude that

ann(k +N) = ann(k).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

SUBHYPERMODULES AND HOMOMORPHISMS

2.1 Direct Sums and Projection Invariant Subhypermo-

dules

In this section, we first explore the concepts of direct sums of subhypermodules and

direct summands of hypermodules which lead us to define extending hypermodules,

C11-hypermodules and t-extending hyperrings in Chapter IV.

Definition 2.1.1. Let N1, N2, . . . , Nk be subhypermodules of an R-hypermodule

M where k ∈ N with k ≥ 2. Then M is called the direct sum of N1, N2, . . . , Nk,

denoted by M =
⊕k

i=1Ni or M = N1 ⊕ N2 ⊕ · · · ⊕ Nk, if M =
∑k

i=1Ni and

Nj ∩ (
∑k

i=1
i̸=j

Ni) = {0} for all j ∈ {1, 2, . . . , k}.

Definition 2.1.2. Let N be a subhypermodule of an R-hypermodule M. We say

that N is a direct summand of M, denoted by N ≤⊕ M, if there exists N ′ ≤ M

such that M = N ⊕N ′.

In module theory, if a module M is the direct sum of submodules N1, N2, . . . ,

Nk, then every element in M can be written uniquely as a sum of elements in

N1, N2, . . . , Nk. In hypermodules, the uniqueness concerning elements in direct

sums is presented as follows.

Proposition 2.1.3. Let N1, N2, . . . , Nk be subhypermodules of an R-hypermodule

M such that M =
∑k

i=1Ni where k ∈ N with k ≥ 2. The following statements are

equivalent:

(i) Nj ∩ (
∑k

i=1
i̸=j

Ni) = {0} for each j ∈ {1, 2, . . . , k};
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(ii) for each x ∈ M, there exist uniquely n1 ∈ N1, n2 ∈ N2, . . . , nk ∈ Nk such that

x ∈
∑k

i=1ni;

(iii) for any n1 ∈ N1, n2 ∈ N2, . . . , nk ∈ Nk, if 0 ∈
∑k

i=1ni, then ni = 0 for all

i ∈ {1, 2, . . . , k}.

Proof. (i)⇒(ii) Assume that (i) holds. Let x ∈ M. Since M =
∑k

i=1Ni, there exist

n1 ∈ N1, n2 ∈ N2, . . . , nk ∈ Nk such that x ∈
∑k

i=1ni. Assume that there exist

m1 ∈ N1,m2 ∈ N2, . . . ,mk ∈ Nk such that x ∈
∑k

i=1mi. Let j ∈ {1, 2, . . . , k}.

Since x ∈
∑k

i=1ni and x ∈
∑k

i=1mi, we can write x ∈ nj + y and x ∈ mj + z for

some y ∈
∑k

i=1
i̸=j

ni and z ∈
∑k

i=1
i̸=j

mi, respectively. Thus,

nj ∈ x− y ⊆ (mj + z)− y = mj + (z − y) ⊆ mj + (
∑k

i=1
i̸=j

Ni).

This means that nj ∈ mj + a for some a ∈
∑k

i=1
i̸=j

Ni. Then a ∈ nj −mj ⊆ Nj. By

the assumption, a ∈ Nj ∩ (
∑k

i=1
i̸=j

Ni) = {0}, so a = 0. Hence, nj ∈ mj + 0 = {mj},

i.e., nj = mj.

(ii)⇒(iii) Assume that (ii) holds. Let n1 ∈ N1, n2 ∈ N2, . . . , nk ∈ Nk be such

that 0 ∈
∑k

i=1ni. Moreover, note that 0 ∈ 0 + · · · + 0. By the assumption, ni = 0

for all i ∈ {1, 2, . . . , k}.

(iii)⇒(i) Assume that (iii) holds. Let j ∈ {1, 2, . . . , k} and x ∈ Nj ∩ (
∑k

i=1
i ̸=j

Ni).

Then x ∈ Nj and there exist n1 ∈ N1, . . . , nj−1 ∈ Nj−1, nj+1 ∈ Nj+1, . . . , nk ∈ Nk

such that x ∈
∑k

i=1
i ̸=j

ni. Because Nj ≤ M, it follows that −x ∈ Nj. Hence,

0 ∈ x− x ⊆ n1 + · · ·+ nj−1 + (−x) + nj+1 + · · ·+ nk ∈
∑k

i=1Ni.

By the assumption, −x = 0, so x = 0. Therefore, Nj ∩ (
∑k

i=1
i ̸=j

Ni) = {0}.

Next, some elementary properties of direct sums are provided.

Proposition 2.1.4. Let K1, K2, N1 and N2 be subhypermodules of an R-hyper-

module M such that K1 ≤ N1 and K2 ≤ N2. If N1 ∩ N2 = {0}, then K1 ⊕K2 =

(K1 ⊕N2) ∩ (N1 ⊕K2).

Proof. Assume that N1 ∩ N2 = {0}. Then K1 ∩ K2 = {0}, K1 ∩ N2 = {0} and

N1 ∩ K2 = {0}. Clearly, K1 ⊕ K2 ⊆ (K1 ⊕ N2) ∩ (N1 ⊕ K2). It remains to show



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23

that (K1 ⊕ N2) ∩ (N1 ⊕ K2) ⊆ K1 ⊕ K2. Let z ∈ (K1 ⊕ N2) ∩ (N1 ⊕ K2). Then

there exist k1 ∈ K1, k2 ∈ K2, n1 ∈ N1 and n2 ∈ N2 such that z ∈ k1 + n2 and

z ∈ n1+k2. Then n2 ∈ z−k1 ⊆ (n1+k2)−k1 = (n1−k1)+k2. Thus, n2 ∈ n′
1+k2

for some n′
1 ∈ n1 − k1 ⊆ N1. Then n′

1 ∈ n2 − k2 ⊆ N2, so n′
1 ∈ N1 ∩ N2 = {0},

i.e., n′
1 = 0. Hence, n2 ∈ 0 + k2 = {k2} ⊆ K2. Then z ∈ K1 ⊕K2. This shows that

(K1⊕N2)∩(N1⊕K2) ⊆ K1⊕K2. Therefore, K1⊕K2 = (K1⊕N2)∩(N1⊕K2).

Proposition 2.1.5. Let K1, K2 and N1 be subhypermodules of an R-hypermodule

M such that K1 ∩K2 = K2 ∩N1 = {0} and let K = K1 ⊕K2 and N = K2 ⊕N1.

If K1 ∩N = {0}, then K +N = (K1 ⊕K2)⊕N1.

Proof. Assume that K1 ∩ N = {0}. First, we show that (K1 ⊕ K2) ∩ N1 = {0}.

Let x ∈ (K1 ⊕ K2) ∩ N1. Then x ∈ N1 and x ∈ k1 + k2 for some k1 ∈ K1

and k2 ∈ K2. Thus, k1 ∈ x − k2 ⊆ N, so k1 ∈ K1 ∩ N = {0}, i.e., k1 = 0.

Then x ∈ 0 + k2 = {k2} ⊆ K2. Hence, x ∈ K2 ∩ N1 = {0}, i.e., x = 0. Thus,

(K1 ⊕K2) ∩N1 = {0}. Note also that (K1 ⊕K2)⊕N1 = K ⊕N1 ⊆ K +N.

It remains to show that K +N ⊆ (K1 ⊕K2)⊕N1. Let y ∈ K +N. Then there

exist k ∈ K and n ∈ N such that y ∈ k + n. Since K = K1 ⊕ K2, we obtain

k ∈ k1 + k2 for some k1 ∈ K1 and k2 ∈ K2. Similarly, since N = K2 ⊕ N1, there

exist k′
2 ∈ K2 and n1 ∈ N1 such that n ∈ k′

2 + n1. Hence,

y ∈ k + n ⊆ (k1 + k2) + (k′
2 + n1) = [k1 + (k2 + k′

2)] + n1 ⊆ (K1 ⊕K2)⊕N1

This shows that K+N ⊆ (K1⊕K2)⊕N1. Therefore, K+N = (K1⊕K2)⊕N1.

From the previous proposition, note that K2 ⊆ K2 ⊕N1 = N, so

K ∩N = (K1 ⊕K2) ∩N = K2 + (N ∩K1) = K2 + {0} = K2

by the Modularity Condition. This concludes that K ∩N may not be {0}, so the

sum K +N may not be direct.

Next, we provide the definition of homomorphisms for hypermodules. More-

over, some preliminary properties of homomorphisms are given.

Definition 2.1.6. [11] Let M and M ′ be R-hypermodules. A function f : M → M ′

is called a (hypermodule) homomorphism if
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f(x+ y) = f(x) + f(y) and f(rx) = rf(x)

for all x, y ∈ M and r ∈ R.

For a hypermodule homomorphism f : M → M ′, let ker(f) denote the kernel

of f defined by

ker(f) = {x ∈ M : f(x) = 0}.

Next, we provide a result of homomorphisms concerning subsets of hyperrings

and hypermodules.

Proposition 2.1.7. Let M and M ′ be R-hypermodules, and let f : M → M ′ be

a homomorphism. Then f(X + Y ) = f(X) + f(Y ) and f(AX) = Af(X) for all

∅ ̸= X, Y ⊆ M and ∅ ̸= A ⊆ R.

Proof. Let ∅ ̸= X,Y ⊆ M and ∅ ̸= A ⊆ R. First, we show that f(X + Y ) =

f(X) + f(Y ). Let z ∈ X + Y. Then there exist x ∈ X and y ∈ Y such that

z ∈ x + y. Thus, f(z) ∈ f(x + y) = f(x) + f(y) ⊆ f(X) + f(Y ). Therefore,

f(X+Y ) ⊆ f(X)+f(Y ). Next, let z′ ∈ f(X)+f(Y ). Then there exist x′ ∈ X and

y′ ∈ Y such that z′ ∈ f(x′)+f(y′). Thus, z′ ∈ f(x′)+f(y′) = f(x′+y′) ⊆ f(X+Y ).

This means that f(X) + f(Y ) ⊆ f(X + Y ). Hence, f(X + Y ) = f(X) + f(Y ).

Finally, we show that f(AX) = Af(X). Let t ∈ AX. Then there exist a ∈ A

and x ∈ X such that t ∈ ax. Thus, f(t) ∈ f(ax) = af(x) ⊆ Af(X). This shows

that f(AX) ⊆ Af(X). Next, let t′ ∈ Af(X). Then there exist a′ ∈ A and x′ ∈ X

such that t′ ∈ a′f(x′). Thus, t′ ∈ a′f(x′) = f(a′x′) ⊆ f(AX), so Af(X) ⊆ f(AX).

Therefore, f(AX) = Af(X).

According to [11], Siraworakun provided some elementary properties of homo-

morphisms sending 0 to 0 which concern inverses and subhypermodules.

Proposition 2.1.8. [11] Let f : M → M ′ be a hypermodule homomorphism such

that f(0) = 0. The following statements hold.

(i) f(−x) = −f(x) for all x ∈ M.
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(ii) If N ≤ M, then f(N) ≤ M ′.

(iii) If N ′ ≤ M ′, then f−1(N ′) ≤ M.

As the previous proposition, ker(f) = f−1({0}) ≤ M and f(M) ≤ M ′ for any

hypermodule homomorphism f : M → M ′ with f(0) = 0.

Proposition 2.1.9. Let f : M → M ′ be a hypermodule homomorphism such that

f(0) = 0. Then f is a monomorphism if and only if ker(f) = {0}.

Proof. (⇒) This is obvious.

(⇐) Assume that ker(f) = {0}. Let x, y ∈ M be such that f(x) = f(y). By

Proposition 2.1.8(i),

0 ∈ f(x)− f(y) = f(x) + (−f(y)) = f(x) + f(−y) = f(x+ (−y)) = f(x− y).

Then f(z) = 0 for some z ∈ x − y. Hence, z ∈ ker(f) = {0}, i.e., z = 0. This

means that x ∈ z + y = 0 + y = {y}, i.e., x = y. Therefore, f is injective.

In hypermodules, there is no conclusion to insist that homomorphisms send 0

to 0; however, we give a necessary and sufficient condition that makes a homomor-

phism sending 0 to 0 as follows.

Proposition 2.1.10. Let f : M → M ′ be a hypermodule homomorphism. Then

f(0) = 0 if and only if 0 ∈ f(M).

Proof. (⇒) This is obvious.

(⇐) Assume that 0 ∈ f(M). Then f(x) = 0 for some x ∈ M. Note that {x} = 0+x,

so f(x) ∈ f(0 + x) = f(0) + f(x). Hence, f(0) ∈ f(x)− f(x) = 0− 0 = {0}, i.e.,

f(0) = 0.

Proposition 2.1.11. Let N be a subhypermodule of an R-hypermodule M. Define

g : M → M/N by g(m) = m + N for all m ∈ M. Then g is a surjective

homomorphism.
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Proof. It is clear that g is surjective. To show that g is a homomorphism, let x, y ∈

M and r ∈ R. Let z ∈ x+y. Then g(z) = z+N ∈ (x+N)⊞ (y+N) = g(x)⊞g(y).

Thus, g(x+ y) ⊆ g(x)⊞ g(y). Let z′+N ∈ g(x)⊞ g(y) = (x+N)⊞ (y+N). Then

there exists z′′ ∈ x+ y such that z′ +N = z′′ +N. Thus,

z′ +N = z′′ +N = g(z′′) ∈ g(x+ y).

This means that g(x)⊞ g(y) ⊆ g(x+ y). Therefore, g(x+ y) = g(x)⊞ g(y). Next,

let a ∈ rx. Then a + N ∈ r ⊡ (x + N) = r ⊡ g(x). Thus, g(rx) ⊆ r ⊡ g(x). Let

a′+N ∈ r⊡g(x) = r⊡(x+N). Then there exists a′′ ∈ rx such that a′+N = a′′+N.

Thus, a′+N = a′′+N = g(a′′) ∈ g(rx). This shows that r⊡g(x) ⊆ g(rx). Therefore,

g(rx) = r ⊡ g(x). We conclude that g is a homomorphism.

The map g in Proposition 2.1.11 is called the canonical map. Moreover, this

map always sends 0 to 0̄.

The following proposition is similar to the fact in module theory. However, we

require the condition that hypermodule homomorphisms map 0 to itself.

In this research, for an R-hypermodule M, let

End0(M) = {f : M → M : f is a hypermodule homomorphism and f(0) = 0}.

Proposition 2.1.12. Let M be an R-hypermodule and f ∈ End0(M). If f 2 = f,

then M = f(M)⊕ ker(f).

Proof. Assume that f 2 = f. First, we show that M = f(M) + ker(f). It suffices

to show that M ⊆ f(M) + ker(f). Let m ∈ M. Hence,

f(m− f(m)) = f(m+ (−f(m)))

= f(m) + f(−f(m))

= f(m)− f 2(m) (by Proposition 2.1.8(i))

= f(m)− f(m).

This implies that 0 ∈ f(m − f(m)). Then there exists k ∈ m − f(m) such that

f(k) = 0, i.e., k ∈ ker(f). Since k ∈ m−f(m), we obtain m ∈ f(m)+k. This means
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that m ∈ f(M) + ker(f). Hence, M ⊆ f(M) + ker(f). Next, if x ∈ f(M)∩ ker(f),

then f(x) = 0 and f(y) = x for some y ∈ M, so x = f(y) = f 2(y) = f(x) = 0.

This means that f(M) ∩ ker(f) = {0}. Therefore, M = f(M)⊕ ker(f).

Proposition 2.1.13. Let N be a subhypermodule of an R-hypermodule M and

f ∈ End0(M) with f 2 = f. If N ≤ ker(f), then (f(M) ⊕ N)/N is a direct

summand of M/N.

Proof. Assume that N ≤ ker(f). Define F : M/N → M/N by F (x + N) =

f(x)+N for all x ∈ M. Let x, y ∈ M be such that x+N = y+N. Then x ∈ y+N.

Thus, there exists k ∈ N ≤ ker(f) such that x ∈ y + k. Hence,

f(x) ∈ f(y + k) = f(y) + f(k) = f(y) + 0 ⊆ f(y) +N.

This means that f(x) + N = f(y) + N. Therefore, F is well-defined. Since f is

a homomorphism, f(0) = 0 and f 2 = f, we obtain that F is a homomorphism,

F (0̄) = 0̄ and F 2 = F, respectively. By Proposition 2.1.12, we obtain that M/N =

F (M/N)⊕ker(F ). Note that f(M)∩N ≤ f(M)∩ker(f) = {0}, so f(M)∩N = {0}.

Claim that F (M/N) = (f(M) ⊕N)/N. If x ∈ M, then F (x + N) = f(x) + N ∈

f(M)/N ⊆ (f(M) ⊕ N)/N, so F (M/N) ⊆ (f(M) ⊕ N)/N. Finally, let y + N ∈

(f(M) ⊕ N)/N where y ∈ f(M) ⊕ N. Then there exist m ∈ M and n ∈ N such

that y ∈ f(m) + n. Thus,

y +N ∈ (f(m) +N)⊞ (n+N) = (f(m) +N)⊞N = {f(m) +N}.

This means that y + N = f(m) + N = F (m + N). Hence, (f(M) ⊕ N)/N ⊆

F (M/N). Therefore, (f(M)⊕N)/N = F (M/N) is a direct summand of M/N.

Proposition 2.1.14. Let N1, N2, . . . , Nk be subhypermodules of an R-hypermodule

M such that M =
⊕k

i=1Ni where k ∈ N with k ≥ 2. Let j ∈ {1, 2, . . . , k}. Define

πj : M → Nj by

πj(x) = nj for all x ∈
∑k

i=1ni.

Then πj is a surjective homomorphism and π2
j = πj.
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Proof. By Proposition 2.1.3(ii), πj is well-defined. First, we show that πj is a homo-

morphism. Let x, y ∈ M and r ∈ R. Then there exist n1, n
′
1 ∈ N1, . . . , nk, n

′
k ∈ Nk

such that x ∈
∑k

i=1ni and y ∈
∑k

i=1n
′
i. Thus, πj(x) = nj and πj(y) = n′

j. Then

x+ y ⊆
∑k

i=1
ni +

∑k
i=1

n′
i =

∑k
i=1

(ni + n′
i).

To show that πj(x + y) ⊆ πj(x) + πj(y), let a ∈ x + y. Then there exist n′′
1 ∈

n1 + n′
1 ⊆ N1, . . . , n

′′
k ∈ nk + n′

k ⊆ Nk such that a ∈
∑k

i=1
n′′
i . Then πj(a) = n′′

j ∈

nj+n′
j = πj(x)+πj(y). Hence, πj(x+y) ⊆ πj(x)+πj(y). Next, let b ∈ πj(x)+πj(y).

Since x ∈
∑k

i=1ni and y ∈
∑k

i=1n
′
i, we can write x ∈ nj + l and y ∈ n′

j + l′ for some

l, l′ ∈
∑k

i=1
i̸=j

Ni. Then nj ∈ x− l and n′
j ∈ y − l′. Thus,

b ∈ πj(x) + πj(y) = nj + n′
j ⊆ (x− l) + (y − l′) = (x+ y)− (l + l′).

Then there exist z ∈ x + y and z′ ∈ l + l′ ⊆
∑k

i=1
i ̸=j

Ni such that b ∈ z − z′. Since

z′ ∈
∑k

i=1
i̸=j

Ni, there exist m1 ∈ N1, . . . ,mj−1 ∈ Nj−1,mj+1 ∈ Nj+1, . . . ,mk ∈ Nk

such that z′ ∈
∑k

i=1
i̸=j

mi. Note that b ∈ πj(x) + πj(y) ⊆ Nj. Hence,

z ∈ z′ + b ⊆ m1 + · · ·+mj−1 + b+mj+1 + · · ·+mk.

This means that b = πj(z) ∈ πj(x+ y). Therefore, πj(x) + πj(y) ⊆ πj(x+ y). This

shows that πj(x + y) = πj(x) + πj(y). To show that πj(rx) ⊆ rπj(x), let c ∈ rx.

Note that rx ⊆ r(
∑k

i=1ni) ⊆
∑k

i=1rni. Then there exist t1 ∈ rn1 ⊆ N1, . . . , tk ∈

rnk ⊆ Nk such that c ∈
∑k

i=1ti. This implies that πj(c) = tj ∈ rnj = rπj(x).

Hence, πj(rx) ⊆ rπj(x). Next, let d ∈ rπj(x). Recall that nj ∈ x − l for some

l ∈
∑k

i=1
i̸=j

Ni. Thus,

rπj(x) = rnj ⊆ r(x− l) ⊆ rx− rl.

Then there exist p ∈ rx and q ∈ rl such that d ∈ p − q. Since
∑k

i=1
i̸=j

Ni ≤ M,

we obtain q ∈ rl ⊆
∑k

i=1
i̸=j

Ni. Then there exist q1 ∈ N1, . . . , qj−1 ∈ Nj−1, qj+1 ∈

Nj+1, . . . , qk ∈ Nk such that q ∈
∑k

i=1
i̸=j

qi. Note that d ∈ rπj(x) ⊆ Nj. Therefore,

p ∈ d+ q ⊆ q1 + · · ·+ qj−1 + d+ qj+1 + · · ·+ qk.

This means that d = πj(p) ∈ πj(rx). Thus, rπj(x) ⊆ πj(rx). This shows that

rπj(x) = πj(rx). Therefore, πj is a homomorphism.
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Note that πj(xj) = xj for all xj ∈ Nj. Thus, πj is surjective. Let m ∈ M . Then

there exist x1 ∈ N1, . . . , xk ∈ Nk such that m ∈
∑k

i=1xi. Then πj(m) = xj. Thus,

π2
j (m) = πj(xj) = xj = πj(m). We conclude that π2

j = πj.

The map πj in Proposition 2.1.14 is called the projection map on Nj. It is clear

that projection maps always send 0 to itself.

Corollary 2.1.15. Let N be a subhypermodule of an R-hypermodule M. If N ≤⊕ M,

then there exists g ∈ End0(M) such that g2 = g, g(M) = N and M = N ⊕ ker(g).

Proof. This follows from Proposition 2.1.12 and Proposition 2.1.14 by choosing g

to be the projection map on N.

Proposition 2.1.16. Let H,L and N be subhypermodules of an R-hypermodule M

such that M = H⊕L and let πL : M → L be the projection map on L. If H ∩N =

{0}, then H ⊕N = H ⊕ πL(N).

Proof. Note that H∩πL(N) ≤ H∩L = {0} because πL(N) ≤ L. Then H∩πL(N) =

{0}. To show that H ⊕ N ⊆ H ⊕ πL(N), let x ∈ H ⊕ N. Then x ∈ h1 + n1 for

some h1 ∈ H and n1 ∈ N. Since M = H ⊕ L, there exist h2 ∈ H and l ∈ L such

that n1 ∈ h2 + l. Then πL(n1) = l. Hence,

x ∈ h1 + n1 ⊆ h1 + (h2 + l) = (h1 + h2) + πL(n1) ⊆ H ⊕ πL(N).

This shows that H ⊕N ⊆ H ⊕ πL(N). Next, let y ∈ H ⊕ πL(N). Then there exist

h′ ∈ H and n′ ∈ N such that y ∈ h′+πL(n
′). Since M = H⊕L, there exist h′′ ∈ H

and l′ ∈ L such that n′ ∈ h′′ + l′. Then πL(n
′) = l′ ∈ n′ − h′′. Thus,

y ∈ h′ + πL(n
′) ⊆ h′ + (n′ − h′′) = (h′ − h′′) + n′ ⊆ H ⊕N.

This shows that H ⊕ πL(N) ⊆ H ⊕N. Therefore, H ⊕N = H ⊕ πL(N).

Next, we give the concept of projection invariant subhypermodules whose prop-

erties concern homomorphisms investigated in Section 4.2. In addition, some basic

properties of projection invariant subhypermodules are given.
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Definition 2.1.17. Let N be a subhypermodule of an R-hypermodule M. We say

that N is a projection invariant subhypermodule of M, denoted by N ≤p M, if

f(N) ⊆ N for all f ∈ End0(M) with f 2 = f.

Definition 2.1.18. Let I be a hyperideal of a hyperring R. We say that I is a

projection invariant hyperideal of R if I is a projection invariant subhypermodule

of RR.

Proposition 2.1.19. Let K and N be projection invariant subhypermodules of an

R-hypermodule M. Then K+N and K∩N are projection invariant subhypermodules

of M.

Proof. The proof is straightforward.

Proposition 2.1.20. Let K,N and P be subhypermodules of an R-hypermodule M

such that M = K ⊕N. If P ≤p M, then P = (P ∩K)⊕ (P ∩N).

Proof. Assume that P ≤p M. It is clear that (P ∩ K) ∩ (P ∩ N) = {0} and

(P ∩K)⊕ (P ∩N) ⊆ P. Hence, it suffices to show that P ⊆ (P ∩K)⊕ (P ∩N). Let

p ∈ P. Then p ∈ k+n for some k ∈ K and n ∈ N. Recall that π2
K = πK and π2

N =

πN ∈ End0(M). Then πK(P ) ⊆ P since P ≤p M. Hence, k = πK(p) ∈ P. Similarly,

n ∈ P. This means that p ∈ (P ∩K) ⊕ (P ∩ N). Thus, P ⊆ (P ∩K) ⊕ (P ∩N).

This concludes that P = (P ∩K)⊕ (P ∩N).

Corollary 2.1.21. Let K,N and P be subhypermodules of an R-hypermodule M

such that M = K ⊕N. If P ≤p M and P ∩K = {0}, then P ≤ N.

Proof. By Proposition 2.1.20, we obtain that P = {0}⊕(P ∩N) = P ∩N ≤ N.

2.2 Isomorphism Theorems

In this section, we give the concept of hypermodule isomorphisms and then present

isomorphism theorems of hypermodules.
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Definition 2.2.1. Let M and M ′ be R-hypermodules. We say that M is isomor-

phic to M ′, denoted by M ∼= M ′, if there exists a bijective hypermodule homo-

morphism between M and M ′.

From the previous defintion, we observe that isomorphisms automatically send

0 to 0 by the surjectivity and Proposition 2.1.10.

Next, we provide isomorphism theorems of hypermodules. The proofs are

straightforward and similar to isomorphism theorems of modules.

Proposition 2.2.2. (First Isomorphism Theorem) Let f : M → M ′ be a hyper-

module homomorphism such that f(0) = 0. Then M/ker(f) ∼= f(M).

Proof. For convenience, let K = ker(f). Define f̄ : M/K → f(M) by

f̄(x+K) = f(x) for all x ∈ M.

First, we show that f̄ is well-defined. To see this, let x, y ∈ M be such that

x +K = y +K. Then x ∈ y +K. Thus, there exists k ∈ K such that x ∈ y + k.

This implies that f(x) ∈ f(y + k) = f(y) + f(k) = f(y) + 0 = {f(y)}, i.e.,

f(x) = f(y). Hence, f̄ is well-defined.

Next, we show that f̄ is a homomorphism. Let x, y ∈ M and r ∈ R. To show

that f̄ [(x+K)⊞ (y+K)] ⊆ f̄(x+K) + f̄(y+K), let z+K ∈ (x+K)⊞ (y+K).

Then there exists z1 ∈ x+ y such that z +K = z1 +K. Thus,

f̄(z1 +K) = f(z1) ∈ f(x+ y) = f(x) + f(y) = f̄(x+K) + f̄(y +K),

but then f̄(z +K) = f̄(z1 +K), so that f̄(z +K) ∈ f̄(x+K) + f̄(y +K). Hence,

f̄ [(x+K)⊞ (y+K)] ⊆ f̄(x+K) + f̄(y+K). Next, let z′ ∈ f̄(x+K) + f̄(y+K).

Note that f̄(x + K) + f̄(y + K) = f(x) + f(y) = f(x + y). Then there exists

z′1 ∈ x + y such that f(z′1) = z′. This implies that z′1 + K ∈ (x + K) ⊞ (y + K)

and f̄(z′1 + K) = f(z′1) = z′. This means that z′ ∈ f̄ [(x + K) ⊞ (y + K)]. Thus,

f̄(x+K)+ f̄(y+K) ⊆ f̄ [(x+K)⊞(y+K)]. This shows that f̄ [(x+K)⊞(y+K)] =

f̄(x+K)+ f̄(y+K). Moreover, let a+K ∈ r⊡ (x+K). Then there exists a1 ∈ rx

such that a+K = a1 +K. Hence,
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f̄(a+K) = f̄(a1 +K) = f(a1) ∈ f(rx) = rf(x) = rf̄(x+K).

Therefore, f̄(r ⊡ (x + K)) ⊆ rf̄(x + K). Next, let b ∈ rf̄(x + K). Note that

rf̄(x+K) = rf(x) = f(rx). Then there exists b1 ∈ rx such that f(b1) = b. Hence,

b1+K ∈ r⊡(x+K) and f̄(b1+K) = f(b1) = b. This means that b ∈ f̄(r⊡(x+K)).

Thus, rf̄(x+K) ⊆ f̄(r⊡(x+K)). This shows that f̄(r⊡(x+K)) = rf̄(x+K). We

conclude that f̄ is a homomorphism. It is obvious that f̄ is surjective, so f̄(0̄) = 0.

Finally, let a +K ∈ ker(f̄). Then f(a) = f̄(a +K) = 0. This means that a ∈ K,

so a+K = K. This shows that ker(f̄) = {0̄}. By Proposition 2.1.9, f̄ is injective.

Therefore, M/ker(f) ∼= f(M).

Proposition 2.2.3. (Second Isomorphism Theorem) Let K and N be subhyper-

modules of an R-hypermodule M. Then N/(N ∩K) ∼= (K +N)/K.

Proof. Define f : N → (K +N)/K by f(x) = x+K for all x ∈ N. To show that

f is a homomorphism, let x, y ∈ N and r ∈ R. First, we show that f(x + y) =

f(x)⊞ f(y). Let z ∈ x+ y. Then z +K ∈ (x+K)⊞ (y +K), and

f(z) = z +K ∈ (x+K)⊞ (y +K) = f(x)⊞ f(y).

Thus, f(x+ y) ⊆ f(x)⊞ f(y). Let z′ +K ∈ f(x)⊞ f(y). Note that f(x)⊞ f(y) =

(x+K)⊞ (y+K). Then there exists z′1 ∈ x+ y such that z′+K = z′1+K. Hence,

z′+K = z′1+K = f(z′1) ∈ f(x+y). This means that f(x)⊞f(y) ⊆ f(x+y). Hence,

f(x + y) = f(x) ⊞ f(y). Next, we show that f(rx) = r ⊡ f(x). Let a ∈ rx. Note

that a+K ∈ r⊡(x+K). Thus, f(a) = a+K ∈ r⊡(x+K) = r⊡f(x). This shows

that f(rx) ⊆ r⊡f(x). Next, let b+K ∈ r⊡f(x). Note that r⊡f(x) = r⊡(x+K).

Then there exists b1 ∈ rx such that b1 + K = b + K. Thus, b + K = b1 + K =

f(b1) ∈ f(rx), so r⊡ f(x) ⊆ f(rx). Hence, f(rx) = r⊡ f(x). This shows that f is

a homomorphism. To show that f is surjective, let c ∈ K +N. Then there exists

k ∈ K and n ∈ N such that c ∈ k + n. Thus, n ∈ c + (−k). This implies that

n+K ∈ (c+K)⊞ (−k+K) = (c+K)⊞K = {c+K}, i.e., n+K = c+K. Thus,
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f(n) = n+K = c+K. Therefore, f is surjective and then f(0) = 0̄. Finally,

ker(f) = {x ∈ N : f(x) = 0̄} = {x ∈ N : x+K = K}

= {x ∈ N : x ∈ K} = N ∩K.

By the First Isomorphism Theorem, we conclude that

N/(N ∩K) ∼= (K +N)/K.

Proposition 2.2.4. (Third Isomorphism Theorem) Let K and N be subhyper-

modules of an R-hypermodule M such that K ≤ N. Then

(M/K)/(N/K) ∼= M/N.

Proof. Define f : M/K → M/N by f(x+K) = x+N for all x ∈ M. To show that

f is well-defined, let x, y ∈ M be such that x+K = y+K. Then x ∈ y+K ⊆ y+N

since K ≤ N. Thus, x+N = y +N. Hence, f is well-defined. Next, we show that

f is a homomorphism. Let x, y ∈ M and r ∈ R. First, we show that

f [(x+K)⊞K (y +K)] = f(x+K)⊞N f(y +K).

Let z+K ∈ (x+K)⊞K(y+K). Then there exists z1 ∈ x+y such that z+K = z1+K.

Hence, z1 +N ∈ (x+N)⊞N (y +N). Moreover,

f(z +K) = f(z1 +K) = z1 +N ∈ (x+N)⊞N (y +N) = f(x+K)⊞N f(y +K).

Hence, f [(x+K)⊞K (y+K)] ⊆ f(x+K)⊞N f(y+K). To show that f(x+K)⊞N

f(y+K) ⊆ f [(x+K)⊞K (y+K)], let z′ +N ∈ f(x+K)⊞N f(y+K). Note that

f(x+K)⊞N f(y +K) = (x+N)⊞N (y +N). Then there exists z′1 ∈ x+ y such

that z′1 +N = z′ +N. Thus, we have z′1 +K ∈ (x+K)⊞K (y +K). Therefore,

z′ +N = z′1 +N = f(z′1 +K) ∈ f [(x+K)⊞K (y +K)].

This shows that f(x+K)⊞N f(y +K) ⊆ f [(x+K)⊞K (y +K)]. Next, we show

that f(r ⊡K (x +K)) = r ⊡N f(x +K). Let a +K ∈ r ⊡K (x +K). Then there
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exists a1 ∈ rx such that a +K = a1 +K. Thus, we get a1 + N ∈ r ⊡N (x + N).

Moreover,

f(a+K) = f(a1 +K) = a1 +N ∈ r ⊡N (x+N) = r ⊡N f(x+K).

Hence, f(r⊡K (x+K)) ⊆ r⊡N f(x+K). Let a′ +N ∈ r⊡N f(x+K). Note that

r⊡N f(x+K) = r⊡N (x+N). Then there exists a′1 ∈ rx such that a′+N = a′1+N.

Now, we have a′1 +K ∈ r ⊡K (x+K). Therefore,

a′ +N = a′1 +N = f(a′1 +K) ∈ f(r ⊡K (x+K)).

This shows that r⊡N f(x+K) ⊆ f(r⊡K (x+K)). Hence, f is a homomorphism.

It is obvious that f is surjective and then f(0̄) = 0̄. In addition,

ker(f) = {x+K ∈ M/K : f(x+K) = N}

= {x+K ∈ M/K : x+N = N}

= {x+K ∈ M/K : x ∈ N}

= N/K.

By the First Isomorphism Theorem, we conclude that

(M/K)/(N/K) ∼= M/N.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

SOME SPECIAL SUBHYPERMODULES

In module theory, essential submodules, complements, closed submodules, the

singular submodules and the second singular submodules are special submodules

which have been studied in many directions for several years. In 2011, Asgari and

Haghany [1] provided the concepts of t-essential submodules and t-closed submod-

ules in order to define t-extending modules; moreover, they gave characterizations

of t-extending modules. In this research, we extend the concepts of these submod-

ules to subhypermodules consisting of essential subhypermodules, complements,

closed subhypermodules, the singular subhypermodule, the second singular subhy-

permodule, t-essential subhypermodules and t-closed subhypermodules. Moreover,

some properties of these subhypermodules are given. Especially, we present char-

acterizations of closed subhypermodules, the singular subhypermodule and the

second singular subhypermodule.

3.1 Essential Subhypermodules

We begin this chapter with the concept of essential subhypermodules.

Definition 3.1.1. A subhypermodule N of an R-hypermodule M is called an es-

sential subhypermodule of M (or essential in M), denoted by N ≤ess M, if L = {0}

for any L ≤ M with N ∩ L = {0}.

Remark 3.1.2. Let N be a subhypermodule of an R-hypermodule M. Then

N ≤ess M if and only if N ∩ L ̸= {0} for all {0} ̸= L ≤ M.

Remark 3.1.3. Let M be an R-hypermodule. Then every subhypermodule of M

is always essential in itself. In particular, {0} ≤ess M if and only if M = {0}.
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Example 3.1.4. Let M = [0, t] where 0 < t ≤ 1 be the R-hypermodule defined

in Proposition 1.3.6. It follows from Proposition 1.3.7 that each nonzero subhy-

permodule of M is of the form [0, x] or [0, x) for some x ∈ (0, t]. Therefore every

nonzero subhypermodule of M is essential in M.

Next, we give some properties of essential subhypermodules.

Proposition 3.1.5. Let M and M ′ be R-hypermodules. The following statements

hold.

(i) Let K ≤ N ≤ M. Then K ≤ess M if and only if K ≤ess N and N ≤ess M.

(ii) Let f : M → M ′ be a homomorphism such that f(0) = 0 and N ′ ≤ M ′.

If N ′ ≤ess M
′, then f−1(N ′) ≤ess M.

(iii) Let {Ki}ki=1 and {Ni}ki=1 be families of subhypermodules of M where k ∈ N.

If Ki ≤ess Ni for all i ∈ {1, 2, . . . , k}, then ∩k
i=1Ki ≤ess ∩k

i=1Ni.

(iv) Let K1, K2, N1, N2 ≤ M be such that K1 ∩K2 = {0}. If K1 ≤ess N1 and

K2 ≤ess N2, then K1 ⊕K2 ≤ess N1 ⊕N2.

Proof. (i) Assume that K ≤ess M. Clearly, K ≤ess N. If {0} ̸= L ≤ M, then

{0} ̸= K ∩ L ≤ N ∩ L since K ≤ess M. Hence, N ≤ess M.

Conversely, assume K ≤ess N and N ≤ess M. Let L ≤ M be such that K∩L =

{0}. Then K ∩ (N ∩ L) = {0}. Now, N ∩ L = {0} because K ≤ess N. Since

N ≤ess M, we obtain L = {0}. This shows that K ≤ess M.

(ii) Assume that N ′ ≤ess M
′. By Proposition 2.1.8(iii), we obtain f−1(N ′) ≤ M.

Let {0} ̸= L ≤ M. If f(L) = {0}, then L ≤ ker(f) ≤ f−1(N ′), so {0} ̸= L =

f−1(N ′) ∩ L. Suppose that f(L) ̸= {0}. Note that {0} ̸= f(L) ≤ M ′ by Proposi-

tion 2.1.8(ii). Since N ′ ≤ess M
′, we know that N ′ ∩ f(L) ̸= {0}. Then there exists

0 ̸= l ∈ L such that 0 ̸= f(l) ∈ N ′. This means that 0 ̸= l ∈ f−1(N ′) ∩ L. Then

f−1(N ′) ∩ L ̸= {0}. Therefore, f−1(N ′) ≤ess M.

(iii) Assume that Ki ≤ess Ni for all i ∈ {1, 2, . . . , k}. Let {0} ̸= L ≤ ∩k
i=1Ni.

Since K1 ≤ess N1 and {0} ̸= L ≤ ∩k
i=1Ni ≤ N1, we get K1 ∩ L ̸= {0}. Similarly,
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since K2 ≤ess N2 and {0} ̸= K1 ∩ L ≤ N2, we also obtain (K1 ∩ K2) ∩ L =

K2 ∩ (K1 ∩L) ̸= {0}. By repeating this process k times, (∩k
i=1Ki)∩L ̸= {0}. This

shows that ∩k
i=1Ki ≤ess ∩k

i=1Ni.

(iv) Assume K1 ≤ess N1 and K2 ≤ess N2. By (iii), we get {0} = K1 ∩K2 ≤ess

N1 ∩N2. This forces that N1 ∩N2 = {0} from Remark 3.1.3. For each i ∈ {1, 2},

let πi : N1 ⊕N2 → Ni be the projection map on Ni. By (ii),

π−1
1 (K1) ≤ess N1 ⊕N2 and π−1

2 (K2) ≤ess N1 ⊕N2.

By (iii), we get π−1
1 (K1) ∩ π−1

2 (K2) ≤ess N1 ⊕N2. Next, we show that

π−1
1 (K1) = K1 ⊕N2 and π−1

2 (K2) = N1 ⊕K2.

Let x ∈ π−1
1 (K1). Because x ∈ N1 ⊕ N2, it follows that x ∈ n1 + n2 for some

n1 ∈ N1 and n2 ∈ N2. Thus, n1 = π1(x) ∈ K1. This implies that x ∈ K1 ⊕N2. Let

y ∈ K1 ⊕N2. Then there exist k1 ∈ K1 ≤ N1 and n2 ∈ N2 such that y ∈ k1 + n2.

Thus, π1(y) = k1 ∈ K1, i.e., y ∈ π−1
1 (K1). Hence, π−1

1 (K1) = K1 ⊕ N2. Similarly,

π−1
2 (K2) = N1 ⊕K2. By Proposition 2.1.4,

K1 ⊕K2 = (K1 ⊕N2) ∩ (N1 ⊕K2) = π−1
1 (K1) ∩ π−1

2 (K2) ≤ess N1 ⊕N2.

This completes the proof.

In module theory, any arbitrary intersections of essential submodules of an

R-module may not be essential in that R-module. From this conclusion, we

also conclude that arbitrary intersection of essential subhypermodules of an R-

hypermodule may not be essential in that R-hypermodule in general.

Next, we provide a characterization of essential subhypermodules of an R-

hypermodule under certain conditions.

Proposition 3.1.6. Let M be a strongly distributive R-hypermodule such that

m ∈ Rm for all m ∈ M and N ≤ M. Then N ≤ess M if and only if N ∩Rx ̸= {0}

for all 0 ̸= x ∈ M.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

38

Proof. Assume that N ≤ess M and 0 ̸= x ∈ M. Then Rx ≤ M by Proposition

1.3.9. Now, 0 ̸= x ∈ Rx. By the essentiality of N in M, we conclude that N∩Rx ̸=

{0}.

Conversely, assume N ∩Rx ̸= {0} for all 0 ̸= x ∈ M. To show that N ≤ess M,

let {0} ̸= L ≤ M. Then there exists 0 ̸= y ∈ L. By the assumption, we obtain that

N ∩Ry ̸= {0}. Since L ≤ M, we get Ry ⊆ L. Thus, {0} ̸= N ∩Ry ⊆ N ∩ L. This

shows that N ≤ess M.

In general, R-hypermodules M might not satisfy the condition that m ∈ Rm for

all m ∈ M such as the R′-hypermodule M ′ in Proposition 1.3.6 where M ′ = [0,
1

2
]

and R′ = {0} ∪ [2,∞) because R′1

2
= [0,

1

4
], so 1

2
/∈ R′1

2
; however, if we let

R′′ = {0} ∪ [1,∞), then

R′′m =
∪

r∈{0}∪[1,∞)

rm = {0} ∪ (
∪

r∈[1,∞)

[0,
m

r
] ) = [0,m]

for all m ∈ M ′, so the R′′-hypermodule M ′ satisfies the condition that m ∈ R′′m

for all m ∈ M ′.

3.2 Complements and Closed Subhypermodules

In this section, we first give the concepts of complements and closed subhyper-

modules and then provide some properties of these subhypermodules involving the

essentiality of subhypermodules.

Definition 3.2.1. Let N be a subhypermodule of an R-hypermodule M. A sub-

hypermodule K of M is called a complement of N in M if it is maximal under

inclusion in the set {L ≤ M : L ∩ N = {0}}, i.e., K ∩ N = {0} and K = K ′ for

any K ≤ K ′ ≤ M with K ′ ∩N = {0}.

We observe that for a subhypermodule N of an R-hypermodule M, by applying

Zorn’s Lemma to the set {L ≤ M : L∩N = {0}}, it has a maximal element under

inclusion, i.e., a complement K of N in M exists. This concludes that every
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subhypermodule of an R-hypermodule always has a complement.

Moreover, let H and N be subhypermodules of an R-hypermodule M such that

H ∩N = {0}, there exists a complement K of N in M such that H ≤ K (consider

the set {L ≤ M : L ∩N = {0} and H ≤ L}).

Proposition 3.2.2. Let K and N be subhypermodules of an R-hypermodule M

such that M = K ⊕N. Then K and N are complements of each other in M.

Proof. To show that K is a complement of N in M, let K ′ ≤ M be such that

K ⊆ K ′ and K ′ ∩ N = {0}. Let k′ ∈ K ′. Since M = K ⊕ N, there exist k ∈ K

and n ∈ N such that k′ ∈ k+ n. Then n ∈ k′ − k ⊆ K ′, so n ∈ K ′ ∩N = {0}, i.e.,

n = 0. This means that k′ ∈ k + 0 = {k} ⊆ K. Thus, K ′ ⊆ K. This shows that

K = K ′. Hence, K is a complement of N in M. Similarly, N is a complement of

K in M.

Proposition 3.2.3. Let K and N be subhypermodules of an R-hypermodule M.

If K is a complement of N in M, then N ⊕K ≤ess M.

Proof. Assume that K is a complement of N in M. Let L ≤ M be such that

(N⊕K)∩L = {0}. Claim that N∩(K+L) = {0}. To see this, let x ∈ N∩(K+L).

Then x ∈ N and x ∈ k + l for some k ∈ K and l ∈ L. Thus l ∈ x − k ⊆ N ⊕K.

This means that l ∈ (N ⊕K) ∩ L = {0}, i.e., l = 0. Then x ∈ k + 0 = {k} ⊆ K,

so x ∈ N ∩ K = {0}, i.e., x = 0. Therefore, N ∩ (K + L) = {0}. Since K is a

complement of N in M, we get K = K +L. Then L ≤ K +L = K ≤ N ⊕K. This

means that L = (N ⊕K) ∩ L = {0}. We conclude that N ⊕K ≤ess M.

In module theory, consider Z30 as a Z-module, it can be seen that ⟨15⟩⊕ ⟨6⟩ =

⟨3⟩ ≤ess Z30, but ⟨6⟩ is not a complement of ⟨15⟩ in Z30 because ⟨6⟩ ≤ ⟨2⟩ and

⟨2⟩ ∩ ⟨15⟩ = {0}. Similarly, ⟨15⟩ is not a complement of ⟨6⟩ in Z30. This example

asserts that the converse of the above proposition does not hold in general because

hypermodules generalize modules. However, we give a sufficient condition such

that the converse of the above proposition holds.
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Proposition 3.2.4. Let K and N be subhypermodules of an R-hypermodule M.

If K ≤⊕ M and N ⊕K ≤ess M, then K is a complement of N in M.

Proof. Assume that K ≤⊕ M and N ⊕K ≤ess M. Then there exists K ′ ≤ M such

that M = K ⊕ K ′. Let L ≤ M be such that K ⊆ L and L ∩ N = {0}. By the

Modularity Condition,

K ⊕ (L ∩K ′) = L ∩ (K ⊕K ′) = L ∩M = L.

We claim that L ∩K ′ = {0}. We first show that (N ⊕ K) ∩ (L ∩K ′) = {0}. To

see this, let x ∈ (N ⊕K) ∩ (L ∩K ′). Then x ∈ L, x ∈ K ′ and x ∈ n+ k for some

n ∈ N and k ∈ K. Thus, n ∈ x − k ⊆ L. This means that n ∈ L ∩N = {0}, i.e.,

n = 0. Then x ∈ 0 + k = {k} ⊆ K, so x ∈ K ∩ K ′ = {0}, i.e., x = 0. Hence,

(N ⊕ K) ∩ (L ∩ K ′) = {0}. Therefore, L ∩ K ′ = {0} since N ⊕ K ≤ess M. This

imples that K = L. We conclude that K is a complement of N in M.

Proposition 3.2.5. Let H,L and N be subhypermodules of an R-hypermodule M

such that H ≤ess L. Then N is a complement of L in M if and only if N is

a complement of H in M.

Proof. Assume that N is a complement of L in M. Clearly, N ∩ H = {0}. Let

N ′ ≤ M be such that N ⊆ N ′ and N ′ ∩H = {0}. Then H ∩ (L∩N ′) = {0}. Since

H ≤ess L, we get L∩N ′ = {0}. This implies that N = N ′ since N is a complement

of L in M. Hence, N is a complement of H in M.

Conversely, assume that N is a complement of H in M. Note that H∩(N∩L) =

{0}. Since H ≤ess L, we have N ∩ L = {0}. If N ′′ ≤ M with N ⊆ N ′′ and

N ′′ ∩ L = {0}, then N ′′ ∩ H = {0}, which implies that N = N ′′ since N is

a complement of H in M. Therefore, N is a complement of L in M.

Proposition 3.2.6. Let H,K and N be subhypermodules of an R-hypermodule M

such that K ≤ N. If H is a complement of K in M and H ∩ N = {0}, then

K ≤ess N.

Proof. Assume that H is a complement of K in M and H ∩N = {0}. Let L ≤ N

be such that K ∩ L = {0}. We observe that H ∩ L ≤ H ∩ N = {0}. Claim that
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K ∩ (L ⊕ H) = {0}. Let x ∈ K ∩ (L ⊕ H). Then x ∈ K and x ∈ l + h for some

l ∈ L and h ∈ H. Thus, h ∈ x − l ⊆ N. This means that h ∈ H ∩ N = {0}, i.e.,

h = 0. It follows that x ∈ l + 0 = {l} ⊆ L, so x ∈ K ∩ L = {0}, i.e., x = 0. Thus,

K ∩ (L⊕H) = {0}. Since H is a complement of K in M, we obtain L⊕H = H.

Then L ≤ L⊕H = H. Thus, L = H∩L = {0}. This concludes that K ≤ess N.

Next, we give the concept of closed subhypermodules which is similar to the

concept of closed submodules in module theory. Moreover, we also give an equiv-

alent condition for closed subhypermodules concerning the essentiality of subhy-

permodules.

Definition 3.2.7. A subhypermodule K of an R-hypermodule M is called a closed

subhypermodule of M (or closed in M), denoted by K ≤cl M, if there exists K ′ ≤ M

such that K is a complement of K ′ in M.

By Proposition 3.2.2, we immediately obtain that every direct summand of an

R-hypermodule M is a closed subhypermodule of M.

Proposition 3.2.8. Let C be a subhypermodule of an R-hypermodule M. Then

C ≤cl M if and only if C = N for any N ≤ M with C ≤ess N.

Proof. Assume that C ≤cl M. Then there exists C ′ ≤ M such that C is a

complement of C ′ in M. Let N ≤ M be such that C ≤ess N. We see that

C ∩ (N ∩ C ′) ≤ C ∩ C ′ = {0}. Now, N ∩ C ′ = {0} since C ≤ess N. Because

C is a complement of C ′ in M, we conclude that C = N.

Conversely, assume that C = N for any N ≤ M with C ≤ess N. Let C ′ be

a complement of C in M. To show that C is also a complement of C ′ in M, let

K ≤ M be such that C ⊆ K and K ∩ C ′ = {0}. Thus, C ≤ess K by Proposition

3.2.6. By the assumption, C = K. This shows that C is a complement of C ′ in M.

Hence, C ≤cl M.

Corollary 3.2.9. Let C be a subhypermodule of an R-hypermodule M. If C ≤cl M,

then C ≤cl N for any C ≤ N ≤ M.
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Proof. This follows form Proposition 3.2.8.

Proposition 3.2.10. Let K and N be subhypermodules of an R-hypermodule M

with K ≤ N. If K ≤cl N and N ≤cl M, then K ≤cl M.

Proof. Assume that K ≤cl N and N ≤cl M. We show that K ≤cl M by applying

Proposition 3.2.8. Let L ≤ M be such that K ≤ess L. We show that K = L.

Since K ≤cl N and N ≤cl M, there exist K ′ ≤ N and N ′ ≤ M such that K is

a complement of K ′ in N and N is a complement of N ′ in M, respectively. We

divide the details of the proof into three steps as follows.

(i) First, we show that L ∩ (K ′ +N ′) = {0}.

Claim that K ∩ (K ′ + N ′) = {0}. Let x ∈ K ∩ (K ′ + N ′). Then x ∈ K and

x ∈ k′ + n′ for some k′ ∈ K ′ and n′ ∈ N ′. Thus n′ ∈ x− k′ ⊆ N. This means that

n′ ∈ N ∩N ′ = {0}, i.e., n′ = 0. Then x ∈ k′+0 = {k′} ⊆ K ′, so x ∈ K∩K ′ = {0},

i.e., x = 0. This shows that K ∩ (K ′ +N ′) = {0}. Hence,

K ∩ [L ∩ (K ′ +N ′)] ≤ K ∩ (K ′ +N ′) = {0}.

Since K ≤ess L, we obtain L ∩ (K ′ +N ′) = {0}.

(ii) We next show that K = N ∩ (L+N ′).

First, we claim that K ′ ∩ (L+N ′) = {0}. Let y ∈ K ′ ∩ (L+N ′). Then y ∈ K ′ and

there exist l ∈ L and n′ ∈ N ′ such that y ∈ l+n′. Then l ∈ y−n′ ⊆ K ′+N ′. This

implies that l ∈ L∩ (K ′+N ′) = {0} by (i). Thus, l = 0. Then y ∈ 0+n′ = {n′} ⊆

N ′, so y ∈ K ′ ∩ N ′ ≤ N ∩ N ′ = {0}, i.e., y = 0. Hence, K ′ ∩ (L + N ′) = {0}. It

follows that

K ′ ∩ [N ∩ (L+N ′)] = K ′ ∩ (L+N ′) = {0}.

We observe that K ≤ N ∩ (L + N ′). Since K is a complement of K ′ in N, this

forces that K = N ∩ (L+N ′).

(iii) Finally, we show that L ≤ N.

Claim that N ′ ∩ (N + L) ≤ L. To see this, let z ∈ N ′ ∩ (N + L). Then z ∈ N ′

and there exist n ∈ N and l ∈ L such that z ∈ n + l. Thus, n ∈ z − l ⊆ N ′ + L.

Then n ∈ N ∩ (L +N ′) = K ≤ L by (ii). Hence, z ∈ n + l ⊆ L. This shows that
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N ′ ∩ (N + L) ≤ L. We observe that

K ∩ [N ′ ∩ (N + L)] ≤ N ∩N ′ = {0}.

Thus, N ′ ∩ (N + L) = {0} because K ≤ess L. Since N is a complement of N ′ in

M, this forces that N = N + L. Therefore, L ≤ N + L = N.

Now, L ≤ N by (iii) and recall that K ≤cl N and K ≤ess L. By Proposition

3.2.8, K = L. This concludes that K ≤cl M by Proposition 3.2.8 again.

Proposition 3.2.11. Let M be a strongly distributive R-hypermodule such that

m ∈ Rm for all m ∈ M, and let K and L be closed subhypermodules of M. Then

K is a complement of L in M if and only if L is a complement of K in M.

Proof. Assume that K is a complement of L in M. Then K ∩ L = {0}. To show

that L is a complement of K in M, let L′ ≤ M be such that L ≤ L′ and K ∩L′ =

{0}. Claim that L ≤ess L′. To see this, assume that 0 ̸= x ∈ L′. We show that

L ∩ Rx ̸= {0}. It follows from Proposition 3.2.3 that K ⊕ L ≤ess M. This gives

(K ⊕ L) ∩ Rx ̸= {0} by Proposition 3.1.6. Let 0 ̸= y ∈ (K ⊕ L) ∩ Rx. Then

there exist k ∈ K, l ∈ L and r ∈ R such that y ∈ k + l and y ∈ rx. Thus,

k ∈ y − l ⊆ rx − l ⊆ L′. This implies that k ∈ K ∩ L′ = {0}, i.e., k = 0. Then

y ∈ 0 + l = {l} ⊆ L. Hence, 0 ̸= y ∈ L ∩ Rx. We obtain L ≤ess L
′ by Proposition

3.1.6, but then L ≤cl M, so that L = L′ by Proposition 3.2.8. Therefore, L

is a complement of K in M. The converse can be proved in the similar way as

above.

We know from Remark 3.1.3 that each subhypermodule of an R-hypermodule

is always essential in itself. Moreover, we can show that for a subhypermodule of

an R-hypermodule, there exists a closed subhypermodule such that the subhyper-

module is essential in that closed subhypermodule.

Proposition 3.2.12. Let K be a subhypermodule of an R-hypermodule M. Then

there exists N ≤ M such that K ≤ess N and N ≤cl M.

Proof. Let H be a complement of K in M. Then H∩K = {0}. By applying Zorn’s

Lemma to the set {L ≤ M : H ∩L = {0} and K ≤ L}, there exists a complement
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N of H in M such that K ≤ N. Then N ≤cl M. Note that H ∩ N = {0}. By

Proposition 3.2.6, we conclude that K ≤ess N.

Finally, we give some properties concerning essential subhypermodules and

closed subhypermodules of quotient R-hypermodules

Proposition 3.2.13. Let K and N be subhypermodules of an R-hypermodule M

such that K ≤ N. The following statements hold.

(i) If N/K ≤ess M/K, then N ≤ess M.

(ii) If N ≤ess M and K ≤cl M, then N/K ≤ess M/K.

Proof. (i) Assume that N/K ≤ess M/K. To show that N ≤ess M, let L ≤ M be

such that N ∩ L = {0}. By the Modularity Condition,

N ∩ (L+K) = K + (N ∩ L) = K + {0} = K,

so (L+K)/K ∩N/K = {K}. Because N/K ≤ess M/K, it follows that

(L+K)/K = {K}, i.e., L+K = K.

Thus, L ≤ L+K = K ≤ N. This means that L = L∩N = {0}. Hence, N ≤ess M.

(ii) Assume that N ≤ess M and K ≤cl M. Let L′ be a subhypermodule of M

containing K such that N/K ∩ L′/K = {K}. Then N ∩ L′ = K. Since K ≤cl M,

there exists K ′ ≤ M such that K is a complement of K ′ in M. We see that

N ∩ (L′ ∩K ′) = K ∩K ′ = {0}. Next, L′ ∩K ′ = {0} because N ≤ess M. Since K

is a complement of K ′ in M, we obtain L′ = K. Therefore, N/K ≤ess M/K.

The results regarding closed subhypermodules reverse the results of essential

subhypermodules as above.

Proposition 3.2.14. Let K and N be subhypermodules of an R-hypermodule M

such that K ≤ N. The following statements hold.

(i) If N ≤cl M, then N/K ≤cl M/K.

(ii) If N/K ≤cl M/K and K ≤cl M, then N ≤cl M.
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Proof. (i) Assume that N ≤cl M. Let L be a subhypermodule of M containing K

such that N/K ≤ess L/K. Then we get N ≤ess L by Proposition 3.2.13(i), but

N ≤cl M, so N = L by Proposition 3.2.8. This gives N/K = L/K. By Proposition

3.2.8, we conclude that N/K ≤cl M/K.

(ii) Assume that N/K ≤cl M/K and K ≤cl M. Let L ≤ M be such that

N ≤ess L. Since K ≤cl M and K ≤ N, by Corollary 3.2.9, we get K ≤cl L.

By Proposition 3.2.13(ii), we obtain N/K ≤ess L/K. Because N/K ≤cl M/K, it

follows that N/K = L/K, so N = L. We conclude that N ≤cl M by Proposition

3.2.8.

3.3 The Singular Subhypermodule and The Second

Singular Subhypermodule

Throughout this section, all hyperrings are required to be commutative. In this

section, we define the singular subhypermodule and the second singular subhyper-

module which are similar to the concepts of the singular submodule and the second

singular submodule, respectively. Some properties of these subhypermodules used

in Chapter IV are given.

For an R-hypermodule M and m ∈ M, recall that

ann(m) = {r ∈ R : rm = {0}};

moreover, in the case that ann(m) ̸= ∅, Proposition 1.3.12 yields that ann(m)

forms a left hyperideal of R, so it is a subhypermodule of RR.

Proposition 3.3.1. Let M be an R-hypermodule where R is commutative. Define

Z(M) = {m ∈ M : ann(m) ≤ess RR}.

Then Z(M) is a subhypermodule of M.

Proof. Note that R0 = {0}, so ann(0) = R ≤ess RR. This means that 0 ∈ Z(M).

Hence, Z(M) ̸= ∅. Let x, y ∈ Z(M) and r ∈ R. Then ann(x), ann(y) ≤ess RR.

Thus, ann(x) ∩ ann(y) ≤ess RR by Proposition 3.1.5(iii). Let z ∈ x − y. To show
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that z ∈ Z(M), we claim that ann(x)∩ ann(y) ≤ ann(z). Let a ∈ ann(x)∩ ann(y).

Then ax = {0} = ay. Thus,

az ⊆ a(x− y) ⊆ ax− ay = {0} − {0} = {0},

so az = {0}. This means that a ∈ ann(z). Hence, ann(x) ∩ ann(y) ≤ ann(z). By

Proposition 3.1.5(i), we obtain ann(z) ≤ess RR. This shows that z ∈ Z(M). Hence,

x− y ⊆ Z(M).

Let z′ ∈ rx. Claim that ann(x) ≤ ann(z′). Let b ∈ ann(x). Then bx = {0}. By

the commutivity of R,

bz′ ⊆ b(rx) = (br)x = (rb)x = r(bx) = r{0} = {0}.

This implies that bz′ = {0}, so that b ∈ ann(z′). Thus, ann(x) ≤ ann(z′). Then

ann(z′) ≤ess RR by Proposition 3.1.5(i), so z′ ∈ Z(M). This shows that rx ⊆

Z(M). This concludes that Z(M) ≤ M from Proposition 1.3.4.

For a module M ′ over a ring R′ (commutativity is not assumed), the set{
x ∈ M ′ : {s ∈ R′ : sx = 0} is essential in R′

}
can be verified that it is a submodule of M ′ and it is called the singular submodule

of M ′.

However, for an R-hypermodule M, the condition that R is commutative is

important in order to illustrate that

Z(M) = {m ∈ M : ann(m) ≤ess RR}

is a subhypermodule of M in Proposition 3.3.1. Hence, the commutivity of hyer-

rings in this section is necessary.

Definition 3.3.2. Let R be a commutative hyperring. The subhypermodule Z(M)

of an R-hypermodule M defined in Proposition 3.3.1 is called the singular subhy-

permodule.

Definition 3.3.3. Let M be an R-hypermodule where R is commutative. We

say that M is a singular hypermodule if Z(M) = M, and M is a nonsingular

hypermodule if Z(M) = {0}.
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From Proposition 1.3.17, for a subhypermodule N of an R-hypermodule M,

we know that for each K̃ ≤ M/N, there exists a unique subhypermodule K of M

containing N such that K/N = K̃. Form this conclusion, we can define the second

singular subhypermodule as below.

Definition 3.3.4. Let M be an R-hypermodule where R is commutative. The

second singular subhypermodule of M, denoted by Z2(M), is the subhypermodule

of M containing Z(M) such that

Z2(M)/Z(M) = Z(M/Z(M)).

Definition 3.3.5. Let R be a commutative hyperring. An R-hypermodule M is

said to be Z2-torsion if Z2(M) = M.

Remark 3.3.6. Every singular hypermodule is always Z2-torsion.

Recall that for any subhypermodules N and N ′ of an R-hypermodule M with

N ′ ≤ N, we use the symbols ⊞ and ⊡ for the quotient R-hypermodule (M/N,⊞,⊡)

throughout this thesis; moreover, the symbols ⊎ and ⊛ are used for the quotient

R-hypermodule
(
(M/N)/(N ′/N),⊎,⊛

)
.

Proposition 3.3.7. Let M be an R-hypermodule where R is commutative. The

following statements hold.

(i) Z(M) = {x ∈ M : Ix = {0} for some I ≤ess RR}.

(ii) Z2(M) = {x ∈ M : Ix ⊆ Z(M) for some I ≤ess RR}.

(iii) Z(M) ≤ess Z2(M).

Proof. For convenience, let K = {x ∈ M : Ix = {0} for some I ≤ess RR} and

L = {x ∈ M : Ix ⊆ Z(M) for some I ≤ess RR}.

(i) Let x ∈ Z(M). Then ann(x) ≤ess RR. We see that ann(x)x = {0}. This

means that x ∈ K. Hence, Z(M) ⊆ K. Next, let y ∈ K. Then Iy = {0} for some

I ≤ess RR. This implies that I ≤ ann(y). By Proposition 3.1.5(i), ann(y) ≤ess RR,

so y ∈ Z(M). This shows that K ⊆ Z(M). Therefore, Z(M) = K.

(ii) Let x′ ∈ Z2(M). Then
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x′ + Z(M) ∈ Z2(M)/Z(M) = Z(M/Z(M)).

By (i), J ⊡ (x′ + Z(M)) = {Z(M)} for some J ≤ess RR. Thus, Jx′ ⊆ Z(M). This

means that x′ ∈ L. Hence, Z2(M) ⊆ L. Next, let y′ ∈ L. Then J ′y′ ⊆ Z(M) for

some J ′ ≤ess RR. Thus, J ′ ⊡ (y′ + Z(M)) = {Z(M)}. By (i),

y′ + Z(M) ∈ Z(M/Z(M)) = Z2(M)/Z(M).

This implies that y′ ∈ Z2(M), so L ⊆ Z2(M). Therefore, Z2(M) = L.

(iii) Let N ≤ Z2(M) with N ∩Z(M) = {0}. To show that N = {0}, let x ∈ N.

By (ii), J ′′x ⊆ Z(M) for some J ′′ ≤ess RR. Since x ∈ N and N ≤ M, we get

J ′′x ⊆ N. Then J ′′x ⊆ N ∩ Z(M) = {0}, i.e., J ′′x = {0}. By (i), x ∈ Z(M), so

N ≤ Z(M). Hence, N = N∩Z(M) = {0}. This shows that Z(M) ≤ess Z2(M).

Corollary 3.3.8. Let M be an R-hypermodule where R is commutative. Then

Z(M) = {0} if and only if Z2(M) = {0}.

Proof. This follows from Proposition 3.3.7(i) and (ii).

Corollary 3.3.9. Let N be a subhypermodule of an R-hypermodule M where R is

commutative. The following statements hold.

(i) Z(N) = Z(M) ∩N.

(ii) Z2(N) = Z2(M) ∩N.

(iii) N is a singular hypermodule if and only if N ≤ Z(M). In particular, Z(M)

is always a singular hypermodule.

(iv) N is Z2-torsion if and only if N ≤ Z2(M). In particular, Z2(M) is always

Z2-torsion.

Proof. (i) This follows from Proposition 3.3.7(i).
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(ii) We obtain from Proposition 3.3.7(ii) that

Z2(M) ∩N = {x ∈ M : Ix ⊆ Z(M) for some I ≤ess RR} ∩N

= {x ∈ N : Ix ⊆ Z(M) for some I ≤ess RR}

= {x ∈ N : Ix ⊆ Z(M) ∩N for some I ≤ess RR} (since N ≤ M)

= {x ∈ N : Ix ⊆ Z(N) for some I ≤ess RR} (by(i))

= Z2(N).

(iii) and (iv) are directly obtained from (i) and (ii), respectively.

Proposition 3.3.10. Let M and M ′ be R-hypermodules where R is commutative.

Let f : M → M ′ be a homomorphism such that f(0) = 0. Then f(Z(M)) ≤ Z(M ′)

and f(Z2(M)) ≤ Z2(M
′).

Proof. It suffices to show that f(Z(M)) ⊆ Z(M ′) and f(Z2(M)) ⊆ Z2(M
′). First,

let x ∈ Z(M). By Proposition 3.3.7(i), Ix = {0} for some I ≤ess RR. Hence,

If(x) = f(Ix) = f({0}) = {0}.

Then f(x) ∈ Z(M ′) by Proposition 3.3.7(i). We conclude that f(Z(M)) ⊆ Z(M ′).

Finally, let y ∈ f(Z2(M)). By Proposition 3.3.7(ii), we get Jy ⊆ Z(M) for

some J ≤ess RR. Therefore,

Jf(y) = f(Jy) ⊆ f(Z(M)) ⊆ Z(M ′).

Now, f(y) ∈ Z2(M
′) by Proposition 3.3.7(ii). Hence, f(Z2(M)) ⊆ Z2(M

′).

Corollary 3.3.11. Let M and M ′ be R-hypermodules where R is commutative.

The following statements hold.

(i) Let f : M → M ′ be a surjective homomorphism. If M is a singular hyper-

module (Z2-torsion), then M ′ is also a singular hypermodule (Z2-torsion).

(ii) Let g : M ′ → M be an injective homomorphism such that g(0) = 0. If M is

a nonsingular hypermodule, then M ′ is also a nonsingular hypermodule.
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Proof. (1) Assume that Z(M) = M. By the surjectivity of f and Proposition

2.1.10, we have f(0) = 0, By Proposition 3.3.10,

Z(M ′) ≤ M ′ = f(M) = f(Z(M)) ≤ Z(M ′).

Hence, Z(M ′) = M ′.

(2) Assume that Z(M) = {0}. By Proposition 2.1.9, ker(g) = {0}. Now,

g(Z(M ′)) ≤ Z(M) = {0} by Proposition 3.3.10. This means that Z(M ′) ≤

ker(g) = {0}. Therefore, Z(M ′) = {0}.

Corollary 3.3.12. Let N be a subhypermodule of a Z2-torsion R-hypermodule M

where R is commutative. Then N and M/N are Z2-torsion R-hypermodules.

Proof. By Corollary 3.3.9(iv), N is Z2-torsion. Moreover, we conclude that M/N

is Z2-torsion which follows from Corollary 3.3.11(i) by choosing g : M → M/N to

be the canonical map.

Proposition 3.3.13. Let R be a commutative hyperring. Let K and N be subhy-

permodules of an R-hypermodule M such that K ≤ N and N/K = Z(M/K). If

M/K is Z2-torsion, then M/N is a singular hypermodule.

Proof. Assume that M/K is Z2-torsion. Then Z2(M/K) = M/K. Hence,

Z[(M/K)/Z(M/K)] = Z2(M/K)/Z(M/K) = (M/K)/Z(M/K).

This means that (M/K)/Z(M/K) is a singular hypermodule, but then

(M/K)/(N/K) = (M/K)/Z(M/K),

so (M/K)/(N/K) is a singular hypermodule. By the Third Isomorphism Theorem,

M/N is a singular hypermodule.

Proposition 3.3.14. Let R be a commutative hyperring. Let K and N be sub-

hypermodules of an R-hypermodule M such that M = N ⊕ K. Then Z(M) =

Z(N)⊕ Z(K).

Proof. By Proposition 3.3.10, we know that Z(M) ≤p M. We conclude that

Z(M) = Z(N)⊕ Z(K) by Proposition 2.1.20 and Corollary 3.3.9(i).
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Next, we give some results involving the singularity and the nonsingularity of

strongly distributive commutative hyperrings.

Proposition 3.3.15. Let I and J be hyperideals of a strongly distributive commu-

tative hyperring R such that I ≤ J. If I ≤ess J, then R(J/I) is singular.

Proof. Assume that I ≤ess J. We show that Z(J/I) = J/I. It remains to show

that J/I ⊆ Z(J/I). Note that Z(J/I) = Z(R/I) ∩ J/I by Corollary 3.3.9(i). So,

it suffices to show that J/I ⊆ Z(R/I). To see this, let a + I ∈ J/I where a ∈ J.

Recall that

Z(R/I) = {r + I : ann(r + I) ≤ess RR} and ann(a+ I) = {r ∈ R : ra ⊆ I}.

Claim that ann(a+ I) ≤ess RR. To see this, let K be a hyperideal of R such that

ann(a + I) ∩ K = {0}. We show that K = {0}. Since I is a hyperideal of R, we

obtain Ia ⊆ I. This implies that I ⊆ ann(a + I). Now, Ka ⊆ K because K is a

hyperideal of R. Then, I ∩Ka ⊆ ann(a + I) ∩K = {0}, so I ∩Ka = {0}. Since

a ∈ J and J is a hyperideal of R, we have Ka ⊆ J. Moreover, Ka ≤ J, this follows

from Proposition 1.3.9. Because I ≤ess J, Ka ≤ J and I ∩ Ka = {0}, it follows

that Ka = {0} ⊆ I. This means that K ⊆ ann(a+ I). Therefore,

K = ann(a+ I) ∩K = {0}.

This shows that ann(a + I) ≤ess RR. Then a + I ∈ Z(R/I). This concludes that

J/I ⊆ Z(R/I).

Corollary 3.3.16. Let I, J and K be hyperideals of a strongly distributive com-

mutative hyperring R such that I ≤ J ≤ K. If J/I ≤ess K/I, then R[(K/I)/(J/I)]

is singular.

Proof. Assume that J/I ≤ess K/I. Then J ≤ess K by Proposition 3.2.13(i). By

Proposition 3.3.15, R(K/J) is singular. We conclude that R[(K/I)/(J/I)] is sin-

gular by the Third Isomorphism Theorem.

Proposition 3.3.17. Let R be a strongly distributive commutative hyperring. The

following statements hold.
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(i) Z2(R) ≤cl RR.

(ii) R(R/Z2(R)) is nonsingular.

Proof. (i) Let J be a hyperideal of R such that Z2(R) ≤ess J. Then Z(R) ≤ess J by

Proposition 3.3.7(iii) and Proposition 3.1.5(i). Moreover, we know that R(J/Z(R))

is singular by Proposition 3.3.15. We show that Z2(R) = J which suffices to

show that J ⊆ Z2(R). Let a ∈ J. Then a + Z(R) ∈ J/Z(R) = Z(J/Z(R)). By

Proposition 3.3.7(i),

K ⊡ (a+ Z(R)) = {Z(R)} for some K ≤ess RR.

This implies that Ka ⊆ Z(R) which gives a ∈ Z2(R) by Proposition 3.3.7(ii). This

shows that J ⊆ Z2(R). Hence, Z2(R) = J. We conclude that Z2(R) ≤cl RR by

Proposition 3.2.8.

(ii) By Proposition 1.3.16, there exists a hyperideal I of R containing Z2(R)

such that I/Z2(R) = Z(R/Z2(R)). We show that Z2(R) = I. First, we claim that

Z2(R) ≤ess I. To see this, let I ′ ≤ I be such that Z2(R) ∩ I ′ = {0}. To show that

I ′ = {0}, let c ∈ I ′. Because I ′ ⊆ I, it follows that

c+ Z2(R) ∈ I/Z2(R) = Z(R/Z2(R)).

By Proposition 3.3.7(i),

L⊡ (c+ Z2(R)) = {Z2(R)} for some L ≤ess RR.

This implies that Lc ⊆ Z2(R). Since I ′ is a hyperideal of R and c ∈ I ′, we obtain

Lc ⊆ I ′. Then Lc ⊆ Z2(R)∩I ′ = {0}, so Lc = {0} ⊆ Z(R). Now, we get c ∈ Z2(R)

by Proposition 3.3.7(ii). Thus, c ∈ Z2(R) ∩ I ′ = {0}, i.e., c = 0. This means that

I ′ = {0}. Hence, Z2(R) ≤ess I. By Proposition 3.2.8 and (i), we obtain Z2(R) = I.

Therefore, R(R/Z2(R)) is nonsingular.

Corollary 3.3.18. Let I be a hyperideal of a strongly distributive commutative

hyperring R. The following statements hold.

(i) Z2(R/I) ≤cl R(R/I).
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(ii) R[(R/I)/(Z2(R/I))] is nonsingular.

Proof. The proofs are similar to the proofs of Proposition 3.3.17.

Proposition 3.3.19. Let I and J be hyperideals of a strongly distributive commu-

tative hyperring R such that I ≤ J. If R(J/I) and R[(R/I)/(J/I)] are Z2-torsion,

then R(R/I) is Z2-torsion.

Proof. Assume R(J/I) and R[(R/I)/(J/I)] are Z2-torsion. Then

Z2(J/I) = J/I and Z2[(R/I)/(J/I)] = (R/I)/(J/I).

We show that Z2(R/I) = R/I. It suffices to show that R/I ⊆ Z2(R/I). To see

this, let r + I ∈ R/I where r ∈ R. Then

(r + I)⊞ (J/I) ∈ (R/I)/(J/I) = Z2[(R/I)/(J/I)].

By Proposition 3.3.7(ii),

K ⊛ [(r + I)⊞ (J/I)] ⊆ Z[(R/I)/(J/I)] for some K ≤ess RR.

Claim that K ⊡ (r + I) ⊆ Z2(R/I). Let a+ I ∈ K ⊡ (r + I). Then

(a+ I)⊞ (J/I) ∈ (K⊡ (r+ I))⊞ (J/I) = K⊛ [(r+ I)⊞ (J/I)] ⊆ Z[(R/I)/(J/I)].

By Proposition 3.3.7(i),

L⊛ [(a+ I)⊞ (J/I)] = {J/I} for some L ≤ess RR.

Thus, L⊡ (a+ I) ⊆ J/I. Since R(J/I) is Z2-torsion, by Corollary 3.3.9(iv), we get

J/I ⊆ Z2(R/I). Then L⊡ (a+ I) ⊆ Z2(R/I). Therefore,

L⊛ [(a+ I)⊞ Z2(R/I)] = {Z2(R/I)}.

By Proposition 3.3.7(i) and Corollary 3.3.18(ii),

(a+ I)⊞ Z2(R/I) ∈ Z[(R/I)/(Z2(R/I))] = {Z2(R/I)}.

This means that a + I ∈ Z2(R/I). This shows that K ⊡ (r + I) ⊆ Z2(R/I). It

follows from K ⊡ (r + I) ⊆ Z2(R/I) that

K ⊛ [(r + I)⊞ Z2(R/I)] = {Z2(R/I)}.
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By Proposition 3.3.7(i) and Corollary 3.3.18(ii),

(r + I)⊞ Z2(R/I) ∈ Z[(R/I)/(Z2(R/I))] = {Z2(R/I)}.

Thus, r + I ∈ Z2(R/I). This shows that R/I ⊆ Z2(R/I). Hence, Z2(R/I) = R/I.

We conclude that R(R/I) is Z2-torsion.

3.4 t-Essential Subhypermodules and t-Closed

Subhypermodules

Throughout this section, all hyperrings are required to be commutative. In this

section, we use the second singular subhypermodule to define t-essential subhy-

permodules, and then the concept of t-closed subhypermodules is given by us-

ing t-essential subhypermodules. In addition, we present characterizations of t-

essential subhypermodules and t-closed subhypermodules; however, we only focus

on strongly distributive hyperrings by considering them as hypermodules over it-

self.

Definition 3.4.1. Let R be a commutative hyperring. A subhypermodule N of

an R-hypermodule M is called a t-essential subhypermodule of M (or t-essential in

M), denoted by N ≤tess M, if L ≤ Z2(M) for any L ≤ M with N ∩ L ≤ Z2(M).

According to Corollary 3.3.8, for an R-hypermodule M where R is commutative,

essential subhypermodules of M and t-essential subhypermodules of M coincide

when the R-hypermodule M is a nonsingular hypermodule, i.e., Z(M) = {0}.

Definition 3.4.2. A hyperideal I of a commutative hyperring R is called a t-

essential hyperideal of R if I is a t-essential subhypermodule of RR.

Remark 3.4.3. Let N be a subhypermodule of an R-hypermodule M where R is

commutative. If N is Z2-torsion, then K ≤tess N for any K ≤ N.

Proposition 3.4.4. Let I be a hyperideal of a strongly distributive commutative

hyperring R. The following statements are equivalent:
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(i) I ≤tess RR;

(ii) (I + Z2(R))/Z2(R) ≤ess R(R/Z2(R));

(iii) I + Z2(R) ≤ess RR;

(iv) R(R/I) is Z2-torsion.

Proof. (i)⇒(ii) Assume that I ≤tess RR. Claim that I + Z2(R) ≤ess RR. Let J

be a complement of I in R. Then I ∩ J = {0} ≤ Z2(R). Since I ≤tess RR, we

get J ≤ Z2(R), so I ⊕ J ≤ I + Z2(R). Then I ⊕ J ≤ess RR by Proposition 3.2.3.

Thus, I + Z2(R) ≤ess RR by Proposition 3.1.5(i). By Proposition 3.2.13(ii) and

Proposition 3.3.17(i), we conclude that (I + Z2(R))/Z2(R) ≤ess R(R/Z2(R)).

(ii)⇒(iii) This follows from Proposition 3.2.13(i).

(iii)⇒(iv) Assume that I +Z2(R) ≤ess RR. Then R(R/(I +Z2(R))) is singular

by Proposition 3.3.15; moreover, it is Z2-torsion by Remark 3.3.6. By the Third

Isomorphism Theorem, R[(R/I)/((I + Z2(R))/I)] is also Z2-torsion. Recall that

Z2(R) is Z2-torsion. By Corollary 3.3.12, Z2(R)/(I ∩ Z2(R)) is also Z2-torsion.

Therefore, (I+Z2(R))/I is Z2-torsion by the Second Isomorphism Theorem. Now,

R[(R/I)/((I + Z2(R))/I)] and (I + Z2(R))/I

are Z2-torsion. We conclude that R(R/I) is Z2-torsion by Proposition 3.3.19.

(iv)⇒(i) Assume that R(R/I) is Z2-torsion. Let I ′ be a hyperideal of R contain-

ing I such that I ′/I = Z(R/I). Thus, R(R/I ′) is singular by Proposition 3.3.13.

To show that I ≤tess RR, let J be a hyperideal of R such that I ∩ J ≤ Z2(R). We

show that J ≤ Z2(R). Let a ∈ J. Then a+ I ′ ∈ R/I ′ = Z(R/I ′) since R(R/I ′) is

singular. By Proposition 3.3.7(i),

L⊡ (a+ I ′) = {I ′} for some L ≤ess RR.

Then La ⊆ I ′. Claim that La ⊆ Z2(R). Let t ∈ La. Then t+ I ∈ I ′/I = Z(R/I).

By Proposition 3.3.7(i),

K ⊡ (t+ I) = {I} for some K ≤ess RR.

Hence, Kt ⊆ I. Because J is a hyperideal of R and a ∈ J , it follows that
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Kt ⊆ K(La) = (KL)a ⊆ J.

This implies that Kt ⊆ I ∩ J ⊆ Z2(R). Thus, K ⊡ (t + Z2(R)) = {Z2(R)} By

Proposition 3.3.7(i) and Proposition 3.3.17(ii),

t+ Z2(R) ∈ Z(R/Z2(R)) = {Z2(R)}.

Thus, t ∈ Z2(R). This shows that La ⊆ Z2(R). Hence, L⊡ (a+Z2(R)) = {Z2(R)}.

By Proposition 3.3.7(i) and Proposition 3.3.17(ii),

a+ Z2(R) ∈ Z(R/Z2(R)) = {Z2(R)}.

Thus, a ∈ Z2(R). This shows that J ≤ Z2(R). Therefore, I ≤tess RR.

For an essential hyperideal I of a strongly distributive commutative hyper-

ring R, R(R/I) is singular from Proposition 3.3.15, and it is Z2-torsion from Re-

mark 3.3.6 which implies that I is a t-essential hyperideal of R by Proposition

3.4.4. This conculdes that every essential hyperideal of a strongly distributive

commutative hyperring R is a t-essential hyperideal of R, and they coincide when

RR is nonsingular; moreover, by Proposition 3.2.3 and Proposition 3.4.4, we can

conclude that every complement of Z2(R) in R is a t-essential hyperideal of R.

Definition 3.4.5. Let R be a commutative hyperring. A subhypermodule K of

an R-hypermodule M is called a t-closed subhypermodule of M (or t-closed in M),

denoted by K ≤tcl M, if K = K ′ for any K ′ ≤ M with K ≤tess K
′.

Definition 3.4.6. A hyperideal I of a commutative hyperring R is called a t-closed

hyperideal of R if I is a t-closed subhypermodule of RR.

For a strongly distributive commutative hyperring R, every essential hyperideal

of R is a t-essential hyperideal of R by Proposition 3.4.4, and from this reason,

we can conclude that every t-closed hyperideal of R is a closed hyperideal of R;

moreover, they are identical when RR is nonsingular.

Proposition 3.4.7. Let J be a hyperideal of a strongly distributive commutative

hyperring R. The following statements are equivalent:
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(i) J ≤tcl RR;

(ii) J contains Z2(R) and J/Z2(R) ≤cl R(R/Z2(R));

(iii) J contains Z2(R) and J ≤cl RR;

(iv) R(R/J) is nonsingular.

Proof. (i)⇒(ii) Assume that J ≤tcl RR. By Proposition 3.3.9(iv), we know that

Z2(R) is Z2-torsion. Then J ∩ Z2(R) and Z2(R)/(J ∩ Z2(R)) are Z2-torsion by

Corollary 3.3.12. Hence, (J + Z2(R))/J is Z2-torsion by the Second Isomorphism

Theorem. In addition, by Proposition 3.4.4, we obtain J ≤tess J + Z2(R), but then

J ≤tcl RR, so J + Z2(R) = J. It follows that Z2(R) ≤ J + Z2(R) = J.

Next, we show that J/Z2(R) ≤cl R(R/Z2(R)). Let J ′ be a hyperideal of R

containing Z2(R) such that J/Z2(R) ≤ess J ′/Z2(R). Note that J + Z2(R) = J

since Z2(R) ≤ J. Thus, we can view

(J + Z2(R))/Z2(R) ≤ess J
′/Z2(R).

By Proposition 3.4.4, J ≤tess J ′. Because J ≤tcl RR, it follows that J = J ′, so

J/Z2(R) = J ′/Z2(R). Therefore, J/Z2(R) ≤cl R(R/Z2(R)) by Proposition 3.2.8.

(ii)⇒(iii) This follows from Proposition 3.2.14(ii) and Proposition 3.3.17(i).

(iii)⇒(iv) Assume that J contains Z2(R) and J ≤cl RR. Let J ′ be a hyperideal

of R containing J such that Z(R/J) = J ′/J. We show that J ′ = J. Since J ≤cl RR,

by Proposition 3.2.8, it suffices to show that J ≤ess J ′. Let I ′ ≤ J ′ be such that

I ′ ∩ J = {0}. To show that I ′ = {0}, let a ∈ I ′. Then a+ J ∈ J ′/J = Z(R/J). By

Proposition 3.3.7(i),

K ⊡ (a+ J) = {J} for some K ≤ess RR.

Thus, Ka ⊆ J. Since I ′ is a hyperideal of R and a ∈ I ′, we get Ka ⊆ I ′. This

implies that Ka ⊆ I ′ ∩ J = {0}, i.e., Ka = {0}. By Proposition 3.3.7(i), we have

a ∈ Z(R) ≤ Z2(R) ≤ J. This implies that a ∈ I ′ ∩ J = {0}, i.e., a = 0. Thus,

I ′ = {0}. This shows that J ≤ess J ′. Then J ′ = J. Hence, Z(R/J) = {J}. We

conclude that R(R/J) is nonsingular.
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(iv)⇒(i) Assume that R(R/J) is nonsingular. Then Z(R/J) = {J}. Thus,

Z2(R/J) = {J} by Corollary 3.3.8. To show that J ≤tcl RR, let J ′ be a hyperideal

of R such that J ≤tess J ′. By Proposition 3.4.4, we obtain J ′/J is Z2-torsion.

Hence,

J ′/J = Z2(J
′/J) ≤ Z2(R/J) = {J}.

This forces that J ′/J = {J}, i.e., J ′ = J. Therefore, J ≤tcl RR.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

EXTENDING HYPERMODULES,

C11-HYPERMODULES AND t-EXTENDING

HYPERRINGS

In this chapter, we give the concepts of extending hypermodules, C11-hypermodules

and t-extending hypermodules which generalize extending modules, C11-modules

and t-extending modules, respectively. The main purpose of this chapter is to

present characterizations of extending hypermodules, C11-hypermodules and t-

extending hyperrings. Moreover, decompositions of C11-hypermodules are investi-

gated.

4.1 Extending Hypermodules

Let us start with the concept of extending hypermodules which concerns direct

summands and essential subhypermodules.

Definition 4.1.1. An R-hypermodule M is called an extending hypermodule if for

each N ≤ M, there exists D ≤⊕ M such that N ≤ess D.

Definition 4.1.2. A hyperring R is called an extending hyperring if RR is an

extending hypermodule.

First, characterizations of extending hypermodules involving closed subhyper-

modules and essentiality of direct sums of two subhypermodules are given. In ad-

dition, we characterize strongly distributive extending hypermodules M satisfying

the condition that m ∈ Rm for all m ∈ M by using the lifting of homomorphisms

from some subhypermodules of M into M itself.
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Theorem 4.1.3. Let M be an R-hypermodule. The following statements are

equivalent:

(i) M is an extending hypermodule;

(ii) every closed subhypermodule of M is a direct summand of M ;

(iii) for any K,L ≤ M with K ∩L = {0}, there exists a direct summand D of M

such that L ≤ D and D ⊕K ≤ess M.

Proof. (i)⇒(ii) Assume that M is an extending hypermodule. Let C ≤cl M. Then

there exists C ′ ≤⊕ M such that C ≤ess C
′. By Proposition 3.2.8, C = C ′.

(ii)⇒(iii) Assume (ii) holds. Let K,L ≤ M be such that K ∩ L = {0}. By

applying Zorn’s lemma to the set {H ≤ M : K ∩ H = {0} and L ≤ H}, there

exists D ≤ M such that D is a complement of K in M and L ≤ D. Then D ≤cl M.

By the assumption and Proposition 3.2.3, we obtain D ≤⊕ M and D⊕K ≤ess M,

respectively.

(iii)⇒(i) Assume (iii) holds. Suppose that L ≤ M. Let K be a complement of

L in M. Then K ∩ L = {0}. By the assumption, there exists D ≤⊕ M such that

L ≤ D and D ⊕ K ≤ess M. By Proposition 3.2.6., we conclude that L ≤ess D.

Therefore, M is an extending hypermodule.

We already know that every direct summand is a closed subhypermodule, but

the converse does not hold in general. However, by Theorem 4.1.3, we can sum-

marize that direct summands and closed subhypermodules of an R-hypermodule

are identical provided that the R-hypermodule is an extending hypermodule.

Proposition 4.1.4. Let M be a strongly distributive R-hypermodule such that

m ∈ Rm for all m ∈ M. Then M is an extending hypermodule if and only if

for every closed subhypermodule K of M there exists a complement L of K in M

such that every homomorphism f : K ⊕ L → M with f(0) = 0 can be extended to

a homomorphism f̄ : M → M.

Proof. Assume that M is an extending hypermodule. Let K ≤cl M. Then K ≤⊕ M

by Theorem 4.1.3, so M = K ⊕L for some L ≤ M. Thus, L is a complement of K
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in M by Proposition 3.2.2 and the result regarding homomorphisms is clear.

Conversely, let C ≤cl M. By the assumption, there exists a complement D of C

in M such that every homomorphism f : C ⊕D → M with f(0) = 0 can be lifted

to a homomorphism f̄ : M → M. We show that C ≤⊕ M. Let πC : C ⊕D → M

be the projection map on C. Then πC is a homomorphism with πC(0) = 0. Thus

there exists a homomorphism π̄C : M → M such that π̄C(a) = πC(a) for all

a ∈ C ⊕D. Especially, π̄C(c) = c for all c ∈ C and π̄C(d) = 0 for all d ∈ D. Note

that C ≤ π̄C(M) and D ≤ ker(π̄C). Claim that C ≤ess π̄C(M). To see this, assume

0 ̸= z ∈ π̄C(M). Then π̄C(y) = z for some y ∈ M. We observe that y /∈ ker(π̄C)

since z ̸= 0. Thus, y /∈ D. By the assumption, y ∈ Ry ≤ D+Ry. This implies that

D ⊊ D +Ry. Thus, C ∩ (D +Ry) ̸= {0} since D is a complement of C in M. Let

0 ̸= z0 ∈ C ∩ (D+Ry). Then there exist d ∈ D and y0 ∈ Ry such that z0 ∈ d+ y0.

Since y0 ∈ Ry, there exists r ∈ R such that y0 ∈ ry. Therefore,

z0 = π̄C(z0) ∈ π̄C(d+ y0) = π̄C(d) + π̄C(y0) ⊆ 0 + π̄C(ry)

= π̄C(ry) = rπ̄C(y) = rz.

This means that z0 ∈ Rz. Hence, 0 ̸= z0 ∈ C∩Rz. This implies that C ≤ess π̄C(M)

by Proposition 3.1.6, but C ≤cl M, so C = π̄C(M) by Proposition 3.2.8. Moreover,

if m ∈ M, then π̄C(m) ∈ C, so π̄2
C(m) = π̄C(m). This means that π̄2

C = π̄C . By

Proposition 2.1.12, we can write M = π̄C(M)⊕ker(π̄C). This shows that C ≤⊕ M.

Therefore, M is an extending hypermodule by Theorem 4.1.3.

In modules, a submodule of an extending module may not be extending. It fol-

lows that a subhypermodule of an extending hypermodule may not be an extending

hypermodule in general. However, it can be shown that every closed subhyper-

module of an extending hypermodule is also an extending hypermodule which is

similar to the result in modules.

Proposition 4.1.5. Every closed subhypermodule of an extending hypermodule is

also an extending hypermodule.
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Proof. Let C be a closed subhypermodule of an extending hypermodule M. Let

K ≤cl C. Then K ≤cl M by Proposition 3.2.10. This implies that K ≤⊕ M by

Theorem 4.1.3. Then M = K ⊕ K ′ for some K ′ ≤ M. Note that we can write

C = K ⊕ (K ′ ∩ C) because C ≤ K. This means that K ≤⊕ C. By Theorem 4.1.3,

we conclude that C is an extending hypermodule.

4.2 C11-Hypermodules

According to [4, 14], C11-modules can be characterized in many way, and there

are several results of C11-modules concerning their submodules. In this section, we

characterize C11-hypermodules. In addition, projection invariant subhypermodules

of C11-hypermodules are investigated.

Definition 4.2.1. An R-hypermodule M is called a C11-hypermodule if for each

N ≤ M, there exists a complement K of N in M such that K ≤⊕ M.

Definition 4.2.2. A hyperring R is called a C11-hyperring if RR is a C11-hypermodule.

Note that every subhypermodule of an R-hypermodule always has a comple-

ment which is also a closed subhypermodule. By Theorem 4.1.3, we can conclude

that every extending hypermodule is always a C11-hypermodule, but the converse

does not hold.

Next, we give characterizations of C11-hypermodules regarding closed subhy-

permodules and essentiality of direct sums of subhypermodules.

Theorem 4.2.3. Let M be an R-hypermodule. The following statements are

equivalent:

(i) M is a C11-hypermodule;

(ii) for every closed subhypermodule C of M, there exists a direct summand D

of M such that D is a complement of C in M ;

(iii) for every closed subhypermodule C of M, there exists a direct summand D

of M such that D ⊕ C ≤ess M ;
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(iv) for every subhypermodule N of M, there exists a direct summand D of M

such that D ⊕N ≤ess M.

Proof. (i)⇒(ii) This follows directly from the definition of C11-hypermodules.

(ii)⇒(iii) This is obtained from Proposition 3.2.3.

(iii)⇒(iv) Assume that (iii) holds. Let N ≤ M. Then there exists C ≤ M such

that N ≤ess C and C ≤cl M by Proposition 3.2.12. By the assumption, there

exists D ≤⊕ M such that D ⊕ C ≤ess M. Thus, D is a complement of C in M by

Proposition 3.2.4. Moreover, D is a complement of N in M by Proposition 3.2.5.

By Proposition 3.2.3, we conclude that D ⊕N ≤ess M.

(iv)⇒(i) This follows from Proposition 3.2.4.

Next, we show that any direct sums of two C11-hypermodules must be a C11-

hypermodule.

Proposition 4.2.4. Let K1 and K2 be subhypermodules of an R-hypermodule M

such that M = K1 ⊕ K2. If K1 and K2 are C11-hypermodules, then M is a C11-

hypermodule.

Proof. Assume that K1 and K2 are C11-hypermodules. Let N ≤ M. Since K1 is

a C11-hypermodule, by Theorem 4.2.3, there exists D1 ≤⊕ K1 such that D1⊕ (N ∩

K1) ≤ess K1. By the Modularity Condition,

K1 ∩ (D1 ⊕N) = D1 ⊕ (N ∩K1) ≤ess K1.

Since K2 is a C11-hypermodule and (D1⊕N)∩K2 ≤ K2, by Theorem 4.2.3 again,

there exists D2 ≤⊕ K2 such that D2⊕ [(D1⊕N)∩K2] ≤ess K2. By the Modularity

Condition,

K2 ∩ [D2 ⊕ (D1 ⊕N)] = D2 ⊕ [(D1 ⊕N) ∩K2] ≤ess K2.

Let D = D2 ⊕ D1. Since M = K1 ⊕ K2, D1 ≤⊕ K1 and D2 ≤⊕ K2, it follows

that D ≤⊕ M. In addition, K2 ∩ (D ⊕ N) ≤ess K2. Note that K1 ∩ (D1 ⊕ N) ≤

K1 ∩ (D ⊕ N), but then K1 ∩ (D1 ⊕ N) ≤ess K1, so K1 ∩ (D ⊕ N) ≤ess K1 by

Proposition 3.1.5(i). Hence,
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[K1 ∩ (D ⊕N)]⊕ [K2 ∩ (D ⊕N)] ≤ess K1 ⊕K2 = M

by Proposition 3.1.5(iv). Moreover,

[K1∩ (D⊕N)]⊕ [K2∩ (D⊕N)] ≤ (K1⊕K2)∩ (D⊕N) = M ∩ (D⊕N) = D⊕N.

Thus, D⊕N ≤ess M by Proposition 3.1.5(i). By Theorem 4.2.3, we conclude that

M is a C11-hypermodule.

According to Smith and Tercan [13], a direct summand of a C11-module may not

be a C11-module. This implies that a direct summand of a C11-hypermodule may

not be a C11-hypermodule. In this research, we show that if a C11-hypermodule can

be decomposed as a direct sum of two subhypermodules, then the subhypermodules

are also C11-hypermodules when at least one of them is a projection invariant

subhypermodule. To illustrate this statement, the next proposition is needed.

Proposition 4.2.5. Every projection invariant subhypermodule of a C11-hyperm-

odule is also a C11-hypermodule.

Proof. Let P be a projection invariant subhypermodule of a C11-hypermodule M.

To show that P is a C11-hypermodule, let N ≤ P. Since M is a C11-hypermodule,

there exists D ≤⊕ M such that D is a complement of N in M. Then M = D⊕D′

for some D′ ≤ M. Thus, P = (P ∩ D) ⊕ (P ∩ D′) by Proposition 2.1.20, so

P ∩D ≤⊕ P. Moreover, N ⊕D ≤ess M by Proposition 3.2.3. By the Modularity

Condition,

N ⊕ (P ∩D) = P ∩ (N ⊕D) ≤ess P.

By Theorem 4.2.3, we conclude that P is a C11-hypermodule.

Proposition 4.2.6. Let K1 and K2 be subhypermodules of a C11-hypermodule M

such that M = K1 ⊕K2. If K1 ≤p M, then both K1 and K2 are C11-hypermodules.

Proof. Assume that K1 ≤p M. By Proposition 4.2.5, we obtain that K1 is a C11-

hypermodule. It remains to show that K2 is a C11-hypermodule. To see this, let

N2 ≤ K2. Since M is a C11-hypermodule, by Theorem 4.2.3, there exists D ≤⊕ M

such that D ⊕ (K1 ⊕ N2) ≤ess M. Then M = D ⊕ D′ for some D′ ≤ M. Thus,
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K1 = (K1 ∩D)⊕ (K1 ∩D′) by Proposition 2.1.20. Since K1 ∩D = {0}, we obtain

K1 = K1 ∩ D′, so K1 ≤ D′. Thus, we can write D′ = K1 ⊕ (K2 ∩ D′). Then

M = D ⊕K1 ⊕ (K2 ∩D′). Let π2 : K1 ⊕K2 → K2 be the projection map on K2.

Note that K1 ∩D = {0}. By Proposition 2.1.16, K1 ⊕D = K1 ⊕ π2(D). Hence,

M = D ⊕K1 ⊕ (K2 ∩D′) = K1 ⊕ π2(D)⊕ (K2 ∩D′).

Since π2(D) ≤⊕ M and π2(D) ≤ K2, we obtain π2(D) ≤⊕ K2. Note that

K1 ⊕ π2(D)⊕N2 = K1 ⊕D ⊕N2 ≤ess M.

Then K2 ∩ (K1 ⊕ π2(D)⊕N2) ≤ess K2. By the Modularity Condition,

K2 ∩ (K1 ⊕ π2(D)⊕N2) = (π2(D)⊕N2)⊕ (K2 ∩K1) = π2(D)⊕N2.

Thus, π2(D)⊕N2 ≤ess K2. By Theorem 4.2.3, K2 is a C11-hypermodule.

Proposition 4.2.5 yields that projection invariant subhypermodules of a C11-

hypermodule M are also C11-hypermodules; moreover, if they are also closed sub-

hypermodules of M, then they are direct summands of M.

Proposition 4.2.7. Let C be a subhypermodule of a C11-hypermodule M. If

C ≤p M and C ≤cl M, then C ≤⊕ M.

Proof. Since M is a C11-hypermodule, there exists D ≤⊕ M such that D is a com-

plement of C in M. Then M = D ⊕ D′ for some D′ ≤ M. By Proposition 3.2.3,

C⊕D ≤ess M. This implies that D′∩ (C⊕D) ≤ess D
′. Thus, C ≤ D′ by Corollary

2.1.21. By the Modularity Condition,

C = C ⊕ (D ∩D′) = D′ ∩ (C ⊕D) ≤ess D
′,

but C ≤cl M which concludes that C = D′ ≤⊕ M by Proposition 3.2.8.

Proposition 4.2.8. Let M be a C11-hypermodule. Then for each X ≤p M, there

exist K1, K2 ≤ M such that X ≤ess K2 and M = K1 ⊕K2.

Proof. Let X ≤p M. Since M is a C11-hypermodule, there exists K1 ≤⊕ M such

that K1 is a complement of X in M. Then M = K1 ⊕K2 for some K2 ≤ M. Let

π1 : K1 ⊕ K2 → K1 be the projection map on K1. Then π2
1 = π1 ∈ End0(M),
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π1(M) = K1 and ker(π1) = K2. Claim that X ≤ K2. To see this, let x ∈ X. Since

X ≤p M, we obtain π1(x) ∈ X. Thus, π1(x) ∈ K1∩X = {0}. This implies that x ∈

ker(π1) = K2. Hence, X ≤ K2. By Proposition 3.2.6, we obtain X ≤ess K2.

4.3 t-Extending Hyperrings and C11-Hyperrings

Throughout this section, all hyperrings are required to be commutative. First,

we give the concept of t-extending hypermodules defined from t-closed subhyper-

modules given in Section 3.4. Unfortunately, there is a property concerning the

essentiality and the singularity (Proposition 3.3.15) which cannot be proved on any

hypermodules. However, the problem can be solved on any strongly distributive

hyperrings by considering them as hypermodules over itself. Hence, we only focus

on t-extending hyperrings throughout this work. In this section, we give character-

izations of t-extending hyperrings; moreover, we are interested in C11-hyperrings.

Finally, some properties of C11-hyperrings R involving the second singular subhy-

permodule of R are investigated.

Definition 4.3.1. Let R be a commutative hyperring. An R-hypermodule M is

called a t-extending hypermodule if every t-closed subhypermodule of M is a direct

summand of M.

Definition 4.3.2. A commutative hyperring R is called a t-extending hyperring if

RR is a t-extending hypermodule.

Theorem 4.3.3. Let R be a strongly distributive commutative hyperring. The

following statements are equivalent:

(i) R is a t-extending hyperring;

(ii) there exists a hyperideal I of R such that R = Z2(R)⊕I and I is an extending

hyperring;

(iii) every hyperideal of R containing Z2(R) is essential in a direct summand of R;

(iv) every hyperideal of R is t-essential in a direct summand of R.
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Proof. (i)⇒(ii) Assume that R is a t-extending hyperring. By Proposition 3.3.17(i)

and Proposition 3.4.7, we obtain Z2(R) ≤tcl RR. Thus, Z2(R) ≤⊕ R since R is t-

extending. Then there exists a hyperideal I of R such that R = Z2(R)⊕ I.

Next, we show that I is extending. Let J ≤cl I. We show that J ≤⊕ I.

First, claim that I/J is nonsingular. By Proposition 3.3.14, we can write Z(R) =

Z(Z2(R))⊕Z(I). Note that Z(Z2(R)) = Z(R) by Proposition 3.3.9(i). This implies

that Z(I) = {0}, so J ≤tcl I since J ≤cl I. Therefore, I/J is nonsingular from

Proposition 3.4.7. The claim is proved. Next, we show that Z2(R) ⊕ J ≤tcl RR.

By proposition 3.4.7, it suffices to show that R[R/(Z2(R)⊕ J)] is nonsingular, i.e.,

Z[R/(Z2(R)⊕ J)] = {Z2(R)⊕ J}.

Recall that

Z[R/(Z2(R)⊕ J)] =
{
x+ (Z2(R)⊕ J) : ann(x+ (Z2(R)⊕ J)) ≤ess RR

}
and

for each x ∈ R,

ann(x+ (Z2(R)⊕ J)) = {z ∈ R : zx ⊆ Z2(R)⊕ J}.

Let r + (Z2(R) ⊕ J) ∈ Z[R/(Z2(R) ⊕ J)]. Then ann(r + (Z2(R) ⊕ J)) ≤ess RR.

Since R = Z2(R)⊕I, there exist z ∈ Z2(R) and a ∈ I such that r ∈ z+a. We show

that ann(a+ J) = ann(r + (Z2(R)⊕ J)). Let s ∈ ann(a+ J). Then sa ⊆ J. Thus,

sr ⊆ s(z + a) ⊆ sz + sa ⊆ Z2(R)⊕ J. This means that s ∈ ann(r + (Z2(R)⊕ J)).

Therefore, ann(a+J) ⊆ ann(r+(Z2(R)⊕J)). Let t ∈ ann(r+(Z2(R)⊕J)). Then

tr ⊆ Z2(R)⊕ J. Since r ∈ z + a, we can write a ∈ r − z. Hence,

ta ⊆ t(r − z) ⊆ tr − tz ⊆ Z2(R)⊕ J.

Since a ∈ I and I is a hyperideal of R, it follows that ta ⊆ I. By the Modularity

Condition,

ta ⊆ I ∩ (Z2(R)⊕ J) = J ⊕ (I ∩ Z2(R)) = J.

This means that t ∈ ann(a + J), so ann(r + (Z2(R) ⊕ J)) ⊆ ann(a + J). Thus,

ann(a+ J) = ann(r + (Z2(R)⊕ J)) ≤ess RR, so a+ J ∈ Z(I/J) = {J} since I/J

is nonsingular by the claim. This means that a ∈ J, so r ∈ z + a ⊆ Z2(R) ⊕ J.
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Therefore, R(R/(Z2(R)⊕ J)) is nonsingular. Thus, Z2(R) ⊕ J ≤tcl RR by propo-

sition 3.4.7. Since RR is t-extending, Z2(R) ⊕ J ≤⊕ R. Then there exists a hy-

perideal J ′ of R such that R = (Z2(R) ⊕ J) ⊕ J ′. Since J ≤ I, we can write

I = [(Z2(R) ⊕ J ′) ∩ I] ⊕ J. This shows that J ≤⊕ I. By Proposition 4.1.3, we

conclude that I is an extending hyperring.

(ii)⇒(iii) Assume that there exists a hyperideal I of R such that I is an extend-

ing hyperring and R = Z2(R)⊕I. Let J be a hyperideal of R such that Z2(R) ≤ J.

Then J = Z2(R)⊕ (I ∩ J). Since I is extending, there exists a hyperideal I ′ of R

such that I ∩ J ≤ess I
′ and I ′ ≤⊕ I. By Proposition 3.1.5(iv),

J = Z2(R)⊕ (I ∩ J) ≤ess Z2(R)⊕ I ′.

Claim that I ′ ≤⊕ R. Since I ′ ≤⊕ I, there exists I ′′ ≤ I such that I = I ′ ⊕ I ′′.

Hence,

R = Z2(R)⊕ I = (Z2(R)⊕ I ′)⊕ I ′′.

This implies that Z2(R)⊕ I ′ ≤⊕ R.

(iii)⇒(iv) Assume that (iii) holds. Let I be a hyperideal of R. Note that

I + Z2(R) contains Z2(R). By the assumption, there exists a hyperideal J of R

such that I + Z2(R) ≤ess J and J ≤⊕ R. By Proposition 3.4.4, we conclude that

I ≤tess J.

(iv)⇒(i) Assume that (iv) holds. Let I be a t-closed hyperideal of R. By the

assumption, there exists a hyperideal J of R such that I ≤tess J and J ≤⊕ R. Since

I ≤tcl RR, we get I = J. Hence, I ≤⊕ R. We conclude that R is a t-extending

hyperring.

Proposition 4.3.4. Let I be a projection invariant hyperideal of a commutative

C11-hyperring R with Z[R(R/I)] = {I}. Then R(R/I) is also a C11-hypermodule.

Proof. Let J̃ ≤ R/I. Then there exists a hyperideal J of R containing I such

that J̃ = J/I. Since R is a C11-hyperring, there exists J ′ ≤⊕ R such that J ′ is

a complement of J in R. By Proposition 2.1.15, there exists f 2 = f ∈ End0(R)

such that f(R) = J ′. We divide the details of the proof into two steps as follows.
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(1) We show that (J ′ ⊕ I)/I ≤⊕ R/I.

Note that f(R)∩I = J ′∩I ≤ J ′∩J = {0}, so f(R)∩I = {0}. Then f(I) ⊆ I since

I is a projection invariant hyperideal of R. Hence, f(I) ⊆ f(R) ∩ I = {0}. This

means that f(I) = {0}, i.e., I ⊆ ker(f). Thus, (J ′ ⊕ I)/I ≤⊕ R/I by Proposition

2.1.13.

(2) Claim that [(J ′ ⊕ I)/I]⊕ [J/I] ≤ess R(R/I).

In this step, we divide the details of the proof into two steps.

(2.1) First, we claim that (J ′ ⊕ J)/I ≤ess R(R/I).

To show that (J ′⊕J)/I ≤ess R/I, let K̃ ≤ R/I be such that (J ′⊕J)/I)∩K̃ = {I}.

Then there exists a hyperideal K of R containing I such that K̃ = K/I. We show

that K = I. It suffices to show that K ⊆ I. To see this, let k ∈ K. Since J ′ ⊕ J

is a hyperideal of R, we get (J ′ ⊕ J)k ⊆ J ′ ⊕ J. Similarly, (J ′ ⊕ J)k ⊆ K since

K is a hyperideal of R and k ∈ K. Moreover, if a ∈ (J ′ ⊕ J)k, then a + I ∈

(J ′ ⊕ J)/I ∩ K/I = {I}, so a ∈ I. This implies that (J ′ ⊕ J)k ⊆ I. Recall that

ann(k+I) = {r ∈ R : rk ⊆ I}. Hence, J ′⊕J ⊆ ann(k+I). Since J ′ is a complement

of J in R, by Proposition 3.2.3, J ′ ⊕ J ≤ess RR. Thus, ann(k + I) ≤ess RR by

Proposition 3.1.5(i). This implies that k + I ∈ Z[R(R/I)] = {I}, so k ∈ I.

Therefore, K ⊆ I. This shows that (J ′ ⊕ J)/I ≤ess R(R/I).

(2.2) Finally, [(J ′ ⊕ I)/I]⊕ [J/I] = (J ′ ⊕ J)/I.

The proof of this step is straightforward.

From step (1) and step (2), by Proposition 3.2.4, we obtain that (J ′ ⊕ I)/I is

a complement of J̃ = J/I in R/I. Hence, R(R/I) is a C11-hypermodule.

Proposition 4.3.5. Let R be a strongly distributive commutative C11-hyperring.

Then Z2(R) is also a C11-hyperring and it is a direct summand of R.

Proof. By Proposition 3.3.10 and Proposition 3.3.17, we obtain Z2(R) ≤p R and

Z2(R) ≤cl R, respectively. Hence, Z2(R) is a C11-hyperring by Proposition 4.2.5.

Moreover, Z2(R) is a direct summand of R by Proposition 4.2.7.

Corollary 4.3.6. Let R be a strongly distributive commutative C11-hyperring.

Then there exists a hyperideal J of R such that R = Z2(R) ⊕ J and J is a C11-
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hyperring.

Proof. By Proposition 4.3.5, there exists a hyperideal J of R with R = Z2(R)⊕ J.

Note that Z2(R) ≤p R by Proposition 3.3.10. Hence, J is a C11-hyperring by

Proposition 4.2.6.

Lemma 4.3.7. Let R be a strongly distributive commutative hyperring and f 2 =

f ∈ End0(R). If there exists a hyperideal K of R such that K ≤p R and K ≤ess

f(R), then f(R) + Z(R) ≤p R.

Proof. Assume that K is a hyperideal of R satisfying K ≤p R and K ≤ess f(R).

By Proposition 3.3.15, R(f(R)/K) is singular. Moreover, R = f(R) ⊕ ker(f) by

Proposition 2.1.12. Let πker(f) be the projection map on ker(f).

First, claim that (πker(f)gf)(R) ⊆ Z(R) for all g2 = g ∈ End0(R). Let r ∈ R

and g2 = g ∈ End0(R). By the singularity of f(R)/K,

f(r) +K ∈ f(R)/K = Z[R(f(R)/K)].

By Proposition 3.3.7(i),

H ⊡ (f(r) +K) = {K} for some H ≤ess RR.

Then, Hf(r) ⊆ K. This implies that f(Hr) ⊆ K. Recall that K ≤p R. Hence,

H[(πker(f)gf)(r)] = (πker(f)gf)(Hr) ⊆ (πker(f)g)(K) ⊆ πker(f)(K) ⊆ K ⊆ f(R).

Note that H[(πker(f)gf)(r)] = (πker(f)gf)(Hr) ⊆ ker(f). This means that

H[(πker(f)gf)(r)] ⊆ f(R) ∩ ker(f) = {0}.

Thus, H[(πker(f)gf)(r)] = {0}. By Proposition 3.3.7(i), (πker(f)gf)(r) ∈ Z(R).

Hence, the claim is proved.

Finally, we show that f(R)+Z(R) ≤p R. Suppose that h2 = h ∈ End0(R) and

x ∈ f(R)+Z(R). Then there exist a ∈ R and z ∈ Z(R) such that x ∈ f(a)+z. Since

R = f(R)⊕ ker(f), there exist b ∈ R and k ∈ ker(f) such that h(f(a)) ∈ f(b)+ k.

Thus,

(πker(f)hf)(a) ∈ πker(f)(f(b) + k) = πker(f)(f(b)) + πker(f)(k) = 0 + k = {k}.
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Thus, k = (πker(f)hf)(a) ∈ Z(R) by the claim. Note that Z(R) ≤p R by Proposi-

tion 3.3.10. Therefore,

h(x) ∈ h(f(a) + z) = h(f(a)) + h(z) ⊆ f(b) + k + h(z) ⊆ f(R) + Z(R).

This shows that h(f(R) + Z(R)) ⊆ f(R) + Z(R). Hence, f(R) + Z(R) ≤p R.

Theorem 4.3.8. Let I be a projection invariant hyperideal of a strongly distributive

commutative C11-hyperring R. Then there exist hyperideals J1 and J2 of R such

that I ≤ess J2 and R = J1 ⊕ J2. Moreover,

(i) if Z2(J1) is a C11-hyperring, then J1 is also a C11-hyperring;

(ii) if Z2(J2) is a C11-hyperring, then J2 is also a C11-hyperring.

Proof. By Proposition 4.2.8, there exist hyperideals J1 and J2 of R such that

I ≤ess J2 and R = J1 ⊕ J2. In case I = J2, by Proposition 4.2.6, we immediately

obtain that J1 and J2 are C11-hyperrings. There is nothing to prove. Hence, we

are interested in the case that I ̸= J2. Since Z2(R) ≤p R, by Proposition 2.1.20,

we can write

Z2(R) = (Z2(R) ∩ J1)⊕ (Z2(R) ∩ J2),

but then Z2(R) ∩ J1 = Z2(J1) and Z2(R) ∩ J2 = Z2(J2) by Corollary 3.3.9.

Therefore, Z2(R) = Z2(J1)⊕Z2(J2). By Corollary 4.3.6, there exists a hyperideal

J of R such that R = Z2(R) ⊕ J and J is a C11-hyperring. Thus, we can write

R = Z2(J1)⊕ Z2(J2)⊕ J. Since Z2(J1) ≤ J1 and Z2(J2) ≤ J2 , we obtain

J1 = Z2(J1)⊕ [(Z2(J2)⊕ J) ∩ J1] and J2 = Z2(J2)⊕ [(Z2(J1)⊕ J) ∩ J2],

respectively. For convenience, let

J ′
1 = (Z2(J2)⊕ J) ∩ J1 and J ′

2 = (Z2(J1)⊕ J) ∩ J2.

Hence,

J1 = Z2(J1)⊕ J ′
1 and J2 = Z2(J2)⊕ J ′

2.

Recall that Z2(R) = Z2(J1)⊕ Z2(J2). We see that Z2(J1) ∩ J2 ≤ J1 ∩ J2 = {0}, so

Z2(J1) ∩ J2 = {0}. By Proposition 2.1.5,
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Z2(R) + J2 = Z2(J1)⊕ Z2(J2)⊕ J ′
2.

This implies that

R = J1 ⊕ J2 = Z2(J1)⊕ Z2(J2)⊕ J ′
1 ⊕ J ′

2 = (Z2(R) + J2)⊕ J ′
1.

Let f : (Z2(R) + J2) ⊕ J ′
1 → Z2(R) + J2 be the projection map on Z2(R) + J2.

Then f 2 = f ∈ End0(R) and f(R) = Z2(R) + J2. Since I ≤ess J2 = Z2(J2) ⊕ J ′
2,

by Proposition 3.1.5(iv),

Z2(J1)⊕ I ≤ess Z2(J1)⊕ Z2(J2)⊕ J ′
2 = Z2(R) + J2.

Note that Z2(J1)⊕ I ≤ Z2(R) + I. This implies that Z2(R) + I ≤ess Z2(R) + J2 =

f(R). Since Z2(R) ≤p R and I ≤p R, we obtain Z2(R)+ I ≤p R. By Lemma 4.3.7,

f(R) + Z(R) ≤p R. Moreover, Z(R) ≤ Z2(R) ≤ Z2(R) + J2 = f(R). Hence,

Z2(R) + J2 = f(R) = f(R) + Z(R) ≤p R.

By applying Proposition 4.2.6 to R = (Z2(R)+J2)⊕J ′
1, we obtain that Z2(R)+J2

and J ′
1 are C11-hyperrings. Recall that J1 = Z2(J1) ⊕ J ′

1. If Z2(J1) is a C11-

hyperring, then J1 is a C11-hyperring by Proposition 4.2.4. Thus, the proof of (i)

is complete. Now, we know that Z2(R) + J2 is a C11-hyperring. Note that

Z2(R) + J2 = Z2(J1)⊕ Z2(J2)⊕ J ′
2 = Z2(R)⊕ J ′

2.

This means that Z2(R)⊕ J ′
2 is a C11-hyperring. We see that

Z2(R) = Z2(R) ∩ (Z2(R)⊕ J ′
2) = Z2(Z2(R)⊕ J ′

2) ≤p Z2(R)⊕ J ′
2.

By applying Proposition 4.2.6 again to Z2(R)⊕ J ′
2, we conclude that J ′

2 is a C11-

hyperring. Recall that J2 = Z2(J2) ⊕ J ′
2. The proof of (ii) follows from Proposi-

tion 4.2.4 which is similar to (i).

From theorem 4.3.8, for a strongly distributive commutative C11-hyperring R

and I ≤p R, there exist two hyperideals J1 and J2 of R such that I ≤ess J2 and

R = J1⊕J2, but there is no conclusion to assert that J1 and J2 are C11-hyperrings

in the case I ̸= J2, although R is a C11-hyperring; however, the condition that
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Z2(J1) is a C11-hyperring guarantees that J1 is a C11-hyperring, and the case of J2
is similar to J1.
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