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Chapter 1: Introduction 
 

In this thesis, the main focus is on the arrival delays of the aircraft. The purpose 

of this chapter is to introduce the broad background of the airline industry, 

narrowing down to the US airline industry, which is the sample of the data, and 

highlight key issues as well as the problem statement. 

 

1.1 Global Airline Industry 

The airline industry has taken a major setback in 2020 from the COVID-19 

pandemic with a decrease of 168 billion USD in revenues. Figure 1 has 

illustrated the change in the world’s passenger traffic from 1945-2022. Among 

other industries, it was ranked number one with the most substantial loss 

according to McKinsey & Company. (Bouwer et al., 2022) 

 

 

Figure  1: World Passenger Traffic Evolution, 1945-2022  (ICAO, 2021) 

 

As a result of the access to the vaccines, and the lift of regulations worldwide 

in 2021, there has been a recovery in many businesses, including passenger 

flights. The global revenues rose by 27% as compared to 2020 but, they were 

still 44% less than what they were in 2019 (GAO, 2021). Moreover, according 

to the Federal Aviation Administration (FAA, 2020), the industry was able to 

fill their aircraft with over 83.4% passenger load factor in 2019 but, in 2021, 

the number was only 69.2%. On the other hand, cargo airlines, which take a 

small fraction as a sub-sector of the overall airline businesses, have maintained 
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positive revenue due to the rise of demand in freight forwards. According to 

McKinsey & Company, cargo carriers had annual profit averaging 2 billion 

USD from 2012-2019. Their yields also rose by 40 percent year on year in 

2020, and by an additional 15 percent in 2021. Load factors were also 

significantly increased, by ten percentage points in 2021 as compared to 2019. 

In 2022, the Ukraine and Russia conflict raised concerns about global 

economic stability, particularly in the aviation industry. Flights passing through 

Russian and Ukrainian airspaces were rerouted, resulting in longer durations 

and limitations in route planning and scheduling. This led to increased costs 

due to both a supply shock in energy, higher resource consumption such as 

increased fuel usage, longer working hours for air crews, and more flight hours 

for aircraft. As a consequence, these cost increases were reflected in higher 

plane ticket fares for passengers. 

With major recent events impacting the industry, it is obvious that the airline 

industry is not generating the same revenue. At the same time, it has to absorb 

the fixed and variable costs, such as aircraft maintenance and employee wages. 

Therefore, airlines could potentially aim to maximize their operation efficiency 

and improve cost-effectiveness in response to supply-chain disruptions and a 

decline in demand. 

 

1.2 US Airline Industry 

Considered one of the largest industries in the world, the US airline industry 

carries 2.5 million passengers per day to and from nearly 80 countries, moves 

58,000 tons of cargo per day to and from more than 220 countries, creates jobs 

for almost 750,000 employees, and powers 28,000 flights across the globe, 

according to Airline for America. (2022) (America, 2022) 

Like any other region in the world, the US was severely affected by the Covid-

19 pandemic and airlines are one of the most affected industries. According to 

Department of Transportation (DOT) statistics, passenger traffic declined 90% 

in April 2020 as compared to the previous year.  

Due to a rise in demand for travels in 2021, the industry had a short rebound 

and later was slowed down because of the delta variant. Although the cargo 

airlines have still retained almost the same output and reached the all-time-high 

in 2021 as seen in Figure 2, the overall airline industry could not secure 

positive profits after the pandemic as compared to other industries in the US as 

seen in Figure 3. 
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Figure  2: US Cargo Traffic and Passenger Traffic (America, 2022) 

 

 

 

Figure  3: US Industries, 2021 Profitability (America, 2022) 

 

Recently in 2022, the US has been affected by the Ukraine and Russia war and 

inflation. Consequently, the fuel price increased significantly and is anticipated 

to hit the all-time-high in 2022. According to Airlines for America, as referred 

to Figure 4, jet fuel spot price has increased 86% from 2019. The airlines have 

already spent 42 billion USD in 2022, which is a 125% increase from 2021. 
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Figure  4: Jet Fuel Price for US Airlines (America, 2022) 

 

Along with the fuel, airlines also have the labor, which is one of the 2 highest 

costs of the business. These 2 together account for 57% of the operating cost.  

As mentioned above, the US airlines have been facing economic situations as 

well as financial distress for the past years. As a result, stakeholders of the 

airlines have taken action to solve some issues and maintain the business 

stability. 

In response to Covid-19 pandemic, the US airline industry, incorporated with 

the Federal Aviation Administration (FAA), have issued some new changes to 

mitigate the spread of Covid-19 to employees and customers such as crew 

member medical certifications, guidance for airlines and airports, and some 

regulatory requirements. In terms of the strategies, airlines have come up with 

changes to strengthen the workforce pipeline, focus on profitable segments, and 

improve operational reliability such as increasing on-time arrivals. 

 

1.2.1 US Aviation Traffic and Airspace 

The United States is considered to be one of the busiest airspaces in the world 

as air travel is the preferred and fastest way of commuting. Over 16 million 

flights are handled by the Federal Aviation Administration (FAA, 2022a) 

yearly, over five thousand aircrafts in the sky are at peak operational times, and 

over 10 million are passenger flights yearly. 
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According to the FAA, which controls the national air space (NAS), the NAS is 

composed of 521 airport towers (263 Federal and 260 contract towers), 149 

terminal radar control (TRACON) facilities (25 stand-alone and 124 combined 

ATCT), and 25 control centers (21 air route traffic control centers (ARTCC) 

and 4 combined control facilities (CCF). As referred to Figure 5 below, from 

airport tower to tower, the aircraft passes through multiple air traffic controls, 

each station also has extensive insights into weather information.  

 

Figure  5: Air Traffic Control between Tower to Tower (FAA, 2022) 

 

The United States separates the airspace in multiple ways such as altitude or 

even how busy each airport is. The different classes of airspace are Class A, 

Class B, Class C, Class D, Class E and Class G. Each of these airspaces has its 

own regulations based on what each class of airspace is intended for. Class A is 

only for IFR flight; the traffic is separated by the ground controller and the 

pilot is required to have an IFR license. Class B airspace is for the busiest 

airport there are 37 class B airports in the USA. There are flights from Class B 

airspace to Class A then landing at an airport with Class B airspace. The whole 

flight is controlled by the air traffic controller. The pilot does not have much 

control over which routes they can take. The Airspace Classification has been 

illustrated in Figure 6. 
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Figure  6: Airspace Classification (FAA) 

 

1.2.2 US Aviation Infrastructure and Digital 

The United States aviation infrastructure has tremendous coverage both 

physical and GPS coordinates. The infrastructure is the backbone, equally to 

highway systems. Airplane needs a way to know where they are in the sky 

relative to the ground. The VHF Omnidirectional Radio Range (VOR) and 

Distance Measuring Equipment (DME) provide the basic information that the 

plane needs to navigate. In terms of the digital system, the United States also 

uses GPS navigation, which could be interrupted or unavailable at any given 

time. To counter this GPS signal problem, there are 38 Wide Area Reference 

Stations (WRS), 3 Wide Area Master Stations, 3 GEO Satellites, and 6 GEO 

uplink subsystems. Each flight that flies under the Instrument Flight Rules 

(IFR) will have to follow the road in the sky to reach the destination. Each road 

in the sky will lead to how the aircraft conduct their final approach to the final 

destination. It sometimes takes the aircraft on the detour path rather than giving 

them a direct or shortest route. Also, the availability of radio navigation 

systems determines the route the aircraft will take, but with the help of GPS 

navigation, the aircraft can fly a more direct route rather than flying the 

traditional route. Or the pilot could choose the hybrid route that combines the 

traditional radio navigation with the GPS navigation. Instrument Flight Rule 

Chart can be shown in Figure 7. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 7 

 

Figure  7: Instrument Flight Rule Flight Chart (FAA, 2023) 
 

1.3 Aircraft Delays 

Flight delays cause a ripple effect to the airline logistical management. From 

weather delays to missed connections and flight cancellations. Delays cause 

impact on the logistical support of the airline both on the ground and in the air. 

The ability to understand what will happen if the weather conditions are 

predicted to cause delays or even affect the flight will benefit the passengers 

and, especially, the airlines. 

Each of the delayed flights induces a series of subsequent events. For example, 

the terminal gate might not be available, passengers might miss their 

connecting flights, subsequent aircraft delays, or even flight cancellations. The 

delay is unpredictable and nobody knows how long it will take or even to 

recover the scheduled flight. This causes the aircraft operator more time and 

resources to recover from the situation.  
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The aircraft delay causes setbacks and increases the unnecessary load to the air 

traffic controller since the aircraft is already airborne and eventually the plane 

needs to get back on the ground. Each airplane’s time in the air is limited by 

how much fuel it has. The more fuel, the more time, but it also increases the 

unnecessary weight and the cost of operating the flight. Each flight carries an 

optimal amount of fuel with necessary spare. If the plane runs out of fuel, they 

could potentially cause more problems and become an emergency aircraft 

itself.  

 

1.3.1 Factors that cause Aircraft Delays 

According to the Federal Aviation Administration (FAA), the 5 factors that 

cause aircraft delays are as follows: 

1. Carrier Delay 

Carrier delay is caused by activities in the air carrier. These include 

aircraft cleaning, aircraft damage, awaiting the arrival of connecting 

passengers or crew, baggage, bird strike, cargo loading, catering, 

computer, outage-carrier equipment, crew legality (pilot or attendant 

rest), damage by hazardous goods, engineering inspection, fueling, 

handling disabled passengers, late crew, lavatory servicing, 

maintenance, oversales, potable water servicing, removal of unruly 

passenger, slow boarding or seating, stowing carry-on baggage, weight 

and balance delays. 

2. Late Arrival Delay 

Late arrival delay is caused by the late arrival of the same aircraft at a 

previous airport. An earlier delay at downstream airports is referred to as 

delay propagation. (FAA) 

3. NAS Delay 

NAS Delay is the delay that is under the control of the National 

Airspace System (NAS). It includes non-extreme weather conditions, 

airport operations, heavy traffic volume, air traffic control, and etc.  

4. Security Delay 

Security delay is caused by a security breach that results in evacuation 

of a terminal or concourse, reboarding of aircraft. It is also caused by 
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inoperative screening equipment and/or long lines in excess of 29 

minutes at screening areas. 

5. Weather Delay 

Weather delay is caused by weather conditions that affect the operation, 

routing of the aircraft. Among the 5 factors, weather has the most 

influence on whether or not the aircraft is going to be delayed. 

According to the National Airspace System (NAS), weather is the 

largest cause of aircraft delay. As referred to Figure 8, it accounts for 

75.48% of the delays of greater than 15 minutes over the six years from 

June 2017 to May 2022. 

 

Figure  8: Cause of Air Traffic Delays in the National Airspace System (NAS) 

(FAA, 2022c) 

 

In today's world, tropical storms, hurricanes, floods, and etc. pose huge 

challenges to the aviation industry. The weather plays an important role 

in aircraft delay. Weather is going to have more influence on aircraft 

delay in the future due to rapidly changing weather conditions in the 

World. Weather is something that has a pattern throughout the year and 

can be predictable at times. Other factors for aircraft delay can be 

prevented by using unlimited resources. For example, aircraft 

maintenance, if there is unlimited funding, the aircraft will have a lot 

more flying time than down time. Weather, on the other hand, is 

something that is observed and forecast. The shorter the forecast the 

more accurate it is.  
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At the same time, there are a number of weather conditions in different 

seasons that can cause flight delays such as hails, thunderstorms, 

microbursts, or even fog. Typical rains, snow, or the wind alone can also 

affect aircraft operations the same way.  For example, a strong head 

wind is enough to result in a delay of the flight. A heavy fog that is near 

the ground level will prevent the pilot from landing the aircraft since the 

pilot cannot see the runway. Fog usually covers a vast area of land, but 

this weather phenomena is predictable. These weather conditions can be 

monitored in the Prog Chart in Figure 9. The airline could potentially 

have a backup plan for this airport in advance to prevent further delay. 

 

 

Figure  9: Prog Chart (FAA, 2022b) 

These delays include delays that are caused by weather conditions at airports 

and enroute (Weather), FAA and non-FAA equipment malfunctions 

(Equipment), the traffic volume at an airport (Volume), runway capacity 

reduction (Runway), and other factors (Others). Flight delays below 15 minutes 

are not reported in OPSNET. ASPM reports the most dominant OPSNET delay 

cause for any flight with an ASQP Reported NAS Delay. 

 

1.3.2 OPNETS Delay Cause 

Operations Network (OPSNET) is the main source of National Airspace air 

traffic operations and delay data. The data that was collected is used to analyze 

the performance of the FAA’s ATC facilities. According to the FAA, data 

collection delays to Instrument Flight Rules (IFR) traffic are set for 15 minutes 

or more from the arrival time, experienced by individual flights, which result 

from the ATC system detaining an aircraft at the gate, short of the runway, on 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 11 

the runway, on a taxiway, and/or in a holding configuration anywhere en route. 

OPSNET data in Figure 10 shows that weather delay is the main cause of delay 

at US core airports. In 2021, the weather delay is less than in 2020, but still 

takes up the majority of the delay report. 

 

Figure  10: Sources of delays at Core 30 airport by type FY 2020 - 2021 (FAA, 

2022c) 

 

1.3.3 Current Aircraft Route Limitation 

There are certain airport routes that are popular, for example, from New York 

to Boston, there are preferred routes for both high performance and normal 

performance aircrafts. The aircraft is preferred to fly a specific route that is 

agreed between the two airports. Most of the time, pilots do not have control 

over these routes, but to fly the preferred route. As the route is based on the 

traffic flow, the pilots cannot take a more direct route to the destination airport. 

This causes unwanted delays, which result in multiple setbacks and 

unnecessary workload to the system.  

For civilian aircraft or general aviation aircraft, the preferred method is visual 

flight rules (VFR), which allows the pilot to fly without using the aircraft 

instruments. They operate by looking outside of the aircraft for visual reference 

or guidance of where they are going. Once the weather deteriorates, VFR is no 

longer possible. As a result, pilots with required skills will switch to fly IFR, 

which increases the load for the traffic controller.   

Predicting the exact amount of aircraft arrival delay in minutes can be an 

incredibly challenging task due to a multitude of variables that significantly 

influence flight schedules. The diverse factors, such as the flexibility in pilot-
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chosen routes, varying weather conditions at different altitudes, and the impact 

of headwinds and tailwinds, pose considerable obstacles to precise predictions. 

The ability of pilots to select different routes based on real-time conditions and 

air traffic can lead to substantial deviations in flight durations. While some 

routes may encounter less congestion and more favorable weather conditions, 

others might face unexpected air traffic or adverse weather patterns, impacting 

the overall time taken for the journey. 

Weather conditions, especially at different altitudes, play a crucial role in 

determining the actual flight duration. Variations in wind speed and direction, 

particularly headwinds and tailwinds, exert a significant influence on an 

aircraft's speed. Strong headwinds can slow down the aircraft, potentially 

causing delays, while tailwinds can provide a boost, reducing travel time. 

The challenge in predicting these delays is compounded by the limitations of 

current datasets used in predictive models. While historical data forms the 

foundation for these models, they often lack real-time, granular information on 

dynamic weather changes, specific airspace conditions, or sudden operational 

issues that can significantly impact flight schedules. 

Improving the accuracy of predictive models for aircraft arrival delays 

necessitates the integration of more comprehensive and real-time data. 

Incorporating live weather updates, detailed airspace conditions, and real-time 

aircraft performance metrics could enhance the predictive capabilities of these 

models. The intricate interplay of various variables within the aviation 

environment introduces complexities that are challenging to encapsulate fully 

in predictive models. The dynamic nature of aviation operations may continue 

to present hurdles in accurately predicting specific arrival delay times in 

minutes. 

 

1.4 Problem Statement  

The global airline industry has been experienced exponential growth, primarily 

propelled by economic expansion. Although demand for flights during the first 

hit of the Covid-19 dropped sharply, it bounced back as soon as the pandemic 

started to recover and is expected to surpass the number of pre-covid time. As 

the number of passengers and flights increase, the air traffic increases. This 

raises a question of how the industry is going to respond to this change. 

The US airline industry, among the world’s largest, operates within a highly 

competitive landscape. Managing both high daily traffic and minimizing costs 
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to outpace competitors is imperative. Consequently, many airlines have 

implemented policy changes and new strategies to enhance operational 

efficiency. Some have launched new marketing campaigns, aiming to 

maximize profitability. However, persistent delays and cancellations remain 

significant issues, disrupting progress across various areas, from cost reduction 

to customer satisfaction. 

To investigate the issue, there are many different types of delays as well as 

many different factors that cause delays. If there is a slight chance to predict 

whether the flight is going to be delayed and what the causes are, it will 

provide the logistical solutions that could be used to prevent further delays. 

Therefore, aircraft arrival prediction could potentially be a solution to improve 

the efficiency of the operation and the effectiveness of the contingency plans to 

respond to such events. 

To understand more of the issues, machine learning is chosen to be a tool to 

extract insights on aircraft delays. Initially, available data is utilized while 

eliminating irrelevant information to predict future delays. This data undergoes 

classification through a learning method. The model is then tested using a 

separate set of data to gauge its accuracy. Any room for improvement, whether 

adjusting different features or incorporating additional data, leads to 

corresponding model adjustments. Consequently, the prediction model 

becomes capable of foreseeing potential aircraft delays. 

The outcome of this prediction model empowers aircraft operators to adjust 

schedules and allocate sufficient buffer time. Seasonal and year-round schedule 

adjustments can be made, potentially enabling airlines to save substantial 

amounts while providing sustainable and predictable logistical support both on 

the ground and in the air. 

The result will not only benefit the airlines, but also help increase the 

awareness of customers of the airlines as well as equip the workforce with a 

better tool to prepare for uncertainties efficiently and effectively. Moreover, 

with the current crisis of global warming, we can expect to see more severe 

weather issues that cause flight delays and cancellations. At the same time, the 

delay itself is the cause of more carbon emission. Reducing the downtime and 

increasing the operation efficiency would also be a sustainable solution and 

could potentially contribute to the better environment.  
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1.5 Objectives and Scope 

Objectives: 

1. To analyze the root causes of flight delays. 

2. To develop a prediction model for aircraft arrival delay using machine 

learning methods over a period of time. 

Scope: 

1. Delay is based on the arrival time of the aircraft 

2. Delay is defined as delay of 15 minutes or more after the scheduled 

arrival time. 

3. The data used in this thesis is based on the US aviation database 

collected from January 2019 to March 2020. 

4. This thesis focuses on 4 classification algorithms: Random Forest, 

AdaBoost, CatBoost, and Gradient Boosting.  

5. Conduct an in-depth analysis on the optimal model to elaborate its 

performance characteristics.  

 

1.6 Benefits 

For Customers: 

1. A better understanding of causes and what to expect from delays 

2. An ability to prepare for delays once they are confirmed, change plans, 

and avoid schedule conflicts. 

3. An ability to purchase travel insurance for compensation prior to the 

events 

For Aircraft Operators: 

1. Increasing efficiency for flight scheduling in different time throughout 

the year.  

2. Ensuring airplane continuity with schedule adjustments and plane 

preparation 

3. Improving customer relationships by offering reliable and trustworthy 

flight schedule  

4. Reducing costs such as operational cost, fuel cost. 
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For Insurance Companies: 

1. Appropriately adjusting terms and agreements to be more beneficial to 

stakeholders 

2. Creating traveling insurance promotions that show confidence in 

providing necessary help to customers 

For Environment: 

1. Reducing carbon footprints from decreased downtime and increased 

efficiency in the operation 

 

1.7 Research Timeline 

The timeline of the research can be found in Table 1. 

 

Table  1 Research Timeline 

 Jul 

22 

Aug 

22 

Sep 

22 

Oct 

22 

Nov 

22 

Dec 

22 

Jan 

23 

Feb 

23 

Mar 

23 

Apr 

23 

May 

23 

Jun 

23 

Jul 

23 

Aug 

23 

Sep 

23 

Oct 

23 

Nov 

23 

Literature Review                  

Preliminary 

Analysis 

                 

Data Collection                   

Preliminary 

Findings 

                 

Proposal Paper and 

Deck 

                 

Aircraft Delay  

Prediction Model 

                 

Results and 

Conclusion 

                 

Defense Paper and 

Deck 

                 

Defense 

Submission 
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Chapter 2: Literature Reviews 
 

The purpose of this chapter is to research and study existing papers and 

theories related to aircraft arrival delays.  

 

2.1 Existing Research 
 

2.1.1 Airline Schedule Buffer 

Since the historic growth in air travel, a lot of problems have come up for 

passengers and airlines throughout the world. Flight time between two airports 

has been influenced by many random factors, such as weather, mechanical 

issues, and aviation congestion. Airlines have been scheduling their flights 

using a schedule buffer.  

The schedule buffer includes both flight buffer and ground buffers. A buffer is 

the extra amount of time added to the minimum feasible flight or ground time 

to get the scheduled flight. Flight buffers reduce the chance of an aircraft being 

delayed. Also, to mitigate the delay propagation. (Brueckner et al., 2021a)  

The current study provides the flight delay data as a statistical number and 

buffer estimation. As aircraft delay affects the whole schedule of flying and 

propagates throughout the schedule. (Brueckner et al., 2021a) 

Currently, the on-time performance can be realized through the amount of 

buffer time used for each flight segment. (Wu, 2005) 

The buffer time consists of ground buffer times and airborne buffer time. The 

smaller the buffer, while maintaining the airline on time performance is the 

ultimate goal of the airline. By adding time more than the minimum necessary 

in and between flights, unexpected delays can be absorbed and the effect of the 

delay to other flights can be mitigated or avoided (Nabin, 2016).  

For an idealistic world the buffer times will be able to absorb all of the delays. 

The buffer time is there to control small delays, which results in maximizing 

fleet utilization (Wu, 2005).  

Airline schedules buffers into their schedule by estimating the amount of time 

an aircraft takes to travel and adding the delay factor to the total time in order 

to compensate for lost time. Airlines have also adjusted their resources both 

human and property management to overcome flight delay.  
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However, airline schedule buffers come with a lot of problems. These problems 

are:  

1. Over buffering: the schedule has over enough time for the aircraft to 

arrive on time. This leads to aircraft waiting to get into the gate or ramp.  

2. Under buffering: the aircraft still remains in delay condition.  

3. Lack of aircraft utilization: the aircraft is not being used enough and 

spends a lot of time staying on the ground.  

4. Higher carbon footprint: The aircraft engine has to remain on for a 

longer period of time while waiting to be parked at its location.  

These problems will be analyzed in Chapter 3: Methodology. However, this 

paper also investigated other methods: Aviation Infrastructure and Human 

Resource Investment and Aircraft Delay Prediction Model. 

 

2.1.2 Aviation Infrastructure and Human Resource Investment 

As we all know the aviation infrastructure is limited due to the number of 

airports and logistical supply chain of the system. Money is one of the most 

important driving factors of the aviation infrastructure supply chain.  

Payment to airline crew is also determined in part by the length of scheduled 

flight, and by increasing the buffer time it increases the crew expense (Nabin, 

2016). Next is if the aircraft doesn’t need the buffer, then aircraft might have 

further problems with gate or ramp availability, which increase the airline 

operating cost (Nabin, 2016). These factors increase the carbon footprint of the 

airline and create global warming gas. There are more and more passengers 

who choose air travel as demand increases. The current system will be handling 

more and more load. The system will be prone to an increased number of flight 

delays. If more investment has been made to the aviation infrastructure it will 

be able to handle more load and be more prepared. Using comparative static 

analysis shows capacity constraint suppresses demand, reduces flight frequency 

and increases passenger cost. (Zou and Hansen, 2012) 

However, the challenges for this method are the following: 

1. There is no unlimited amount of money. 

2. The equipment or manpower in reserve will not all be used. 

3. The airlines will be over paying for their provided service.  

4. The airlines will need to build awareness about the resource that was 

used in the system to build a precise schedule with absolutely minimum 

delay for the passengers. 
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This method could be optimized with the prediction model and will be 

explained further in Chapter 3: Methodology. 

 

2.1.3 Aircraft Delay Prediction Model 

An Aircraft Delay Prediction Model is a machine learning model that uses 

different methods and aviation data to predict the likelihood of an aircraft 

experiencing delays. Some of the methods used to create this model include 

Random Forest, AdaBoost, Gradient Boosting, and decision trees. 

The model is designed to analyze various factors that could potentially cause 

delays, such as weather conditions, air traffic congestion, technical problems, 

and crew availability. By processing this data, the model generates a prediction 

for the likelihood of an aircraft experiencing delays. 

Over time, the model has been refined using different methods and data sources 

to improve its accuracy and F-1 score. This ongoing effort is crucial to ensure 

the model is effective in predicting delays and minimizing disruption to air 

travel.  

One study conducted by Hu et al. (2021) used Random Forest to predict flight 

delays using data from Guangzhou Baiyun International Airport. They defined 

delay as an aircraft arriving five minutes or more after the scheduled arrival 

time. The study found that the optimal parameters for the Random Forest 

model were 50 trees, optimal leaf size of 5, and the minimum mean square 

error of 0.1096. The study achieved an accuracy rate of 66%, which was the 

most accurate and least amount of error compared to other models. 

Liu et al. (2020) conducted a study on generalized flight delay prediction using 

Gradient Boosted Decision Trees. Their data was collected from the Civil 

Aviation Administration of China (CAAC), and they defined delay as a 15-

minute delay in arrival time. The study found that the Random Forest model 

outperformed other models with an accuracy rate of 78.02%. They also focused 

on weather data, including weather conditions at the departure and arrival 

airports, wind direction, and wind power. The study found that the Gradient 

Boosted Decision Tree method provided the highest accuracy rate of 87.72%. 

Gui et al. (2020) used Automatic Dependent Surveillance-Broadcast (ADS-B) 

data in their study to predict flight delays. The ADS-B data contains flight data 

such as ICAO identity number, position, and velocity. The study also used 

weather information such as wind direction, wind speed, and weather 

conditions. They used Random Forest-based and Long Short-Term Memory 

(LSTM)-based architectures to predict flight delays. The Random Forest-based 
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method achieved an accuracy rate of approximately 90% for binary 

classification and was able to overcome the overfitting problem. 

In another study, Khaksar and Sheikholeslami (2017) analyzed flight delays 

from US and Iranian networks using decision trees, Random Forest, Bayesian 

classification, K-means clustering, and hybrid approaches. The study found that 

the data from different countries can be related to each other, and the prediction 

accuracy in the US was slightly lower than that in Iran. 

In summary, various methods and data have been used to develop aircraft delay 

prediction models. These models have shown improvement in accuracy and F-

1 scores, and they continue to be a valuable tool for airlines to manage their 

operations and improve customer satisfaction. 

Based on the information provided above, here are some potential challenges of 

aircraft delay prediction using machine learning methods: 

1. Data quality and quantity: One of the biggest challenges in developing 

accurate machine learning models for predicting aircraft delays is 

having access to high-quality and sufficient amounts of data. The quality 

of data can vary depending on the source and method of collection, and 

missing or inaccurate data can affect the accuracy of the model. 

Additionally, the amount of data needed to develop accurate models can 

be quite large, and collecting and processing this data can be time-

consuming and resource-intensive. 

2. Feature selection: Another challenge is selecting the most relevant 

features or variables to use in the model. There are many factors that can 

contribute to aircraft delays, including weather conditions, air traffic 

congestion, mechanical issues, and human error. Identifying the most 

important factors to include in the model can be difficult, and choosing 

the wrong features can lead to inaccurate predictions. 

3. Model selection and tuning: There are many different machine learning 

algorithms and techniques that can be used for aircraft delay prediction, 

and selecting the best approach for a particular dataset can be 

challenging. Additionally, properly tuning the model parameters to 

optimize its performance can be time-consuming and require extensive 

testing. 

4. Dynamic nature of data: The factors that contribute to aircraft delays can 

vary over time and in different locations. This can make it difficult to 

develop accurate and reliable models that can be applied to different 

situations. Additionally, the model may need to be updated regularly to 

account for changes in the underlying data. 
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5. Interpretability: Another challenge of machine learning models is 

interpretability. It can be difficult to understand how a model arrived at 

a particular prediction, which can make it difficult to identify and 

address any biases or errors in the model. This can be particularly 

important in the context of aircraft delay prediction, where accurate and 

transparent models are essential for ensuring passenger safety and 

minimizing disruptions to air travel. 

These insights will be applied to the prediction model, which will be 

thoroughly explained in Chapter 3. 

 

2.2 Existing Research Comparison 

Different airlines have their ways of dealing with delayed aircrafts. Airlines 

have been overestimating their flight time to make sure that they are on time. 

This is the current solution that most airlines are doing to compensate for the 

lost time. The airlines will want to have a flight delay prediction model to 

improve their schedule, build trust and increase efficiency.  

A traditional way is to simply focus on flight time equal to distance divided by 

time. After the time is calculated then the delay factor is added on to the total 

time. If the aircraft is delayed often then the scheduler will then make an 

adjustment to the schedule to accommodate the longer commute time. 

Nevertheless, the airline does not have control over the weather and its effect 

on aircraft delay. Therefore, a lot of weather data and weather prediction 

models are available.  

Aircraft scheduling buffer has been a widely used method to compensate for 

aircraft flight delay. It has been used to add more time to the schedule for 

multiple types of delay. Brueckner et al. (2021) utilized the method of airline 

scheduling buffer choice and study the shocks influencing flight times.  

Brueckner et al. (2021) provided an insight on the theoretical model to analyze 

the airline’s choice of buffering method, and also suggest that a mitigation of 

delay propagation can be recovered entirely by the ground buffer and the 

second is flight buffer.  

Hajko and Badánik (2020) suggested both benefits and the drawback of the 

airline scheduling buffer, while using artificial data instead of actual flight data. 

These specific components caused delays in passenger and baggage, cargo and 

mail, aircraft and ramp handling, technical and aircraft equipment, damage to 

aircraft & automated equipment failure, flight operations and crewing and other 

airline related causes. As the author mentioned, weather is not the reason for 

every flight delay, but when they do the delay is significant.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 21 

Another method that is not widely used is to upgrade the aviation 

infrastructure. Zou and Hansen (2012) suggested this method and discovered 

that there is a balance in the complicated set of adjustment between passenger 

demand, air fare, flight frequency, aircraft size, and flight delays which will 

lead to an equilibrium. Currently there are so many aircraft that can land at the 

same time, while building another runway or an airport will increase the 

capacity of the aviation system.  

Flight delays have been a significant factor at each airport. It has a huge impact 

on the economic cost and consequences. Federal Aviation Authorities and a lot 

of research has been conducted to measure aviation delay and its economic 

impact. On the other hand, there are a lot of reports of how much weather 

affects the environmental cost is widely available Dissanayaka, (2019).  

It is significant that each delay must be stopped before it starts to propagate and 

affect other flights. It is apparent that each aircraft delay causes further delays 

in the schedule. Schedule buffer has its downside as well. Buffer makes the 

flight schedule and turnaround time longer than necessary. It also reduces the 

utilization of the aircraft and drives the operating cost higher.  

Flight delay prediction has been the topic of multiple studies in the past. In 

2019, Khaksar and Sheikholeslami (2019) had conducted a study between the 

aviation data, based of US and Iran through multiple prediction models. They 

found that the prediction model could be applied to different countries or 

locations and the prediction model would predict the outcome just fine 

although there are different reasons for aircraft delays for both of the locations.   

Random Forest method is widely used to predict aircraft delay. Gui (2020) has 

applied Random Forest method to his ADS-B data from China as well. There 

are multiple prediction methods that Gui used, but the best accuracy model was 

the Random Forest model. Liu (2020) has compared multiple prediction 

methods including Gradient Boosting, K-nearest Neighbors, Support Vector 

Machine (SVM), and Random Forest method. The best predicting model for 

Liu was Gradient Boosted decision tree method. Another paper from Hu (2020) 

also affirms that the method of Random Forest is used to predict flight delay as 

well. Therefore, Random Forest should be set as a baseline for future study and 

comparison with other prediction models.   

Since the world is going to more personalize traveling, smaller aircraft are 

preferred. More and more smaller body aircraft are in demand. On the other 

hand, the aviation infrastructure has limited resources, and larger aircraft is 

preferred. This thesis would not focus on aircraft maintenance, which is mostly 

predictable and prepared for as well as the load on the aviation infrastructure 
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that could be calculated. Therefore, this thesis would not focus on increasing 

investment to the business of aviation, but would focus on aircraft delay 

predictions.  

At the end of the day, it all comes down to the money and the breakeven point 

for the airline. The industry is open to finding a possible solution and cure to 

each specific type of delay. The accurate model will save a lot of money for the 

airline.  

A summary of the comparison of the journal articles is shown in Table 2. 

 

Table  2 Comparison with other journal articles 

Reference Methodology Objective 

(Mueller and 

Chatterji) 

Post Operation Evaluation Tool (POET) 

using delay time probability functions 

Acquire the right distribution 

model for aircraft delay 

schedule   

(Wu, 2005) Markov Chain algorithm: Schedule reliability buffer 

(Zou and Hansen, 

2012) 

Comparative static Aviation infrastructure 

investment 

(Zou and Hansen, 

2012) 

Utilizing the supply and demand 

equilibrium to understand the requirement 

of the system. 

Aviation capacity investment 

(Kafle and Zou, 

2016) 

Newly formed delay at node refers to delay 

that occurs between node and its immediate 

upstream node. 

Additional times than the 

minimum necessary in and 

between flights 

(Kasirzadeh et al., 

2017) 

Airline Crew Scheduling: Models, 

Algorithms, 

Aircrew scheduling 

deconflict using column 

generation  

(Khaksar and 

Sheikholeslami, 

2019) 

Using information from the US and Iran to 

find the best method of prediction. The 

prediction model is then applied to both 

country aviation data.  

Predict aircraft delay using 

Decision Tree, Random 

Forest, Bayesian 

classification, K-means 

clustering and hybrid 

approach 
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Table 2 Comparison with other journal articles (continued) 

Reference Methodology Objective 

(Dissanayaka et al., 

2019) 

Evaluate the impact of departure flight 

delays at ground operations with 

International Civil Aviation Organization 

(ICAO) engine emission databank 

Evaluation of emissions from 

delayed departure flights 

(Hajko and Badánik, 

2020) 

Analyzing the impact of the schedule buffer 

on various operational factors cost, aircraft 

usage etc.  

Implement schedule buffer 

into the schedule 

(Gui et al., 2020) Collecting data from automatic dependent 

surveillance broadcast (ADS-B) data 

including basic weather information and 

conditions.  

Using Random Forest-based 

and LSTM-based 

architectures to implement 

the prediction of flight delays 

(Liu et al., 2020) Using data from Civil aviation 

administration of China (CAAC) to predict 

flight delay using Gradient Boosting and 

decision trees.  

Using Gradient Boosting, 

Decision Tree, K-nearest 

Neighbors, Support Vector 

Machine, Naive Bayes 

Classifier and Random 

Forest method 

(Brueckner et al., 

2021b) 

Random shocks influencing flight times are 

discrete rather than continuous 

Schedule buffer to prevent 

delays 

(Hu et al., 2021) Research of flight delay prediction based on 

Random Forest method 

Using Random Forest to 

predict flight delays 

(Brueckner et al., 

2021a) 

Analyzing different choices for single and 

two flight models. 

Schedule buffer choosing 

which method to mitigate the 

propagated delay 

 

By using the flight data to build a prediction model, this thesis expects to create 

benefits to the aircraft operators, passengers, and all the stakeholders as 

mentioned in 1.6 Benefits 

 

2.3 Related Theories 

Machine learning is a subfield of artificial intelligence that focuses on 

developing algorithms and models capable of learning and making predictions 

or decisions without being explicitly programmed. It involves the use of 
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statistical techniques to enable computers to identify patterns, extract 

knowledge, and continuously improve their performance based on data. One of 

the key concepts in machine learning is supervised learning, where algorithms 

are trained on labeled data to make predictions or classifications.  

There are mainly two types of supervised machine learning algorithms: 

Classification, which utilizes AI to group different objects (values) into 

categories, known for tasks such as photo identification, and Regression, which 

predicts an output value based on a set of features and is commonly used to 

forecast prices or values of objects. Within the realm of supervised learning, 

tree-based machine learning algorithms have emerged as highly popular 

choices for classification tasks. In the case of aircraft arrival delay prediction, 

the most suitable algorithm falls under the supervised classification machine 

learning algorithms category. 

Tree-based machine learning algorithms, including decision trees, Random 

Forest, and gradient boosting, have gained widespread popularity for a variety 

of compelling reasons. Firstly, decision trees are inherently interpretable and 

mirror human decision-making processes by creating a tree-like structure of 

logical, easy-to-follow rules. This interpretability is vital in applications where 

understanding and explaining the decision-making process is crucial, such as in 

medical diagnoses, credit risk assessments, or legal proceedings. 

Random Forest, an ensemble of decision trees, offers a substantial 

improvement in predictive accuracy by combining the individual strength of 

multiple trees. It mitigates the risk of overfitting, provided robustness against 

noisy or irrelevant features, and can handle mixed data types effectively. The 

ability to handle missing values and outliers adds to its appeal, making it well-

suited for complex datasets with a high number of features. Moreover, Random 

Forest provided feature importance, aiding in feature selection and 

understanding the data's underlying patterns. 

Gradient boosting algorithms, such as XGBoost, LightGBM, and CatBoost, 

have also gained popularity due to their outstanding predictive performance. 

They iteratively enhance the model's accuracy by correcting the errors of 

previous models, making them highly effective in predictive tasks where 

precision is paramount. These algorithms excel in both classification and 

regression problems and offer impressive flexibility through parameter tuning, 

allowing data scientists to fine-tune the model's behavior for specific tasks. 

Tree-based algorithms exhibit robustness against outliers and imbalanced 

datasets, reducing the need for extensive data pre-processing. They can handle 

mixed data types, including numerical and categorical features, simplifying the 
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workflow and making them accessible to a broader range of users. 

Furthermore, they offer strong support for dealing with missing data, reducing 

the necessity for data imputation. Their adaptability to various data conditions 

and their capacity to tackle violations of assumptions make them suitable for a 

wide array of applications, including finance, marketing, healthcare, and 

natural language processing. 

The popularity of tree-based machine learning algorithms in the context of 

classification tasks can be attributed to their interpretability, versatility, 

robustness, predictive power, and adaptability to various data scenarios. These 

models continue to be the preferred choice for many data scientists and 

machine learning practitioners, offering a powerful toolset for solving a diverse 

range of real-world problems. While decision trees may be easier to compute 

and interpret, their susceptibility to overfitting makes Random Forest an 

attractive choice. The inclusion of additional features may be necessary to 

enhance prediction accuracy. On the other hand, AdaBoost, with its boosting 

methodology, offers simplicity and a shorter runtime, making it a valuable 

contender for predictive tasks where a straightforward approach is desired. 

 

2.3.1 Random Forest Classification 

Random Forest is a popular and commonly used algorithm. Random Forest is a 

supervised machine learning algorithm that is used with classification and 

regression problems. It can handle the data set containing continuous variables. 

The reason of using the first two methods of Random Forest and AdaBoost is 

to determine whether using the full complex forest is different than using a 

stump. The ideology is to start with smaller model combining multiple models 

together.  

In the Random Forest method, the way that the model thinks are parallel. 

Random Forest method includes diversity and stability. Each tree in the 

Random Forest model is created independently, out of different data and 

attributes. The result is based on majority averaging. The Random Forest 

Classifier, which can be seen in Figure 11, was chosen as the estimator in the 

data. 
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Figure  11: Random Forest Classifier (FreeCodeCamp, 2020) 

 

Equation (1) presents the classification outcome when values of 0,1…,K-1 for 

m be the proportion of class k observations in node m. If m is a terminal node, 

predict_proba for this region is set to 𝑝𝑚𝑘. Common measures of impurity are 

with Equation (2). The Entropy uses the Shanon Entropy as a tree node to split 

different criterion which is also equal to minimizing the log loss. This is shown 

in Equation (3). 

 

                                                 𝑝𝑚𝑘 =  
1

𝑛𝑚
∑ 𝐼(𝑦 = 𝑘)                                 𝑦𝜖𝑄𝑚

(1) 

Gini Impurity Equation: 

                                           𝐻(𝑄𝑚) =  ∑ 𝑝𝑚𝑘(1 − 𝑝𝑚𝑘)                                  𝑘 (2) 

 

Log Loss or Entropy Equation: 

                                           𝐻(𝑄𝑚) = − ∑ 𝑝𝑚𝑘𝑙𝑜𝑔(𝑝𝑚𝑘)                                𝑘 (3) 

 

As mentioned before, Random Forest is used as a supervised learning 

algorithm method, which can be used for classification and regression. The 

trees are the subsection of the forest. For a forest with a lot of trees, it becomes 
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richer. The Random Forest creates a decision tree on randomly selected data. 

This function gets predictions from each tree and produces the best solution. 

Also, it produces a good indicator of the importance of the data. The advantage 

of Random Forest is that it takes all of the information and averages out the 

prediction, which cancels out the bias.  

The Random Forest algorithm offers a range of hyperparameters that allow for 

fine-tuning and customization of the model to suit the specific needs of a 

machine learning task. Some of the other hyperparameters that were used: 

'min_weight_fraction_leaf': This parameter sets the minimum weighted fraction 

of the total sum of weights (of all input samples) required to be at a leaf node. 

It can be used to control the minimum amount of data required for a node to be 

created as a leaf. 

'max_leaf_nodes': When set to a non-None value, this parameter limits the 

maximum number of leaf nodes in a tree, effectively controlling the depth and 

complexity of each decision tree in the ensemble. 

'min_impurity_decrease': It specifies a threshold for impurity decrease, where a 

split is considered only if it results in a decrease in impurity above this 

threshold. This parameter can be used to regulate the splits made during tree 

construction. 

'bootstrap': If set to True, bootstrapping is enabled, meaning that the algorithm 

will use random resampling with replacement when constructing individual 

trees. Bootstrapping can increase the diversity of the ensemble. 

'oob_score': When set to True, this parameter enables out-of-bag (OOB) 

scoring. OOB samples are used to estimate the model's generalization accuracy, 

providing a useful metric for assessing the model's performance. 

'n_jobs': This parameter allows you to specify the number of CPU cores to 

utilize during model fitting. Parallel processing can significantly speed up the 

training process, especially for large datasets. 

'random_state': By setting this parameter to a fixed value (an integer), you can 

ensure reproducibility in model training. It seeds the random number generator, 

making your results consistent across different runs. 

'verbose': This parameter controls the verbosity of the model, where higher 

values result in more detailed output during training. Setting it to 0 typically 

means minimal output, while higher values provide more information. 
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'warm_start': If set to True, this parameter allows you to reuse the existing 

solution and continue training the Random Forest. It can be beneficial when 

you want to incrementally update the model with new data. 

'class_weight': This parameter addresses class imbalances by assigning 

different weights to classes. When set to "balanced," the algorithm 

automatically adjusts class weights based on their frequencies in the training 

data. 

'ccp_alpha': It controls the complexity of the decision trees by setting a non-

negative value for the cost-complexity pruning (CCP) parameter. Higher values 

lead to more pruning, simplifying the trees. 

'max_samples': This parameter limits the number of samples used for training 

each tree, which can be useful for controlling the composition of the ensemble, 

especially when working with large datasets. 

 

2.3.2 AdaBoost Classification 

AdaBoost is a method that uses the completed training dataset to train. It is a 

sequential process. Each of the following models tries to correct the errors of 

the previous models. The model tries to correct the errors so, for the next 

iteration, it is better as shown in Figure 12. The stump is a single unit or 

iteration of AdaBoost. A stump is a decision tree with only single split.  

 

Figure  12: Single Unit of AdaBoost Model. (Medium, 2019) 

 

Each model is trained on the same dataset, but each of the data sample is 

assigned a different weighting factor in the previous model’s success. It is the 

learning process in sequence. The weighing factor is then reassigned in every 

iteration to make a better classifier than the previous iteration. The process 

begins when a subset is selected from the original dataset. Then all training 

examples are assigned the same weight. A base model is then trained on this 
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subset. The final model of this subset will be used to make predictions on all of 

the data. The errors are calculated using the actual values and the predicted 

values. Each sample has a sample weight that will determine how much it will 

contribute to the final outcome of the model.  

The AdaBoost classification offers a wide range of hyperparameters that allow 

for fine-tuning and customization of the model to fit the specific needs of a 

machine learning task. Some of the hyperparameters that were used: 

n_estimators: The n_estimators hyperparameter controls the number of weak 

learners (base estimators) to be used in the ensemble. Adjusting this variable 

allows you to find the right balance between model complexity and 

performance. Increasing the number of estimators can lead to better accuracy, 

but it may also increase the risk of overfitting. Conversely, using too few 

estimators may result in underfitting. Therefore, adjusting n_estimators is 

crucial to achieve the best trade-off between bias and variance in your model. 

algorithm: The algorithm hyperparameter defines the boosting algorithm used 

by AdaBoost. The choice between 'SAMME' and 'SAMME.R' impacts the 

performance of the algorithm. 'SAMME.R' typically performs better than 

'SAMME' and is recommended for multiclass classification problems. 

Adjusting this hyperparameter ensures that the algorithm aligns with the 

specific requirements of your task. 

learning_rate: The learning_rate hyperparameter influences the contribution of 

each weak learner to the final prediction. A smaller learning rate makes the 

model more conservative and robust, while a larger learning rate can lead to 

overfitting. By adjusting this variable, you can control the impact of individual 

estimators on the ensemble's prediction. Smaller values are often favored when 

striving for a more reliable model. 

base_estimator_criterion and base_estimator_splitter: These hyperparameters 

allow you to specify the criterion and splitting strategy for the base estimator, 

which is typically a decision tree. Adjusting these variables can tailor the 

underlying decision trees to the characteristics of your data. For example, you 

can use 'entropy' or 'gini' as the criterion to measure impurity differently or 

experiment with 'best' or 'random' as the splitting strategy. Fine-tuning these 

hyperparameters can help you create base estimators that capture data patterns 

more effectively. 
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2.3.3 CatBoost Classification 

Category boost or CatBoost is an algorithm for Gradient Boosting on decision 

trees. A sample of CatBoost model is as shown in Figure 13. It is made as a 

classifier to deal with categorical features automatically. In every step, the 

leaves from the previous tree are split using the same condition. The feature-

split pair that has the lowest loss is selected and used throughout the level’s 

nodes. This balance tree helps improve the efficiency in the implementation, 

decrease the prediction time, make swifts model appliers, and control 

overfitting.   

 

 

Figure  13: Category Boost Model (Toward Data Science, 2022). 

 

Another feature of CatBoost is ordered boosting. The classic boosting can 

easily cause overfitting on small dataset due to prediction shift. CatBoost uses 

the concept of ordered boosting, which is another way to train the model on a 

smaller set of data while including the residuals on another set of data. This 

prevents overfitting.  

Last feature of the CatBoost is native feature support. CatBoost supports all 

types of features. It can be numeric, categorical, or text, which saves time and 

effort of pre-processing. For example, the native feature support provides one-

hot encoding, statistics based on category, search for combination, and ranking. 

This reduces the pre-processing time and limits the possible combinations to 

make a good model as well.  

The CatBoost classification offers a smaller range of hyperparameters that 

allow for fine-tuning and customization of the model when compare to other 

classification and model to fit the specific needs of a machine learning task. 

Some of the hyperparameters that will have an effect on the accuracy that were 

used: 
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Iterations: This hyperparameter determines the number of boosting iterations or 

trees in the ensemble. A higher number of iterations can lead to better 

performance, but it can also increase the risk of overfitting, so it's essential to 

find the right balance.  

Learning_rate: The learning rate controls the step size during the optimization 

process. It influences the impact of each tree on the final prediction. Smaller 

learning rates make the model more conservative and robust, while larger rates 

can lead to overfitting. Tuning this parameter helps you achieve the right trade-

off between accuracy and generalization. 

Depth: The depth hyperparameter defines the maximum depth of each decision 

tree in the ensemble. Deeper trees can capture complex relationships in the data 

but may also lead to overfitting. You can adjust this parameter to control the 

complexity of the model. 

 

2.3.4 Gradient Boosting Classification 

Gradient Boosting is an algorithm that builds an additive model in forward 

stage-wise fashion. A sample how each stage look is as shown in Figure 14. 

The model allows for optimization of arbitrary differentiable loss functions. 

Each stage is defined as n_classes_, which are regression trees that are fit on 

the negative gradient of the loss function. The parameters consist of loss, 

learning_rate, n_estimators, subsample, criterion, min_samples_split, 

min_samples_leaf, min_weight_fraction_leaf, max_depth, min_impurity_decrease, 

init, random_state, max_features, verbose, max_leaf_nodes, warm_start, 

validation_fraction, m_iter_no_change, tol, and ccp_alpha. The loss function is to 

be optimized. It is directly link to the logistic regression, which uses binomial 

and multinomial deviance.  
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Figure  14: Gradient Boosting Model (Toward Data Science, 2019). 

 

Gradient Boosting recovers the AdaBoost algorithm. Gradient Boosting is a 

powerful machine learning algorithm that combines multiple weak learners to 

create a strong predictive model. The Gradient Boosting model offers a wide 

range of hyperparameters that allow for fine-tuning and customization of the 

model to fit the specific needs of a machine learning task. Some of the 

hyperparameters that were used: 

n_estimators: This hyperparameter controls the number of weak learners (base 

estimators) to be used in the ensemble. Increasing the number of estimators 

generally leads to better accuracy, but it can also increase the risk of 

overfitting. It's crucial to find the right balance between model complexity and 

performance by adjusting this parameter. 

learning_rate: The learning rate influences the contribution of each weak 

learner to the final prediction. A smaller learning rate makes the model more 

conservative and robust, while a larger learning rate can lead to overfitting. 

Adjusting this variable allows you to control the impact of individual 

estimators on the ensemble's prediction. 
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min_samples_leaf: The min_samples_leaf hyperparameter controls the 

minimum number of samples required to be at a leaf node. Adjusting this 

parameter can impact the model's ability to capture fine-grained details in the 

data. 

min_samples_split: The min_samples_split hyperparameter sets the minimum 

number of samples required to split an internal node. Adjusting this parameter 

can affect the model's sensitivity to small variations in the data. 

max_depth: The max_depth hyperparameter controls the maximum depth of 

the individual decision trees used in the ensemble. Adjusting this parameter can 

prevent overfitting. Smaller values limit the tree's depth, making the model 

more robust, while larger values may result in overfitting. 

max_features: This hyperparameter determines the number of features 

considered for splitting at each node. For example, setting it to "sqrt" means the 

square root of the total number of features is considered. Experimenting with 

different values for max_features can help fine-tune the model's performance. 

criterion: The criterion hyperparameter defines the function to measure the 

quality of a split. Typically, options like 'friedman_mse' are used for gradient 

boosting, but you can experiment with other criteria such as 'mse' or 'mae' for 

regression tasks. 

subsample: The subsample hyperparameter controls the fraction of samples 

used for fitting the weak learners. Setting it to a value less than 1.0 introduces 

randomness and can help reduce overfitting. 

Fine-tuning these hyperparameters is essential to achieve the best balance 

between bias and variance in your Gradient Boosting model, ultimately leading 

to better predictive performance. 

 

2.3.5 Tuning Hyperparameter  

GridSearchCV is known for its comprehensiveness. It conducts through search 

through predefined hyperparameter combinations, ensuring that no potential 

configuration goes unexplored. This approach is valuable since every 

combination could be the absolute best hyperparameters for the model. 

The simplicity and ease of use make GridSearchCV a good option. Machine 

learning user at all levels can readily understand and employ this method. It 

involves specifying a grid of hyperparameters to explore, and the tool takes 

care of the rest, making it accessible to both beginners and experienced data 

scientists. 
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While GridSearchCV has a lot of benefits, it might not always be the ideal 

choice. In cases where the hyperparameter space is extensive and exploring 

every combination is computationally impractical, other methods like 

RandomizedSearchCV, Bayesian optimization, or genetic algorithms can offer 

more efficient and resource-friendly alternatives. Similarly, when the 

relationships between hyperparameters are complex and intertwined, 

GridSearchCV may not effectively navigate the search space. More advanced 

methods can often better capture these intricate interactions. 

GridSearchCV provides a reliable baseline for model performance. It can 

establish a benchmark for the achievable results with different 

hyperparameters. This baseline becomes a reference point against other method 

which can be use to compare the outcomes of more sophisticated 

hyperparameter tuning methods. GridSearchCV is a valuable and essential tool 

for hyperparameter tuning, especially when simplicity, thoroughness, and 

reproducibility is essential. It is just one piece of the hyperparameter 

optimization puzzle, and its utility depends on the specific characteristics of the 

dataset, the available computational resources, and the complexity 

hyperparameter space. 
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Chapter 3: Methodology 
 

The purpose of this chapter is to introduce the methods used in this thesis. First, 

conduct data collecting and cleaning to isolate out the relevant factors for 

aircraft delays. Second, build train and test models for machine learning-based 

classification problems. Third, adjust the features then focus on which method 

to predict the aircraft delays with the highest accuracy.  

 

3.1 Data Collection and Cleaning 

Provided by Kaggle, the data consists of multiple files of airline, weather, 

airport, and employment information. The data that were collected are weather, 

passenger, aircraft, coords (coordinate for airports), names of carrier, and 

employee. The weather data is provided by the National Centers for 

Environmental Information (NOAA), while, the flight data is provided by the 

Bureau of Transportation statistics (BTS, 2023). The data are merged together 

using date, time, and the link to all of the information. For duplicate data in 

airport coordinates, names of the carrier, aircraft tail number, and origin airport 

ID, they will be dropped. 

There are a total of 77,350 lines for weather data. The weather information 

includes station name, date, average wind speed, peak gust time, precipitation, 

average temperature, maximum temperature, minimum temperature, fog, heavy 

fog, thunder, ice pellets, hail, glaze, dust, smoke, blowing or drifting snow, 

tornado, high winds, blowing spray, mist, drizzle, freezing drizzle, rain, 

freezing rain, snow, unknown precipitation, ground fog, and ice fog. Most of 

the weather information is very specific and not a number or NaN. Every time 

there is an occurrence of a specific weather phenomenon, it is recorded as 1. 

Therefore, with the current set of data, NaN is replaced with 0.  

For general missing weather data such as minimum temperature, average 

temperature, and average daily wind speed, the data is replaced with median for 

temperature related data and mean. The weather data is provided as a daily 

summary at the local reporting station. Therefore, as an improvement in both 

departure and arrival, the weather data will be utilized for both.   

Next, we define a function. It performs feature engineering, data merges, and 

cleanup, using one month of on-time data at a time, which is from the Bureau 

of Transportation Services. The parameters include monthly_data, aircraft, 

airport coordinates, names, weather, passengers, and employees. The function 
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also returns cleaned data of one month of on-time reporting. This step includes 

starting a timer to track how long the cleaning function takes, cleaning up by 

dropping rows with no departure time, tail number, or canceled. Then, we list 

flight segment numbers for daily flight segments by tracking tail number, 

listing the number of concurrent flights at the airport in the time block, and 

combining the number of seats with the main frame on tail number. The 

missing aircraft will be filled with the average.  

After that, we change the data type for the number of seats to reduce the 

memory usage, merge to get the proper carrier’s name, add monthly flight 

statistics for carrier, airport information, and airport flight per month, and add 

monthly passenger statistics for carriers and airports. Then, we merge the 

employee, flight attendants per passenger, and ground service per passenger to 

the data set.  

For the plane age data, it is calculated by subtracting the current year with the 

manufacture year of the aircraft (the current year - the manufacture year of the 

aircraft). The airport coordinates of latitude and longitude of the departing 

airport are merged and added to the data. The airport that has flight traffic of 

less than 10th percentile is dropped due to lacking the amount of traffic when 

compared to other airports. Meaning that airports that have less than 1,100 

flights per month are dropped as these airports are capable of handling 

manageable traffic volume. For the selected airports, the weather data is added. 

After that, the flight data is merged and the columns that are not used are 

dropped. Table 3 below has shown different features of the data collected and 

their types. 
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Table  3 Features and types of data 

Feature Data Type Description 

Station name String Name of the weather station reporting the data. 

Date String Date of the weather report. 

Average wind speed Float Average wind speed recorded. 

Peak gust time String Time of the peak wind gust. 

Precipitation Float Amount of precipitation. 

Average temperature Float Average temperature recorded. 

Maximum temperature Float Maximum temperature recorded. 

Minimum temperature Float Minimum temperature recorded. 

Fog Integer  Presence of fog (1 if present, 0 if absent). 

Heavy fog Integer  Presence of heavy fog (1 if present, 0 if absent). 

Thunder Integer  Presence of thunder (1 if present, 0 if absent). 

Ice pellets Integer  Presence of ice pellets (1 if present, 0 if absent). 

Hail Integer  Presence of hail (1 if present, 0 if absent). 

Glaze Integer  Presence of glaze (1 if present, 0 if absent). 

Dust Integer  Presence of dust (1 if present, 0 if absent). 

Smoke Integer  Presence of smoke (1 if present, 0 if absent). 

Blowing or drifting 

snow 

Integer  Presence of blowing or drifting snow (1 if present, 

0 if absent). 

Tornado Integer  Presence of tornado (1 if present, 0 if absent). 

High winds Integer  Presence of high winds (1 if present, 0 if absent). 

Blowing spray Integer  Presence of blowing spray (1 if present, 0 if 

absent). 

Mist Integer  Presence of mist (1 if present, 0 if absent). 

Drizzle Integer  Presence of drizzle (1 if present, 0 if absent). 

Freezing drizzle Integer  Presence of freezing drizzle (1 if present, 0 if 

absent). 

Rain Integer  Presence of rain (1 if present, 0 if absent). 

Freezing rain Integer  Presence of freezing rain (1 if present, 0 if absent). 

Snow Integer  Presence of snow (1 if present, 0 if absent). 

Unknown precipitation Integer  Presence of unknown precipitation (1 if present, 0 if 

absent). 

Ground fog Integer  Presence of ground fog (1 if present, 0 if absent). 

Ice fog Integer  Presence of ice fog (1 if present, 0 if absent). 

Flight Data (Various 

features) 

Mixed Features such as departure time, tail number, flight 

segment numbers, concurrent flights, number of 

seats, flight statistics, passenger statistics, employee 

data, plane age, airport coordinates, and weather 

data. The data types range from strings to integers 

of different bit sizes (e.g., 'int8', 'int64', 'int32') 

based on the specific feature and its representation. 
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Table  4 Different features of collected data 

Airport Aircraft Carrier Ontime 

Reporting 

Carrier Weather 

Airport ID Manufacture 

year 

Airline ID Month Year Precipitation 

Airport 

Name 

Tail number Carrier Name Day Airline ID Snowfall 

Origin City  Service Class Week Carrier Name Snow on 

ground 

Name  No. Departures 

perform per 

year 

 Pilot/Copilot Max 

temperature 

  Passengers 

enplaned for 

year 

 Maintenance Max Wind 

speed for day 

    Aircraft Control Daily total 

sunshine 

    Passenger Handling Fastest 5 

seconds 

wind speed 

    Trainee and 

Instructor 

Fog 

    Traffic Solicitors Heavy Fog 

    Transport Related Thunder 

    Others employee Ice Pellets 

    General Manager Hail 

    Other flight 

personnel 

Smoke Haze 

    General Services & 

Administration 

Tornado 

 

Next, the data types for all the various fields are cleaned up to reduce memory 

usage. Month and day of the week are defined as ‘object’. For delay, distance 

group, and segment numbers are defined as ‘int8’. Airport flights per month, 

airline flight month and airline airport flight per month are defined as ‘int64’. 
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Lastly, the plane age is defined as type ‘int32’. The timer is stopped and 

elapsed time is calculated. The train and test sets are generated. The train set is 

split into subsets and the validation set is generated. 

Specific weather information for each arrival and departure location is assigned 

for the accuracy of the prediction because the weather at both arrival and 

departure will affect whether the aircraft is going to be delayed.   

After combining all the data into one file, there are some data columns that are 

text and not numbers. The method chosen to transform these data is 

OrdinalEncoder although there are also OnehotEncoder and LabelEncoder. The 

OrdinalEncoder assigned an integer value to a category. It is easily reversible. 

It will assign integers to labels in the order that it observes in the data. 

OnehotEncoder creates a binary column for each category and returns an array 

of numbers. The LabelEncoder transforms the data from text providing values 

between 0 and n - 1. The OrdinalEncoder will find the unique values per 

feature and transform the data. (learn) 

Table 4 in the preceding of this thesis offers a comprehensive summary of 

various weather variables, encompassing a diverse range of meteorological 

elements crucial in understanding climatic conditions. Building upon this 

foundational knowledge, Table 5 aims to further elucidate and define these 

weather variables, providing a detailed breakdown of their specific 

characteristics and measurements. In this section, the definitions of each 

weather variable outlined in Table 3 will be expanded upon, offering a more in-

depth exploration of their individual attributes. This comprehensive elaboration 

seeks to enhance the understanding of these meteorological factors, laying a 

robust groundwork for their utilization and interpretation in subsequent 

analyses or research within the realm of climatic studies or related fields. 
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Table  5 Definition of different weather variables  

Abbreviation Description 

PRCP Precipitation 

SNOW Snowfall 

SNWD Snow depth 

TMAX Maximum temperature 

TMIN Minimum temperature 

AWND Average daily wind speed 

FMTM Time of fastest mile or fastest 1-minute wind 

FRGB Base of frozen ground layer 

FRGT Top of frozen ground layer 

FRTH Thickness of frozen ground layer 

PGTM Peak gust time 

PSUN Daily percent of possible sunshine 

SN*# Minimum soil temperature 

SX*# Maximum soil temperature 

THIC Thickness of ice on water 

TOBS Temperature at the time of observation 

TSUN Daily total sunshine 

WDF1 Direction of fastest 1-minute wind 

WDF2 Direction of fastest 2-minute wind 

WDF5 Direction of fastest 5-second wind 

WDFG Direction of peak wind gust 

WDFI Direction of highest instantaneous wind 

WDFM Fastest mile wind direction 

WDMV 24-hour wind movement 

WESD Water equivalent of snow on the ground 

WESF Water equivalent of snowfall 

WSF1 Fastest 1-minute wind speed 

WSF2 Fastest 2-minute wind speed 

WSF5 Fastest 5-second wind speed 

WSFG Peak gust wind speed 

WSFI Highest instantaneous wind speed 

WSFM Fastest mile wind speed 

WT** Weather Type 

WVxx Weather in the Vicinity 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 41 

3.2  Research Analysis 

Next is choosing what information is important and what should be eliminated. 

At first, the data are combined together into one big data. In terms of the data 

cleaning, the data are split into training, cross validation, and test datasets. For 

irrelevant information such as previous airport, departing airport, carrier name, 

and departure time, they are excluded from the training data. All of the data 

that are included in the training data are quantitative. The data for the training 

portion are included as much as possible as long as they are within the 

computing power of the machine.  

Use the function “.describe()” to find each of the data columns and put into 

visualization based on statistical data of count, mean, standard deviation, min, 

25%, 50%, 75%, max, skewness, and also kurtosis. The data are then verified 

once again that there is no NaN and the data that have an impact on the flight 

delay are selected. The data include month, day of the week, departure time, 

distance group, segment number, concurrent flight, number of seats, carrier 

name, airport flight per month, airline flight per month, airline airport flight per 

month, average monthly passenger at specific airport, flight attendants per 

passenger, ground service per passenger, the aircraft age, departing airport, 

latitude, and longitude of the airport.  

For the weather information, there are precipitation, inch of snowfall for day, 

inch of snow on ground for day, maximum wind speed for day, maximum 

temperature for day, lowest temperature for day, average temperature for day, 

direction of fastest 2-minute wind (Degree), direction of fastest 5-second wind 

(Degree), fastest 2-minute wind speed (tenths of meters per second), and fastest 

5-minute wind speed (tenths of meters per second). All of the data are included 

in the generating training and test datasets. The aircraft that have arrived more 

than 15 minutes late is then highlighted for further examination.  

Figure 15 has shown the heat map that is used to map out the relevant 

information from the data to include and exclude what is necessary in order to 

make a non-biased model out of the data. The chosen data is then used to make 

the train data set. 
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Figure  15: Heat map 

 

3.3 Findings 

The amount of the data is large, but the amount of the data specifically for 

weather is limited. It is crucial not to be biased toward the information that is 

collected. Therefore, most of the selection is done by the program. Each of the 

data in the column does not have an even distribution. Standardscaler is used in 

order to standardize the feature by utilizing the mean and scaling to unit 

variance (learn). The equation for standard scaler is in Equation (4).  

 

                                                𝒛 =  
(𝒙−𝝁)

𝝈
                                   (4) 

                            where                    𝑧 = Z-Score 

                      x = Given data value 

                                                          μ = Mean 

                                                          σ = Standard deviation 
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After transforming and standardizing all of the data, the next step is to select 

the data for training and testing after the initial analysis from reducing the non-

contributing variables. Flight delays other than weather may be excluded. It is 

determined by how relevant it is to the contribution of flight delays. When 

determining which algorithm to use for this dataset, the obtain data set has a 

labeled data, structure, and unprocessed. Supervised machine learning 

algorithm is the preferred method.  

There are 74 features total and only 3 features were not selected. The 3 features 

are month, day of the month, and day of the week. The number of total delay 

data as compared to all of the data were plotted in order to see if the ratio is still 

the same from the original data. Once the data has been verified, the training 

can begin making the final model. The result is shown in Figure 16. 

 

Figure  16: Number of Train Data of No Delay (0) and Delay (1) 
 

To figure out the important features of the data, a Random Forest feature is 

used in this case, which can be seen in Figure 17. The output of this feature 

provides the relative importance or the contribution of each feature in the 

prediction. It is important to see what is the importance of data that was 

calculated in the model. Feature importance in a Random Forest model serves 

as a metric to assess the relative significance of different input variables in 

influencing the model's predictions. It functions by analyzing the contribution 

of each feature to the predictive power of the ensemble of decision trees. This 

determination is based on how effectively a feature reduces uncertainty or 

impurity in the nodes when splitting the data across numerous trees. The 

algorithm calculates the importance of each feature by examining the average 

decrease in impurity for that feature across all the trees in the forest. By 
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quantifying the impact of variables on the model's accuracy, feature importance 

aids in identifying the most influential factors driving predictions. This analysis 

assists in prioritizing important features, guiding feature selection processes, 

and providing insights into the underlying relationships between variables and 

predicted outcomes. It is crucial to note that while feature importance 

highlights the relevance of variables in the model, it does not establish 

causation between these features and predictions, serving as a tool for model 

interpretation and refinement. Understanding the importance of each feature 

provides valuable insights into the inner workings of the model, aiding in 

model interpretability and feature selection. When some features show low 

importance, it suggests potential opportunities for model optimization through 

dimensionality reduction or feature engineering. It can also guide decision-

makers and domain experts by highlighting the most influential factors in 

predictive modeling. The results of feature importance analysis will provide the 

next suggested action, whether it is refining the model, or enhancing feature for 

further studies. In essence, Random Forest feature importance provided the 

tools to extract meaningful knowledge from the models and use that knowledge 

to drive better outcomes and informed choices in various fields and 

applications. 

 

 

Figure  17: Random Forest Feature Importance Sample Result (Medium, 2020) 
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The Shapley (SHAP) values offer a deeper and more comprehension of feature 

importance. An example of SHAP values can be seen in Figure 18.  

 

Figure  18: SHAP Values Sample Result (Datacamp, 2022) 
 

While traditional feature importance provides an initial understanding of which 

features are influential in a model's predictions, SHAP values take this analysis 

to a granular level. By going into the specific contribution of each feature to 

individual predictions, considering interactions among features. This level of 

detail is crucial as it uncovers not just the importance of features but also how 

each feature affects predictions in different scenarios. SHAP values offer 

insights into the direction and magnitude of a feature's impact, aiding in 

understanding complex relationships within the model. By highlighting the 

influence of each feature on individual predictions, SHAP values assist in 

model debugging, validation, and refinement. They also aid in feature selection 

by identifying truly impactful features while uncovering potential redundancies 

or confounding effects. This comprehensive understanding provided by SHAP 

values enhances the interpretability and trustworthiness of Random Forest 

models, allowing for more informed decisions in model improvement and 

feature engineering. Ultimately, SHAP values play a pivotal role in not just 

gauging feature importance but in empowering users to enhance the model's 

performance and transparency. 
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The hyperparameters to be tuned of Random Forest classifier are n_estimators 

(list of tree classifiers), Max depths, Max features, Min_samples_leaf, 

Min_sample_split and Criterion. Tuning hyperparameters with GridSearchCV 

is to find the best settings for a machine learning model. It's beneficial because 

it does this in a smart and efficient way. Instead of trying random settings, it 

checks all possible combinations. This makes the model work better and avoids 

problems like making it too good at the training data but not so good with new 

data. GridSearchCV also keeps things organized and saves time, making it 

easier for people who work with machine learning to make their models 

perform at their best. These hyperparameters are can be shown in Table 6. 

Table  6 Random Forest Classifier Hyperparameters and Values 

Hyperparameter Value 

N_estimators 150, 200, 300 

Max depths 12, 15, 20, 30, 40, NaN 

Max features Sqrt, Auto 

Min_samples_leaf 3,5,10,20 

Min_sample_split 2,5,10,20,30 

Criterion Gini, Entropy 

 

GridSearchCV was performed to find the combination of the best 

hyperparameters. The most conservative settings were employed for the 

hyperparameters to ensure that no shortcuts were taken in the calculations or to 

compromise the results. The other parameters used are as follows: 

min_weight_fraction_leaf = 0, max_leaf_nodes = None, 

min_impurity_decrease = 0, bootstrap = True, oob_score = False, n_jobs = 

None, random_state = None, verbose = 0, warm_start = False, class_weight = 

None, ccp_alpha = 0, max_samples = None.  

The hyperparameters to be tuned of AdaBoost classifier were n_estimators, 

learning rate, Algorithm, base_estimator_criterion and base_estimator_splitter. 

These hyperparameter and values can be shown in Table 7. 

Table  7 AdaBoost Classifier Hyperparameters and Values 

Hyperparameter Value 

N_estimators 100, 200, 300 
Algorithm SAMME, SAMME.R. 

Learning Rate 0.001, 0.01, 0.1,0.25, 1 

Base_estimator_criterion Gini, entropy 

Base_estimator_splitter Best, random 
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The hyperparameters to be tuned of CatBoost classifier were depth, the 

learning rate and iterations. These hyperparameters and values can be shown in 

Table 8. 

Table  8 CatBoost Classifier Hyperparameters and Values 

Hyperparameter Value 

Depth 6, 8, 9, 10, 15, None 
Iterations 100, 300, 500, 700, 900 

Learning Rate 0.01, 0.1, 0.5, 1 

 

The hyperparameters to be tuned of Gradient Boosting classifier were 

n_estimators, learning rate, min_sample_leaf, min_sample_split, max_depth, 

max_features, criterion, and subsample. These hyperparameters and values can 

be shown in Table 9. 

Table  9 Gradient Boosting Classifier Hyperparameters and Values  

Hyperparameter Value 

N estimator 10, 50, 100, 300, 500 
Learning Rate 0.01, 0.025, 0.05, 0.1, 0.5 

Min sample leaf 1, 5, 12 

Min sample split 1, 5, 12 

Max_depth 3, 5, 10, 15, None 

Max_features Log2, sqrt 

Criterion Friedman_mse, squared_error 

Subsample 0.5, 0.85, 0.95, 1 
 

3.4 Evaluation Metrics 

To provide a standardized way to measure and assess the performance of the 

model, we rely on essential evaluation metrics. The sample results of the 

prediction model are presented in the classification report below, which 

includes crucial insights into the model's performance.  

The key components to provide a standardized way to measure and assess the 

performance of the model are these evaluation metrics. The sample results of 

the prediction model are shown in the classification report below. 
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Figure  19: Sample of Classification Report 

 

For this classification report, the results are shown in a confusion matrix. The 

confusion matrix provides the prediction results in Table 10. 

Table  10 Confusion Matrix 

 Actual Values 

1 0 

Predicted 

Values 

1 TP FP 

0 FN TN 

 

Key Definitions: 

TP (True Positive): The model predicts delays, and the collected data confirms 

that the flight is delayed. 

FP (False Positive): The model predicts delays, but the data shows no delay. 

TN (True Negative): The model predicts no delays, and the data confirms that 

the flight is not delayed. 

FN (False Negative): The model predicts no delays, but the data confirms a 

delay. 

As shown in the confusion matrix above, actual and predicted values show the 

precision and recall accuracy of the data. True positive in this case is that the 

model predicts delays and the data collected says that the flight is delayed. For 

true negative, on the other hand, the model predicts no delay and the data 

collected says the flight is not delayed. False positive is when the model 

predicts delays, but the data is not delayed. Lastly, false negative is when the 

model predicts no delay, but the data is delayed.  
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For a good model, the true positive and true negative should have a higher 

number, while false negative and false positive should have a lower number. 

Although having higher false positive provides higher or over readiness to the 

system, a false negative is a miss for the model.  

Precision is the ratio of true positive over predicted positives including true 

positive and false positive. Precision shows how accurate the model is. Lower 

precision identifies the model detecting false positive.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                    (5) 

 

Recall is the ratio of true positive over actual positive including true positive 

and false negative. Recall is how sensitive the model to false negative. The 

lower the value means the lower quality of the model. The lower value 

represents the model with high numbers of false negative.  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                    (6) 

 

Accuracy is the ratio of correct prediction over all of the predictions, both true 

and false prediction. F1-score, which is the combination of precision and recall, 

is a better presentation especially the macro average of the F1-score. The 

macro average takes all of the F1-score into account. Although there is also a 

weighted average on the table to be fair, the data should be treated equally, so 

the same weight should be considered throughout. As a result, the macro 

average is the preferred method in comparing between each of the data set. If 

there is a very small difference in the F1-score then recall will be use as a tie 

breaker to determine which model is the best. In Equation 7, the equation of 

recall signifies the amount of false negative.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
                                        (7) 

 

F1-score: The F1-score combines precision and recall to provide a single value 

that balances both aspects. It is particularly useful when comparing models. 

The macro average of the F1-score takes all F1-scores into account equally. 
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𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                 (8) 

 

A higher value of recall means lower false negative in the model. A false 

negative in this case is when a model predicts that the plane is not going to be 

delayed, but it is delayed. This is the worst prediction because it could cause 

further unexpected delays throughout the whole day. On the other hand, true 

negative is an over estimation which could in turn waste the extra buffer time 

in the schedule, but will mostly prevent propagated delay for the rest of the 

schedule. 
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Chapter 4: Results and Discussion  

 

The purpose of this chapter was to present results and a brief explanation from 

GridSearchCV for each algorithm. In this comparison, we evaluated four 

different methods for flight delay prediction: Random Forest, AdaBoost, 

CatBoost, and Gradient Boosting. These methods employed different 

combinations of hyperparameters, which were selected using GridSearchCV, 

and produced varying accuracy results.  

Random Forest was an ensemble learning method that combined multiple 

decision trees to make predictions. In this case, Random Forest used 150 

estimators, representing the number of decision trees in the ensemble. The 

max_depth parameter was set to NaN, allowing the trees to grow until all 

leaves were pure or the minimum samples split criterion was met. The max 

features parameter was set to "sqrt," meaning the square root of the total 

number of features was considered for splitting at each node. The minimum 

samples per leaf and minimum samples per split were set to 3 and 10, 

respectively. The selected criterion was Gini. The Random Forest model 

achieved an accuracy of 83 percent. 

The process of adjusting hyperparameters using GridSearchCV within the 

Random Forest method unveiled an intriguing trend, particularly when 

focusing on optimizing 'n_estimators.' The observed behavior revealed a rather 

unexpected outcome: as 'n_estimators' increased from 150 to 200 and further to 

300, the corresponding accuracy scores exhibited a decrement. Specifically, the 

accuracy values for these increments were 0.81292, 0.81288, and 0.81258, 

respectively. This pattern indicates a critical insight – contrary to the 

anticipated notion that higher 'n_estimators' would universally enhance 

accuracy, there exists a point of diminishing returns in this context. Simply 

utilizing the maximum 'n_estimators' across all Random Forest models might 

not represent the most effective solution. This observation underscores the need 

for a nuanced approach to hyperparameter optimization, suggesting that an 

excessively high number of trees could lead to a reduction in model efficacy 

rather than improvement. Hence, a strategic selection of 'n_estimators,' 

possibly opting for a lower value within the tested range, could potentially 

yield a more optimal model performance, balancing complexity and accuracy 

more effectively. This outcome emphasizes the importance of meticulous 

hyperparameter tuning and the consideration of interactions between 

parameters to derive the most efficient and accurate model for the given 

dataset. 
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Gradient Boosting was an algorithm that combined multiple weak learners to 

create a strong predictive model. In this case, Gradient Boosting used 500 

estimators, the highest number among all the algorithms considered. The 

learning rate for Gradient Boosting was set to 0.05, striking a balance between 

convergence speed and accuracy. The min sample leaf was 1, and the min 

sample split was 1 as well. The subsample was also 1. The algorithm used the 

friedman_mse criterion for splitting. The max depth was set to 3, and the max 

features parameter was set to "sqrt." The Gradient Boosting model achieved an 

accuracy of 81.1 percent. 

CatBoost was a Gradient Boosting algorithm designed to handle categorical 

features effectively. Like AdaBoost, CatBoost used 300 iterations. The learning 

rate for CatBoost was set to 0.01, which was significantly lower than the other 

algorithms. CatBoost depth was 10, which was the maximum. The CatBoost 

model achieved an accuracy of 81 percent. 

AdaBoost was an adaptive boosting algorithm that trained weak learners and 

combined their predictions to create a strong ensemble. In this case, AdaBoost 

used 300 estimators, twice the number used in Random Forest. The learning 

rate was set to 0.25, which determined the contribution of each weak learner in 

the final prediction. The estimator criterion used was entropy, and it was 

employed to select the best estimator splitter. The best algorithm was SAMME. 

The Base estimator splitter that was chosen was best. AdaBoost did not specify 

max depth or max features. The accuracy achieved by the AdaBoost model was 

72.6 percent. The comparison of each algorithm can be found in Table 11. 

Table  11 Algorithm Comparison 

Random Forest GradientBoost CatBoost AdaBoost 

n_estimator: 150 n_estimator: 500 n_estimator: 300 n_estimator: 300 

Max_depth: NaN learning rate: 0.05 learning rate: 0.001 learning rate: 0.25 

Max_features: sqrt friedman_mse 

criterion 

Algorithm: 

SAMME.R 

Estimator_criterion: entropy 

Min_samples_leaf: 3 Max_depth: 3 - Best_estimator_splitter: best 

Min_samples_split: 10 Max_features: sqrt - - 

Accuracy: 83% Accuracy: 81.1% Accuracy: 81% Accuracy: 72.6% 

F1-Score: 0.56 F1-Score: 0.47 F1-Score: 0.46 F1-Score: 0.45 

 

Among the four algorithms, Random Forest had achieved the highest accuracy 

of 83%, followed by Gradient Boosting at 81.1%, CatBoost at 81%, and 

AdaBoost at 72.6%. These results indicated that Random Forest had 
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outperformed the other algorithms in terms of accuracy. However, it was 

important to consider other factors such as model complexity, computational 

resources required, and interpretability when choosing the best algorithm for a 

specific task. 

Random Forest and Gradient Boosting had utilized the number of estimators in 

their provided range, with 150 and 500, respectively, suggesting a stronger 

ensemble with increased model capacity. AdaBoost and CatBoost had 

employed 300 estimators, providing a balance between accuracy and 

computational efficiency. 

Regarding the learning rate, Random Forest did not explicitly specify a 

learning rate, while AdaBoost had employed a learning rate of 0.25. CatBoost 

had used a significantly lower learning rate of 0.001, and Gradient Boosting 

had set the learning rate at 0.05. The choice of learning rate was crucial, as it 

affected the convergence speed and model performance. Fine-tuning the 

learning rate for each algorithm could help optimize their performance. 

In terms of feature selection, Random Forest and Gradient Boosting had used 

"sqrt" as the max features parameter, indicating that the square root of the total 

number of features was considered for splitting at each node. CatBoost did not 

have the specific max feature parameters, and AdaBoost did not have any max 

features. Experimenting with different max feature settings might provide 

further insights into model performance and diversity. 

When comparing the F1-score for AdaBoost under various conditions, such as 

precision and recall, it consistently demonstrated lower values compared to the 

Random Forest method. This outcome indicated that the Random Forest served 

as the established baseline method for adjusting different features across 

diverse tests. For a comprehensive comparison, the other two methods need 

evaluation against the current best-performing results. They would be 

compared against the Random Forest model's predictions, assessing accuracy 

and F1-score. A thoroughly examined forest model generally yields superior 

predictions than employing a single stump for constructing the model. It’s 

evident that there is room for enhancing and fine-tuning the model. Adjusting 

model features is crucial for improving accuracy, though there's a point where 

excessive feature adjustments might compromise accuracy. Figures 20 and 21 

illustrate the results from the Random Forest and AdaBoost classification 
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models, respectively. Following these, Figures 22 and 23 showcase the 

outcomes of CatBoost and Gradient Boosting, respectively. 

 precision recall f1-score support 

0 0.83 0.99 0.9 182210 

1 0.72 0.13 0.22 42790 

     

accuracy   0.83 225000 

macro avg 0.77 0.56 0.56 225000 

weighted avg 0.81 0.83 0.77 225000 

 Figure  20: Confusion Matrix of Random Forest 
 

 precision recall f1-score support 

0 0.81 1.00 0.90 182210 

1 0.53 0.01 0.01 42790 

     

Accuracy   0.81 225000 

macro avg 0.67 0.50 0.45 225000 

weighted avg 0.76 0.81 0.73 225000 

 

Figure  21: Confusion Matrix of AdaBoost 

 

 precision recall f1-score support 

0 0.77 0.86 0.81 182210 

1 0.84 0.75 0.02 42790 

     

accuracy   0.80 225000 

macro avg 0.69 0.50 0.46 225000 

weighted avg 0.76 0.81 0.73 225000 

 

Figure  22: Confusion Matrix of CatBoost 
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 precision recall f1-score support 

0 0.81 1.00 0.90 182210 

1 0.65 0.02 0.04 42790 

     

accuracy   0.81 225000 

macro avg 0.73 0.51 0.47 225000 

weighted avg 0.78 0.81 0.73 225000 

 

Figure  23: Confusion Matrix of Gradient Boosting 

 

The evaluation of machine learning algorithms, Random Forest, AdaBoost, 

CatBoost, and Gradient Boosting, revealed distinctive performance metrics. 

Random Forest demonstrated an impressive accuracy, with an F1-score of 0.56, 

indicating a balanced measure of precision and recall. Its precision of 0.77 

highlights its ability to make accurate positive predictions, while a recall of 

0.56 indicates it effectively captures true positives. Gradient Boosting achieved 

an F1-score of 0.47, boasting a precision of 0.73 and a recall of 0.51. CatBoost 

closely followed with an F1-score of 0.46, a precision of 0.69, and a recall of 

0.50. Finally, AdaBoost, on the other hand, yielded a slightly lower F1-score of 

0.45, with a precision of 0.67 and recall of 0.50. These metrics collectively 

provide a comprehensive view of each algorithm's ability to balance precision 

and recall in the context of aircraft delay prediction, enabling data scientists 

and practitioners to make informed choices regarding model selection and 

optimization. 

To further understand the error analysis of the result of Random Forest report, 

the False Positives emerge as outliers that deviate markedly from the mean or 

typical values within the dataset. These anomalies are characterized by their 

placement at the far ends of the spectrum in terms of feature values, 

specifically within the parameters of historical departure block, time block of 

departure, airport history, distance, and carrier data. This peculiarity signifies 

instances where the model inaccurately predicted a flight as "Not Delayed" 

when it was, in fact, delayed. These outliers suggest a unique behavior within 

the dataset, indicating the need to address these exceptional cases to refine the 

model's accuracy. Addressing the disparities within these influential features 

could potentially mitigate misclassifications and enhance the model's predictive 

capabilities. 

The consistency between the F1-score and accuracy results further validates the 

model rankings, demonstrating a robust performance across multiple evaluation 

metrics. With Random Forest leading in both accuracy and F1-score at 0.56, 
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followed by GradientBoost at 0.47, CatBoost at 0.46, and Adaboost at 0.45, the 

alignment reinforces the models' relative effectiveness in predictive 

performance. Using F1-score as an additional evaluation metric provides an 

alternate perspective, verifying the models' robustness beyond just accuracy. 

F1-score's emphasis on striking a balance between precision and recall offers 

insight into the models' abilities to manage false positives and false negatives. 

This convergence between accuracy and F1-score underscores the reliability of 

the Random Forest model and the overall consistency of model rankings, 

validating their performance across different evaluation perspectives and 

affirming their effectiveness in handling various data intricacies and variables 

within the dataset.  

Transitioning to Table 12, the Random Forest Confusion Matrix offers a 

detailed breakdown of the model's classifications, unveiling insights beyond 

summary metrics. This comprehensive view delineates true positives, true 

negatives, false positives, and false negatives, enriching our understanding of 

the model's precision and recall. It highlights the balance between accurately 

identified instances and misclassifications within the model's predictions. 

Table  12 Randon Forest Confusion Matrix 

 Actual Value 

1 0 

Predicted 

Values 

1 5646 37144 

0 2221 179989 

 

The analysis of the confusion matrix would be as follows: 

True Positives (TP): The model accurately predicted "Delayed" (Class 1) in 

5,646 instances. 

False Positives (FP): Instances where the model incorrectly predicted 

"Delayed" (Class 1) when the actual class was "Not Delayed" (Class 0) amount 

to 37,144 cases. 

False Negatives (FN): The model incorrectly predicted "Not Delayed" (Class 0) 

when the actual class was "Delayed" (Class 1), constituting 2,221 cases. 

True Negatives (TN): Instances where the model correctly predicted "Not 

Delayed" (Class 0) amount to 179,989 cases. 
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The obtained F1-score of 0.65 and an accuracy of 0.81 from testing a different 

dataset using the same Random Forest classification model showcases a 

relatively robust performance in predicting aircraft delays. This indicates that 

the model has retained its predictive power when applied to a new dataset, 

maintaining a reasonably balanced trade-off between precision and recall. 

Considering the F1-score being slightly lower than the accuracy, it suggests the 

model might have a proportionally higher number of false negatives (missed 

delayed flights) than false positives (non-delayed flights incorrectly labeled as 

delayed). As for the ratio of aircraft not delayed to delayed aircraft in the new 

dataset, it's reasonable to estimate it to be around 4:1 or 5:1, considering the 

F1-score and accuracy values and the model's typical performance in 

classifying imbalanced datasets. 

Feature Importance 

Random Forest calculates feature importance by assessing how much each 

feature contributes to the reduction of impurity within the decision trees that 

make up the ensemble. This importance score is based on factors such as the 

number of times a feature is used to split nodes and the decrease in impurity 

achieved when using a specific feature. 

Random Forest feature importance helps pinpoint which variables in the dataset 

have the most influence on predicting aircraft delays. By examining the 

importance scores, such as departure time, temperature, or precipitation, have 

the greatest impact on the model's predictions. This information can be 

instrumental in decision-making and operational efficiency within the aviation 

industry, ultimately reducing delays and improving the traveler experience. 

The analysis of the first 51 features from the Random Forest feature importance 

on aircraft arrival delay provided valuable insights into the factors that 

significantly influenced the timeliness of aircraft arrivals time. These features 

were ranked in order of importance and offered a comprehensive understanding 

of the various variables that contributed to arrival delays, as shown in Figure 

24. 

The process of removing lower-ranking features from a Random Forest model 

often presents nuanced outcomes, typically resulting in either minimal impact 

on model performance or marginal improvements in computational efficiency. 

Features like WT05 (Hail), WT09 (Blowing or Drifting Snow), WT04 (Ice 

pellets), WT02 (Heavy fog), Snow_Dest, WT06 (Glaze or rime), WT01 (fog), 

while ranking lower in importance according to the model, carry specific 

meteorological details that might contribute to the accuracy or F1-score in 

particular instances. The removal of these seemingly less influential features 
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may not significantly affect the model's immediate predictive capability or 

computational efficiency. However, it is crucial to acknowledge the potential 

loss of distinctive and contextually relevant information embedded within these 

variables. They could encompass rare or critical meteorological occurrences 

that, although infrequent, might significantly impact the model's ability to 

generalize or predict specific events accurately. Therefore, while the immediate 

impact of their removal might seem minor, it is essential to carefully weigh the 

potential loss of unique details against any computational efficiency gained. 

Thorough post-removal analysis and validation become imperative to gauge the 

real impact on model performance, ensuring that the removal of these lower-

ranking features does not compromise the model's ability to capture critical 

weather-related nuances that could influence its predictive power in certain 

scenarios. 
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Figure  24: Random Forest Feature Importance 

 

One of the most important features was DEP_Block_Hist, which represented 

the historical departure block time. Deviations from the scheduled departure 

block time could impact arrival delays, highlighting the importance of adhering 

to departure schedules. Dep_Time_Blk, another crucial feature, categorized the 

actual departure time into specific time intervals. Departure time could 

influence arrival delays, as delays in departures might have had a cascading 

effect on subsequent flight operations. 
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Dep_Airport_Hist, on the other hand, represented the historical performance of 

the departure airport. Factors such as congestion, efficiency, and operational 

practices at the departure airport could contribute to arrival delays. Similarly, 

Distance played a vital role in arrival delays, as longer flight distances might 

have required more time for travel, increasing the likelihood of delays. 

Carrier_Historical was an essential feature that reflected the historical 

performance of the airline carrier operating the flight. Factors such as 

operational efficiency, on-time performance, and maintenance practices of the 

carrier could impact arrival delays. Moreover, Airline_Airport_Flight_Months 

indicated the number of flights the airline had been operating at a specific 

airport. This feature suggested that airlines with more experience operating at 

an airport might have had better operational strategies, potentially reducing 

arrival delays. 

Day_Historical considered the historical performance of the day of the week. 

Certain days might have experienced higher passenger volumes or air traffic, 

leading to potential delays. Additionally, factors other than weather played a 

significant role in arrival delays. These included features like Awind_Dest and 

Awind_Origin, which represented the average wind speed at the destination 

and origin airports, respectively. Wind conditions could affect aircraft 

performance, including takeoff, landing, and overall flight time, influencing 

arrival delays. 

Temperature variables such as Tmax_Dest, Tmax_Origin, Tmin_Dest, and 

Tmin_Origin indicated the maximum and minimum temperatures at the 

destination and origin airports. Extreme temperatures could impact aircraft 

operations, potentially causing delays. Similarly, factors other than weather, 

such as precipitation, represented by Precp_Origin, at the origin airport could 

also affect flight operations. Adverse conditions like rain or snow could impact 

arrival delays. 

Longitude and Latitude coordinates of the destination and origin airports 

(Longitude_Dest, Longitude_Origin, Latitude_Dest, Latitude_Origin) had an 

impact on air traffic patterns and weather conditions. These geographical 

factors could influence arrival delays. Moreover, features like WSF5_Dest and 

WSF5_Origin denoted the maximum sustained wind speed at the destination 

and origin airports, respectively. High wind speeds could impact flight 

operations, potentially leading to delays. 

The historical performance of the previous airport (Previous_Airport) from 

which the aircraft arrived before the current flight could also have had an 

impact on the subsequent flight's arrival time. This highlighted the 
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interconnectedness of flight operations and the importance of considering the 

overall performance of the aviation system. 

Other features, such as Plane_Age, which indicated the age of the aircraft 

operating the flight, could have contributed to delays. Older aircraft might have 

been more prone to mechanical issues, which could have caused delays. The 

number of seats (Number_Of_Seat) on the aircraft could also have impacted 

arrival delays, as larger aircraft might have required more time for boarding 

and deboarding. 

Additionally, features related to airport services and resources, such as 

Avg_Monthly_Pass_Airport,Avg_Monthly_Pass_Airline, Ground_Serv_Per_pass, 

and Flt_Attendants_Per_Pass, provided insights into passenger volumes, 

ground handling efficiency, and service quality. These factors could indirectly 

affect arrival delays. 

Finally, weather-related features played a significant role, other factors also 

notably impacted arrival delays. The 51 features identified through the Random 

Forest feature importance analysis on aircraft arrival delays provided a 

comprehensive understanding of the numerous influencers affecting the 

timeliness of aircraft arrivals. These findings highlight the essential additional 

data that should be integrated into the model for a more thorough analysis. 

Considering these factors, airlines, airports, and aviation stakeholders can 

identify areas for improvement and implement strategies to minimize arrival 

delays, ultimately enhancing the efficiency and reliability of air travel. 

 

SHAP values 

The SHAP values derived from the Random Forest Method underscore the 

varying contributions of distinct features in forecasting flight delays across 

Class 0 (not delayed) and Class 1 (delayed) flights, as depicted in Figure 25 
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Figure  25: SHAP values Random Forest Method 

 

Dep_time_blk: This feature holds a SHAP values of 0.03 for Class 1 (delayed 

flight) and 0.06 for Class 0 (non-delayed flights), indicating a stronger 

influence on identifying non-delayed flights compared to delayed ones. 

Dep_block_hist: With Class 1 at 0.027 and Class 0 at 0.056, this feature 

exhibits a more substantial impact on predicting non-delayed flights than 

delayed ones, reflecting historical departure block patterns' significance. 

Carrier_historical: Class 1 at 0.015 and Class 0 at 0.037 reveal that carrier 

historical data plays a more significant role in predicting non-delayed flights 

than delayed ones. 

Dep_airport_hist: Displaying values of 0.012 for Class 1 and 0.026 for Class 0, 

this feature's higher influence on Class 0 suggests a stronger role in predicting 

non-delayed flights based on historical departure airport patterns. 

Overall, these SHAP values depict distinct impacts of features on flight delay 

predictions. Historical departure block patterns, carrier history, and departure 

airport history significantly influence predicting non-delayed flights (Class 0) 
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over delayed flights (Class 1), offering valuable insights into feature 

importance for the Random Forest's predictions in both classes. 

Aviation enthusiasts or interested individuals seeking aviation-related data like 

METAR (Meteorological Aerodrome Report), TAF (Terminal Aerodrome 

Forecast), and surface observations can access these details from various user-

friendly online platforms. Websites like Aviation Weather Center 

(aviationweather.gov) offer comprehensive resources, providing METAR and 

TAF reports for specific airports globally, along with graphical weather 

analyses and forecasts. The National Weather Service's website (weather.gov) 

also offers easy access to METAR and TAF reports, allowing ordinary 

individuals to retrieve current weather conditions and forecasts for airports 

worldwide. For a more user-friendly interface, websites such as FlightAware 

and SkyVector provide access to METAR and TAF data, along with flight 

tracking services, making it convenient for aviation enthusiasts or travelers to 

access real-time weather information and surface observations for flight 

planning and general weather awareness. These platforms offer user-friendly 

interfaces and easy navigation, enabling ordinary people to access valuable 

aviation-related data efficiently.  

Another perspective to consider is how the airline could utilize its routes to 

make up for lost time. Figure 26 displays the wind aloft speed and direction at 

different altitudes, requiring the pilot to make decisions about the most 

advantageous altitude to cruise at. For example, headwinds would slow the 

aircraft down, while tailwinds would speed up the aircraft's ground speed. 

 

Figure  26: Winds aloft chart (Aviation Weather Center, 2022) 

The real-time weather data would greatly help the pilot determine the 

contingency plans for both the air crew and the ground crew to reduce the 

turnaround time. If possible, more data for aviation weather are needed to be 
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incorporated into the flight data. Specific information on aviation weather, 

especially surface weather, is important for aircraft delays. 

The surface weather included wind speed, temperature, and visibility. There 

were terminal area forecasts as well as other weather information that was local 

near the airport. The current set of data was collected throughout the year. 

Future studies needed to collect specific data for specific weather seasons. The 

distribution of weather data and their types was very important. Most of the 

time, the aircraft was on time. If the weather was not suitable to fly, then the 

flight mostly did not happen. 

The weather data is necessary to accurately plan for preventive maintenance. 

This could decrease downtime, increase aircraft availability, and maintain 

optimal spare parts storage. The longer the aircraft stayed in service, the more 

opportunities for the airline to make profits. 
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Chapter 5: Conclusion 
 

In the pursuit of uncovering efficient solutions to predict and mitigate aircraft 

delays, this study extensively relied on datasets sourced from Kaggle. 

Employing a comprehensive approach, four prominent machine learning 

methodologies—Random Forest, CatBoost, Gradient Boosting, and 

AdaBoost—were rigorously evaluated. Leveraging the powerful 

GridSearchCV, a systematic exploration of hyperparameters was conducted to 

identify the most optimal combinations. Throughout this investigation, 

accuracy metrics and F1-scores were employed as pivotal benchmarks, serving 

as robust indicators to determine the most effective machine learning method. 

These metrics not only gauged the predictive capabilities but also facilitated the 

selection of the most adept model for addressing the complexities associated 

with aircraft delays in the aviation industry. 

Considering the results and factors for future model improvement, several 

recommendations can be made: 

Random Forest: with an accuracy rate of 83% and an F1-score of 0.56, 

Random Forest stands out as a strong candidate for prediction models. To 

further enhance its performance, hyperparameter tuning is crucial. Exploring 

different combinations of estimators, max depth, and max features can optimize 

its predictive capabilities. Additionally, employing feature engineering 

techniques can enhance the relevance and quality of input features. 

Gradient Boosting: with an accuracy of 81.1% and an F1-score of 0.47, and a 

higher number of estimators than other algorithms, Gradient Boosting holds its 

own. Fine-tuning the learning rate, exploring various max feature settings, and 

optimizing the max depth can potentially elevate its performance. Furthermore, 

feature engineering and interpreting the model's decisions can provide further 

insights and improvements. 

CatBoost: with an accuracy of 81% and an F1-score of 0.46, CatBoost exhibits 

promise in handling categorical features effectively. To improve its 

performance, adjustments to the learning rate, exploration of different boosting 

algorithms, hyperparameter tuning, and feature engineering can be 

advantageous. 

AdaBoost: Despite its lower accuracy of 72.6% and an F1-score of 0.45, 

AdaBoost shows potential for improvement in prediction models. Fine-tuning 

the learning rate, exploring various ensemble configurations, and addressing 
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class imbalances can elevate its performance. Feature engineering and 

addressing class imbalances, if applicable, can contribute to better results. 

To enhance future predictions, the recommendation is to collect more available 

data and utilize real-time weather sensors for higher accuracy. Gathering 

additional information from winds aloft and local airport winds, updated hourly 

or as necessary, plays a pivotal role in determining whether a pilot will proceed 

with the flight or make the crucial decision to delay the aircraft due to adverse 

weather conditions. 

For an advanced version of the model, exploring a combination of methods, 

such as merging the Random Forest method with AdaBoost or decision trees, is 

a viable approach. Comparing the outcomes of these combined classification 

models will help determine the effectiveness of this new information or 

combination. 

By incorporating these recommendations and further refining the model, the 

aim is to achieve more accurate predictions and enhance decision-making 

processes. 

The aviation industry contends with substantial delays, stemming from a 

myriad of factors spanning adverse weather conditions like thunderstorms, 

snow, fog, and strong winds. These conditions not only pose safety risks but 

disrupt meticulously planned flight schedules, creating widespread operational 

challenges. Congestion on runways and limitations in airport infrastructure 

exacerbate delays, particularly during peak periods, intensifying operational 

complexities. Aircraft maintenance issues, technical glitches, and unforeseen 

incidents further compound airlines' challenges. Weather stands out 

prominently among these factors, emphasizing the urgent need for specialized 

predictive models to forecast and manage weather-related flight delays, crucial 

for navigating operational hurdles in the aviation sector. The comprehensive 

state of the aviation system, encompassing air traffic management, weather 

forecasting, and maintenance protocols, significantly influences addressing and 

mitigating delays. The integration of advanced technologies and predictive 

analytics is pivotal in optimizing air traffic routes, furnishing precise weather 

data, and refining aircraft maintenance processes. Implementation of these 

solutions is imperative for curbing aircraft delays and augmenting the overall 

efficiency and dependability of air travel. 
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