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This thesis presents depression classification on privacy protected facial 

features data. Fast depression classification to help patients receive proper 
treatment is a method that can prevent the damage of depression. However, fast 
and effective depression classification is difficult because medical personnel are 
adequate and the time to analyze depression is long per patient. Applied artificial 
intelligence in the medical field can help reduce the workload of medical 
personnel. It is also difficult because of privacy protection. Therefore, we utilize 
extracted facial features from facial expressions in clinical interview videos to 
develop a machine learning model. The model utilizes LSTM, attention 
mechanism, intermediate fusion, and label smoothing approaches to improve 
performance. The experiments were conducted on 474 video patients collected at 
Chulalongkorn University. The data set was divided into 134 depressions and 340 
non-depressions. Our model achieves 91.67% accuracy, 91.40% precision, 87.03% 
recall, and 88.89% F1-score. In addition, our model is analyzed using an integrated 
gradient to explain the important facial features. The significant facial features 
related to depressive symptoms are head turning, no specific gaze, slow eye 
movement, no smiles, frowning, grumbling, and scowling, which express a lack of 
concentration, social disinterest, and negative feelings. 
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CHAPTER 1 

INTRODUCTION 
1.1 Overview 

Major Depressive Disorder (MDD) is a common disorder in the global population. The 

impact of COVID-19 worsens the depression situation [1-5]. Patients who suffer from depression 

has rapidly increased during the pandemic. Depression is a fatal disorder that interferes with daily 

life and can lead to suicide. The prevention of life-threatening depression requires fast diagnosis 

and proper treatment. However, medical personnel are inadequate to measure depression for all 

citizens. One solution to reduce the responsibility of medical personnel that is currently utilized 

is the capability of artificial intelligence that can support medical personnel as a decision-support 

tool or primary decision tool. 

Clinical interviews are one of the methods used to diagnose depression [6]. There is a list 

of questions to estimate mood, anhedonia (the inability to feel pleasure), anergia (a continual 

feeling of lack of energy), concentration, appetite, sleep, guilt, and suicide. To diagnose 

depression, a psychiatrist examines the patient's expression, posture, voice tone, and response 

content. Similarly, artificial intelligence has the capability of video, voice, and text processing that 

could potentially mimic a psychiatrist's observation. 

Artificial intelligence has various approaches to processing data. Utilizing data from 

medical services necessitates obtaining patient consent, making it difficult to create large 

datasets. Therefore, a feature extraction tool is necessary to protect the privacy of patient 

information. Interview videos contain three types of data. There are expressions, voices, and 

textual content. The voice and textual content data are private because patients can be 

effortlessly identified by them. Hence, expression is a strategy to extract features for patient 

privacy protection. 

The Facial Action Coding System (FACS) [7] defines a set of facial muscle movements 

that correspond to the displayed facial emotion. Facial expression features are extracted in this 

system to avoid identification. The OpenFace [8] tool takes responsibility for extracting features 

from interview videos. The extracted features are called Action Units (AUs). Therefore, the data 

set that was extracted from the tool is a time-series that contains a set of Action Units (AUs). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 
 
This thesis proposes deep learning approaches to time-series classification. In this 

research, we develop a fusion model to improve depression and non-depression classification 

from real-world data extraction and explain the result of the model in terms of facial key points.  

 

1.2 Aims and Objectives 

1. To provide methods that can improve the accuracy of the depression and non-

depression classification models by utilizing time-series facial key point data 

extracted from interview videos to protect data privacy. 

2. To explain the results of methods in terms of facial key point data. 

 

1.3 Scope of Work 

• Employ the dataset from the DMIND application, which is the result of a 

collaboration between Chulalongkorn University's faculties of medicine and 

engineering. 

• Use facial key points that were extracted from the interview video as input. 

• Develop neural network architectures for depression (moderate, severe) and non-

depression (normal, mild) classifications. 

• Evaluate the performance of the proposed neural network architectures in terms of 

classification. 

• Explain the results of the proposed methods in terms of facial key points. 

 

1.4 Expected Benefits 

• Facial key point data can be used to differentiate between depression and non-

depression. 

• Facial expression video data can be made private by extracting time-series facial key 

point data. 

• Patients can be helped to become aware of depression disorders. 

• Medical personnel can be helped to reduce their workload. 
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• The insight of an explainable method can help people observe depression 

symptoms. 

 

1.5 Publication 

Mahayossanunt, Y.; Nupairoj, N.; Hemrungrojn, S.; Vateekul, P. Explainable Depression Detection 

Based on Facial Expression Using LSTM on Attentional Intermediate Feature Fusion with Label 

Smoothing. Sensors 2023, 23, 9402. https://doi.org/10.3390/s23239402 
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CHAPTER 2 

BACKGROUND KNOWLEDGE 
2.1 Facial Action Coding System (FACS) 

 The Facial Action Coding System (FACS) [7] is a system that describes facial muscle 

movements as action units. Table 1 lists all of the action units employed in this thesis. This 

system includes gaze direction and head pose. The original creator is Carl-Herman Hjortsjö who 

created 23 facial motion units in 1970. Paul Ekman, and Wallace Friesen continued to develop 

this system after it was first published in 1978 and substantially updated in 2002. 

 

Table 1 Action Units. 
Action Unit Description Example 

1 Inner Brow Raise 

 
2 Outer Brow Raise 

 
4 Brow Lowerer 

 
5 Upper Lid Raise 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 
 

6 Cheek Raise 

 
7 Lids Tight 

 
9 Nose Wrinkle 

 
10 Upper Lip Raiser 

 
12 Lip Corner Puller 

 
14 Dimpler 

 
15 Lip Corner Depressor 
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17 Chin Raiser 

 
20 Lip Stretch 

 
23 Lip Tightener 

 
25 Lips Part 

 
26 Jaw Drop 

 
28 Lip Suck 

 
45 Blink 
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2.2 OpenFace 2.2.0: Facial Behavior Analysis Toolkit 

OpenFace [8] is an open source framework that provides facial land mark detection [9] in 

Figure 1, head pose tracking [10] in Figure 2, eye gaze [11] in Figure 3 and facial action unit 

estimation [12] in Figure 4. Table 2 shows the results of the Openface tracking estimation. As a 

result, the tracking values provided by Openface cannot achieve 100% accuracy. Therefore, the 

maximum tracker's confidence value is 98%. 

 

 

Figure 1 Facial Landmark Detection [8]. 
 

 

Figure 2 Head Pose Tracking [8]. 
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Figure 3 Gaze Tracking [8]. 
 

 

Figure 4 Facial Action Unit Recognition [8]. 
 

Table 2 Estimated Results of Openface. 
* CCC refers to concordance correlation coefficient. 

Openface Mean Absolute Error 

Head pose estimation results [8] on the BU dataset [13] 2.6 
Head pose estimation results [8] on ICT-3DHP dataset [14] 3.2 

Gaze estimation results [8] on MPIIGaze dataset [15] 9.1 

Action units estimation results [8] on DISFA validation set [16] CCC 0.73 

 

The output format of the Openface tool is an extracted features file that contains time-

series basic information, head pose tracking, gaze tracking, and facial action units. The following is 

a description of header information. 
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Basic Information Section 

• frame: the number of the frame (in the case of sequences). 

• face_id: the face id (in case of multiple faces) 

• timestamp: the timer of video being processed in seconds (in case of sequences) 

• confidence: the tracker's confidence in its current landmark detection estimate. 

• success: the track is successful. 

 

Pose Tracking Section 

• pose_Tx: the horizontal location of the head with respect to the camera in 

millimeters. 

• pose_Ty: the vertical location of the head with respect to the camera in millimeters. 

• pose_Tz: the millimeter distance between the head and the camera. 

• pose_Rx: rotation is in radians around the X axis (pitch), a left-handed positive sign. 

• pose_Ry: rotation is in radians around the Y axis (yaw), a left-handed positive sign. 

• pose_Rz: rotation is in radians around the Z axis (roll), a left-handed positive sign. 

 

Gaze Tracking Section 

• gaze_0_x: x eye gaze direction vector in world coordinates for the leftmost eye  

• gaze_0_y: y eye gaze direction vector in world coordinates for the leftmost eye 

• gaze_0_z: z eye gaze direction vector in world coordinates for the leftmost eye 

• gaze_1_x: x eye gaze direction vector in world coordinates for the rightmost eye 

• gaze_1_y: y eye gaze direction vector in world coordinates for the rightmost eye 

• gaze_1_z: z eye gaze direction vector in world coordinates for the rightmost eye 

• gaze_angle_x: eye gaze direction in radians in world coordinates from left to right 

(from positive to negative) 

• gaze_angle_y: eye gaze direction in radians in world coordinates from up to down 

(from positive to negative) 
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Facial Action Units 

The system can detect the intensity (from 0 to 5) of 17 AUs: 

AU01_r, AU02_r, AU04_r, AU05_r, AU06_r, AU07_r, AU09_r, AU10_r, AU12_r, AU14_r, 

AU15_r, AU17_r, AU20_r, AU23_r, AU25_r, AU26_r, AU45_r 

And the presence (0 absent and 1 present) of 18 AUs: 

AU01_c, AU02_c, AU04_c, AU05_c, AU06_c, AU07_c, AU09_c, AU10_c, AU12_c, AU14_c, 

AU15_c, AU17_c, AU20_c, AU23_c, AU25_c, AU26_c, AU28_c, AU45_c 

 

2.3 Machine Learning 

 2.3.1 Fusion Model 

Machine learning fusion model architectures [17] have three types of strategies. A fusion 

model can be used to combine different types of input data or to run multiple machine learning 

models at the same time. The three types of fusion strategies are listed below. 

• Early Fusion 

• Intermediate/Joint Fusion 

• Late/Decision Fusion 

 

Early Fusion 

 The goal of early fusion is to combine data before putting it into a model. Combined 

data can be original data or features extracted from raw data. There are various combinatorial 

methods. In a neural network, data combining typically occurs through a concatenation layer or 

pooling layer. Figure 5 depicts an early fusion model architecture. 
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Figure 5 Early Fusion. 
 

Intermediate/Joint Fusion 

 The combination of output from multiple neural networks before making a decision is 

known as intermediate/joint fusion. This strategy can update weights for all neural networks 

because the loss from the model can be propagated back to multiple neural networks. Figure 6 

shows an example of an intermediate/joint fusion model's architecture. 

 

 

Figure 6 Intermediate/Joint Fusion. 
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Late/Decision Fusion 

 Late/Decision Fusion is the predictions of multiple model aggregation at the decision 

level. This fusion strategy can be called decision fusion. There are various aggregation techniques, 

for instance, majority voting, averaging, and weight voting. 

 

 

Figure 7 Late/Decision Fusion. 
 

 2.3.2 Long Short Term Memory (LSTM) 

Long Short Term Memory (LSTM) [18] a type of recurrent neural network that can 

partially solve the vanishing gradient problem in recurrent neural networks. LSTM has a cell state 

and gate to control data flow. Figure 8 shows a long short term memory diagram. 

 

 

Figure 8 Long Short Term Memory. 
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 2.3.3 Label Smoothing 

Label smoothing is a technique in machine learning that prevents models from 

becoming overconfident. This technique can increase robustness and improve the classification 

model. The following is the definition of a soft label and a hard label. [19]. 

• A soft label is a score that has some probability or likelihood attached to it. For 

instance, [0.2, 0.8]. 

• A hard label is typically classified into one of two categories. It is binary in nature 

(either 0 or 1). 

 

The formula for label smoothing that transforms a hard label into a soft label is shown 

in ( 1 ) 

𝑦𝑘
𝐿𝑆 = 𝑦𝑘(1−∝)+∝/𝐾 

( 1 ) 
Where: 

• 𝑦𝑘
𝐿𝑆 is a soft label. 

• 𝑦𝑘 is a hard label. 

• ∝ is a label smoothing that should be in range 0 to 1. 

• 𝐾 is a number of classes. 

 2.3.4 Attention Mechanism 

Attention mechanism [20] is a technique that focuses the model's attention on a specific 

point. This method can improve the model’s performance and be used for explaining predicted 

results. Figure 9 shows an attention model diagram. The bidirectional LSTM generates a sequence 

of forward and backward hidden states in the encoder ( 2 ). The context vector is calculated by 

weighting the hidden states ( 3 ). Each hidden state is weighted by αti. The weight αti.(the 

alignment score) is computed by a softmax function ( 4 ). The score function used in the 

alignment score uses tanh as a non-linear activation function, 𝑣𝛼 and 𝑊𝛼 as the weight 

matrices ( 5 ). 
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Figure 9 Attention Model Diagram [20]. 
 

Hidden States 

ℎ𝑖 = [ℎ⃗ 𝑖; ℎ⃖⃗𝑖] 
 

( 2 ) 
Context Vector 

𝑐𝑖 = ∑𝛼𝑡𝑖ℎ𝑖

𝑇𝑥

𝑖=1

 

( 3 ) 
 

Alignment Score 

𝑎𝑡,𝑖 = 𝑎𝑙𝑖𝑔𝑛(𝑦
𝑡
, 𝑥𝑖) =

𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒(𝑠𝑡−1, ℎ𝑖))
∑ 𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒(𝑠𝑡−1, ℎ𝑖′))

𝑛

𝑖′=1

 

( 4 ) 
 

Score Function 

𝑠𝑐𝑜𝑟𝑒(𝑠𝑡, ℎ𝑖) = 𝑣𝛼
𝑇𝑡𝑎𝑛ℎ(𝑊𝛼[𝑠𝑡; ℎ𝑖]) 

( 5 ) 
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 2.3.5 Transformer Model 

Transformer Model [21] is a novel architecture that is used to solve sequence-to-

sequence tasks with long-range dependencies. The transformer model utilizes attention to 

handle the dependencies between input and output. Figure 10 shows the transformer model 

architecture, in which the encoder block has one layer of multi-head attention followed by a 

feed-forward neural network. 

 

 

Figure 10 Transformer Model Architecture [21]. 
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 2.3.6 Evaluation Measures 

The following are some common performance metrics for classification: 

• Accuracy 

• Confusion Matrix 

• Precision 

• Recall 

• F1 score 

 

Accuracy 

 Accuracy is the ratio between the number of correctly predicted results and the total 

number of results. Accuracy formular shows in ( 6 ). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

( 6 ) 
 

Confusion Matrix 

 Confusion matrix is a table that contains different combinations of predicted and actual 

values. The values are true positive value, true negative value, false positive value, and false 

negative value. Table 3 shows the confusion matrix. 

 

Table 3 Confusion Matrix. 

 Positive Actual Values Negative Actual Values 
Positive Predicted Values True Positive Value  

(TP) 
False Positive Value 

(FP) 
Negative Predicted Values False Positive Value 

(FP) 
False Negative Value 

(FN) 
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Precision 

 Precision is a measure of relevant instances among the retrieved instances. It can be 

called positive predictive value. Precision formular is shown in ( 7 ). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑉𝑎𝑙𝑢𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑉𝑎𝑙𝑢𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑉𝑎𝑙𝑢𝑒
 

( 7 ) 
 

Recall 

 Recall is a measure of the relevant instances that were retrieved. It can be called 

sensitivity. Recall formular is shown in ( 8 ). 

 

Recall =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑉𝑎𝑙𝑢𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑉𝑎𝑙𝑢𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑉𝑎𝑙𝑢𝑒
 

( 8 ) 
 

F1 Score 

 F1 score is a measure of model accuracy on a dataset. It is defined as the harmonic 

mean of precision and recall. F1 score formular shows in ( 9 ). 

 

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

( 9 ) 
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2.4 Integrated Gradient 

Integrated Gradient (IG) [22] is an interpretability technique used in machine learning and 

deep learning models to visualize the input features and model predictions. The advantage of 

this technique is that the original deep neural networks are not modified while applying IG.  

The integrated gradient technique is to compute the integral of the gradients of the 

model's predictions with respect to the input features along the straight-line path from a baseline 

(zero input) to the input being interpreted. By integrating the gradients along this path, Integrated 

gradients assigns an important score to each feature, indicating how much it contributes to the 

model's prediction for a specific input. The formula for computing the integrated gradient for a 

particular input feature 𝑖 shows in ( 10 ) 

 

𝐼𝐺𝑖(𝑥) = (𝑥𝑖 − 𝑥′𝑖)∫
𝜕𝐹(𝑧(𝛼))

𝜕𝑥𝑖
𝑑𝛼

1

𝛼=0

 

( 10 ) 
 

Where: 

• 𝐼𝐺𝑖(𝑥) is the integrated gradient for the 𝑖 feature of the input 𝑥 

• 𝑥𝑖 is the value of the 𝑖 feature in the input being interpreted. 

• 𝑥′𝑖 is the value of the 𝑖 feature in the baseline input. 

• 𝐹(𝑧(𝛼)) is the model's prediction function, where 𝑧(𝛼) is the interpolated input 

along the path from the baseline to the actual input, defined as                   

𝑧(𝛼) = 𝑥′ + 𝛼(𝑥−𝑥′) 
• The integral term represents the partial derivative of the model's prediction with 

respect to the 𝑖 feature, evaluated at the interpolated inputs 𝑧(𝛼). 
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CHAPTER 3 

LITERATURE REVIEW 
3.1 Facial Expressions and Depression Relation 

Facial expressions can show human emotion that is associated with depression 

symptoms. During a depression diagnosis interview, the patients’ facial expressions represent their 

feelings and emotions, which can be used in depression classification. In the medical field, there 

are studies about facial expressions, depression, and brain network relationships. In [23], they 

experiment with the effects of positive and negative facial expressions on 

electroencephalographic (EEG) analysis. The results show that facial expression can be used to 

identify the side of the facial muscles in EGG analysis. In [24], they experiment with the effect of 

happy and sad facial expression reactions in depressed patients and non-depressed volunteers 

by using functional magnetic resonance imaging (fMRI). The results show that depressed patients 

respond to sad facial expressions more than normal people and respond to happy facial 

expressions less than normal people. In [25], the results confirmed that neural activity in the 

cerebellum from fMRI scans has a relationship with depression. The study, as previously 

described, confirms that facial expression is related to the brain network via EGG and MRI 

observations. Furthermore, [26] shows that facial modality is associated with voice modality in 

emotion expression, and the experimentation in [27] shows that humans can distinguish 

depression symptoms from facial expressions. In the same direction, [28] proves that depression 

can be predicted by using face and eye movement tracking during a cognitive task. As a result, 

depression symptoms manifest as intensities of reduced mouth or eye movements at various 

stages of a cognitive task. Therefore, the evidence that facial expressions are related to 

depression symptoms exists today. 

 

3.2 Depression Detection Approaches 

Artificial intelligence technology rapidly enhances various fields. The medical field is the 

one that exploits this technology to improve medical performance. Diagnosis is a popular area in 

which AI can play a role as a pre-diagnosis or decision-support tool because it improves the 

speed and accuracy of the diagnosis process. Currently, there are several techniques in artificial 

intelligence to detect psychiatric disorders [29]. There are three main categories of raw data that 
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become the input of the detected model: MRI, EGG, and kinesics diagnosis (including behavioral, 

facial, and other physical data). Algorithms that are used with this data can be categorized into 

five types. There are Bayesian models, logistic regression, decision trees, support vector 

machines, and deep learning. In this thesis, we focus on depression detection using facial 

expressions. Therefore, facial cues that express depression symptoms are pupil dilation, action 

units, facial expressions (emotion), and head pose [30]. 

Researchers have recently focused on the facial modality. They experiment with facial 

modality alone or in combination with other modality to predict depression. In [31], multi-model 

fusion of visual, voice, and text is proposed with a concordance correlation coefficient (CCC) of 

0.67 in the E-DAIC dataset. In [32] they propose a method to reduce AUs in a feed-forward neural 

network (FFNN) by using Particle Swarm Optimization (PSO) to select the best predictors of AUs. 

The best predictors are AU04_r, AU06_r, AU09_r, AU10_r, AU15_r, AU25_r, AU26_r, AU04_c, 

AU12_c, AU23_c, AU28_c, and AU45_c in the Distress Analysis Interview Corpus Wizard-of-Oz 

(DAIC WOZ) data set with 97.83% accuracy. In [33] propose a facial and voice fusion transformer 

network to estimate depressive levels. They categorize the depression score from PHQ-8 into five 

levels for use as the first classification label in multi-task learning. The second multi-task learning 

label is the PHQ-8 regression label. Their proposed method achieves a CCC of 0.733 in the E-DAIC 

data set. In [34], they propose Fisher Discriminant Ratio (FDR) and Incremental Linear Discriminant 

Analysis (ILDA) to reduce and select facial features from the DAIC WOZ dataset. Their method 

achieves an F1 score of 80.5%, the highest score in the DAIC WOZ dataset. In [35], they utilize 

deep learning to classify posttraumatic stress disorder (PTSD) and major depressive disorder 

(MDD) based on facial features, movement intensity, speech, and content. This raw data was 

collected from 81 patients in one month. The results show that the PTSD classification reached 

90% accuracy and the MDD classification reached 86% accuracy. All studies aim to improve 

depression classification performance. The conclusion of this study is shown in Table 4. 

According to Table 4, depression prediction using facial features in the artificial 

intelligence field appears to be gaining popularity in recent years. Therefore, there are various 

possibilities to explore for improving the performance of the model. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21 
 

Table 4 Related Works of Depression Prediction. 
* CCC refers to concordance correlation coefficient. 

Year Techniques Data sets Questionnaires Accuracy Precision Recall F1 score 

2019 
[31]  

Multi-Model, 
Bi-LSTM 

E-DAIC PHQ-8 CCC 0.67 - - - 

2021 
[32] 

PSO, 
FFNN 

DAIC WOZ PHQ-8 97.83% - - - 

2021 
[33] 

Multi-Modal 
Transformer 

E-DAIC PHQ-8 CCC 
0.733 

- - - 

2022 
[34] 

FDR, ILDA DAIC WOZ PHQ-8 - - - 80.5% 

2022 
[35] 

FFNN Their own - 86% 83% 82% 82% 

 

In all related works, the experiment models in [31, 33] can be compared with ours 

because the E-DAIC data set is extracted from OpenFace version 2, the same as ours. On the 

other hand, the experiment models in [32, 34] use the DAIC WOZ data set that extracted facial 

features from OpenFace version 1, which is different from ours. The model in [31] will be the 

baseline of our Bi-LSTM model. The model in [33] will be the baseline of our transformer model. 
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CHAPTER 4 

METHODOLOGY 
4.1 Facial Features Extraction 

Raw data from DMIND applications contains different numbers of videos depending on 

how participants answer the list of DMIND interview questions. The OpenFace tool extracts head 

pose, gaze, and action units from all participant videos. The extracted data is a time-series 

extracted features file that contains head pose, gaze, and action units per video. However, input 

should be one extracted feature file per participant. As a result, the extracted feature files from 

each participant are concatenated into a single extracted feature file. Figure 11 shows the facial 

feature extraction process. 

 

 

Figure 11 Facial Features Extraction Process. 
 

4.2 Input Preprocessing 

4.2.1 Features Selection 

Extracted features files contain head pose, gaze, and action units. Each facial feature 

(head pose, gaze, and action units) has a sub-feature group as follows: the head pose feature has 

location and rotation sub-feature groups. The gaze feature has vector and radian sub-feature 

groups. Sub-feature groups for action units include intensity and presence. We separate data from 

extracted feature files by group and standardize all groups by removing the mean and scaling to 

unit variance (Standard Scaler). As a result, for input into models, facial features are divided into 

six sub-feature groups. The head rotation sub-feature groups and head location sub-feature 

groups are repeated with different units, the same as the gaze vector sub-feature groups and 

gaze radian sub-feature groups, as shown in Figure 12. We experimented with them using a single 

model to compare their results. The results, as shown in Table 5, indicated that the head pose 
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location and gaze vector direction have poor performance in classifying depression. Therefore, 

the head pose location and gaze vector direction sub-feature groups are not selected for 

experimentation to eliminate redundant data and model size. The action units presence sub-

feature groups and the action units intensity sub-feature groups, all of which use distinct 

estimation models. Both sub-feature groups are selected. The features selection is shown in 

Figure 12  The list of sub-feature groups is summarized as follows: 

1. Pose_R Head pose rotation has 3 features. 

2. Gaze_Angle: Gaze angle direction has 2 features. 

3. AU_r: Action unit intensity has 17 features. 

4. AU_c: Action unit presence has 18 features. 

 

 

Figure 12 Features Selection. 
 

The longest time-series of inputs is not over 11 minutes. Therefore, this number is 

selected to be calculated as timesteps. Timestep is calculated from time (minutes) * 60 

(seconds) * 30 (frames/second). In this thesis, the timestep is 19800. To fit the timestep, inputs 

that do not reach the timestep are padded with zero. 
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4.2.2 Label Smoothing 

Label smoothing is applied to improve the model's performance because it can prevent 

a model from becoming overconfident in its predictions. The model can be improved by label 

smoothing because depressive syndrome is not clearly defined, especially at a mild and 

moderate level. We apply a label smoothing number with a range of 0 to 0.9 with 0.1 increments 

solely on the best model to reduce computation time. 

 

4.3 Model Architecture 

4.3.1 Baseline Fusion Bi-LSTM Model Architecture  

The baseline fusion Bi-LSTM model [31] passes pose, gaze, and facial action units 

through its own single layer of 200 Bi-LSTM cells. Their output is concatenated before passing 

through the attention layer. The output of attention is passed through another Bi-LSTM with 200 

cells, followed by global max pooling. After global max pooling, the output is passed through a 

feed-forward network with 128 hidden units. The total number of parameters is 888,786. This 

model is shown in Figure 13. 

 

 

Figure 13 Baseline Fusion Bi-LSTM Model Architecture. 
 

4.3.2 Baseline Fusion Transformer Model Architecture 

The baseline fusion transformer model [33] makes use of the early fusion technique. All 

features (pose, gaze, and action units) concatenate before passing through the model. 

Unfortunately, we cannot use 2048 timesteps as efficiently as [33] because of the environment. 
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The timesteps that are used in this baseline are reduced to 1320 timesteps (average of 30 frames 

per second to 2 frames per second). The multi-head attention number is set to 1, the feed-

forward layer's hidden dimension is set to 2048, and the number of transformer encoders is set 

to 6. After that, a rectified linear unit (ReLU) is applied. However, units that used this layer are not 

mentioned. Therefore, we use 32 units for ReLU. The total number of parameters is 1,831,270. 

This model is shown in Figure 14. 

 

 

Figure 14 Baseline Fusion Transformer Model Architecture. 
 

4.3.3 Individual Bi-LSTM Model Architecture 

Bidirectional LSTM and self-attention are used to generate individual Bi-LSTM model 

architectures for four sub-feature groups. Four models are produced with the same layers that 

are shown in Figure 15. Hyperparameters are set for Pose_R, Gaze_Angle, AU_r ,and AU_c 

respectively, as described in Table 6. The hidden units, units1, and units2, are powers of two. The 

selected units are the best values from hyperparameter tuning techniques. 
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Table 6 Individual Bi-LSTM Model Hyperparameter. 

Hyperparameter Pose_R Gaze_Angle AU_r AU_c 
Features 3 2 17 18 

Hidden_units 64 16 128 128 

Units1 32 8 64 64 
Units2 16 4 32 32 

Total parameters 31,722 20,702 72,314 72,826 

 

 

Figure 15 Individual Bi-LSTM Models Architectures. 
 

4.3.4 Early Fusion Bi-LSTM Model Architecture 

Early Fusion Bi-LSTM Model Architecture concatenates four sub-feature groups into one 

group. As a result, a model receives one input that contains four sub-features with 40 features. 

The model is similar to an individual model. The total number of parameters is 84,090. This 

architecture is shown in Figure 16. All hidden units are powers of two. 

 

 

Figure 16 Early Fusion Bi-LSTM Model Architecture. 
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4.3.5 Intermediate Fusion Bi-LSTM Model Architecture 

Intermediate Fusion Bi-LSTM Architecture utilizes four Bi-LSTM individual models by 

removing the aggregation section. Output from the attention layer of four individual models is 

concatenated before the decision layer. The total number of parameters is 225,458. This 

architecture is shown in Figure 17. All hidden units are powers of two. The selected units are the 

best values from hyperparameter tuning techniques. 

 

 

Figure 17 Intermediate Fusion Bi-LSTM Model Architecture. 
 

4.3.6 Late Fusion Bi-LSTM Model Architecture 

Late Fusion Bi-LSTM Model Architecture utilizes four individual models to determine 

depression and average their results. The total number of parameters is 226,556. Figure 18. 

depicts the method of aggregation. 

 

 

Figure 18 Late Fusion Bi-LSTM Model Architecture. 
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4.3.7 Individual Transformer Model Architecture 

Individual Transformer Models Architectures for four sub-feature groups utilize a 

transformer encoder, followed by a global average pooling layer and a dense layer. Before the 

multi-head attention layer, average pooling that has pool size 15 and stride 15 (average 30 

frames per second to 2 frames per second) is applied to reduce timesteps because of memory. 

Four models are produced with the same layers that are shown in Figure 19 except for features. 

Features are 3, 2, 17, and 18 for Pose_R, Gaze_Angel, AU_r, and AU_c, respectively. The total 

number of parameters for Pose_R, Gaze_Angel, AU_r, and AU_c are 22,042, 15,890, 108,170, and 

114,322, respectively. 

 

 

Figure 19 Individual Transformer Model Architecture. 
 

4.3.8 Early Fusion Transformer Model Architecture 

Early Fusion Transformer Model Architecture concatenates four sub-feature groups into 

one group. As a result, a model receives one input that contains four sub-features with 40 

features. The model is similar to an individual model. The total number of parameters is 249,666. 

This architecture is shown in Figure 20. 
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Figure 20 Early Transformer Fusion Model Architecture. 
 

4.3.9 Intermediate Fusion Transformer Model Architecture 

Intermediate Fusion Transformer Model Architecture utilizes four individual transformer 

models by removing the aggregation section. Output from the global average pooling layer of 

four individual models is concatenated before the decision layers. The total number of 

parameters is 260,418. This architecture is shown in Figure 21. 

 

 

Figure 21 Intermediate Transformer Fusion Model Architecture. 
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4.3.10 Late Fusion Transformer Model Architecture 

Late Fusion Transformer Model Architecture employs four separate transformer models 

to determine depression and average their decision to results. The total number of parameters is 

260,424. The aggregation method is shown in Figure 22. 

 

 

Figure 22 Late Transformer Fusion Model Architecture. 
 

4.3.11 Individual Window Block LSTM Model Architecture 

Individual Window Block LSTM Model Architecture is utilized: reshape layer, time 

distribution with LSTM layer, time distribution with attention, attention layer, and feed forward 

layers. The reshape layer is utilized for converting 19800 frames to 30 frames x 660 second. The 

model hyperparameter and architecture are shown in Table 7 and Figure 23, respectively. The 

hidden units, units1, and units2, are powers of two. The selected units are the best values from 

hyperparameter tuning techniques. 

 

Table 7 Individual Window Block LSTM Model Hyperparameter. 

Hyperparameter Pose_R Gaze_Angle AU_r AU_c 

Features 3 2 17 18 
Hidden_units 32 32 64 64 

Units1 16 16 32 32 

Units2 8 8 16 16 
Total parameters 6,035 5,907 24,435 24,691 
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Figure 23 Individual Window Block LSTM Model Architecture. 
 

4.3.12 Early Fusion Window Block LSTM Model Architecture 

Early Fusion Window Block LSTM Model Architecture utilizes a concatenate layer to 

concatenate all input features before passing through the following layers. The following layers 

are: reshape layer, time distribution with LSTM layer, time distribution with attention layer, 

attention layer, and feed forward layers. The total number of parameters is 30,323. The model 

architecture is shown in Figure 24. All hidden units are powers of two. 

 

 

Figure 24 Early Fusion Window Block LSTM Model Architecture. 
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4.3.13 Intermediate Fusion Window Block LSTM Model Architecture 

Intermediate Fusion Window Block LSTM Model Architecture utilizes a concatenate layer 

before feed-forward layers. Each input feature passes through a reshape layer, a time distribution 

with an LSTM layer, a time distribution with an attention layer, and an attention layer. The total 

number of parameters is 90,057. The model architecture is shown in Figure 25. All hidden units 

are powers of two. The selected units are the best values from hyperparameter tuning 

techniques. 

 

 

Figure 25 Intermediate Fusion Window Block LSTM Model Architecture. 
 

4.3.14 Late Fusion Window Block LSTM Model Architecture 

Late Fusion Window Block LSTM Model Architecture utilizes a single window block LSTM 

model. Four input features are passed through their single model and averaged in the aggregation 

layer to determine the output. The total number of parameters is 61,068. The model architecture 

is shown in Figure 26. 

 

 

Figure 26 Late Fusion Window Block LSTM Model Architecture. 
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4.4 Integrated Gradient Explanation 

The integrated gradient is applied to the best model to explain its result. The methods 

to calculate the integrated gradient in time-series are the same as image classification. We 

compute integrated gradients for each input feature from baseline time-series input (zero-

initialized time-series) to actual time-series with equally spaced intermediate steps. The 

integrated gradients express the contribution of their input features. Finally, we calculate the 

mean value of integrated gradient feature values to visualize the importance of features for 

depression or non-depression. We also calculate the absolute mean value of integrated gradient 

feature values to visualize the importance of features for arranging the important features in 

order.  
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CHAPTER 5 

EXPERIMENTS AND RESULTS 
5.1 Experimental Setups 

 5.1.1 Environment Detail 

A desktop computer is used to run this experiment. The processor is an Intel® CoreTM 

i9-12900K, 12th Generation, 3.19 GHz. RAM is 64 GB. Nvidia GeForce RTX 3090 is the GPU. The 

operating system is Windows 10 Pro. 

 

 5.1.2 Data Distribution 

Raw data has 106 normal, 234 mild, 112 moderate, and 22 severe. Raw data is separated 

in the ratio 80:10:10 for three data sets: training, development, and testing. This three-data set is 

for training, validation, and testing. In 4 classes, the training data set has 84 normal, 186 mild, 90 

moderate, and 18 severe. The development and testing data sets contain the same amount of 

data: 11 normal, 24 mild, 11 moderate, and 2 severe. Figure 27. depicts the data set with four 

classes. After separating, the training data set has 270 non-depressions and 108 depressions. Both 

the development and testing data sets contain the same amount of data, with 35 non-

depressions and 13 depressions. Figure 28 depicts the data set with two classes. To balance the 

data, we duplicate the depression data set in the training data set shown in Figure 29. Finally, the 

training data set has 270 non-depressions and 216 depressions. 

 

 

Figure 27 Train Data Set, Dev Data Set, Test Data Set in 4 Class. 
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Figure 28 Train Data Set, Dev Data Set, Test Data Set in 2 Class. 
 

 
Figure 29 Double Depression Class in Train Data Set. 

 

 5.1.3 Implementation 

The models that are used in this experiment are implemented following the Model 

Architecture in section 4.3 Model Architecture. After getting the results of all the models, 

the best model is selected to experiment with varying the label smoothing hyperparameter to 

improve performance. 

 

 5.1.4 Evaluation 

The result of all models is expressed in terms of the evaluation measures described in 

2.3.6 Evaluation Measures. The accuracy, confusion matrix, precision, recall, and F1 score of all 

models are compared to find the best model by the comparing macro F1 score. 
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5.1.5 Explanation 

An integrated gradient is applied to the result of the best model to visualize the 

important input feature value. The important input features are expressed in terms of the impact 

on depression or non-depression and the order of impact. 

 

5.2 Experimental Results 

The result of Bi-LSTM model is shown in Table 8. As a result, action unit classification 

and intermediate fusion have the same accuracy of 85.42%. The difference is that intermediate 

fusion has better macro precision at 91.67%. Action unit classification has better macro recall at 

77.91% and a better macro F1 score at 79.99%. The result of the transformer model is shown in 

Table 9. As a result, the best model is the intermediate fusion model, which achieves an 

accuracy of 83.33%, macro precision of 81.20%, macro recall of 74.07%, and macro F1 score of 

76.41%. The result of the window block LSTM model is shown in Table 10. As a result, the best 

model is the intermediate fusion model, which achieves an accuracy of 89.58%, macro precision 

of 87.50%, macro recall of 85.60%, and a macro F1 score of 86.48%. The trend of almost all 

features between the three methods (Bi-LSTM, transformer, and window block LSTM) is similar, 

while window block LSTM has the best performance. 

As a result, experimental models of the Bi-LSTM model, transformer model, and window 

block LSTM have better performance than baseline (see Table 11). The Bi-LSTM baseline 

achieves an accuracy of 66.78% and a macro F1 score of 40.74%. The transformer model 

baseline achieves an accuracy of 66.78% and a macro F1 score of 59.44%. Above the Bi-LSTM 

baseline, our Bi-LSTM increases to 24.25% accuracy and an 89.08% macro F1-score. The same as 

our transformer model, which increases a 21.21% accuracy and a 25.05% macro F1-score above 

the transformer baseline. The window block LSTM has the best performance, achieving an 

accuracy of 89.58% and a macro F1 score of 86.48%. 

The intermediate fusion Bi-LSTM model and window block LSTM model were chosen to 

improve performance with label smoothing. The result in Table 12 shows that the intermediate 

fusion Bi-LSTM model with label smoothing (0.3, 0.7) achieves 91.67% accuracy, 94.87% macro 

precision, 84.62% macro recall, and a 88.21% macro F1-score. The result in Table 13 shows that 

the intermediate fusion window block LSTM model with label smoothing (0.1, 0.9) achieves 
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91.67% accuracy, 91.40% macro precision, 87.03% macro recall, and an 88.89% macro F1-score. 

Therefore, the best model is the intermediate fusion window block LSTM model with label 

smoothing (0.1, 0.9). Table 14 displays the predicted values of the best model for visualizing four 

depression levels. The predicted values show that the false positive value has only a mild level 

and the false negative value has only a moderate level. As a result, the model has the potential 

to detect normal and severe depression levels because it has more clear-cut data than mild and 

moderate depression levels. The accuracy of normal and severe depression levels achieves 100% 

in the test data set, which is useful to classify severe depression from normal people. 

The integrated gradient results of the best model (intermediate fusion window block 

LSTM model with label smoothing) are shown in Figure 30 and Figure 31. Figure 30 shows the 

impact of facial features on depression or non-depression, feature by feature. Figure 31 shows 

the impact of overall facial features on depression or non-depression. 

First, important pose features are shown in Figure 30 (A) and (B). The movement of head 

pose features is shown in Figure 32. The important pose features are Pose_Rx (head nodding), 

Pose_Rz (head tilting), and Pose_Ry (head turning), respectively. Head nodding and head tilting 

impact non-depression, and head turning impacts depression because head nodding and head 

tilting are reactions of high energy and favorable to social interaction [36-39]. On the other hand, 

head turning means that patients have a lack of concentration on social interests and withdraw. 

Second, important gaze features are shown in Figure 30 (C) and (D). The movement of 

eye gaze features is shown in Figure 33. The important features are Gaze_y (looking up or down) 

and Gaze_x (looking left or right), respectively. Both gaze features impact depression because 

looking around, having a nonspecific gaze, and not having eye contact mean patients have a lack 

of concentration and are absent-minded [36-38]. The reduction in eye movement is justified as a 

depressive symptom [28]. 

Third, important action unit regression features are shown in Figure 30 (E) and (F). The 

movement of the action unit is shown in Table 1. The obvious features that impact depression 

are the AU26 jaw drop, AU20 lip stretcher, and AU07 lid tightener, which represent grumbling, 

frowning, and scowling faces that relate to negative feelings and social disinterest [38]. In 

controversy, the features that impact non-depression are the AU06 cheek raiser, AU25 lips part, 

AU14 dimpler, and AU12 lip corner puller, which represent the posture of talking and smiling. 
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Forth, action unit classification important features are shown in Figure 30 (G) and (H). The 

movement of the action unit is shown in Table 1. The obvious features that impact depression 

are the AU07 lid tightener, the AU26 jaw drop, and the AU25 lips part. In the same direction as 

action unit regression, AU07 and AU26 represent grumbling, frowning, and scowling faces that 

relate to negative feelings and social disinterest. However, AU25 represents when people talk. In 

the same direction as [38], silence and speaking can be justified as depression or non-depression 

depending on the speech content. On the other hand, the features that impact non-depression 

are the AU23 lip tightener, the AU12 lip corner puller, the AU45 blink, and the AU09 nose 

wrinkle. They represent pursing lips, smiling, and blinking. 

Finally, overall features are shown in Figure 31 (A) and (B). The important features are 

action unit classification, action unit regression, head pose, and gaze, respectively. Facial 

expression can be detected via action unit classification and action unit regression, which make it 

easy to observe depression like human observation [27]. Concentration and social interest can be 

detected via head pose and gaze. Therefore, machine learning can detect depression through 

four main features in the same ways as human observation.  
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Table 14 Predicted Values of Intermediate Fusion Window Block LSTM Model with Label 
Smoothing (0.05, 0.95) 

 

 

 

 

  

Predicted Values Normal Mild Moderate Severe 

True Positive - - 8 2 
False Negative - - 3 0 

True Negative 11 23 - - 

False Positive 0 1 - - 
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Figure 30 (A) Pose impact on model output, (B) Pose impact on model output magnitude, (C) 
Gaze impact on model output, (D) Gaze impact on model output magnitude, (E) AUr impact on 
model output, (F) AUr impact on model output magnitude, (G) AUc impact on model output, (H) 
AUc impact on model output magnitude. 
* Red color refers to a negative effect (tends to be non-depressive) 
** Blue color refers to a positive effect (tends to be depressive). 
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Figure 31 (A) Positive/negative impact of all features, (B) Absolute impact (magnitude) of all 
features. 
* Red color refers to a negative effect (tends to be non-depressive). 
** Blue color refers to a positive effect (tends to be depressive). 

 

 

Figure 32 Head Pose Movement [40]. 
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Figure 33 Gaze Movement. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 
Conclusion 

Machine learning models can detect depression from extracted facial features in time-

series format without utilizing the original interview video to protect privacy. The well-known 

techniques of machine learning that were experimented with in this thesis are the Bi-LSTM 

model, transformer model, and window block LSTM model. All our experimental models have 

better performance than both the Bi-LSTM baseline and the transformer baseline. Three types of 

fusion methods—early fusion, intermediate fusion, and late fusion—are applied to our model. 

We also applied label smoothing to improve performance. The best model is intermediate fusion 

window block LSTM with label smoothing (0.05, 0.95), which achieves 91.67% accuracy, 91.40% 

macro precision, 87.03% macro recall, and 88.89% macro F1-score. 

The important key features that have an influence on depression detection are action 

unit classification, action unit regression, pose rotation, and gaze angle, respectively. All features 

indicate that patients who have depression symptoms keep frowning, grumbling, scowling, head 

turning, no specific gaze, and slow eye movement, which express a lack of concentration, social 

disinterest, and negative feelings. 

 

Future Work 

The label smoothing techniques can be applied in several ways to set up experiments to 

improve model performance since the original depression classes are four and the extracted 

features from the Openface tool do not have 100% accuracy. We can apply different label 

smoothing values for normal, mild, moderate, and severe classes for binary classification. In the 

same direction, extracted features that have poor accuracy can utilize label smoothing 

techniques to prevent a model from becoming overconfident in its predictions. 
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