Chapter 3
The Van Hove Superconductors

3.1 Introduction

L.Van Hove (Van Hove, 1953) stressed the crucial role played by topology
in the band structure of either electrons or phonons by demonstrating that any
nonanalytic behavior in the density of states is caused by a change in the band
topology. The singularity now known as Van Hove singularities (VHS).

In materials, the role of a VHS is enhanced, because the density of states
N(E) can actually diverge at a VHS. In one dimensional materials, the divergence
is power law, N(E) & AE~Y? In two dimensional materials, the density of states
diverges logarithmically N(E)xIn(B/AFE), where AE = E — EV.HS is the dis-
tance in energy from the VHS and B the bandwidth. The topology of this VHS
is the saddle point in the energy surface. The VHS of a two-dimensional metal is
the simplest model with a peak in the density of states and can analyze the role
of the structure of the density of states in the physics of Fermi liquids.

The review ‘articles are shown in sections (3.2), (3.3), (3.6), and (3.9).
The thesis work is given in sections (3.4), (3.5), (3.7), (3.8), and (3.10).

3.2 The Van Hove Scenario '

It is well known that the Van Hove scenario can explain many physical
properties of high- T, superconductors such as the high value of T, anoma-
lous isotope effect, gap anisotropy, etc. The high- T, was explained by Labbe’
and Bok (Labbe’ and Bok, 1987). They proposed a two-dimensional band struc-

ture calculation for alkaline-earth-substituted La;CuOjy in the tetragonal phase.
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Within the framework of the BCS phonon-mediated pairing, Tsuei et al. (Tsuei
et al., 1990) showed that a logarithmic (2D) Van Hove singularity in the den-
sity of states can provide a basis for understanding the anomalous isotope effects
in the YBagCu307 and the BiSrCaCuOQ systems. The thermodynamic prop-
erties such as the specific-heat jump at the transition temperature (T:), AC/T.,
and the zero-temperature critical field H.(0), of oxygen-deficient Y Ba;Cu3Or_y
were analyzed, by Tsuei et al. (Tsuei et al.,, 1992), to show that the density of
states at the Fermi level is peaked at y=0 and the Fermi level lying close to a
two-dimensional Van Hove singularity. Pattnaik et al. (Pattnaik et al. 1992)
calculated the quasiparticle lifetime broadening 1/7, both for idealized and real-
istic models of the band structure. The result shows a large lifetime broadening
from electron-electron scattering, with the characteristic linear dependence on
energy seen in high-temperature superconductors, provided that the Fermi level
lies near the Van Hove singularity in the quasi-two-dimensional band structure.
Getino et al. (Getino et al., 1993) derived an exact transition temperature (T)
formula within the Van Hove scenario of BCS phonon-mediated pairing theory
consisting of a logarithmic singularity in the density of states at the Fermi en-
ergy. Sarkar and Das (Sarkar and Das, 1994) derived an exact expression for
the isotope-shift exponent and the pressure coefficient of the transition tempera-
ture from the BCS gap equation ifor a density of states with a Van Hove singu-
larity. The effect of orthorhombic distortion, second-nearest-neighbor hopping,
and Coulomb repulsion on the superconducting transition temperature and the
isotope-shift exponent were studied, by Sarkar, Basu, and Das (Sarkar, Basu,
and Das, 1995), within the Van Hove singularity scenario. Houssa and Ausloos
(Houssa and Ausloos, 1996) calculated the electronic contribution . to the ther-
mal conductivity of a two-dimensional superconductor with the saddle points at

the Fermi level in the band structure, corresponding to logarithmic Van Hove sin-



28

gularities in the 2D density of states. Wei et al. (Wei et al., 1998) considered the
quasiparticle tunneling measurements of the high-temperature superconductors
HgBa;Capn—1Cty0any24s (n1=1,2,3) in the context of the d,2_,» symmetry of the
superconducting order parameter and a two-dimensional Van Hove singularity
related to saddle points in the electronic band structure.
3.3 Van Hove Singularity in the Density of States

To investigate the nature of a saddle point in the energy surface which
provides the divergence of the electron density of states, we begin with the ex-

pression of the density of states

N(E) = (—2%—3 f PRS(E — E(F)), (3.1)

Alternatively, the number of states in the energy interval between E and E+dE

is
ds -
—(21'_)367: (3.2)

where S be the energy surface and perpendicular to 6k. The infinitesimal change

N(E)dE = /

of E(E) with respect to 6k is given by
dE = VEék (3.3)

here V; means the gradient in k— space. Thus we obtain the electron density of

states in an alternative form:

ds. 1

8= ) e weE

(3.4)

When E(E) approches zero, the density of states diverges. This is known as Van
Hove singularities.
In the cuprates, the CuO; plane contains three orbitals, Cud,2_,2 and

O(p=, py) orbitals with a lobe pointing towards the Cu. This is the standard
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three band model. It is sufficient to consider only one band since two of these
bands are filled and one is half filled. Thus the energy band dispersion can be
modeled by a tight-binding band

E(k) = —2t(cos ky + 11 cos ky) + 2tr; cos k. cos ky, (3.5)

where t and tr; are the nearest-neighbor hopping energy along the a and b di-
rections, respectively, and tr; is the next-nearest-neighbor hopping energy. The
parameters r, represents the orthorhombic distortion in which the lattice param-
eters along the a and b directions are slightly different in length. For a square
lattice r; is unity but smaller than unity for an orthorhombic phase. For param-
eter r, it is resonable to assume that r, < ry.

The VHS energy is at
E, = Ex = %[%( — r1) — 4] (3.6)

The standard expressions for the electron density of states (DOS) in two dimen-
sion is given by

N(E) = ;12. /0 " dk, /0 " dk,8(E - B(F)), (3.7)

the DOS corresponding to the tight-binding energy, Eq.(3.5) is expressed to be

1 K[.l. (L4+m)? - (E/2t - T2)2] 3.8)
2tw2\/ri +ro(E£/2t) 2 r1 +12(E/2t) G

for1+r+rp2 E/2t>1—ry—rg,0t =147 =1y > E/2t > =1 — 1, + 14, and

N(E) =

YA £} r1 + ra(E/2t)
trt (L + i) — (B2 = r;)’Kp\/(l Fre= (B =y 39

forl—ry—ra 2 E/2t > =1 4+ r; — 5, and K(z) = F(%,z) is the complete elliptic

N(E) =

integral of the first kind. Near the singularity E,, the approximate expression for
N(E) is
. 16t4/1 —r3
N(E) = Noln| —ETE-E | (3.10)



30

with N;'! = 2tx?y/1 —13 and E, = —2tr;. Eq.(3.10) was first derived by Xing,
Liu and Gong (Xing, Liu, and Gong, 1991). Initiallly, the VHS density of states
was proposed as an enhancement of the superconducting transition temperature
within the framework of the phonon-mediated paring mechanism by Labbe and
Bok (Labbe and Bok, 1987) but not included the orthorhombic distortion and
the second-nearest-neighbor hopping paremeters. They calculated the supercon-
ducting critical temperature T, as a function of the position of the Fermi level by
using the weak couping BCS theory with a two-dimensional band structure for
alkaline-earth- substituted La;CuO, in the tetragonal phase. By using a tight-‘
binding method with a linear atomic orbitals as wave function The structure of
the d-p sub-band resulting from the strong hybridization of the d;2_,s orbitals
with the p, and p, orbitals within a Cu0O; plane, leads to the following dispersion

relation of the partly occupied antibonding d-p sub-band

E(R) = S{(Ea— Bp) 4 (B~ B,)2+ 892(2 — cos b, — cosk,)]  (3.11)

N

with v is the direct transfer integral between the d(,2_,2) and the p, and p,
orbitals located at nearest-neighbouring copper and oxygen sites respectively,
E; and E, are the inter-atomic energies of these orbitals in the compounds,
and k = (k;, k,) the two-dimentional wave vector within the CuOQ, plane. The
logarithmic singularities of N(E), the density of states are obtained in the sub-

band at the energies

Ef = Sl(Bs= By) + \/(Ba = B, ) +1677 (3.12)

the saddle points £ = (1,0), and (0,1) in the reciprocal space. The dispersion
relation, Eq.(3.11) gives a band structure which can be analysed in terms of a
small tranfer integral v* = y?(E4 — E,)~! between nearest-neighbouring copper

ions only if the difference E; — E, would be much large than . But in that case,
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the antibonding sub-band would have a dominant d character, with only a very
small contribution from the p states on oxygen, and the electrons in the sub-band
would not explore these p states in this band. In the neighbourhood of EZ%, the

density of states per spin has the following approximate expression:

N B

NE) = g (g

(3.13)

with B = 4*[(Es — E,)* + 169%|"% and N is the number of unit cells contained
in the plane. If the inter-atomic energies, E4, and E, are chosen at the middle of

the sub-band, the dispersion relation, Eq.(3.11), reduces to
E(F) = —2t(cos ky + cos k,) (3.14)

where t is the parameter which must be adjusted to give the size of the band
width and has the same order of magnitude as the direct transfer integral -~y
between nearest-neighbouring copper and oxygen sites, as long as Eq — E, is
not much larger than . The simplified version for the band dispersion does not
included the next-nearest-neighbour transfer integral, as stated before. Indeéd,
the logarithmic divergence of the density of states give rise to a modified form
of a BCS result for T, (Tsuei et al.,1990; Getino, Llano, and Rubio, 1993). The
success of the Van Hove scenario lies in the assumption that the maximum T,
corresponding to the optimum doping concentration, the Fermi energy coincides
the singularity.

In the weak coupling limit, the BCS equation for T is

1 “p dE E

Tsuei et al. assumed the VHS density of states of the form

) (3.15)

E
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and approximated tanhz = z,(z < 1),tanhz = 1,(z > 1), and obtained the

transition temperature T, as

' E
T.=1.36Erexp -\/NLV + Inz(:)f) -1 (3.17)
i 0

Getino, Llano, and Rubio extended the work of Tsuei et al. further by evaluating
the exact T, formula which has to be solved numerically and found that in the

presence of VHS the implicitly exact T, formula is given by

1 1 wp . o EF
_1 el YD | 12 ZE 3.1
T. 2Ep exp \A(NOV + D)2 coth 5T, +In wD] (3.18)
with the function D is defined as
wp Ep, _ [ Ep 130 .
D(ﬁ’ 2_T.:) —/o dzrflnzin 7Tz + 2ln z]sech’z. (3.19)
This T formula differed from the standard BCS T, formula (with constant DOS),
1
. T, = 1.13wp exp [—W (3.20)

in two ways. First, the prefactor is the Fermi energy rather than the Debye
frequency , secondly, the exponent depends inversely only the square root of
N(0)V, and their result gave the smaller values of 7. than the work of Tsuei et
al., for given wp, Fr, and NV values.

Table 3.1 lists values of the dimensionless conpling constant NyV consis-
tent with the two typical values of 40K and 90K along with the wp and Ef values.
The exact T, formula, Eq.(3.18), requires values of NoV only moderately larger
than those of Tsuei et al., Eq.(3:17), and roughly one-quarter of those needed
with the BCS 7 formula.

Getino, Llano, and Rubio (Getino, Llano, and Rubio, 1993) evaluated the
zero-temperature gap-to-T. ratio in the VHS DOS, the approximate expression

is obtained as

A(0) ~ 2Ep exp -[\/ —1{7 + m’(%) —1.64] (3.21)
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Table 3.1: The T. formula evaluated by using Eqs.(3.17),(3.18), and (3.20) as
given by the results of Tsuei et al., Getino et al., and BCS, respectively. (Taken
from Getino, Llano, and Rubio, 1993)

NoV

T(K) | wp(K) | Er(K) | Eq.(3.11) | Eq.(3.9) | Eq.(3.10)

400 | 5548 |  0.142| 0.093 |  0.100
40| 500| 5548| 0378 | 0.08 |  0.095

La-Sr-Cu-O | 754 | 5580 | 0327 | 0.082]  0.086

300 | 8807 |  0.754| 0.148 |  0.164
90| 400 | 8807| 0.620| 0.130|  0.163

Y-Ba-Cu-O | 754 | 8807| _ 0445, 0.106| 0.115

3.4 S-Wave Gap-to-7; Ratio in the Van Hove Scenario
The zero-temperature superconducting gap (A(0)) in the s-wave pairing
state and the transition temperature T, are related for a general DOS N(E) by

the relation

EF-WD -
N(E) tanh (E E")‘%E (3.22)

/EF'HUD N(E
Ep-wp 1/ E— Ep)’+A(O Ep-wp 2T,

This equation is obtained by the eliminating the constant pairing potential V

between the BCS equation for T'= 0K and T = T..
For the VHS DOS Eq.(3.16), which has a peak at Er, and Eq.(3.22) give

/wb L /WD 4 1o (EE =F) tanh (¢/21.) (3.23)
0

/€4 A(0)

The numerical calculation of 2A(0)/T. for the VHS DOS Eq.(3.16) for
different values of wp/T, ratio along with wp,T,, and Er values is shown in
Table. 3.2 (Ratanaburi et al.,1996). The ratio 2A(0)/T, is found to be larger
than 3.53. Table shows that the value of 2A(0)/T, decreases with increase of

wp/T. at fixed Er and tends to reach the BCS limit of 3.53 for a very high value
of wp/T..
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Table 3.2: Gap-to-T. Ratio 2A(0)/T¢ evaluated by Eq.(3.23) and is compared
with Eq.(3.21). Using some typical Debye(wp) and Fermi (Er) characteristic
temperature values(Taken from Ratanaburi et al.,1996)

2A(0)/Tc

T.(K) | wp(K) | Er(K) | Eq.(3.21) | Eq.(3.23)
400 | 5548 3.64|  3.656

40| 500 5548 3.66 |  3.651
La-Sr-Cu-O | 754 | 5580 3.53 | 3.646
300 | 8807 360 | 3.773

9 | 400 | 8807 363  3.726
Y-Ba-Cu-O | 754| 8807 3.68|  3.670

In order to obtain an analytical exact expression for the superconducting

gap-to-T. ratio 2A(0)/T., we writing Eq.(3.23) as

Te)~sinh™(2wp/ ReTe)] — L (p, Te) + s (wp, Tey Rs) = 0 (3.24)

where
Er o
Flwp,T;) = / -C-gi tanh z, (3.25)
0
% dzr
L(wp,T,) = / —;lnztanh:c (3.26)
0
and

®
fon T ) = [T de— e, (3.21)

with B, = 2A(0)/T.. Eqs.(3.25)-(3.27) can be evaluated directly and the exact

results are

Flwp,T,) = ;gmm—l ((271—+‘{)7r_T), (3.28)

WD

h(n,T) = In(22)Flup,T.) - (2k):

Z (2 + 1)(2k + 1) 274(k1)?

2p=2{+1
{K — Z T 2“_ l)tanh K}, (3.29)
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Figure 3.1: Ratio R = 2A(0)/T, for a VHS DOS that peaks at the Fermi level for
different wp /T, values, here Er = 4000K and wp = 500K. (Taken from Ratanaburi
et al.,1996)

where K = sinh™! (Zﬁﬁ?ﬂ')’ and

2

T
1_2', (3'30)

- 1
L(wp, T, R,) = X 1n(R/8) + %Li;[exp (—=2X)] + §X2 -
where Liy(z) = 3707 i-:— is the Euler dilogarithmic function, and X = sinh'l(}’T‘:’%)
By substituting Eqs.(3.28)-(3.30) in Eq.(3.24) and approximating

2wp dwp
rT) ST

sinh™!

(3.31)

we finally get the analytic expression for R, as (Krunavakarn et al.,1998)

Er 7 1. ., wp wp ,
2Tc)—211_?+§1n 2T)+21( )[F Tc"]

(3.32)

We remark here that this formula is applicable when wp » T..
From Fig. 3.1, we can see that the superconducting gap-to -7 ratio is
found to be larger than 3.53 for a DOS with a VHS at the Fermi level and that the

value decreases with the increase of wp /T.. The maximum value of the gap ratio is
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4.0, which is achieved only for unrealistically low values of wp/7T,. Unfortunately,
the high value of the gap ratio (6-8) as observed in some high-T cuprate oxide
systems can not be ex;;lained within the simple VHS model with an isotropic
s-wave pairing state (Persson and Demuth, 1990).
3.5 S-Wave Gap-to-T. Ratio in the Van Hove Scenario with the Fermi
Level Shift

As an extension of the VHS DQOS at the Fermi level. we will investigate
the variation of the gap ratio with .the shift of the VHS from the Fermi surface.

The form of the density of states is therefore assumed to be

Er

N(E) = Noln | 5—

oyl (3.33)

here ¢ is the position of the saddle points in the energy surface, which is not far

from the Fermi level, i.e., § has a small value. The exact equation for the s-wave

gap ratio is given by

wp /2T \2
/ ﬁtanhzln'M_l:
0

(5/2T )
{1135} EF
3.34
) \/:z:2 R 2 T:/2)? 7 | (3.34)
The integration can be performed directly and has the following result
- wp /2T, (Er/2T,) cosa —1r wp /2T,
4tan tan~V[—2/2¢
S o Ty e e S Cofean (22 4
- Tc w /2T
tan=! wp /2 _ _ -1 wWD/2l,
+Cly[tan [—-———(n -~ %)ﬂ_] 2a] + 2ChL[r ~ 2tan [(n " %)w”}
=1 4Ep a1, 2WD g g, 28, w?
= 2sinh (R T 21n ( ) [sinh (R T )]* — [sinh (—c)] + 5
- Z — cosh[2nsmh 1( ) )] (3.35)

n—l
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where tano = (,rﬂ_%i"f); and Cly(z) = — [;In| 2sin (z/2) |dz is the Clausen’s
integral.

With the condition wp/T, 3> 1, the approximate expression for R, is

4FEr C o1, 26 2, EF 2
= — — — — 3.3
R, T €XP \/smh (ROTC) +In (wD) 5 + A (3.36)
where
I~ |/ =Fy_ I 3.3
Ry T exp \/ln (wD) 5 + A (3.37)

and A is the expression on the left-hand side of Eq.(3.35). When we compare
the result between the exact and the approximate values, we find that for given
Er/wp and wp /T, values, as seen from Fig. 3.2, the approximate R, values is
always less than the exact one, Clearly, the maximum R, occurs when the Fermi
level shift, é coincides at the Fermi surface and R, decreases as the Fermi level
shift is displaced away from the Fermi level.
3.6 D-Wave Gap Ratio

It is well known that the high value of the gap ratio cannot be achieved
within an isotropic s-wave pairing state. The question about the symmetry of
the pairing state arises to resolve this problem and it plays an important role in _
the investigation the several properties of the cuprate superconductors. Experi-
ments have been reported that most of the high-T, cuprates have d-wave pairing
symmetry (Tsuei et al.,1994; Kirtley et al.,1995), the behavior of this state is the
node at k; = tk, in momentum space of lattice or ¢ = 7 /4 in the first quadrant
of the k space where ¢ is defined by the relation ¢ = tan~!(ky/k,) and it has
the highest amplitude along the directions (k, k,) = (1,0) and (0, 1).
Musaelian et al.,(Musaelian et al.,1996) studied the weak coupling BCS theory of
a d-wave gap superconductor with a constant density of states and showed that
the d-wave gap ratio can give the value of 4.28 which is larger than 3.53 of the

* s-wave one. They start from the finite temperature gap equation,
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Figure 3.2: Variation of reduced gap-to-T, ratio R, = 2A(0)/T, with §/wp, where
4 is the Fermi level shift and wp is the Debye cutoff energy. Curve 1 and 2
correspond to exact R, and approximate R,. Here Er/wp = 10 and wp/T, = 20.

‘ 2

A= \/6}, + Az

Ar=) Ver— 5 taph (X——wu— .

k ; kk 2\/62--!-—Ak-2- a'nh( oT ) (3 38)
K 4

~ and assume the order parameter and the
Ap = Ad(T) cos (2¢), (3.39)
and the interaction
Vg = Va(kr{ k) cos (26) cos (24) (3.40)

respectively. Here Vy(kp, k%) is the constant pairing potential at the Fermi level.

The d-wave gap at the zero-temperature satisfies the equation

_ 2r @ 5 " pwp de
1= gd/O 2 co-s (2¢)_/0 €2 + [Aqcos (2¢)]2 (3.41)
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where g4 = N(0)V,. After performing the integrations, the solution is given by

w 1
Ag = \—/%exp (—3;) (3.42)

At the same time,.the critical temperature is obtained as

e'wp exp (—L) (3.43)

L= .

where e &~ 1.781, Thus
2,

2 jz; ~ 428 (3.44)
as stated above.
3.7 D-Wave Gap-to- I, Ratio in the Van Hove Scenario

In the previous section the constant density of states has been used to
evaluate the d-wave gap-to-T, ratio, but this is not the realistic density of states of
the cuprates. To enhance the gap-to-T, ratio above 4, the d-wave gap parameter
and the Van Hove singularity DOS are combined together to explain the high
values of the gap ratio 2A4(0)/7..

We start with the usual BCS gap equation

6'2;, + Ak‘,z
A; = Z Vi \/mtanh( ) (3.45)
The pairing potential V¢ is now not a constant but has the form
Vi = Vacos (24) cos (2¢') (3.46)

in the range —wp < ¢ — Er < wp, and zero otherwise. Here V; is a con-
stant pairing potential and ¢ is the two-dimensional angle which is defined as
tan™! (%)

Of the same form as Vi, the d-wave order parameter takes the form

Ap = Ay(T) cos (24). (3.47)



40

Introduce Eqs.(3.16), (3.46), and (3.47) into Eq.(3.45), the following equation is

obtained

. 2r wp 1 EE :
L _ / —‘-i--?;-cos2 (29) de nl ¢ | tanh (E (3.48)
0

NoVy 2W 2T)

-wp

where W = /€2 + [Ay(T) cos (24)]°. By eliminating the coupling constant NoVj,
one finds the relation between the zero-temperature superconducting gap A4(0)

and the transition temperature T,

* dé de
JRE o =
2T d¢ 4 ln (—E)
/0 o /c; k \/62 + [A4(0) cos (2¢)]? ‘

Performing the integration over the energy on the right-hand side we obtain

#dz  Ep
/0 —ln(2T )tanh z =

/ dfcos6{X In (

4Ep =521 . 1., =?

where Ry = 244(0)/T,, and X = sinh™! (E—;‘:—’h) One is interested in the

approximate expression for Ry. By approximating X = sinh™ (T,}‘:’fm) =]

In (Rd—}‘:gm), and neglecting the Euler dilogarithmic function Li;(z), then Eq.(3.50)

is reduced to

12 4e7 2, EF 2,2e"EfR _
0 W ) =
2 2 4FFp
/ dfcos?9[— —In (—)+1 —Rchcosel (3.51)

where the integration on the left-hand side of Eq.(3.50) is performed in the BCS

limit. Once the angular integration is evaluated, we get the equation

8Er 11 — 72
VeRI. 4

2¢e7 Ep

In? —In 2(-—)+1 o) (3.52)
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Solving this equation, we finally obtain the approximate equation for R, (Pakok-
thom et al., 1998)

Ry = 8Er exp [—\/11 ;,,.2 - lna(%) + lnz(zi’i}:‘)], (3.53)
where v = 0;5772.... is the Euler’ constant. In the limit Ep/T. — 00, Ry =
(%ﬁ)(;:-,%;) we find that Eq.(3.53) gives Ry = 4.28 which is the same as that
obtained by Musaelian et al. where the condition wp /T, > 1 was considered.
3.8 D-Wave Gap-to-T, Ratio in the Van Hove Scenario with the Fermi
Level Shift

In the s-wave case, the dependence of the gap ratio on the Fermi level
shift is studied. One finds that the gap ratio decreases as & increases. When the
VHS is at the Fermi levél, the gap ratio has thé maximum value. In this section,
the dependence of the gap ratio on the Fermi level shift will be examined in the
context of the d-wave pairing state. If the saddle point is not lying at the Fermi

level, the density of states will be

Er

N(E) = Noln| E—(Er=0) .

(3.54)

here 6 be the shift of the Fermi level from the VHS. The finite temperature d-wave

gap equation, Eq. (3.48), is modified to be

“D d€ EF %4
. 2 — S—
— cos (2¢) /:.WD 5T In| po: |tanh(2T) (3.55)

where W = /€% + [Ad(T) cos (24)]°. The elimination of NoV; from the zero-

temperature and the transition temperature equations gives

g “D de EF €
—cos (2 / tanh — =
| ghcos(2s) ) tanh o5

4 In (1%%)
—coss2 (2¢) de———ee—— (3.56)
/; 2 ' -/‘; €2 + [A4(0) cos (243)]2
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Manipulating the energy integral on the right-hand side and writing A4(0) in
term of Ry = 2A4(0)/T, yields

wp/Te gy (Er/2T.)?
—t hzln - o3
Ji achzln| 2 - 6L |

4Fp 2wp

_ / dcos’8 2sinh™ (7 = 9)1 0 (reang) ~ 00 (Foerg)
926 26
 Teinh=1 2 . — ] (e —
[sinh (Rch cos 8 it nz—-; Ml sinh” (Rch cos § )
. = 2wp
X exp[—2nsinh (—Rch 7 0)]} (3.57)

A numerical computation for Ry of Eq.(3.57) is shown in Fig.(3.3) as a

function of §/wp. An approximate formula for R, is evaluated as

R.,,.- SEF (3.58)
with
8Er g3 . Ep
Ry = JiT. exp [—\/ T +In (wD IR (3.59)
where the expression for A is given by
_ 2T, (Er/2T,)cosa
A = stan—1[22/ e
Ve e e = L et
1 2T, s D/2T
+Cl tanlw—D/—+2oz + Clyftan™ - 2a
+5Ch{r = 2tan*1] (“’D/ 2"‘)" 1} (3.60)
here tana = ng—};‘? and Cly(z) = — [;In]2sin(z/2) |dz is the Clvausen’s
integral.

From Fig.(3.3), we can see that the R; as well as R, has the maximum

value at the Fermi level and it decreases as the ratio /T, increases.
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_ Figure 3.3: Variation of d-wave gap-to-T. ratio Ry = 2A4(0)/T, with é/wp,

where § is the Fermi level shift and wp is the Debye cutoff energy. Curve 1 and 2
correspond to exact R, and approximate R,. Here Er/wp = 10 and wp /T, = 20.
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3.9 Mixed (S+D)-Wave Superconductivity

The symmetry of an energy gap parameter, Ay, in high-temperature su-
perconductivity is the central issue whether the pairing symmetry is conventional
or unconventional. An order parameter in the classical BCS theory occurs when
electrons with opposite momenta and spins form bound pairs, which is the so-
called Cooper pairs with a definite relative angular momentum. Conventional
metallic superconductors all have s-wave symmetry (angular momentum | = 0).
We know that if Cooper pairs also occur in high-temperature superconductors
then there is a possibility that the strong on-site Coulomb repulsion among the
electrons may prevent the formation of pairs with s-wave symmetry . Since the
Cu?t ion in the parent compounds, LasCuOy, have nine d electrons per copper
ion and the very strong Coulomb repulsion between electrons forces them t§ be
localized on individual ionic sites. Upon doping, the dopant holes that are in-
troduced onto the copper ions destroy the magnetic order and then the doped
compounds become superconductors with an unusual high transition temperature
of the order 100K. This is in contrast to the conventional metallic superconductor
. However, Cooper pair can form in a higher angular momentum state and the
candidate for unconventional pairing is the d-state (angular momentum [ = 2).
This symmetry is supported by the phenomenological theory in which the pairing
is mediated by the exchange of spin fluctuation (Monthoux et al., 1991) . While
some photoemission experiments are inconsistent with the pure d-wave but more
consistent with a mixture of s-wave and d-wave pairings. (Ma et al.,1995 ; Ding
et al,,1995)

The s-d mixing superconducting state was first discussed by Ruckenstein,
Hirschfeld, and Appel (Ruckenstein, Hirschfeld, and Appel,1987) and indepen-.
dently by Gotliar (Gotliar,1988) for the possibility of inducing transition between
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the different superconducting states . Musaelian et al. (Musaelian et al.,1996)
studied the model of and isotropic two-dimensional Fermi liquid with attractive
interaction in both s-and d-channels and with the free particles dispersion relation
to investigate the possibility of a superconducting state with the mixed s-wave
and d-wave order parameters. It was shown that a mixed (s+id) symmetry gap
is stable in a certain range of interaction while a mixed (s-+d) state does not
occur. However, the model they considered is oversimplified because the realistic
parameters such as the tight-binding dispersion relation, the orthorhombic dis-
tortion, and the second nearest-neighbor hopping integral have not been taken
into account. These parameters lead to the Van Hove singularity in the density
of states . Liu, Xing, and Wang (Liu, Xing, and Wang, 1997) applied the Van
Hove scenario to the su};erconducting state with a mixed (s+id)-wave symmetry.
They found that both s-wave and d-wave states can coexist in a small range of
relative strength of the two attractive interactions.

In the work of Musaelian et al,,they considered the' gap equation at the

zero-temperature:

AlR)
2,

A(R) =Y V(k, k) (3.61)
Y

where Ep = {/€: + | A(k) |2 and assuming the interaction of the following form,
V(k, B) = V,(kr ki) + Va(k, ki) cos [2(¢ — ¢')] (3.62)

which contains both s and d pairing components. The two-dimensional angle ¢
is defined as ¢ = tan—? (k,/k,). Since the interaction dominates on the Fermi
surface, | k |=| k' |= kr. Then the order parameter, A(k) depends only through
the angle, @, and is supposed to be

A(#). = A, + Agcos (24). (3.63)
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Inserting Eqs.(3.62) and (3.63) in Eq.(3.61) and seperating the s and d compo-

nents, the coupled equations are

B dg [P [A, + Agcos (24)]

A, = NoVi _/0 o Jo B VE? +[A, + Aacos (29)]2 (3:64)
B dg [vP . cos(26)[A, + Agcos (2¢)]

As = NoVa /o 27 Jo dE VE?*+ [A, + Agcos (24))2 (3.65)

where N is the constant density of states at the Fermi level. By using the approx-

imation A(¢) < wp,

(3.66)

/ \/E’ + A" A(¢) |
Performing the integration of Eqs.(3.64) and (3.65) over the angle, and eliminating

the logarithmic term, the result is
2g
(1 =)o = g,f(a) (3.67)
9d
where g, = NoV,,94 = NoVia,a = A, /A4, and the function f(e) is given by A

fle) = A’ d?a:(Za cosz — 1)(a + cosz)In (a + cos z)

= [5+( ~ 1) = Ve =T (3.68)
In the limit a« — o0, f(a) & %, and the solution of Eq.(3.67) is given by
294
=== 3.6
% = Trar (3.69)

This state is the pure s-wave symmetry, the pure d-wave state does not exists at
this point. In the limit o — 0, f(a) ~ —% (i.e., pure d-wave state), Eq.(3.67)

gives

@ _ _294

P T 4—gy
Because g( ) < g.. , ) and therefore 0 < gs < g( ) is the region for the (s+d)-wave,

(3.70)

e > 95 (M for the s-wave, while gm < g,z) for the d-wave, and g, > ¢s ® for the

(s+d)-wave. From this statement, it shows that the (s+d) state does not occur.



47

Beal-Monod and Maki (Beal-Monod and Maki,1996) studied some of the
superconducting properties of anisotropic hybrid (s+d)- and (d-+s)-wave super-
conductor models (depending whether the s or d component predominates). The
anisotropy is contained in the fermion-fermion pairing interaction as reﬂectihg the
structural anisotropies of layers in high-T, cuprates, particularly the orthorhombic
distortion.In the case of the (d+s) model, they proposed the anisotropic pairing

interaction:
Vik, k) =
—V/{cos (2¢) cos (2¢") + g[cos (2¢) + cos (2¢')]} + %0 (3.71)

where V is the positive constant, ¢(¢') is the angle of E(K’) on the circular Fermi
'surface, Ny is the constant density of states at the Fermi level in the normal
phase, g measures the anisotropy between the a and b directions within the layer,
and g is the Coulomb repulsion. In absence of the orthorhombic distortion, the
small 8 component vanishes, that includes the parameter g. The gap function
A(K) is taken to be

A(k) = Alr +cos (24)] (3.72)

where r is the small component of the s-wave pairing due to the orthorhombic
distortion effect. Ay = A(r + 1) be the maximum gap. The T, formula obeys

0 1134Er  p= X+ 3y/(p+ X)2+8(g))?
F V0 2X(p + 29%))

In the absence of anisotropy, g=0, ln(1.134 Er /T.) is just 1/A, where A = NyV/2.

|

(3.73)

Also, the value of r at T reads

e o VN FEGN = (1 4+ )

P (3.74)
with the equation for the anisotropy, g, is given by
1—2r2) 4452 A1 =2r2)-1 -1
g_:\/ r2A +4r3(u + A)( r?) (3.75)

2rA
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Table 3.3: Various parameters computed for different values of the anisotropy g
with A = 0.5, 4 = 0.2 and Er =600K.(Taken from Beal-Monod and Maki ,1996)

g o, r 1. A Ay/T. T.]TP

0 0 0 9208 197.00 214 1
0.13 0.09 0.1 9659 202.76 231  1.05
0.20 0.10 0.15 102.38 210.11 236 1.11

The gap equation is found to be

4Fr Al 40205
0~ SN (3.76)

In this model, the Coulomb repulsion does not affect the critical temperature in
the absence of anisotropy. The gap-to-T. ratio at this limit (pure d-wave) yields
2A/Tc = 4.28, which is the same value as that studied by Musaelian et al. Table
3.3 shows the values of g, r (at T=0), rr,,T., A, Ap/T, and T,/TP (T? is the
value of T, for g=0, the pure d-wave, and Ay = A(r + 1)).
3.10 Mixed (S+D)-Wave in the Van Hove Scenario

We see that in the works of Musaelian et al., and Beal-Monod and Maki
the density of states is assumed to be constant value along the Fermi surface where
it arises from the presence of the free particle dispersion. Indeed in the layers
of high-T, cuprates, the moiring of the electrons must encounter the interaction
between it and the host atoms (e.g., Cu and O atoms). Then the free perticle
dispersion is made irrelevant for high-T. cuprates. The more appropriate form of

the energy dispersion will be the tight-binding band energy and is given by
E(F) = ~2t(cos k, + r cos k) (3.77)

where t is the hopping energy and r is the orthorhombic distortion parameter
which measures the anisotropy between the a and b directions of the lattice. For

the square lattice, r=1,and nearly unity for the rectangular lattice. The standard
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expression for the density of states (DOS) is defined as
N(E) =) 6[E - Ef (3.78)
k‘ .

After the two-dimensional band dispersion relation is introduce in the DOS. The

DOS is evaluated approximately as

Er

N(E) =N01n| E—EF

| (3.79)

where N, is the constant DOS at the Fermi level. The two-particle interaction,
which is responsible for the superconductivity, is assumed to be of the following

form

V(k k') = —Viacos (ks — kzt) + beos (k, — ky)] (3.80)

where the parameters a and b represent the anisotropy within the layer, due to
the orthorhombic distortion effect. For the square lattice, a=b, the orthorhombic
distortion disappears. Here V is the strength of the pairing interaction and has
the positive value. The pairing interaction is obtained by means of the short rangev
nature of the attractive interaction which has the non-zero value only among the
nearest neighbors of the lattice sites. Because the interaction plays a role at
the Fermi surface, | k |=| K |= kr. Then the interaction V(k, l;') will depend
only through the angle ¢ , where ¢ is the two-dimensional angular angle of kin

reciprocal space. Using the transformation in the parametric form,
ky = kpcos ¢, ky, = kpsin ¢, (3.81)

since the sin k; sin k,» and sin k, sin ks terms contribute to the p-wave interaction,

the relevant interaction will be

-

V(k, k) = —V(acos k, cos kz + bcos k, cos ky] (3.82)
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Expressing the cosine function in terms of the Bessel function, we have

- cos [kpcos¢] = Jo(kp)+22( 1)"J2n(kp)cos[2n¢]

n—l

cos[kpsing] = Jo(kr)+2 E Jan(kF) cos [2nd] (3.83)

n=1
Inserting Eq.(3.83) into Eq.(3.82) with the higher order terms n > 2 will be

omitted, the interaction V(E, I;’), is given by

V(EE) = Vi) + Va4 ¢)
= =V,{l + A[cos (2¢) + cos (2¢')]} — Vi cos (2¢) cos (2¢") (3.84)

where V, 4 « b + a represents the strength of the interaction along the s(d) chen-
nel, X oc (b—a)/(b+ a) represents the anisotropic s-wave pairing interaction
.which corresponds to the orthorhombic distortion effect in cuprates. The attrac-
tive interactions which contair; both the anisotropic s-wave and d-wave channels
are energy independent in an energy range bounded by the cut off eﬁergy wp,
and zero for | ¢¢ [> wp. This equation shows that the main interaction is V, and
Vy while the small component is the AV,. In the tetragonal phase, a=b, A = 0.
the anisotropic pairing interaction V/(k,k’) reduces to the mixing between the
pure s-wave and d-wave pairing interaction. Consequently, the order parameter

for the mixed (s-+d)-wave pairing is assumed in the form
A(k)= A, + Agcos(29) (3.85)

Using the BCS framework, the (s-+d)-wave pairing will consist of the
phase regions of the pure s- and d-wave pairing as well as the (s+d)-wave pairing.

In the weak coupling theory, the gap parameter at the zero-temperature satisfies

AQR) = ZV(k ) 21(3’: (3.86)
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where Ep = 4/(ep — Er)? 4 |Ag|? is the excitation energy in the superconducting
state. ’
Substituting Eqgs.(3.79),(3.84), and (3.85), in Eq.(3.86). We arrive at the

equation

2x ’
A, +Agcos(24) = N(O) / dé S [Vi(8,6) + Va(d, $)][A, + Aacos (24"

dE
- o VE?+[A,+ Agcos (2¢)]? n (_ET) (3.87)

where N(0) is the constant density of states per spin at the Fermi surface.
Seperating this equation along the pairing channel. We obtain the pau'
of coupled equations
g

A, = g ¢[1 4 2 o5 (28)][As + A 08 (26)]| FIEr, wp, Auy Aay 4B.88)
0

2x
Ay = g4 A g—: cos (2¢) [A, + A, cos (2¢)]F[Ep,wp, A,, Ag, ¢] (3.89)

with the function F[Er,wp,A,, Ag, @] is defined as

dE Ep
VE*+ [A, + Adlcos 28)]2 n(Z) (3.90)

wp
F[EF,vaAuAd’¢] =/ E
0

and it has the approximate result,

2Erp

2| Er
Ay + Agcos(2¢)

|+1n2|

1 2
F[EF’L‘-)D,AMAda¢] = 5[ % —In | ] (391)

here g,(a) = N(0)V,(q) is the dimensionless coupling constant of the phonon inter-
action in the s(d) channel.
In the case of the pure s-wave. Eq.(3.88) with Aj = 0 is reduced to an

s-wave gap equation

2
A, = g,A,/ g;[l + Acos (2¢))F[Er,wp, Ay, Ag = 0, ¢]
0 .

= ¢.AF(Ep,wp, 0,04 =0,¢] (3.92)
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From Eq.(3.91), F[Ep,wp, A,, Ag = 0, 4] i8 given by

2
FlErwp,AnAs=0,9] = 31 = ~10}(ZE) + 127 (3.93)
: 2" 6 wp
Combining Eq.(3.93) with Eq.(3.92) we have
2
5’_ =T ) e (3.94)

We see that the orthorhombic distortion parameter A does not affecte the s-wave
gap parameter A,.

In the pure d-wave case, by taking A, = 0 in Eq.(3.89), we get
2 d¢ b
Ag = gdAd E‘COS (2¢')F[EFa Wp, Aa = 07 Ada ¢] (395)
0 :

Now from Eq.(3.91), F[Ep,wp, A, =0, A4, ¢] is given by

2EF

F{Ep,wp,A, =0, Aa,¢]—-{——1 ( >+1’(A w2 | (399

Inserting Eq.(3.96) in Eq.(3.95) and integrating over the angular variable, the

result is

2 -3
4

AFp
Veha

Eqs.(3.94) and (3.97) are the gap parameter equations in the pure s-wave and

p==

i 1n’( =E) 4 I | (3.97)
9d
d-wave, respectively.

In order to obtain the equation of the mixed phase. Dividing Eqs.(3.88)

and (3.89) by A, and subtract them, we obtain the mixed phase equation

(.1___1_)2a=/ d?z[a+)\+2[1+a(/\—a)]cosx+(/\—a)cos2a:]F[Ep,wD,a,:c]
o T _

9s  9d
~ (3.98)
where o = A,/A4 is the ratio of the superconducting gap between the s-wave

and the d-wave, and

2FEp

1,72 2, EF 2 _
F[Ep,wp,c,z| = 5[? —In (E) uy Ao + cos z)

I (3:99)
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The solution of Eq.(3.98) is obtained in three regions, the pure d-wave for a = 0
or g, = 0, the pure s-wave for a — 00 or g, — 0o and the (s+d)-wave which is the
intermediate region between the pure waves. To show the existence of the mixed
(s+d) state, we will examine the stable phases for the pure states. We remark
here that in the limiting cases, @ — oo and & — 0, the form of F[Ep,wp, e, z]

in Eq.(3.99), has reduced to

2EF
_ LT g
F(Ep,wp,a,z] = 2[ 6 In { |+1 A, (3.100)
2FEF '
7 M I TN 2
= 2[ 5 In | > |+ln | A cos |'], @—0(3.101)

For the pure d-wave case, @ — 0, the mixed phase equation, Eq.(3.98),

becomes
———Jda =
( s gd)
(a+ A){; = In 2| | + Il + 2[1 + a(A — @)} + (A — @)]; (3.102)
where
_ " dx 2 2EF —
I, —A — cos (nz)ln’| e [, n=01,2 (8.103)
Integration can be performed directly and we find
4Ep
= T 4n?
Is 12 4 I
Il = T,
1 4Fr
Ig = —5 - ln] —A'd— . (3.104)
Using Eq.(3.104) in Eq.(3.102), we get
1 1 _ w2-1 24\/EEF o Er
(;—;;)4& = [ 2 +27A+1In T—ln :D—]a
2 __
+[1r 3 ln"'EF +In? 4Er JA +27(1 — a?) (3.105)

4 VeAqy
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If we start out with g, = 0, then Eq.(3.105) has no solution. The pure d-wave
phase is confined in the range 0 < g, < gsmin Where g, mi. satisfies the condition

Er

4(;—;)—T—27r)\—-ln A—4+ln5_0 (3.106)
With the help of Eq.(3.97), Eq.(3.106) can be written as
1 2 3 1 7 -3 Er
——— =40 /== In?— .
7 NN + 2\/7 1 +1In . (3.107)
Thus g, min is given by
3 1 4 w? — 3 2EF -1
Gamin = [ D + ‘8" + ‘i\/; = 4 ] (3108)
For the case of the pure s-wave, @ — o0, or Ay = 0, in this limit

Eq.(3.100), F[EF,wp, o — 00, z], does not depend on the angular variable. Thus
Eq (3.98) becomes

B, \o2Ex

1 1 ’ 7’
(g_ —_— g—d)4a = (a -+ /\)[ ? - lnzi Aa ] (3‘109)

At this limit, the orthorhombic distortion effect does not have influences on the

pure s-wave phase. Thus A can be negligible and Eq.(3.109) is reduced to

1 1 2 Er 2Er
(= — =)= — = n?== 4 1n2 = )
( gd) [ 5 n > + In A, ] (3.110)

By using Eq.(3.94), we obtain

gs,maz = 9d/2 (3.111)

Eq.(3.111) shows that the pure s-wave phase starts out at gsmaz.’

Therefore we can see from Eq.(3.108) that, g, min, the pure d-wave solution
exists at 0 < g, < gs,min, While the pure s-wave solution, Eq.(3.111), exists at g, >
Jamazs SINCE Gy min < gsmazx, then the intermediate region gymin < g5 < gsmaz,
belongs to the mixed (s+d)- wave. In an intermediate region, gsmin < 9s < gs,mar;

both phases exist together.
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Pure Mixed Pure
d-wave |(s+d}-wave s-wave
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- 95 min 9 s,max Is! 9d
94 94

Figure 3.1: The pha,se' diagram shows the existence of the mixed (s+d)-wave in
the Van Hove singularity superconductor, here gy min < 95 < gs,maz, Where g min
and g, mq- are given by Eqs.(3.107) and (8.111), respectively.
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