1.1 Introduction

The phenomenon of superconductivity was discovered in 1911 by Heike
Kamerlingh Onnes ( Onnes, 1911 ). He found the electritical resistivity vanishes
at the temperature 4K of the liquid helium. Below a particular temperature,
called the critical temperature or transition temperature, T, a material becomes
a perfect superconductor. Above the critical temperature it is a normal metal.
A perfect superconductor has two characteristic properties, first the zero electri-
cal resistance, secondly the perfect diamagnetism. Diamagnetism is the ability
of a material to shield its interior from an applied magnetic field, on reaching
its superconducting transition temperature, the magnetic flux is suddenly com-
pletely expelled from its interior . We know this effect as the Meissner effect
which Meissner and Ochsenfeld found in 1933 { Meissner and Ochsenfeld, 1933
). Both zero resistivity and perfect diamagnetism are fundamental properties of
the superconducting state . Here we will summarize the basic experimental facts
and the phenomenological theory of superconductivity.
1.2 Zero Reéistivity

The d-c electrical resistivity of materialsin the superconducting state is
zero. This fact is established when the resistance of metallic elements suddenly
drops at a critical temperature T. and go to zero .
1.3 Meissner Effect |

Although the first characteristic property of a superconductor is spectac-

ular, the experiment shows that all magnetic flux is expelled from the interior
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Figure 1.1: Meissner effect (Fetter and Walecka, 1995)

when the material is cooled through the superconducting tra.ns.ition temperature
( Fig. 1.1 ). This result exhibits perfect diamagnetism which is an independent
property of superconductors and involves a transition of thermodynamic state be-
tween the normal and superconducting states at sufficiently low magnetic fields.
This transition is reversible and not a consequence of zero resistance and Lenz’s
law. Since there is no time rate change of the magnetic induction, Lenz’s law does
not apply. The magnetic field, at the absolute zero temperature, can destroy the
superconducting state at some value which is called the critical magnetic field,
H.(0). At any temperature T below 7., the approximate expression of the critical

field H.(T) for all superconductors is given by ( Fig. 1.2 )
T,
H(T) = HO) ~ ()] (1)

- 1.4 Flux Quantization
Another important property of the Meissner effect is the occurrence of
the trapped flux when an applied magnetic field is removed. By considering the

superconducing ring which magnetic flux can pass through it. The circulating
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Figure 1.2: Phase diagram of the magnetic field vs. temperature, the seperation
between the normal (N) and the superconducting (S) states represented by the
curve H.(T) (Fetter and Walecka, 1995)

persistent current in the ring is related to the quantization of the flux enclosed,

and the quantized flux value
hc -7 2
=53 2.07 x 10~ "gauss.cm (1.2)

1.5 Specific Heat

Besides its magnetic property, the thermal property of a superconductor
such as the specific heat provides a decisive evidence for the existence of an energy
gap in the electronic excitation spectrum,

The total specific heat C of a normal metal comes from the lattice and

the conduction electrons, and can be expressed as
C =+T + pT® (1.3)

where the first term is due to the electrons and the second term is due to the
lattice. Here T is the temperature, v is the coefficient of the normal electronic
specific heat, and J is the constant of the phonon part. Suppose the lattice has a
property that is unchangéd between the normal and the superconducting states.

Then it is sufficient to consider only the electronic contribution to specific heat.



Figure 1.3: Diagram of specific heat as a function of temperature (Fetter and
Walecka, 1995)

In zero applied magnetic field, the transition occurs with no latent heat
which is a second-order phase change, i.e., the state of the system changes contin-
uously from normal to superconducting states and vice versa. The specific heat
shows a discontinuous jump at T, drops rapidly for 7' < 7. and vanishes at
T = 0. The specific heat in the superconducting states depends on temperature

and is expressed in the form
-A
C, x C:L‘p(kB—T (1.4)

This formula suggests the existence of the energy gap A in the electronic exci-
tation spectrum. If the transition occurs at T < T, in the presence of a magnetic
field, the latent heat is associated with the transition which corresponds to the
heat absorption of the sample to go to the normal phase.

1.6 Isotope Effect

An essential part of superconductivity is the discovery of the isotope
effect, ( Frohlich, 1950), when different isotopes of metallic elements are substi-
tuted into superconductors, such as tin and mercury, the critical temperature

varies with the mean atomic mass M as

T.M* = constant (1.5)
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where T is the transition temperature, and o = 0.5 for many superconductors.
This result provides strong support for Frohlich’s suggestion that superconduc-
tivity might be associated with an electronic interaction mediated by movements
of the lattice ions. This is the reason, why the lattice vibrations are important,
since T, should change as neutrons are added to the atomic nuclei to change the
mass of vibrating ions.
1.7 London Theory

After the Meissner effect was established, F. and H. London introduced
the first phenomenological theory of superconductivity ( London and London,
1935 ). The London theory accounts for the observed properties of zero resis-
tance and perfect diamagnetism which gives an essential description for all the
electromagnetic properties of superconductors, and can explain the thermal prop-
erties of superconductors.

The central point of the London theory is that the supercurrent is al-
ways determined by the local magnetic field. The equations of this theory are

postulated to satisfy

dj, n.e? s

— RSl .
dit m (1.6)
with f, = —en,U,,
2
- N,E" =
), = — 1.
V %3 o B (1.7)

where -e is the electronic charge and n, the electron density. The first equation
is the Newton’s law applied to the supercurrent density, j,. The latter equation
leads to the Meissner effect. In order to see this, we take the curl of one of static

Maxwell’s equations

—p 4 -
VXVXB-:%VX]', (1.8)
Next, combining Eqs.( 1.7 ) and ( 1.8 ) we obtain
2 —f -~
vig=4e5_1g (1.9)



where the London penetration depth, A, is defined by

mc?
4mn,e?,

AL = (1.10)

The solution of Eq.(1.9) depends on geometry and boundary conditions of the ma-
terial. For a semi-infinite superconductor (z > 0) in a parallel applied field Hyz,

the magnetic field B(z) = B(2)& decreases into the superconductor according to
B(z) = Hoe %% | (L11)

Thus the magnetic field inside a superconductor vanishes exponentially for z >
AL and one obtains the Meissner effect, the perfect diamagnetism. The variation
of AL with the temperature, as observed experimentally, is described by

Az(0)

Ap(T) =
=

(1.12)

where AL(0) is the London penetration depth, Az, increases rapidly as T increases
and Ay tends to infinity when T approaches T, so that the magnetic flux can
penetrates the materials at T.
1.8 BCS Theory

The occurence of superconductivity at the microscopic level was a loﬁg
time searching. A crucial point happened when Cooper ( Cooper, 1956 ) devel-
oped an important concept, that in the presence of an attractive interaction, two
independent electrons above a Fermi sea are unstable toward the formation of a
bound Cooper pair. The binding energy of one pair particles in the weak coupling

limit [N(0)V < 1] is found to be

E= -2wp exp [—Wi)vl (113)

Here wp is the Debye cutoff energy, N(0) is the constant density of states per

spin at the Fermi level due to the slow variation of the electronic states in an



energy interval 0 < ¢ < wp. V is the attractive interaction between electrons

which comes from the phonon mediated interaction

|9% ,;;| k=K
(g —ep)? -

9k—i 15 the coupling strength of an electron-phonon interaction matrix element,

Vip = (1.14)

2
“i-i
wi_p is the phonon frequency and ¢; is the excitation energy. When the inter-

action is weak, the difference between the excitation energies ¢ and ¢ has a

small value. Then the phonon interaction is attractive and reduced to

_lgz_pl
w

Vip = (1.15)

LS

a3

which is approximately independent of k, k. Thus the interaction can be taken to
be a constant (-V) as stated before. The binding energy shows that an addition
electron would like to form a state which is bound relative to the Fermi sea. How-
ever in the real system when the number of pairs are macroscopic, the interaction
between pairs cannot be negligible. Bardeen, Cooper, and Schrieffer (BCS) (
Bardeen, Cooper, and Schrieffer, 1957) developed further the Cboper’s idea, they
suggested that superconductivity arises from the presence of the Cooper pair
mediated by the electron-phonon interaction. The ground state of the supercon-
ducting state with no supercurrent at the absolute zero of temperature may be

written as

| BCS >= H(u,; + vel !

R _,.c.l) |0 > (1.16)
k

In this state the electrons are created in (l-c. 1, —Fk 1) pairs, all having the zero
pair momentum and also the zero total spin. The parameters ug and v are real
with the normalization condition uz +vi = L u? is the prébaBility that the
momentum pair state is empty while vz the probability that it is occupied. BCS

started from the wave function and found the coefficients up and v from the



variational principle. The model Hamiltonian proposed by BCS is given by

H = Z c,;c.. e, + Z Vk-k,c PR (1.17)
93

where ¢ is the energy of a conduction electron with respect to the chemical
potential, xz. The creation and destruction operators for electrons of wave vector &
and z component of spin s (up or down) are denoted by ‘c,t , and cg,, respectively.
The interaction matrix element Vj; represents the scattering of one pair of
states (E 1,—k |) into another pair of states (l;' 1, —k' 1). The solution of the
Hamiltonian cannot be obtained by perturbation theory since the quasi particle
picture of the normal state is insufficient to provide the superconducting phase.
The important feature of the quasi particle pictufe is that the interaction between
the quasi particles is neglected and absorbed into the effective mass of electrons.
Since the interaction' term assumes that such electron pairs act as units,
the ground state will be some coherent superposition of many-body states in
which the states (I: 1, —k 1) are occupied or unoccupied in pairs. This means
that the oﬁerator C_z,Cir 18 equal to the thermal average < c_ %,Cqp > and the
fluctuation term, e_gcp— < C_fiC;r >, should be negligible. In general, the

pair operators c¢_ ¢, can be written in the form
The expectation value of this operator is now determined. A gap parameter is

defined by
Ap ==Y Vop<c_pep > (1.19)
k
Ay is a new quantity and may be thought of as being like an internal field, it

expresses the influence of the mixed occupation in all the other (¥’ T, —k' 1) pairs

of the (k 1, ~k 1) pair through the attractive matrix elements. Using Eqs.(1.18)



and (1.19), the model Hamiltonian becomes
H = Z c,;c}‘c;;, - Z(A£c£1ciil + AEC—IHCET —-Ar< C_i(CEt >) (1.20)
Es k .

since this Hamiltonian is now quadratic, it can be diagonalized by the canonical

transformation
Czn = urdz +veal
kT E% kY k"R’
t _ = t
e = —vgag +uiap, (1.21)

where the new operators ag, and ap, are Fermion annihilation operators. The
parameters up and vg are chosen such that the coefficients of the mixed terms
t

- ¢, 1In the Hamiltonian vanish. This can be satisfied if

such as .

2epupvg + Agvz — Aui =0. (1.22)

From the canonical transformation, the important property is that the anticom-
mutation relations between a’s being the same as those between the c’s, and the

constraints is that
ugl® + [vg* = 1. (1.23)

Since there is no external field associated with the system, the parameters Ug, Vg

are real and if we also introduce the quantity
E; = /e 4 |Ap]? (1.24)

We thus obtain the coefficients ug, v from Egs.(1.22) and (1.23) as

I
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The model Hamiltonian is now diagonalized, the result is

H = ZEE(“%“IA + atha,;,) + Z(c; - Ep + A} <e_pCp >) (1.26)
k k

this Hamiltonian requires the average of the operators ¢_f k- The expectation

value of this operator is given by

<c_pcgy > = Triexp(=BH)c_gcp]/Trlexp(—FH)]
= upuzTrlexp (--ﬂH)(—a;aa,;1 + a,;.za;rb)]/Tr exp(~(H)

= will = 2f(Ep)] (1.27)

where Tr represents the trace in the occupation number Hilbert space, 3 is the

inverse of temperature T, and f(E) is the Fermi function,

1

f(E) = W (1.28)

Using Eqs.(1.19), (1.25), and (1.27) the gap parameter is determined to be
Ap==Y Vg B tanh(E;/2T) (1.29)
F - W3, 3

This equation is non-linear because Ep depends on Aj and it cannot be solved
exactly except by the numerically method or the approximation one. In order to
determine the critical temperature T. , we put E; = ¢; in Eq.(1.29) and obtain
Ap==Y_ v,;k-,ék—" tanh(ep /2T (1.30)
" 2¢g
where the pair-excitation spectrum is taken at the temperature T.. To solve
Eq.(1.30) we assume a constant gap for |e;| < wp, i.e. Ap = A, we, furthermore.

assume the approximation for Vig as

Vio = -V, (1.31)
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for |ex|,|ex| < wp, and zero otherwise. This model is valid only for the weakly
coupled superconductors (e.g., aluminium and tin) for which N(Q)V is very much
less than unity, and not for strongly coupled superconductors (e.g., lead and
mercury). By virtue of this approximation, the equation for T, is determined

from the equation

1 “D de €
NV ’/0 Py (1.32)
Introducing the dimensionless variable z = ¢/2T,, with the integration by parts,
we have |
1 i Inz
—_— = tanh d
NV ln(2T) ( /0 ¥ cosh’z
4 2¢’wp
& In( T ) (1.33)

where the upper limit of the last integral is extended to infinity and it value is
equal to, —In(4€”/7) with the Euler constant, ¥ = 0.5772. Thus the equation
for T, is given by

T. =1.13wp exp (— (1.34)

_1
N(Q)WV”

To find the solution for the gap parameter A; , we consider only the
interaction of the form Eq.(1.31) and consequently the gap parameter satisfies

the equation

VA/ -—ta.nh (E/2T) ' (1.35)
where
e + |AP. (1.36)
At the absolute zero of temperature Eq.(1.35) becomes

1 ~/“'D de
NOV Tk VErE0)

.= sinh™ (—= (0)) (1.37)
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In the weak coupling limit wp > A(0), we can approximate sinh™z 2 In(2z)
in Eq.(1.37). Hence, the solution for the gap parameter at the absolute zero of
temperature is

A(0) = 2wp exp(—W). | (1.38)

* Combining Eqs.(1.34)and (1.38),the ratio of the gap parameter at the absolute

zero temperature to the critical temperature is
A(0)/T. = 1.76. (1.39)

According to BCS, this ratio is expected to be the same for all superconductors.
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