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CHAPTER I

INTRODUCTION AND PRELIMINARIES

For any set X, the cardinality of X will be denoted by |X|.
For a semigroup S, if S has an identity, let S1 = S, and if S does not have an

identity, let S1 be the semigroup S with an identity 1 adjoined. The semigroup S0

is defined to be S if S has a zero and |S| > 1; otherwise, let S0 be the semigroup

S with a zero 0 adjoined.

For an element a of a semigroup S, the subsemigroup of S generated by a is

defined to be

〈a〉 = { an | n ∈ N}

where N is the set of all positive integers. The order of a is defined to be |〈a〉|.
We have that ai 6= aj for all distinct i, j ∈ N if and only if 〈a〉 is infinite.

Assume that a ∈ S is such that 〈a〉 is finite. Then ai = aj for some i, j ∈ N
with i < j. Let

s = min{j ∈ N | aj = ai for some i < j}.

Then there is a unique r ∈ N such that r < s and as = ar. Let m = s− r. Then

s = r + m. It follows that

〈a〉 = {a, a2, ..., ar, ar+1, ..., ar+m−1}, ar+m = ar,

a, a2, ..., ar+m−1 are all distinct and {ar, ar+1, ..., ar+m−1} is a cyclic subgroup of

〈a〉 of order m ([2], page 19 - 20). It then follows that at ∈ {ar, ar+1, ..., ar+m−1}
for every positive integer t ≥ r. Moreover, the numbers r and m are independent



2

of a ([2], page 20), that is, if 〈a〉 = 〈b〉, then

s = min{j ∈ N | bj = bi for some i < j}

and bs = br. We call r and m the index and the period of 〈a〉, respectively. Let

index(〈a〉) and period(〈a〉) respectively denote the index and the period of 〈a〉.
The following statements are clearly obtained.

(1) index(〈a〉) = 1 if and only if 〈a〉 is a cyclic group and

(2) period(〈a〉) = 1 if and only if ar is the zero of 〈a〉 where r = index(〈a〉).
A semigroup S is said to be cyclic if S = 〈a〉 for some a ∈ S and a is called a

generator of S. As was mentioned above, if S is a finite cyclic semigroup, index(S)

and period(S) are independent of generators of S.

If S is a semigroup, θ ∈ S1 and define ∗ on S by

x ∗ y = xθy for all x, y ∈ S,

then (S, ∗) is a semigroup which is called a generalized semigroup of S and we

denote it by (S, θ). If |S| = 1 or (S, θ) has no zero, it is clear that (S, θ)0 =

(S ∪ {0}, ∗) where 0 is a symbol not representing any element of S and

x ∗ y =





xθy if x, y ∈ S,

xθy = 0 otherwise.

From now on, for this case, (S, θ)0 will be denoted by (S ∪ {0}, θ). Hence the

following proposition is directly obtained.

Proposition 1.1. Let S be a semigroup and θ ∈ S1. If |S| = 1 or (S, θ) has no

zero, then for all x, y ∈ S ∪ {0}, xθy = 0 implies x = 0 or y = 0.

If S has an identity and θ is a unit (an invertible element) of S, the map x 7→ xθ

is clearly an isomorphism of (S, θ) onto S, so (S, θ) ∼= S. In this case, θ−1 is the
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identity of (S, θ).

For a set A, let P (A) denote the power set of A and let P ∗(A) = P (A) \ {φ}.
A hyperoperation ◦ on a nonempty set H is a mapping of H × H into P ∗(H).

A hypergroupoid is a system (H, ◦) consisting of a nonempty set H together

with a hyperoperation ◦ on H. We shall usually write H instead of (H, ◦) when

there is no danger of ambiguity.

Let (H, ◦) be a hypergroupoid. For nonempty subsets A, B of H, let

A ◦B =
⋃

a ∈ A
b ∈ B

(a ◦ b)

and let A ◦ x = A ◦ {x} and x ◦A = {x} ◦A for all x ∈ H. An element e of H is

called an identity of (H, ◦) if x ∈ (x ◦ e) ∩ (e ◦ x) for all x ∈ H. An element e of

H is called a scalar identity of (H, ◦) if x ◦ e = e ◦ x = {x} for all x ∈ H. If e is a

scalar identity of (H, ◦), then e is the unique identity of (H, ◦).
The hyperoperation ◦ of a hypergroupoid (H, ◦) is said to be associative if

(x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ H.

A hypergroupoid (H, ◦) is said to be commutative if x ◦ y = y ◦ x for all

x, y ∈ H.

A semihypergroup is a hypergroupoid (H, ◦) such that the hyperoperation ◦ is

associative. A semihypergroup (H, ◦) is called a hypergroup if H ◦ x = H = x ◦H

for all x ∈ H.

An element x of a semihypergroup (H, ◦) is said to be an inverse of an element

y in (H, ◦) if there exists an identity e of (H, ◦) such that e ∈ (x◦y)∩ (y ◦x), that

is, (x ◦ y)∩ (y ◦ x) contains at least one identity of (H, ◦). Then every identity of

a semihypergroup (H, ◦) is an inverse of itself since e ∈ e ◦ e for every identity e

of (H, ◦).
A hypergroup H is said to be regular if every element of H has at least one
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inverse in H.

A regular hypergroup (H, ◦) is said to be reversible if for x, y, z ∈ H, x ∈ y ◦ z

implies z ∈ u ◦x and y ∈ x ◦ v for some inverse u of y and inverse v of z in (H, ◦).
A canonical hypergroup is a commutative reversible hypergroup H such that

H has a scalar identity and every element of H has a unique inverse in H. Hence

a hypergroup (H, ◦) is a canonical hypergroup if and only if

1. (H, ◦) is commutative,

2. (H, ◦) has a scalar identity,

3. every element of H has a unique inverse in (H, ◦) and

4. for a, x, y ∈ H, y ∈ a ◦ x implies x ∈ a
′ ◦ y where a

′
denotes the unique

inverse of a in (H, ◦).

A (Krasner) hyperring is a system (A, +, ·) such that

1. (A, +) is a canonical hypergroup,

2. (A, ·) is a semigroup with zero 0 where 0 is the scalar identity of (A, +) and

3. x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x for all x, y, z ∈ A.

The operations + and · of a hyperring (A, +, ·) are called the addition and the

multiplication of A, respectively. We shall usually write A instead of (A, +, ·)
when there is no danger of ambiguity. Hence every ring is a hyperring.

Let (A, +, ·) be a hyperring. The scalar identity of the canonical hypergroup

(A, +) which is the zero of the semigroup (A, ·) is called the zero of the hyperring

(A, +, ·) and it is usually denoted by 0. For x, y ∈ A and n a positive integer, let

−x denote the unique inverse of x in the canonical hypergroup (A, +) which is

called the additive inverse of x in (A, +, ·), xy denote x · y and xn denote xx · · · x
(n times). Then the following statements hold.

1. −0 = 0,

2. −(−x) = x for all x ∈ A,
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3. (−x)y = −(xy) = x(−y) for all x, y ∈ A and

4. (−x)(−y) = xy for all x, y ∈ A

([3], page 167). We give some examples of hyperrings as follows:

Example 1 ([12], page 16). Define the hyperoperation ⊕ on Z3 as follows:

⊕ 0 1 2

0 {0} {1} {2}
1 {1} {1} Z3

2 {2} Z3 {2}

Then (Z3,⊕, ·) is a hyperring where · is the usual multiplication in Z3. Observe

that 0 is its zero and 1 is the additive inverse of 2 in this hyperring.

Example 2. For all x, y ∈ [0, 1], define

x⊕ y =





{max{x, y}} if x 6= y,

[0, x] if x = y.

From [3], page 95 - 96, ([0, 1],⊕) is a canonical hypergroup. It was shown by Y.

Punkla [12] that ([0, 1],⊕, ·) is a hyperring where · is the usual multiplication on

[0, 1]. In this hyperring, 0 is the zero and the additive inverse of x ∈ [0, 1] is x

itself.

Example 3. For all x, y ∈ [−1, 1], define

x⊕ y = y ⊕ x = {x} if |y| < |x|,
x⊕ x = {x},
x⊕ (−x) = [−|x|, |x| ].

From [3], page 182 - 183, ([−1, 1],⊕) is a canonical hypergroup. In fact, it is

shown by Y. Kemprasit [8] that ([−1, 1],⊕, ·) is a hyperring where · is the usual
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multiplication on [−1, 1]. Note that 0 is its zero and the additive inverse of

x ∈ [−1, 1] is −x.

Example 4. Let G be a group and define a hyperoperation + on G0 by

x + 0 = 0 + x = {x} for all x ∈ G0,

x + x = G0 \ {x} for all x ∈ G0 \ {0} and

x + y = {x, y} for all x, y ∈ G0 \ {0} with x 6= y.

It is given in [3], page 170 that if G is an abelian group, then (G0, +, ·) is a

hyperfield where · is the operation on G0. A hyperfield is defined naturally to

be a hyperring (A, +, ·) such that (A \ {0}, ·) is an abelian group. In fact, it

was proved by Y. Punkla [12] that (G0, +, ·) is a hyperring without assuming the

commutativity of the group G. In this hyperring, 0 is the zero and the additive

inverse of x ∈ G0 is x itself.

A semigroup S is said to admit a hyperring [ring ] structure if there exists

a hyperoperation [operation] + on S0 such that (S0, +, ·) is a hyperring [ring].

Let SR and SHR denote the class of all semigroups admitting ring structure

and the class of all semigroups admitting hyperring structure, respectively. Then

SHR contains SR as a subclass. Note that for a semigroup S with |S| = 1,

then S0 ∼= (Z2, ·), so S ∈ SR ⊆ SHR. The following proposition follows from

Example 4.

Proposition 1.2. Every group belongs to SHR.

Since every finite division ring is a field (Wedderburn’s Theorem for finite division

rings), we deduce that every finite nonabelian group is in SHR but not in SR.

Consequently, SR is a proper subclass of SHR.

Semigroups belonging to the class SR have long been studied. For examples,
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see [11], [13], [14], [1] and [15]. The purpose of this research is to study when

certain semigroups belong to the class SHR. However, characterizations of some

semigroups in this class have been studied in [8], [9] and [12].

It was obtained from [7] by J. R. Isbell that every infinite cyclic semigroup is

not in SR. It was given in [11] that a finite cyclic semigroup S is in SR if and

only if |S| ≤ 2. In Chapter II, we characterize when any cyclic semigroup belongs

to SHR. It is shown that every infinite cyclic semigroup is in SHR and a finite

cyclic semigroup S belongs to SHR if and only if index(S) = 1 or period(S) = 1.

Let X be a nonempty set. By a transformation of X we mean a mapping

of X into itself. Let T (X) denote the set of all transformations of X. Then

under composition, T (X) is a semigroup having 1X as its identity where 1X is the

identity map on X and it is called the full transformation semigroup on X. For

α ∈ T (X), let Imα denote the image of α. Then for α ∈ T (X), α2 = α if and only

if xα = x for all x ∈ Imα. For α ∈ T (X) and x ∈ X, α is said to be 1 - 1 at x if

|(xα)α−1| = 1. The symmetric group on X is denoted by G(X). Then

G(X) = {α ∈ T (X) | α is 1 - 1 and Imα = X}.

The following two subsets of T (X) are clearly subsemigroups of T (X) containing

G(X):

M(X) = {α ∈ T (X) | α is 1 - 1}

and

E(X) = {α ∈ T (X) | Imα = X}.

Then M(X)[E(X)] = G(X) if and only if X is finite. Since Imαβ ⊆ Imβ for all

α, β ∈ T (X), we have that

T1(X) = {α ∈ T (X) | Imα is finite}
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is a subsemigroup of T (X) containing every constant map of X into X. Note that

if X is infinite, T1(X) is an infinite

semigroup all of whose elements have finite order ([4], page 12). The subset

T2(X) = {α ∈ T (X) | X \ Imα is finite}

of T (X) is also considered. If α, β ∈ T (X), then Imαβ ⊆ Imβ ⊆ X, so

X \ Imαβ = (X \ Imβ) ∪ (Imβ \ Imαβ)

= (X \ Imβ) ∪ (Xβ \ (Xα)β)

⊆ (X \ Imβ) ∪ (X \Xα)β.

Consequently, T2(X) is a subsemigroup of T (X) containing E(X). T2(X) can be

considered as the semigroup of all “ almost onto transformations ” of X. Then

the set of all “ almost 1 - 1 transformations ” of X should be given as follows:

T3(X) = {α ∈ T (X) | K(α) is finite}

where K(α) = {x ∈ X | α is not 1 - 1 at x}. Clearly, K(α) ⊆ K(αβ) for all

α, β ∈ T (X). From [10], we have

K(αβ) ⊆ K(α) ∪ ( K(β))α−1

for all α, β ∈ T (X). It follows that for α, β ∈ T (X), if K(α) and K(β) are finite,

then K(αβ) is finite. Then T3(X) is a subsemigroup of T (X) containing M(X).

Next, let

T4(X) = {α ∈ T (X) | α is 1 - 1 and X \ Imα is infinite}

where X is infinite. Since X is infinite, there are subsets X1, X2 of X such that

X = X1 ∪X2, X1 ∩X2 = ∅ and |X1| = |X| = |X2|.
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Then there exists a bijection λ : X → X1. Since λ ∈ T (X), λ is 1 - 1 and

X \ Imλ = X \X1 = X2 which is infinite, we have λ ∈ T4(X). This shows that

T4(X) 6= ∅. Since for α, β ∈ T (X), Imαβ ⊆ Imβ, it follows that αβ ∈ T4(X) for

all α, β ∈ T4(X). Then if X is infinite, T4(X) is a subsemigroup of T (X) contained

in M(X). If X is countably infinite, T4(X) is called the Baer-Levi semigroup on

X and αT4(X) = T4(X) for all α ∈ T4(X) ([4], page 14). The semigroup T4(X)

motivates us to consider the set

T5(X) = {α ∈ T (X) | K(α) is infinite and Imα = X}

which is defined in the opposite way. Let X1, X2 ⊆ X be as above. Since |X1|
= |X|, there is a bijection ϕ : X1 → X. Let a ∈ X be fixed and define η : X → X

by

xη =





xϕ if x ∈ X1,

a if x ∈ X2.

Since X1ϕ = X, Imη = X. We can see that for every x ∈ X2, (xη)η−1 = aη−1

= X2. Then K(η) = X2 ∪ {aϕ−1} which is infinite. Hence η ∈ T5(X), so T5(X)

6= ∅. Since K(α) ⊆ K(αβ) for all α, β ∈ T (X), T5(X) is a subsemigroup of T (X)

contained in E(X).

The relations under inclusion of the transformation semigroups introduced

above are as follows:

(1) If X is finite, then

G(X) = M(X) = E(X) ⊆ T1(X) = T2(X) = T3(X) = T (X).

(2) If X is infinite, then

G(X) ⊆ E(X) ⊆ T2(X) ⊆ T (X), G(X) ⊆ M(X) ⊆ T3(X) ⊆ T (X),

T4(X) ⊆ M(X) ⊆ T (X) and T5(X) ⊆ E(X) ⊆ T (X).
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We note that if X is infinite, all the inclusions in (2) are proper. To see this, let λ

and η be defined as above. Fix b ∈ X. Then |X| = |X \ {b}|. Let ν : X → X \ {b}
be a bijection and define ξ : X → X by

xξ =





xν−1 if x ∈ X \ {b},

b if x = b.

Then K(ξ) = {bν, b}, so ξ ∈ E(X) ∩ T3(X). Hence we have

η ∈ E(X) \G(X), ν ∈ T2(X) \E(X), λ ∈ T (X) \T2(X),

ν ∈ M(X) \G(X), ξ ∈ T3(X) \M(X), η ∈ T (X) \T3(X),

1X , ν ∈ M(X) \T4(X), ξ ∈ T (X) \M(X),

1X , ξ ∈ E(X) \T5(X), ν ∈ T (X) \E(X).

The transformation semigroups T (X),M(X), E(X), T2(X) and T3(X) have

been charactered in [8] and [12] when they belong to SHR as follows:

Proposition 1.3 ([8]). For a nonempty set X,

(1) T (X) ∈ SHR if and only |X| = 1,

(2) M(X) ∈ SHR if and only if X is finite and

(3) E(X) ∈ SHR if and only if X is finite.

Proposition 1.4 ([12]). For a nonempty set X,

(1) T2(X) ∈ SHR if and only if |X| = 1,

(2) T3(X) ∈ SHR if and only if |X| = 1.

The first main purpose of this research is the results in Chapter III. We give in

Chapter III characterizations of determining when generalized semigroups of the

transformation semigroups T (X), G(X),M(X), E(X) and T1(X)− T5(X) belong

to SHR. Proposition 1.3 and 1.4 are respectively lemmas to characterize generalized

semigroups of M(X) and E(X) and of T2(X) and T3(X) belonging to SHR. The
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following proposition will be useful for the characterizations in this chapter.

Proposition 1.5. Let X be a nonempty set.

(1) If S(X) is any of T (X),M(X), E(X) and T1(X)− T3(X) and θ ∈ S1(X),

then |S(X)| = 1 or (S(X), θ) has no zero.

(2) If X is infinite, S(X) is T4(X) or T5(X) and θ ∈ S1(X), then (S(X), θ)

has no zero.

Proof. First, recall that for α ∈ T (X), if α2 = α, then xα = x for all x ∈ Imα.

Suppose that η is a zero of (S(X), θ). Then

ηθα = η = αθη for all α ∈ S(X). (1.5.1)

These imply that (ηθ)2 = ηθ and for every α ∈ S(X), Imη = Im(ηθα) ⊆ Imα.

Hence we have

x(ηθ) = x for all x ∈ Imηθ (1.5.2)

and

Imη ⊆ Imα for all α ∈ S(X). (1.5.3)

Case 1: S(X) = T (X) or T1(X) and |S(X)| > 1. Then |X| > 1. Let a, b ∈ X be

distinct. Then Xa, Xb ∈ S(X). By (1.5.3), Imη ⊆ ImXa ∩ ImXb = {a}∩{b} = ∅,

a contradiction.

Case 2: S(X) = M(X), E(X), T4(X) or T5(X). Then ηθ is 1 - 1 or Imηθ = X.

By (1.5.2), ηθ = 1X .

Subcase 2.1: S(X) = M(X) or E(X) and |S(X)| > 1. Let α ∈ S(X) \ {η}.
Then ηθα = 1Xα = α. By (1.5.1), ηθα = η, so α = η, a contradiction.

Subcase 2.2: S(X) = T4(X) or T5(X) where X is infinite. From the proofs
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of those T4(X) 6= ∅ and T5(X) 6= ∅ in Chapter I, page 8 - 9, we can see that

|S(X)| > 1 by interchanging X1 and X2. As the proof of Subcase 2.1, we also get

a contradiction.

Case 3: S(X) = T2(X) or T3(X) and |S(X)| > 1. Then |X| > 1. For each

a ∈ X, choose a
′ ∈ X \ {a} and define αa : X → X by

xαa =





a
′

if x = a,

x otherwise.

Then for each a ∈ X, Imαa = X \ {a} and K(αa) = {a, a
′}. Hence αa ∈ T2(X) ∩

T3(X) for all a ∈ X. We have from (1.5.3) that

Imη ⊆
⋂
a∈X

Imαa =
⋂
a∈X

(X \ {a}) = ∅,

a contradiction.

Therefore the proposition is completely proved. ¤

For a vector space V over a division ring, let L(V ) denote the set of all linear

transformations from V into V . Then under composition, L(V ) is a semigroup

having 1V as its identity where 1V is the identity map on V . The following

three propositions are provided in this chapter. They are simple facts of vector

spaces and linear transformations which will be used. The proofs are routine and

elementary and they will be omitted.

Proposition 1.6. Let α ∈ L(V ) and B a basis of V . If α|B is 1− 1 and Bα is

linearly independent, then α is 1− 1.

Proposition 1.7. Let B be a basis of V and A ⊆ B. If α ∈ L(V ) is defined by

vα =





0 if v ∈ A,

v if v ∈ B \A,
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then Kerα = 〈A〉 and Imα = 〈B \A〉.

Proposition 1.8. Let B be a basis of V and A ⊆ B. Then

(1) {v + 〈A〉 | v ∈ B \A} is a basis of V / 〈A〉 and

(2) dim (V / 〈A〉) = |B \A|.

Let G(V ) denote the group of units of L(V ). Then

G(V ) = {α ∈ L(V ) | α is 1 - 1 and Imα = V }.

The following two subsets of L(V ) are clearly subsemigroups of L(V ):

M(V ) = {α ∈ L(V ) | α is 1 - 1}

and

E(V ) = {α ∈ L(V ) | Imα = V }.

Then M(V ) and E(V ) contain G(V ) as a subsemigroup and M(V )[E(V )] = G(V )

if and only if dimV is finite. Since Imαβ ⊆ Imβ for all α, β ∈ L(V ), we have that

L1(V ) = {α ∈ L(V ) | dim Imα is finite}

is a subsemigroup of L(V ) containing 0.

Following T2(X) of T (X), the subset

L2(V ) = {α ∈ L(V ) | dim (V / Imα) is finite}

of L(V ) is also considered. Then E(V ) ⊆ L2(V ). We will show that L2(V )

is a subsemigroup of L(V ). Let V be a vector space over a division ring D.

Let α, β ∈ L2(V ). Then dim (V / Imα) and dim (V / Imβ) are finite. Let dim

(V / Imα) = n, dim (V / Imβ) = m and {v1+Imα, ..., vn+Imα} and {w1 + Imβ, ..., wm + Imβ}
are bases of V / Imα and V / Imβ, respectively. We claim that
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〈{w1 + Imαβ, ..., wm + Imαβ, v1β + Imαβ, ..., vnβ + Imαβ}〉 = V / Imαβ.

Step 1: We shall show that for every v ∈ Imβ, v + Imαβ ∈ 〈v1β + Imαβ, ..., vnβ

+ Imαβ〉. Let v ∈ Imβ. Then there exists u ∈ V such that v = uβ. Since

{v1 + Imα, ..., vn + Imα} is a basis of V / Imα, it follows that

u + Imα =
n∑

i=1

ai(vi + Imα) =
n∑

i=1

aivi + Imα

for some elements a1, ..., an of D. Then u−
n∑

i=1

aivi ∈ Imα and so

v −
n∑

i=1

ai(viβ) = (u−
n∑

i=1

aivi)β ∈ (Imα)β = Imαβ

which implies that v + Imαβ =
n∑

i=1

ai(viβ) + Imαβ =
n∑

i=1

ai(viβ + Imαβ).

Step 2: Let v ∈ V . Then v+Imβ =
m∑

j=1

aj(wj + Imβ) for some elements a1, ..., am

of D and so v + Imβ =
m∑

j=1

ajwj + Imβ. It follows that v −
m∑

j=1

ajwj ∈ Imβ. By

Step 1, we have that

(v −
m∑

j=1

ajwj) + Imαβ =
n∑

i=1

ci(viβ + Imαβ)

for some c1, ..., cn ∈ D which implies that

v + Imαβ =
m∑

j=1

aj(wj + Imαβ) +
n∑

i=1

ci(viβ + Imαβ).

Hence we have the claim. It follows that dim (V / Imαβ) is finite. Therefore

L2(V ) is a subsemigroup of L(V ).

The subsemigroup T3(X) of T (X) motivates us to consider

L3(V ) = {α ∈ L(V ) | dim Kerα is finite}.

Then M(V ) ⊆ L3(V ). To show that L3(V ) is a subsemigroup of L(V ), let α, β

∈ L3(V ). We claim that α|Kerαβ : Kerαβ −→ Imα ∩Kerβ is an epimorphism and
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Ker(α|Kerαβ) = Kerα. It is clearly seen that vα ∈ Imα ∩ Kerβ for all v ∈ Kerαβ.

Let v ∈ Imα ∩ Kerβ. Then vβ = 0 and there exists u ∈ V such that uα = v. Since

uαβ = (uα)β = vβ = 0, we have u ∈ Kerαβ. This shows that α|Kerαβ is a map

from Kerαβ onto Imα∩Kerβ. Thus α|Kerαβ : Kerαβ −→ Imα∩Kerβ is an epimor-

phism. Next, we will show that Ker(α|Kerαβ) = Kerα. Trivially, Ker(α|Kerαβ) ⊆
Kerα. Let v ∈ Kerα. Then vα = 0 which implies that vαβ = 0β = 0. It follows

that v ∈ Kerαβ and vα|Kerαβ = vα = 0. Thus we get that Ker(α|Kerαβ) = Kerα.

Consequently,

dim Kerαβ = dim (Imα ∩Kerβ) + dim Kerα.

Since dim Kerα and dim Kerβ are finite, it follows that dim Kerαβ is finite.

Therefore we have that L3(V ) is a subsemigroup of L(V ), as required.

Next, let us consider

L4(V ) = {α ∈ L(V ) | α is 1 - 1 and dim (V / Imα) is infinite}

which is motivated by T4(X) of T (X) where V is infinite dimensional. Because

we can define a linear transformation of V on its given basis, by the same idea of

the proof of that T4(X) 6= ∅ and the facts of Proposition 1.6 and 1.8(2), we have

L4(V ) 6= ∅ where dim V is infinite. We have that Imαβ ⊆ Imβ and

V / Imβ ∼= (V / Imαβ) / (Imβ / Imαβ)

for all α, β ∈ L4(V ). Since dim (V / Imβ) is infinite, dim (V / Imαβ) is also

infinite. Thus L4(V ) is a subsemigroup of L(V ) contained in M(V ).

Finally, following T5(X) of T (X), we put

L5(V ) = {α ∈ L(V ) | dim Kerα is infinite and Imα = V }

where V is infinite dimensional. The proof of that L5(V ) 6= ∅ can be given

similarly to the proof of that T5(X) 6= ∅ by defining a linear transformation of V
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on its given basis and using a to be 0. Since Kerα ⊆ Kerαβ for all α, β ∈ L(V ),

L5(V ) is a subsemigroup of L(V ) contained in E(V ).

The following relations are also obtained similarly.

(1) If dim V is finite, then

G(V ) = M(V ) = E(V ) ⊆ L1(V ) = L2(V ) = L(V ).

(2) If dim V is infinite, then

G(V ) ( E(V ) ( L2(V ) ( L(V ), G(V ) (M(V ) ( L3(V ) ( L(V ),

L4(V ) (M(V ) ( L(V ) and L5(V ) ( E(V ) ( L(V ).

Note that the proofs of the proper inclusions in (2) can be done similarly by

defining linear transformations on bases and using Proposition 1.6, 1.7 and 1.8.

The second main purpose is the results in Chapter IV. We give in Chapter IV

characterizations of determining when generalized semigroups of linear transformation

semigroups L(V ), G(V ),M(V ), E(V ) and L1(V )−L5(V ) belong to SHR. The fol-

lowing Proposition will be used for the characterizations of this chapter.

Proposition 1.9. Let V be a vector space over a division ring D.

(1) If S(V ) is M(V ) or E(V ) and θ ∈ S(V ), then |S(V )| = 1 or (S(V ), θ) has

no zero.

(2) If dim V is infinite, S(V ) is one of L2(V ) − L5(V ) and θ ∈ S1(V ), then

(S(V ), θ) has no zero.

Proof. Assume that (S(V ), θ) has a zero, say η. Then

ηθα = η = αθη for all α ∈ S(V ). (1.9.1)

Consequently, (ηθ)2 = ηθ and Imη = Im(ηθα) ⊆ Imα for all α ∈ S(V ). Thus
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v(ηθ) = v for all v ∈ Im(ηθ) (1.9.2)

and

Imη ⊆ Imα for all α ∈ S(V ). (1.9.3)

Case 1: S(V ) = M(V ), E(V ), L4(V ) or L5(V ). Then ηθ is 1 - 1 or Imηθ = V .

By (1.9.2), ηθ = 1V .

Subcase 1.1: S(V ) = M(V ) or E(V ) and |S(V )| > 1. Let α ∈ S(V ) \ {n}.
Then ηθα = 1V α = α. By (1.9.1), ηθα = η. Then α = η, a contradiction.

Subcase 1.2: S(V ) = L4(V ) or L5(V ) where dim V is infinite. By the

descriptions how to prove that L4(V ) and L5(V ) are not empty in Chapter I,

page 15 - 16 and |T4(X)| > 1 and |T5(X)| > 1 in the proof of Proposition 1.5, one

can see that |S(V )| > 1. From the proof of Subcase 1.1, we get a contradiction

similarly.

Case 2: S(V ) = L2(V ) or L3(V ) where dim V is infinite. Let B be a basis of V .

Then B is infinite. For each u ∈ B, define αu ∈ L(V ) by

vαu =





0 if v = u,

v if v ∈ B \ {u}.

By proposition 1.8, αu ∈ L2(V ) for all u ∈ B and by Proposition 1.7, αu ∈ L3(V )

for all u ∈ B. From (1.9.3), we have

Imη ⊆
⋂
u∈B

Imαu =
⋂
u∈B

〈B \ {u}〉.

Let v ∈ V \ {0}. Then v = a1u1 + ... + anun for some u1, ..., un ∈ B and nonzero

a1, ..., an ∈ D. If v ∈ 〈B \ {u1}〉, then a1u1 + ... + anun = b1w1 + ... + bmwm

for some w1, ..., wm ∈ B \ {u1}, b1, ..., bm ∈ D. Since B is linearly independent,

we have a1 = 0, a contradiction. Thus v /∈
⋂
u∈B

〈B \ {u}〉. This proves that
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⋂
u∈B

〈B \ {u}〉 = 〈0〉. Hence Imη = {0}, so η = 0. Since dim V is infinite, 0 /∈ L2(V )

and 0 /∈ L3(V ), so we have a contradiction. ¤



CHAPTER II

CYCLIC SEMIGROUPS

In this chapter, it will be shown that every infinite cyclic semigroup is in

SHR. Moreover, we shall show that for a finite cyclic semigroup S, the condition

that index(S) = 1 or period(S) = 1 is necessary and sufficient for S to belong to

SHR.

Theorem 2.1. Every infinite cyclic semigroup is in SHR.

Proof. Let S be an infinite cyclic semigroup. Then there exists an element a ∈ S

such that

S = {an | n ∈ N}.

Then ai 6= aj if i 6= j and so S has no zero. Define a hyperoperation + on S0 by

0 + 0 = {0}, an + 0 = {an} = 0 + an,

an + am =





{amin{n,m}} if n 6= m,

{an, an+1, ...} ∪ {0} if n = m.

Then (S0, +) is a commutative hypergroupoid. It is clearly seen that for x, y, z

∈ S0, if at least one of them is 0, then (x + y) + z = x + (y + z). Let n,m ∈ N.

If n ≤ m, then

(an + an) + am = ({an, an+1, ...} ∪ {0}) + am = {an, an+1, ...} ∪ {0}

and

an + (an + am) =





an + {an} if n < m,

an + ({an, an+1, ...} ∪ {0}) if n = m
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= {an, an+1, ...} ∪ {0}.

If n > m, then

(an + an) + am = ({an, an+1, ...} ∪ {0}) + am = {am}

and

an + (an + am) = an + {am} = an + am = {am}.

These imply that

(an + an) + am = an + (an + am) (2.1.1)

for all n,m ∈ N. It then follows from (2.1.1) and the commutativity of + on S0

that for n, m ∈ N,

(am +an)+an = an +(am +an) = an +(an +am) = (an +an)+am = am +(an +an)

and

(an + am) + an = an + (an + am) = an + (am + an).

By the definition of + on S0, we have that for distinct elements n,m and k in N,

(an + am) + ak = {amin{n,m,k}} = an + (am + ak).

Then we prove that

(x + y) + z = x + (y + z) for all x, y, z ∈ S0

It is clear that

S0 + x = S0 for all x ∈ S0.

Hence (S0, +) is a hypergroup.

Since 0+0 = {0} and 0+an = {an} = an +0 for all n ∈ N, we have that 0 is a

scalar identity of the hypergroup (S0, +). Since 0 ∈ {an, an+1, ...}∪{0} = an + an
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for all n ∈ N, it follows that for n ∈ N, an is an inverse of an in (S0, +). Since

0 is the scalar identity of (S0, +), 0 is the unique inverse of 0 in (S0, +). For

n ∈ N, an is the unique inverse of an in (S0, +) since for every m ∈ N \ {n},
0 /∈ an + am(= {amin{n,m}}).

To show that (S0, +) is reversible, it is clear that if x, y, z ∈ S0 be such that

x ∈ y + z and at least one of them is 0, then z ∈ x + y. Next, let n,m, k ∈ N be

such that an ∈ am + ak. Then

an ∈ am + ak =





{am, am+1, ...} ∪ {0} if m = k,

{amin{m,k}} if m 6= k.

We have that n = m < k, n = k < m, n > m = k or n = m = k. Each case gives

ak ∈ an + am as follows:

n = m < k ⇒ ak ∈ {am, am+1, ...} ∪ {0} = am + am = an + am,

n = k < m ⇒ ak ∈ {an} = an + am,

n > m = k ⇒ ak ∈ {am} = an + am,

n = m = k ⇒ ak ∈ {am, am+1, ...} ∪ {0} = am + am = an + am.

This proves that (S0, +) is a canonical hypergroup.

Next, we shall show that x · (y + z) = x · y + x · z for all x, y, z ∈ S0 where ·
is the operation of S0. If x, y, z ∈ S0 and at least one of them is 0, it is clear that

x · (y + z) = x · y + x · z. Let n,m, k ∈ N. Then

an · (am + ak) =





an · {amin{m,k}} if m 6= k,

an · ({am, am+1, ...} ∪ {0}) if m = k

=





{an+min{m,k}} if m 6= k,

{an+m, an+m+1, ...} ∪ {0} if m = k
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=





{amin{n+m,n+k}} if m 6= k,

{an+m, an+m+1, ...} ∪ {0} if m = k

and

an · am + an · ak = an+m + an+k =





{amin{n+m,n+k}} if m 6= k,

{an+m, an+m+1, ...} ∪ {0} if m = k.

Thus an · (am + ak) = an · am + an · ak for all n,m, k ∈ N. Hence x · (y + z) =

x · y + x · z for all x, y, z ∈ S0.

Therefore (S0, +, ·) is a hyperring and so S ∈ SHR.

Theorem 2.2. Let S be a finite cyclic semigroup. Then S ∈ SHR if and only if

index(S) = 1 or period(S) = 1.

Proof. If index(S) = 1, then S is a finite cyclic group (Chapter I, page 2), so by

Proposition 1.2, S ∈ SHR.

Assume that period(S) = 1. Let S = 〈a〉 and index(S) = r. Then

S = {a, a2, ..., ar}, ar+1 = ar,

a, a2, ..., ar are all distinct and ar which is the zero of S (Chapter I, page 1 - 2).

Hence we have

at = ar for all t ∈ {r, r + 1, r + 2, ...}. (2.2.1)

If r = 1, then |S| = 1, so S ∈ SHR (Chapter I, page 6). Assume that r > 1.

Define a hyperoperation + on S as follows: for n,m ∈ {1, 2, ..., r},

an +am =





{amin{n,m}} if n 6= m,

{an, an+1, ..., ar} if n = m. (2.2.2)
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Then (S, +) is a commutative hypergroupoid. From the definition of + on S, we

have that

an + ar = {an} = ar + an for all n ∈ {1, 2, ..., r}. (2.2.3)

Next, we claim that for all n,m ∈ N,

an+am =





{amin{n,m}} if n 6= m,

{an, an+1, ..., an+r} if n = m. (2.2.4)

To prove (2.2.4), let n, m ∈ N.

Case 1: n 6= m. If n,m ≤ r, by (2.2.2), an + am = amin{n,m}. If n ≤ r ≤ m, by

(2.2.1) and (2.2.3), an +am = an +ar = {an} = {amin{n,m}}. Similarly, m ≤ r ≤ n

implies that an +am = {amin{n,m}}. If n,m ≥ r, then min{n,m} ≥ r, so by (2.2.1)

and (2.2.3), an + am = ar + ar = {ar} = {amin{n,m}}.

Case 2: n = m. If n = m ≤ r, then by (2.2.2), an + am = {an, an+1, ..., ar}
and by (2.2.1), ar = ar+1 = ... = an+r, so we have an + am = {an, an+1, ..., an+r}.
By (2.2.1) and (2.2.3), n = m ≥ r implies an + am = ar + ar = {ar} and

ar = an = an+1 = ... = an+r, so an + am = {ar} = {an, an+1, ..., an+r}.

Hence (2.2.4) holds.

Let n,m ∈ {1, 2, ..., r}. Then

(an + an) + am = {an, an+1, ..., ar}+ am =





{an, an+1, ..., ar} if n ≤ m,

{am} if n > m

and

an + (an + am) =





an + {an} if n < m,

an + {an, an+1, ..., ar} if n = m,

an + {am} if n > m
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=





{an, an+1, ..., ar} if n < m,

{an, an+1, ..., ar} if n = m,

{am} if n > m

which implies that

(an + an) + am = an + (an + am) (2.2.5)

for all n, m ∈ {1, 2, ..., r}. We have from (2.2.5) and the commutativity of + on

S that for n,m ∈ {1, 2, ..., r},

(am +an)+an = an +(am +an) = an +(an +am) = (an +an)+am = am +(an +an)

and

(an + am) + an = an + (an + am) = an + (am + an).

By the definition of + on S, it follows that for distinct elements n,m and k in

{1, 2, ..., r},
(an + am) + ak = {amin{n,m,k}} = an + (am + ak).

It is clearly seen from the definition of + on S that

S + x = S for all x ∈ S.

Hence (S, +) is a hypergroup. By (2.2.3), ar is a scalar identity of the hypergroup

(S, +). Since ar ∈ {an, an+1, ..., ar} = an +an for all n ∈ {1, 2, ..., r}, we have that

for n ∈ {1, 2, ..., r}, an is an inverse of an in (S, +). Moreover, for n ∈ {1, 2, ..., r},
an is the unique inverse of an in (S, +) since for every m ∈ {1, 2, ..., r} \ {n}, ar /∈
an + am(= {amin{n,m}}).

To show that (S, +) is reversible, let n,m, k ∈ {1, 2, ..., r} be such that an ∈
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am + ak. Since

am + ak =





{am, am+1, ..., ar} if m = k,

{amin{m,k}} if m 6= k,

we have that n = m < k, n = k < m, n > m = k or n = m = k. Each case gives

ak ∈ an + am as follows:

n = m < k ⇒ ak ∈ {am, am+1, ..., ar} = am + am = an + am,

n = k < m ⇒ ak ∈ {an} = an + am,

n > m = k ⇒ ak ∈ {am} = an + am,

n = m = k ⇒ ak ∈ {am, am+1, ..., ar} = am + am = an + am.

This proves that (S, +) is a canonical hypergroup.

Next, we shall show that an · (am + ak) = an · am + an · ak for all n,m, k ∈
{1, 2, ..., r} where · is the operation of S. Let n,m, k ∈ {1, 2, ..., r}. Then by

(2.2.4)

an · (am + ak) =





an · {amin{m,k}} if m 6= k,

an · {am, am+1, ..., am+r} if m = k

=





{amin{n+m,n+k}} if m 6= k,

{an+m, an+m+1, ..., an+m+r} if m = k

and

an ·am+an ·ak = an+m+an+k =





{amin{n+m,n+k}} if n + m 6= n + k,

{an+m, an+m+1, ..., an+m+r} if n + m = n + k

=





{amin{n+m,n+k}} if m 6= k,

{an+m, an+m+1, ..., an+m+r} if m = k.

Thus an · (am + ak) = an · am + an · ak for all n, m, k ∈ {1, 2, ..., r}.
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Hence (S, +, ·) is a hyperring. Therefore S ∈ SHR.

For the converse, assume that S = 〈a〉, index(S) = r > 1 and period(S) =

m > 1. Then

S = {a, a2, ..., ar, ar+1, ..., ar+m−1}, ar+m = ar, r > 1, m > 1

and a, a2, ..., ar+m−1 are all distinct. Since period(S) > 1, S has no zero (Chapter

I, page 2). Consequently, for x, y ∈ S0, xy = 0 implies x = 0 or y = 0. To show

that S /∈ SHR, suppose on the contrary that S ∈ SHR. Then there exists a

hyperoperation + on S0 such that (S0, +, ·) is a hyperring where · is the operation

on S0. Then 0 ∈ a + ak for some k ∈ {1, 2, ..., r + m− 1}.

Case 1: k = 1. Then 0 ∈ a + a. Consequently,

0 ∈ ar−1(a + a) = ar + ar = ar + ar+m = ar−1(a + am+1).

This implies that 0 ∈ a + am+1. Then am+1 = a. But 1 < m + 1 ≤ r + m− 1

(since r > 1), so we have a 6= am+1, a contradiction.

Case 2: k > 1. Then 2k − 1 > 1 and

0 ∈ ak−1(a + ak) = ak + a2k−1.

This implies that a = a2k−1.

Subcase 2.1: 2k − 1 < r. Then 1 < 2k − 1 < r + m − 1, so a2k−1 6= a, a

contradiction.

Subcase 2.2: 2k − 1 ≥ r. Then a2k−1 ∈ {ar, ar+1, ..., ar+m−1} (Chapter I,

page 1) which implies that a ∈ {ar, ar+1, ..., ar+m−1}. This is a contradiction since

r > 1.



CHAPTER III

GENERALIZED SEMIGROUPS OF SOME

SEMIGROUPS OF TRANSFORMATIONS OF A SET

The purpose of this chapter is to characterize when generalized semigroups of

the following transformation semigroups admit a hyperring structure where X is

a nonempty set.

T (X) = the full transformation semigroup on X,

G(X) = {α ∈ T (X) | α is 1 - 1 and Imα = X},
M(X) = {α ∈ T (X) | α is 1 - 1},
E(X) = {α ∈ T (X) | Imα = X},
T1(X) = {α ∈ T (X) | Imα is finite},
T2(X) = {α ∈ T (X) | X \ Imα is finite},
T3(X) = {α ∈ T (X) | K(α) is finite}

where K(α) = {x ∈ X | α is not 1 - 1 at x},
T4(X) = {α ∈ T (X) | α is 1 - 1 and X \ Imα is infinite} where X is infinite

and

T5(X) = {α ∈ T (X) | K(α) is infinite and Imα = X} where X is infinite.

We recall from Chapter I that G(X) ∈ SHR (Proposition 1.2), M(X) ∈ SHR if

and only if X is finite (Proposition 1.3(2)) and E(X) ∈ SHR if and only if X is

finite (Proposition 1.3(3)). Moreover, the condition that |X| = 1 is necessary and

sufficient for T2(X) and for T3(X) to belong to SHR (Proposition 1.4).

Throughout this chapter, let X denote a nonempty set. For convenience,



28

the following notation will be used. For a ∈ X, let Xa denote the constant

transformation of X with image {a} and for a, b ∈ X, let (a, b) be the element of

G(X) defined by

x(a, b) =





b if x = a,

a if x = b,

x if x ∈ X \ {a, b}.
If θ ∈ G(X), we have (G(X), θ) ∼= G(X) (Chapter I, page 2). Then the

following theorem is obtained from Proposition 1.2.

Theorem 3.1. For any θ ∈ G(X), (G(X), θ) ∈ SHR.

We recall that if S(X) is any of the semigroups T (X),M(X), E(X) and

T1(X) − T5(X) and θ ∈ S1(X), by Proposition 1.5, |S(X)| = 1 or (S(X), θ)

has no zero. Hence (S(X), θ)0 = (S(X) ∪ {0}, θ) (Chapter I, page 2).

Theorem 3.2. Let S(X) be T (X) or T1(X). For θ ∈ S1(X), (S(X), θ) ∈ SHR

if and only if |X| = 1.

Proof. Assume that (S(X), θ) ∈ SHR. Then there exists a hyperoperation + on

S(X) ∪ {0} such that (S(X) ∪ {0}, +, ·) is a hyperring where · is the operation

on (S(X)∪ {0}, θ). To show that |X| = 1, suppose on the contrary that |X| ≥ 2.

Let a and b be two distinct elements in X. Then Xa, Xb ∈ S(X) and it is easily

seen that XaθXa = Xa and XbθXa = Xa. Thus we have

0 ∈ Xa −Xa = XaθXa −XbθXa = (Xa −Xb)θXa

which implies by Proposition 1.1 and 1.5 that 0 ∈ Xa−Xb. Hence Xa = Xb which

is a contradiction since a 6= b. Hence |X| = 1.

Conversely, if |X| = 1, then |S(X)| = 1, so (S(X), θ) ∈ SHR (Chapter I,

page 6).
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Hence Proposition 1.3(1) becomes a corollary of Theorem 3.2.

Corollary 3.3. If S(X) = T (X) or T1(X), then S(X) ∈ SHR if and only if

|X| = 1.

Theorem 3.4. For θ ∈ M(X), (M(X), θ) ∈ SHR if and only if X is finite.

Proof. If X is finite, then M(X) = G(X), so by Theorem 3.1, (M(X), θ) ∈ SHR.

For the converse, assume that (M(X), θ) ∈ SHR. Then there exists a hyperoperation

+ on M(X)∪{0} such that (M(X)∪{0}, +, ·) is a hyperring where · is the oper-

ation on (M(X) ∪ {0}, θ). To show that Imθ = X, suppose that Imθ ( X. Since

θ is 1 - 1, we have that (Imθ)θ ( Xθ. Thus Imθ2 ( Imθ ( X. This implies

that |X \ Imθ2| ≥ 2. Let a, b ∈ X \ Imθ2 be distinct. Consequently, θ2(a, b) = θ2.

Since

0 ∈ θ2 − θ2 = θ2 − θ2(a, b) = θθ(1X − (a, b)),

by Proposition 1.1 and 1.5, 0 ∈ 1X − (a, b). This implies that (a, b) = 1X which is

a contradiction. Hence θ ∈ G(X). Then (M(X), θ) ∼= M(X) (Chapter I, page 2).

Since (M(X), θ) ∈ SHR, M(X) ∈ SHR. By Proposition 1.3(2), X is finite.

Theorem 3.5. For θ ∈ E(X), (E(X), θ) ∈ SHR if and only if X is finite.

Proof. If X is finite, then E(X) = G(X) and hence (E(X), θ) ∈ SHR by

Theorem 3.1.

For the converse, assume that (E(X), θ) ∈ SHR. Then there exists a hyperoperation

+ on E(X)∪{0} such that (E(X)∪{0}, +, ·) is a hyperring where · is the opera-

tion on (E(X)∪{0}, θ). To show that θ ∈ G(X), suppose not. Because Imθ = X,

θ is not 1 - 1. Then there exist distinct elements a and b in X such that aθ = bθ.

Consequently, (a, b)θ = θ. Then

0 ∈ θ − θ = θ − (a, b)θ = (1X − (a, b))θ1X
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which implies by Proposition 1.1 and 1.5 that 0 ∈ 1X − (a, b). Hence (a, b) = 1X ,

a contradiction. Therefore θ ∈ G(X). It follows that (E(X), θ) ∼= E(X)(Chapter

I, page 2). But (E(X), θ) ∈ SHR, so E(X) ∈ SHR. Hence X is finite by

Proposition 1.3(3).

Theorem 3.6. Let S(X) be T2(X) or T3(X). For θ ∈ S(X), (S(X), θ) ∈ SHR

if and only if |X| = 1.

Proof. Assume that (S(X), θ) ∈ SHR and + is a hyperoperation on S(X) ∪ {0}
such that (S(X)∪{0}, +, ·) is a hyperring where · is the operation on (S(X) ∪ {0}, θ).
First, we will prove that θ is 1 - 1. Suppose not. Then there exist distinct elements

a and b in X such that aθ = bθ. Therefore (a, b) ∈ S and (a, b)θ = θ. Then we

have

0 ∈ θ − θ = θ − (a, b)θ = (1X − (a, b))θ1X

which implies by Proposition 1.1 and 1.5 that 0 ∈ 1X − (a, b), so (a, b) = 1X ,

a contradiction. Hence θ is 1− 1.

Next, we will prove that Imθ = X. Suppose that Imθ ( X. Since θ is 1 - 1,

(Imθ)θ ( Xθ. Then Imθ2 ( Imθ ( X. Let a, b ∈ X \ Imθ2 be distinct. Then

θ2(a, b) = θ2. Since

0 ∈ θ2 − θ2 = θ2 − θ2(a, b) = θθ(1X − (a, b)),

we have 0 ∈ 1X − (a, b). Hence (a, b) = 1X , a contradiction. This proves that θ ∈
G(X). Consequently, (S(X), θ) ∼= S(X) and hence S(X) ∈ SHR. By Proposition

1.4, |X| = 1.

For the converse, assume that |X| = 1. Then |S(X)| = 1 and so (S(X), θ) ∈
SHR (Chapter I, page 6).

The following lemma is required to prove that (T4(X), θ) /∈ SHR if X is

infinite and θ ∈ T 1
4 (X).
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Lemma 3.7. M(X)T4(X) ⊆ T4(X) where X is infinite.

Proof. Let α ∈ M(X) and β ∈ T4(X). Then αβ is 1 - 1 and Imαβ ⊆ Imβ. Since

X \ Imβ is infinite, X \ Imαβ is infinite. Hence αβ ∈ T4(X).

Theorem 3.8. For any θ ∈ T 1
4 (X), (T4(X), θ) /∈ SHR where X is infinite.

Proof. Assume that (T4(X), θ) ∈ SHR and let + be a hyperoperation on T4(X) ∪ {0}
such that (T4(X) ∪ {0}, +, ·) is a hyperring where · is the operation on (T4(X) ∪
{0}, θ). Let α ∈ T4(X). Then αθ ∈ T4(X), so X \ Imαθ is infinite. Let a and b be

distinct elements in X \ Imαθ. Then αθ(a, b) = αθ, and so αθ(a, b)α = αθα. By

Lemma 3.7, we have that (a, b)α ∈ T4(X). But

0 ∈ αθα− αθα = αθα− αθ(a, b)α = αθ(α− (a, b)α),

so 0 ∈ α − (a, b)α by Proposition 1.1 and 1.5. This implies that (a, b)α = α.

Hence

aα = a(a, b)α = bα

which is a contradiction since a 6= b and α is 1 - 1.

Hence the following corollary is obtained.

Corollary 3.9. If X is infinite, then T4(X) /∈ SHR.

The following lemma is given to prove that (T5(X), θ) /∈ SHR where X is

infinite and θ ∈ T 1
5 (X).

Lemma 3.10. If X is infinite, then T5(X)E(X) ⊆ T5(X).

Proof. Let α ∈ T5(X) and β ∈ E(X). Then Imαβ = X since Imα = X =Imβ.

If α is not 1 - 1 at x ∈ X, then αβ is not 1 - 1 at x. Consequently,

K(α) = {x ∈ X | α is not 1 - 1 at x} ⊆ {x ∈ X | αβ is not 1 - 1 at x} = K(αβ).

Since K(α) is infinite, K(αβ) is infinite. Hence αβ ∈ T5(X).
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Theorem 3.11. For any θ ∈ T 1
5 (X), (T5(X), θ) /∈ SHR where X is infinite.

Proof. Assume that (T5(X), θ) ∈ SHR. Then there exists a hyperoperation + on

T5(X) ∪ {0} such that (T5(X) ∪ {0}, +, ·) is a hyperring where · is the operation

on (T5(X) ∪ {0}, θ).

Case 1: θ = 1X . Since X is infinite, there exist X1, X2 ⊆ X such that

X1 ∪X2 = X, X1 ∩X2 = ∅, |X1| = |X2| = |X|.

Then there is a bijection ϕ : X1 → X. Let a ∈ X1 and define α : X → X by

xα =





xϕ if x ∈ X1,

a if x ∈ X2.

Thus Imα = X and α is not 1 - 1 at every x ∈ X2. Therefore α ∈ T5(X). Let

s, t ∈ X2 be such that s 6= t. Thus there exist unique p, q ∈ X1 such that pα = s

and qα = t. Moreover, the following equalities hold.

pα(s, t)α = a = pαα,

qα(s, t)α = a = qαα, (2.10.1)

X2α(s, t)α = {aα} = X2αα.

Since ϕ : X1 → X is 1 - 1, for x ∈ X1 \ {p, q}, xα /∈ {s, t}. Then

for every x ∈ X1 \ {p, q}, xα(s, t)α = xαα. (2.10.2)

From (2.10.1) and (2.10.2), we have α(s, t)α = α2. By Lemma 3.10, α(s, t) ∈
T5(X). But

0 ∈ αα− αα = αα− α(s, t)α = (α− α(s, t))α,

so by Proposition 1.1 and 1.5, 0 ∈ α− α(s, t). Hence α(s, t) = α. It then follows

that

s = pα = pα(s, t) = s(s, t) = t,
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a contradiction.

Case 2: θ ∈ T5(X). Then sθ = tθ for some distinct s, t ∈ X. Since X \ {s, t} is

infinite, there exist X1, X
′
2 ⊆ X \ {s, t} such

X1 ∪X
′
2 = X \ {s, t}, X1 ∩X

′
2 = ∅, |X1| = |X ′

2| = |X \ {s, t}|.

Let X2 = X
′
2 ∪ {s, t}. Then

X1 ∪X2 = X, X1 ∩X2 = ∅, |X1| = |X2| = |X|.

Let ϕ : X1 → X be a bijection. Let a ∈ X1 and define α : X → X by

xα =





xϕ if x ∈ X1,

a if x ∈ X2.

Then Imα = X and α is not 1 - 1 at every x ∈ X2, so α ∈ T5(X). By Lemma

3.10, α(s, t) ∈ T5(X). Let p, q ∈ X1 be such that pα = s and qα = t. Hence

pα(s, t)θα = tθα = sθα = pαθα,

qα(s, t)θα = sθα = tθα = qαθα, (2.10.3)

X2α(s, t)θα = {aθα} = X2αθα.

Since ϕ : X1 → X is 1 - 1, for x ∈ X1 \ {p, q}, xα /∈ {s, t}. We deduce that

for every x ∈ X1 \ {p, q}, xα(s, t)θα = xαθα. (2.10.4)

From (2.10.3) and (2.10.4), α(s, t)θα = αθα. Then

0 ∈ αθα− αθα = αθα− α(s, t)θα = (α− α(s, t))θα,

so 0 ∈ α − α(s, t) by Proposition 1.1 and 1.5. Thus α(s, t) = α. This is a

contradiction since

s = pα = pα(s, t) = s(s, t) = t.
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In particular, we have

Corollary 3.12. T5(X) /∈ SHR where X is infinite.



CHAPTER IV

GENERALIZED SEMIGROUPS OF SOME

SEMIGROUPS OF LINEAR TRANSFORMATIONS OF

A VECTOR SPACE

In this chapter, we characterize when generalized semigroups of the following

semigroups of linear transformations under composition belong to the class SHR

where V is a vector space over a division ring D.

L(V ) = {α : V → V | α is a linear transformation},
G(V ) = {α ∈ L(V ) | α is 1 - 1 and Imα = V },
M(V ) = {α ∈ L(V ) | α is 1 - 1},
E(V ) = {α ∈ L(V ) | Imα = V },
L1(V ) = {α ∈ L(V ) | dim Imα is finite},
L2(V ) = {α ∈ L(V ) | dim (V / Imα) is finite},
L3(V ) = {α ∈ L(V ) | dim Kerα is finite},
L4(V ) = {α ∈ L(V ) | α is 1 - 1 and dim (V / Imα) is infinite} if V is infinite

dimensional and

L5(V ) = {α ∈ L(V ) | dim Kerα is infinite and Imα = V } if V is infinite

dimensional.

Throughout this chapter, let V be a vector space over a division ring D.

The following notation will be used. If B is a basis of V and u,w ∈ B, let
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(u,w)B ∈ L(V ) be defined by

v(u,w)B =





u if v = w,

w if v = u,

v if v ∈ B \ {u,w}.

If the notation (A,⊕, ·) is used to denote a hyperring, then for x, y ∈ A,ªx and

xª y will denote the inverse of x in (A,⊕) and x⊕ (ªy), respectively.

By Proposition 1.2, G(V ) ∈ SHR. It follows from the fact in Chapter I, page

2 that (G(V ), θ) ∼= G(V ) for all θ ∈ G(V ). Therefore we have

Theorem 4.1. For θ ∈ G(V ), (G(V ), θ) ∈ SHR.

We know that L(V ) is a ring under usual addition and composition. Moreover,

L1(V ) is an ideal of this ring ([6], page 424). Thus L(V ), L1(V ) ∈ SR and so

L(V ), L1(V ) ∈ SHR. Since for α, β, γ, θ ∈ L(V ),

αθ(β + γ) = αθβ + αθγ

and

(β + γ)θα = βθα + γθα.

Hence (L(V ), θ) ∈ SR for every θ ∈ L(V ) and (L1(V ), θ) ∈ SR for every θ ∈
L1

1(V ). Consequently, we have

Theorem 4.2. If S(V ) is L(V ) or L1(V ), then for every θ ∈ S1(V ), (S(V ), θ) ∈
SHR.

We recall the facts from Proposition 1.9 that if S(V ) is any of

(1) M(V ) and E(V ) and

(2) L2(V )− L5(V ) where dim V is infinite

and θ ∈ S1(V ), then |S(V )| = 1 or (S(V ), θ) has no zero, and hence (S(V ), θ)0 =

(S(V ) ∪ {0}, θ) (Chapter I, page 2).
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To characterize when (M(V ), θ) with θ ∈ M(V ) belongs to SHR, we require

the following lemma.

Lemma 4.3. M(V ) ∈ SHR if and only if dim V is finite.

Proof. If dim V is finite, then M(V ) = G(V ), so by Proposition 1.2, M(V ) ∈
SHR.

For the converse, assume that M(V ) ∈ SHR. Then there exists a hyperoperation

⊕ on M(V )∪ {0} such that (M(V )∪ {0},⊕, ·) is a hyperring where · is the oper-

ation on (M(V )∪{0}, 1V ). To show that dim V is finite, suppose on the contrary

that dim V is infinite. Let B be a basis of V and u,w ∈ B such that u 6= w. Since

B is infinite, it follows that |B| = |B \ {u,w}|. Then there exists a 1 - 1 map ϕ

from B onto B \ {u, w}. Let α ∈ L(V ) be defined by vα = vϕ for all v ∈ B. By

Proposition 1.6, α is 1 - 1 and so α ∈ M(V ). Since Bα = B \ {u,w}, we have

vα(u,w)B = vα for all v ∈ B. It follows that α(u,w)B = α. Therefore

0 ∈ αª α = α1V ª α(u,w)B = α(1V ª (u,w)B).

But α 6= 0, so by Proposition 1.1 and 1.9, 0 ∈ 1V ª (u,w)B. Hence (u,w)B = 1V ,

a contradiction. Therefore dim V is finite.

Theorem 4.4. For θ ∈ M(V ), (M(V ), θ) ∈ SHR if and only if dim V is finite.

Proof. First, we recall that if A is a linearly independent subset of V and u ∈
V \ 〈A〉, then A ∪ {u} is linearly independent.

If dim V is finite, then M(V ) = G(V ) and thus (M(V ), θ) ∈ SHR by

Theorem 4.1.

For the converse, assume that (M(V ), θ) ∈ SHR. Let ⊕ be a hyperoperation

on M(V )∪{0} such that (M(V )∪{0},⊕, ·) is a hyperring where · is the operation

on (M(V ) ∪ {0}, θ). To show that θ ∈ E(V ), suppose on the contrary that
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θ /∈ E(V ). Then Imα ( V . Since θ is 1 - 1, we have (Imθ)θ ( V θ. Hence Imθ2 (

Imθ ( V .

Next, let u ∈ V \ Imθ, w ∈ Imθ \ Imθ2 and B1 a basis of Imθ2. Then w ∈
V \ 〈B1〉. It follows that B1∪{w} is linearly independent. But 〈B1∪{w}〉 ⊆ Imθ,

so u ∈ V \ 〈B1∪{w}〉. It follows that B1∪{u,w} is linearly independent. Let B be

a basis of V containing B1 ∪ {u, w}. Since u,w /∈ 〈B1〉 and for v ∈ V, vθ2 ∈ 〈B1〉,
we deduce that vθ2(u,w)B = vθ2 for all v ∈ V . Hence θ2(u,w)B = θ2. But

0 ∈ θ2 ª θ2 = θ2 ª θ2(u,w)B = θθ(1V ª (u,w)B),

so 0 ∈ 1V ª (u,w)B by Proposition 1.1 and 1.9. Consequently, (u,w)B = 1V ,

a contradiction. Now, we have θ ∈ G(V ). It follows that (M(V ), θ) ∼= M(V )

(Chapter I, page 2). Therefore M(V ) ∈ SHR. By Lemma 4.3, dim V is finite.

Next, we shall prove that (E(V ), θ) with θ ∈ E(V ) belongs to SHR if and

only if dim V is finite. The following lemma is required.

Lemma 4.5. E(V ) ∈ SHR if and only if dim V is finite.

Proof. If dim V is finite, then E(V ) = G(V ), so by Proposition 1.2, E(V ) ∈
SHR.

For the converse, assume that E(V ) ∈ SHR and let ⊕ be a hyperoperation

on E(V )∪{0} such that (E(V )∪{0},⊕, ·) is a hyperring where · is the operation

on (E(V ) ∪ {0}, 1V ). To show that dim V is finite, suppose on the contrary that

dim V is infinite. Let B be a basis of V and let u, w ∈ B be such that u 6= w.

Since B is infinite, it follows that |B| = |B \ {u,w}|. Then there exists a 1 - 1

map ϕ from B \ {u,w} onto B. Let α ∈ L(V ) be defined by

vα =





vϕ if v ∈ B \ {u,w},

u if v = u or v = w.
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Then Imα = 〈B〉 = V , so α ∈ E(V ). Moreover,

v(u,w)Bα = vα for all v ∈ B \ {u,w},
u(u,w)Bα = wα = u = uα and

w(u, w)Bα = uα = u = wα.

It follows that (u, w)Bα = α. Hence

0 ∈ αª α = αª (u,w)Bα = (1V ª (u,w)B)α

which implies by Proposition 1.1 and 1.9 that 0 ∈ 1V ª (u,w)B. Therefore

(u,w)B = 1V , a contradiction. This proves that dim V is finite.

Theorem 4.6. For θ ∈ E(V ), (E(V ), θ) ∈ SHR if and only if dim V is finite.

Proof. If dim V is finite, then E(V ) = G(V ), so by Theorem 4.1, (E(V ), θ) ∈
SHR.

For the converse, assume that (E(V ), θ) ∈ SHR. Let ⊕ be a hyperoperation

on E(V )∪{0} such that (E(V )∪{0},⊕, ·) is a hyperring where · is the operation

on (E(V ) ∪ {0}, θ). To show that θ ∈ M(V ), suppose that θ /∈ M(V ). Then

Kerθ 6= {0}. Let B1 be a basis of Kerθ and B a basis of V such that B1 ⊆ B.

Since Kerθ 6= {0}, it follows that B1 6= ∅. Let α ∈ L(V ) be defined by

vα =





vθ if v ∈ B \B1,

v if v ∈ B1.

Then α 6= θ. Since

Imα = V α = 〈Bα〉
= 〈(B \B1)α ∪B1α〉
⊇ 〈(B \B1)α〉
= 〈(B \B1)θ〉
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= 〈(B \B1)θ ∪B1θ〉 since B1θ = {0}
= 〈Bθ〉
= 〈B〉θ = V θ = V since θ ∈ E(V ),

we have α ∈ E(V ). The following proof shows that αθ = θ2.

v ∈ B \B1 ⇒ vαθ = vθθ = vθ2 and

v ∈ B1 ⇒ vαθ = vθ = 0 = 0θ = (vθ)θ = vθ2.

Then

0 ∈ θ2 ª θ2 = θ2 ª αθ = (θ ª α)θ1V .

This implies from Proposition 1.1 and 1.9 that 0 ∈ θ ª α. Hence θ = α, a

contradiction. This proves that θ ∈ M(V ). Thus θ ∈ G(V ). Consequently,

(E(V ), θ) ∼= E(V ). Therefore E(V ) ∈ SHR. By Lemma 4.5, dim V is finite.

We show in the next theorem that finiteness of dim V is necessary and sufficient

for (L2(V ), θ) with θ ∈ L2(V ) and (L3(V ), θ) with θ ∈ L3(V ) to belong to SHR.

The following two lemmas will be used.

Lemma 4.7. L2(V ) ∈ SHR if and only if dim V is finite.

Proof. If dim V is finite, then L2(V ) = L(V ) ∈ SHR.

Conversely, assume that dim V is infinite. Suppose that there exists a hyperoperation

⊕ on L2(V )∪{0} such that (L2(V )∪{0},⊕, ·) is a hyperring where · is the oper-

ation on (L2(V )∪{0}, 1V ). Let B be a basis of V and u,w distinct elements of B.

Then |B| = |B \ {u,w}|, so there exists a bijection ϕ : B → B \ {u,w}. Define

α ∈ L(V ) by vα = vϕ for all v ∈ B. Then Imα = V α = 〈B〉α = 〈Bα〉 = 〈Bϕ〉 =

〈B \ {u,w}〉. By Proposition 1.8(2), dim (V / Imα) = dim (V / 〈B \ {u,w}〉) = 2.

Therefore α ∈ L2(V ). Since Bα = B \ {u, w}, we have vα(u,w)B = vα for all
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v ∈ B. Consequently, α(u,w)B = α. Therefore

0 ∈ αª α = αª α(u,w)B = α(1V ª (u,w)B).

We then have from Proposition 1.1 and 1.9 that 0 ∈ 1V ª(u,w)B. Hence (u,w)B =

1V , a contradiction. This proves that if dim V is infinite, then (L2(V ), θ) /∈
SHR.

Lemma 4.8. L3(V ) ∈ SHR if and only if dim V is finite.

Proof. If dim V is finite, then L3(V ) = L(V ) ∈ SHR.

Conversely, assume that dim V is infinite and suppose that L3(V ) ∈ SHR. Let

⊕ be a hyperoperation on L3(V )∪{0} such that (L3(V )∪{0},⊕, ·) is a hyperring

where · is the operation on (L3(V )∪{0}, 1V ). Let B be a basis of V and u,w ∈ B

be distinct. Define α as in the proof of Lemma 4.7. Then α(u,w)B = α. By

Proposition 1.6, α ∈ M(V ) ⊆ L3(V ). Thus

0 ∈ αª α = α(1V ª (u,w)B).

It follows from Proposition 1.1 and 1.9 that 0 ∈ 1Vª(u,w)B which is a contradiction

since (u,w)B 6= 1V . Hence if dim V is infinite, then L3(V ) /∈ SHR.

Theorem 4.9. Let S(V ) be L2(V ) or L3(V ) and θ ∈ S(V ). Then (S(V ), θ) ∈
SHR if and only if dim V is finite.

Proof. If dim V is finite, then S(V ) = L(V ), and so (S(V ), θ) ∈ SHR by

Theorem 4.2.

For the converse, assume that (S(V ), θ) ∈ SHR, and suppose that dim V is

infinite. Let ⊕ be a hyperoperation on S(V )∪ {0} such that (S(V )∪ {0},⊕, ·) is

a hyperring where · is the operation on (S(V ) ∪ {0}, θ).
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Case 1. θ is not 1 - 1. Then Kerθ 6= {0}. Let u ∈ Kerθ \ {0} and B a basis of V

containing u. Define α ∈ L(V ) by

vα =





0 if v = u,

v if v ∈ B \ {u}.

By Proposition 1.7, Kerα = 〈u〉 and Imα = 〈B \ {u}〉. By Proposition 1.8(2),

dim (V / Imα) = dim (V / 〈B \ {u}〉) = 1. Then α ∈ S(V ). From the fact that

uαθ = 0 = uθ,

vαθ = vθ for all v ∈ B \ {u},

we have αθ = θ. Consequently,

0 ∈ θ ª θ = θ ª αθ = (1V ª α)θ1V .

This implies by Proposition 1.1 and 1.9 that 0 ∈ 1V ª α and so α = 1V , a

contradiction.

Case 2: θ is 1 - 1 and onto. Then S(V ) ∼= (S(V ), θ) ∈ SHR. By Lemma 4.7 and

4.8, dim V is finite, a contradiction.

Case 3: θ is 1 - 1 but not onto. Then Imθ ( V and (Imθ)θ ( V θ. Consequently,

Imθ2 ( Imθ ( V . Let u ∈ V \ Imθ and w ∈ Imθ \ Imθ2. Let B1 be a basis of

Imθ2. Then

w /∈ Imθ2 = 〈B1〉 and u /∈ Imθ ⊇ 〈B1 ∪ {w}〉

which imply that B1 ∪ {u, w} is linearly independent. Let B be a basis of V

containing B1 ∪ {u,w}. Since for every v ∈ B, vθ2 ∈ 〈B1〉 and u,w /∈ 〈B1〉, it

follows that vθ2(u,w)B = vθ2 for all v ∈ B. Therefore θ2(u,w)B = θ2. We then

have

0 ∈ θ2 ª θ2 = θ2 ª θ2(u,w)B = θθ(1V ª (u,w)B).
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By Proposition 1.1 and 1.9, 0 ∈ 1V ª (u,w)B, so (u,w)B = 1V , a contradiction.

This proves that (S(V ), θ) ∈ SHR implies that dim V is finite.

Next, to show that (L4(V ), θ) /∈ SHR for any infinite dimension of V , we

require following lemma.

Lemma 4.10. M(V )L4(V ) ⊆ L4(V ) where dim V is infinite.

Proof. Let α ∈ M(V ) and β ∈ L4(V ). Since α and β are 1 - 1, αβ is 1 - 1. We

have that

V / Imβ ∼= (V / Imαβ) / (Imβ / Imαβ).

Since dim (V / Imβ) is infinite, dim (V / Imαβ) is also infinite. Hence αβ ∈
L4(V ).

Theorem 4.11. For θ ∈ L1
4(V ), (L4(V ), θ) /∈ SHR where dim V is infinite.

Proof. Assume that there exists a hyperoperation ⊕ on L4(V ) ∪ {0} such that

(L4(V ) ∪ {0},⊕, ·) is a hyperring where · is the operation on (L4(V ) ∪ {0}, θ).
Let α ∈ L4(V ). Then αθ ∈ L4(V ). Let B1 be a basis of Imαθ and B a basis of

V containing B1. Since 〈B1〉 = Imαθ, by Proposition 1.8(2), dim (V / Imαθ) =

|B \B1| which is infinite. Let u,w ∈ B \B1 be distinct. Then u,w /∈ 〈B1〉 =

Imαθ and also uα 6= wα because α is 1 - 1. We have that for every v ∈
B, vαθ(u,w)B = vαθ. Hence αθ(u,w)B = αθ and so αθ(u, w)Bα = αθα. By

Lemma 4.10, (u,w)Bα ∈ L4(V ). Thus

0 ∈ αθαª αθα = αθαª αθ(u,w)Bα = αθ(αª (u,w)Bα).

From Proposition 1.1 and 1.9, we have 0 ∈ α ª (u,w)Bα. Therefore (u,w)Bα =

α and so u(u,w)Bα = uα. But u(u,w)Bα = wα, so wα = uα. This is a

contradiction.

This proves that (L4(V ), θ) /∈ SHR, as required.
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The following corollary is an immediate consequence of Theorem 4.11.

Corollary 4.12. L4(V ) /∈ SHR where dim V is infinite.

Finally, we shall show that for θ ∈ L1
5(V ), (L5(V ), θ) /∈ SHR for any infinite

dimension of V . The following lemma will be used.

Lemma 4.13. L5(V )E(V ) ⊆ L5(V ) where dim V is infinite.

Proof. Let α ∈ L5(V ) and β ∈ E(V ). Since Imα = V = Imβ, we have Imαβ = V .

Since Kerαβ ⊇ Kerα and dim Kerα is infinite, it follows that dim Kerαβ is infinite.

Hence αβ ∈ L5(V ).

Theorem 4.14. For θ ∈ L1
5(V ), (L5(V ), θ) /∈ SHR where dim V is infinite.

Proof. Suppose that there exists a hyperoperation ⊕ on L5(V ) ∪ {0} such that

(L5(V )∪{0},⊕, ·) is a hyperring where · is the operation on (L5(V )∪{0}, θ). Let

α ∈ L5(V ). Then θα ∈ L5(V ), so dim Kerθα is infinite. Let u, w ∈ Kerθα be

linearly independent. Then uθα = 0 = wθα. Let B be a basis of V containing u

and w. Since B \ {u,w} is infinite, there are two subsets B1 and B
′
2 of B \ {u,w}

such that

B \ {u,w} = B1 ∪B
′
2, B1 ∩B

′
2 = ∅ and |B1| = |B′

2| = |B \ {u,w}|.

Let B2 = B
′
2 ∪ {u,w}. Then

B = B1 ∪B2, B1 ∩B2 = ∅ and |B1| = |B2| = |B|.

Let ϕ : B1 → B be a bijection. Define β ∈ L(V ) by

vβ =





vϕ if v ∈ B1,

0 if v ∈ B2.



Then Imβ = 〈Bβ〉 = 〈B1β〉 = 〈B1ϕ〉 = 〈B〉 = V and B2 ⊆ Kerβ. Thus

dim Kerβ ≥ |B2|, so dim Kerβ is infinite. Hence β ∈ L5(V ). Let u
′
, w

′ ∈ B1

be such that u
′
ϕ = u and w

′
ϕ = w. Thus u

′
β = u and w

′
β = w. Since

β|B1
= ϕ : B1 → B is a bijection, for all v ∈ B1 \ {u′ , w′}, vβ ∈ B \ {u,w},

and so vβ(u,w)B = vβ for all v ∈ B \ {u,w}. The following equalities yield

β(u,w)Bθαβ = βθαβ.

u
′
β(u,w)Bθαβ = u(u,w)Bθαβ = wθαβ = (wθα)β = 0β = 0,

u
′
βθαβ = uθαβ = (uθα)β = 0β = 0,

w
′
β(u,w)Bθαβ = w(u,w)Bθαβ = uθαβ = (uθα)β = 0β = 0,

w
′
βθαβ = wθαβ = (wθα)β = 0β = 0,

vβ(u,w)Bθαβ = 0 = vβθαβ for all v ∈ B2 and

for v ∈ B1 \ {u′ , w′}, vβ(u,w)Bθαβ = (vβ(u,w)B)θαβ = vβθαβ.

By Lemma 4.13, β(u,w)B ∈ L5(V ). Then

0 ∈ βθαβ ª βθαβ = βθαβ ª β(u,w)Bθαβ = (β ª β(u,w)B)θαβ.

This implies that 0 ∈ βªβ(u,w)B by Proposition 1.1 and 1.9. Thus β(u,w)B = β.

But u
′
β(u,w)B = u(u,w)B = w, u

′
β = u and u 6= w, so we have a contradiction.

This proves that (L5(V ), θ) /∈ SHR, as required.

The following corollary is a particular case of Theorem 4.14.

Corollary 4.15. L5(V ) /∈ SHR where dim V is infinite.
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