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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

For any set X, the cardinality of X will be denoted by |X|.

For a semigroup S, if S has an identity, let S* = S, and if S does not have an
identity, let S! be the semigroup S with an identity 1 adjoined. The semigroup S°
is defined to be S if S has a zero and |S| > 1; otherwise, let S° be the semigroup
S with a zero 0 adjoined.

For an element a of a semigroup S, the subsemigroup of S generated by a is
defined to be

{a) = { a" | n e N}

where N is the set of all positive integers. The order of @ is defined to be |{a)].
We have that a’ # o’ for all distinct 4,7 € N if and only if (a) is infinite.

Assume that a € S is such that (a) is finite. Then a' = o’ for some 7,5 € N
with ¢ < j. Let

s=min{j € N | a’ = a' for some i < j}.

Then there is a unique r € Nsuch that » < s and a® ='a". Let m = s —r. Then

s =1 +m. It follows that

<a> = {a/7 a27 ceey a’l’) ar+1, ceey aH_m_l}, ar—i—m = a/T‘7

a,a?,...,a” 1 are all distinct and {a",a"™,...,a" ™™ 1} is a cyclic subgroup of
(a) of order m ([2], page 19 - 20). It then follows that a' € {a",a"!,...,a" ™™}

for every positive integer ¢ > r. Moreover, the numbers r and m are independent



of a ([2], page 20), that is, if (a) = (b), then
s=min{j € N | & = b' for some i < j}

and b° = b". We call r and m the inder and the period of (a), respectively. Let
index((a)) and period({a)) respectively denote the index and the period of (a).
The following statements are clearly obtained.

(1) index({a)) = 1 if and only if (a) is a cyclic group and

(2) period({a)) =1if and only if a" is the zero of (a) where r = index({(a)).

A semigroup S is said to be cyclic if S = (a) for some a € S and a is called a
generator of S. As was mentioned above, if S'is a finite cyclic semigroup, index(.S)

and period(S) are independent of generators of S.
If S is a semigroup, # € S' and define * on S by
xxy=2x0y forall z,yelS,

then (S,*) is a semigroup which is called a generalized semigroup of S and we
denote it by (S,6). If |S| = 1 or (9,0) has no zero, it is clear that (S,6)" =

(S U{0}, %) where 0 is a symbol not representing any element of S and

0y if x,yes,
THY =

xfy = 0 otherwise.

From now on, for this case, (S,0)° will be denoted by (S U {0},6). Hence the

following proposition is directly obtained.

Proposition 1.1. Let S be a semigroup and 6 € S*. If |S| =1 or (S,0) has no

zero, then for all x,y € SU{0}, 20y = 0 implies x =0 or y = 0.

If S has an identity and € is a unit (an invertible element) of S, the map z — x6

is clearly an isomorphism of (S, ) onto S, so (S,0) = S. In this case, 7! is the



identity of (5, 0).

For a set A, let P(A) denote the power set of A and let P*(A) = P(A)\{¢}.

A hyperoperation o on a nonempty set H is a mapping of H x H into P*(H).

A hypergroupoid is a system (H, o) consisting of a nonempty set H together
with a hyperoperation o on H. We shall usually write H instead of (H, o) when
there is no danger of ambiguity.

Let (H, o) be a hypergroupoid. For nonempty subsets A, B of H, let

AoB= U (aob)

a €
b e

B

and let Aoz =Ao{x} and zo A= {x}oAforall z€ H. An element e of H is
called an identity of (H,o) if v € (zoe) N (eox) for all z € H. An element e of
H is called a scalar identity of (H,o0) if zoe=cox ={z} forallxz € H. Ifeisa
scalar identity of (H, o), then e is the unique identity of (H, o).

The hyperoperation o of a hypergroupoid (H, o) is said to be associative if
(xoy)oz==xzo(yoz) forall z,y,z € H.

A hypergroupoid (H, o) is said to be commutative if x oy = y o x for all
x,y € H.

A semihypergroup is a hypergroupoid (H, o) such that the hyperoperation o is
associative. A semihypergroup (H, o) is called a hypergroup it Hox = H =xo H
for all x € H.

An element z of a semihypergroup (H, o) is said to be an inverse of an element
y in (H, o) if there exists an identity e of (H, o) such that e € (xoy)N(yox), that
is, (z oy) N (y o x) contains at least one identity of (H, o). Then every identity of
a semihypergroup (H, o) is an inverse of itself since e € e o e for every identity e
of (H,o).

A hypergroup H is said to be regular if every element of H has at least one



inverse in H.

A regular hypergroup (H, o) is said to be reversible if for z,y,z € H x € yo z
implies z € uox and y € xow for some inverse u of y and inverse v of z in (H, o).

A canonical hypergroup is a commutative reversible hypergroup H such that
H has a scalar identity and every element of H has a unique inverse in H. Hence
a hypergroup (H, o) is a canonical hypergroup if and only if

1. (H,o) is commutative,

2. (H, o) has a scalar identity,

3. every element of H has a unique inverse in (H, o) and

4. for a,z,y € H,y € aox implies z € a oy where a denotes the unique

inverse of a in (H, o).

A (Krasner) hyperring is a system (A, 4+, ) such that

1. (A, +) is a canonical hypergroup,

2. (A,-) is a semigroup with zero 0 where 0 is the scalar identity of (A, +) and

. x-(y+z)=z-y+az-zand (y+2)-x=y-x+z -z foralzy z e A
The operations + and - of a hyperring (A, 4+, -) are called the addition and the
multiplication of A, respectively. . We. shall usually write A instead of (A,+,")
when there is no danger of ambiguity. Hence every ring is a hyperring.

Let (A, 4+, ) be a hyperring. The scalar identity of the canonical hypergroup
(A, +) which is the zero of the semigroup (A4, -) is called the zero of the hyperring
(A, 4+, ) and it is usually denoted by 0. For z,y € A and n a positive integer, let
—z denote the unique inverse of x in the canonical hypergroup (A, +) which is
called the additive inverse of x in (A, +,+), xy denote z -y and 2" denote zx - - - x
(n times). Then the following statements hold.

1. =0=0,

2. —(—z)=xforall x € A,



3. (—2)y = —(zy) = z(—y) for all z,y € A and
4. (—z)(—y) =zy forall z,y € A

([3], page 167). We give some examples of hyperrings as follows:

Example 1 ([12], page 16). Define the hyperoperation @ on Zs as follows:

&l 0 1.2
01 {0} {1} {2}
Ly {1} Z
2142} Zs {2}

Then (Zs, @, ) is a hyperring where - is the usual multiplication in Zz. Observe

that 0 is its zero and 1 is the additive inverse of 2 in this hyperring.

Example 2. For all z,y € [0, 1], define

{max{z,y}} iz £y,
rDy =

0, z] =7
From [3], page 95 - 96, ([0, 1],®) is a canonical hypergroup. It was shown by Y.
Punkla [12] that ([0, 1], &, ) is a‘hyperring where - is the usual multiplication on
[0,1]. In this hyperring, 0-is the zero and the additive inverse of = € [0,1] is

itself.
Example 3. For all z,y € [—1, 1], define

r@y=ydx={z} if |y| <|z,
r@®x={zr}

v ® (—x) =[], [«] ].

From [3], page 182 - 183, ([—1,1],®) is a canonical hypergroup. In fact, it is

shown by Y. Kemprasit [8] that ([—1,1],®,-) is a hyperring where - is the usual



multiplication on [—1,1]. Note that 0 is its zero and the additive inverse of

re[-1,1]is —a.
Example 4. Let G be a group and define a hyperoperation + on G° by

r+0=0+z={z} foralzec G,
r+ 1 =G\ {z} for all & € G°\ {0} and

T + yet Ul for all z,y € G°\ {0} with  # y.

It is given in [3], page 170 that if G' is an abelian group, then (G° +,-) is a
hyperfield where - is the operation on GY. A hyperfield is defined naturally to
be a hyperring (A, +,-) such that (A\{0},:) is an abelian group. In fact, it
was proved by Y. Punkla [12] that (G°, +,+) is a hyperring without assuming the
commutativity of the group G. In this hyperring, 0 is the zero and the additive

inverse of x € G is z itself.

A semigroup S is said to admil a hyperring [ring] structure if there exists
a hyperoperation [operation] + on S° such that (5% +,:) is a hyperring [ring].
Let SR and SHR denote the class of all semigroups admitting ring structure
and the class of all semigroups admitting hyperring structure, respectively. Then
SHR contains SR as a subclass. Note that for a semigroup S with |S| = 1,
then S° = (Z,,:), 50 S € SR C SHR. The following proposition follows from

Example 4.
Proposition 1.2. Fvery group belongs to SHR.

Since every finite division ring is a field (Wedderburn’s Theorem for finite division
rings), we deduce that every finite nonabelian group is in SHR but not in SR.
Consequently, SR is a proper subclass of SHR.

Semigroups belonging to the class SR have long been studied. For examples,



see [11], [13], [14], [1] and [15]. The purpose of this research is to study when
certain semigroups belong to the class SHR. However, characterizations of some
semigroups in this class have been studied in [8], [9] and [12].

It was obtained from [7] by J. R. Isbell that every infinite cyclic semigroup is
not in SR. It was given in [11] that a finite cyclic semigroup S is in SR if and
only if |S| < 2. In Chapter II, we characterize when any cyclic semigroup belongs
to SHR. 1t is shown that every infinite cyclic semigroup is in SHR and a finite

cyclic semigroup S belongs to SHR if and only if index(S) = 1 or period(S) = 1.

Let X be a nonempty set. By a transformation of X we mean a mapping
of X into itself. Let T(X) denote the set of all transformations of X. Then
under composition, 7'(X) is a semigroup having 1x as its identity where 1x is the
identity map on X and it is called the full transformation semigroup on X. For
a € T(X), let Ima denote the image of a. Then for a € T(X), a? = a if and only
if v = x for all x € Ima. For a € T(X) and z € X, o is said to be 1 - 1 at z if

|(za)a™!| = 1. The symmetric group on X is denoted by G(X). Then
GX)={aeT(X)|ais1-1and Ima = X}.

The following two subsets of T'(X ) are clearly subsemigroups of T'(X) containing
G(X):

M(X)={aeT(X)|ais1-1}
and

EX)={aeT(X) | Ima = X}.

Then M(X)[E(X)] = G(X) if and only if X is finite. Since Imaf C Img for all

a, € T(X), we have that

T1(X) ={a e T(X) | Ima is finite}



is a subsemigroup of 7'(X') containing every constant map of X into X. Note that
if X is infinite, 77(X) is an infinite

semigroup all of whose elements have finite order ([4], page 12). The subset
To(X) ={a e T(X) | X\ Ima is finite}
of T(X) is also considered. If a,, # € T(X), then Imaf C Imfg C X, so

X \Imaf = (X \Imf)U (ImB\ Imas)

= (X\ImB) U (X6 (X))
€ (X \Imf) U (X \ Xa)g.

Consequently, T5(X) is a subsemigroup of 7'(X ) containing F(X). T5(X) can be

considered as the semigroup of all * almost onto transformations ” of X. Then

the set of all “ almost 1 - 1 transformations ”

of X should be given as follows:

T3(X) ={a e T(X) | K(a) is finite}

where K(a) = {z € X | aisnot 1 -1 at z}. Clearly, K(a) C K(af) for all

a,p € T(X). From [10], we have
K(af) & K(a)U (K(B))a™

for all'a, B € T'(X). It follows that for «, B € T(X), if K(«) and K(5) are finite,
then K(a/) is finite. Then T3(X) is a subsemigroup of 7'(X) containing M (X).

Next, let
Ty(X)={aeT(X)|ais1-1and X \Ima is infinite}
where X is infinite. Since X is infinite, there are subsets Xi, X5 of X such that

X:X1UX2, leXQZQand |X1|:|X|:|X2|



Then there exists a bijection A : X — Xj;. Since A € T(X),Ais 1 - 1 and
X \ImA = X\ X; = X, which is infinite, we have A € T;(X). This shows that
Ty(X) # @. Since for o, 5 € T(X), Imag C Img, it follows that a5 € Ty(X) for
all a, B € Ty(X). Then if X is infinite, Ty(X) is a subsemigroup of T'(X') contained
in M(X). If X is countably infinite, T;(X) is called the Baer-Levi semigroup on
X and o1y (X) = Ty(X) for all o € Ty(X) ([4], page 14). The semigroup T4(X)

motivates us to consider the set
T5(X) ={a e T(X) | K(«) is infinite and Ima = X'}

which is defined in the opposite way. Let X;, Xo € X be as above. Since |Xj]|
= | X|, there is a bijection ¢ : X; — X. Let a € X be fixed and definen: X — X
by

xp it me Xy,
=

a if ze Xs.
Since X1 = X, Imn = X. We can see that for every x € Xo, (zn)n~ ! = an™!
= X,. Then K(n) = X3 U {ap '} which is infinite. Hence n € T5(X), so T5(X)
# @. Since K(a) C K(ap) for all a, f € T(X), T5(X) is a subsemigroup of T'(X)
contained in E(X).

The relations under inclusion of the transformation semigroups introduced

above ‘are as follows:

(1) If X is finite, then



10

We note that if X is infinite, all the inclusions in (2) are proper. To see this, let A
and 1 be defined as above. Fix b € X. Then |X| = |X \ {b}|. Let v : X — X\ {b}

be a bijection and define £ : X — X by

av7t if z e X\ {b},
x€ =
b =T

Then K(¢) = {bv, b}, so £ € E(X) N T5(X). Hence we have

n € B(X)\G(X),w e Ty(X) \ E(X), A € T(X)\ To(X),
v € M(X)\ G(X)/€ € To(X)\ M(X), € T(X)\ Ty(X),
Le, v € MOO\TU(X), € € T(X) \M(X),

1x, £ € E(X)\T5(X), v € T(X)\ E(X).

The transformation semigroups 7(X), M(X), E(X),T5(X) and T5(X) have

been charactered in [8] and [12] when they belong to SHR as follows:

Proposition 1.3 ([8]). For a nonempty set X,
(1) T(X) € SHR if and only | X| = 1,
(2) M(X) € SHR if and only if X is finite and

(3) E(X) € SHR if and only +f X s finite.

Proposition 1.4 ([12]). For-a nonempty set-X,
(1) To(X) € SHR if and only if | X| =1,

(2) T5(X) € SHR if and only if | X| = 1.

The first main purpose of this research is the results in Chapter III. We give in
Chapter III characterizations of determining when generalized semigroups of the
transformation semigroups 7'(X), G(X), M (X), E(X) and T1(X) — T5(X) belong
to SHR. Proposition 1.3 and 1.4 are respectively lemmas to characterize generalized

semigroups of M (X) and E(X) and of T5(X) and T3(X) belonging to SHR. The



11
following proposition will be useful for the characterizations in this chapter.

Proposition 1.5. Let X be a nonempty set.

(1) If S(X) is any of T(X), M(X), E(X) and T1(X) — T3(X) and 6 € S*(X),
then |S(X)| =1 or (S(X),0) has no zero.

(2) If X s infinite, S(X) is Ty(X) or T5(X) and 0 € S'(X), then (S(X),0)

has no zero.

Proof. First, recall that for a € T(X), if a* = «, then za = z for all z € Ima.

Suppose that 7 is a zero of (S(X),6). Then
nfa = n = afdn for all a € S(X). (1.5.1)

These imply that (nf)* = nf and for every o € S(X), Imn = Im(nfa) C Ima.

Hence we have

x(nf) = z for all z € Imnb (1.5.2)
and

Imn C Ima for all o € S(X). (1.5.3)

Case 1: S(X) = T(X)or Ti(X)and |S(X)| > 1. Then |X|> 1. Let a,b € X be
distinct. Then X,, X, € S(X). By (1.5.3), Imn C ImX, N ImX, = {a}N{b} = o,

a contradiction.

Case 2: S(X) = M(X),E(X),Ty(X) or T5(X). Then n is 1 - 1 or Imnh = X.

By (1.5.2), nf = 1x.

Subcase 2.1: S(X) = M(X) or E(X) and |S(X)| > 1. Let a € S(X)\ {n}.

Then nfa = 1xa = a. By (1.5.1), na = n, so o = n, a contradiction.

Subcase 2.2: S(X) = Ty(X) or T5(X) where X is infinite. From the proofs
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of those Ty(X) # @ and T5(X) # @ in Chapter I, page 8 - 9, we can see that
|S(X)| > 1 by interchanging X; and X5. As the proof of Subcase 2.1, we also get

a contradiction.

Case 3: S(X) = T»(X) or T3(X) and |[S(X)| > 1. Then |X| > 1. For each
a € X, choose a' € X \ {a} and define o, : X — X by

/

b g
T =

x  otherwise.
Then for each a € X, Ima, = X \ {a} and K(ay,) = {a,a'}. Hence a, € To(X) N

T5(X) for all @ € X. We have from (1.5.3) that

Imy C () Imay, = [ (X \{a}) = 2,

acX acX

a contradiction.
Therefore the proposition is completely proved. Il

For a vector space V' over a division ring, let L(V') denote the set of all linear
transformations from V' into V. Then under composition, L(V') is a semigroup
having 1y as its identity where 1y, is the identity map on V. The following
three propositions are provided in this chapter. They are simple facts of vector
spaces-and linear transformations which will be used. The proofs-are routine and

elementary and they will be omitted.

Proposition 1.6. Let a € L(V) and B a basis of V. If ap is 1 —1 and Ba is

linearly independent, then o is 1 — 1.

Proposition 1.7. Let B be a basis of V and A C B. If aw € L(V) is defined by
0 if veA,

v =

v if ve B\A,
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then Kera = (A) and Ima = (B\ A).

Proposition 1.8. Let B be a basis of V and A C B. Then
(1) {v+(A) | ve B\ A} is a basis of V / (A) and
(2) dim (V /(A)) = |B\ Al.

Let G(V') denote the group of units of (V). Then

G(V)=4aeL(V) | ais1-1and Ima =V}

The following two subsets of L(17) are clearly subsemigroups of L(V):

MWV)={ae LV)|ais1- 1}

and
E(V)={aec L(V) | Ima=V}.
Then M (V') and E(V) contain G(V') as a subsemigroup and M (V)[E (V)] = G(V)

if and only if dimV/ is finite. Since Imaf C Impg for all a, 5 € L(V'), we have that

Li(V)={a € L(V) | dim Ima is finite}

is a subsemigroup of L(V') containing 0.

Following T5(X) of T(X), the subset

Ly(V) ={a € L(V) | dim (V /Ima) is finite}

of L(V) is also considered. Then E(V) C Lo(V). We will show that Ly(V)
is a subsemigroup of L(V). Let V be a vector space over a division ring D.
Let a, 3 € Ly(V). Then dim (V /Ima) and dim (V' /Imp) are finite. Let dim
(V /Ima) = n, dim (V /Imp) = m and {v;+Ima, ..., v,+Ima} and {wy + Imf, ..., w,, + Im3}

are bases of V' /Ima and V' /Imf3, respectively. We claim that
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({wy + Imaf, ..., wy, + Imaf, v 6 + Imaf, ..., v, + Imaf}) = V /Imag.

Step 1: We shall show that for every v € Imf3, v + Imaf € (v15+ Imag, ..., v, 0
+ Imaf3). Let v € Imf. Then there exists u € V' such that v = uf. Since
{v1 + Ima, ..., v, + Ima} is a basis of V' /Ima, it follows that

u + Ima = Z a;(v; + Ima) Z a;v; + Imao
=

for some elements ay, ..., a, of D. Then u — E a;v; € Ima and so
i=1

v— zn:a,-(viﬁ) = (u— i a;v;)f € (Ima)f = Imaf
=1 i=1

which implies that v + Ima 3 = Z a;(viB) + Imaf = Z a;(v;0 + Imag).

pE

Step 2: Let v € V. Then v+Imp = Z aj(w; + Im[) for some elements ay, ..., an,
=1

of D and so v + Imf = Zajwj + Img. It follows that v — Zajwj € Imf. By

j=1 j=1
Step 1, we have that

(v — Z ajw;) + Imaf = Z ¢i(vif + Imaf)

7j=1

for some ¢y, ..., ¢, € D which implies that

v+ Imaf = Z a;j(w; +Ima3) + Z ci(vyB+ Imag).
i=1

j=1
Hence we have the claim. It follows that dim (V' /Imag) is finite. Therefore
Lo(V) is a subsemigroup of L(V).

The subsemigroup T3(X) of T'(X) motivates us to consider
Ls(V) ={a € L(V) | dim Kera is finite}.

Then M (V) C L3(V). To show that L3(V) is a subsemigroup of L(V'), let a, 3

€ L3(V). We claim that okeras : Keraf — Ima N Kerf is an epimorphism and
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Ker(ajkerag) = Kera. It is clearly seen that va € Ima N Kerf for all v € Keraf.
Let v € Ima N Ker. Then v = 0 and there exists u € V' such that ua = v. Since
uoff = (ua)f = vB = 0, we have u € Keraf. This shows that okeras is a map
from Kera3 onto ImanKers3. Thus a|keas : Keraf — ImaNKer/3 is an epimor-
phism. Next, we will show that Ker(ajkeras) = Kera. Trivially, Ker(ajkeras) <
Kera. Let v € Kera. Then war = 0 which implies that va = 06 = 0. It follows
that v € Keraf and v kerag = va = 0. Thus we get that Ker(ajkerag) = Kera.

Consequently,
dim Keraf = dim (Ima N Ker() + dim Kera.

Since dim Kera and dim Kerf are finite, it follows that dim Kera/ is finite.
Therefore we have that Ls(V) is a subsemigroup of L(V), as required.

Next, let us consider
Ly(V)={aeL(V)]|ais1-1and dim (V /Ima) is infinite}

which is motivated by Ty(X) of T'(X) where V' is infinite dimensional. Because
we can define a linear transformation of V' on its given basis, by the same idea of
the proof of that Tj(X) # @ and the facts of Proposition 1.6 and 1.8(2), we have

L4(V) # @ where dim V isinfinite. We have that Imaf C Imf and

V' /Imp = (V / Imaf) / (ImG / Ima3)

for all o, € Ly(V). Since dim (V /Imp) is infinite, dim (V' /Imaf) is also
infinite. Thus L4(V') is a subsemigroup of L(V') contained in M (V).

Finally, following T5(X) of T'(X), we put
Ls(V) ={a € L(V) | dim Kera is infinite and Ima = V'}

where V' is infinite dimensional. The proof of that Ls(V) # @ can be given

similarly to the proof of that T5(X) # @ by defining a linear transformation of V'
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on its given basis and using a to be 0. Since Kera C Keraf for all o, € L(V),
L5(V) is a subsemigroup of L(V') contained in E(V).
The following relations are also obtained similarly.

(1) If dim V is finite, then

(2) If dim V is infinite, then

G(V) ¢ E(V) S L, (V) G L(V), G(V) & M(V) & Ls(V) & L(V),

Ly(V) G M(V).€ L(V) and L;(V) C E(V) G L(V).

Note that the proofs of the proper inclusions in (2) can be done similarly by
defining linear transformations on bases and using Proposition 1.6, 1.7 and 1.8.

The second main purpose is the results in Chapter IV. We give in Chapter IV
characterizations of determining when generalized semigroups of linear transformation
semigroups L(V), G(V'), M(V), E(V ) and Li(V )= Ls(V") belong to SHR. The fol-

lowing Proposition will be used for the characterizations of this chapter.

Proposition 1.9. Let V' be a vector space over a division ring D.

(1) If S(V)us M(V') or E(V) and 0°€-S(V), then |S(V)| =1 or (S(V),0) has
no zero.

(2) If dim V is infinite, S(V) is one of La(V) — Ls(V') and 6 € SY(V), then
(S(V),0) has no zero.

Proof. Assume that (S(V'),0) has a zero, say . Then
nfa =n = afbn for all « € S(V). (1.9.1)

Consequently, (70)? = nf and Imn = Im(nfa) C Ima for all a € S(V). Thus
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v(nd) = v for all v € Im(nh) (1.9.2)
and

Imn C Ima for all o € S(V). (1.9.3)

Case 1: S(V) = M(V),E(V), Ly(V) or Ls(V). Then nf is 1 - 1 or Imnh = V.

By (1.9.2), nf = 1.

Subcase 1.1: S(V) = M(V) or E(V) and |[S(V)| > 1. Let a € S(V)\ {n}.

Then nfa = lya = a. By (1.9.1), nfa = . Then o = 1, a contradiction.

Subcase 1.2: S(V) = L4(V) or Ls(V) where dim V' is infinite. By the
descriptions how to prove that L, (V) and Ls(V) are not empty in Chapter I,
page 15 - 16 and |T4(X)| > 1 and |7T5(X)| > 1 in the proof of Proposition 1.5, one
can see that |S(V)| > 1. From the proof of Subcase 1.1, we get a contradiction

similarly.

Case 2: S(V) = Ly(V) or L3(V) where dim V is infinite. Let B be a basis of V.
Then B is infinite. For each w € B, define a,,, € L(V') by

0 if v=u,
Vay, =

v ifrv eB\{u}.
By proposition 1.8; o, € Ly(V) for all w € B and by Proposition 1.7, a,, € L3(V)
for all w € B. From (1.9.3), we have

Imn C ﬂ Imay, = ﬂ (B\ {u}).

ueB ueB

Let v € V\ {0}. Then v = ayuy + ... + a,u, for some uq, ...,u, € B and nonzero
ai,...,a, € D. If v € (B\{ui}), then aju; + ... + apu,, = bywy + ... + bpw,y,
for some wy,...,w,, € B\{ui},b1,...,b, € D. Since B is linearly independent,

we have a; = 0, a contradiction. Thus v ¢ ﬂ (B\ {u}). This proves that

ueB
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() (B\{u}) = (0). Hence Imny = {0}, s0n = 0. Since dim V" is infinite, 0 ¢ Ly(V)

ueB
and 0 ¢ L3(V), so we have a contradiction. O

AOUUINYUINNS )
ANRINITUNINEAE



CHAPTER II

CYCLIC SEMIGROUPS

In this chapter, it will be shown that every infinite cyclic semigroup is in
SHR. Moreover, we shall show that for a finite cyclic semigroup S, the condition
that index(S) = 1 or period(S) = 1 is necessary and sufficient for S to belong to

SHR.
Theorem 2.1. FEvery infinite cyclic semigroup is in SHR.

Proof. Let S be an infinite eyclic semigroup. Then there exists an element a € S
such that
S =A{a" | *niciNy.
Then a® # a? if i # § and so S has no zero. Define a hyperoperation + on S° by
0+0={0}, a"+0={a"} =0+a",

{amin{n,m}} if n # m,
a"+a" =

{a",a" . FU{0} if n=m.

Then (S°,+) is a commutative hypergroupoid. It is clearly seen that for z,y, 2
€ SY if at least one of them is 0, then (z +y) +2z =z + (y + 2). Let n,m € N.

If n < m, then
(a® +a") +a™ = ({a",a"*,..} U{0}) +a™ = {a",a"™, ...} U {0}

and
a”+{a"} if n<m,
a”+ ({a",a"*, ..y U{0}) if n=m
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= {a",a"* ..} U{0}.
If n > m, then
(a® +a") +a™ = ({a",a", ..} U{0}) +a™ = {a™}

and
a"+ (a"+a")=a"+{a"}=a"+a" = {a™}.
These imply that

(@™ +a”) +a™ =a" + (a" + a™) (2.1.1)

for all n,m € N. Tt then follows from (2.1.1) and the commutativity of + on S°

that for n,m € N,

and
(" a™) + a™ = a" + (a" + a™) = a" " + a").

By the definition of + on S°, we have that for distinct elements n,m and k in N,
(a® +a™) + d* = {ami”{”’m’k}} = a" + (a™ + a").
Then we prove that
(z+y)+z=a+(y+2) forall z,y,z € S°

It is clear that

SO+ 2=25% forall z € S°
Hence (SY, +) is a hypergroup.
Since 0+0 = {0} and 0+a" = {a"} = a"+0 for all n € N, we have that 0 is a

scalar identity of the hypergroup (S +). Since 0 € {a™,a"™!,..} U{0} = a" +a"
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for all n € N, it follows that for n € N, a” is an inverse of a" in (S +). Since
0 is the scalar identity of (S° +), 0 is the unique inverse of 0 in (S° +). For
n € N, a" is the unique inverse of a" in (S° +) since for every m € N\ {n},
0¢a"+a™(= {ammt"m}).

To show that (S°,+) is reversible, it is clear that if z,y,2 € S° be such that
r € y+ z and at least one of them is 0, then z € = + y. Next, let n,m,k € N be
such that a™ € a™ + a*. Then

f {a™ a™ 1 .U {0} if m =k,
a” €a" +a” =

{amin{m,k}} if m 7& k.
We have that n =m <k, n=Fk <m, n>m =k orn=m = k. Each case gives

a® € a" + a™ as follows:

n=m<k = da*"e{am amt, }U{0}=am+a™=a"+a™,
n=k<m = a"€{a"} =a"+a",
n>m=k =a"e {a"} =a" +a™,

n=m=k = a e {am a1,  JU{0} =a™ +a" =a" +a™.

This proves that (S 4)is a canonical hypergroup.
Next, we shall show that = - (y +2) = x -y +a - 2 for all z,y,2 € S° where -
is the operation of SV, If x,y, z € S and at least one of them is 0, it is clear that

x-(y+z)=x-y+x-z Let n,m,k € N. Then

(

a® - {amzn{m,k}} if m ?é k’,
a" - (a™+a") =

a” - ({a™ a™ ™, U{0}) if m=k

\

;

{anerin{m,k}} if 'm 7& k)

{a"t™ @t FU{0} if m=k



22

{amin{n+m,n+k}} if m ?é k,7

{a"t™ qmtmtl YU {0} if m=k

and

{amin{n+m,n+k}} if m ?é k,7
an‘am_{_an_ak:an—i-m_'_an—i—k:

{a™m gt A U{0} if m=k.
Thus a™ - (a™ + a*) = a™ - a™ + a" - a* for all n,m,k € N. Hence z - (y + 2) =
x-y+ax-zforall z,y, z€ S

Therefore (S°, +, ) is a hyperring and so S € SHR. O

Theorem 2.2. Let S be a finite cyclic semigroup. Then S € SHR if and only if

index(S) =1 or period(S) = 1.

Proof. 1f index(S) = 1, then S'is a finite cyclic group (Chapter I, page 2), so by
Proposition 1.2, S € SHR.

Assume that period(S) = 1. Let S = (a) and index(S) = r. Then

S ={a,d* .. ad"}, att =ad",

a,a?,...,a" are all distinct and a” which is the zero of S (Chapter I, page 1 - 2).

Hence we have
at=a" forallt € {r,r+1,7r+2,..}. (2.2.1)

If » =1, then |S| = 1, so S € SHR (Chapter I, page 6). Assume that r > 1.

Define a hyperoperation + on S as follows: for n,m € {1,2,...,7},

{amin{n,m}} if n # m,
a+a™ =

{a™,a",...;a"} if n=m. (2.2.2)
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Then (S, +) is a commutative hypergroupoid. From the definition of + on S, we

have that
a"+a" ={a"} =a" +a" for all n € {1,2,...,7}. (2.2.3)
Next, we claim that for all n,m € N,

{amin{n,m}} if n 7& m,
a"+am =

P 7 R S N (2.2.4)

To prove (2.2.4), let n,m € N.

Case 1: n # m. If n,m < r, by (2.2.2), a® + a” = a™™{"™} If n <r < m, by
(2.2.1) and (2.2.3), a®+a™ = a” +a" = {a”} = {a™" "™} Similarly, m <r <n
implies that a”4a™ = {a™™"™} L 1f n,m > r, then min{n, m} > r, so by (2.2.1)

and (2.2.3), a"+a" =a" +a" ={a"} = {amin{n,m}}'

Case 2: n = m. If n = m < r, then by (2.2.2), a® + a™ = {a",a"™,...,a"}
and by (2.2.1), " =a™™ = ... = @™, so we have a" + a™ = {a™,a"", ..., a"""}.
By (2.2.1) and (2.2.3), n = m > r implies a" + a™ = a" + a" = {a"} and

a"=a"=a""'= ..=a""" 50 a" +a" = {a"} ={a",a"" ..., a"T"}.
Hence (2.2.4) holds.
Let n,m € {1,2,...;r}. Then

{a",a"" ...;a"} if n<m,
(@™ +a") +a™ = {a", ", ..., a"} +a™ =

{a™} if n>m
and
)
a" + {a"} if n<m,
a" +(a" +a™) = a”+{a",a" ... a"} if n=m,
k(1”4—{(1’”} if n>m
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;

{a",a"" ...;a"} if n<m,

=9q{a%,a" . a"} if n=m,

{a™} if n>m
\

which implies that
(6™ +a")+a™ =a"+ (a" +a™) (2.2.5)

for all n,m € {1,2,...,7}. We have from (2.2.5) and the commutativity of + on

S that for n,m € {1,2,...,r},

and
(@"+a™)+a"=a"+ (a"+a™m) =a" + (a™ +a").
By the definition of 4+ on S, it follows that for distinct elements n,m and k in

{1,2,...,1},

(an +am) +ak all {amin{n,m,k}} ="+ (am + ak)'

It is clearly seen from the definition of + on S that
S+axz=Sforall z €S.

Hence (S, 4) is a hypergroup. By (2.2.3), a” is a scalar identity of the hypergroup
(S,+). Since a” € {a",a"!, ...,a"} = a" +a" for all n € {1,2,...,7}, we have that
forn € {1,2,...,7}, a” is an inverse of a” in (S,+). Moreover, for n € {1,2,...,r},
a" is the unique inverse of a” in (S, +) since for every m € {1,2,...,r} \{n},a" ¢
a® + a™ (= {ammirmiy)),

To show that (S,+) is reversible, let n,m,k € {1,2,...,r} be such that a" €
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a™ —+ a*. Since

{a™ a™ .. a"} if m=kF,
am +a" =

{&min{m,k}} if m 7& k,
we have that n=m < k, n=k <m, n > m =k or n =m = k. Each case gives

ak € a™ + a™ as follows:

n=m<k = d € {ad®am .. a"} =am+a™ = a" +a™,
n=k<m = de€{ad}=a"+a",
n>m=k = a"€{a"}=a"+a",

n=m=k = d¥e{a™adm",...a}=a"+a"=a"+a™

This proves that (S, +) is a canonical hypergroup.
Next, we shall show that a™ : (a™ + af) = a™ - a™ + a™ - a* for all n,m, k €

{1,2,...,7} where - is the operation of S. Let n,m,k € {1,2,...,r}. Then by

(2.2.4)
a” - {amln{m,k}} lf m ?é k;
an - (am = a’f) =
a®-{a™,a"™ ", . a™ Y if m=k
{amin{n-l—m,n-ﬁ'k}} if m 7£ k,
{an+m’ anerJrl7 - a”+m+’"} if m=k
and

{amm{n+m,n+k}} if n+m#n+k,

an_am+an_ak _ an+m+an+k —_

{amtm gntmtl et i n+m=n+k
{amin{ner,nJrk}} if m 7& k7
{a™tm gntmtlamtm L if om o= k.

Thus a™ - (a™ + a*) = a" - a™ + a™ - a* for all n,m, k € {1,2,...,r}.
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Hence (S, +, ) is a hyperring. Therefore S € SHR.

For the converse, assume that S = (a), index(S) = r > 1 and period(S) =

m > 1. Then

S ={a,a* ...,a",a " a"tT Y T =a"r > 1,m > 1

and a,a?,...,a"tm!

are all distinct. Since period(S) > 1,5 has no zero (Chapter
I, page 2). Consequently, for o,y € S° xy = 0 implies z = 0 or y = 0. To show
that S ¢ SHR, suppose on the contrary that S € SHR. Then there exists a

hyperoperation + on S° such that (SY, +,+) is a hyperring where - is the operation

on S° Then 0 € a + a* for some k € {1,2,...,7 + m — 1}.
Case 1: k =1. Then 0 € a + a. Consequently,
0ea ' ata)=a+d" =a" +a™ =a " a+a"").

This implies that 0 € @ + a™*!. Then a™™! =a. But l<m+1<r+m—1

m+1

(since r > 1), so we have a # a™"", a contradiction.

Case 2: k> 1. Then 2k —1 > 1 and

0-€ a*7'(a + a")= " +@a® 1.

This implies that a = a?*~L.

Subcase 2.1: 2k —1 <7r. Then1 <2k —1<r+m—1,s0a®* ! £a, a

contradiction.

Subcase 2.2: 2k —1 > 7. Then a*7! € {a",a"*!, ..., a"*™ 1} (Chapter I,
page 1) which implies that a € {a",a" ", ...,a"™™ 1}, This is a contradiction since

r> 1. L]



CHAPTER III
GENERALIZED SEMIGROUPS OF SOME

SEMIGROUPS OF TRANSFORMATIONS OF A SET

The purpose of this chapter is to characterize when generalized semigroups of
the following transformation semigroups admit a hyperring structure where X is

a nonempty set.

T(X) = the full transformation semigroup on X,
G(X) ={aeT(X) | ais 1-1and Ima = X},
M(X)={aeT(X)|ais1-1},

E(X) = {a € T(X) | Ima = X},

T1(X) ={aeT(X) | Ima is finite},
Th(X) ={a e T(X) | X\ Ima is finite},
T3 ={a e T'(X) | K(«) is finite}

where K(a) ={z € X | ais not 1.~ 1 at x},

)
)
(X)
(
Ty(X) =AaeT(X) | aisl-1and X\ Imais infinite} where X is infinite
and

T5(X) ={a e T(X) | K(a) is infinite and Ima = X'} where X is infinite.

We recall from Chapter I that G(X) € SHR (Proposition 1.2), M(X) € SHR if
and only if X is finite (Proposition 1.3(2)) and E(X) € SHR if and only if X is
finite (Proposition 1.3(3)). Moreover, the condition that |X| = 1 is necessary and
sufficient for T5(X) and for T5(X) to belong to SHR (Proposition 1.4).

Throughout this chapter, let X denote a nonempty set. For convenience,
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the following notation will be used. For a € X, let X, denote the constant
transformation of X with image {a} and for a,b € X, let (a,b) be the element of
G(X) defined by

/

b ifxz=a,

z(a;0) =S a ifw= b,

| if v € X\ {a,b}.
If 0 € G(X), we have (G(X),0) = G(X) (Chapter I, page 2). Then the

following theorem is obtained from Proposition 1.2.
Theorem 3.1. For any 0 € G(X),(G(X).0) € SHR.

We recall that if S(X) is any of the semigroups 7'(X), M(X), E(X) and
Ty(X) — T5(X) and 6 € S'(X). by Propesition 1.5, |S(X)| = 1 or (S(X),0)

has no zero. Hence (S(X),0)" = (S(X)U{0},6) (Chapter I, page 2).

Theorem 3.2. Let S(X) be T(X) or T1(X). For @ € SY(X),(S(X),0) € SHR

if and only if | X| = 1.

Proof. Assume that (S(X),6) € SHR. Then there exists a hyperoperation + on
S(X) U {0} such that (S(X)U{0},+,:) is a hyperring where - is the operation
on (S(X)U{0},0). To show that | X| = 1, suppose on the contrary that | X| > 2.
Let a and b be two distinct elements in. X. Then X,, X, € S(X) and it is easily

seen that X,0X, = X, and X,0X, = X,. Thus we have
0€ X, — X, =X.0X,— Xp0X, = (X, — Xp)0X,

which implies by Proposition 1.1 and 1.5 that 0 € X, — X,. Hence X, = X, which
is a contradiction since a # b. Hence | X| = 1.
Conversely, if |X| = 1, then [S(X)| = 1, so (S(X),0) € SHR (Chapter I,

page 6). O



29

Hence Proposition 1.3(1) becomes a corollary of Theorem 3.2.

Corollary 3.3. If S(X) = T(X) or Ti(X), then S(X) € SHR if and only if

| X|=1.
Theorem 3.4. For 0 € M(X),(M(X),0) € SHR if and only if X is finite.

Proof. 1f X is finite, then M (X) = G(X), so by Theorem 3.1, (M (X),0) € SHR.

For the converse, assume that (M (X),0) € SHR. Then there exists a hyperoperation
+ on M(X)U{0} such that (M(X)U{0},+,-) is a hyperring where - is the oper-
ation on (M (X)U {0}, ). To show that Imf = X, suppose that Im# C X. Since
6 is 1 - 1, we have that (Im0)# € X6. Thus Im¢* C Tmé C X. This implies
that | X \ Im6?| > 2. Let a,b € X \ Imf? be distinct. Consequently, 6%(a, b) = 62.
Since

0€6—62=6>— 0%a,b) = 00(1x — (a,b)),

by Proposition 1.1 and 1.5, 0 € 1x — (a,b). This implies that (a,b) = 1x which is
a contradiction. Hence 6 € G(X). Then (M(X),0) = M(X) (Chapter I, page 2).

Since (M(X),0) € SHR, M(X) € SHR. By Proposition 1.3(2), X is finite. 0
Theorem 3.5. For 0 € E(X),(E(X),0) € SHR if and only if X is finite.

Proof. 1f X is finite, then E(X) = G(X) and hence (E(X).0) € SHR by
Theorem 3.1.

For the converse, assume that (E(X),0) € SHR. Then there exists a hyperoperation
+ on E(X)U{0} such that (E(X)U{0},+,-) is a hyperring where - is the opera-
tion on (E(X)U{0},0). To show that § € G(X), suppose not. Because Imf = X,
0 is not 1 - 1. Then there exist distinct elements a and b in X such that af = 6.

Consequently, (a,b)f = 6. Then

0€0—0=0—(a,b)0 = (Lx — (a,b))f1y
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which implies by Proposition 1.1 and 1.5 that 0 € 1x — (a,b). Hence (a,b) = 1x,
a contradiction. Therefore § € G(X). It follows that (E(X),0) = E(X)(Chapter
I, page 2). But (E(X),0) € SHR, so E(X) € SHR. Hence X is finite by

Proposition 1.3(3). O

Theorem 3.6. Let S(X) be To(X) or T5(X). For 0 € S(X),(S(X),0) € SHR

if and only if | X| = 1.

Proof. Assume that (S(X),0) € SHR and + is a hyperoperation on S(X) U {0}
such that (S(X)U{0},+,-) is a hyperring where - is the operation on (S(X) U {0}, 9).
First, we will prove that 6 is 1 - 1. Suppose not. Then there exist distinct elements
a and b in X such that af = bf. Therefore (a,b) € S and (a,b)d = 6. Then we
have

0€0=0=0—(a,b)0=(1x— (a,b)01x

which implies by Proposition 1.1 and 1.5 that 0 € 1x — (a,b), so (a,b) = 1x,
a contradiction. Hence 6 is 1 — 1.

Next, we will prove that Imf = X. Suppose that Imé C X. Since 0 is 1 - 1,
(ImA)0 < X6. Then Imf? C Imh C X. Let a,b € X \ Im#? be distinct. Then

62(a,b) = 6% Since
0€6”>—0*=0>~0%a,b) =00(1x — (a,b)),

we have 0 € 1x — (a,b). Hence (a,b) = 1x, a contradiction. This proves that 6 €
G(X). Consequently, (S(X),0) = S(X) and hence S(X) € SHR. By Proposition
14, [X] =1.

For the converse, assume that |X| = 1. Then |S(X)| =1 and so (S(X),0) €

SHR (Chapter I, page 6). ]

The following lemma is required to prove that (74(X),0) ¢ SHR if X is

infinite and 6 € T} (X).
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Lemma 3.7. M(X)T4(X) C Ty(X) where X is infinite.

Proof. Let « € M(X) and € Ty(X). Then af is 1 - 1 and Ima3 C Imf3. Since

X \ Img is infinite, X \ Ima/ is infinite. Hence aff € Ty(X). O
Theorem 3.8. For any 6 € T}(X), (T4(X),0) ¢ SHR where X is infinite.

Proof. Assume that (Ty(X),0) € SHR and let + be a hyperoperation on T,(X) U {0}
such that (Ty(X) U {0}, +, ) is a hyperring where - is the operation on (7,(X) U
{0},0). Let o € Ty(X). Then af € T,(X), so X \ Ima# is infinite. Let a and b be
distinct elements in X \ Ima#. Then af(a,b) = af, and so af(a,b)a = afa. By

Lemma 3.7, we have that (a,b)o € T4(X). But
0 € aba — aba = aba — ab(a,b)a = ab(a — (a,b)a),

so 0 € a — (a,b)a by Proposition 1.1 and 1.5. This implies that (a,b)a = a.
Hence

ace = ala, b)a = ba
which is a contradiction since a # b and a'is 1 - 1. [l
Hence the following corollary is obtained.
Corollary 3.9. If X is infinite, then Ty(X) ¢ SHR.

The following lemma is given to prove that (T5(X),0) ¢ SHR where X is

infinite and 6 € T3 (X).
Lemma 3.10. If X is infinite, then T5(X)E(X) C T5(X).

Proof. Let o € T5(X) and § € E(X). Then Imaf = X since Ima = X =Imf.
If aisnot 1-1at x e X, then af isnot 1 -1 at . Consequently,
Kla)={re X |aisnot1-latz} C{re X |afisnot1l-1atz}= K(af).

Since K(«) is infinite, K(a/f3) is infinite. Hence a3 € T5(X). O
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Theorem 3.11. For any 6 € TH(X), (T5(X),0) ¢ SHR where X is infinite.

Proof. Assume that (T5(X),0) € SHR. Then there exists a hyperoperation + on
T5(X) U {0} such that (75(X) U {0}, +,-) is a hyperring where - is the operation

on (T5(X)U{0},0).

Case 1: § = 1x. Since X is infinite, there exist X;, X5 C X such that
XiUXo =X XinX, =2, [ Xi] =X =|X].

Then there is a bijection p : Xy — X. Let a € X; and define o : X — X by

zp, if e X,
Ta =

(0 if ze€ XQ.
Thus Ima = X and o is not 1 - 1 at every x € Xy. Therefore v € T5(X). Let
s,t € Xy be such that s # t. Thus there exist unique p, ¢ € X7 such that pa = s

and ga = t. Moreover, the following equalities hold.

pa(s,t)a = a = paa,
qga(s,t)a = a = qaa, (2.10.1)

Xoa(s,t)a = {aa} =Xsaa.
Since ¢ : X3 — X is 1 -1, for . € X3\ {p, ¢}, za ¢ {s,t}. Then
for every v € X1\ {p, ¢}, za(s, t)a = raa. (2.10.2)

From (2.10.1) and (2.10.2), we have a(s,t)a = o®. By Lemma 3.10, a(s,t) €
T5(X). But

0€an—aa=aa—a(s,t)a=(a—al(st))aq,
so by Proposition 1.1 and 1.5, 0 € a — a(s,t). Hence a(s,t) = a. It then follows
that

s = pa = pa(s,t) = s(s,t) =1,
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a contradiction.

Case 2: 0 € T5(X). Then sf = tf for some distinct s,t € X. Since X \ {s,t} is

infinite, there exist X, X, € X \ {s,t} such
XiUX,=X\{st}, Xi N Xy =2, |X1| = |X,| = |X\ {5,¢}].
Let Xy = X, U {s,t}. Then
XiUXs =X, XinXo =2, |Xi] =X =1|X].
Let ¢ : X1 — X be a bijection. Let a € X; and define o : X — X by

zp if x e X,
T =

a if ZEGXQ.

Then Ima = X and « is not 1 - 1 at every & € X5, so o € T5(X). By Lemma

3.10, a(s,t) € T5(X). Let p,qg € X; be such that pa = s and gov = t. Hence

pa(s,t)fa = tha = sba = paba,
qa(s,t)fa = sfa = tha = qaba, (2.10.3)

Xoo(s, t)fa = {aba} = Xsaba.
Since p: X7 — X is 1 -1, for x € X7\ {p,q}, xza ¢ {s,t}. We deduce that
for every x € X1\ {p, ¢}, za(s,t)fa'=raba. (2.10.4)
From (2.10.3) and (2.10.4), a(s,t)0a = afa. Then
0 € aba — aba = aba — afs, t)a = (a — afs, t))ba,

so 0 € a — a(s,t) by Proposition 1.1 and 1.5. Thus a(s,t) = «. This is a

contradiction since

s = pa = pa(s,t) = s(s,t) =t. O
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In particular, we have

Corollary 3.12. T5(X) ¢ SHR where X is infinite.

AOUUINYUINNS )
ANRINITUNINEAE



CHAPTER IV
GENERALIZED SEMIGROUPS OF SOME
SEMIGROUPS OF LINEAR TRANSFORMATIONS OF

A VECTOR SPACE

In this chapter, we characterize when generalized semigroups of the following
semigroups of linear transformations under composition belong to the class SHR

where V' is a vector space over a division ring D.

L(V) ={a:V — V | a is a linear transformation},
GV) ={aeL(V)|aisl-1and Ima=V},

MWV)={aec L(V) | ais 1-1},

~

(V)
(V)
E(V) ={a € L(V) | Ima =V},
Li(V) = {a € L(V) | dim Ima is finite},
(V)
(V)

t~

3(V)={a € L(V)| dim Kera is finite},

V)
2o(V)={ae L(V) | dim (V' /Ima) is finite},

(V)
LiV)y=A{ae (V) | aisl-1and dim (V' /Ima) is infinite} if V/ is infinite
dimensional and

Ls(V) = {a € L(V) | dim Kera is infinite and Ima = V'} if V is infinite

dimensional.

Throughout this chapter, let V' be a vector space over a division ring D.

The following notation will be used. If B is a basis of V and u,w € B, let
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(u,w)p € L(V') be defined by
U if v=w,

v(u, w)p = w if v=u,

\4 if ve B\ {u,w}.
If the notation (A, ®,-) is used to denote a hyperring, then for x,y € A, ©x and
x &y will denote the inverse of z in (A, &) and = & (&y), respectively.

By Proposition 1.2, G(V) € SHR. It follows from the fact in Chapter I, page

2 that (G(V),0) =2 G(V) for all § € G(V). Therefore we have
Theorem 4.1. For 0 € G(V), (G(V),0) € SHR.

We know that L(V') is a ring under usual addition and composition. Moreover,
Ly(V) is an ideal of this ring ({6}, page 424). Thus L(V),L,;(V) € SR and so

L(V),Li(V) € SHR. Since for e, 3,7,0 € L(V),
(it =cbi by

and

(B +7)0a = Bla + ~vba.

Hence (L(V),0) € SR for every 0§ € L(V) and (L1(V),0) € SR for every 0 €

Li(V)..Consequently, we have

Theorem 4.2. If S(V) is L(V) or Li(V), then for every 8 € SY(V),(S(V),0) €
SHR.

We recall the facts from Proposition 1.9 that if S(V) is any of

(1) M(V) and E(V) and

(2) Ly(V') — L5(V) where dim V is infinite
and 0 € SY(V), then |S(V)| =1 or (S(V),0) has no zero, and hence (S(V),0)° =
(S(V)u{0},0) (Chapter I, page 2).
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To characterize when (M (V'),0) with 6 € M (V') belongs to SHR, we require

the following lemma.
Lemma 4.3. M (V) € SHR if and only if dim V is finite.

Proof. If dim V is finite, then M (V') = G(V), so by Proposition 1.2, M (V) €
SHR.
For the converse, assume that M (V') € SHR. Then there exists a hyperoperation

@ on M (V)U{0} such that (M(V)U{0}, @, -) is a hyperring where - is the oper-
ation on (M (V)U{0}, 1y). To show that dim V is finite, suppose on the contrary
that dim V is infinite. Let B be a basis of V and u,w € B such that u # w. Since
B is infinite, it follows that |B| = |B\ {u,w}|. Then there exists a 1 - 1 map ¢
from B onto B\ {u,w}. Let v € L(V') be defined by va = vy for all v € B. By
Proposition 1.6, a is 1 - 1 and so o € M(V). Since Ba = B\ {u,w}, we have

va(u,w)p = va for all v € B. 1t follows that a(u,w)s = a. Therefore

Deaoa=aly &a(u,w)s =a(ly S(u,w)p).

But « # 0, so by Proposition 1.1 and 1.9, 0 € 1y © (u,w)p. Hence (u,w)p = 1y,

a contradiction. Therefore dim V is finite. ]
Theorem 4.4. For 0 ¢ M(V), (M(V),0) € SHR if and only if dim V is finite.

Proof. First, we recall that if A is a linearly independent subset of V' and u €
V'\ (A), then AU {u} is linearly independent.

If dim V' is finite, then M(V) = G(V) and thus (M(V),0) € SHR by
Theorem 4.1.

For the converse, assume that (M (V),0) € SHR. Let & be a hyperoperation
on M(V)U{0} such that (M (V)U{0},®, ) is a hyperring where - is the operation

on (M(V)U{0},0). To show that # € E(V), suppose on the contrary that



38

0 ¢ E(V). Then Ima C V. Since 0 is 1 - 1, we have (Imf)6 C V. Hence Im6? C
Imé C V.

Next, let v € V' \Imf,w € Imf\Imh* and B; a basis of Im#?. Then w €
V\ (B1). It follows that B; U{w} is linearly independent. But (B; U{w}) C Im#,
sou € V\ (ByU{w}). It follows that B; U{u,w} is linearly independent. Let B be
a basis of V containing By U {u,w}. Since u,w ¢ (B;) and for v € V,v6? € (By),

we deduce that v6?(u, w)p =v0? for all v € V. Hence 0*(u,w)s = 0*. But
0€0>00°=0"00*u,w)p =001y & (u,w)p),

so 0 € 1y © (u,w)p by Proposition 1.1 and 1.9. Consequently, (u,w)p = ly,
a contradiction. Now, we have § € G(V). It follows that (M(V),0) = M(V)

(Chapter I, page 2). Therefore M (V) € SHR. By Lemma 4.3, dim V is finite. [

Next, we shall prove that (E(V),0) with 6 € E(V) belongs to SHR if and

only if dim V is finite. The following lemma is required.
Lemma 4.5. E(V) € SHR if and only if dim V is finite.

Proof. If dim V is finite, then E(V) = G(V), so by Proposition 1.2, E(V) €
SHR.

For the converse, assume that E(V) € SHR and let @& be a hyperoperation
on E(V)U{0} such that (E(V)U{0},®,-) is a hyperring where - is the operation
on (E(V)U{0},1y). To show that dim V is finite, suppose on the contrary that
dim V is infinite. Let B be a basis of V' and let u,w € B be such that u # w.
Since B is infinite, it follows that |B| = |B\ {u,w}|. Then there exists a 1 - 1
map ¢ from B\ {u,w} onto B. Let o € L(V') be defined by

vp if v e B\ {u,w},
va =

v if v=wuorv=w.
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Then Ima = (B) =V, so a € E(V). Moreover,

v(u,w)pa = va for all v € B\ {u, w},
u(u, w)pa = wa = u = ua and

w(u, w) g = ue = u = wa.

It follows that (u,w)pa = a. Hence

0eaca=a6 (u,w)pa=(ly © (u,w)p)a

which implies by Proposition 1.1 and 1.9 that 0 € 1y © (u,w)p. Therefore

(u,w)p = ly, a contradiction. This proves that dim V' is finite. O
Theorem 4.6. For 0 € E(V),(E(V),0) € SHR if and only if dim V s finite.

Proof. 1f dim V is finite, then E(V) = G(V), so by Theorem 4.1, (E(V),0) €
SHR.

For the converse, assume that (E(V),0) € SHR. Let & be a hyperoperation
on E(V)U{0} such that (E(V)U{0}, @, ) is a hyperring where - is the operation
on (E(V)U{0},0). To show that 6§ € M(V'), suppose that 6 ¢ M(V). Then
Kerf # {0}. Let B; be a basis of Kerf and B a basis of V. such that B; C B.

Since Kerf) # {0}, it follows that B; # @. Let a € L(V') be defined by

vhif ve B\ By,
vo =

v if ve By.

Then « # 6. Since
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= ((B\ B1)0 U B19) since B0 = {0}
— (BY)

= (B)f =V0 =1V since § € E(V),
we have o € E(V). The following proof shows that af = 62.

v € B\ By = vaf = v0f = vh* and

v e B = vall = vl =0=00=(vh)) = vh>.

Then

DeEP P =0"cal=(05a)lly.

This implies from Proposition 1.1 and 1.9 that 0 € § © a. Hence 6 = «, a
contradiction. This proves that ¢ € M(V). Thus 6§ € G(V). Consequently,

(E(V),0) = E(V). Therefore E(V) € SHR. By Lemma 4.5, dim V is finite. [

We show in the next theorem that finiteness of dim V' is necessary and sufficient
for (Ly(V'),0) with 0 € Ly(V') and (L3(V),0) with 8 € L3(1) to belong to SHR.

The following two lemmas will be used.
Lemma 4.7. Ly(V) € SHR if and only if dim V" is_finite.

Proof. 1f dim V is finite, then Lo(V) = L(V) € SHR.
Conversely, assume that dim V is infinite. Suppose that there exists a hyperoperation
@ on Ly(V)U {0} such that (Lo(V)U {0}, ®,-) is a hyperring where - is the oper-
ation on (Lo(V)U{0},1y). Let B be a basis of V' and u, w distinct elements of B.
Then |B| = |B\ {u,w}|, so there exists a bijection ¢ : B — B\ {u,w}. Define
a € L(V) by va = vp for all v € B. Then Ima = Va = (B)a = (Ba) = (By) =
(B\ {u,w}). By Proposition 1.8(2), dim (V' /Ima) = dim (V / (B\ {u,w})) = 2.

Therefore o € Lo(V). Since Ba = B\ {u,w}, we have va(u,w)p = va for all
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v € B. Consequently, a(u, w)p = a. Therefore

Deaoa=asa(u,w)p=a(ly ©(u,w)s).

We then have from Proposition 1.1 and 1.9 that 0 € 1y ©(u, w) . Hence (u,w)p =
ly, a contradiction. This proves that if dim V' is infinite, then (Lo(V),0) ¢

SHR. O
Lemma 4.8. L3(V) € SHR if and only if dim V is finite.

Proof. 1f dim V is finite, then L;(V) = L(V) € SHR.

Conversely, assume that dim V' is infinite and suppose that L3(V') € SHR. Let
@ be a hyperoperation on L3(V)U{0} such that (Ls(V)U{0},®, ) is a hyperring
where - is the operation on (L3(V)U{0},1y). Let B be a basis of V and u,w € B
be distinct. Define o as in the proof of Lemma 4.7. Then a(u,w)p = «a. By

Proposition 1.6, o € M (V) € L3(V). Thus

Deasa=a(ly ©(u,w)p).

It follows from Proposition 1.1 and 1.9 that 0 € 1,6 (u, w) g which is a contradiction

since (u,w)p # ly. Hence if ' dim V is infinite, then L3(V)'¢ SHR. O

Theorem 4.9. Let S(V) be Lo(V) or L3(V) and 6 € S(V). Then (S(V),0) €

SHR if and only if dim V "is finite.

Proof. If dim V is finite, then S(V) = L(V), and so (S(V),0) € SHR by
Theorem 4.2.

For the converse, assume that (S(V),0) € SHR, and suppose that dim V is
infinite. Let @ be a hyperoperation on S(V) U {0} such that (S(V)U{0},, ) is

a hyperring where - is the operation on (S(V') U {0},6).
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Case 1. #isnot 1 - 1. Then Kerf # {0}. Let u € Kerf \ {0} and B a basis of V'
containing u. Define o € L(V') by

0 if v=u,
v =

v if ve B\{u}.
By Proposition 1.7, Keraw = (u) and Ima = (B \ {u}). By Proposition 1.8(2),

dim (V /Ima) = dim (V' /(B\{u})) = 1. Then aw € S(V'). From the fact that

uat =0 = ub,

val = vl for all v € B\ {u},
we have af) = §. Consequently,
Debfobd=05a0= (1\/@&)91\/

This implies by Proposition 1.1 and 1.9 that 0 € 1, & @ and so a = 1y, a

contradiction.

Case 2: #is 1-1 and onto. Then S(V') = (S(V),0) € SHR. By Lemma 4.7 and

4.8, dim V is finite, a contradiction.

Case 3: 0 is 1 -1 but not onto. Then Imf C V' and (Im#)# C V. Consequently,
Imf* C Tmf C V. Let u € V\Imb and w € Imf\Imb?>. TLet By be a basis of
Imé?. Then

w¢ Imb? = (B;) and u ¢ Imf O (B, U {w})

which imply that B; U {u,w} is linearly independent. Let B be a basis of V
containing By U {u,w}. Since for every v € B,v6? € (B;) and u,w ¢ (By), it
follows that v6?(u,w)p = vf? for all v € B. Therefore 6%(u,w)p = 6?. We then
have

0€0?00%=0*00%*(u,w)p = 00(1y © (u,w)p).
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By Proposition 1.1 and 1.9, 0 € 1y © (u, w)p, so (u,w)p = 1y, a contradiction.

This proves that (S(V),0) € SHR implies that dim V is finite. O

Next, to show that (L4(V),0) ¢ SHR for any infinite dimension of V', we

require following lemma.
Lemma 4.10. M (V)L,(V) € Ly(V') where dim V is infinite.

Proof. Let « € M(V') and f € Ly(V). Since aw and g are 1 - 1, af is 1 - 1. We
have that

V/Img = (V'/Imaf) /(ImG /Imaf).
Since dim (V /Imf) is infinite, dim (V /Imaf) is also infinite. Hence af €

Ly(V). O
Theorem 4.11. For 6 € Ly(V), (Ly(V),0) ¢ SHR where dim V is infinite.

Proof. Assume that there exists a hyperoperation & on L4(V') U {0} such that
(Ly(V)) U {0}, ®,-) is a hyperring where - is the operation on (L4(V) U {0},0).
Let o € Ly(V). Then af € Ly(V). Let By be a basis of Imad and B a basis of
V' containing B;. Since (By) = Imad, by Proposition 1.8(2), dim (V /Imaf) =
|B\ B;| which is infinite. Let w,w € B\ B;j be distinct. Then u,w ¢ (B;) =
Imaf and also ua # wa because « is 1 - 1.© We have that for every v €
B,vaf(u,w)p = val. Hence af(u,w)p = af and so ab(u,w)pa = aba. By

Lemma 4.10, (u, w)pa € Ly(V'). Thus
0 € aba s aba =abas al(u,w)pa = ab(a s (u,w)pa).

From Proposition 1.1 and 1.9, we have 0 € o & (u, w)pa. Therefore (u, w)pa =
a and so u(u,w)pa = ua. But u(u,w)pa = wa, so wa = uw. This is a
contradiction.

This proves that (L4(V),0) ¢ SHR, as required. O
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The following corollary is an immediate consequence of Theorem 4.11.
Corollary 4.12. Ly(V) ¢ SHR where dim V is infinite.

Finally, we shall show that for € L}(V),(Ls(V),0) ¢ SHR for any infinite

dimension of V. The following lemma will be used.
Lemma 4.13. L;(V)E(V) C Ls(V') where dim V is infinite.

Proof. Let a € Ls(V) and € E(V). Since Ima =V = Im/3, we have Imaf = V.
Since Kera# O Kera and dim Kera is infinite, it follows that dim Kera/ is infinite.

Hence aff € L;(V). O
Theorem 4.14. For§ € L:(V), (Ls(V),0) ¢ SHR where dim V is infinite.

Proof. Suppose that there exists a hyperoperation @ on Ls;(V) U {0} such that
(Ls(V)U{0}, @, ) is a hyperring where - is the operation on (L5(V)U{0}, ). Let
a € Ls(V). Then Oa € Ls(V), so dim Kerf« is infinite. Let u,w € Kerfla be
linearly independent. Then ufa = 0 = wha. Let B be a basis of V' containing u
and w. Since B\ {u,w} is infinite, there are two subsets B; and Bj of B\ {u, w}

such that
B\ {u,w} =By UB,, BN By= @ and |By} = |By| = |B\A{u, w}|.
Let By = By U {u,w}. Then
B =DByUBy, BiN By =@ and |B,| = |Bs| = |B|.
Let ¢ : By — B be a bijection. Define g € L(V') by

ve if v € By,
vB =
0 if ve BQ.



Then Img@ = (BfS) = (B1fB) = (Bip) = (B) = V and By C Kerfl. Thus
dim Kerf3 > |By|, so dim Kerf is infinite. Hence 8 € Ls(V). Let u',w' € B
be such that W' = w and w'¢ = w. Thus v'3 = v and W' = w. Since
B, = ¢ : Bi — B is a bijection, for all v € B\ {u',w'},v3 € B\ {u,w},
and so vB(u,w)p = v@ for all v € B\ {w,w}. The following equalities yield
Blu, w)pbaf = Boab.

o' Blu, w)pfoB = u(usw) gl = whaf = (wha)d = 08 = 0,
u' 00 = uboff = (uha)B = 06 =0,

w' B(u, w) phaf = w(u, w)gbaf = ubaf = (uha)f = 03 = 0,
w' fhaf = whaB = (wha)3 = 08 =0,

vB(u, w)phaf = 0 = viha for all v € By and

for v € By \ {u',w'}, vB(u,w)phasB = (vB(u, w)s)daB = vEbas.

By Lemma 4.13, f(u,w)p € Ls(V'). Then

0 € BOaf © Boap = Bas © B(u, w)gbaf = (B S B(u, w)s)dap.

This implies that 0 € 36 3(u, w)p by Proposition 1.1 and 1.9. Thus f(u,w)p = 5.
But v B(u, w)z = u(u, w)p =w, ' f'= u and u #w, so we have a contradiction.

This proves that (Ls(V),0) ¢ SHR, as required. O
The following corollary is a particular case of Theorem 4.14.

Corollary 4.15. Ls5(V) ¢ SHR where dim V is infinite.
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