พฤกษเคมีของใบชะมวงกวาง

นางสาวบงกช พันธ์บูรณานนท์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชเวท ภาควิชาเภสัชเวท คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2544 ISBN 974-17-0680-4 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

PHYTOCHEMISTRY OF *PLOIARIUM ALTERNIFOLIUM* LEAVES

Miss Bongkot Phanburananont

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmacy Department of Pharmacognosy Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2001 ISBN 974-17-0680-4

Thesis Title	PHYTOCHEMISTRY OF PLOIARIUM ALTERNIFOLIUM		
	LEAVES		
Ву	Miss Bongkot Phanburananont		
Field of Study	Pharmacognosy		
Thesis Advisor	Associate Professor Surattana Amnuoypol		
Thesis Co-advisor	Mr. Khanit Suwanborirux, Ph.D.		

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master 's Degree

7 Jaufisin Dean of Faculty of Pharmaceutical Sciences (Associate Professor Boonyong Tantisira, Ph.D.)

THESIS COMMITTEE

S. Hongunipipatana Chairman

(Associate Professor Sumphan Wongseripipatana, Ph.D.)

(Associate Professor Surattana Amnuoypol)

Khait Suranbo Thesis Co-advisor

(Mr. Knanit Suwanborirux, Ph.D.)

Rutt Suttini Member

(Assistant Professor Rutt Suttisri, Ph.D.)

บงกข พันธ์บูรณานนท์ : พฤกษเคมีของใบขะมวงกวาง (PHYTOCHEMISTRY OF PLOIARIUM ALTERNIFOLIUM LEAVES) อ. ที่ปรึกษา : รศ. สุรัตนา อำนวยผล อ. ที่ปรึกษาร่วม : อ. คร. คณิต สุวรรณบริรักษ์ , 134 หน้า. ISBN 974-17-0680-4

การศึกษาทางพฤกษเคมีของใบขะมวงกวาง โดยใช้วิธีทางโครมาโทกราพี สามารถแยก องค์ประกอบทางเคมีจากสิ่งสกัดในบิวทานอลได้สาร 4 ชนิด เป็นสารในกลุ่ม flavone glycosides คือ isoscutellarein 8-O-β-D-glucuronopyranoside methyl ester, hypolaetin 8-O-β-Dglucuronopyranoside methyl ester, isoscutellarein 8-O-β-D-glucuronopyranoside butyl ester และ hypolaetin 8-O-β-D-glucuronopyranoside butyl ester การพิสูจน์โครงสร้างทาง เคมีของสารประกอบที่แยกได้นี้ อาศัยการวิเคราะห์สเปคตรัมของ UV, IR, MS และ NMR ร่วมกับ การเปรียบเทียบข้อมูลของสารที่ทราบโครงสร้างแล้ว

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ภาควิชา เกลัชเวท ลาขาวิชา เกลัชเวท ปีการศึกษา 2544

ลายมือชื่อนิสิต นะกรุ พันธ์บูรณาจะน ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

##4376586433 : MAJOR PHARMACOGNOSY

KEY WORD : PLOIARIUM ALTERNIFOLIUM / FLAVONE GLYCOSIDE
 BONGKOT PHANBURANANONT : PHYTOCHEMISTRY OF
 PLOIARIUM ALTERNIFOLIUM LEAVES. THESIS ADVISOR : ASSOC.
 PROF. SURATTANA AMNUOYPOL, THESIS CO-ADVISOR : MR.
 KHANIT SUWANBORIRUX, Ph.D. 134 pp. ISBN 974-17-0680-4

Phytochemical study of the butanol extract of *Ploiarium alternifolium* leaves by chromatography led to the isolation of four flavone glycosides. These compounds are isoscutellarein 8-O- β -D-glucuronopyranoside methyl ester, hypolaetin 8-O- β -Dglucuronopyranoside methyl ester, isoscutellarein 8-O- β -D-glucuronopyranoside butyl ester, and hypolaetin 8-O- β -D-glucuronopyranoside butyl ester. The structures of these compounds were determined by analyses of the UV, IR, MS, NMR spectral data, as well as comparison with previously reported data.

สถาบนวิทยบริการ

Department Pharmacognosy Field of study Pharmacognosy Academic year 2001 Student's signature ... B. Phanburananont Advisor's signature ... S. Acconucypes ... Co-advisor's signature. Knot Swante...

ACKNOWLEDGEMENT

I wish to express my thanks to those who assisted me in my research as follows :

To Associate Professor Surattana Amnuoypol, my thesis advisor and Dr. Khanit Suwanborirux, my thesis co-advisor of the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for their guidance, advice, encouragement, and kindness throughout this research study.

To Dr. Ank Hermans Lokkerbol of the Faculty of Pharmaceutical Sciences, Naresuan University, for her valuable advice in high speed countercurrent chromatography (HSCCC) experiment.

To Dr. Naoki Saito of Meiji Pharmaceutical University for his assistance in FAB-MS experiment and Dr. Prasat Kittakoop of the National Science and Technology Development Agency (NSTDA), for his assistance in ESI-TOF MS experiment.

To the thesis committee for their useful suggestions and critical review of this thesis.

To the Graduate School of Chulalongkorn University for granting partial financial support to conduct this investigation.

To my teachers and my friends for their kindness and help.

Finally, I wish to express my infinite gratitude to my family for their love, warmth and encouragement.

CONTENTS

Page		
ABSTRACT (Thai) iv		
ABSTRACT (English)v		
ACKNOWLEDGEMENTvi		
CONTENTSvii		
LIST OF FIGURESix		
LIST OF SCHEMESxv		
LIST OF TABLESxvi		
LIST OF ABBREVIATIONS		
CHAPTER		
I INTRODUCTION1		
II REVIEW OF LITERATURE		
1. Taxonomy of <i>Ploiarium alternifolium</i>		
2. Chemical constituents of Guttiterae		
3. Chemical constituents of the genera <i>Ploiarium</i> and <i>Bonnetia</i> 36		
III EXPERIMENTAL		
1. Sources of plant material		
2. General techniques		
2.1 Analytical thin-layer chromatography		
2.2 Column chromatography		
2.2.1 Quick column chromatography		
2.2.2 Column chromatography		
2.3 High speed countercurrent chromatography		
2.4 Crystallization technique40		
2.5 Spectroscopy40		
2.5.1 Ultraviolet (UV)absorption spectra40		
2.5.2 Infrared (IR) absorption spectra40		
2.5.3 Mass spectra40		

2.5.4 Proton and carbon nuclear magnetic	
resonance (¹ H and ¹³ C NMR) spectra	40
2.6 Physical properties	41
2.6.1 Melting point	41
2.6.2 Optical rotations	41
2.7 Solvents	41
3. Extraction and isolation of <i>Ploiarium alternifolium</i> leaves	41
3.1 Extraction	41
3.2 Isolation of the compounds from the butanol	
extract	43
3.2.1 Isolation of compounds PL-1 and	
PL-2 from F014	44
3.2.2 Isolation of compounds PL-3 and	
PL-4 from F013	46
4. Physical and chemical properties of the isolated compounds	49
4.1 Compound PL-1	49
4.2 Compound PL-2	50
4.3 Compound PL-3	51
4.4 Compound PL-4	52
IV RESULTS AND DISCUSSION	54
1. Structure elucidation of isoscutellarein 8- O - β -D-	
glucuronopyranoside methyl ester (PL-1)	54
2. Structure elucidation of hypolaetin 8- O - β -D-	
glucuronopyranoside methyl ester (PL-2)	60
3. Structure elucidation of isoscutellarein 8- O - β -D-	
glucuronopyranoside butyl ester (PL-3)	65
4. Structure elucidation of hypolaetin 8- O - β -D-	
glucuronopyranoside butyl ester (PL-4)	69
V CONCLUSION	73
REFERENCES	74
APPENDIX	81
VITA	116

LIST OF FIGURES

Figure	Page Page
1	Ploiarium alternifolium (Vahl) Melchior2
2	The ¹ H- ¹ H correlations (bold line) in the ¹ H- ¹ H COSY spectrum of
	isoscutellarein 8- O - β -D-glucuronopyranoside methyl ester (PL-1)56
3	The ¹ H- ¹³ C long-range correlations in the HMBC spectrum of
	isoscutellarein 8- O - β -D-glucuronopyranoside methyl ester (PL-1)57
4	The ¹ H- ¹ H correlations (bold line) in the ¹ H- ¹ H COSY spectrum of
	hypolaetin 8- O - β -D-glucuronopyranoside methyl ester (PL-2)61
5	The ¹ H- ¹³ C long-range correlations in the HMBC spectrum of
	hypolaetin 8- O - β -D-glucuronopyranoside methyl ester (PL-2)62
6	The ¹ H- ¹ H correlations (bold line) in the ¹ H- ¹ H COSY spectrum of
	isoscutellarein 8- O - β -D-glucuronopyranoside butyl ester (PL-3)66
7	The ¹ H- ¹³ C long-range correlations in the HMBC spectrum of
	isoscutellarein 8- O - β -D-glucuronopyranoside butyl ester (PL-3)67
8	The ¹ H- ¹ H correlations (bold line) in the ¹ H- ¹ H COSY spectrum of
	hypolaetin 8- O - β -D-glucuronopyranoside butyl ester (PL-4)70
9	The ¹ H- ¹³ C long-range correlations in the HMBC spectrum of
	hypolaetin 8- O - β -D-glucuronopyranoside butyl ester (PL-4)
10	The UV spectrum (in MeOH) of isoscutellarein 8- O - β -D-glucuro-
	nopyranoside methyl ester (PL-1)
11	The UV spectrum (in MeOH + NaOH) of isoscutellarein 8- O - β -D-
	glucuronopyranoside methyl ester (PL-1)82
12	The UV spectrum (in MeOH + AlCl ₃) of isoscutellarein 8- O - β -D-
	glucuronopyranoside methyl ester (PL-1)
13	The UV spectrum (in MeOH + AlCl ₃ + HCl) of isoscutellarein 8-O-
	β -D-glucuronopyranoside methyl ester (PL-1)
14	The UV spectrum (in MeOH + NaOAc) of isoscutellarein 8- O - β -D-
	glucuronopyranoside methyl ester (PL-1)
15	The UV spectrum (in MeOH + NaOAc + H ₃ BO ₃) of isoscutellarein

	8- <i>O</i> -β-D-glucuronopyranoside methyl ester (PL-1)84
16	The IR spectrum (in KBr disc) of isoscutellarein 8- O - β -D-glucuro-
	nopyranoside methyl ester (PL-1)
17	The ESI-TOF mass spectrum of isoscutellarein 8- O - β -D-glucurono-
	pyranoside methyl ester (PL-1)
18	The 300 MHz ¹ H NMR spectrum (in DMSO- d_6) of isoscutellarein 8-
	$O-\beta$ -D-glucuronopyranoside methyl ester (PL-1)86
19	The 75 MHz ¹³ C NMR spectrum (in DMSO- d_6) of isoscutellarein 8-
	$O-\beta$ -D-glucuronopyranoside methyl ester (PL-1)86
20	The 75 MHz DEPT 135 NMR spectrum (in DMSO- d_6) of isoscutel-
	larein 8- <i>O</i> -β-D-glucuronopyranoside methyl ester (PL-1)
21	The 300 MHz HMQC spectrum (in DMSO- d_6) of isoscutellarein 8-
	$O-\beta$ -D-glucuronopyranoside methyl ester (PL-1)
22	The 300 MHz HMQC spectrum (in DMSO-d ₆) of isoscutellarein 8-
	<i>O</i> - β -D-glucuronopyranoside methyl ester (PL-1) (expanded from $\delta_{\rm H}$
	3.00-8.50 ppm and $\delta_{\rm C}$ 45.0 – 135.0 ppm)
23	The 300 MHz ¹ H - ¹ H COSY spectrum (in DMSO- d_6) of isoscutel-
	larein 8- O - β -D-glucuronopyranoside methyl ester (PL-1)88
24	The 300 MHz 1 H - 1 H COSY spectrum (in DMSO- d_{6}) of isoscutel-
	larein 8- O - β -D-glucuronopyranoside methyl ester (PL-1) (expanded
	from δ _H 2.80-8.50 ppm)
25	The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 8 \text{ Hz}$)(in DMSO- d_{6}) of
	isoscutellarein 8- O - β -D-glucuronopyranoside methyl ester (PL-1)
26	The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 8 \text{ Hz}$)(in DMSO- d_{6}) of
	isoscutellarein 8- O - β -D-glucuronopyranoside methyl ester (PL-1)
	(expanded from δ_H 3.20-7.30 ppm and δ_C 65.0 – 185.0 ppm)90
27	The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 8 \text{ Hz}$)(in DMSO- d_{6}) of
	isoscutellarein 8- O - β -D-glucuronopyranoside methyl ester (PL-1)
	(expanded from δ_H 3.00-8.50 ppm and δ_C 45.0 – 135.0 ppm)91
28	The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 4 \text{ Hz}$)(in DMSO- d_{6}) of
	Isoscutellarein 8- O - β -D-glucuronopyranoside methyl ester (PL-1)91
29	The UV spectrum (in MeOH) of hypolaetin 8- O - β -D-glucuronopy-
	ranoside methyl ester (PL-2)92

30	The UV spectrum (in MeOH + NaOH) of hypolaetin 8- O - β -D-	
	glucuronopyranoside methyl ester (PL-2)) 2
31	The UV spectrum (in MeOH + AlCl ₃) of hypolaetin 8- O - β -D-	
	glucuronopyranoside methyl ester (PL-2)) 3
32	The UV spectrum (in MeOH + AlCl ₃ +HCl) of hypolaetin 8- O - β -D-	
	glucuronopyranoside methyl ester (PL-2)) 3
33	The UV spectrum (in MeOH + NaOAc) of hypolaetin 8- O - β -D-	
	glucuronopyranoside methyl ester (PL-2)) 4
34	The UV spectrum (in MeOH + NaOAc + H ₃ BO ₃) of hypolaetin 8-O-	
	β -D-glucuronopyranoside methyl ester (PL-2)) 4
35	The IR spectrum (in KBr disc) of hypolaetin 8- <i>O</i> - β -D-glucuronopy-	
	ranoside methyl ester (PL-2)) 5
36	The ESI-TOF mass spectrum of hypolaetin 8- O - β -D-glucuronopy-	
	ranoside methyl ester (PL-2)9) 5
37	The 300 MHz ¹ H NMR spectrum (in DMSO- <i>d</i> ₆) of hypolaetin 8- <i>O</i> -	
	β -D-glucuronopyranoside methyl ester (PL-2)) 6
38	The 300 MHz ¹ H NMR spectrum (in DMSO- <i>d</i> ₆) of hypolaetin 8- <i>O</i> -	
	β -D-glucuronopyranoside methyl ester (PL-2) (expand from $\delta_{\rm H}$ 3.68-	
	7.81ppm)9	6
39	The 75 MHz 13 C NMR spectrum (in DMSO- d_6) of hypolaetin 8- O -	
	β -D-glucuronopyranoside methyl ester (PL-2)	7
40	The 75 MHz DEPT 135 spectrum (in DMSO- d_6) of hypolaetin 8- O-	
	β -D-glucuronopyranoside methyl ester (PL-2)	7
41	The 300 MHz HMQC spectrum (in DMSO- d_6) of hypolaetin 8- O-	
	β -D-glucuronopyranoside methyl ester (PL-2)	8
42	The 300 MHz HMQC spectrum (in DMSO- d_6) of hypolaetin 8- O-	
	β -D-glucuronopyranoside methyl ester (PL-2) (expand from $\delta_{\rm H}$ 3.12-	
	4.10 ppm and $\delta_{\rm H}$ 48.0 – 80.0 ppm)	8
43	The 300 MHz 1 H - 1 H COSY spectrum (in DMSO- d_{6}) of hypolaetin	
	8- O - β -D-glucuronopyranoside methyl ester (PL-2)	9
44	The 300 MHz 1 H - 1 H COSY spectrum (in DMSO- d_{6}) of hypolaetin	
	8- <i>O</i> - β -D-glucuronopyranoside methyl ester (PL-2) (expand from $\delta_{\rm H}$	
	2.50 – 8.50 ppm)	9

45	The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 8 \text{ Hz}$)(in DMSO- d_{6}) of
	hypolaetin 8- O - β -D-glucuronopyranoside methyl ester (PL-2)100
46	The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 8 \text{ Hz}$) (in DMSO- d_{6}) of
	hypolaetin 8- O - β -D-glucuronopyranoside methyl ester (PL-2)
	(expanded from δ_{H} 3.00 - 8.00 ppm and δ_{H} 90.00 - 180.00 ppm)100
47	The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 8 \text{ Hz}$) (in DMSO- d_{6}) of
	hypolaetin 8- O - β -D-glucuronopyranoside methyl ester (PL-2)
	(expanded from $\delta_{\rm H}$ 6.54 – 7.91 ppm and $\delta_{\rm H}$ 110.00 - 153.00 ppm)101
48	The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 4 \text{ Hz}$) (in DMSO- d_{6}) of
	hypolaetin 8- O - β -D-glucuronopyranoside methyl ester (PL-2)101
49	The UV spectrum (in MeOH) of isoscutellarein 8-O- β -D-glucuro-
	nopyranoside butyl ester (PL-3)102
50	The IR spectrum (in KBr disc) of isoscutellarein 8- O - β -D-glucuro-
	nopyranoside butyl ester (PL-3)102
51	The FABMS spectrum of isoscutellarein 8- O - β -D-glucuronopyra-
	noside butyl ester (PL-3)103
52	The 300 MHz ¹ H NMR spectrum (in DMSO- d_6) of isoscutellarein
	8- $O-\beta$ -D-glucuronopyranoside butyl ester (PL-3)103
53	The 75 MHz ¹³ C NMR spectrum (in DMSO- d_6) of isoscutellarein
	8- O - β -D-glucuronopyranoside butyl ester (PL-3)104
54	The 75 MHz DEPT 135 spectrum (in DMSO- d_6) of isoscutellarein
	8- $O-\beta$ -D-glucuronopyranoside butyl ester (PL-3)
55	The 300 MHz HMQCspectrum (in DMSO- d_6) of isoscutellarein
	8- O - β -D-glucuronopyranoside butyl ester (PL-3)105
56	The 300 MHz 1 H - 1 H COSY spectrum (in DMSO- d_{6}) of isoscutel-
	larein 8- O - β -D-glucuronopyranoside butyl ester (PL-3)105
57	The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 8 \text{ Hz}$)(in DMSO- d_{6}) of
	isoscutellarein 8- O - β -D-glucuronopyranoside butyl ester (PL-3)106
58	The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 8 \text{ Hz}$)(in DMSO- d_{6}) of
	isoscutellarein 8- O - β -D-glucuronopyranoside butyl ester (PL-3)
	(expanded from δ_{H} 0.20-6.00 ppm and δ_{C} 10.0 – 80.0 ppm)106
59	The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 8 \text{ Hz}$)(in DMSO- d_{6}) of
	isoscutellarein 8- O - β -D-glucuronopyranoside butyl ester (PL-3)

	(expanded from $\delta_{\rm H}$ 7.50 - 13.50 ppm and $\delta_{\rm C}$ 95.0 – 185.0 ppm)107
60	The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 4 \text{ Hz}$)(in DMSO- d_{6}) of
	isoscutellarein 8- O - β -D-glucuronopyranoside butyl ester (PL-3)107
61	The UV spectrum (in MeOH) of hypolaetin 8- O - β -D-glucuronopy-
	ranoside butyl ester (PL-4)108
62	The IR spectrum (in KBr disc) of hypolaetin 8- O - β -D-glucuronopy-
	ranoside butyl ester (PL-4)108
63	The FABMS spectrum (in MeOH) of hypolaetin 8- O - β -D-glucuro-
	nopyranoside butyl ester (PL-4)109
64	The 300 MHz ¹ H NMR spectrum (in DMSO- d_6) of hypolaetin 8- O-
	β -D-glucuronopyranoside butyl ester (PL-4)109
65	The 300 MHz ¹ H NMR spectrum (in DMSO- d_6) of hypolaetin 8- O -
	β -D-glucuronopyranoside butyl ester (PL-4) (expand from $\delta_{\rm H}$ 3.40-
	7.80 ppm)110
66	The 75 MHz ¹³ C NMR spectrum (in DMSO- d_6) of hypolaetin 8- O-
	β -D-glucuronopyranoside butyl ester (PL-4)110
67	The 75 MHz DEPT 135 spectrum (in DMSO- d_6) of hypolaetin 8- O-
	β -D-glucuronopyranoside butyl ester (PL-4)111
68	The 300 MHz HMQC spectrum (in DMSO- d_6) of hypolaetin 8- O -
	β -D-glucuronopyranoside butyl ester (PL-4)111
69	The 300 MHz HMQC spectrum (in DMSO- <i>d</i> ₆) of hypolaetin 8- <i>O</i> -
	β -D-glucuronopyranoside butyl ester (PL-4) (expand from $\delta_{\rm H} 0.30$ -
	4.20 ppm and $\delta_H 10.0 - 85.0$ ppm)112
70	The 300 MHz ¹ H - ¹ H COSY spectrum (in DMSO- d_6) of hypolaetin
	8- O - β -D-glucuronopyranoside butyl ester (PL-4)112
71	The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 8 \text{ Hz}$) (in DMSO- d_{6}) of
	hypolaetin 8- O - β -D-glucuronopyranoside butyl ester (PL-4)113
72	The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 8 \text{ Hz}$) (in DMSO- d_{6}) of
	hypolaetin 8- O - β -D-glucuronopyranoside butyl ester (PL-4)
	(expand from δ_{H} 0.00 - 2.00 ppm and δ_{H} 5.0 – 35.0 ppm)113
73	The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 8 \text{ Hz}$) (in DMSO- d_{6}) of
	hypolaetin 8- O - β -D-glucuronopyranoside butyl ester (PL-4)
	(expand from $\delta_{H}4.50$ - 13.00 ppm and $\delta_{H}98.0-170.0$ ppm)114

- 74 The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 4$ Hz) (in DMSO- d_{6}) of hypolaetin 8- O- β -D-glucuronopyranoside butyl ester (PL-4).....114
- The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 4$ Hz) (in DMSO- d_{6}) of hypolaetin 8- O- β -D-glucuronopyranoside butyl ester (PL-4) (expand from δ_{H} 3.60 – 13.20 ppm and δ_{H} 80.0 – 175.0 ppm).....115

LIST OF SCHEMES

Scheme

Page

- 1 Extraction of *Ploiarium alternifolium* leaves......42

LIST OF TABLES

Table	Page
1	Distribution of xanthones in Guttiferae6
2	Distribution of flavonoids in Guttiferae29
3	Fractions obtained from the isolation of F00443
4	Fractions obtained from the isolation of F00744
5	Fractions obtained from the isolation of F014 (500 mg)45
6	Fractions obtained from the isolation of F013 (870 mg)47
7	The ¹ H- ¹³ C NMR and HMBC spectral data of PL-1 in (DMSO- d_6)58
8	The ¹ H- ¹³ C NMR spectral data of PL-1 (in DMSO- d_6)
	and isoscutellare in 8- O - β -D- glucuronopyranoside (in DMSO- d_6)59
9	The ¹ H- ¹³ C NMR and HMBC spectral data of PL-2 (in DMSO- d_6)63
10	The ¹ H- ¹³ C NMR spectral data of PL-2 (in DMSO- d_6)
	and hypolaetin 8- O - β -D- glucuronopyranoside (in DMSO- d_6)64
11	The ¹ H- ¹³ C NMR and HMBC spectral data of PL-3(in DMSO- d_6)68
12	The ¹ H- ¹³ C NMR and HMBC spectral data of PL-4 (in DMSO- d_6)72

LIST OF ABBREVIATIONS

$\left[\alpha\right]^{25}{}_{\mathrm{D}}$	=	Specific rotation at 25° and sodium D line (589 nm)	
δ	=	Chemical shift	
λ_{max}	=	Wavelength at maximum absorption	
ν_{max}	=	Wave number at maximum absorption	
3	=	Molar absorptivity	
br d	=	Broad doublet	
br s	=	Broad singlet	
cm	=	Centimeter	
°C	=	Degree Celsius	
CHCl ₃	=	Chloroform	
¹³ C NMR	=	Carbon-13 nuclear magnetic resonance	
COSY	=	Correlation spectroscopy	
d	=	Doublet	
dd	=	Doublet of doublets	
DEPT	=	Distortionless Enhancement by Polarization Transfer	
DMSO- d_6	=	Deuterated dimethylsulfoxide	
ESI-TOF MS	=	Electrospray Ionization Time of Flight Mass spectrum	
g	=	Gram	
μg	=	Microgram	
¹ H NMR	=	Proton nuclear magnetic resonance	
HMBC	-11	¹ H-detected Heteronuclear Multiple Bond Coherence	
HMQC=	¹ H-detected Heteronuclear Multiple Quantum Coherence		
Hz	ร้าว	Hertz	
IC ₅₀	=	Inhibitory concentration at 50%	
IR	=	Infrared	
J	=	Coupling constant	
kg	=	Kilogram	
L	=	Liter	
m	=	Multiplet	
mg	=	Milligram	

=	Milliliter
=	Minute
=	Multiplicity
=	Molecular ion
=	Methanol
=	Megahertz
=	Protonated molecular ion
=	Mass to charge ratio
=	Mass spectrometry
=	Nanometer
=	Nuclear magnetic resonance
=	part per million
=	Quintet
=	Round per minute
=	Singlet
=	Triplet
=	Thin layer chromatography
=	Ultraviolet

CHAPTER I

INTRODUCTION

Ploiarium alternifolium (Vahl) Melchior is a tree in the family Guttiferae (Bonnetiaceae), distributed in Cambodia, Malaysia, Indonesia and Thailand (Keng, 1972). *P. alternifolium* is the only species of this genus found in Thailand and can be found in lowland evergreen forest and peat swamp forest in Krabi, Satun, Songkhla, Surat Thani and Trang. It is locally known as Chamuang kwang (ชะมวงกวาง), Muang kwang (ม่วงกวาง), and Som Kwang (สัมกวาง) (Smitinand, 1980).

Ploiarium alternifolium is a small tree, 8-10 meter high ; crown conical to cylindrical, with terminalia–like branching ; stem with stilt roots, sometimes up to 1.5–2 meter high; bark greyish-brown, narrowly and deeply ridged and fissured; inner bark red brown. *Leaves* simple, spirally arranged, crowded at the tip of the branches; blade lanceolate to oblong-obovate, 7-12 by 1.5-2.5 cm, glabrous; apex acute; base truncate to subcordate; secondary nerves inconspicious; petiole short. *Flowers* pinkish-white, 2.5-3 cm across; solitary or 2-3-flowered in short, axillary inflorescence. *Capsules* conical, 2 by 1 cm; basally dehiscing into 5 valves at maturity. Flowering from March to May (Phengklai and Niyomdham, 1991).

Previous phytochemical studies of the barks and branches of *P. alternifolium* have been reported (Bennett, Lee, and Lowrey, 1990; Bennett *et al.*, 1991; 1992). However, the chemical constituents of its leaves have never been published. TLC examination of the butanol extract from the leaves of this plant showed several yellowish polar components. Therefore, it was interesting to investigate these compounds.

The main objectives in this investigation were as follows :

- 1. To extract and isolate pure compounds from the leaves of *P. alternifolium*.
- 2. To determine the chemical structures of the isolated compounds.

Fingure1 Ploiarium alternifolium (Vahl) Melchior

CHAPTER II

LITERATURE REVIEW

1. Taxonomy of *Ploiarium alternifolium*

Ploiarium alternifolium (Vahl) Melchior is a tree in the family Guttiferae (Bonnetiaceae) growing in peninsular Thailand. This plant possesses botanical characters and chemical constituents which are related to several plant families. In the past, it was classified as a member of the family Bonnetiaceae, in the order Theales (Hutchinson, 1959). Later, Bonnetiaceae was reclassified as subfamily Bonnetioideae of the family Theaceae (Mabberley, 1993). The different characteristic of this subfamily from other subfamilies was its convolute corolla while others were imbricate.

Currently, the genus *Ploiarium* has been included into the family Guttiferae (Mabberley, 1997) which composes of 3 subfamilies and 13 tribes.

The key to the subfamilies is as follows:

- 1. Leaves opposite, styles 3 or 5Hypericoideae
- 1. Leaves spiral with 1, 3 or 5 styles or leaves opposite with 1, 2, 4 or 6 styles
 - 2. Flowers bisexual, fruit capsuleBonnetioideae
 - 2. Flowers unisexual, bisexual, fruit not a capsule Calophylloideae
- I Subfamily Hypericoideae (3 tribes)
 - 1.1 Tribe Cratoxyleae : Cratoxylum
 - 1.2 Tribe Hypericeae : Hypericum
 - 1.3 Tribe Vismieae : Vismia, Psorospermum

II Subfamily Bonnetioideae (3 tribes)

2.1	Tribe Bonnetieae	:	Bonnetia, Ploiarium
2.2	Tribe Kielmeyereae	:	Kielmeyera
2.3	Tribe Caraipeae	:	Caraipa

III Subfamily Calophylloideae (Clusioideae) (7 tribes)

3.1	Tribe Calophylleae	:	Calophyllum, Mammea, Mesua
3.2	Tribe Endodesmieae	:	Endodesmia
3.3	Tribe Allanblackieae	:	Allanblackia
3.4	Tribe Moronbeae	:	Montrouziera, Pentadesma, Symphonia
3.5	Tribe Garcinieae	:	Garcinia
3.6	Tribe Clusieae	:	Clusia
3.7	Tribe Tovomiteae	:	Tovomita, Tovomitopsis

According to these data, genus *Ploiarium* has been classified as a member of the subfamily Bonnetioideae of either the family Theaceae or Guttiferae, indicating the relationship of this genus with both families.

2. Chemical constituents of Guttiferae

Various compounds have been isolated from many genera of the family Guttiferae. These compounds were xanthones, flavonoids, benzophenones, coumarins, anthraquinones, terpenoids, and phloroglucinol derivatives.

Benzophenones were isolated from plant in subfamily Calophylloideae particularly genera *Garcinia* [*G. subelliptica* (Minami *et al.*, 1998)] and *Clusia* [*C. ellipticifolia* (Olivares, Gonzalez, and Monache, 1994)] of the family Guttiferae.

Coumarins were isolated from genus *Kielmeyera* [*K. argentea* (Cruz, Santos *et al.*, 1998), *K. reticulata* (Cruz, Moreira, *et al.*, 1998)] of subfamily Bonnetioideae, genus *Vismia* [*V. guianensis* (Seo, *et al.*, 2000)] of subfamily Hypericoideae and genus *Montrouziera* [*M. sphaeroidea* (Ito *et al.*, 2000)] of subfamily Calophylloideae of the family Guttiferae.

Anthraquinones were found in genus *Ploiarium* [*P. alternifolium* (Bennett *et al.*, 1991)] of subfamily Bonnetioideae and genera *Vismia* [*V. guineensis* (Seo *et al.*, 2000)] of subfamily Hypericoideae and *Hypericum* [H. perforatum (Southwell and campbell, 1991)] of the family Guttiferae.

Triterpenoids were found in genus *Cratoxylum* [*C. cochinchinense* (Nguyen and Harison, 1999)] of subfamily Hypericoideae and genera *Ploiarium* [*P. alternifolium* (Bennett *et al.*, 1992)] and *Kielmeyera* [*K. coriacea* (Cortez *et al.*, 1998)] of subfamily Bonnetioideae of the family Guttiferae.

Phloroglucinol derivatives were found genus *Hypericum* [*H. brasiliense*, *H. japonicum*, *H. uliginosum* (Rocha *et al.*, 1995)] of subfamily Hypericoideae of the family Guttiferae.

Several genera of family Guttiferae containing xanthones and flavonoids were found in Thailand. The distribution of these compounds is shown in table 1 and 2.

Table 1 Distribution of xanthones in Guttiferae.

Plant and chemical compound	Plant part	Activity	Reference
Bonnetia dinizii			
1,7–Dihydroxyxanthone [1]	Wood	ND	Oliveira <i>et al.</i> , 1990
1,7,8–Trihydroxyxanthone [2]	Wood	ND	Oliveira <i>et al.</i> , 1990
1,6,7,8–Tetrahydroxy xanthone [3]	Wood	ND	Oliveira <i>et al.</i> , 1990
1,2,3,5–Tetrahydroxy xanthone [4]	Wood	ND	Oliveira et al., 1990
1,3–Dihydroxy–2,5– dimethoxyxanthone [5]	Wood	ND	Oliveira <i>et al.</i> , 1990
Calophyllum apetalum			
Caloxanthone I [6]	Stem bark	ND	Iinuma <i>et al.</i> , 1997
Caloxanthone J [7]	Stem bark	ND	Iinuma <i>et al.</i> , 1997
Caloxanthone K [8]	Root	ND	Iinuma <i>et al.</i> , 1997
1,3,6,8–Tetrahydroxy–2– methoxyxanthone [9]	Root	ND	Iinuma <i>et al</i> ., 1997
Pyranojacareubin [10]	Stem bark	ND	Iinuma <i>et al</i> ., 1997
1,3,5–Trihydroxy–2– methoxyxanthone [11]	Stem bark	ND	Iinuma <i>et al</i> ., 1997
1,3,5–Trihydroxyxanthone [12]	Stem bark	ND	Iinuma <i>et al.</i> , 1997
1,5–Dihydroxyxanthone [13]	Root	ND	Iinuma <i>et al.</i> , 1997
3,8–Dihydroxy–1,2– dimethoxyxanthone [14]	Root	ND	Iinuma <i>et al</i> ., 1997
1,3–Dihydroxy–2,5– dimethoxyxanthone [15]	Root	ND	Iinuma <i>et al</i> ., 1997
1,3,7–Trihydroxyxanthone [16]	Root	ND	Iinuma <i>et al.</i> , 1997
1,5,6–Trihydroxyxanthone	Root	ND	Iinuma <i>et al</i> ., 1997

Plant and chemical compound	Plant part	Activity	Reference
Calophyllum inophyllum			
Caloxanthone A [17]	Root bark	ND	Iinuma <i>et al.</i> , 1994
Caloxanthone B [18]	Root bark	ND	Iinuma <i>et al.</i> , 1994
Caloxanthone D [19]	Root bark	ND	Iinuma <i>et al.</i> , 1995
Caloxanthone E [20]	Root heartwood	ND	Iinuma <i>et al</i> ., 1995
1,3,8–Trihydroxy–7– methoxyxanthone [21]	Root heartwood	ND	Iinuma <i>et al</i> ., 1995
1,3–Dihydroxy–7,8– dimethoxyxanthone [22]	Root heartwood	ND	Iinuma <i>et al.</i> , 1995
1,3,5–Trihydroxy–2– methoxyxanthone [11]	Root heartwood	ND	Iinuma <i>et al.</i> , 1995
6–Hydroxy–1,5–dimethoxy xanthone [23]	Root heartwood	ND	Iinuma <i>et al.</i> , 1995
Calophyllum moonii	199911411	750	
Dombakinaxanthone [24]	Root bark	ND	Dharmaratne and Wijesinghe, 1997
Calozeyloxanthone [25]	Root bark	ND	Dharmaratne and Wijesinghe, 1997
Calophyllum teysmannii var. inophylloide	นวิท	ยบริกา	5
1,7– Dihydroxyxanthone [1]	Wood	ND	Kijjoa <i>et al</i> ., 2000 a
1,2,8–Trimethoxyxanthone [26]	Wood	ND	Kijjoa <i>et al.</i> , 2000 a
6–Hydroxy–1,3,5,7–tetra methoxyxanthone [27]	Wood	ND	Kijjoa <i>et al.</i> , 2000 a
7–Hydroxy–1,2,8–trimethoxy xanthone [28]	Wood	ND	Kijjoa <i>et al.</i> , 2000 b

Plant and chemical compound	Plant part	Activity	Reference
Calophyllum teysmannii var. inophylloide			
6–Hydroxy–1,2,5–trimethoxy xanthone [29]	Wood	ND	Kijjoa <i>et al.</i> , 2000 b
3,8–Dihydroxy–1,2,4–tri methoxyxanthone [30]	Wood	ND	Kijjoa <i>et al.</i> , 2000 b
3–Hydroxy–2,4–dimethoxy xanthone [31]	Wood	ND	Kijjoa <i>et al.</i> , 2000 b
1,7–Dihydroxy–3–methoxy xanthone (gentisin) [32]	Wood	ND	Kijjoa <i>et al.</i> , 2000 b
2–Carbomethoxy–6–methoxy xanthone [33]	Wood	ND	Kijjoa <i>et al.</i> , 2000 b
2–Hydroxyxanthone[34]	Wood	ND	Kijjoa <i>et al.</i> , 2000 b
Clusia insignis	A A A	4	
Clusone [35]	Flower	No antimicrobial	Ishiguro, Chaudhuri and Kubo, 1998
Cratoxylum cochinchinense		6	
Mangostin [36]	Bark	ND	Bennett et al., 1993
β–Mangostin [37]	Bark	ND	Bennett et al., 1993
Garcinone D [38]	Bark	ND	Bennett et al., 1993
Tovophllin A [39]	Bark	ND	Bennett et al., 1993
2–Geranyl–1,3,7–trihydroxy– 4–(3,3–dimethylallyl)– xanthone [40]	Bark	ND	Bennett et al., 1993
Cratoxylone [41]	Bark	ND	Bennett et al., 1993
11–Hydroxy–1–isomangostin	Bark	ND	Sia <i>et al.</i> , 1995
[42] 11–Hydroxy–3,6–di– <i>O</i> – methyl–1–isomangostin [43]	Bark	ND	Sia <i>et al.</i> , 1995

Plant and chemical compound	Plant part	Activity	Reference
Cratoxylum cochinchinense			
11–Acetoxy–3,6–di– <i>O</i> – methyl–1–isomangostin [44]	Bark	ND	Sia <i>et al.</i> , 1995
1,3,5,6–Tetrahydroxy xanthone [45]	Bark	ND	Sia <i>et al.</i> , 1995
Cratoxylum formosamum			
2,7–Dihydroxy–1,8– dimethoxyxanthone [46]	Root	ND	Iinuma <i>et al</i> ., 1996 a
1,4,7–Trihydroxy–8– methoxyxanthone [47]	Root	ND	Iinuma <i>et al</i> ., 1996 a
1,4,7–Trihydroxyxanthone [48]	Root	ND	Iinuma <i>et al</i> ., 1996 a
1,7–Dihydroxy–4–methoxy xanthone [49]	Root	ND	Iinuma <i>et al</i> ., 1996 a
1,7–Dihydroxyxanthone [1]	Root	ND	Iinuma <i>et al</i> ., 1996 a
1,2,3,4,8–Pentamethoxy xanthone [50]	Root	ND	Iinuma <i>et al</i> ., 1996 a
3,8–Dihydroxy-1,2- dimethoxyxanthone [14]	Root	ND	Iinuma <i>et al</i> ., 1996 a
Cratoxylum maingayi			
1,7–Dihydroxyxanthone [1]	Wood	ND	Kijjoa <i>et al.</i> , 1998
1,7–Dihydroxy–4–methoxy xanthone [49]	Wood	ND	Kijjoa <i>et al</i> ., 1998
2,8–Dihydroxy–1–methoxy xanthone [51]	Wood	ND	Kijjoa <i>et al.</i> , 1998
7–Hydroxy–1,2,3,8–tetra methoxyxanthone [52]	Wood	ND	Kijjoa <i>et al.</i> , 1998

Plant and chemical compound	Plant part	Activity	Reference
Garcinia atroviridis			
Atroviridin [53]	Stem bark	ND	Kosin <i>et al.</i> , 1998
Garcinia cambogia			
Garbogiol [54]	Root	ND	Iinuma <i>et al.</i> , 1998
Rheediaxanthone A [55]	Bark	ND	Iinuma <i>et al.</i> , 1998
Garcinia cowa			
1,3,6–Trihydroxy–7–methoxy –2,5–bis (3–methyl–2– butenyl) xanthone [56]	Latex	antimicrobial	na Pattalung <i>et al</i> ., 1994
Norcowanin [57]	Latex	antimicrobial	na Pattalung <i>et al.</i> , 1994
7– <i>O</i> –methylgarcinone E b [58]	Bark	antimalarial (<i>P. falciparum</i> , IC ₅₀ =2.50 µg/ml)	Likhitwitayawuid, Phadungcharoen and Krungkrai, 1998 b
β–Mangostin [37]	Bark	antimalarial (<i>P. falciparum</i> , IC ₅₀ =3.00 µg/ml)	Likhitwitayawuid, Phadungcharoen and Krungkrai, 1998 b
Cowanin [59]	Latex Bark	antimicrobial antimalarial (<i>P. falciparum</i> , IC ₅₀ =3.00 µg/ml)	na Pattalung <i>et al.</i> , 1994; Likhitwitayawuid, Phadungcharoen and Krungkrai, 1998 b
Cowanol [60]	Latex Bark	antimicrobial antimalarial (<i>P. falciparum</i> , IC ₅₀ =1.60 µg/ml)	na Pattalung <i>et al.</i> , 1994; Likhitwitayawuid, Phadungcharoen and Krungkrai, 1998 b
Cowaxanthone [61]	Latex Bark	antimicrobial antimalarial (<i>P. falciparum</i> , IC ₅₀ =1.50 µg/ml)	na Pattalung <i>et al.</i> , 1994; Likhitwitayawuid, Phadungcharoen and Krungkrai, 1998 b

Plant and chemical compound	Plant part	Activity	Reference
Garcinia dulcis			
Dulciol A [62]	Bark	ND	Iinuma <i>et al.</i> , 1996 b
Dulciol B [63]	Root	ND	Iinuma <i>et al.</i> , 1996 b
Dulciol C [64]	Root	ND	Iinuma et al., 1996 b
Dulciol D [65]	Root	ND	Iinuma et al., 1996 b
Dulciol E [66]	Root	ND	Iinuma <i>et al.</i> , 1996 b
1,7–Dihydroxyxanthone [1]	Bark	antimalarial (<i>P. falciparum</i> , IC ₅₀ =3.88 μg/ml)	Likhitwitayawuid <i>et al.</i> , 1998 a
12b–Hydroxy–des–D– garcigerrin A [67]	Bark	antimalarial (<i>P. falciparum</i> , IC ₅₀ =2.08 µg/ml)	Likhitwitayawuid <i>et al.</i> , 1998 a
1– <i>O</i> –Methylsymphoxanthone [68]	Bark	antimalarial (<i>P. falciparum</i> , IC ₅₀ =3.71 μg/ml)	Likhitwitayawuid <i>et al.</i> , 1998 a
Symphoxanthone [69]	Bark	antimalarial (<i>P. falciparum</i> , IC ₅₀ =3.75 µg/ml)	Likhitwitayawuid <i>et al.</i> , 1998 a
Garciniaxanthone [70]	Bark	antimalarial (<i>P. falciparum</i> , IC ₅₀ =0.96 µg/ml)	Likhitwitayawuid <i>et al.</i> , 1998 a
Dulxanthone E [71]	leaf	ND	Kosela et al., 1999
Dulxanthone F [72]	leaf	ND	Kosela et al., 2000
Dulxanthone G [73]	leaf	ND	Kosela et al., 2000
Dulxanthone H [74]	leaf	ND	Kosela et al., 2000
Garcinia forbesii			
1,3,7–Trihydroxy–2–(3– methylbut–2–enyl)–anthoneb [75]	Twig and branch	ND	Harrison <i>et al.</i> , 1993

Plant and chemical compound	Plant part	Activity	Reference
Garcinia forbesii			
Pyranojacareubin [76]	Twig and branch	ND	Harrison et al., 1993
Forbexanthone [77]	Twig and branch	ND	Harrison et al., 1993
Garcinia mangostana			
Mangostinone [78]	Fruit hull (pericarp)	ND	Asai <i>et al.</i> , 1995
Mangostanol [79]	Fruit hull	cAMP phosphodiesterase inhibition	Chairungsrilerd <i>et al.</i> , 1996
α–Mangostin [80]	Fruit hull	cAMP phosphodiesterase inhibition	Chairungsrilerd <i>et al.</i> , 1996
γ–Mangostin [81]	Fruit hull	cAMP phosphodiesterase inhibition	Chairungsrilerd <i>et al.</i> , 1996
Gartanin [82]	Fruit hull	ND	Chairungsrilerd <i>et al.</i> , 1996
8–Deoxygartanin [83]	Fruit hull	ND	Chairungsrilerd <i>et al.</i> , 1996
Garcinone E [84]	Fruit hull	ND	Chairungsrilerd <i>et al.</i> , 1996
Garcimangosone A [85]	Fruit hull	ND	Huang <i>et al.</i> , 2001
Garcimangosone B [86]	Fruit hull	ND	Huang <i>et al.</i> , 2001
Garcimangosone C [87]	Fruit hull	ND	Huang et al., 2001
Garcinia parvifolia			
Parvixanthone A [88]	Bark	ND	Xu et al., 2001
Parvixanthone B [89]	Bark	ND	Xu et al., 2001

Plant and chemical compound	Plant part	Activity	Reference
Garcinia parvifolia			
Parvixanthone C [90]	Bark	ND	Xu et al., 2001
Parvixanthone D [91]	Bark	ND	Xu et al., 2001
Parvixanthone E[92]	Bark	ND	Xu et al., 2001
Parvixanthone F [93]	Bark	ND	Xu et al., 2001
Parvixanthone G [94]	Bark	ND	Xu et al., 2001
Parvixanthone H [95]	Bark	ND	Xu et al., 2001
Parvixanthone I [96]	Bark	ND	Xu et al., 2001
Garcinia vilersiana	1 5 6	2	
Globuxanthone [97]	Bark	ND	Nguyen and Harrison, 2000
Subelliptenone H [98]	Bark	ND	Nguyen and Harrison, 2000
Subelliptenone B [99]	Bark	ND	Nguyen and Harrison, 2000
12b–Hydroxy–des–D– garcigerrin A [67]	Bark	ND	Nguyen and Harrison, 2000
Symphoxanthone [69]	Bark	ND	Nguyen and Harrison, 2000
1–O–Methylglobuxanthone [100]	Bark	ND	Nguyen and Harrison, 2000
Hypericum ascyron	566	INCCINE	ปาลย
2–Methoxyxanthone [101]	Aerial part	ND	Hu, Yip, and Sim, 1999
1,7–Dihydroxyxanthone [1]	Aerial part	ND	Hu, Yip, and Sim, 1999
1–Hydroxy–7–methoxy xanthone [102]	Aerial part	ND	Hu, Yip, and Sim, 1999
3,6–Dihydroxy–1,7– dimethoxyxanthone [103]	Aerial part	ND	Hu, Yip, and Sim, 1999

Plant and chemical compound	Plant part	Activity	Reference
Hypericum ascyron 7–Methoxy–1,5,6–trihydroxy	Aerial part	ND	Hu, Yip, and Sim, 1999
xanthone [104]			
Hypericum canariensis		100	
Hydroxanthone [34]	Aerial part	ND	Cardona et al., 1986
1,7–Dihydroxyxanthone [1]	Aerial part	ND	Cardona <i>et al.</i> , 1986
2–Hydroxy–5–methoxy xanthone [105]	Aerial part	ND	Cardona <i>et al.</i> , 1986
2,5–Dihydroxyxanthone [106]	Aerial part	ND	Cardona <i>et al.</i> , 1986
Hypericum ericoides	(Anna)		
2,3,4–Trihydroxyxanthone [107]	Stem, leaf and flower	ND	Cardona and Seoane, 1982
2–Hydroxyxanthone [34]	Stem, leaf and flower	ND	Cardona and Seoane, 1982
2–Hydroxy–5,6,7–trimethoxy xanthone [108]	Stem, leaf and flower	ND	Cardona and Seoane, 1982
Hypericum reflexum		- U	
Hyperireflexin [109]	Aerial part	ND	Cardona <i>et al.</i> , 1990
Hyperxanthone [110]	Aerial part	ND	Cardona <i>et al.</i> , 1990
4–Hydroxy–2,3–dimethoxy xanthone [111]	Aerial part	ND	Cardona <i>et al.</i> , 1990
3,4–Dihydroxy–2–methoxy xanthone [112]	Aerial part	ND	Cardona <i>et al.</i> , 1990
3–Hydroxy–2,4–dimethoxy xanthone [113]	Aerial part	ND	Cardona <i>et al.</i> , 1990
4–Hydroxy–2,3,6–trimethoxy xanthone [114]	Aerial part	ND	Cardona <i>et al.</i> , 1990

Plant and chemical compound	Plant part	Activity	Reference
Hypericum patulum			
Paxanthone B [115]	Callus	ND	Ishiguro et al., 1995
Garcinone B [116]	Callus	ND	Ishiguro et al., 1995
1,3,6,7–Tetrahydroxy–8–(3– methyl–2–butenyl) –9H– xanthene–9–one [117]	tissue Callus tissue	ND	Ishiguro et al., 1995
Mammea acuminata			
2,7–Dihydroxyxanthone [118]	Stem and bark	ND	Tosa <i>et al.</i> , 1997
1,5–Dihydroxyxanthone [13]	Stem and bark	ND	Tosa <i>et al.</i> , 1997
5–Hydroxy–1–methoxy xanthone [119]	Stem and bark	ND	Tosa <i>et al.</i> , 1997
2,4–Dihydroxy–3,6– dimethoxyxanthone [120]	Aerial part	ND	Cardona <i>et al.</i> , 1990
3,6–Dihydroxy–2–methoxy xanthone [121]	Aerial part	ND	Cardona <i>et al.</i> , 1990
Mammea siamensis		-	
5–Hydroxy–1–methoxy xanthone [119]	Twig	ND	Poobrasert et al., 1998
1,3–Dimethoxy–5–hydroxy xanthone [122]	Twig	ND	Poobrasert et al., 1998
1,2–Dimethoxy–5–hydroxy xanthone [123]	Twig	ND	Poobrasert et al., 1998
1,7–Dihydroxyxanthone [1]	Twig	ND	Poobrasert et al., 1998
2,5–Dihydroxy–1–methoxy xanthone [124]	Twig	ND	Poobrasert et al., 1998
1,3,7–Trihydroxyxanthone [15]	Twig	ND	Poobrasert et al., 1998

Plant and chemical compound	Plant part	Activity	Reference
Mammea siamensis			
3,5–Dihydroxy–1–methoxy xanthone [125]	Twig	ND	Poobrasert et al., 1998
Mesua ferrea		175	
1,3–Dimethoxy–5,6– dihydroxyxanthone (ferrxanthone) [126]	Heartwood	ND	Walia and Mukerjee, 1984
Mesuferrol A [127]	Bark	ND	Iinuma <i>et al</i> , 1996 c
Mesuferrol B [128]	Bark	ND	Iinuma <i>et al</i> , 1996 c
1,7–Dihydroxyxanthone [1]	Bark	ND	Iinuma <i>et al</i> , 1996 c
5–Hydroxy–1–methoxy xanthone [119]	Bark	ND	Iinuma <i>et al</i> , 1996 c
Ploiarium alternifolium		S./A	
Ploiarixanthone [129]	Branch	ND	Bennett et al., 1990
0	Bark	ND	Bennett et al., 1991

ND

no data

[8]

OH

[32]

	\mathbf{R}_{1}	R ₂
[33]	COOCH ₃	OCH,
[34]	OH	н

OCH3

OCH3

ЮН

[38]

R H CH3 [36] · [37]

[39]

[40]

H CH3 CH3 H H Ac [42] [43] [44]

[41]

[87]

[96]

R3

R₄ H \mathbf{R}_2 R_3 $\mathbf{R}_{\mathbf{I}}$ [97] [99] [100] H Н H 3-methylbut-2-enyl Н Н Н CH₃ H H H

ЮН

HO

[117]

[118]

 Table 2 Distribution of flavonoids in Guttiferae.

Plant and chemical compound	Plant part	Activity	Reference
Clusia nemorosa			
Kaempferol [130]	Bark	Anti–HIV–1 RT	Lin <i>et al.</i> , 1997 ; De Andrade, Almeida and Conserva, 1998
Cratoxylum formosanum		172	
(–)–Epicatechin [131]	Root	ND	Iinuma <i>et al</i> ., 1996 a
Astilbin [132]	Root	ND	Iinuma <i>et al</i> ., 1996 a
Garcinia andamanica			
Sorbifolin 6–galactoside[133]	Leaf	ND	Alam <i>et al.</i> ,1986
Scutellarein 7–diglucoside [134]	Leaf	ND	Alam <i>et al.</i> ,1986
Garcinia kola	3.4.4.00		
GB–1 [135]	Seed Stem bark	ND ND	Kabangu <i>et al.</i> , 1987 Kabangu <i>et al.</i> , 1987
GB-2 [136]	Seed Stem bark	ND ND	Kabangu <i>et al.</i> , 1987 Kabangu <i>et al.</i> , 1987
Kolaflavanone [137]	Seed	ND	Kabangu <i>et al</i> ., 1987
GB-3 [138]	Stem bark	ND	Kabangu <i>et al.</i> , 1987
GB-1a [139]	Seed	Anti-HIV-1 RT (IC ₅₀ 236 μM)	Kabangu <i>et al.</i> , 1987; Lin <i>et al.</i> , 1997
Garcinia multiflora	ь -		
GB-1a [139]	Heartwood	Anti-HIV-1 RT(IC ₅₀ 236 µM)	Lin et al., 1997
GB–1a–7''– <i>O</i> –glucoside [140]	Heartwood	No activity	Lin et al., 1997
GB–2a [141]	Heartwood	Anti-HIV-1 RT(IC ₅₀ 170 µM)	Lin et al., 1997

Table 2 (continued)

Plant and chemical compound	Plant part	Activity	Reference
Garcinia multiflora			
Volkensiflavone [142]	Heartwood	Anti-HIV-1 RT(weakly active)	Lin et al., 1997
Morelloflavone [143]	Heartwood	Anti-HIV-1 RT(IC ₅₀ 116 µM)	Lin et al., 1997
Xanthochymuside [1444]	Heartwood	ND	Lin et al., 1997
Spicataside [145]	Heartwood	ND	Lin et al., 1997
Fukagiside [146]	Heartwood	ND	Lin et al., 1997
Hypericum brasiliense		2	
Kaempferol [130]	Flower and leaf	Anti-HIV-1 RT	Rocha <i>et al.</i> , 1995; Lin <i>et al.</i> , 1997
Quercetin [147]	Flower and leaf	Anti-HIV-1 RT	Rocha <i>et al.</i> , 1995; Lin <i>et al.</i> , 1997
Quercitrin [148]	Flower and leaf	ND	Rocha et al., 1995
Isoquercitrin [149]	Flower and ND leaf		Rocha et al., 1995
Hypericum elodes			
Quercetin 3–glucuronide–3'– sulphate [150]	Aerial part	ND	Sebra and Alves, 1988
Quercetin 3'-sulphate [151]	Aerial part	ND	Sebra and Alves, 1988
Hypericum japonicum			
Taxifolin 7–rhamnoside [152]	Whole plant	ND	Ishiguro et al., 1991
Quercitrin [148]	Whole plant	ND	Ishiguro et al., 1991
Vincetoxicoside B [153]	Whole plant	ND	Ishiguro et al., 1991
Salothranol [154]	Whole plant	Antibacterial (S. aureus, MIC 125 ug/ml)	

Table 2 (continued)

Plant and chemical compound	mical compound Plant part Activity		Reference
Hypericum japonicum			
7,8– (2'',2''–Dimethylpyrano) 5,3',4'–trihydroxy–3– methoxyflavone [155]	Aerial part	ND	Wu et al., 1998
(2R,3R) Dihydroquercetin–3, 7– O – α –L–dirhamnoside [156]	Aerial part	ND	Wu et al., 1998
(2R,3R) Dihydroquercetin-7- $O-\alpha$ -L-rhamnoside [157]	Aerial part	Coagulation of APTT	Wu et al., 1998
(2R,3R) Dihydroquercetin [158]	Aerial part	ND	Wu et al., 1998
2,3– <i>trans</i> –Dihydro–3,5,4'– trihydroxyflavonol 7– $O-\alpha$ – L–rhamnoside [159]	Aerial part	ND	Wu <i>et al.</i> , 1998
Quercetin $-3-O-\beta$ -D-glucoside [160]	Aerial part	Anticoagulation of APTT	Wu <i>et al.</i> , 1998
Quercetin $-7-O-\alpha$ -L- rhamnoside [161]	Aerial part	Promoting coagulation of APTT PT	Wu et al., 1998
Quercetin-3- $O-\alpha$ -L- rhamnosyl (1->2) - $O-\alpha$ -L- rhamnoside [162]	Aerial part	Anticoagulation of APTT	Wu <i>et al.</i> , 1998
Quercetin [1147]	Aerial part	Promoting coagulation of APTT, PT Anti-HIV-1 RT	Lin <i>et al.</i> , 1997; Wu <i>et al.</i> , 1998
Kaempferol [130]	Aerial part	Anti-HIV-1 RT	Lin <i>et al.</i> , 1997; Wu <i>et al.</i> , 1998
Kaempferol $-7-O-\alpha$ -L- rhamnoside [163]	Aerial part	ND	Wu <i>et al.</i> , 1998
Hypericum perforatum			
Hyperoside [164]	Callus	ND	Dias <i>et al.</i> , 1998

Table 2 (continued)

Plant and chemical compound	Plant part	Activity	Reference
Hypericum perforatum			
13, 118–Biapigenin [165]	Whole plant	ND	Borghöfer and Hoelzl,1987
Amentoflavone [166]	Whole plant	ND	Borghöfer and
Luteolin 5–Glucoside [167]	Callus	ND	Dias <i>et al.</i> , 1998
Luteolin 3 '– Glucoside [168]	Callus	ND	Dias <i>et al.</i> , 1998
Luteolin [169]	Callus	ND	Dias <i>et al.</i> , 1998

- ND no data
- APTT Activated Partial Thromboplastin Time Reagent
- PT Prothrombin Time Reagent
- HIV-1 RT Human immunodeficiency virus-1 reverse transcriptase

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

	\mathbf{R}_1	R_2	R_3
[156]	Rha	Rha	OH
[157]	H	Rha	ОН
[158]	H	H	OH
[159]	н	Rha	H

R3 OH OH OH R₁ Glc R₂ H [160] [161] [162] [163] H Rha Rha (2___ 1) Rha H н Rha Н

H H

3. Chemical constituents of the genera Ploiarium and Bonnetia

Phytochemical studies of *Ploiarium alternifolium* were previously reported during the years 1990 to 1992. Isolation and purification of its branches showed the presence of one bixanthone, ploiarixanthone [**129**] and two anthraquinonyl xanthones namely euxanmodin A [**170**] and euxanmodin B [**171**] (Bennett *et al.*, 1990). Further phytochemical studies reported that its bark also contained these compounds in addition to the emodin derivatives, ploiariquinone A [**172**] and ploiariquinone B [**173**] (Bennett *et al.*, 1991). Moreover, two triterpenoid benzoates, methyl 3β benzoyloxyoleana-11, 13(18)-dien-28-oate [**174**] and 3β -benzoyloxyolean-11-en-13 β , 28-olide [**175**] were also found in the bark (Bennett *et al.*, 1992). However, chemical constituent of other *Ploiarium* species has never been reported.

Another investigation was the phytochemical study of *Bonnetia dinizii* (Oliveira *et al.*, 1990). Its wood was found to contain 1,7–dihydroxyxanthone **[1]**, 1,7,8–trihydroxyxanthone **[2]**, 1,6,7,8–tetrahydroxyxanthone **[3]**, 1,2,3,5 –tetrahydroxy xanthone **[4]**, and 1,3–dihydroxy–2,5 –dimethoxyxanthone **[5]**.

[172]

[173]

[175]

CHAPTER III

EXPERIMENTAL

1. Sources of plant material

The leaves of *Ploiarium alternifolium* (Vahl) Melchior were collected from the Peninsular Botanic Garden (Thung khai), Trang province, Thailand, in April 2000. Authentication of the plant material was done by comparison with herbarium specimens at the Royal Forest Department, Bangkok, Thailand.

2. General techniques

2.1 Analytical thin-layer chromatography (TLC)

Technique	:	One dimension, ascending
Adsorbent	:	Silica gel 60 F ₂₅₄ (E. Merck) precoated plate
Layer thickness	:	250 μm
Distance	:	5 cm
Temperature	:	Laboratory temperature (25-30 °C)
Detection	:	1. Visual detection under daylight
		2. Ultraviolet light at wavelengths of 254 and 365 nm

2.2 Column chromatography

2.2.1 Quick column chromatography

Adsorbent	:	Silica gel 60 (No. 7734) particle size 0.063 - 0.200
		mm(70-230 mesh ASTM) (E. Merck)
Packing method	:	Dry packing in the sintered glass filter column

Sample loading	:	The sample was dissolved in a small amount of
		organic solvent, mixed with a small quantity of
		adsorbent, triturated, dried and then placed gently on
		top of the column.
Detection	:	Fractions were examined by TLC technique in the
		same manner as described in Section 2.1

2.2.2 Column chromatography

Adsorbent	:	Silica gel 60 (No. 7734) particle size 0.063-0.200 mm		
		(70-230 mesh ASTM) (E. Merck)		
Packing method	:	The adsorbent was slurried in the eluent, poured into a		
		column and then allowed to settle overnight.		
Sample loading	:	The sample was prepared as described above		
Detection	:	Fractions were examined by TLC technique in the		
		same manner as described in Section 2.1		

2.3 High speed countercurrent chromatography

Instrument	Ċ	High Spe	ed Countercuri	rent Chromato	ograph P.C	L. Inc.
		model	MKII ,	equippe	d with	ı a
		polytetra	fluoroethylene((PTFE) multi	layer coil	with a
		total	capacity	of	320	ml.
Solvent system	ദ്രവം	The two	-phase solvent	t systems we	ere compo	sed of
		chlorofor	m-methanol-w	ater at vario	us ratios.	After
		thorough	ly equilibrated	the mixture	, the two	phases
		were sep	arated shortly b	before use. T	he aqueous	s phase
		was used	as the stationa	ry phase and	the organic	phase
		as the mo	bile phase.			
Sample loading	:	The sam	ple was dissol	ved in equal	volume of	upper
		phase and	d lower phase a	and filtered be	fore inject	ion.
Detection	:	Fractions	were examin	ed by TLC	technique	in the
		same ma	nner as describ	ed in Section	2.1	

2.4 Crystallization technique

All compounds were crystallized from methanol. Each compound was dissolved in methanol until saturated and left standing at room temperature until yellow amorphous powder or yellow-needle crystals were formed.

2.5 Spectroscopy

2.5.1 Ultraviolet (UV) absorption spectra

Ultraviolet spectra were obtained from a Milton Roy Spectronic 3000 Array spectrometer (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.5.2 Infrared (IR) absorption spectra

IR spectra (KBr disc) were obtained on a Perkin-Elmer FTIR spectrometer GX (Division of Drugs Analysis, Department of Medical Sciences).

2.5.3 Mass spectra

Mass spectra were obtained by an Electrospray Ionization Time of Flight mass spectra (ESI-TOF MS) made on a Micromass LCT mass spectrometer. (The National Center for Genetic Engineering and Biotechnology, BIOTEC) and Fast Atom Bombardment mass spectrum (FAB-MS) on a JMS-DX302 mass spectrometer (Meiji Pharmaceutical University, Japan).

2.5.4 Proton and carbon nuclear magnetic resonance (¹H and ¹³C NMR spectra

¹H NMR (300 MHz), ¹³C NMR (75 MHz), DEPT 135, COSY, HMQC, and HMBC spectra were recorded on a Bruker AVANCE DPX-300 FT-NMR spectrometer. Proton detected heteronuclear correlations were measured using HMQC (optimized for ⁿ $J_{HC} = 145$ Hz) and HMBC (optimized for ⁿ $J_{HC} = 4$ and 8 Hz) pulse sequences (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

The solvents for NMR spectra was deuterated dimethylsulfoxide (DMSO- d_6). The chemical shifts were reported in ppm scale using the chemical shift of residual undeuterated solvent at δ 2.49 ppm (¹H) and 39.7 ppm (¹³C), as the reference signals.

2.6 Physical Properties

2.6.1 Melting Points

Melting points were obtained on a Electrothermal IA 9200 series digital melting point apparatus (Department of Narcotics, Department of Medical Sciences).

2.6.2 Optical Rotations

Optical Rotations were measured on a Perkin Elmer 341 polarimeter using a sodium lamp operating at 589 nm (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.7 Solvents

All organic solvents used in this work were commercial grade solvents, which were redistilled prior to use.

3. Extraction and isolation of *Ploiarium alternifolium* leaves.

3.1 Extraction

The dried, coarsely powdered leaves (1.5 kg) of *Ploiarium alternifolium* were marcerated with methanol (4×3 L) and filtered. The filtrates were evaporated under

reduced pressure at temperature not exceeding 50 °C to yield 355 g of the methanol extract (F001).

The methanol extract was dissolved in 10% metanol in water and then partitioned with chloroform and butanol, respectively. Each extract was evaporated to give 76 g of the chloroform extract (F002), 78 g of the aqueous extract (F003), and 200 g of the butanol extract (F004) (Scheme 1).

Scheme 1 Extraction of *Ploiaruim alternifolium* leaves.

3.2 Isolation of the compounds from the butanol extract (F004)

TLC examination of the butanol extract showed several interesting yellowish, polar components. Therefore, it was further isolated by chromatographic techniques.

The butanol extract (F004, 100 g) was dissolved in a small amount of methanol, triturated with kieselguhr (diatomaceous earth) and dried. It was fractionated by quick column chromatography using a sintered glass filter column (17 cm inner diameter and 5 cm long) of silica gel. The organic phase of chloroform - methanol - water (5:6:4) was used as mobile phase for column and developing solvent for TLC. Each 300-ml fraction was collected and fractions with similar thin-layer chromatographic pattern were combined and evaporated to dryness, to give six fractions, F005-F010.

1-4	5.82
5-16	14.33
17-40	17.98
41-44	2.12
45-60	34.06
61-66	8.29
	$ 1-4 \\ 5-16 \\ 17-40 \\ 41-44 \\ 45-60 \\ 61-66 $

Table 3 Fractions obtained from the isolation of F004

Fraction F007 (17.8 g) was divided into two portions. Each portion was further isolated by a silica gel column (9.5 cm inner diameter and 6 cm long) using the same mobile phase as in quick column chromatography. Fractions of 50 ml were collected and similar ones were combined to yield eight fractions (F011-F018).

Fraction	No. of eluate	Total weight (g)
F011	1-2	0.13
F012	3-4	0.14
F013	5-8	1.11
F014	9-18	3.42
F015	19-29	2.51
F016	30-60	2.04
F017	61-74	3.58
F018	75-83	2.53

Table 4 Fractions obtained from the isolation of F007

Being examined by TLC, there were many yellowish polar components in the butanol extract. The suitable technique to isolate polar compounds without irreversible adsorption on solid support is high speed countercurrent chromatography (HSCCC), which is liquid-liquid chromatography.

3.2.1 Isolation of compounds PL-1 and PL-2 from F014

Fraction F014 (500 mg) was further chromatographed by HSCCC using the conditions below.

Sample		Fraction F014 (500 mg) was dissolved in equal
		volume (4 ml) of the aqueous and organic phase and
		filtered before injection.
Solvent system	:	Chloroform - methanol - water (5:10:6, v/v), isocratic
Stationary phase	:	Aqueous phase (upper phase)
Mobile phase	:	Organic phase (lower phase)
Mode	:	Normal phase ; LP, ORG, (H) \rightarrow T
Rotational speed	:	700 r.p.m.

Flow rate	:	3 ml/min
Stationary phase		
Fraction (S _F)	:	0.61
Fraction volume		30 ml/fraction
Pressure	:	75 psi

Fractions were examined by TLC using the mobile phase of HSCCC as the developing solvent. After combination of similar fractions, nine fractions were collected (F019-F027). Fraction F021 and fraction F024 yielded compounds PL-1 and PL-2, respectively (Scheme 2).

No. of eluate	Total weight (mg)
1-4	11
5-8	56
9-10	32
11-13	38
14-15	55
16-17	67
18-20	23
21-24	35
25-28	176
	No. of eluate 1-4 5-8 9-10 11-13 14-15 16-17 18-20 21-24 25-28

Table 5 Fractions obtained from the isolation of F014 (500 mg)

Fraction F021 (32 mg) gave yellow needle crystals (PL-1, 14 mg) which was washed with cool methanol and recrystallized from methanol. The TLC of purified crystal showed only one spot at R_f 0.50 (silica gel / organic phase of chloroform - methanol - water = 5:10:6). Compound PL-1 was identified as isoscutellarein 8-*O*-β-D-glucuronopyranoside methyl ester (Section 1, Chapter IV).

 $\label{eq:Fraction F024 (67 mg) gave yellow amorphous powder (PL-2, 30 mg).$ The TLC chromatogram of the purified compound showed a single spot at R_f 0.44

(silica gel / organic phase of chloroform - methanol - water = 5:10:6). Compound PL-2 was later identified as hypolaetin 8-O- β -D-glucuronopyranoside methyl ester (Section 2, Chapter IV).

3.2.2 Isolation of compounds PL-3 and PL-4 from F013

Fraction F013 (870 mg) was divided into two portions. Each portion (550 and 320 mg) was further isolated by HSCCC using the conditions below.

Sample	: _	Each portion was dissolved in equal volume (4 ml) of
		the aqueous and organic phase and filtered before
		injection.
Solvent system	:	Chloroform - methanol - water (7:13:8, v/v), isocratic
Stationary phase	:	Aqueous phase (upper phase)
Mobile phase	:	Organic phase (lower phase)
Mode	:	Normal phase ; LP, ORG, (H) \rightarrow T
Rotational speed	: /	760 r.p.m.
Flow rate	:	3 ml/min
Stationary phase		
Fraction (S _F)	3	0.66
Fraction volume	:	30 ml/fraction :
Pressure		75-100 psi

Similar fractions, examined by TLC using the mobile phase of HSCCC as the developing solvent, were combined to yield eight fractions (F028-F035). This separation provided compounds PL-3 and PL-4 from fraction F030 and fraction F031, respectively (Scheme 2). Moreover, fraction F032 also gave compound PL-1 (32 mg) which was formerly obtained from fraction F021.

Fraction	No. of eluate	Total weight (mg)
F028	1-4	19
F029	5-8	53
F030	9-10	220
F031	11-13	168
F032	14-16	51
F033	17-22	73
F034	23-25	30
F035	26-34	245

Table 6 Fractions obtained from the isolation of F013 (870 mg)

Fraction F030 (220mg) was crystallized from methanol to yield 10 mg of yellow needle crystals (PL-3). The TLC of purified compound showed only single spot at $R_f 0.53$ (silica gel / organic phase of chloroform - methanol - water = 7:13:8) that was later identified as isoscutellarein 8-*O*- β -D-glucuronopyranoside butyl ester (Section 3, Chapter IV).

Fraction F031 (168 mg) gave yellow amorphous powder (PL-4, 36 mg) which precipitated from methanol. The TLC of purified compound showed one spot at R_f 0.47 (silica gel / organic phase of chloroform - methanol - water = 7:13:8). Compound PL-4 was subsequently identified as hypolaetin 8-O- β -D- glucuronopyra noside butyl ester (Section 4, Chapter IV).

Scheme 2 Fractionation of the butanol extract from *Ploiarium alternifolium* leaves

4. Physical and chemical properties of the isolated compounds

4.1

Compound	PL-1
M.P.	: $260 - 263 \degree C$
$\left[\alpha\right]^{25}$ D	: + 147.10 ° (c 0.104, MeOH)
UV	: λ_{max} (MeOH) nm (log ε); Figure 10
	272(4.19), 334(4.16)
	: λ_{max} (MeOH + NaOH) nm (log ε); Figure 11
	279(4.25), 326(3.96), 399(4.37)
	: λ_{max} (MeOH + AlCl ₃) nm (log ε); Figure 12
	278(4.12), 306(4.10), 349(4.20), 389(4.06)
	: λ_{max} (MeOH + AlCl ₃ + HCl) nm (log ε); Figure 13
	229(4.16), 280(4.11), 306(4.12), 344(4.18), 388(3.97)
	: λ_{max} (MeOH + NaOAc) nm (log ε); Figure 14
	280(4.36), 363(4.04)
	: λ_{max} (MeOH + NaOAc + H ₃ BO ₃) nm (log ε); Figure 15
	278(4.27), 350(4.14)
IR	: v _{max} cm ⁻¹ , KBr disc; Figure 16
	3445, 3104, 1732, 1658, 1554, 1453
ESI-TOF N	AS : m/z; Figure 17
	499 [M+Na] ⁺ , 477 [M+H] ⁺
¹ H NMR	: $\delta_{\rm H}$ (ppm), 300 MHz, in DMSO- d_6 ; Figure 18
	3.0-3.5 (3H, H-2", H-3", and H-4"), 3.57 (3H, s, OMe), 3.91
	(1H, d, J = 9.6 Hz, H-5''), 4.81 (1H, d, J = 7.8 Hz, H-1''),
	6.25 (1H, s, H-6), 6.77 (1H, s, H-3), 6.88 (2H, d, <i>J</i> = 8.6 Hz,
	H-3' and H-5'), 8.00 (2H, d, $J = 8.6$ Hz, H-2' and H-6'),
	12.76 (1H, s, 5- OH)
¹³ C NMR	: $\delta_{\rm C}$ (ppm), 75 MHz, in DMSO- d_6 ; Figure 19
	51.9 (q, OMe), 71.5 (d, C-4"), 73.8 (d, C-2"), 75.1 (d, C-3"),
	75.6 (d, C-5"), 98.9 (d, C-6), 102.3 (d, C-3), 103.2 (s, C-4a),
	106.3 (d, C-1"), 115.7 (d, C-3' and C-5'), 121.0 (s, C-1'),
	125.1 (s, C-8), 128.6 (d, C-2' and C-6'), 149.1 (s, C-8a),

157.1 (s, C-5 and C-7), 160.9 (s, C-4'), 163.5 (s, C-2), 169.1 (s, C-6"), 181.5 (s, C-4)

4.2 Compound PL-2

M.P.	: 246 – 249 ° C
$\left[\alpha\right]^{25}$ D	$: + 146.15^{\circ}$ (c 0.118, MeOH)
UV	: λ_{max} (MeOH) nm (log ε); Figure 29
	271(4.17), 352(4.20)
	: λ_{max} (MeOH + NaOH) nm (log ε); Figure 30
	275(4.28), 413(4.34)
	: λ_{max} (MeOH + AlCl ₃) nm (log ε); Figure 31
	276(4.30), 431(4.38)
	: λ_{max} (MeOH + AlCl ₃ + HCl) nm (log ε); Figure 32
	275(4.14), 299(3.97), 360(4.13)
	: λ_{max} (MeOH + NaOAc) nm (log ε); Figure 33
	280(4.30), 326(4.06), 372(4.09)
	: λ_{max} (MeOH + NaOAc + H ₃ BO ₃) nm (log ε); Figure 34
	263(4.28), 379(4.27)
IR	: $v_{max} \text{ cm}^{-1}$, KBr disc; Figure 35
	3335, 3173, 1728, 1658, 1571, 1452
ESI-TOF MS	: m/z; Figure 36
	515 [M+Na] ⁺ , 493 [M+H] ⁺
¹ H NMR	: $\delta_{\rm H}$ (ppm), 300 MHz, in DMSO- d_6 ; Figures 37 - 38
	3.0-3.5 (3H, H-2", H-3", and H-4"), 3.55 (3H, s, OMe), 3.89
	(1H, d, <i>J</i> = 9.6 Hz, H-5"), 4.81 (1H, d, <i>J</i> = 7.7 Hz, H-1"),
	6.25 (1H, s, H-6), 6.63(1H, s, H-3), 6.86 (1H, d, <i>J</i> = 8.4 Hz,
	H-5'), 7.38 (1H, s, H-2'), 7.56 (1H, d, J = 8.4 Hz, H-6'),
	12.80 (1H, s, 5-OH)
¹³ C NMR	: $\delta_{\rm C}$ (ppm), 75 MHz, in DMSO- d_6 ; Figure 39
	51.9 (q, OMe), 71.4 (d, C-4"), 73.7 (d, C-2"), 75.1 (d, C-3"),
	75.6 (d, C-5"), 98.9 (d, C-6), 102.3 (d, C-3), 103.3 (s, C-4a),

106.1 (d, C-1"), 113.6 (d, C-2'), 115.7 (d, C-5'), 119.4 (d, C-6'), 121.3 (s, C-1'), 124.9 (s, C-8), 145.4 (s, C-3'), 149.2 (s, C-4'), 149.7 (s, C-8a), 157.1 (s, C-5 and C-7), 163.8 (s, C-2), 168.2 (s, C-6"), 181.5 (s, C-4)

4.3 Compound PL-3

M.P.	: 255 – 257 ° C
$\left[\alpha\right]^{25}$ D	: + 118.17 ° (c 0.100, MeOH)
UV	: λ_{max} (MeOH) nm (log ε); Figure 49
	277(4.35), 302(4.25), 345(4.19)
	: λ_{max} (MeOH + NaOH) nm (log ε)
	279(4.40), 399(4.49)
	: λ_{max} (MeOH + AlCl ₃) nm (log ε)
	279(4.27), 306(4.24), 349(433), 390(4.16)
	: λ_{max} (MeOH + AlCl ₃ + HCl) nm (log ε)
	280(4.27), 306(4.26), 344(4.32), 389(4.08)
	: λ_{max} (MeOH + NaOAc) nm (log ε)
	280(4.48), 372(4.15)
	: λ_{max} (MeOH + NaOAc + H ₃ BO ₃) nm (log ϵ)
	280(4.47), 314(4.38), 351(4.43)
IR	: v_{max} cm ⁻¹ , KBr disc; Figure 50
	3158(br), 2925, 1727, 1654, 1578, 1446
FABMS	: m/z; Figure 51
	519 [M+H] ⁺
¹ H NMR	: $\delta_{\rm H}$ (ppm), 300 MHz, in DMSO- d_6 ; Figure 52
	0.73 (3H, t, $J = 7.3$ Hz, H-4"'), 1.14 (2H, sextet, $J = 7.3$ Hz,
	H-3"'), 1.36 (2H, m, H-2"'), 3.0-3.5 (3H, H-2", H-3", and H-
	4"), 3.87 (1H, d, <i>J</i> = 9.7 Hz, H-5"), 3.97 (2H, dd, <i>J</i> = 6.5, 6.3
	Hz, H-1"'), 4.80 (1H, d, <i>J</i> = 7.8 Hz, H-1"), 6.24 (1H, s, H-6),
	6.81(1H, s, H-3), 6.87 (2H, d, J = 8.6 Hz, H-3' and H-5'),
	8.00 (2H, d, <i>J</i> = 8.6 Hz, H-2' and H-6'), 12.78 (1H, s, 5-OH)

¹³C NMR : δ_{C} (ppm), 75 MHz, in DMSO- d_{6} ; Figure 53 13.5 (q, C-4'''), 18.5 (t, C-3'''), 30.0 (t, C-2'''), 64.3 (t, C-1'''), 71.4 (d, C-4''), 73.8 (d, C-2''), 75.1 (d, C-3''), 75.6 (d, C-5''), 98.9 (d, C-6), 102.2 (d, C-3), 103.1 (s, C-4a), 106.3 (d, C-1''), 115.7 (d, C-3' and C-5'), 121.0 (s, C-1'), 125.0 (s, C-8), 128.6 (d, C-2' and C-6'), 149.1 (s, C-8a), 157.1 (s, C-7), 157.2 (s, C-5), 161.0 (s, C-4'), 163.5 (s, C-2), 168.6 (s, C-6''), 181.5 (s, C-4)

4.4 Compound PL-4

M.P.	: 259 - 262 ° c
$\left[\alpha\right]^{25}$ D	: + 126.90 ° (c 0.100, MeOH)
UV	: λ_{max} (MeOH) nm (log ε); Figure 61
	272(4.23), 355(4.20)
	: λ_{max} (MeOH + NaOH) nm (log ε)
	271(4.33), 412(4.36)
	: λ_{max} (MeOH + AlCl ₃) nm (log ε)
	276(4.31), 423(4.30)
	: λ_{max} (MeOH + AlCl ₃ + HCl) nm (log ε)
	276(4.21), 301(4.04), 356(4.19)
	: λ_{max} (MeOH + NaOAc) nm (log ε)
	280(4.37), 380(4.22)
	: λ_{max} (MeOH + NaOAc + H ₃ BO ₃) nm (log ε)
	269(4.43), 380(4.37)
IR	: $v_{max} \text{ cm}^{-1}$, KBr disc; Figure 62
	3071, 2738, 1739, 1656, 1576
FABMS	: m/z; Figure 63
	535 $[M+H]^+$
¹ H NMR	: $\delta_{\rm H}$ (ppm), 300 MHz, in DMSO- d_6 ; Figures 64-65
	0.74 (3H, t, $J = 7.3$ Hz, H-4"'), 1.14 (2H, sextet, $J = 7.3$ Hz,
	H-3"'), 1.35 (2H, m, H-2"'), 3.0-3.5 (3H, H-2", H-3", and H-

4"), 3.85 (1H, d, *J* = 9.7 Hz, H-5"), 3.95 (2H, dd, *J* = 6.2, 5.6 Hz, H-1"'), 4.81 (1H, d, *J* = 7.8 Hz, H-1"), 6.26 (1H, s, H-6), 6.63(1H, s, H-3), 6.86 (1H, d, *J* = 8.4 Hz, H-5'), 7.38 (1H, d, *J* = 1.9 Hz, H-2'), 7.56 (1H, dd, *J* = 8.4, 1.9 Hz, H-6'), 12.79 (1H, s, 5-OH)

¹³C NMR : δ_{C} (ppm), 75 MHz, in DMSO- d_{6} ; Figure 66 13.5 (q, C-4'''), 18.4 (t, C-3'''), 30.0 (t, C-2'''), 64.4 (t, C-1'''), 71.4 (d, C-4''), 73.8 (d, C-2''), 75.3 (d, C-3''), 75.7 (d, C-5''), 99.0 (d, C-6), 102.4 (d, C-3), 103.5 (s, C-4a), 106.0 (d, C-1''), 113.7 (d, C-2'), 115.8 (d, C-5'), 119.6 (d, C-6'), 121.5 (s, C-1'), 125.0(s, C-8), 145.7 (s, C-3'), 149.5 (s, C-4'), 150.0 (s, C-8a), 156.9 (s, C-7), 157.4 (s, C-5), 164.1 (s, C-2), 168.8 (s, C-6''), 181.9 (s, C-4)

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER IV

RESULTS AND DISCUSSION

The leaves of *Ploiarium alternifolium* (1.5 kg) were macerated with methanol and the methanol extract was partitioned with chloroform and butanol, respectively. When examined by TLC, the butanol extract showed several interesting, yellowish polar components. Therefore, it was further separated by chromatographic techniques, mainly using the high speed countercurrent chromatography(HSCCC) to afford four pure compounds.

The structures of these isolated compounds were determined by analyses of their spectroscopic data, including UV, IR, MS and NMR spectral data, and then confirmed by comparison with literature.

1.Structure elucidation of isoscutellarein 8-*O*-β-D-glucuronopyranoside methyl ester

Compound PL-1 was obtained as yellow-needle crystals showing optical rotation $[\alpha]^{25}_{D}$ of + 147.10° (c0.104, MeOH). The UV spectrum in MeOH (Figure 10) exhibited λ_{max} at 272, 334 nm. The IR spectrum (Figure 16) displayed characteristic bands at 3445, 3104 (hydroxyl group), 1732 (ester carbonyl), 1658 (ketone carbonyl) and 1554, 1453 (aromatic ring). The ESI-TOF mass spectrum (Figure 17) of this compound showed the pseudomolecular ion peak at m/z 499 $[M+Na]^+$ and m/z 477 $[M+H]^+$ implying the molecular formula of $C_{22}H_{20}O_{12}$.

The 300 MHz ¹H NMR spectrum in DMSO- d_6 of compound PL-1 (Figure 18) exhibited one methyl proton signal at δ 3.57 ppm ; five methine proton signals at δ 3.0-3.5 (3H), 3.91, and 4.81 ppm ; six aromatic and olefinic proton signals at δ 6.25, 6.77, 6.88 (2H), and 8.00 (2H) ppm ; and a chelated hydroxyl signal at δ 12.76 ppm. The 75 MHz ¹³C NMR spectrum in DMSO- d_6 (Figure 19) indicated twenty-two carbons, consistent with the molecular formula. The carbon signals were classified by
the DEPT 135 (Figure 20) and the HMQC spectra (Figures 21-22) as one methyl carbon signal at δ 51.9 ppm ; five oxymethine carbon signals at δ 71.5, 73.8, 75.1, 75.6 and 106.3 ppm ; six aromatic and olefinic carbon signals at δ 98.9, 102.3, 115.7 (2C), and 128.6 (2C) ppm ; and ten quaternary carbon signals at δ 103.2, 121.0, 125.1, 149.1, 157.1 (2C), 160.9, 163.5, 169.1, and 181.5 ppm. Analyses of the ¹³C NMR (Table 7) indicated the presence of an ester carbonyl carbon at δ 169.1 ppm and a ketone carbonyl at δ 181.5 ppm that were assigned as C-6" and C-4, respectively.

From the ¹H NMR and ¹³C NMR spectral data, the most downfield proton signal was at δ 12.76 ppm, suggesting the presence of the chelated hydroxyl group in compound PL-1. Thus the proton signal was assigned to 5-OH which chelated with the ketone carbonyl at C-4. The aromatic proton signals at δ 6.88 (2H) and 8.00 (2H) ppm were the two equivalent sets of the ortho-coupled proton signals (J = 8.6 Hz). These proton signals were assigned to H-2', H-6' (δ 8.00 ppm) and H-3', H-5'(δ 6.88 ppm) of ring B. So 4'-position should be substituted with a hydroxyl group. The other singlet proton signals at δ 6.77 and 6.25 ppm were assigned as H-3 and H-6, respectively. Therefore, a hydroxyl group should be substituted at 7-position. In the ¹³C NMR spectrum, the upfield signal region (δ 71.5-75.6 ppm) indicated the presence of a sugar part. The anomeric carbon signal (δ 106.3 ppm) and the anomeric proton signal (δ 4.81 ppm) also suggested compound PL-1 as having one sugar moiety.

Compound PL-1, therefore, has two major parts, one flavone aglycone and one sugar moiety. The ¹H-¹H COSY spectrum (Figures 23-24) exhibited the proton connectivities in the aglycone and sugar moiety as follow : H-2' or H-6' / H-3' or H-5' ; H-1" / H-2" ; H-4" / H-5" (Figure 2).

Figure 2 The ¹H-¹H correlations (bold line) in the ¹H-¹H COSY spectrum of isoscutellarein 8-O- β -D-glucuronopyranoside methyl ester (PL-1)

The complete assignments of compound PL-1 were achieved by analysis of the HMBC (${}^{n}J_{HC} = 8$ and 4 Hz) spectra (Figures 25-28). The HMBC spectra exhibited the ${}^{1}H{}^{-13}C$ long-range correlations in the aglycone as follows : the correlations of 5-OH (δ 12.76 ppm) to C-6 (δ 98.9 ppm) and the correlations of H-6 (δ 6.25 ppm) to C-5 (δ 157.1 ppm), C-7 (δ 157.1 ppm) supported the positions of the hydroxyl groups at 5-position and 7-position. The correlations of H-2', H-6' [δ 8.00 ppm (2H)] and H-3', H-5' [δ 6.88 ppm (2H)] to C-4' (δ 160.9 ppm) confirmed that the hydroxyl group was located at 4'-position. The connection between rings A and C was exhibited by the correlations of H-3 (δ 6.77 ppm) and H-6 (δ 6.25 ppm) to C-4a (δ 103.2 ppm). The linkage between ring B and ring C was assigned by the correlations of H-2', H-6'[δ 8.00 ppm (2H)] to C-2 (δ 163.5 ppm) and H-3 (δ 6.77 ppm) to C-1' (δ 121.0 ppm). For the sugar moiety, the anomeric proton (δ 4.81 ppm) having the correlation with C-8 (δ 125.1 ppm) indicated 8-*O*-substitution of the flavone aglycone. The *J* value (7.8 Hz) of the doublet of anomeric proton suggested the β -configuration of the sugar. The sugar moiety was then assigned as 8-*O*- β -D-glucuronopyranoside methyl ester by the correlation of COOC<u>H</u>₃ (δ 3.57 ppm, 3H) to C-6" (δ 169.1 ppm). The ¹H-¹³C long-range correlations from the HMBC spectrum of compound PL-1 in DMSO- d_6 are shown in Figure 3 and summarized in Table 8.

Figure 3 The ¹H-¹³C long-range correlations in the HMBC spectrum of isoscutellarein 8-O- β -D-glucuronopyranoside methyl ester (PL-1)

The spectral data of compound PL-1 were compared with those of the known compound, isoscutellarein 8-*O*- β -D-glucuronopyranoside (Billeter, Meier, and Sticher, 1991). The data are shown in Table 8. Compound PL-1 was similar to the known compound except the presence of carboxymethyl group at δ_H 3.57 ppm and δ_C 51.9 ppm. Therefore, compound PL-1 was determined as isoscutellarein 8-*O*- β -D-glucuronopyranoside methyl ester.

	PL-1				
Position	$\delta_{\rm C}$ (ppm) $\delta_{\rm H}$ (ppm), mult.		HMBC correlations		
		(<i>J</i> in Hz)	$^{n}J_{\rm HC} = 8 \ {\rm Hz}$	$^{n}J_{\rm HC} = 4 {\rm Hz}$	
Aglycone					
2	163.5		-	-	
3	102.3	6.77, s	C-2, C-4, C-1'	C-2, C-4a	
4	181.5	-	-	-	
4a	103.2		-	-	
5	157.1	12.76, OH, s	C-4a, C-5, C-6	C-4a, C-5, C-6	
6	98.9	6.25, s	C-4a, C-5, C-7, C-8	C-4a, C-5, C-7, C-8	
7	157.1	1-119-6	-	-	
8	125.1			-	
8a	149.1	//-	-	-	
1'	121.0	- 1. 1.	The second second	-	
2'	128.6	8.00, d (8.6)	C-2, C-4′	C-2, C-4′	
3'	115.7	6.88, d (8.6)	C-1', C-4'	C-4′	
4'	160.9		132/5-19-	-	
5′	115.7	6.88, d (8.6)	C-1', C-4'	C-4′	
6′	128.6	8.00, d (8.6)	C-2, C-4′	C-2, C-4′	
Sugar					
1″	106.3	4.81, d (7.8)	C-8	C-8	
2″	73.8	3.0 - 3.5	ายบริกา		
3″	75.1	3.0 - 3.5		<u> </u>	
4″	71.5	3.0 - 3.5	<u>แหล่ว</u> ณ	เวลัย	
5″	75.6	3.91, d (9.6)	C-6″	C-6″	
6″	169.1	-	-	-	
COO <u>C</u> H ₃	51.9	3.57, 3H, s	C-6″	C-6″	

Table 7 The ¹H - ¹³C NMR and HMBC spectral data of PL-1 in DMSO- d_6

		PL-1	isoscutellarein	
Position			8- O - β -D-glucuronopyranoside ^a	
	$\delta_{\rm C}$ (ppm)	$\delta_{\rm H}$ (ppm), mult.	δ _C (ppm)	
		(J in Hz)		
Aglycone				
2	163.5		163.8	
3	102.3	6.77, s	102.3	
4	181.5		181.7	
4a	103.2		103.3	
5	157.1	12.76, OH, s	157.2	
6	98.9	6.25, s	99.0	
7	157.1		157.2	
8	125.1	1 9 4 to 5 min 4	125.2	
8a	149.1	ALA-CALA	149.2	
1′	121.0	1 (BEGGEDONNI)	121.0	
2'	128.6	8.00, d (8.6)	128.9	
3'	115.7	6.88, d (8.6)	116.0	
4'	160.9	-	161.1	
5'	115.7	6.88, d (8.6)	116.0	
6′	128.6	8.00, d (8.6)	128.9	
Sugar	สกา	าข้างเวิงกยางเร	รี่การ	
1″	106.3	4.81, d (7.8)	106.3	
2″	73.8	3.0 - 3.5	73.6	
3"	75.1	3.0 - 3.5	76.1	
4″	71.5	3.0 - 3.5	71.5	
5″	75.6	3.91, d (9.6)	75.3	
6″	169.1	-	170.1	
COO <u>C</u> H ₃	51.9	3.57, 3H, S	-	

Table 8 The ¹H-¹³C NMR spectral data of PL-1 (in DMSO- d_6) and isoscutellarein 8-O- β -D-glucuronopyranoside (in DMSO- d_6)

^a reported by Billeter *et al.*, 1991

2. Structure elucidation of hypolaetin 8-*O*-β-D-glucuronopyranoside methyl ester (PL-2)

Compound PL-2 was isolated as yellow amorphous powder. The UV spectrum in MeOH (Figure 29) displayed λ_{max} at 271 and 352 nm. The IR spectrum (Figure 35) exhibited absorption bands at 3335, 3173 (hydroxyl group), 1728 (ester carbonyl), 1658 (ketone carbonyl) and 1571, 1452 cm⁻¹ (aromatic ring). The ESI-TOF mass spectrum (Figure 36) established the molecular formula of this compound as C₂₂H₂₀O₁₃, showing the pseudomolecular ion peak at m/z 493 [M+H]⁺ and 515 [M+Na]⁺. This compound showed optical rotation $[\alpha]^{25}$ _D of + 146.15 ° (c 0.118, MeOH).

The 300 MHz ¹H NMR spectrum in DMSO- d_6 of compound PL-2 (Figures 37-38) suggested that this compound contained one methyl ester proton appearing as the signal at δ 3.55 ppm ; five methine proton signals at δ 3.0-3.5 (3H), 3.89, and 4.81 ppm ; five aromatic and olefinic proton signals at δ 6.25, 6.63, 6.86, 7.38, and 7.56 ppm ; and a chelated hydroxyl at δ 12.80 ppm. The 75 MHz ¹³C NMR spectrum in DMSO- d_6 (Figure 39) showed twenty-two carbons. These carbon signals were classified by the DEPT 135 (Figure 40) and the HMQC spectra (Figures 41-42) as one methyl ester carbon signal at δ 51.9 ppm ; five aromatic and olefinic carbon signals at δ 71.4, 73.7, 75.1, 75.6 and 106.1 ppm ; five aromatic and olefinic carbon signals at δ 98.9, 102.3, 113.6, 115.7, and 119.4 ppm ; and eleven quaternary carbon signals at δ 103.3, 121.3, 124.9, 145.4, 149.2, 149.7, 157.1 (2C), 163.8, 168.2, and 181.5 ppm.

Most of the proton and carbon resonances in the ¹H and ¹³C NMR spectra of compounds PL-1 (isoscutellarein 8-*O*- β -D-glucuronopyranoside methyl ester) and PL-2 were similar except for the resonances in ring B. For compound PL-2, one set of ortho-coupled protons (J = 8.4 Hz) at δ 6.86 and 7.56 ppm, and one singlet proton signal at δ 7.38 ppm were presented. This evidence indicated that ring B of compound PL-2 should be substituted with more hydroxyl group than in compound PL-1. There were two possibilities for the two hydroxyl groups in ring B: one was 2', 4'-dihydroxyl, whereas the other was 3', 4'-dihydroxyl substitution. In the case of 2', 4'-dihydroxyl substitution, the aromatic carbon signal at 3'-position would have been

more the upfield similar to the carbon at 6-position (δ_C 98.9 ppm) due to the influence of dihydroxyl groups between 2'-position and 4'-position. However, in this case, no such upfield aromatic carbon signal was detected. In addition, the UV absorption maximum at 352 nm was bathochromically shifted with AlCl₃ and NaOAc/H₃BO₃, indicative of a flavone having an ortho dihydroxyl moiety in the structure.

The ¹H-¹H COSY spectrum of compound PL-2 (Figures 43-44) revealed the similarity of its sugar moiety to that of isoscutellarein 8-*O*- β -D-glucuronopyranoside methyl ester (compound PL-1). The observed ¹H-¹H correlations were indicative of the proton connectivities as follows: H-2' / H-6' / H-5' ; H-1" / H-2" ; H-4" / H-5" (Figure 4).

Figure 4 The ¹H-¹H correlations (bold line) in the ¹H-¹H COSY spectrum of hypolaetin 8-O- β -D-glucuronopyranoside methyl ester (PL-2).

The complete assignments of compound PL-2 were achieved by analysis of the HMBC (${}^{n}J_{HC} = 8$ and 4 Hz) spectra (Figures 45-48). The ${}^{1}H{}^{-13}C$ long-range correlations from the HMBC spectrum of compound PL-2 in DMSO- d_{6} are shown in Figure 5 and summarized in Table 9.

Figure 5 The ¹H-¹³C long-range correlations in the HMBC spectrum of hypolaetin 8-O- β -D-glucuronopyranoside methyl ester (PL-2)

Comparison of ¹H and ¹³C NMR spectral data of compound PL-2 with those of hypolaetin 8-*O*- β -D-glucuronopyranoside (Billeter *et al.*, 1991) is shown in Table 10. Compound PL-2 appeared to be similar to the known compound except for the additional presence of carboxymethyl group at δ_H 3.55 ppm and δ_C 51.9 ppm. Therefore, the structure of compound PL-2 was identified as hypolaetin 8-*O*- β -D-glucuronopyranoside methyl ester.

	PL-2				
Position	Position δ_{C} (ppm) δ_{H} (ppm)		HMBC correlations		
		(<i>J</i> in Hz)	$^{n}J_{\rm HC} = 8 \ {\rm Hz}$	$^{n}J_{\rm HC} = 4 {\rm Hz}$	
Aglycone					
2	163.8	-	-	-	
3	102.3	6.63, s	C-2, C-4a	C-2, C-4a	
4	181.5			-	
4a	103.3		-	-	
5	157.1	12.80, OH, s	C-4a, C-5, C-6	C-4a, C-5, C-6	
6	98.9	6.25, s	C-4a, C-5, C-7, C-8	C-4a, C-5, C-7, C-8	
7	157.1	- ///	-	-	
8	124.9	1-115-6	-	-	
8a	149.7		-	-	
1'	121.3		-	-	
2'	113.6	7.38, br s	C-2, C-4', C-6'	C-2, C-3', C-4'	
3'	145.4	- 2021	-	-	
4'	149.2	-9355540		-	
5'	115.7	6.86, d (8.4)	C-1', C-3'	C-3′	
6′	119.4	7.56, br d (8.4)	- 9	C-4′	
Sugar	9	2	<u> </u>		
1″	106.1	4.81, d (7.7)	C-8	C-8	
2"	73.7	3.0 - 3.5	-	-	
3″	75.1	3.0 - 3.5	ายบริกา	5 -	
4″	71.4	3.0 - 3.5	100.0111	d	
5″	75.6	3.89, d (9.6)	C-6″	C-6"	
6"	168.2	NII.3616	MAL FALLS	1 61 61	
COO <u>C</u> H ₃	51.9	3.55, 3H, s	C-6″	C-6″	

Table 9 1 H, 13 C NMR and HMBC spectral data of PL-2 in DMSO- d_6

		PL-2	hypolaetin	
Position			8- O - β -D-glucuronopyranoside ^a	
	δ _C (ppm)	$\delta_{\rm H}$ (ppm), mult.	δ _C (ppm)	
		(<i>J</i> in Hz)		
Aglycone				
2	163.8		164.7	
3	102.3	6.63, s	102.6	
4	181.5		181.3	
4a	103.3		102.5	
5	157.1	12.80, OH, s	157.3	
6	98.9	6.25, s	99.5	
7	157.1		159.1	
8	124.9		126.1	
8a	149.7	2.4th Out A	149.3	
1'	121.3	AREAL	121.6	
2'	113.6	7.38, br s	114.0	
3'	145.4	BONNIN MAR	146.5	
4'	149.2	-	149.6	
5'	115.7	6.86, d (8.4)	115.6	
6'	119.4	7.56, br d (8.4)	118.5	
Sugar		0.1		
1″	106.1	4.81, d (7.7)	107.3	
2″	73.7	3.0 - 3.5	74.1	
3″	75.1	3.0 - 3.5	76.5	
4″	71.4	3.0 - 3.5	71.8	
5″	75.6	3.89, d (9.6)	75.7	
6"	168.2	-	172.0	
COO <u>C</u> H ₃	51.9	3.55, 3H, s	-	

Table 10 The ¹H and ¹³C NMR spectral data of PL-2 (in DMSO- d_6) and
hypolactin 8-O- β -D-glucuronopyranoside (in DMSO- d_6)

^a reported by Billeter *et al.,* 1991

3. Structure elucidation of isoscutellarein 8-O- β -D-glucuronopyranoside butyl ester (PL-3)

Compound PL-3 was isolated as yellow-needle crystals showing optical rotation $[\alpha]^{25}$ _D of + 118.17 (c 0.100, MeOH). The UV spectrum in MeOH (Figure 49) showed λ_{max} at 277 and 302 nm. The IR spectrum (Figure 50) exhibited absorption bands at 3158 (hydroxyl group), 2925 (aliphatic), 1727 (ester carbonyl), 1654 (ketone carbonyl), and 1578, 1446 cm⁻¹ (aromatic ring). The FABMS spectrum (Figure 51) of this compound showed the pseudomolecular ion peak at m/z 519 [M+H]⁺, implying the molecular formula of C₂₅H₂₆O₁₂.

The 300 MHz ¹H NMR spectrum of compound PL-3 in DMSO- d_6 (Figure 52) exhibited one methyl proton signal at δ 0.73 ppm ; three methylene proton signals at δ 1.14, 1.36, and 3.97 ppm ; five oxymethine proton signals at δ 3.0-3.5 (3H), 3.87, and 4.80 ppm ; six aromatic and olefenic proton signals at δ 6.24, 6.81, 6.87 (2H), and 8.00 (2H) ppm ; and a chelated hydroxyl proton at δ 12.78 ppm. The 75 MHz ¹³C NMR spectrum in DMSO- d_6 (Figure 53) showed signals for twenty-five carbons, which were classified by the DEPT 135 spectrum (Figure 54) as one methyl carbon signal at δ 13.5 ppm ; three methylene carbon signals at δ 18.5, 30.0, and 64.3 ppm ; five oxymethine carbon signals at δ 71.4, 73.8, 75.1, 75.6 and 106.3 ppm ; six aromatic and olefinic carbon signal at δ 103.1, 121.0, 125.0, 149.1, 157.1, 157.2, 161.0, 163.5, 168.6, and 181.5 ppm. Further assignments of the directly bonded protons and carbons by analyses of the HMQC spectrum (Figure 55) are shown in Table 11.

The ¹H and ¹³C NMR spectra of compound PL-3 were similar to those of isoscutellarein 8-*O*- β -D-glucuronopyranoside (Billeter *et al.*, 1991). However, both the additional proton signals [one methyl proton (δ 0.73 ppm) and three methylene protons (δ 1.14, 1.36, and 3.97 ppm)] and carbon signals [one methyl carbon (δ 13.5 ppm) and three methylene carbon (δ 18.5, 30.0, and 64.3 ppm)] could be clearly observed on the NMR spectral data of compound PL-3.

Analysis of the ¹H-¹H COSY (Figure 56) and the HMQC spectra led to the assignments of these additional protons and carbons as parts of a butyl fragment. The ¹H-¹H COSY connectivities of compound PL-3 were as follows : H-2' or H-6' / H-3' or H-5' ; H-1" / H-2" ; H-4" / H-5" ; H-1"' / H-2"'' / H-3"'' / H-4"' (Figure 6).

Figure 6 The ¹H-¹H correlation (bold line) in the ¹H-¹H COSY spectrum of isoscutellarein 8-O- β -D-glucuronopyranoside butyl ester (PL-3).

The HMBC spectra (${}^{n}J_{HC} = 8$ and 4 Hz) of compound PL-3 (Figures 57-60)supported the presence of butyl fragment by showing the correlations of H₂-1"' (δ 3.97 ppm) to C-3"' (δ 18.5 ppm); H₂-3"'(δ 1.14 ppm) to C-2"' (δ 30.0 ppm) and C-4"' (δ 13.5 ppm); and H₃-4"' (δ 0.73 ppm) to C-2"' and C-3"'. This fragment was assigned to be butyl ester group of the sugar moiety according to the correlation between H-1"' (δ 3.97 ppm) and C-6" (δ 168.6 ppm). Therefore, the sugar moiety was 8-*O*- β -D-glucuronopyranoside butyl ester. The ¹H-¹³C long-range HMBC correlations of compound PL-3 in DMSO- d_6 are shown in Figure 17 and summarized in Table 11.

Figure 7 The ¹H-¹³C long-range correlations in the HMBC spectrum of isoscutellarein 8-*O*-β-D-glucuronopyranoside butyl ester (PL-3)

Compound PL-3 showed similar spectral data to isoscutellarein 8-O- β -D-glucuronopyranoside (Billeter *et al.*, 1991). However, the difference was the butyl ester group presented in the sugar moiety. The characteristic aliphatic band also appeared at 2925 cm⁻¹ in the IR spectrum. According to these data, compound PL-3 was identified as isoscutellarein 8-O- β -D-glucuronopyranoside butyl ester.

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

	PL-3				
Position	δ_{C}	$\delta_{\rm H}$ (ppm), mult.	HMBC c	HMBC correlations	
	(ppm)	(J in Hz)	$^{n}J_{\rm HC} = 8 \text{ Hz}$	${}^{n}J_{\rm HC} = 4 {\rm Hz}$	
Aglycone					
2	163.5	-	-	-	
3	102.2	6.81, s	C-2, C-4a	C-2, C-4, C-4a, C-1'	
4	181.5	-		-	
4a	103.1		-	-	
5	157.2	12.78, OH, s	C-4a, C-5, C-6	C-4a, C-5	
6	98.9	6.24, s	C-4a, C-5, C-7, C-8	C-4a, C-5, C-7, C-8	
7	157.1	- // _	-	-	
8	125.0		-	-	
8a	149.1		-	-	
1'	121.0		-	-	
2'	128.6	8.00, d (8.6)	C-2, C-4′	C-2	
3'	115.7	6.87, d (8.6)	C-1'	C-4′	
4′	161.0	- 02454543		-	
5'	115.7	6.87, d (8.6)	C-1'	C-4′	
6′	128.6	8.00, d (8.6)	C-2, C-4′	C-2	
Sugar					
1″	106.3	4.80, d (7.8)	C-8	C-8	
2″	73.8	3.0 - 3.5	-	-	
3″	75.1	3.0 - 3.5	ยาเรการ	-	
4″	71.4	3.0 - 3.5		·	
5″	75.6	3.87, d (9.7)	C-6"	C-6"	
6″	168.6	01 1 1 0 0 000	111310	1810.	
1‴	64.3	3.97, 2H, dd (6.5, 6.3)	C-6", C-3"'	-	
2‴	30.0	1.36, 2H, m	-	-	
3‴	18.5	1.14, 2H, sextet (7.3)	C-2"', C-4"'	C-4‴	
4‴	13.5	0.73, 3H, t (7.3)	C-2"', C-3"'	C-2"', C-3"'	

Table 11 The ¹H, ¹³C NMR and HMBC spectral data of PL-3 in DMSO- d_6

4. Structure elucidation of hypolaetin 8-O- β -D-glucuronopyranoside butyl ester (PL-4)

Compound PL-4 was obtained as yellow amorphous powder showing optical rotation $[\alpha]^{25}_{D}$ of + 126.90 (c 0.106, MeOH). The UV spectrum in MeOH (Figure 61) exhibited λ_{max} at 272 and 355 nm. The IR spectrum (Figure 62) displayed characteristic bands at 3071 (hydroxyl group), 2738 (aliphatic), 1739 (ester carbonyl), 1656 (ketone carbonyl), and 1576 cm⁻¹ (aromatic ring). The FABMS spectrum (Figure 63), showing the pseudomolecular ion peak at m/z 535 [M+H]⁺, established the molecular formula of this compound as C₂₅H₂₆O₁₃.

The 300 MHz ¹H NMR spectrum in DMSO- d_6 of compound PL-4 (Figures 64-65) displayed one methyl proton signal at δ 0.74 ppm ; three methylene proton signals at δ 1.14, 1.35, and 3.95 ppm ; five oxymethine proton signals at δ 3.0-3.5 (3H), 3.85, and 4.81 ppm ; five aromatic and olefenic proton signals at δ 6.26, 6.63, 6.86, 7.38, and 7.56 ppm; and a chelated hydroxyl signal at δ 12.79 ppm. The 75 MHz ¹³C NMR spectrum in DMSO- d_6 (Figure 66) indicated twenty-five carbons, consistent with the molecular formula. The carbon signals were classified by the DEPT 135 spectrum (Figure 67) as one methyl carbon signal at δ 13.5 ppm ; three methylene carbon signals at δ 18.4, 30.0, and 64.4 ppm ; five methine carbon signals at δ 99.0, 102.4, 113.7, 115.8, and 119.6 ppm ; and eleven quaternary carbon signals at δ 103.5, 121.5, 125.0, 145.7, 149.5, 150.0, 156.9, 157.4, 164.1, 168.8, and 181.9 ppm.

Analyses of the HMQC spectrum (Figures 68-69) facilitated in the assignments of protons and their respective carbons, as shown in Table 12. The ¹H-¹H COSY spectrum (Figure 70) exhibited the proton connectivities in the aglycone and sugar moiety as follows : H-2' / H-6' / H-5' ; H-1" / H-2" ; H-4" / H-5" ; H-1"' / H-2"' / H-3"' / H-4"' (Figure 8).

Figure 8 The ¹H-¹H correlations (bold line) in the ¹H-¹H COSY spectrum of hypolaetin 8-O- β -D-glucuronopyranoside butyl ester (PL-4)

The proton and carbon resonances in the ¹H and ¹³C NMR spectra of compound PL-4 and hypolaetin $8-O-\beta$ -D-glucuronopyranoside methyl ester (Compound PL-2) showed both compounds as having identical aglycone structure but differing in the sugar moiety part. From the presence of butyl ester group and the correlation of H-1''' (δ 3.95 ppm) to C-6'' (δ 168.8 ppm), The proposed structure of compound PL-4 was hypolaetin $8-O-\beta$ -D-glucuronopyranoside butyl ester.

The complete NMR assignments of compound PL-4 were confirmed by the HMBC (${}^{n}J_{HC} = 8$ and 4 Hz) spectra (Figures 71-75). The ${}^{1}H_{-}{}^{13}C$ long-range correlations are shown in Figure 9 and summarized in Table 12.

Figure 9 The ¹H-¹³C long-range correlations in the HMBC spectrum of hypolaetin 8-O- β -D-glucuronopyranoside butyl ester (PL-4)

	PL-4			
Position	$\delta_{\rm c}$ $\delta_{\rm W}$ (npm) mult HMBC correlations			orrelations
robition	(mmm)	$(I = II_{-})$	$n_{I} = 9 \text{ Hz}$	$^{n}I = 4 \text{ Hz}$
	(ppm)	(<i>J</i> in HZ)	$J_{\rm HC} = 8 \ {\rm HZ}$	$J_{\rm HC} = 4 {\rm Hz}$
Aglycone				
2	164.1		-	-
3	102.4	6.63, s	C-2, C-4a	C-1′, C-4a
4	181.9		-	-
4a	103.5	-	-	-
5	157.4	12.79, OH, s	C-4a, C-5, C-6	C-4a
6	99.0	6.26, s	C-4a, C-5, C-6, C-7	C-4a, C-5, C-7, C-8
7	156.9	- /- 9.65	-	-
8	125.0		-	-
8a	150.0		-	-
1′	121.5	- 2. 1566.000	-	-
2'	113.7	7.38, d (1.9)	C-2, C-4', C-3'	C-2, C-3', C-4'
3'	145.7	Contraction of the second s		-
4′	149.5	6-31401.2/1	Jacon -	-
5'	115.8	6.86, d (8.4)	C-1', C-3'	C-1', C-3', C-4'
6′	119.6	7.56, dd (8.4, 1.9)	C-4′	C-2
Sugar			U	
1″	106.0	4.81, d (7.8)	C-8	C-8
2"	73.8	3.0 - 3.5	เยริการ	-
3″	75.3	3.0 - 3.5		-
4″	71.4	3.0 - 3.5	างการา	าลย
5″	75.7	3.85, d (9.7)	C-6″	C-6"
6″	168.8	-	-	-
1‴	64.4	3.95, 2H, dd (6.2, 5.6)	-	-
2‴	30.0	1.35, 2H, m	-	C-4"'
3‴	18.4	1.14, 2H, sextet (7.3)	C-2"'	C-4'''
4‴	13.5	0.74, 3H, t (7.3)	C-2"', C-3"'	C-2"', C-3"'

Table 12 The ¹H, ¹³C NMR and HMBC spectral data of PL-4 in DMSO- d_6

CHAPTER V

CONCLUSION

In this investigation, the butanol extract from the leaves of Ploiarium alternifolium was mainly isolated by high speed countercurrent chromatography (HSCCC). This technique led to the isolation of four yellowish polar components. These compounds were determined as the flavone glycosides, isoscutellarein 8-O- β -D-glucuronopyranoside methyl ester, hypolaetin $8-O-\beta$ -D-glucuronopyranoside methyl ester, isoscutellarein 8-O- β -D-glucuronopyranoside butyl ester, and hypolaetin 8-O- β -D-glucuronopyranoside butyl ester. Their yields were 3.1×10^{-3} , 2.0×10^{-3} , 6.7×10^{-4} , and 2.4×10^{-3} % w/w based on dried weight of the leaves, respectively. Both isoscutellarein and hypolaetin were the known aglycones isolated from many plants (Harborne, 1994). The glucuronic acid and its ester derivatives were found in some glycosides. The previous phytochemical study in Helicteres angustifolia (Sterculiaceae) reported that the glucuronide methyl ester was linked with takakin to be the compound, takakin 8-O- β -D-glucuronopyranoside metyl ester(Chen, Lee and Chen, 1994). However, the linkage between isoscutellarein or hypolaetin with these sugar parts have never been reported. The investigation of of P. alternifolium showed the presence of xanthones, anthraquinones, and triterpenoids in the barks and branches (Bennett et al., 1990; 1991; 1992). But chemical constituents of its leaves have never been reported. Therefore, this is the first report of flavone glycosides from P. alternifolium leaves.

REFERENCES

- Alam, M. S., Qasim, M. A., Kamil, M., and Ilyas, M. 1986. Sorbifolin 6–galactoside from *Garcinia andamanica*. <u>Phytochemistry</u> 25(12): 2900–2901.
- Asai, F., Tosa, H., Tanaka, T., and Iinuma, M. 1995. A xanthone from *Garcinia mangostana*. <u>Phytochemistry</u> 39(4): 943-944.
- Bennett, G. J., and Lee, H. 1989. Xanthones from Guttiferae. <u>Phytochemistry</u> 28(4): 967–998
- Bennett, G. J., Harrison, L. J., Lim, M., Sim, K., Tan, E., and Connolly, J. D. 1991. Geranyl anthraquinones from the bark of *Ploiarium alternifolium*. <u>Phytochemistry</u> 30(9): 3141–3143.
- Bennett, G. J., Harrison, L. J., Sia, G., Sim, K., and Connolly, J. D. 1992.
 Oleanane benzoates from the bark of *Ploiarium alternifolium*. <u>Phytochemistry</u> 31(4): 1325–1327.
- Bennett, G. J., Lee, H., and Lowrey, T. K. 1990. Novel metabolites from *Ploiarium alternifolium*: A bixanthone and two anthraquinonyl xanthones. <u>Tetrahedron Lett</u>. 31(5): 751–754.
- Bennett, G. J., Harrison, L. J., Sia, G. L., and Sim, K. 1993. Triterpenoids, tocotrienols and xanthones from the bark of *Cratoxylum cochinchinense*. <u>Phytochemistry</u> 32(5): 1245-1251.
- Berghöfer, R., and Hoelzl, J. 1987. Biflavonoids in *Hypericum perforatum*. Part I. Isolation of I3, II8-biapigenin. <u>Planta Med</u>. 53: 216-217.
- Berghöfer, R., and Hoelzl, J. 1989. Isolation of I3', II8-biapigenin (Amentoflavone) from *Hypericum perforatum*. <u>Planta Med</u>. 55: 91.
- Bilia, A. R., Yusuf, A. W., Braca, A., Keita, A., and Morelli, I. 2000. New prenylated anthraquinones and xanthones from *Vismia guineensis*. <u>J. Nat.</u> <u>Prod.</u> 63(1): 16–21.
- Billeter, M., Meier, B., and Sticher, O. 1991. 8–Hydroxyflavonoid glucuronides from Malva sylvestris. Phytochemistry 30(3): 987–990.
- Botta, B., Delle Monache, G., Delle Monache, F., Marini Bettolo, G. B., and Menichini, F. 1986. Vismione H and prenylated xanthones from *Vismia* guineensis. <u>Phytochemistry</u> 25(5): 1217–1219.

- Cardona, M. L., and Seoane, E. 1982. Xanthone constituents of *Hypericum* ericoides. J. Nat. Prod. 45(2): 134-136.
- Cardona, M. L., Fernandez, I., Pedro, J. R., and Serrano, A. 1990. Xanthones from *Hypericum reflexum*. <u>Phytochemistry</u> 29(9): 3003-3006.
- Cardona, M. L., Fernandez, M. I., Pedro, J. R., Seoane, E., and Vidal, R. 1986.
 Additional new xanthones and xanthonolignoids from *Hypericum canariensis*.
 <u>J. Nat. Prod.</u> 49(1): 95-100.
- Chairungsrilerd, N., Takeuchi, K., Ohizumi, Y., Nozoe, S., and Ohta, T. 1996.
 Mangostanol, a prenyl xanthone from *Garcinia mangostana*. <u>Phytochemistry</u> 43(5): 1099-1102.
- Chang, C. W., Yang, L. L., Yen, K. Y., Hatano, T., Yoshida, T., and Okuda, T. 1994. Tannins from theaceous plants. VII. New γ–pyrone glucoside, and dimeric ellagitannins from *Gordonia axillaris*. <u>Chem. Pharm. Bull.</u> 42(9): 1922–1923.
- Chen, Z. T., Lee, S. W., Chen, C. M. 1994. New flavoid glycosides of *Helicteres* angusifolia. <u>Heterocycle</u>. 38(6): 1399-1406.
- Conway, W. D. and Petroski, R. J. 1995. <u>Modern Countercurrent Chromatography</u> Washington, DC : American Chemical Society.
- Cortez, D. A. G., Young, M. C. M., Marston, A., Wolfender, J. L., and Hostettmann, K. 1998. Xanthones, triterpenes and a biphenyl from *Kielmeyera coriacea*. Phytochemistry 47(7): 1367–1374.
- Cruz, F. G., Moreira, L. M., David, J. M., Guedes, M. L. S., and Chavez, J. P. 1998. Coumarins from *Kielmeyera reticulata*. <u>Phytochemistry</u> 47(7): 1363–1366.
- Cruz, F. G., Santos, N. A. S., David, J. M., Guedes, M. L. S., and Chavez, J. P. 1998. Coumarins from *Kielmeyera argentea*. <u>Phytochemistry</u> 48(4): 703–706.
- De Andrade, M. R., Almeida, E. X., and Conserva, L. M. 1998. Alkyl chromone and other compounds from *Clusia nemorosa*. <u>Phytochemistry</u> 47(7): 1431–1433.
- Dharmaratne, H. R. W., and Wijesinghe, W. M. N. M. 1997. A trioxygenated diprenylated chromenxanthone from *Calophyllum moonii*. <u>Phytochemistry</u> 46(7): 1293-1295.

- Dias, A. C. P., Tomas-Barberan, F. A., Fernandes-Ferreira, M., and Ferreres, F. 1998. Unusual flavonoids produced by callus of *Hypericum perforatum*. Phytochemistry 48(7): 1165-1168.
- Han, L., Hatano, T., Yoshida, T., and Okuda, T. 1994. Tannins of theaceous plants.
 V. Camelliatannins F, G and H, three new tannins from *Camellia japonica* L. <u>Chem. Pharm. Bull.</u> 42(7): 1399–1409.
- Harborne, J. B. 1994. <u>The flavonoids: Advances in research since 1986</u>, First edition. London: Chapman & Hall.
- Harrison, L. J., Leong, L. S., Sia, G. L., Sim, K. Y., and Tan, H. T. W. 1993. Xanthones from *Garcinia forbesii*. <u>Phytochemistry</u> 33(3): 727–728.
- Hu, L. H., Yip, S. C., and Sim, K. Y., 1999. Xanthones from *Hypericum ascyron*.
 <u>Phytochemistry</u> 52(7): 1371–1373.
- Huang, Y. L., Chen, C. C., Chen, Y. J., Huang, R. L., and Shieh, B. J. 2001. Three xanthones and a benzophenone from *Garcinia mangostana*. <u>J. Nat.</u> <u>Prod.</u> 64: 903-906.
- Hutchinson, J. 1959. <u>The families of flowering plants</u>. Vol.1 Dicotyledons, Second edition. London: Oxford University Press.
- Iinuma, M., Ito, T., Miyake, R., Tosa, H., Tanaka, T., and Chelladurai, V. 1998. A xanthone from *Garcinia cambogia*. <u>Phytochemistry</u> 47(6): 1169-1170.
- Iinuma, M., Ito, T., Tosa, H., and Tanaka, T. 1996b. Five new xanthones from *Garcinia dulcis*. J. Nat. Prod. 59: 472-475.
- Iinuma, M., Ito, T., Tosa, H., Tanaka, T., Miyake, R., and Chelladurai, V. 1997. New linear pyranoxanthones from *Calophyllum apetalum*. <u>Heterocycles</u> 45(2): 299-307.
- Iinuma, M., Tosa, H., Ito, T., Tanaka, T., and Madulid, D. A. 1996a. Two xanthones from roots of *Cratoxylum formosanum*. <u>Phytochemistry</u> 42(4): 1195–1198.
- Iinuma, M., Tosa, H., Tanaka, T., and Yonemori, S. 1994. Two xanthones from root bark of *Calophyllum inophyllum*. <u>Phytochemistry</u> 35(2): 527–532.
- Iinuma, M., Tosa, H., Tanaka, T., and Riswan, S. 1996c. Two new dimeric xanthones in *Mesua ferrea*. <u>Heterocycles</u> 43(9): 1999-2004.
- Iinuma, M., Tosa, H., Tanaka, T., and Yonemori, S. 1995. Two xanthones from roots of *Calophyllum inophyllum*. <u>Phytochemistry</u> 38(3): 725-728.

- Ishiguro, K., Chaudhuri, S. K., and Kubo, I. 1998. A xanthone from *Clusia insignis*. <u>Phytochemistry</u> 49(8): 2531–2532.
- Ishiguro, K., Nagata, S., Fukumoto, H. Yamaki, M., Takagi, S., and Isoi, K. 1991. A flavanonol rhamnoside from *Hypericum japonicum*. <u>Phytochemistry</u> 30(9): 3152–3153.
- Ishiguro, K., Nagata, S., Fukumoto, H., Yamaki, M., Isoi, K, and Oyama, Y. 1993. An isopentenylated flavonol from *Hypericum japonicum*. <u>Phytochemistry</u> 32(6): 1583–1585.
- Ishiguro, K., Nakajima, M., Fukumoto, H., and Isoi, K. 1995. Co-occurrence of prenylated xanthones and their cyclization products in cell suspension cultures of *Hypericum patulum*. <u>Phytochemistry</u> 38(4): 867-869.
- Ito, C., Mishina, Y., Litaudon, M., Cosson, J. P., and Furukawa, H. 2000. Xanthone and dihydroisocoumarin from *Montrouziera sphaeroidea*. <u>Phytochemistry</u> 53: 1043–1046.
- Kabangu, K., Galeffi, C., Aonzo, E., Nicoletti, M. and Messana, I. 1987. A new biflavanone from the bark of *Garcinia kola*. <u>Planta Med</u>. 53: 275–277.
- Keng, H. 1972. Bonnetiaceae. In: <u>Flora of Thailand</u> Vol.2, part 2. Bangkok: Applied Scientific Research Corporation of Thailand. pp. 159–160.
- Kijjoa, A., Gonzalez, M. J., Afonso, C. M., Pinto, M. M. M., Anantachoke, C., and Herz, W. 2000a. Xanthones from *Calophyllum teysmannii* var. *inophylloide*. <u>Phytochemistry</u> 53: 1021-1024.
- Kijjoa, A., Gonzalez, M. J., Pinto, M. M. M., Silva, A. M. S., Anantachoke, C., and Herz, W. 2000b. Xanthones from *Calophyllum teysmannii* var. *inophylloide*. <u>Phytochemistry</u> 53: 833-836.
- Kijjoa, A., Jose, M., Gonzalez, T. G., Pinto, M. M. M., Damas, A. M., Mondranondra, I. O., Silva, A. M. S., and Herz, W. 1998. Xanthones from *Cratoxylum maingayi*. <u>Phytochemistry</u> 49(7): 2159-2162.
- Kosela, S., Hu, L. H., Rachmatia, T., Hanafi, M., and Sim, K. Y. 2000. Dulxanthones F-H, three new pyranoxanthones from *Garcinia dulcis*. J. Nat. <u>Prod.</u> 63: 406-407.
- Kosela, S., Hu, L. H., Yip, S. C., Rachmatia, T., Sukri, T., Daulay, T. S., Tan, G.
 K., Vittal, J. J., and Sim, K. Y. 1999. Dulxanthone E: A pyranoxanthone from the leaves of *Garcinia dulcis*. <u>Phytochemistry</u> 52: 1375-1377.

- Kosin, J., Ruangrungsi, N., Ito, C., and Furukawa, H. 1998. A xanthone from *Garcinia atroviridis*. <u>Phytochemistry</u> 47(6): 1167-1168.
- Likhitwitayawuid, K., Chanmahasathien, W., Ruangrungsi, N., and Krungkrai, J. 1998a. Xanthones with antimalarial activity from *Garcinia dulcis*. <u>Planta</u> <u>Med</u>. 64: 281-282.
- Likhitwitayawuid, K., Phadungcharoen, T., and Krungkrai, J. 1998b. Antimalarial xanthones from *Garcinia cowa*. <u>Planta Med</u>. 64: 70-72.
- Lin, Y. M., Anderson, H., Flavin, M. T., Pai, Y. H. S., Mata–Greenwood, E., Pengsuparp, T., Pezzuto, M., Schinazi, R. F., Hughes, S. H., and Chen, F. C. 1997. In vitro anti–HIV activity of biflavonoids isolated from *Rhus* succedanea and Garcinia multiflora. J. Nat. Prod. 60(9): 884–888.
- Mabberley, D. J. 1993. <u>The plant-book: A portable dictionary of the higher plant</u>. Cambridge: Cambridge University Press.
- Mabberley, D. J. 1997. <u>The plant-book: A portable dictionary of the vascular</u> <u>plants</u>. Second edition. Cambridge: Cambridge University Press.
- Marston, A. and Hostettmann, K. 1991. Modern separation methods. <u>Nat. Prod.</u> <u>Rep.</u> 391–413.
- Minami, H., Hamaguchi, K., Kubo, M., and Fukuyama, Y. 1998. A benzophenone and a xanthone from *Garcinia subelliptica*. <u>Phytochemistry</u> 49(6): 1783–1785.
- Na Pattalung, P., Thongtheeraparp, W., Wiriyachitra, P., and Taylor, W. C. 1994. Xanthones of *Garcinia cowa*. <u>Planta Med</u>. 60: 365-368.
- Nguyen, L. H. D., and Harrison, L. J. 2000. Xanthones and triterpenoids from the bark of *Garcinia vilersiana*. <u>Phytochemistry</u> 53: 111-114.
- Nguyen, L. H. D., and Harrison, L. J. 1998. Triterpenoid and xanthone constituents of *Cratoxylum cochinchinense*. Phytochemistry 50: 471–476.
- Olivares, E. M., Gonzalez, J. G., and Monache, F. D., 1994. Benzophenones from *Clusia ellipticifolia*. <u>Phytochemistry</u> 36(2): 473–475.
- Oliveira, W. G., Mesquita, A. A. L., Kubitzki, K., and Gottlieb, O. R. 1990. Xanthones from *Bonnetia dinizii*. <u>Phytochemistry</u> 29(6): 1893–1894.
- Phengklai, C. and Niyomdham, C. 1991. <u>Flora in peat swamp areas of Narathiwat</u>, First edition. Bangkok: Phikul Thong Study Centre.

- Poobrasert, O., Constant, H. L., Beecher, C. W. W., Farnsworth, N. R., Kinghorn,
 A. D., Pezzuto, J. M., Cordell, G. A., Santisuk, T., and Reutrakul, V. 1998.
 Xanthones from the twigs of *Mammea siamensis*. <u>Phytochemistry</u> 47(8): 1661-1663.
- Rocha, A., Marston, A., Potterat, O., Kaplan, M. A., Stoeckli–Evans, H., and Hostettmann, K. 1995. Antibacterial phloroglucinols and flavonoids from *Hypericum brasiliense*. <u>Phytochemistry</u> 40(5): 1447–1452.
- Sebra, R. M., and Alves, A. C. 1988. Quercetin 3–glucuronide-3'–sulphate from *Hypericum elodes*. <u>Phytochemistry</u> 27(9): 3019–3020.
- Sebra, R. M., and Alves, A. C. 1991. Quercetin 3'-sulphate from *Hypericum* elodes. <u>Phytochemistry</u> 30(4): 1344–1345.
- Seo, E. K., Wani, M. C., Wall, M. E., Navarro, H., Mukherjee, R., Farnsworth, N. R., and Kinghorn, A. D. 2000. New bioactive aromatic compounds from *Vismia guianensis*. <u>Phytochemistry</u> 55: 35–42.
- Shervington, A., Shervington, L. A., Afifi, F., and El-omari, M. A. 1998. Caffeine and Theobromine formation by tissue cultures of *Camellia sinensis* <u>Phytochemistry</u> 47(8): 1535–1536.
- Sia, G. L., Bennett, G. J., Harrison, L. J., and Sim, K. Y. 1995. Minor xanthones from the bark of *Cratoxylum cochinchinense*. <u>Phytochemistry</u> 38(6): 1521-1528.
- Silverstein, R. M., and Webster, F. X. 1998. <u>Spectrometric identification of organic</u> <u>compounds</u>. Sixth edition. Chichester: John Wiley & Sons Inc.
- Smitinand, T. 1980. <u>Thai plant names</u> (Botanical names-vernacular names). Bangkok: Funny Publishing.
- Sonthwell, I. A., and Campbell, M. H. 1991. Hypericum content variation in *Hypericum perforatum* in Australia. <u>Phytochemistry</u> 30(2): 475-478.
- Tosa, H., Iinuma, M., Murakami, K. I., Ito, T., Tanaka, T., Chelladurai, V., and Riswan, S. 1997. Three xanthones from *Poeciloneuron pauciflorum* and *Mammea acuminata*. <u>Phytochemistry</u> 45(1): 133–136.
- Walia., S., and Mukerjee, S. K. 1984. Ferrxanthone, a 1,3,5,6–tetraoxygenated xanthone from *Mesua ferrea*. <u>Phytochemistry</u> 23(8): 1816–1817.

- Wu, Q. L., Wang, S. P., Du, L. J., Zhang, S. M., Yang , J. S., and Xiao, P. G. 1998. Chromone glycosides and flavonoids from *Hypericum japonicum*. <u>Phytochemistry</u> 49(5): 1417–1420.
- Xu, Y. J., Lai, Y. H., Imiyabir, Z., and Goh, S. H. 2001. Xanthones from Garcinia parvifolia. J. Nat. Prod. 64: 1191-1195.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

APPENDIX

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Figure 10 The UV spectrum (in MeOH) of isoscutellarein 8-O- β -D-glucuronopyranoside methyl ester (PL-1)

D-glucuronopyranoside methyl ester (PL-1)

Figure 12 The UV spectrum (in MeOH + AlCl₃) of isoscutellarein 8-O- β -D-glucuronopyranoside methyl ester (PL-1)

Figure 13 The UV spectrum (in MeOH + AlCl₃ + HCl) of isoscutellarein 8- $O-\beta$ -D-glucuronopyranoside methyl ester (PL-1)

Figure 14 The UV spectrum (in MeOH + NaOAc) of isoscutellarein 8-O- β -D-glucuronopyranoside methyl ester (PL-1)

Figure 15 The UV spectrum (in MeOH + NaOAc + H₃BO₃) of isoscutellarein 8-O- β -D-glucuronopyranoside methyl ester (PL-1)

Figure 16 The IR spectrum (in KBr disc) of isoscutellarein 8-O- β -D-glucuronopyranoside methyl ester (PL-1)

Figure 17 The ESI-TOF mass spectrum of isoscutellarein 8-O- β -D-glucuronopyranoside methyl ester (PL-1)

Figure 18 The 300 MHz ¹H NMR spectrum (in DMSO- d_6) of isoscutellarein 8-*O*- β -D-glucuronopyranoside methyl ester (PL-1)

Figure 19 The 75 MHz ¹³C NMR spectrum (in DMSO- d_6) of isoscutellarein 8-O- β -D-glucuronopyranoside methyl ester (PL-1)

Figure 20 The 75 MHz DEPT 135 NMR spectrum (in DMSO- d_6) of isoscutellarein 8-O- β -D-glucuronopyranoside methyl ester (PL-1)

Figure 22 The HMQC spectrum (in DMSO- d_6) of isoscutellarein 8-O- β -D-glucuronopyranoside methyl ester (PL-1) (expanded from δ_H 3.00 – 8.50 ppm and δ_C 45.0 – 135.0 ppm

Figure 23 The 300 MHz ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum (in DMSO- d_6) of isoscutellarein 8- $O{-}\beta$ -D-glucuronopyranoside methyl ester (PL-1)

Figure 24 The 300 MHz ¹H-¹H COSY spectrum (in DMSO- d_6) of isoscutellarein 8-*O*- β -D-glucuronopyranoside methyl ester (PL-1) (expanded from $\delta_{\rm H}$ 2.80-8.50 ppm)

Figure 25 The HMBC spectrum (${}^{n}J_{HC} = 8$ Hz) (in DMSO- d_{6}) of isoscutellarein 8-O- β -D-glucuronopyranoside methyl ester (PL-1)

Figure 26 The HMBC spectrum (${}^{n}J_{HC} = 8$ Hz) (in DMSO-*d*₆) of isoscutellarein 8-*O*- β -D-glucuronopyranoside methyl ester (PL-1) (expanded from $\delta_{\rm H} 3.20 - 7.30$ ppm and $\delta_{\rm C} 65.0 - 185.0$ ppm

Figure 27 The HMBC spectrum (${}^{n}J_{HC} = 8$ Hz) (in DMSO- d_{6}) of isoscutellarein 8-*O*- β -D-glucuronopyranoside methyl ester (PL-1) (expanded from $\delta_{\rm H}$ 7.50 – 13.00 ppm and $\delta_{\rm C}$ 90.0 – 185.0 ppm

Figure 28 The HMBC spectrum (${}^{n}J_{HC} = 4$ Hz) (in DMSO- d_{6}) of isoscutellarein 8-O- β -D-glucuronopyranoside methyl ester (PL-1)

glucuronopyranoside methyl ester (PL-2)

Figure 30 The UV spectrum (in MeOH + NaOH) of hypolaetin 8-O- β -D-glucuronopyranoside methyl ester (PL-2)

Figure 31 The UV spectrum (in MeOH +AlCl₃) of hypolaetin 8-O- β -D-glucuronopyranoside methyl ester (PL-2)

Figure 32 The UV spectrum (in MeOH + AlCl₃ + HCl) of hypolaetin 8-O- β -D-glucuronopyranoside methyl ester (PL-2)

Figure 33 The UV spectrum (in MeOH + NaOAc) of hypolaetin 8-O- β -D-glucuronopyranoside methyl ester (PL-2)

Figure 34 The UV spectrum (in MeOH + NaOAc + H₃BO₃) of hypolaetin 8-*O*- β -D-glucuronopyranoside methyl ester (PL-2)

Figure 35 The IR spectrum (in KBr disc) of hypolaetin 8-O- β -D-glucuronopyranoside methyl ester (PL-2)

Figure 36 The ESI-TOF mass spectrum of hypolaetin 8-O- β -D-glucuronopyranoside methyl ester (PL-2)

Figure 37 The 300 MHz ¹H NMR spectrum (in DMSO- d_6) of hypolaetin 8-*O*- β -D-glucuronopyranoside methyl ester (PL-2)

Figure 38 The 300 MHz ¹H NMR spectrum (in DMSO- d_6) of hypolaetin 8-*O*- β -D-glucuronopyranoside methyl ester (PL-2) (expanded from δ_H 3.68-7.81 ppm)

Figure 39 The 75 MHz ¹³C NMR spectrum (in DMSO- d_6) of hypolaetin 8-O- β -D-glucuronopyranoside methyl ester (PL-2)

Figure 40 The 75 MHz DEPT 135 spectrum (in DMSO- d_6) of hypolaetin 8-O- β -D-glucuronopyranoside methyl ester (PL-2)

Figure 41 The 300 MHz HMQC spectrum (in DMSO- d_6) of hypolaetin 8-O- β -D-glucuronopyranoside methyl ester (PL-2)

Figure 42 The 300 MHz HMQC spectrum (in DMSO-*d*₆) of hypolaetin 8-*O*- β -D-glucuronopyranoside methyl ester (PL-2) (expanded from δ_H 3.12 - 4.10 ppm and δ_C 48.0 - 80.0 ppm)

Figure 43 The 300 MHz ¹H-¹H COSY spectrum (in DMSO- d_6) of hypolaetin 8-*O*- β -D-glucuronopyranoside methyl ester (PL-2)

Figure 44 The 300 MHz ¹H-¹H COSY spectrum (in DMSO-*d*₆) of hypolaetin 8-*O*- β -D-glucuronopyranoside methyl ester (PL-2) (expanded from $\delta_{\rm H}$ 2.50-8.50 ppm)

Figure 45 The HMBC spectrum (${}^{n}J_{HC} = 8$ Hz) (in DMSO- d_{6}) of hypolaetin 8-O- β -D-glucuronopyranoside methyl ester (PL-2)

Figure 46 The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 8$ Hz) (in DMSO- d_{6}) of hypolaetin 8-*O*- β -D-glucuronopyranoside methyl ester (PL-2) (expanded from δ_{H} 3.00-8.00 ppm and δ_{C} 90.0-180.0 ppm)

Figure 47 The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 8$ Hz) (in DMSO-*d*₆) of hypolaetin 8-*O*- β -D-glucuronopyranoside methyl ester (PL-2) (expanded from δ_{H} 6.54-7.91 ppm and δ_{C} 110.0-153.0 ppm)

Figure 48 The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 4$ Hz) (in DMSO- d_{6}) of hypolaetin 8-*O*- β -D-glucuronopyranoside methyl ester (PL-2)

Figure 49 The UV spectrum (in MeOH) of isoscutellarein 8-O- β -D-glucuronopyranoside butyl ester (PL-3)

Figure 50 The IR spectrum (in KBr disc) of isoscutellarein 8-O- β -D-glucuronopyranoside butyl ester (PL-3)

Figure 51 The FABMS spectrum of isoscutellarein8-O- β -D-glucuronopyranoside butyl ester (PL-3)

Figure 52 The 300 MHz ¹H NMR spectrum (in DMSO- d_6) of isoscutellarein 8-O- β -D-glucuronopyranoside butyl ester (PL-3)

Figure 53 The 75 MHz ¹³C NMR spectrum (in DMSO- d_6) of isoscutellarein 8-*O*- β -D-glucuronopyranoside butyl ester (PL-3)

8-O- β -D-glucuronopyranoside butyl ester (PL-3)

Figure 55 The 300 MHz HMQC spectrum (in DMSO- d_6) of isoscutellarein 8-O- β -D-glucuronopyranoside butyl ester (PL-3)

Figure 56 The 300 MHz ¹H-¹H COSY spectrum (in DMSO- d_6) of isoscutellarein 8-O- β -D-glucuronopyranoside butyl ester (PL-3)

Figure 57 The HMBC spectrum (${}^{n}J_{HC} = 8$ Hz) (in DMSO- d_{6}) of isoscutellarein 8-*O*- β -D-glucuronopyranoside butyl ester (PL-3)

Figure 58 The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 8$ Hz) (in DMSO-*d*₆) of isoscutellarein 8-*O*- β -D-glucuronopyranoside butyl ester (PL-3) (expanded from $\delta_{\rm H}$ 0.20-6.00 ppm and $\delta_{\rm C}$ 10.0-80.0 ppm)

Figure 59 The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 8$ Hz) (in DMSO-*d*₆) of isoscutellarein 8-*O*- β -D-glucuronopyranoside butyl ester (PL-3) (expanded from $\delta_{\rm H}$ 7.50-13.50 ppm and $\delta_{\rm C}$ 95.0-185.0 ppm)

Figure 60 The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 4$ Hz) (in DMSO- d_{6}) of isoscutellarein 8-*O*- β -D-glucuronopyranoside butyl ester (PL-3)

Figure 61 The UV spectrum (in MeOH) of hypolaetin $8-O-\beta$ -D-glucuronopyranoside butyl ester (PL-4)

Figure 62 The IR spectrum (in KBr disc) of hypolaetin 8-O- β -D-glucuronopyranoside butyl ester (PL-4)

Figure 63 The FABMS spectrum of hypolaetin 8-*O*- β -D-glucuronopyranoside butyl ester (PL-4)

Figure 64 The 300 MHz ¹H NMR spectrum (in DMSO- d_6) of hypolaetin 8-*O*- β -D-glucuronopyranoside butyl ester (PL-4)

Figure 65 The 300 MHz ¹H NMR spectrum (in DMSO- d_6) of hypolaetin 8-*O*- β -D-glucuronopyranoside butyl ester (PL-4) (expanded from δ_H 3.40-7.80 ppm

Figure 66 The 75 MHz ¹³C NMR spectrum (in DMSO- d_6) of hypolaetin 8-*O*- β -D-glucuronopyranoside butyl ester (PL-4)

Figure 67 The 75 MHz DEPT 135 spectrum (in DMSO- d_6) of hypolaetin 8-O- β -D-glucuronopyranoside butyl ester (PL-4)

Figure 68 The 300 MHz HMQC spectrum (in DMSO- d_6) of hypolaetin 8-O- β -D-glucuronopyranoside butyl ester (PL-4)

Figure 69 The 300 MHz HMQC spectrum (in DMSO- d_6) of hypolaetin 8-O- β -D-glucuronopyranoside butyl ester (PL-4) (expanded from $\delta_H 0.30 - 4.20$ ppm and $\delta_C 10.0 - 85.0$ ppm)

Figure 70 The 300 MHz ¹H-¹H COSY spectrum (in DMSO- d_6) of hypolaetin 8-O- β -D-glucuronopyranoside butyl ester (PL-4)

Figure 71 The 300 MHz HMBC spectrum ($J_{HC} = 8$ Hz) (in DMSO- d_6) of hypolaetin 8-O- β -D-glucuronopyranoside butyl ester (PL-4)

Figure 72 The HMBC spectrum (${}^{n}J_{HC}= 8$ Hz) (in DMSO- d_{6}) of hypolaetin 8-*O*- β -D-glucuronopyranoside butyl ester (PL-4) (expanded from δ_{H} 0.00 – 2.00 ppm and δ_{C} 5.0-35.0 ppm)

Figure 73 The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 8$ Hz) (in DMSO- d_{6}) of hypolaetin 8-O- β -D-glucuronopyranoside butyl ester (PL-4) (expanded from δ_{H} 4.50-13.50 ppm and δ_{C} 98.0-170.0 ppm)

Figure 74 The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 4$ Hz) (in DMSO- d_{6}) of hypolaetin 8-O- β -D-glucuronopyranoside butyl ester (PL-4)

Figure 7.5 The 300 MHz HMBC spectrum (${}^{n}J_{HC} = 4$ Hz) (in DMSO- d_{6}) of hypolaetin 8-O- β -D-glucuronopyranoside butyl ester (PL-4) (expanded from δ_{H} 3.60 – 13.20 ppm and δ_{C} 80.0 – 175.0 ppm)

Miss Bongkot Phanburananont was born on April 7, 1973 in Phetchaburi, Thailand. She received her Bachelor Degree of Science in Pharmacy in 1996 from the Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand. Since graduation, she has been working as a pharmacist in the Narcotic Division, Medical Sciences Department, Thailand.