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CHAPTER 1

INTRODUCTION

The history of the integral stretches back to the early days of mathematics. Over
2000 years ago Greek mathematicians used the basic idea of the Riemann integral,
namely approximation by rectangles, to obtain formulas for the area of a circle
and volume of a sphere. They called their technique the “method of exhaustion”.

Many centuries later, Newton and Leibniz both came to the realization that
this was in fact a very general idea with many applications, so they introduced a
more abstract concept of integral. Their ideas were essentially what we now call
the Riemann integral, but they lacked rigor.

The true theory of integration began with Riemann and Weirstrass. Riemann
was the first person to give a completely rigorous definition in terms of limits,
while Weierstrass introduced the key concept of uniform convergence. However,
Riemann’s definition has its limitations. For example, functions can only be in-
tegrated over finite intervals, and the functions themselves must be bounded.
Furthermore, a function will be integrable only if its set of discontinuities has
measure zero, and the convergence theorems require uniform convergence. Some
of these limitations can be removed by the use of improper integrals, but this is
not a complete solution, nor is it very elegant.

Since then many people have worked on this problem. Surely the biggest
contribution was made by Lebesgue, whose definition allowed integration of un-
bounded, widely discontinuous functions over a wide variety of sets, including

unbounded sets. Furthermore, the Lebesgue integral has very nice convergence



properties, as illustrated by the Monotone and Dominated Convergence Theo-
rems. The one real weakness of Lebesgue’s definition is that a function taking on
both positive and negative values is integrable only if the integral of its absolute
value is finite. As a result, there are examples of differentiable functions f such
that f  is not integrable on some intervals [a, b], even though f(b) — f(a) is clearly
a reasonable value for f[a,b] f"dm. The generalized Riemann integral helps to solve
this problem; however it has a standard definition and well-developed theory only
for integration over intervals in R”.

In this thesis we introduce a new integral, which we call the generalized
Lebesgue integral, that can be defined on any o-finite measure space. The new
integral retains some of the flavor of the Lebesgue integral, yet allows integration
of some functions whose absolute values have infinite integrals.

The remainder of this thesis is organized as follows. In Chapter 2, we summa-
rize some essential facts concerning the extended real numbers and the Lebesgue
integral which will be used in the succeeding chapter.

The heart of our work is Chapter 3, which consists of 4 sections. The first
section presents the definition and properties of abstract p-integrals, which are
an abstract formulation of the concept of measure-based integrals, and the defini-
tions of absolutely and nonabsolutely convergent abstract u-integrals. In sections
2 and 3 we introduce the definitions of expanding sequences and semiuniform con-
vergence which are important tools to define the new integral. The last section
concerns the new definition of the integral and the proof that it is an abstract
p-integral. We also give an example of a nonabsolutely convergent integral using
the standard Lebesgue measure space on R.

Chapter 4 summarizes the results of the previous chapters and discuss possible

improvements and topics for further research.



CHAPTER II

PRELIMINARIES

In this chapter, we review the definition of the extended real numbers and a few

essential facts concerning measure and the Lebesgue integral.

2.1 The Extended Real Number System

The extended real number system, consisting of the real numbers together with
the two elements oo and —o0, is denoted by R. We operate on the new elements

by the following equations: for each a € R,

;

0 ifa=0

-0 =94 o0 ifa>0

| o0 ifa <0

'0 ifa=0
a(=20)'= §-—co- ifa'>0
oo ita<0




00+ (—00) = —00
(—00) - 00 = —00

The expressions oo — oo and i% are not defined.
We extend the ordering on Rby defining —o0 < a < oo for all real numbers a.
With this ordering, we can define the supremum and infimum of a subset E of

the extended real numbers as follows.
1. if E =@, thensup F = —oc and inf £ = oc;
2. if F C R and F is bounded, then we define sup I/ and inf FE as usual;
3. if F C R and E is not bounded above, then sup E' = oc;
4. if E C R and FE is not bounded below, then inf £ = —o0;
5. if oo € F, then sup E = o0;
6. if —oo € F, then inf F = —o0;
7. if co ¢ B and —o0 € E, then sup E = sup (£ \ {—00});
8.-if ~00'¢ E-and00-€ E; then inf £ = inf (F  {co} )

Consequently, every subset of the extended real numbers has a supremum and

infimum. In particular, for monotonic sequences of elements of R:
(a) if {a,} is an increasing sequence, then lim,, .. a, = sup,,cy a,; and

(b) if {a,} is an decreasing sequence, then lim,, . a, = inf,cy a,.



2.2 Measure Theory and Integration

Let (X, ., 1) be a measure space, where 1 is complete (recall that every measure
can be completed [2, p.29]). In this thesis we consider measurable functions on X
which have range on R. The present section reviews some definitions and results
from the theories of measure and the Lebesgue integral that will be used in the

next chapter.

Definition 2.2.1. The set E € . is said to be g-finite if there exists a sequence
{E,} of sets in .# such that |J*, E, = X and p(E,) < oo for all n € N. In

particular, we say the measure space (X, ., u) is o-finite whenever X is o-finite.

Definition 2.2.2. Let f be a nonnegative measurable function. For any measur-

able set F, we define the integral of f on E with respect to u by
/ fdu= Sup{fEsd,u I s is a simple function with 0 < s < f}.
E

Theorem 2.2.3 (Lebesgue’s Monotone Convergence Theorem). Let {f,}

be a sequence of nonnegative measurable functions and £ € .#. If

(a) i< fo<fs<...on E,and
(b) lim, oo fr, = f on E,

then lim,,_ oo fE fodp = fE fdp.

Measurable functions which have both positive and negative real values may

or may not be integrable.

Definition 2.2.4. Let f be a measurable function and £ € .Z. If fE ftdu < oo
or fE f~du < oo, where f* and f~ are the positive and negative parts of f,

respectively, then we define the integral of f on E by

/Efduz/Eﬁdu—[Efdu.



We define L'(p1) to be the collection of all measurable functions f on X for
which [, |f|dp < co. The members of L'(uu) are called Lebesgue integrable
functions.

Note that since |f| = f* + f~, L'(u) is the collection of all measurable func-
tions f on X for which both [, fdu < oo and [, f~dpu < oo

Next, we consider the concept of almost everywhere. Let P(z) be a property
which which can be true or false for each point z in X. If £ € .#, the statement
“P(z) holds almost everywhere (a.e.) on E” means that there exists an N € .#
such that N C E, u(N) = 0, and P(z) holds at every point z € E ~ N. This
concept of a.e. depends on the given measure u, and we normally write “a.e.[u]”.

In particular, if f and g are measurable functions and u({x e X | f(z) #
g(:r)}) = 0, we say that f = g a.e.[u] on X, which we may write as f ~ g. This

is an equivalence relation. Note that if f ~ g, then

/Efduz/Egdu-

for every £ € .. Because of this, in integration theory it is not necessary to
distinguish between functions that are equal almost everywhere. In particular, for
some properties, if we have a measurable function f that satisfies such a property
almost everywhere, then we can find another measurable function g such that
f ~ g and g satisfies the property everywhere. Because of this, in this thesis
we will often simplify the statements of results and their proofs by stating that

various properties hold everywhere rather than almost everywhere.

Theorem 2.2.5 (Lebesgue’s Dominated Convergence Theorem). Let {f,}
be a sequence of measurable functions and f a measurable function such that
lim, o fn(z) = f(z) for all z € X. If there is a measurable function g € L' ()

such that |f,| < g for all n € N, then



(a) feL'(n),
(b) Tim [ |fu— fldu =0, and

(C) Jl_)ngofxfndﬂz fxfdﬂ-

AONUUINYUINNS )
ANRINTUNINEAE



CHAPTER III
A NONABSOLUTELY CONVERGENT

LEBESGUE-TYPE INTEGRAL

In this chapter, we define a new integral on an arbitrary o-finite measure space,
especially, for a funetion f that can be indicated its new appropriate integral and
Jx |fldp = oo. Toprovide a general framework for discussing measure-based inte-
grals, we first define abstract u-integrals, in which we are thinking of each integral
as the set of integrable functions together with the integration operator. With
this in hand we can defind absolutely and nonabsolutely convergent abstract u-
integrals. Next, we introduce expanding sequences and semiuniform convergence
which are important tools in defining the new integral. The last step is to define
the new integral and a nonabsolutely convergent abstract p-integral.

Let (X, .#,u) be a o-finite measure space, where p is complete, and let F
be the set of real-valued measurable functions on X. Note that .%# is an R-vector
space. Define a partial order < on % by f < ¢ iff f(z) < g(x) for almost
all z € X. Recall that if {f,} is.a sequence of measurable functions such that

SUp, ey fu(2) < 0o for all x € X, then sup, .y f, is also measurable.

3.1 Abstract pu-Integrals

To look for a nonabsolutely convergent integral, it is useful to have a clear idea of
what an integral is. In this section, we introduce the concept of abstract u-integral,

an abstract definition of an integral based on measure.



Definition 3.1.1. An abstract p-integral on X is a pair (£, 1), where .# C .7

and I:.# — R, satisfying the following properties:
(a) For all E' € 4 we have xp € & and I(xg) = p(E).
(b) For all f € .# and all » € R we have rf € . and I(rf) = rI(f).

(c) If {f.} is a monotonically increasing sequence of nonnegative members of

& such that sup,ey fu(2) < oo for all & € X, then sup, .y f, € & and

I(sup,en fn) = supuen L(fn)-

(d) If we let s = {f € .7 | I(f)| < oo}, then 4 is closed under addition
(so that S is a vector subspace of .%) and for all f,g € S we have

I(f+g) =1(f)+ I(g). Thus I| » is a linear functional on J7Z.

Clearly, .# is the set of integrable functions and I is the integration operator
in the above definition. Our first task is to investigate the relationship between
the Lebesgue integral, and its set of integrable functions, L' (1), and the abstract
p-integral, (&, 1). The following definitions and lemmas will also be useful in our

study of a nonabsolutely convergent integral.

Definition 3.1.2. A simple function s is said to be p-finite iff it can be written

as Y o, a;xg, with p(E;) <'oo for alli e {1,2,3,...,n}.
Remark 3.1.3. Note every p-finite simple function is in L' ().

The phrase “a sequence {E,} in . is increasing” means that for each n € N,

E, C E, ;1. We will use this phrase often in the following pages.

Lemma 3.1.4. Let E be a o-finite measurable set. For any f € % with f >
0, there is an increasing sequence {s,} of p-finite simple functions such that

SUp,en Sn = f on E.
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Proof. Let {E,} be an increasing sequence of sets in .# such that | J)~ | E, = E
and p(FE,) < oo for all n € N. Let f € % be such that f > 0. Define a sequence
{k,} of natural numbers by k, = n + [log,(u(E,) + 1)]. We have that {k,} is

increasing. For each n € N, let s,, : X — [0, 00) be defined by

;

= ifz e E, and 5t < f(x) < 54 for some i € {1,2,3,...,n2"}

=

sn() =qn ifzeE, and f(z)>n

0 ifzgFE,

\

for each x € X. It is clear that for each n € N, 0 < s, < f and s, =
Z?jinﬂ Un,iXE,,;, where a,; = &land E,;, = E, N fﬁl([;;—i,ﬁ)) for all 7 €

{1,2,3,...,n2"}  a, okn g = n and E, ornq = E, N f71([n,00)). Since f € F
and p(E,) < oo for all n € N, FE,; is measurable and u(E,;) < oo for all
i€ {l,...,n2% +1}. Thus s, is a u-finite simple function for all n € N.

We will show that {s,} is increasing by proving that for all n € N we have

$n(2) < Spq1(x) for all x € X. Let z € X and n € N.

Case 1. There exists i € {1,...,n2"} such that z € E, and 4t < f(z) < 5.

Then s,(z) = 4. Let K = 2k17% Since f(z) > &t = (K(z;i):rll_)_l and
f(x) < 54 <m <n+ 1, we have that s,41(z) > (K(Z;ki# =l = s,(2).

Case 2. = € E, and f(xz) > n.” We have that f(z) > n. Thus s,.1(z) >

n2kn+l
okn+t1

=n = s,(x).
Case 3. z ¢ E,. Then s,(z) =0 < s,11(2).

From the above cases, we can conclude that {s,} is increasing.
We will prove that sup,cys, = f on E. Since s, < f for all n € N, f(z)
is an upper bound of {s,(z) | n € N} for all z € E. Let z € E and ¢ > 0.

Then z € E, for some n € N. Since f is real-valued and {E,} is increasing,
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there exists n, € N such that 5= < ¢, z € E,, and 0 < f(z) < n,. Then there

2nx

exists ¢ € {1,2,3,...,n,2"=} such that == < f(z) < 5. Since n, < kn,,

f@)—e< f(z)— 5= < f(x) L <« =L =5 (x). Therefore sup,cy s, = f on

2N — - anm anz

E. [l

Remark 3.1.5. Since X is o-finite, by Lemma 3.1.4, for any nonnegative f € .%
there is an increasing sequence {s,, } of p-finite simple functions with sup,,cy S, = f

on X.

Let (#,1) be an arbitrary abstract p-integral and let 57 = {f e s ‘
II(f)] < oo}. The next propositions concern the relationship between L!(x) and

(7, 1).
Lemma 3.1.6. If s is a p-finite simple function, then s € .# and I(s) = [ sdpu.

Proof. Assume that s is a p-finite simple function. Then s = Y " | a;xp, with
w(E;) < oo for all i € {1,2,3,....n}. Since xp, € £ and u(E;) < oo for all
i €{1,2,3,...,n}, we have that xp, € # for alli € {1,2,3,...,n}. Since 5
is a vector space, s € . Thus s € .. Moreover, by the definition of abstract
pu-integrals, we have that
I(s) =1 <Z Clz’X&-) = ZaiI(XEi) = Zai,u(E,-) = /X sdj. O
i=1 i=1 i=1

Proposition 3.1.7. If f € . % and f > 0, then f € Z, I(f) > 0, and I(f) =

Jx fdp.

Proof. Let f € # be such that f > 0. Let {s,} be an increasing sequence
of p-finite simple functions such that sup,cys, = f on X. By Lemma 3.1.6,
we have that s, € & for all n € N, so by the definition of abstract u-integral

[ = sup,enSn € F. The result I(f) > 0 will follow from the result I(f) =
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S « [ dp, which we will now prove. Indeed, by the definition of abstract u-integral,

Lemma 3.1.6, and the Monotone Convergence Theorem we have

I(f) = T(sup,,en n)

= supI(s,)
neN

:sup/sndu

neEN JX

:/supsnd,u
X neN

:/ fdpu. m
X

Proposition 3.1.8. The set L'(x) € & and I(f) = [, fdp for all f e L'(y).

Proof. Let f € L'(;). By Proposition 3.1.7, f*, f~ € #, 0 <I(f*) = [, fTdu
and 0 < I(f7) = [ fdp. Since f & L'(u), [ fTdp < oo and [, f~du < oo,
and thus f*, f~ € 2. By the definition of abstract u-integral, f = f* — f~ €

H C 7, and

1) = 13 == =1 = o= rau= [ san
Thus L'(1) € . and I(f) = [, fdp for all f € L'(ju). O
Proposition 3.1.9. LY (1) = {f &.Z [1(|f]) < oo}

Proof. For any f € .Z, |f| € % and |f| > 0,80 by Proposition 3.1.7, |f| € &
and I(|f]) = [y [fdp. Thus'I(Jf]) < oo iff [ /| fldp < oo, and the result follows

from the definition of L'(yu). O

Definition 3.1.10. An abstract u-integral (.#,1) is absolutely convergent iff
II(f)] < oo = I(|f]) < oo for all f € .#. We say that (.#,]) is nonabsolutely

convergent iff there exists f € .# such that |I(f)| < oo but I(|f]) = o0

The following is an example of an absolutely convergent abstract p-integral.
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Example 3.1.11. Let

In={feF| [ fTdu<ooor[, f~du< oo},

and define
(h)= [ #rdu= [ an
b X

for all f € 1. Then L'(u) € #1, and in fact it is easy to check that L'(u) =
{f € I | 1(f)] < oo} We will show that (#1,11) is an abstract pu-integral.
Since (xg)~ = 0 for all measurable sets B, [ (xz)” du = 0, so xg € 1 and
Ii(xe) = [y(xg)Tdp = [y xpdp = p(E) for all measurable sets E. By the
above characterization of L'(p) and the Monotone Convergence Theorem, we
have that (#1,171) 1s an abstract p-integral. Note that if |Ip:(f)| < oo, then

f € LY(u), so I (|f]) < co. Hence (Fp1,111) is absolutely convergent.

The rest of this thesis is devoted to finding a nonabsolutely convergent abstract

p-integral by extending some ideas from the Lebesgue integral.

3.2 Expanding Sequences

The first key to our nonabsolutely convergent integral is the concept of an ex-
panding sequence of functions, which is a generalization of a monotonic sequence.
Since measurability plays no role in this concept, all of the following definitions
are phrased in terms of real-valued functions defined on an arbitrary nonempty

set, which we will denote by A.

Definition 3.2.1. Let f and g be real-valued functions defined on A. We say
that f lies inside g iff f* < gt and f~ < ¢g~. We will write f < g to denote

that f lies inside g.

Definition 3.2.2. Let {f,} be a sequence of real-valued functions defined on A.

The sequence {f,} is expanding iff f, < f,41 for all n € N.
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Lemma 3.2.3. Let {s,} be a sequence of real-valued functions defined on A and
f areal-valued function defined on A. If {s,} converges pointwise to f on A, then

{s} and {s,, } converge pointwise to f* and f~ on A, respectively.
Proof. Assume that {s,} converges pointwise to f and let x € A.

Case 1. f(z) = 0. Let e > 0. There exists N € N such that |s,(z)| < € for
each n > N. Since s/ (x) < |s,(x)] and s7(z) < |s,(z)| for all n € N, we have
|si(x)] = sf(z) < e and |s, (z)] = s, (x) < e for all n > N. Thus {s}(z)}

and {s, (z)} converge to 0. Since f(z) =0, f7(z) = 0 = f~(z). Hence s/ (x)

converges to f(x) and s, (x) converges to f~(x).

Case 2. f(z) > 0. Then ff(z) = f(z) > 0 and f~(z) = 0. Since s,(z)
converges to f(z), there is an N € N such that s,(z) > 0 for each n > N. Then
si(x) = sp(x) for all n > N and s, (x) = 0. This shows that s, (x) converges to

f~(x). Since s,(x) converges to f(z), s (x) = s,(r) converges to f(z) = f+(z).

Case 3. f(z) < 0. The proof of this case is similar to the proof of the case

f(x) >0, since fT(x) =0 and f~(z) = — f(x).
[

Definition 3.2.4. A sequence { f;, } of real-valued functions defined on A expands
to a real-valued function ¢ defined on- A iff {f,} is expanding and converges

pointwise to g, which we denote by f, < g.

Remark 3.2.5. Note that if A € .# then we could generalize the above defini-
tion and lemma by only requiring various properties to hold almost everywhere.
However, as was pointed out at the end of the previous chapter, by redefining the
functions involved on a set of measure zero, we could obtain equivalent functions

such that the required properties hold everywhere, and thus the generalization
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has no practical effect. A more useful generalization is to restrict the various
properties to a nonempty subset of A. For example, if B is a nonempty subset
of A, then we can say that f < g on B iff f|g < g|p. Definitions of a sequence
expanding on B and a sequence expanding to a function on B are constructed

similarly by restricting all functions involved to B.
Some properties of the last definition are described in the following lemmas.

Lemma 3.2.6. If a sequence {f,} of real-valued functions defined on A expands

to a real-valued function g defined on A, then f, < g for all n € N.

Proof. Let {f,} be a sequence of real-valued functions defined on A and g a
real-valued function defined on A. Assume that f, < g. For each n € N, since
fn =2 fus1, by definition f," < f,7 and f,” < /... Thus the sequences {f,"} and
{f,7} are nondecreasing. Since {f,} converges to g pointwise, by Lemma 3.2.3,
{fF} converges to ¢ pointwise and f, converges to g~ pointwise on A. This
implies that f < ¢" and f; < ¢ for all n € N, which tells us that f, < g for

all n € N. [l

Lemma 3.2.7. Let f be a real-valued function defined on A and {f,} a sequence

of real-valued functions defined-on A such thatf,, < f. Let x € A.
(a) If f(x) >0, then f,(z) > 0for alln € N.
(b)“If f(x) = 0, then f,(x) =0 for all n € N.
(c) If f(x) <0, then f,(xz) <0 for all n € N.

Proof. All parts follow from Lemma 3.2.6 and the definition of the lies inside

relation. O

Lemma 3.2.8. Let f be a real-valued function defined on A and {f,} a sequence

of real-valued functions defined on A such that f,, < f. Then —f, < —f.
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Proof. Assume that f,, < f. Then {—f,(z)} converges to —f(z) for all z € A.
It is easy to see that for each n € N, (—f,)" = f,, and (—f,)” = f, and thus

—fi 2 —fo 2 —f3 < .... It follows that {—f,} is expanding, so —f,, < —f. H

Lemma 3.2.9. Let {E,} be an increasing sequence in .# such that u(FE,) < oo

for all n € N. For all f € .Z there exists a sequence {s,} in L'(u) such that

sp < fon U, En.

Proof. Let f € . and let E = |J>7, E,. By Lemma 3.1.4, there are increasing
sequences {s,} and {t,} of nonnegative u-finite simple functions such that {s,}
converges to fT pointwise on F and {t,} converges to f~ pointwise on E. Then
{sn — t,} is a sequence of p-finite simple functions, i.e., {s, —t,} is a sequence in
L'(u). Tt remains to show that s, —¢, < f on E. Let z € E. For each n € N, we

have that

|(sn = tn) (@) — f(@)] = [(sn(@) = tn(z)) — (f7(2) — 7 (2))]
< Isul@) = Fr@)| + [fn(x) — £ (2)]-

Since s, (x) converges to fT(x) and t,(x) converges to f~(z), this shows |(s, —
tn)(x) — f(z)| converges to 0. Thus (s, — t,)(x) converges to f(z). Finally, we
have to prove that for all n € N, we have (s, — t,)"(z) < (Sp11 — tas1) T (z) and
($n—tn)" () < (Spt1—tns1)” (z), which we will do-by showing that (s, —t,)"(x) =

sp(x) and (s, —t,) () = ta(x). Let n € N.

Case 1. f(x) = 0. Then fH(z) = f~(x) = 0, so s,(z) = t,(zr) = 0 as well.

Hence s,(z) =0 = (s, — t,)" () and t,(z) = 0 = (s, — t,,)) " (2).

Case 2. f(z) > 0. Then f*(x) = f(z) and f~(z) = 0. This implies that
tn(x) = 0. Thus (s, —t,)"(x) = max{(s, —t,)(x),0} = s,(x) and (s, —t,) " (z) =

max{—(s, — t,)(x),0} = max{—s,(z),0} =0 =t,(z).
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Case 3. f(z) <0. Then f*(x) =0 and f~(x) = —f(z). Thus s,(z) =0. Asin
the previous case, (s, — t,)"(x) = max{(s, — t,)(z),0} = max{—t,(z),0} =0 =

sp(z) and (s, —t,) " (z) = max{—(s, — t,)(x),0} = max{t,(z),0} = t,(x).

Thus for all n € N, (s, — )" = 85, < Spa1 = (Snp1 — tny1) T and (s, — t,)” =

tn <tpi1 = (Spe1 — tne1)”. Hence s, —t, < f on E. O

Remark 3.2.10. For any f € .7, there exists a sequence {s,} in L'(x) such that

Sn < f by the same argument as in Remark 3.1.5.

Proposition 3.2.11. We have the following characterizations of L'(x) and #p1.

L'(u) = {f € F | there exists L € R such that lim,_ [y s, du = L for all

sequences {s,} in L'(u) with the property that s, < f}
(3.1)
and

I = {f €7 } there exists L € R such that lim,,_ fx Sp dp = L for all
(3.2)

sequences {s,} in L'(x) with the property that s, < f}.
Proof. Let A be the set on the right-hand side of equation 3.1 for L'(u) and
B the set on the right-hand side of equation 3.2 for .#;1. We must show that
L' () = A and S = B.

First, we will show that L'(u) € A. Let f € L'(u) and let L= [, fdu € R.
Let {s,} be a sequence in L'(u) with the property that s, < f. Then {s,}
converges pointwise to f. By Lemma 3.2.6, s, < f for all n € N, which tells us
that st < fTand s, < f~ for all n € N. Thus |s,| =s +s, < fT+ f~=|f|.
By the Dominated Convergence Theorem, lim, .o [ $pdp = [y fdp = L. This
shows f € A. Therefore L'(u) C A.

Conversely, we have to show that L'(u) 2 A. Let f € A. Suppose that

f ¢ L' (n). Then [, |fldu = oo. Since |f| = f* + f~, it must be the case



18

that [, f*du = o0 or [ f~du = co. WLOG, assume that [, f*du = oo. By
Lemma 3.1.4, there are increasing sequences {s, } and {¢,} in L'(x) that {s,} con-
verges pointwise to f* and lim,,_, ., fx Spdp = fx ftdu = oo, and {t,} converges
pointwise to f~ and lim,, e xtndp = | « f 7 du. We can choose a subsequence
{sn,} of {s,} such that [, s, du > 2 [, tpdu for all k € N. Then {s,,} is an
increasing sequence of u-finite simple functions that converges pointwise to f*
and limy, .o [ Sn, dp = [ fTdp =00 Forall k € N, let uy = s, — . As in

the proof of Lemma 3.2.9, u, < f. We have that

1 1
/ukd,u:/snkdu—/tkd,uZ/snkdu——/snkdlz:—/snkd,u
X X X b 2 x 2 Jx

for all k € N. Thus limy oo [ wi dp > %limk_>C>o [ Sny, dp = 0o, which contra-
dicts f € A. Hence f € L'(u). This proves L'(u) = A.

We take a similar approach to proving .#;1 = B, the first step being to show
that 471 C B. Let f € 1. If f € L'(u), then f € A. By the above work, and
the fact that A is clearly a subset of B, we conclude immediately that f € B.
Assume now that f € #1 \ L'(u). WLOG, assume that [, f*du < oo. Since
f ¢ L'(u), we must have [, f~dp =o0. Let L = —o00. Let {s,} be a sequence
in L'(p) that expands to f. Then {s} converges pointwise to f* and {s, }
converges pointwise to f7. Since s < st and s, < s, for all n € N, by
the Monotone Convergence Theorem, lim, .o f5 s dp = [ fTdp < oo and

lim,, fX s, dy= fX f~dpu="00."Then

lim [ s,du= lim (/ S,J{du—/ s, du)

= lim [ stdu— lim [ s, du

n—oo n—oo

X X
=/Xf+du—/xf-du

= —



19

Thus f € B. Hence 411 C B.

To finish the proof, we will prove that 7 O B. Let f € B and suppose
that f ¢ 1. Then [, f*dp = oo and [, f~dp = oco. As usual there are
increasing sequences {s,} and {t,} such that {s,} converges pointwise to f* and
{t,} converges pointwise to f~, and therefore lim, fX Spdp = fX frdu = oo
and lim, o [ todp = [ f~dp = co. We can choose subsequences {s,, } and
{tim, } such that [, sps, dpt = 2 [ty dppand [y o, dp > 2 [y sy, dp for
each k € N. Then {s, } and {t,, } are increasing sequences, {s,, } converges
pointwise to f*, {t,,, } converges pointwise to f~, limj .o [y Sn, dp = o0, and
limy, o fX tm, dp = 00. For all k € N, let w, = s, — t,,,. The usual argument

shows that {u;} expands to f. However, for each k € N we have

/qudM:/Snzk d,u—/tm%dy
X 3 X
g/sn%d,u—Q/sn%d,u
X b
:—/ Spaedil
X

and
/ Uzk—1 dp :/ Snak-1 dp _/ 2 dp
X X X
> 2/ thk—l d:u _/ tmzk—1 d:u
X X
= / trngy_y It
X

Since limy,_, o fX Sy, dpe = 00, it follows that limy_,. fX Ugg dpp = —o0. Similarly,

limy oo [ « U2k—1 dp = 0o. Thus { | « Uk dp} is not convergent, which contradicts

the fact that f € B. Hence we must have f € .#1. This proves that ;1 = B. [

Proposition 3.2.11 suggests we might be able to define a nonabsolutely con-

vergent abstract p-integral by modifying the set on the right-hand side of the
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equation for .#7:. This is indeed the approach we will take. However, as the

following proposition shows, it will not be a trivial task.

Proposition 3.2.12. If f € Z and [, fTdu= [, [~ du = oo, then for every L €

R there exists a sequence {s, } in L'(u) such that s,, < f and lim,,_, fX Spdu = L.
Proof. Let f € .#, and assume that [\ f"du= [, f~dp=o0. Let L € R.

Case 1. L > 0. Our first step will be to find sequences {t} and {u}} of
nonnegative functions in L'(p) such that {Zn b} and {Zn L uk} converge
pointwise to f* and f7, respectively, > | [ txdp =3 [, uldp = oo, and
limy, o0 ¥ b dp = lim, o / Uy dp=0. Since f € .7, there exists a sequence
{sn} in L'(u) such that s, < f. Then {s;} converges pointwise to f and {s; }
converges pointwise to . Let t; = s, uy = s;, and for each n € N, let
toi1 = S — st and upgr = s, — s, Then > )t = s and >, up = s,
for every n € N. In addition we have that fX t,dp > 0 and fX Updp > 0
for all n € N. For each n € N, let p, be a positive integer such that p, >
n [y tndp, so that p—lantndu < L. For each n € Ny let P, = p1 + -+ + pn.

For i € {1,2,..., P}, let t; = iltl. Then Zzpllt;‘ = t;. For all n € N and

i€ {Zl P, S pifylet t7 = tnﬂ, and observe that ¢} is in L'(u)
and [, t7dp = == f ¢ tng1 dpo < == Tt follows from the above definitions that
St =cst, and hence that-Y 17 [wtidu = [y stdufor-all n, € N. This
implies that {Zi t} converges pointwise to f* and, since lim, o [y s} dpu =

0o, that Y%, [ tidu = oo. Clearly lim, . [y t;dp = 0. Similarly, we can
define a sequence {u}} in L'(u) such that {Zﬁzl u; } converges pointwise to f~,
ooy uh dp = oo, and limy, o [y uk dp = 0.

Choose an increasing sequence { L, } of real numbers such that lim,, ., L,, = L.
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Since Y, [yt dp = oo, we can find the smallest integer m; such that

/tfdu+--‘+/t;knldu>L1.
X X

Let ¢, = t: and @, = 0 for n = 1,2,...,my. Since Y ° | [, u’du = oo, we can

find the smallest integer k; such that

/tid/ub—l—---—i—/t:“du—/ufd,u—~~-—/uzldu<L1.
X b, X X

Let tAn =0and uw, = U=y forn =mq +1,...,mq + k1. Likewise, let ms be the

smallest integer such that ms > my and

/t’{du+~~+/t&1du—/U’[du—m—/uzldu
X X X 'y
+/tfn1+1du+---+/tfn2d,u>[/2.
X X

Let 1, = tr_y, and u, =0 for all n = (my + k1 +1),...,(mg + k). Continue this

process to obtain infinite sequences {t,} and {@,}. We have that {t,} is
PP RN | O AN

and {u,} is

* * *
(0,0, 0,0l ooy ug, 00000 0 U gy Uy, - )

From the properties of the sequences {t} and {u}}, for each n € N there exist

I,,l;, € N such that st = S # and s, = S 4. In particular, {30 %}

converges pointwise to f* and {d7 | 4;} converges pointwise to f~.

For each n € N, let T,, = >/, 1, and U, = > p_; Ug. Since 1. >0and Ty >0
for all k € N, we have that {7},} and {U,,} are nonnegative increasing sequences in
L' () such that {T,,} converges pointwise to f* and {U,} converges pointwise to
f~. Let v, =T, — U, for all n € N. Then v,, < f, as in the proof of Lemma 3.2.9,

and we have that

/U1dl~bz/%\1dﬂ
X b's
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That is, { / x Un du} is the sequence of partial sums of the series

/tidu—i—---—i—/t;ldu—/u{du—---—/u};ldu—i—
b X X X
X X

Let us show that lim, .. [ xUndp = L. Let {x,} and {y,} be the sequences of
partial sums of the above series whose last terms are [ x b, dpand ) < Uk, dp,
respectively. By the properties of m, and k,, for each n € N we have that
|2 — Ly| < [y th, dpand |y, — Ly| < [ up dp. Since { [ t5 dp} and { [, u’ dp}
converge to 0, and {L, } converges to L, we have that {z,} and {y,} converge to
L. Furthermore, for each n € N with n > 2, we have y, < fX vpdp < x, if k €

{mp+ky_1,... . mp+k,}andy, < [ opdp < xpqq ifk € {mp+k,, ... my -k, }
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This shows that { [, v, du} converges to L.

Case 2. L < 0. Then —L > 0. From Case 1, we have a sequence {s,} in L'(u)
such that s, < —f and lim, . [y Spdu = —L. Thus {—s,} expands to f and

lim,, oo fX(—sn) dy = L. O

3.3 Semiuniform Convergence

Let {E,} be an increasing sequence in .# such that u(E,) < oo for all n € N.

Definition 3.3.1. A sequence {s,} of functions in .# converges to a function
f in # semiuniformly with respect to {E,} iff there exists an increasing
sequence {F,} in .# such that F,, C E, for alln € N, |J°, F,, = U2, E,,, and
limy, o0 (Epn \ F,) = 0, with the property that for every € > 0 there isan N € N
such that for all n € N with n. > N, the inequality p(F),) - |sn(x) — f(x)| < € holds

for all x € F,,.

Note that we will use the phrase “s,, < f semiuniformly with respect to {E,,}”
to mean that s, < f on (J)_, B, and {s,} converges to f semiuniformly with

respect to {E,}.

Lemma 3.3.2. Let f be a nonnegative function in #. There is a sequence {t,}

in L'(p) such that ¢, < f semiuniformly with respect to {F,}.

Proof. For each n,m € N, let E,,, = {z € E, | |f(z)| < m}. Then for each

n € N, the sequence {E,, ,,} is increasing as a function of m and E, = {J,°_; Epn.

m=1

We have that u(FE,) = ,u(UOO Enm) = lim, 00 (Ey ) for all n € N. Thus for
each n € N there is an m,, € N such that u(E,) — u(E,x) < % for all & > m,,.
Let l; = my and [,, = max{m,,l,_1} + 1 for all n € N. Then {l,,} is increasing

and lim,,_, [, = 00. Let {s,,} be the increasing sequence such that sup,,cy s, = f
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defined in the proof of Lemma 3.1.4 and put ¢,, = s;, and F,, = E,,;,. Then t,, { f
on |2, E,and F,, C E, for all n € N.

Let us check that {F),} is increasing. Let n € N and x € F,,. Then z € E,,,,
which means that x € E,, and |f(z)| < l,,. Since {E,} and {l,} are increasing,
€ By and | f(x)| < lyy1, which tell us « € Ey 414, = Fop1. Thus F, C F, 4.

Next, let us check that |77, F,, = |7 E,. It suffices to show that | J -, E, C
U, F.. Let x € U, | B,,. Then x € E,_ for some n, € N and there is an m € N
such that |f(z)| < m. Since lim,, ., l, = 00, there is an n € N such that n, <n
and m < l,. Then |f()] < I, and @ € E,,. Thus x € E,;, = F,, C | _, F,.
Hence U~ Fr, = U, En

The third step is to show that lim,, . p(E,\F,) = 0. Since u(E,)—u(E,,,) <

Land u(E,) < oo for all n € N, we have that u(E, < F,,) = u(E,) — p(En ) <

3=

for all n € N. Thus lim,, .o pu(Ey ~ F,) = 0.

Finally, we will show that for every e > 0, there is an N € N such that for all
n € N with n > N, the inequality u(F,) - |[t,(x) — f(2)| < € holds for all z € F,.
Lete>OandletNeresuChthatQLN < e Fixn > N and x € F,,, and
let p = [, to simplify some of the notation. Then x € E,, and |f(x)| < I, = p.
There is an i € {1,2,3, .5 p2*} such that ZQ_T; < flx) < g5, 80 ty(x) = ;‘Tpl By

definition, k, > p+ log,(u(E,) +1). Thus
okp-> 9P . 9loga(i(Ep)41) — op (2(By) + 1) > 2" u(By),

. Hence we have

which implies & > &) > p(Fn)

pE) - tnl) = (@) = p(F) - | = f(@)
< ,U(Fn> ) iQ_kpl - 2%
p(Fy)

<

l\gl’_'w
_U??‘
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1

< €. OJ

Lemma 3.3.3. Let f and ¢ be functions in .# and {s,} and {t,} sequences in
LY(w). If {s,} and {t,} converge to f and g semiuniformly with respect to {E,},

respectively, then {s,+1t,} converges to [+ g semiuniformly with respect to {F, }.

Proof. Assume that {s,} and {¢,} converge to f and g semiuniformly with re-
spect to {E,}, respectively. There are increasing sequences {F} .} and {F,} in
A such that Fy,, C Eyand Fy, C E, foralln e N, U~ Fi, = U~ Forn =
Uo—, B, and lim,, oo (B, F ) = limy, oo (B, \ Fy,,) = 0, with the property
that for every e > 0, there are Ny, Ny € N such that for all n € N with n > Ny,
the inequality pu(Fi ) - [s.(x) — f(z)| < € holds for all = € F},, and for all n € N
with n > Ny, the inequality pu(Fy,) - [ta(z) — g(2)| < € holds for all x € Fy,,. For
each n € Nlet F,, = Fy,, NI5,. It follows from the corresponding properties of
{F\,} and {F},} that {F,} is increasing and | J>°, F,, = U, E,.

Let us check that lim, . p(E, ~ F,) = 0. Since for all n € N, £, \ F, =
(Ex~ F1,)U(E, \ F,,,), we have that u(E,, N\ F,,)) < u(E, ~ Fin) + p(En~ Fop)
for all n € N. Since limy, s p(E,, N\ F1,) = 0. and lim,, .o p(E, \ Fy,) =0, it
follows that lim,, . u(E, \ E,) = 0.

Let € > 0. Let N; and Ny be as above for the case and choose N =

5
max{Ny, Na}. Let n € N be such that n > N andlet x € F,,. Thenw € I ,NFy,,.

Thus

P(FD) (30 + 1) (@) = (f + 9)(@)] < u(Fr) - [Isa(@) = f(@)] + [ta(@) — g(2)]
= pu(F) - [sn(x) = f(2)]
+ () - [ta(z) — g(2)|

< p(Fin) - [sn(z) — f(2)]
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Therefore {s, + t,} converges to f + g semiuniformly with respect to {E,}. O

Lemma 3.3.4. Let f be a function in .Z. There is a sequence {s, } in L'(x) such

that s, < f semiuniformly with respect to {E}.

Proof. By Lemma 3.3.2, there is a sequence {s,} in L'(u) such that s, < fT
semiuniformly with respect to { £, } and a sequence {t,} in L' () such that t,, < f~
semiuniformly with respect to {E,}. By the proof of Lemma 3.1.4, s, — t,, < f
on | J 2, E,. By Lemma 3.3.3, {s,, —t,} converges to f* — f~ = f semiuniformly

with respect to {E,}. O

Lemma 3.3.5. Let {f,} be asequence in .Z and f € .Z. If f,, < f semiuniformly

with respect to {E,}, then —f, < —f semiuniformly with respect to {F,}.

Proof. Assume f, < f semiuniformly with respect to {E,}. By Lemma 3.2.8,
—fo < —fon U, E, We will show that {—f,} converges to —f semiuniformly
with respect to {E,}.

Since {f,} converges to f semiuniformly with respect to {E,}, there is an
increasing sequence {F,} in .# such that F, C E,for all n € N, [J>7, F, =
U,—, B, and lim,_. p(E, \ F,) = 0, with the property that for-every ¢ > 0,
there is an N € N such that for all n € N with n > N, the inequality u(F),) -
|fu(z) — f(z)| < € holds for all z € F,,. Let € > 0 and let N be as in the previous

sentence. Let n € N be such that n > N, and let x € F},. Then

p(En) - | = ful2) = (=))(@0)] = u(Fn) - [fu(2) = fz)] <€

Hence {—f,} converges to —f semiuniformly with respect to {E,}. O
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Lemma 3.3.6. Let A € ., {f.} be a sequence in .%, and f € ZF. If {f,}
converges to f semiuniformly with respect to {E,}, then {f, - xa} converges to

f - xa semiuniformly with respect to {E,}.

Proof. Assume that {f,} converges to f semiuniformly with respect to {E,}.
Then there exists an increasing sequence {F,} in .# such that F,, C E, for all
neN, U, F,=U —, E, and lim,_. u(E, ~\ F,) = 0, with the property that
for every € > 0 there is an N € N such that for all n € N with n > N, the
inequality u(F,) - |fo(x) — f(z)| < e holds for all z € F),. Let € > 0 and let N be
as in the previous sentence. Let n € N be such that n > N and let z € F,,. If

x ¢ A, then

p(F) - o - xa(@) = f-xa(@)| = u(F,) -0 =0 <k,

while if z € A, then

w(En) - |- xal@) = f - xal@)] = p(Fy) - [ fo(x) — f(2)] <e
Hence {f, - xa} converges to f - xa semiuniformly with respect to {E,} O

Lemma 3.3.7. Let f,g € .Z. If a sequence {s,} in L'(u) expands to f + g
semiuniformly with respect-to {£,}, then there exist sequences {f,} and {g,} in
L' () such that f, < f and g, < g semiuniformly with respect to {E,}, and for

each n € N we have f,, + g, = s, on | =, E,

Proof. Let E =|J | E, and define the following subsets of E:

A:{xEE‘f(:c)g(x)ZO},
B={zcE| f(z) g(x) <0},
B,={zeB| f(z) (f +g)(z) =0},

—{$€B|f (f+9)(z) <0}, and
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Bt ={zeB| f(z) (f+9)(x)>0}.

Let {p,} and {g.} be sequences in L'(u) such that p, < f and ¢, < g semi-
uniformly with respect to {E,}. For each x € X, we define {f,} and {g,} as

follows:
Case 1. z€ X N\ E. Let f,(x) =0 and g,(x) =0 for all n € N.

Case 2. z € A. If (f+g)(x) =0, then let f,(z) = 0 and g,(z) = 0 for all n € N.
If (f+g)(z) # 0, then let f,(z) = % - sp(2) and gn(z) = 22— . 5, (x) for

all n € N.

Case 3. z € B. If x € B, then let f,(z) = p,(x) and g, (z) = —f,(z) for all
n € N. If x € B™, then let f,(z) = p,(z) and g,(x) = (s, — fn)(x) for all n € N.

If € BT, then let g,(x) = g,(x) and f,(z) = (s, — g»)(x) for all n € N,

Let us check that f, and g, are in L*(u) for all n € N. Let n € N and consider
Julfuldp. Let Ag={z € A[(f + g)(x) = 0}. Then [, [fu|du = 0. We claim
that |f.(x)] < |su(z)| for all x € A\ A,. Let € A ~A,. Note that since f(x)

and g(z) have the same sign, 0 < (ff_(gﬁ)(x) < 1. Thus

< g(x)_.sx 0 19 §Ié& o NERE Sn(x
IR G 3 1S S R < o)

This shows that |, (z)| < |sy(2)| for.all x € A x-As. Since-s, € LY(11), we have

Jildn= [ Ataldas [ nddu= [ psalde< .
A Ao ANAg ANAg

Similarly, [, |gn|dp < oo. Now consider [, |f,|du and [, |gn| du. We have that

Jipdae= [ g [ gl

B.,UB~ Bt
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g/ \pn\dw/ !sn|du+/ 19u] i

Bo,UB— B+ B+

g/ |pn|du+/ |sn|du+/ gul i
BoUB— B+ B+

< X0
and

/Ignlduz/ )gnldwr/ !gnldwr/ |9n| dpt
B B B+ 2

d lfnldu+/ |qn|du+/ 5 — pu] di
B+ <

B,

< |pn|du+/ anldu+/ Isnldu+/ 1Pl dis
B% B+ I B~

< OQ.

Combining these we obtain

JAnbd= [ A [ 151

:0+/A|fnydu+/31fnldu
< o0

Similarly, [y [gn|du < oc. Thus f, and g, are in L'(u) for all n € N.

The next step is to show that f, < f and g, < g on E. Let x € E.

Case 1. @& A-lf (f +g)(x)= 0,then f(x) =0=yg(x),andwe have f,(x)
0 = gu(z) for all n € N. Thus for all n € N, f,7(z) =0 < fF (z), f, () =0<
fri1(x), and {f.(x)} converges to f(x). The same argument shows that {g,(z)}

has the corresponding properties.

If (f +g)(x) # 0, then note as before that 0 < % < 1. We have two

subcases to consider.
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Subcase 1.1. f(x) > 0 and g(x) > 0. This implies that s,(x) > 0 and hence

that f,,(x) > 0 as well, for all n € N, so

f(x) f(z)
(f +9)(x) (f+9)(x)

and f,(x) = 0 < f,,i(x) for all n € N. A similar argument shows that

fo (@) = falz) = “sn(7) < sn41(7) = forr(2) = [ (2)

{gn(x)} has the corresponding properties.

Subcase 1.2. f(z) <0 and g(x) < 0. Then s,(z) < 0 for all n € N. Thus

fo(@) = A8 g, (2) <0 for all n € N. It follows that f = 0 and

(f+9)(x)

W 77/ N O

RO DG g TS rgw @
for all n € N. We have that fi(z) =0< f," ,(z) and

oA ST @

Similarly, {g,(z)} has the corresponding properties.

In addition, for each n € N,

= fa:) x) — f(x

|t - | 2 sufo) - s
= f$) s T
- | A ]|n<> (f+9)@)l.

Since {s,(z)} converges to (f + g)(z), this shows {f,(x)} converges to f(x).

Similarly, {g,(x)} converges to g(z).

Case 2. x € B. Tt is easy to check that {f,(x)} and {g,(x)} converge to f(z)
and g(z), respectively.

If © € B,, then f(x) < fH(z) and f, (x) < f, (x) for all n € N, by the
definition of { f,,} and Lemma 3.2.7. The corresponding properties hold for {g,(z)}

by the same argument.

If x € B~, then two subcases must be considered.
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Subcase 2.1. f(z) > 0 and (f + g)(z) < 0. Then g(z) < 0,s,(x) < 0, and
fn(x) = pu(z) > 0 for all n € N. It follows that (s, — f,)(z) <0 for alln € N,

and hence we have that g (z) = (s, — f,)T(z) =0 < g1, ,(z) and

G () = (s = fu)"(2) = =(sn = ) (@) = —sn(2) + fu(2)
=5, (2) + [l (2) < 51 (0) F f131(2) = =$ni1(2) + fapa (2)

= —(8nt1 — for)(@) = (Snp1 — for1) (2) = 9,1 (7).

By the definition of f,(x), we have f,"(x) < f,,(z) and f, (z) < f,,(x) for
all n € N.

Subcase 2.2. f(r) < 0 and (f +g)(x) > 0. Then g(x) > 0, s,(z) > 0, and
fau(z) <0 for all n € N. It follows that (s, — f,,)(z) > 0 for all n € N and

hence we have that, g, (z) = (s, — fn) (2) = 0 < g,,1(x) and

G5(@) = (50 — fu) (@) = {50 = fu@) = su(2) — ful2)
= 55(@) + fr (@) < 51 (@) + Fra @)= B2 (2) — i ()

SHEET fn+1)+($) = g:fﬂ(x)-

By the definition of f,,(z), we have f,"(z) < f,f,,(z) and f, (z) < f,.1(x) for

all n € N.

If ¢ € BT, then note that g(«)- (f +¢)(x) <0, sothe proofin this case is the

same as the proof in the case x € B~, with the roles of f and ¢ interchanged.

We now show that {f,} converges to f semiuniformly with respect to {E,},
by considering each of the sets A, B,, BT, B~. The proof that {g,} converges to
g semiuniformly with respect to {E,} is similar, and is therefore omitted.

For the set A, let A, = {z € A ! (f +9)(x) = 0}. Let a € .Z be such that

a(z) =0 for all x € X and let a,(x) =0 for all z € X and all n € N. Then {a,}
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converges to a semiuniformly with respect to {E,}. By Lemma 3.3.6, {a, - xa.}
converges to a - x 4, semiuniformly with respect to {E,}. Since a, - xa, = fn X4,
foralln € Nand a-xa, = f - xa,, we have that {f, - xa,} converges to f - xa,
semiuniformly with respect to {E,}.

Now consider AN\ A,. We claim that {f,- x4, } converges to f- x4, semiuni-
formly with respect to {E,}. Since {s,} converges to f + ¢g semiuniformly with
respect to {E,}, there is an increasing sequence {F,} in .# such that F,, C FE,
foralln e N, U ", F, = U, ~, E,, and lim,,_.o, u(E, \ F,,) = 0, with the property
that for every ¢ > 0 there is an N € N such that for all n € N with n > N, the
inequality p(F,) - |sn() — (f 4 g)(x)| < € holds for all z € F,,. Let € > 0 and let
N be as in the previous sentence. Let n € N be such that n > N and let x € F,,.

If v ¢ AN A, then

w(Fy) o xXawa (@) — [ xawa (@) = pu(F,) - 0=0<e.

If € A~ A, then, since ’(f_{%)(z)

p(ER) - 1 fn - Xaad(@) = f - Xasao (@)] = p(En) - [fo(2) = (f + 9)(2)]

f(l‘)
. (x)
1T ‘(f+g)( ]

Thus, we have the claim.
By Lemma 3.3.3, {f, - xa, + fn - Xaa,} converges to f - xa, + [ Xaa,
semiuniformly with respect to {E,}. Since f, - xa = fn - X4, + fu - Xawa, and

fexa=f-xa+[ xau, foralln € N, {f,-xa} converges to f-x4 semiuniformly
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with respect to {E,}.

For B,UB~, by Lemma 3.3.6 we have that {p,,-x5,up- } converges to f-xp,up-
semiuniformly with respect to { £, }. Since p,,-x,u- = fn-XB.up- for alln € N|
this tells us that {f, - xp,up-} converges to f-xp,up- semiuniformly with respect
to {E,}.

Now consider B*. Since {g,} converges to g semiuniformly with respect to
{E,}, by Lemma 3.3.3, {s,, — g, } converges to (f+g) —g = f semiuniformly with
respect to {F,}. Because f, - xp+ = (S, — gn) - X5+ for all n € N, we have that
{fn - xB+} converges to [ - xp+ semiuniformly with respect to {FE,}. As in the
above paragraph, we may combine the cases B, U B~ and B™ to conclude that
{fn - xB} converges to f - xp semiuniformly with respect to {E,}.

Putting all of the above cases together, we conclude that {f,, - xaup} converges
to f - xaup semiuniformly with respect to {E,, }. Since AU B = E, this tells that
{fn-xE} converges to f-xg semiuniformly with respect to {E, }. By the definition
of semiuniform convergence, {f,} converges to f semiuniformly with respect to

Finally, observe that f,, + g, = s, on E for all n € N, by the definitions of f,

and g, Therefore the lemma holds. O

Lemma 3.3.8. Let f,g € .Z be such that f <gonJ,_, E,, and {s,} and {t,}
be sequences in L) that expand to f and g semiuniformly with respect to {E, },

respectively.

(a) If u, = max{s,,t,} for all n € N, then u,, < g semiuniformly with respect

to {FE,}.

(b) If u, = min{s,,t,} for all n € N, then u,, < f semiuniformly with respect

to {E,}.
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Proof. (a) Let u,, = max{s,,t,} for alln € N. Then {u,} is a sequence in L (u).

We will show that u,, {gon E=J,_, E,. Let z € E.

Case 1. g(x) > 0 and f(z) > 0. Then {u,(z)} converges to g(z) because
tn(x) < up(z) < g(z) for all n € N and {t,(x)} converges to g(x). Since g(z) > 0
and f(z) > 0, we have that s,(x) > 0 and t,(z) > 0 for all n € N. By the
definition of {u,}, u,(x) > 0 for all n € N. We have that u, () =0 < u,,(2)
and u,} (r) = u,(z) forallm € N. Let n € N. If 5,,(x) > t,,(z), then u,(x) = s, (2).

Thus

Uy () = ta(2) = t5(2) Sty (@) = tnia (1) < wnp (@) = uyyy ().

Case 2. g(x) > 0 and f(z) < 0. Then s,(z) <0 < t,(z) for all n € N, which
implies u,(x) = t,(x) for all n € N. This shows that u}(z) < u},,(z) and

u, (x) <,y (x) for all n € N, and lim, .o un(2) = g(2).

Case 3. g(x) <0 and f(z) <0. Then s,(z) <0 and t,(z) <0 for all n € N,

and hence u;H (@)= 0-<w(z)and u,(z) = —=u,(x) for all n € N.

Subcase 3.1. s,(x) > t,(x): Then u,(z) = s,(x). If u,r1(x) = spi1(x),

then

Uy (2) = —sn(2) = 5, (1) < 5,41 (2) = =5n42(2) = —tn11(7) = vy (7).

If wypi1(x) =ty (), then
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Subcase 3.2. t,(z) > s,(z). Then u,(z) = t,(x). If upii(x) = spp1(x),

then

In both subcases we have that u,(z) < w,.(z).

Let us show that lim, .o u,(z) = g(z). If f(z) = g(x), then we have two

subcases as follows:

Subcase 3.1. For all N € N there exists ny in N with ny > N such that
Uny () = spy (x). Then we can choose a subsequence {u,,, } of {u,} such that

Uny = Sny for all N € N. Hence {u,,} converges to f(x). Since {u,} is

N
decreasing and u, (@) > g(@) = f(@) for all n € N, u,(x) is convergent. Hence
lim,, o un(z) = f(x) = g(x).

Subcase 3.2. There exists N € N such that u,(r) = t,(z) for all n € N

with n > N. Then clearly lim,, . us(z) = g(x).

If f(z) # g(z), then f(z) < g(x), and hence g(z)— f(x) > 0. Since {s,(x)} is
decreasing and lim,, ., s,(z) = f(z), there is an N € N such that s, (z) — f(x) <
g(x) — f(z) for all n € N with n > N. Then s,(z) < g(z) for all n > N. Thus

up(x) = t,(x) for all n > N. Hence lim,_.o, u,(x) = g(z).

To finish the proof we will show that {u,} converges to g semiuniformly with
respect to {E,}. Since {s,} converges to f semiuniformly with respect to {E,},

there exists an increasing sequence {F,} in .# such that Fy, C E, for all
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neN U< Fi, =U. E, and lim, .o p(E, \ Fy,) = 0, with the property
that for every ¢ > 0, there is an N € N such that for all n € N with n > N,
the inequality p(Fi,) - |sn(x) — f(x)| < € holds for all x € Fy,,. Similarly, there
exists an increasing sequence {Fh,} in .# such that Fy, C E, for all n € N,
U, For = U~ B, and lim, .o p(E, N\ F,) = 0, with the property that for
every € > 0, there is an N € N such that for all n € N with n > N, the equality
w(Fon)-tn(z)—g(x)| < eholds for all@ € Fy,,. For eachn € N, let F,, = F} ,NFy .
As in the proof of Lemma 3.3.3, we have that F,, C E,, for alln € N, |J,2, F,, =
U,—, En, and lim,, o w(E,, ~ F,) = 0. Let ¢ > 0. There exist Ny, Ny € N such
that for all n € N with m > Ny, the inequality u(F,,)-|sn(x) — f(x)] < € holds for
all z € F,,; and for all n € N with n > Ns, the inequality p(F,)- [t (x)—g(x)| <€
holds for all = € F;,,. Choose N = max{N;, N5}. Let n € N be such that n > N
and let z € F,,. Then x € I}, 0 F5,,.

If g(x) > 0, then g(x) > tn(x) > tn(x) > 0. Thus
() - 1g(2) = un(2)] < p(F) - |g(@) — ta(2)]
< (o) - |g(z) — ta(2)]
<e
Now suppose._ that) g(z); < 0, jso that! f(#))< §lr) < 0. “If s,(x) > t,(x), then
Un(%) = su(x) and f(z) < g(z) < ta(z) < 50(z), Thus
i(Fn) « 19(x) = unl@)f = pu(Fn) - [9(2) = sn(@)]
< u(F) - | f(@) = su(@)]
< w(Fip) - |f(z) = sa(2)]
<e

If s,(z) < t,(x), then u,(z) = t,(x), and thus

p(F) - g(x) — un(z)| = p(Fy) - |g(z) — tu()]
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< p(Fon) - |g(x) — ta(2)]

< €
Therefore (a) holds.
(b) For each n € N, let u, = min{s,,t,}, and let v, = —u,, for all n € N.
Then v, = —min{s,,t,} = max{—s,,—t,} for all n € N. Since —s,, < —f and

—t,, < —g semiuniformly with respect to {£,} and —g < —f, by part (a) v, < —f
semiuniformly with respeet to {F,}. By Lemma 3.3.5, —v,, < f semiuniformly
with respect to {E,}. Since —v, = w, for all n € N, this says that u, < f

semiuniformly with respect to {£,}. O

3.4 A Nonabsolutely Convergent Abstract p-integral

In this section we will show how the concepts of expanding sequences and semi-
uniform convergence can be combined to yield a family of abstract u-integrals, at
least some of which are nonabsolutely convergent.

Throughout this section {E,} will denote an increasing sequence in .# such

that u(E,) < oo foralln € Nand J)_, E, = X.

Definition 3.4.1. A function [ in .% is said to be generalized Lebesgue inte-
grable with respect to {E,} iff there exists an L € R with the property that
lim,, f 5, Sn dp.= L for every sequence {s,}in L'(x) such that s, < f semiuni-
formly with respect to {E£,}, in which case the generalized Lebesgue integral of f

is L. We denote the generalized Lebesgue integral of a function f with respect to

Let . = { fez ’ f is generalised Lebesgue integrable with respect to{En}}
and I(f) = {En}-[y f dp for every f € .#. We will show that (.#,1) is an abstract

p-integral and ;1 C 7.
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Proposition 3.4.2. Let f € #. If f is in Z11, then f is generalized Lebesgue

integrable with respect to {E,} and

(B[ sau= [ san

Proof. This follows directly from Proposition 3.2.11. ]

Corollary 3.4.3. Let f € .%. If f > 0, then f is generalized Lebesgue integrable

with respect to {E,} and

{En}-/deMZ/deu-

Proposition 3.4.4. For all E in .Z, xp is generalized Lebesgue integrable with

respect to {E£,} and
(Bl [ X = p(E).

Proof. Let E € /4. Since (xg)~ =0, [(xg)” dp = 0. This shows that f € F71.

By Lemma 3.4.2) x is generalized Lebesgue integrable with respect to {F, } and

{En}-fx xpdp =[x xpdp = p(E). O

Proposition 3.4.5. For every f € % and r € R, if f is generalized Lebesgue
integrable with respect to {E,}, then rf is generalized Lebesgue integrable with

respect to {E,} and

(Bl =1 (B o).

Proof. Let f € .7 and r € R. Assume that f is generalized Lebesgue integrable
with respect to {E,}. There exists L € [~o0, oo] such that lim,, .o [, spdp =L
for all sequences {s,} in L'(u) with the property that s, < f semiuniformly with
respect to {E,}.

If r =0, then rf = 0. Clearly, rf is generalized Lebesgue integrable with

respect to {E,} and {E,}-[, rfdp=0=r({E.}-[ fdu).
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Assume that r # 0, and consider rL. Let {s,} be a sequence in L'(z) such that
s, expands to rf semiuniformly with respect to {£,}. Then {2} is a sequence
in L'(u).

We will show that °= < f on (J,~, E, = X. Since {s,(z)} converges to rf(z)

for all z € X, {®2(x)} converges to f(x) for all x € X.

Case 1. r > 0. Then ()" = @ and (22)~ = 2 for all n € N. Since

v T
sn < rf on X, we have that (%2)* = % < SZT“ = (=£)% and (2)7 = = <
fmit — (Sm41)~ for all p g .

Case 2. 7 < 0. Then ()" = —2 and ()" = —% for all n € N. Since
sn < rf on X, we have that ()" = —& < —S’:T“ = (=) and (°2)” = —% <

st (2nt1)-
Thus %= < f on X.

We will show that {#*} converges to f semiuniformly with respect to {£,}.
Since {s,} converges to rf semiuniformly with respect to {E,}, there exists an
increasing sequence {F,} in . such that F, C E, for all n € N, | J7_, F,, =
U,—, En, and lim, .« (B, \ F,) = 0, with the property that for every € > 0 there
is an N € N such that for all n € N with n > N, the inequality u(F},) - |sp(z) —
rf(x)| < € holds forall w € F},- Let € > 0..Then €|rr| > 0. There is an N, in N
such that for every n € Nwith n > N, the inequality p(F,)-[sp(x)—rf(x)| < €|r|

holds'for all x € F,,.. Then for each n € N'such that n > N, we have that

u(F)- |20 - 10| =) 1 sa(o) = r i)
1
< me|r|

We have that {22} is a sequence in L'(u) such that 2= < f semiuniformly with re-

spect to {E,}. Thus lim,, . | . 2= dp = L. This implies that lim,, . / 5 Sndp =
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rL. Thus rf is generalized Lebesgue integrable with respect to {E,} and

{En}-/erdu—rL—r({En}—/deM>. .

Proposition 3.4.6. Let f, g € .% be such that f and g are generalized Lebesgue

{E.}-[y fdp| < oo and [{E,}-[ gdu| < oo.

Then f + g is generalized Lebesgue integrable with respect to {E,} and

integrable with respect to {E,},

RS RIS A Y ST AT

Proof. Let Ly = {E,}-[, fdu and Ly = {E,}-[, gdp and let L = Ly + Lo.
Let {s,} be a sequence in L'(u) such that s, expands to f + ¢ semiuniformly
with respect to {E,}. By Lemma 3.3.7, there exist sequences {f,} and {g,}
in L'(u) such that f, < f and g, < g semiuniformly with respect to {E,} and
fa+gn = sy, for each n € N. Then lim,,_ o fEn fadp = Ly, lim,_ fEn Gndp = Lo,

and [ fodp+ [ gndp = [ s, dpfor alln € N. For every n € N, we have

/ sndu—Ll =

<

fndu+/ gndp— (L1 + Lo)
En n

/ Gndp — Lo

Thus lim, .o [ B, Sn dp =L, which proves that f + g is generalized Lebesgue

fnd,u_Ll

En

+

integrable with respect to {E,} and

N RUEITER Y RSt AT a

Lemma 3.4.7. Let f,g € % be such that f and g are generalized Lebesgue

integrable with respect to {E,} and f < g.
(a) If {E,}-[\ fdp = oo then {E,}-[, gdu = oo.

(b) If {E,}-[ gdpu = —o0 then {E,}-[ fdu = —oo.
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Proof. (a) Assume that {E,}-[, fdu = oo. Let {t,} be a sequence in L'(yu)
such that t, < ¢ semiuniformly with respect to {E,}. We must show that
lim, oo [ g, tn dp = co. Let {s,} be a sequence in L'(11) such that s, < f semiuni-
formly with respect to { E},}. Let u, = min{s,,t,} for alln € N. By Lemma 3.3.8,
u, < f semiuniformly with respect to {E,}. Thus lim, . [ 5, Undp = 00.
Since u, < t, for all n € N, fEn U A < fEn todp for all n € N. Hence
lim,, oo fEn tn dp = oo. Therefore {E,}-[ gdp = co.

(b). Since f < g, —=f < —g. Because [ and ¢ are generalized Lebesgue in-
tegrable with respect to {£,}, —f and —g are generalized Lebesgue integrable
with respect to {E,} and {E,}-[(=g)dp = —{E,}-[ gdpn = co. By part (a)

{En}-[(—=f)dp =00, and hence by Proposition 3.4.5, we have

EM fans (B[ chan) = a

Proposition 3.4.8. Let f,g € . be such that f < g. If f and ¢ are generalized

Lebesgue integrable with respect to {E,}, then {E, }-[ fdu < {E,}-[; gdp.

Proof. Assume that f and g are generalized Lebesgue integrable with respect to
{E,}. If {E,}-[ gdp = oo, then we are finished. If {E, }-[,, g du = —oco, then by
Lemma 3.4.7, {E,}-[ f.du = —oo and again we are finished.

Thus, assume that —oo < {E, }-[; gdp < oo: By Lemma 3.4.7, we have that
{E.}-[ fdu < oo also. If {E,}-f; fdu = —oo; then again we are finished, so
we may assume that —oo <{E,}-[; fdu < oo. By Corollary 3.4.3 and Proposi-

tion 3.4.6 and the fact that g — f > 0, we have

(E,}- /X gdp— {B,}- /X fdu={E.)- /X (g 1) dp>0.
Thus {E, }-[ gdu > {E.}-[ [ dp. O

Theorem 3.4.9. If {f,} is a monotonically increasing sequence of generalized

Lebesgue integrable functions with respect to {E,}, f1 < fo < f3 < ..., such that
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SUp,cy fn(2) < oo for all # € X and there exists N € N with {E,}-[, fxdu >
—00, then sup, ¢y fr is generalized Lebesgue integrable with respect to {E,} and
(B} sup fudp = sup ({En}- [ & du) |

X neN neN X
Proof. For each n € N let L, = {E,}-[, fudp and let L = sup,cyL,. By
hypothesis, we have that L, > —oo for all n € N such that n > N. By dropping
a finite number of terms at the beginning of the sequence {f,}, we may assume
N = 1. Let f = sup,cy/fn. We must prove that f is generalized Lebesgue

integrable with respect to {£,} and {E,}-[ fdp = L.

Case 1. L = oo. Let {s,} beasequence in L' () such that s, < f semiuniformly
with respect to {E,}. We must show that lim, . [ g, Sndp = oo. It suffices
to show liminf,_ .. fEn Spdp > Ly for all k € N. Fix £ € N, and let {¢,}
be a sequence in L'(u) such that ¢, < fi semiuniformly with respect to {F,}.
Let w, = min{s,,t,} for all n € N. Since f; < f, by Lemma 3.3.8 {u,} is a
sequence in L'(p) such that w, < f, semiuniformly with respect to {E,}. Thus

lim,, fEn Up dip = Ly. Since u, < s, for all n € N, it follows that

liminf/ Sp djt > liminf/ Up dp = Ly,

n—oo n—oo

which is the inequality we need to finish this case.

Case 2. L < o0. Let g, = f, — f1 for each n.€ N. Then {g,} is an increas-
ing sequence of nonnegative functions, which by Corollary 3.4.3 are all general-
ized Lebesgue integrable with respect to {E,}. Furthermore, {E,}-[ gndp =

{E}-[x fodi —{E}-[ fidp and {E,}-[ gndp = [y gndp for all n € N. Let

g = sup,,cy gn and observe that

g=sup(fn—fi) = (SUan> -h=f-h

neN neN
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In particular, g is a nonnegative, measurable, real-valued function, and thus by
Corollary 3.4.3 again, ¢ is generalized Lebesgue integrable with respect to {E,}

and {En}—fX gdu = fX g du. By the Monotone Convergence theorem,

{En}-/gdu=/gdu
X X
~ [ sup g a
X neN

= sup / Gn dp
neN J X

=i [{En}-/x fudp=AE.}-[ 1 du}

neN

= sup {{En}-/xfndu] —{En}-/X frdp

neN

=sup L, — Ly
neN

Rl I

This tells us that {E,}-[, gdp is finite. Since {E,}-[, fi dp = Ly is also finite,
by Proposition 3.4.6 f = g+ f; is generalized Lebesgue integrable with respect to

{E,} and
B[ san= B[ gdn{B)-| fdp=(@-L)+Li=1. O

By Propositions 3.4.4, 3.4.5, and 3.4.6, and Theorem 3.4.9, we have that (.7, 1)
is an abstract u-integral. Also, we have .71 C . by Proposition 3.4.2.

The following is an example of a choice of measure space (X, .#, 1) and se-
quence of sets {F,} such that the corresponding generalized Lebesgue integral is

nonabsolutely convergent.

Example 3.4.10. Let (X, .#, i) be the standard Lebesgue measure space on R
and let E, = [-n,n] for all n € N. Then (X, .#, 1) is a o-finite measure space

and the corresponding generalized Lebesgue integral is an abstract p-integral with
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F1 € . We will show that (.#,1) is nonabsolutely convergent by exhibiting a

function f € .# with [I(f)| < oo but I(|f|) = co. Define f: R — R by

1 ifxz>0
flz) =
-1 ifxz<0

for all z € X.

Since | f|(z) = 1 for allw € X, we have |f| = xx, and thus I(| f]) = pu(X) = <.
Hence we will be finished if we can show that f is generalized Lebesgue integrable
with respect to {E,} and {E,}-[ fdu = 0. Let {s,} be a sequence in L'(y)
such that s, < f semiuniformly with respect to {E,}. We must prove that
lim,, fEn Sp dp = 0.

By definition there exists an increasing sequence { F, } in .# such that F,, C E,,
foralln e N, (J ", F, = U, _, E,, and lim,,_. p(E, \ F,,) = 0, with the property
that for every € > 0 there is an N € N such that for all n € N with n > N, the
inequality p(Fy,)-|sn(x)— f(2)] < eholds for all x € F,,. Since lim,, ., u(E,\F,) =
0 and lim,, .o, p(E,) = lim, . 2n = oo, we have that there exists an N; € N such
that u(F,) # 0 forall m > N;. Let € > 0. There is an Ny € N such that for
all n € N with n > Ny, the inequality p(F},) - [sp(z) — f(z)| < § holds for all
r € F,. There exists an Ny € N-such thati (£, F;) < 5 for all n > N3. Choose
N = max{Ny, N, N3}. Let n € N be such that n > N. Then for each = € F,,, we
have u(I5,) - |sp(@) ~ f(2)] < 5, ie., [sq(x) — f(2)| < S

Consider anm[o,n] Spdp. Since s, < f, we have s,(x) < f(z) for all x € [0,n].

Thus

Hence

€
1-— dp < / Sp A
/Fnﬁ[O,n] 2u(F,) Fn[0,n]
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< / Ldp
F,N[0,n]

= n(F, N[0, n]).

Next, consider anm[_ Spdp. Since s, < f, we have s,(z) > f(x) for all

n70]

x € [-n,0]. Thus

1= f(a) < sn@) < f(2)F 2u(EFn) -1+ 2u(€Fn)
Hence
(—1) i Fa\=n, 0]) < /F s

€
) — N djt.
/Fnﬁ[—n,()] 2p(F)

Now, consider f( Sp dp. Since s, < f, we have 0 < s,,(x) < f(z) =1 for

E,~Fy,)N[0,n]

all z € [0,n]. Thus

OS/ sndﬂg/ fdp=p((E, ~ F,)N[0,n]).
(En~Fpn)N[0,n] (En~Fp)N[0,n]

Finally, consider f( Sp dp. Since s, < f, we have 0 > s,(z) > f(x) =

En~Fp)N[=n,0]

—1 for all z € [—n,0]. Thus

(=Dp((Enx E) 0 [=n,0]) = / fdu< / Spdp < 0.
(Bn~Fp)N[—n,0] (En~Fn)N[—n,0]

Combining all of these we obtain

/ snd,u:/ sndu—i-/ snd,u+/ Sp dp
E, F,N[0,n] F,N[—n,0] (En~Fp)N[0,n]

+ / Sp dp
(En~Fp)N[—n,0]

€
> 1— dpu+ (—=1) - p(F, N |[—n,0]) +0
o~ T () 50 0)

+ (=1) - u((Eyp ~ Fy) N [—=n,0])

- (1 S ) p(Fo 0 [0,n]) = p(Fy N [=n,0])
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— u((En ~ Fy) 0 [=n,0])
en(F, N [0,n))
2u(Fy)

— u([=n, 0] N (F, N [-n,0]))
6,U(Fn N [O7n])
2p1(F)

— p([=n, 0]) + p(F [=n, 0))

= pu(F,N[0,n]) — — pu(F, N [—n,0))

- ,M(Fn N [O,TL]) w

- M(Fn N [_n> 0])

. ep(F, N[0,n])
= —la=a,0) —p(F 0] - =5

:_W@mD—Mﬂmme—“wZ&£m>
EM(Fn N [O7n])
20(Fy)
E/L(Fn M [0,71])
2u(Fy)
E/.L(Fn N [07 TL])
2u(Fy)

— ([0, 7] N (E, A [0,7])) —

= “u((Ba~ F) N[0, 7]) =

> =By~ Fy) —

>t 2
2 2

= —€

and

/ Snd,uz/ Snd/’“—}'/ Snd'u_{—/ ol
n w[0,7] Fa[=n,0] Bl A ]

+ / Sn d,U/
(En~In)N[=n,0]

< pu(F, n{o,n]) + /F o 14 ﬁdu + u((B,~F,) N[0, n])

+0
ep(Fn N [=n,0])
2p(F)

e,u(Fn N [—n, 0])
iy p1([=n, 0])

E,U(Fn N [_n’ O])
2u(Fy)

= —p(F, N [=n,0]) + + p([0,n])

= —M(Fn N [_nao]) +

= p([=n, 0] \ (F N [=n,0))) +
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Together, the two strings of inequalities above tell us that | Il B, Sn d,u| < e In
other words, given € > 0 we can find an N & N such that UEn Sn du} < € for all
n > N.Thus, we have that lim, ., [ B, Sn dp = 0. Hence f is generalized Lebesgue
integrable with respect to {E,} and {E,}-[, fdu = 0. This completes our proof

that (.#,1) is a nonabselutely convergent abstract u-integral.



CHAPTER IV

CONCLUSIONS

In this thesis, we have defined the generalized Lebesgue integral on an arbitrary
o-finite measure space by using the concepts of expanding sequences and semi-
uniform convergence. We have shown that the generalized Lebesgue integral is
always an abstract p-integral, and given an example of a generalized Lebesgue
integral which is nonabsolutely convergent using the standard Lebesgue measure
space on R.

The definition of generalized Lebesgue integral we have given may not be
the best possible definition. It can be observed that it depends on a designated
sequence of measurable sets. Thus, a single function may have many different inte-
grals when we choose different sequences of measurable sets. It would be better if
the definition could be improved so that the integral of a given function is unique.
The key to an improved definition is probably a better concept of semiuniform
convergence, or perhaps even an-alternate type of convergence. Also, the relation-
ship between the generalized Riemann integral on R and the generalized Lebesgue

integral using the standard Lebesgue measure on R should be considered.
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