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CHAPTER I

INTRODUCTION

The history of the integral stretches back to the early days of mathematics. Over

2000 years ago Greek mathematicians used the basic idea of the Riemann integral,

namely approximation by rectangles, to obtain formulas for the area of a circle

and volume of a sphere. They called their technique the “method of exhaustion”.

Many centuries later, Newton and Leibniz both came to the realization that

this was in fact a very general idea with many applications, so they introduced a

more abstract concept of integral. Their ideas were essentially what we now call

the Riemann integral, but they lacked rigor.

The true theory of integration began with Riemann and Weirstrass. Riemann

was the first person to give a completely rigorous definition in terms of limits,

while Weierstrass introduced the key concept of uniform convergence. However,

Riemann’s definition has its limitations. For example, functions can only be in-

tegrated over finite intervals, and the functions themselves must be bounded.

Furthermore, a function will be integrable only if its set of discontinuities has

measure zero, and the convergence theorems require uniform convergence. Some

of these limitations can be removed by the use of improper integrals, but this is

not a complete solution, nor is it very elegant.

Since then many people have worked on this problem. Surely the biggest

contribution was made by Lebesgue, whose definition allowed integration of un-

bounded, widely discontinuous functions over a wide variety of sets, including

unbounded sets. Furthermore, the Lebesgue integral has very nice convergence
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properties, as illustrated by the Monotone and Dominated Convergence Theo-

rems. The one real weakness of Lebesgue’s definition is that a function taking on

both positive and negative values is integrable only if the integral of its absolute

value is finite. As a result, there are examples of differentiable functions f such

that f
′
is not integrable on some intervals [a, b], even though f(b)−f(a) is clearly

a reasonable value for
∫

[a,b]
f
′
dm. The generalized Riemann integral helps to solve

this problem; however it has a standard definition and well-developed theory only

for integration over intervals in Rn.

In this thesis we introduce a new integral, which we call the generalized

Lebesgue integral, that can be defined on any σ-finite measure space. The new

integral retains some of the flavor of the Lebesgue integral, yet allows integration

of some functions whose absolute values have infinite integrals.

The remainder of this thesis is organized as follows. In Chapter 2, we summa-

rize some essential facts concerning the extended real numbers and the Lebesgue

integral which will be used in the succeeding chapter.

The heart of our work is Chapter 3, which consists of 4 sections. The first

section presents the definition and properties of abstract µ-integrals, which are

an abstract formulation of the concept of measure-based integrals, and the defini-

tions of absolutely and nonabsolutely convergent abstract µ-integrals. In sections

2 and 3 we introduce the definitions of expanding sequences and semiuniform con-

vergence which are important tools to define the new integral. The last section

concerns the new definition of the integral and the proof that it is an abstract

µ-integral. We also give an example of a nonabsolutely convergent integral using

the standard Lebesgue measure space on R.

Chapter 4 summarizes the results of the previous chapters and discuss possible

improvements and topics for further research.



CHAPTER II

PRELIMINARIES

In this chapter, we review the definition of the extended real numbers and a few

essential facts concerning measure and the Lebesgue integral.

2.1 The Extended Real Number System

The extended real number system, consisting of the real numbers together with

the two elements ∞ and −∞, is denoted by R̄. We operate on the new elements

by the following equations: for each a ∈ R,

a · ∞ =



0 if a = 0

∞ if a > 0

−∞ if a < 0

a · (−∞) =



0 if a = 0

−∞ if a > 0

∞ if a < 0

a +∞ = ∞+ a = ∞

a + (−∞) = −∞+ a = −∞

∞+∞ = ∞

(−∞) + (−∞) = −∞

∞ ·∞ = ∞
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(−∞) · (−∞) = ∞

∞ · (−∞) = −∞

(−∞) · ∞ = −∞
a

±∞
= 0.

The expressions ∞−∞ and ±∞
±∞ are not defined.

We extend the ordering on Rby defining −∞ < a < ∞ for all real numbers a.

With this ordering, we can define the supremum and infimum of a subset E of

the extended real numbers as follows.

1. if E = ∅, then sup E = −∞ and inf E = ∞;

2. if E ⊆ R and E is bounded, then we define sup E and inf E as usual;

3. if E ⊆ R and E is not bounded above, then sup E = ∞;

4. if E ⊆ R and E is not bounded below, then inf E = −∞;

5. if ∞ ∈ E, then sup E = ∞;

6. if −∞ ∈ E, then inf E = −∞;

7. if ∞ /∈ E and −∞ ∈ E, then sup E = sup
(
E r {−∞}

)
;

8. if −∞ /∈ E and ∞ ∈ E, then inf E = inf
(
E r {∞}

)
.

Consequently, every subset of the extended real numbers has a supremum and

infimum. In particular, for monotonic sequences of elements of R̄:

(a) if {an} is an increasing sequence, then limn→∞ an = supn∈N an; and

(b) if {an} is an decreasing sequence, then limn→∞ an = infn∈N an.
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2.2 Measure Theory and Integration

Let (X, M , µ) be a measure space, where µ is complete (recall that every measure

can be completed [2, p.29]). In this thesis we consider measurable functions on X

which have range on R̄. The present section reviews some definitions and results

from the theories of measure and the Lebesgue integral that will be used in the

next chapter.

Definition 2.2.1. The set E ∈ M is said to be σ-finite if there exists a sequence

{En} of sets in M such that
⋃∞

n=1 En = X and µ(En) < ∞ for all n ∈ N. In

particular, we say the measure space (X, M , µ) is σ-finite whenever X is σ-finite.

Definition 2.2.2. Let f be a nonnegative measurable function. For any measur-

able set E, we define the integral of f on E with respect to µ by∫
E

f dµ = sup
{∫

E
s dµ

∣∣ s is a simple function with 0 ≤ s ≤ f
}
.

Theorem 2.2.3 (Lebesgue’s Monotone Convergence Theorem). Let {fn}

be a sequence of nonnegative measurable functions and E ∈ M . If

(a) f1 ≤ f2 ≤ f3 ≤ . . . on E, and

(b) limn→∞ fn = f on E,

then limn→∞
∫

E
fn dµ =

∫
E

f dµ.

Measurable functions which have both positive and negative real values may

or may not be integrable.

Definition 2.2.4. Let f be a measurable function and E ∈ M . If
∫

E
f+ dµ < ∞

or
∫

E
f− dµ < ∞, where f+ and f− are the positive and negative parts of f ,

respectively, then we define the integral of f on E by∫
E

f dµ =

∫
E

f+ dµ−
∫

E

f− dµ.
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We define L1(µ) to be the collection of all measurable functions f on X for

which
∫

X
|f | dµ < ∞. The members of L1(µ) are called Lebesgue integrable

functions.

Note that since |f | = f+ + f−, L1(µ) is the collection of all measurable func-

tions f on X for which both
∫

X
f+ dµ < ∞ and

∫
X

f− dµ < ∞

Next, we consider the concept of almost everywhere. Let P (x) be a property

which which can be true or false for each point x in X. If E ∈ M , the statement

“P (x) holds almost everywhere (a.e.) on E” means that there exists an N ∈ M

such that N ⊆ E, µ(N) = 0, and P (x) holds at every point x ∈ E r N . This

concept of a.e. depends on the given measure µ, and we normally write “a.e.[µ]”.

In particular, if f and g are measurable functions and µ
({

x ∈ X
∣∣ f(x) 6=

g(x)
})

= 0, we say that f = g a.e.[µ] on X, which we may write as f ∼ g. This

is an equivalence relation. Note that if f ∼ g, then∫
E

f dµ =

∫
E

g dµ.

for every E ∈ M . Because of this, in integration theory it is not necessary to

distinguish between functions that are equal almost everywhere. In particular, for

some properties, if we have a measurable function f that satisfies such a property

almost everywhere, then we can find another measurable function g such that

f ∼ g and g satisfies the property everywhere. Because of this, in this thesis

we will often simplify the statements of results and their proofs by stating that

various properties hold everywhere rather than almost everywhere.

Theorem 2.2.5 (Lebesgue’s Dominated Convergence Theorem). Let {fn}

be a sequence of measurable functions and f a measurable function such that

limn→∞ fn(x) = f(x) for all x ∈ X. If there is a measurable function g ∈ L1(µ)

such that |fn| ≤ g for all n ∈ N, then
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(a) f ∈ L1(µ),

(b) lim
n→∞

∫
X
|fn − f | dµ = 0, and

(c) lim
n→∞

∫
X

fn dµ =
∫

X
f dµ.



CHAPTER III

A NONABSOLUTELY CONVERGENT

LEBESGUE-TYPE INTEGRAL

In this chapter, we define a new integral on an arbitrary σ-finite measure space,

especially, for a function f that can be indicated its new appropriate integral and∫
X
|f | dµ = ∞. To provide a general framework for discussing measure-based inte-

grals, we first define abstract µ-integrals, in which we are thinking of each integral

as the set of integrable functions together with the integration operator. With

this in hand we can defind absolutely and nonabsolutely convergent abstract µ-

integrals. Next, we introduce expanding sequences and semiuniform convergence

which are important tools in defining the new integral. The last step is to define

the new integral and a nonabsolutely convergent abstract µ-integral.

Let (X, M , µ) be a σ-finite measure space, where µ is complete, and let F

be the set of real-valued measurable functions on X. Note that F is an R-vector

space. Define a partial order ≤ on F by f ≤ g iff f(x) ≤ g(x) for almost

all x ∈ X. Recall that if {fn} is a sequence of measurable functions such that

supn∈N fn(x) < ∞ for all x ∈ X, then supn∈N fn is also measurable.

3.1 Abstract µ-Integrals

To look for a nonabsolutely convergent integral, it is useful to have a clear idea of

what an integral is. In this section, we introduce the concept of abstract µ-integral,

an abstract definition of an integral based on measure.
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Definition 3.1.1. An abstract µ-integral on X is a pair (I , I), where I ⊆ F

and I : I → R̄, satisfying the following properties:

(a) For all E ∈ M we have χE ∈ I and I(χE) = µ(E).

(b) For all f ∈ I and all r ∈ R we have rf ∈ I and I(rf) = rI(f).

(c) If {fn} is a monotonically increasing sequence of nonnegative members of

I such that supn∈N fn(x) < ∞ for all x ∈ X, then supn∈N fn ∈ I and

I(supn∈N fn) = supn∈N I(fn).

(d) If we let H =
{
f ∈ I

∣∣ |I(f)| < ∞
}
, then H is closed under addition

(so that H is a vector subspace of F ) and for all f, g ∈ H we have

I(f + g) = I(f) + I(g). Thus I|H is a linear functional on H .

Clearly, I is the set of integrable functions and I is the integration operator

in the above definition. Our first task is to investigate the relationship between

the Lebesgue integral, and its set of integrable functions, L1(µ), and the abstract

µ-integral, (I , I). The following definitions and lemmas will also be useful in our

study of a nonabsolutely convergent integral.

Definition 3.1.2. A simple function s is said to be µ-finite iff it can be written

as
∑n

i=1 aiχEi
with µ(Ei) < ∞ for all i ∈ {1, 2, 3, . . . , n}.

Remark 3.1.3. Note every µ-finite simple function is in L1(µ).

The phrase “a sequence {En} in M is increasing” means that for each n ∈ N,

En ⊆ En+1. We will use this phrase often in the following pages.

Lemma 3.1.4. Let E be a σ-finite measurable set. For any f ∈ F with f ≥

0, there is an increasing sequence {sn} of µ-finite simple functions such that

supn∈N sn = f on E.
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Proof. Let {En} be an increasing sequence of sets in M such that
⋃∞

n=1 En = E

and µ(En) < ∞ for all n ∈ N. Let f ∈ F be such that f ≥ 0. Define a sequence

{kn} of natural numbers by kn = n +
⌈
log2(µ(En) + 1)

⌉
. We have that {kn} is

increasing. For each n ∈ N, let sn : X → [0,∞) be defined by

sn(x) =



i−1
2kn if x ∈ En and i−1

2kn ≤ f(x) < i
2kn for some i ∈ {1, 2, 3, . . . , n2kn}

n if x ∈ En and f(x) ≥ n

0 if x /∈ En

for each x ∈ X. It is clear that for each n ∈ N, 0 ≤ sn ≤ f and sn =∑n2kn+1
i=1 an,iχEn,i

, where an,i = i−1
2kn and En,i = En ∩ f−1([ i−1

2kn , i
2kn )) for all i ∈

{1, 2, 3, . . . , n2kn}, an,n2kn+1 = n and En,n2kn+1 = En ∩ f−1([n,∞)). Since f ∈ F

and µ(En) < ∞ for all n ∈ N, En,i is measurable and µ(En,i) < ∞ for all

i ∈ {1, . . . , n2kn + 1}. Thus sn is a µ-finite simple function for all n ∈ N.

We will show that {sn} is increasing by proving that for all n ∈ N we have

sn(x) ≤ sn+1(x) for all x ∈ X. Let x ∈ X and n ∈ N.

Case 1. There exists i ∈ {1, . . . , n2kn} such that x ∈ En and i−1
2kn ≤ f(x) < i

2kn .

Then sn(x) = i−1
2kn . Let K = 2kn+1−kn . Since f(x) ≥ i−1

2kn = (K(i−1)+1)−1

2kn+1
and

f(x) < i
2kn ≤ n < n + 1, we have that sn+1(x) ≥ (K(i−1)+1)−1

2kn+1
= i−1

2kn = sn(x).

Case 2. x ∈ En and f(x) ≥ n. We have that f(x) ≥ n. Thus sn+1(x) ≥

n2kn+1

2kn+1
= n = sn(x).

Case 3. x /∈ En. Then sn(x) = 0 ≤ sn+1(x).

From the above cases, we can conclude that {sn} is increasing.

We will prove that supn∈N sn = f on E. Since sn ≤ f for all n ∈ N, f(x)

is an upper bound of {sn(x) | n ∈ N} for all x ∈ E. Let x ∈ E and ε > 0.

Then x ∈ En for some n ∈ N. Since f is real-valued and {En} is increasing,
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there exists nx ∈ N such that 1
2nx < ε, x ∈ Enx and 0 ≤ f(x) < nx. Then there

exists i ∈ {1, 2, 3, . . . , nx2
knx} such that i−1

2knx
≤ f(x) < i

2knx
. Since nx ≤ knx ,

f(x)− ε < f(x)− 1
2nx ≤ f(x)− 1

2knx
< i−1

2knx
= snx(x). Therefore supn∈N sn = f on

E.

Remark 3.1.5. Since X is σ-finite, by Lemma 3.1.4, for any nonnegative f ∈ F

there is an increasing sequence {sn} of µ-finite simple functions with supn∈N sn = f

on X.

Let (I , I) be an arbitrary abstract µ-integral and let H =
{
f ∈ I

∣∣
|I(f)| < ∞

}
. The next propositions concern the relationship between L1(µ) and

(I , I).

Lemma 3.1.6. If s is a µ-finite simple function, then s ∈ I and I(s) =
∫

X
s dµ.

Proof. Assume that s is a µ-finite simple function. Then s =
∑n

i=1 aiχEi
with

µ(Ei) < ∞ for all i ∈ {1, 2, 3, . . . , n}. Since χEi
∈ I and µ(Ei) < ∞ for all

i ∈ {1, 2, 3, . . . , n}, we have that χEi
∈ H for all i ∈ {1, 2, 3, . . . , n}. Since H

is a vector space, s ∈ H . Thus s ∈ I . Moreover, by the definition of abstract

µ-integrals, we have that

I(s) = I

(
n∑

i=1

aiχEi

)
=

n∑
i=1

aiI(χEi
) =

n∑
i=1

aiµ(Ei) =

∫
X

s dµ.

Proposition 3.1.7. If f ∈ F and f ≥ 0 , then f ∈ I , I(f) ≥ 0, and I(f) =∫
X

f dµ.

Proof. Let f ∈ F be such that f ≥ 0. Let {sn} be an increasing sequence

of µ-finite simple functions such that supn∈N sn = f on X. By Lemma 3.1.6,

we have that sn ∈ I for all n ∈ N, so by the definition of abstract µ-integral

f = supn∈N sn ∈ I . The result I(f) ≥ 0 will follow from the result I(f) =
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∫
X

f dµ, which we will now prove. Indeed, by the definition of abstract µ-integral,

Lemma 3.1.6, and the Monotone Convergence Theorem we have

I(f) = I (supn∈N sn)

= sup
n∈N

I(sn)

= sup
n∈N

∫
X

sn dµ

=

∫
X

sup
n∈N

sn dµ

=

∫
X

f dµ.

Proposition 3.1.8. The set L1(µ) ⊆ I and I(f) =
∫

X
f dµ for all f ∈ L1(µ).

Proof. Let f ∈ L1(µ). By Proposition 3.1.7, f+, f− ∈ I , 0 ≤ I(f+) =
∫

X
f+ dµ

and 0 ≤ I(f−) =
∫

X
f− dµ. Since f ∈ L1(µ),

∫
X

f+ dµ < ∞ and
∫

X
f− dµ < ∞,

and thus f+, f− ∈ H . By the definition of abstract µ-integral, f = f+ − f− ∈

H ⊆ I , and

I(f) = I(f+ − f−) = I(f+)− I(f−) =

∫
X

f+ dµ−
∫

X

f− dµ =

∫
X

f dµ.

Thus L1(µ) ⊆ I and I(f) =
∫

X
f dµ for all f ∈ L1(µ).

Proposition 3.1.9. L1(µ) =
{
f ∈ F

∣∣ I(|f |) < ∞
}
.

Proof. For any f ∈ F , |f | ∈ F and |f | ≥ 0, so by Proposition 3.1.7, |f | ∈ I

and I(|f |) =
∫

X
|f | dµ. Thus I(|f |) < ∞ iff

∫
X
|f | dµ < ∞, and the result follows

from the definition of L1(µ).

Definition 3.1.10. An abstract µ-integral (I , I) is absolutely convergent iff

|I(f)| < ∞ ⇒ I(|f |) < ∞ for all f ∈ I . We say that (I , I) is nonabsolutely

convergent iff there exists f ∈ I such that |I(f)| < ∞ but I(|f |) = ∞.

The following is an example of an absolutely convergent abstract µ-integral.
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Example 3.1.11. Let

IL1 =
{
f ∈ F

∣∣ ∫
X

f+ dµ < ∞ or
∫

X
f− dµ < ∞

}
,

and define

IL1(f) =

∫
X

f+ dµ−
∫

X

f− dµ,

for all f ∈ IL1 . Then L1(µ) ⊆ IL1 , and in fact it is easy to check that L1(µ) ={
f ∈ IL1

∣∣ |IL1(f)| < ∞
}
. We will show that (IL1 , IL1) is an abstract µ-integral.

Since (χE)− = 0 for all measurable sets E,
∫

X
(χE)− dµ = 0, so χE ∈ IL1 and

IL1(χE) =
∫

X
(χE)+ dµ =

∫
X

χE dµ = µ(E) for all measurable sets E. By the

above characterization of L1(µ) and the Monotone Convergence Theorem, we

have that (IL1 , IL1) is an abstract µ-integral. Note that if |IL1(f)| < ∞, then

f ∈ L1(µ), so IL1(|f |) < ∞. Hence (IL1 , IL1) is absolutely convergent.

The rest of this thesis is devoted to finding a nonabsolutely convergent abstract

µ-integral by extending some ideas from the Lebesgue integral.

3.2 Expanding Sequences

The first key to our nonabsolutely convergent integral is the concept of an ex-

panding sequence of functions, which is a generalization of a monotonic sequence.

Since measurability plays no role in this concept, all of the following definitions

are phrased in terms of real-valued functions defined on an arbitrary nonempty

set, which we will denote by A.

Definition 3.2.1. Let f and g be real-valued functions defined on A. We say

that f lies inside g iff f+ ≤ g+ and f− ≤ g−. We will write f � g to denote

that f lies inside g.

Definition 3.2.2. Let {fn} be a sequence of real-valued functions defined on A.

The sequence {fn} is expanding iff fn � fn+1 for all n ∈ N.



14

Lemma 3.2.3. Let {sn} be a sequence of real-valued functions defined on A and

f a real-valued function defined on A. If {sn} converges pointwise to f on A, then

{s+
n } and {s−n } converge pointwise to f+ and f− on A, respectively.

Proof. Assume that {sn} converges pointwise to f and let x ∈ A.

Case 1. f(x) = 0. Let ε > 0. There exists N ∈ N such that |sn(x)| < ε for

each n ≥ N . Since s+
n (x) ≤ |sn(x)| and s−n (x) ≤ |sn(x)| for all n ∈ N, we have

|s+
n (x)| = s+

n (x) < ε and |s−n (x)| = s−n (x) < ε for all n ≥ N . Thus {s+
n (x)}

and {s−n (x)} converge to 0. Since f(x) = 0, f+(x) = 0 = f−(x). Hence s+
n (x)

converges to f+(x) and s−n (x) converges to f−(x).

Case 2. f(x) > 0. Then f+(x) = f(x) > 0 and f−(x) = 0. Since sn(x)

converges to f(x), there is an N ∈ N such that sn(x) > 0 for each n ≥ N . Then

s+
n (x) = sn(x) for all n ≥ N and s−n (x) = 0. This shows that s−n (x) converges to

f−(x). Since sn(x) converges to f(x), s+
n (x) = sn(x) converges to f(x) = f+(x).

Case 3. f(x) < 0. The proof of this case is similar to the proof of the case

f(x) > 0, since f+(x) = 0 and f−(x) = −f(x).

Definition 3.2.4. A sequence {fn} of real-valued functions defined on A expands

to a real-valued function g defined on A iff {fn} is expanding and converges

pointwise to g, which we denote by fn
↗
↘ g.

Remark 3.2.5. Note that if A ∈ M then we could generalize the above defini-

tion and lemma by only requiring various properties to hold almost everywhere.

However, as was pointed out at the end of the previous chapter, by redefining the

functions involved on a set of measure zero, we could obtain equivalent functions

such that the required properties hold everywhere, and thus the generalization
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has no practical effect. A more useful generalization is to restrict the various

properties to a nonempty subset of A. For example, if B is a nonempty subset

of A, then we can say that f � g on B iff f |B � g|B. Definitions of a sequence

expanding on B and a sequence expanding to a function on B are constructed

similarly by restricting all functions involved to B.

Some properties of the last definition are described in the following lemmas.

Lemma 3.2.6. If a sequence {fn} of real-valued functions defined on A expands

to a real-valued function g defined on A, then fn � g for all n ∈ N.

Proof. Let {fn} be a sequence of real-valued functions defined on A and g a

real-valued function defined on A. Assume that fn
↗
↘ g. For each n ∈ N, since

fn � fn+1, by definition f+
n ≤ f+

n+1 and f−n ≤ f−n+1. Thus the sequences {f+
n } and

{f−n } are nondecreasing. Since {fn} converges to g pointwise, by Lemma 3.2.3,

{f+
n } converges to g+ pointwise and f−n converges to g− pointwise on A. This

implies that f+
n ≤ g+ and f−n ≤ g− for all n ∈ N, which tells us that fn � g for

all n ∈ N.

Lemma 3.2.7. Let f be a real-valued function defined on A and {fn} a sequence

of real-valued functions defined on A such that fn
↗
↘ f . Let x ∈ A.

(a) If f(x) > 0, then fn(x) ≥ 0 for all n ∈ N.

(b) If f(x) = 0, then fn(x) = 0 for all n ∈ N.

(c) If f(x) < 0, then fn(x) ≤ 0 for all n ∈ N.

Proof. All parts follow from Lemma 3.2.6 and the definition of the lies inside

relation.

Lemma 3.2.8. Let f be a real-valued function defined on A and {fn} a sequence

of real-valued functions defined on A such that fn
↗
↘ f . Then −fn

↗
↘ −f .
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Proof. Assume that fn
↗
↘ f . Then {−fn(x)} converges to −f(x) for all x ∈ A.

It is easy to see that for each n ∈ N, (−fn)+ = f−n and (−fn)− = f+
n and thus

−f1 � −f2 � −f3 � . . .. It follows that {−fn} is expanding, so −fn
↗
↘ −f .

Lemma 3.2.9. Let {En} be an increasing sequence in M such that µ(En) < ∞

for all n ∈ N. For all f ∈ F there exists a sequence {sn} in L1(µ) such that

sn
↗
↘ f on

⋃∞
n=1 En.

Proof. Let f ∈ F and let E =
⋃∞

n=1 En. By Lemma 3.1.4, there are increasing

sequences {sn} and {tn} of nonnegative µ-finite simple functions such that {sn}

converges to f+ pointwise on E and {tn} converges to f− pointwise on E. Then

{sn− tn} is a sequence of µ-finite simple functions, i.e., {sn− tn} is a sequence in

L1(µ). It remains to show that sn − tn ↗
↘ f on E. Let x ∈ E. For each n ∈ N, we

have that

|(sn − tn)(x)− f(x)| = |(sn(x)− tn(x))− (f+(x)− f−(x))|

≤ |sn(x)− f+(x)|+ |tn(x)− f−(x)|.

Since sn(x) converges to f+(x) and tn(x) converges to f−(x), this shows |(sn −

tn)(x) − f(x)| converges to 0. Thus (sn − tn)(x) converges to f(x). Finally, we

have to prove that for all n ∈ N, we have (sn − tn)+(x) ≤ (sn+1 − tn+1)
+(x) and

(sn−tn)−(x) ≤ (sn+1−tn+1)
−(x), which we will do by showing that (sn−tn)+(x) =

sn(x) and (sn − tn)−(x) = tn(x). Let n ∈ N.

Case 1. f(x) = 0. Then f+(x) = f−(x) = 0, so sn(x) = tn(x) = 0 as well.

Hence sn(x) = 0 = (sn − tn)+(x) and tn(x) = 0 = (sn − tn)−(x).

Case 2. f(x) > 0. Then f+(x) = f(x) and f−(x) = 0. This implies that

tn(x) = 0. Thus (sn− tn)+(x) = max{(sn− tn)(x), 0} = sn(x) and (sn− tn)−(x) =

max{−(sn − tn)(x), 0} = max{−sn(x), 0} = 0 = tn(x).
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Case 3. f(x) < 0. Then f+(x) = 0 and f−(x) = −f(x). Thus sn(x) = 0. As in

the previous case, (sn − tn)+(x) = max{(sn − tn)(x), 0} = max{−tn(x), 0} = 0 =

sn(x) and (sn − tn)−(x) = max{−(sn − tn)(x), 0} = max{tn(x), 0} = tn(x).

Thus for all n ∈ N, (sn − tn)+ = sn ≤ sn+1 = (sn+1 − tn+1)
+ and (sn − tn)− =

tn ≤ tn+1 = (sn+1 − tn+1)
−. Hence sn − tn ↗

↘ f on E.

Remark 3.2.10. For any f ∈ F , there exists a sequence {sn} in L1(µ) such that

sn
↗
↘ f by the same argument as in Remark 3.1.5.

Proposition 3.2.11. We have the following characterizations of L1(µ) and IL1 .

L1(µ) =
{
f ∈ F

∣∣ there exists L ∈ R such that limn→∞
∫

X
sn dµ = L for all

sequences {sn} in L1(µ) with the property that sn
↗
↘ f
}
(3.1)

and

IL1 =
{
f ∈ F

∣∣ there exists L ∈ R̄ such that limn→∞
∫

X
sn dµ = L for all

sequences {sn} in L1(µ) with the property that sn
↗
↘ f
}
.

(3.2)

Proof. Let A be the set on the right-hand side of equation 3.1 for L1(µ) and

B the set on the right-hand side of equation 3.2 for IL1 . We must show that

L1(µ) = A and IL1 = B.

First, we will show that L1(µ) ⊆ A. Let f ∈ L1(µ) and let L =
∫

X
f dµ ∈ R.

Let {sn} be a sequence in L1(µ) with the property that sn
↗
↘ f . Then {sn}

converges pointwise to f . By Lemma 3.2.6, sn � f for all n ∈ N, which tells us

that s+
n ≤ f+ and s−n ≤ f− for all n ∈ N. Thus |sn| = s+

n + s−n ≤ f+ + f− = |f |.

By the Dominated Convergence Theorem, limn→∞
∫

X
sn dµ =

∫
X

f dµ = L. This

shows f ∈ A. Therefore L1(µ) ⊆ A.

Conversely, we have to show that L1(µ) ⊇ A. Let f ∈ A. Suppose that

f /∈ L1(µ). Then
∫

X
|f | dµ = ∞. Since |f | = f+ + f−, it must be the case
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that
∫

X
f+ dµ = ∞ or

∫
X

f− dµ = ∞. WLOG, assume that
∫

X
f+ dµ = ∞. By

Lemma 3.1.4, there are increasing sequences {sn} and {tn} in L1(µ) that {sn} con-

verges pointwise to f+ and limn→∞
∫

X
sn dµ =

∫
X

f+ dµ = ∞, and {tn} converges

pointwise to f− and limn→∞
∫

X
tn dµ =

∫
X

f− dµ. We can choose a subsequence

{snk
} of {sn} such that

∫
X

snk
dµ ≥ 2

∫
X

tk dµ for all k ∈ N. Then {snk
} is an

increasing sequence of µ-finite simple functions that converges pointwise to f+

and limk→∞
∫

X
snk

dµ =
∫

X
f+ dµ = ∞. For all k ∈ N, let uk = snk

− tk. As in

the proof of Lemma 3.2.9, uk
↗
↘ f . We have that∫

X

uk dµ =

∫
X

snk
dµ−

∫
X

tk dµ ≥
∫

X

snk
dµ− 1

2

∫
X

snk
dµ =

1

2

∫
X

snk
dµ

for all k ∈ N. Thus limk→∞
∫

X
uk dµ ≥ 1

2
limk→∞

∫
X

snk
dµ = ∞, which contra-

dicts f ∈ A. Hence f ∈ L1(µ). This proves L1(µ) = A.

We take a similar approach to proving IL1 = B, the first step being to show

that IL1 ⊆ B. Let f ∈ IL1 . If f ∈ L1(µ), then f ∈ A. By the above work, and

the fact that A is clearly a subset of B, we conclude immediately that f ∈ B.

Assume now that f ∈ IL1 r L1(µ). WLOG, assume that
∫

X
f+ dµ < ∞. Since

f /∈ L1(µ), we must have
∫

X
f− dµ = ∞. Let L = −∞. Let {sn} be a sequence

in L1(µ) that expands to f . Then {s+
n } converges pointwise to f+ and {s−n }

converges pointwise to f−. Since s+
n ≤ s+

n+1 and s−n ≤ s−n+1 for all n ∈ N, by

the Monotone Convergence Theorem, limn→∞
∫

X
s+

n dµ =
∫

X
f+ dµ < ∞ and

limn→∞
∫

X
s−n dµ =

∫
X

f− dµ = ∞. Then

lim
n→∞

∫
X

sn dµ = lim
n→∞

(

∫
X

s+
n dµ−

∫
X

s−n dµ)

= lim
n→∞

∫
X

s+
n dµ− lim

n→∞

∫
X

s−n dµ

=

∫
X

f+ dµ−
∫

X

f− dµ

= −∞
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= L.

Thus f ∈ B. Hence IL1 ⊆ B.

To finish the proof, we will prove that IL1 ⊇ B. Let f ∈ B and suppose

that f /∈ IL1 . Then
∫

X
f+ dµ = ∞ and

∫
X

f− dµ = ∞. As usual there are

increasing sequences {sn} and {tn} such that {sn} converges pointwise to f+ and

{tn} converges pointwise to f−, and therefore limn→∞
∫

X
sn dµ =

∫
X

f+ dµ = ∞

and limn→∞
∫

X
tn dµ =

∫
X

f− dµ = ∞. We can choose subsequences {snk
} and

{tmk
} such that

∫
X

sn2k−1
dµ ≥ 2

∫
X

tm2k−1
dµ and

∫
X

tm2k
dµ ≥ 2

∫
X

sn2k
dµ for

each k ∈ N. Then {snk
} and {tmk

} are increasing sequences, {snk
} converges

pointwise to f+, {tmk
} converges pointwise to f−, limk→∞

∫
X

snk
dµ = ∞, and

limk→∞
∫

X
tmk

dµ = ∞. For all k ∈ N, let uk = snk
− tmk

. The usual argument

shows that {uk} expands to f . However, for each k ∈ N we have∫
X

u2k dµ =

∫
X

sn2k
dµ−

∫
X

tm2k
dµ

≤
∫

X

sn2k
dµ− 2

∫
X

sn2k
dµ

= −
∫

X

sn2k
dµ

and ∫
X

u2k−1 dµ =

∫
X

sn2k−1
dµ−

∫
X

tm2k−1
dµ

≥ 2

∫
X

tm2k−1
dµ−

∫
X

tm2k−1
dµ

=

∫
X

tm2k−1
dµ.

Since limk→∞
∫

X
sn2k

dµ = ∞, it follows that limk→∞
∫

X
u2k dµ = −∞. Similarly,

limk→∞
∫

X
u2k−1 dµ = ∞. Thus {

∫
X

uk dµ} is not convergent, which contradicts

the fact that f ∈ B. Hence we must have f ∈ IL1 . This proves that IL1 = B.

Proposition 3.2.11 suggests we might be able to define a nonabsolutely con-

vergent abstract µ-integral by modifying the set on the right-hand side of the
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equation for IL1 . This is indeed the approach we will take. However, as the

following proposition shows, it will not be a trivial task.

Proposition 3.2.12. If f ∈ F and
∫

X
f+ dµ =

∫
X

f− dµ = ∞, then for every L ∈

R̄ there exists a sequence {sn} in L1(µ) such that sn
↗
↘ f and limn→∞

∫
X

sn dµ = L.

Proof. Let f ∈ F , and assume that
∫

X
f+ dµ =

∫
X

f− dµ = ∞. Let L ∈ R̄.

Case 1. L ≥ 0. Our first step will be to find sequences {t∗n} and {u∗n} of

nonnegative functions in L1(µ) such that {
∑k

n=1 t∗n} and {
∑k

n=1 u∗n} converge

pointwise to f+ and f−, respectively,
∑∞

n=1

∫
X

t∗n dµ =
∑∞

n=1

∫
X

u∗n dµ = ∞, and

limn→∞
∫

X
t∗n dµ = limn→∞

∫
X

u∗n dµ = 0. Since f ∈ F , there exists a sequence

{sn} in L1(µ) such that sn
↗
↘ f . Then {s+

n } converges pointwise to f+ and {s−n }

converges pointwise to f−. Let t1 = s+
1 , u1 = s−1 , and for each n ∈ N, let

tn+1 = s+
n+1 − s+

n and un+1 = s−n+1 − s−n . Then
∑n

k=1 tk = s+
n and

∑n
k=1 uk = s−n

for every n ∈ N. In addition we have that
∫

X
tn dµ ≥ 0 and

∫
X

un dµ ≥ 0

for all n ∈ N. For each n ∈ N, let pn be a positive integer such that pn ≥

n
∫

X
tn dµ, so that 1

pn

∫
X

tn dµ ≤ 1
n
. For each n ∈ N, let Pn = p1 + · · · + pn.

For i ∈ {1, 2, . . . , P1}, let t∗i = 1
p1

t1. Then
∑P1

i=1 t∗i = t1. For all n ∈ N and

i ∈
{∑Pn

i=1 pi + 1, . . . ,
∑Pn+1

i=1 pi

}
, let t∗i = 1

pn+1
tn+1, and observe that t∗i is in L1(µ)

and
∫

X
t∗i dµ = 1

pn+1

∫
X

tn+1 dµ ≤ 1
n+1

. It follows from the above definitions that∑Pn

i=1 t∗i = s+
n , and hence that

∑Pn

i=1

∫
X

t∗i dµ =
∫

X
s+

n dµ for all n ∈ N. This

implies that {
∑k

n=1 t∗n} converges pointwise to f+ and, since limn→∞
∫

X
s+

n dµ =

∞, that
∑∞

i=1

∫
X

t∗i dµ = ∞. Clearly limn→∞
∫

X
t∗n dµ = 0. Similarly, we can

define a sequence {u∗n} in L1(µ) such that {
∑k

n=1 u∗n} converges pointwise to f−,∑∞
n=1

∫
X

u∗n dµ = ∞, and limn→∞
∫

X
u∗n dµ = 0.

Choose an increasing sequence {Ln} of real numbers such that limn→∞ Ln = L.
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Since
∑∞

n=1

∫
X

t∗n dµ = ∞, we can find the smallest integer m1 such that∫
X

t∗1 dµ + · · ·+
∫

X

t∗m1
dµ > L1.

Let t̂n = t∗n and ûn = 0 for n = 1, 2, . . . ,m1. Since
∑∞

n=1

∫
X

u∗n dµ = ∞, we can

find the smallest integer k1 such that∫
X

t∗1 dµ + · · ·+
∫

X

t∗m1
dµ−

∫
X

u∗1 dµ− · · · −
∫

X

u∗k1
dµ < L1.

Let t̂n = 0 and ûn = u∗n−m1
for n = m1 + 1, . . . ,m1 + k1. Likewise, let m2 be the

smallest integer such that m2 > m1 and∫
X

t∗1 dµ + · · ·+
∫

X

t∗m1
dµ−

∫
X

u∗1 dµ− · · · −
∫

X

u∗k1
dµ

+

∫
X

t∗m1+1 dµ + · · ·+
∫

X

t∗m2
dµ > L2.

Let t̂n = t∗n−k1
and ûn = 0 for all n = (m1 + k1 + 1), . . . , (m2 + k1). Continue this

process to obtain infinite sequences {t̂n} and {ûn}. We have that {t̂n} is

(t∗1, . . . , t
∗
m1

, 0, . . . , 0, t∗m1+1, . . . , t
∗
m2

, . . .)

and {ûn} is

(0, . . . , 0, u∗1, . . . , u
∗
k1

, 0, . . . , 0, u∗k1+1, . . . , uk2 , . . .).

From the properties of the sequences {t∗n} and {u∗n}, for each n ∈ N there exist

ln, l
′
n ∈ N such that s+

n =
∑ln

i=1 t̂i and s−n =
∑l

′
n
i=1 ûi. In particular, {

∑n
i=1 t̂i}

converges pointwise to f+ and {
∑n

i=1 ûi} converges pointwise to f−.

For each n ∈ N, let Tn =
∑n

k=1 t̂k and Un =
∑n

k=1 ûk. Since t̂k ≥ 0 and ûk ≥ 0

for all k ∈ N, we have that {Tn} and {Un} are nonnegative increasing sequences in

L1(µ) such that {Tn} converges pointwise to f+ and {Un} converges pointwise to

f−. Let vn = Tn−Un for all n ∈ N. Then vn
↗
↘ f , as in the proof of Lemma 3.2.9,

and we have that∫
X

v1 dµ =

∫
X

t̂1 dµ
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=

∫
X

t∗1 dµ∫
X

v2 dµ =

∫
X

t̂1 dµ +

∫
X

t̂2 dµ

=

∫
X

t∗1 dµ +

∫
X

t∗2 dµ

...∫
X

vm1 dµ =

∫
X

t̂1 dµ + · · ·+
∫

X

t̂m1 dµ

=

∫
X

t∗1 dµ + · · ·+
∫

X

t∗m1
dµ∫

X

vm1+1 dµ =

∫
X

t̂1 dµ + · · ·+
∫

X

t̂m1 dµ−
∫

X

ûm1+1 dµ

=

∫
X

t∗1 dµ + · · ·+
∫

X

t∗m1
dµ−

∫
X

u∗1 dµ

...∫
X

vm1+k1 dµ =

∫
X

t̂1 dµ + · · ·+
∫

X

t̂m1 dµ−
∫

X

ûm1+1 dµ− · · · −
∫

X

ûm1+k1 dµ

=

∫
X

t∗1 dµ + · · ·+
∫

X

t∗m1
dµ−

∫
X

u∗1 dµ− · · · −
∫

X

u∗k1
dµ

...

That is,
{∫

X
vn dµ

}
is the sequence of partial sums of the series

∫
X

t∗1 dµ + · · ·+
∫

X

t∗m1
dµ−

∫
X

u∗1 dµ− · · · −
∫

X

u∗k1
dµ+∫

X

t∗m1+1 dµ + · · ·+
∫

X

t∗m2
dµ− · · · .

Let us show that limn→∞
∫

X
vn dµ = L. Let {xn} and {yn} be the sequences of

partial sums of the above series whose last terms are
∫

X
t∗mn

dµ and
∫

X
u∗kn

dµ,

respectively. By the properties of mn and kn, for each n ∈ N we have that

|xn−Ln| ≤
∫

X
t∗mn

dµ and |yn−Ln| ≤
∫

X
u∗kn

dµ. Since {
∫

X
t∗n dµ} and {

∫
X

u∗n dµ}

converge to 0, and {Ln} converges to L, we have that {xn} and {yn} converge to

L. Furthermore, for each n ∈ N with n ≥ 2, we have yn ≤
∫

X
vk dµ ≤ xn if k ∈

{mn+kn−1, . . . ,mn+kn} and yn ≤
∫

X
vk dµ ≤ xn+1 if k ∈ {mn+kn, . . . ,mn+1+kn}.
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This shows that {
∫

X
vn dµ} converges to L.

Case 2. L < 0. Then −L > 0. From Case 1, we have a sequence {sn} in L1(µ)

such that sn
↗
↘ −f and limn→∞

∫
X

sn dµ = −L. Thus {−sn} expands to f and

limn→∞
∫

X
(−sn) dµ = L.

3.3 Semiuniform Convergence

Let {En} be an increasing sequence in M such that µ(En) < ∞ for all n ∈ N.

Definition 3.3.1. A sequence {sn} of functions in F converges to a function

f in F semiuniformly with respect to {En} iff there exists an increasing

sequence {Fn} in M such that Fn ⊆ En for all n ∈ N,
⋃∞

n=1 Fn =
⋃∞

n=1 En, and

limn→∞ µ(En r Fn) = 0, with the property that for every ε > 0 there is an N ∈ N

such that for all n ∈ N with n ≥ N , the inequality µ(Fn) · |sn(x)− f(x)| < ε holds

for all x ∈ Fn.

Note that we will use the phrase “sn
↗
↘ f semiuniformly with respect to {En}”

to mean that sn
↗
↘ f on

⋃∞
n=1 En and {sn} converges to f semiuniformly with

respect to {En}.

Lemma 3.3.2. Let f be a nonnegative function in F . There is a sequence {tn}

in L1(µ) such that tn ↗
↘ f semiuniformly with respect to {En}.

Proof. For each n, m ∈ N, let En,m = {x ∈ En | |f(x)| < m}. Then for each

n ∈ N, the sequence {En,m} is increasing as a function of m and En =
⋃∞

m=1 Em,n.

We have that µ(En) = µ
(⋃∞

m=1 En,m

)
= limm→∞ µ(En,m) for all n ∈ N. Thus for

each n ∈ N there is an mn ∈ N such that µ(En) − µ(En,k) < 1
n

for all k ≥ mn.

Let l1 = m1 and ln = max{mn, ln−1} + 1 for all n ∈ N. Then {ln} is increasing

and limn→∞ ln = ∞. Let {sn} be the increasing sequence such that supn∈N sn = f
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defined in the proof of Lemma 3.1.4 and put tn = sln and Fn = En,ln . Then tn ↗
↘ f

on
⋃∞

n=1 En and Fn ⊆ En for all n ∈ N.

Let us check that {Fn} is increasing. Let n ∈ N and x ∈ Fn. Then x ∈ En,ln ,

which means that x ∈ En and |f(x)| < ln. Since {En} and {ln} are increasing,

x ∈ En+1 and |f(x)| < ln+1, which tell us x ∈ En+1,ln+1 = Fn+1. Thus Fn ⊆ Fn+1.

Next, let us check that
⋃∞

n=1 Fn =
⋃∞

n=1 En. It suffices to show that
⋃∞

n=1 En ⊆⋃∞
n=1 Fn. Let x ∈

⋃∞
n=1 En. Then x ∈ En◦ for some n◦ ∈ N and there is an m ∈ N

such that |f(x)| < m. Since limn→∞ ln = ∞, there is an n ∈ N such that n◦ ≤ n

and m ≤ ln. Then |f(x)| < ln and x ∈ En. Thus x ∈ En,ln = Fn ⊆
⋃∞

n=1 Fn.

Hence
⋃∞

n=1 Fn =
⋃∞

n=1 En.

The third step is to show that limn→∞ µ(EnrFn) = 0. Since µ(En)−µ(En,ln) <

1
n

and µ(En) < ∞ for all n ∈ N, we have that µ(En rFn) = µ(En)−µ(En,ln) < 1
n

for all n ∈ N. Thus limn→∞ µ(En r Fn) = 0.

Finally, we will show that for every ε > 0, there is an N ∈ N such that for all

n ∈ N with n ≥ N , the inequality µ(Fn) · |tn(x)− f(x)| < ε holds for all x ∈ Fn.

Let ε > 0 and let N ∈ N be such that 1
2N < ε. Fix n ≥ N and x ∈ Fn, and

let p = ln, to simplify some of the notation. Then x ∈ En and |f(x)| < ln = p.

There is an i ∈ {1, 2, 3, . . . , p2kp} such that i−1
2kp ≤ f(x) < i

2kn , so tn(x) = i−1
2kp . By

definition, kp ≥ p + log2(µ(Ep) + 1). Thus

2kp ≥ 2p · 2log2(µ(Ep)+1) = 2p · (µ(Ep) + 1) > 2nµ(En),

which implies 1
2n ≥ µ(En)

2kn ≥ µ(Fn)
2kn . Hence we have

µ(Fn) · |tn(x)− f(x)| = µ(Fn) ·
∣∣∣∣ i− 1

2kp
− f(x)

∣∣∣∣
≤ µ(Fn) ·

∣∣∣∣ i− 1

2kp
− i

2kp

∣∣∣∣
=

µ(Fn)

2kp

≤ 1

2n
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≤ 1

2N

< ε.

Lemma 3.3.3. Let f and g be functions in F and {sn} and {tn} sequences in

L1(µ). If {sn} and {tn} converge to f and g semiuniformly with respect to {En},

respectively, then {sn+tn} converges to f +g semiuniformly with respect to {En}.

Proof. Assume that {sn} and {tn} converge to f and g semiuniformly with re-

spect to {En}, respectively. There are increasing sequences {F1,n} and {F2,n} in

M such that F1,n ⊆ En and F2,n ⊆ En for all n ∈ N,
⋃∞

n=1 F1,n =
⋃∞

n=1 F2,n =⋃∞
n=1 En and limn→∞ µ(En r F1,n) = limn→∞ µ(En r F2,n) = 0, with the property

that for every ε > 0, there are N1, N2 ∈ N such that for all n ∈ N with n ≥ N1,

the inequality µ(F1,n) · |sn(x)− f(x)| < ε holds for all x ∈ F1,n and for all n ∈ N

with n ≥ N2, the inequality µ(F2,n) · |tn(x)− g(x)| < ε holds for all x ∈ F2,n. For

each n ∈ N let Fn = F1,n ∩ F2,n. It follows from the corresponding properties of

{F1,n} and {F2,n} that {Fn} is increasing and
⋃∞

n=1 Fn =
⋃∞

n=1 En.

Let us check that limn→∞ µ(En r Fn) = 0. Since for all n ∈ N, En r Fn =

(En r F1,n)∪ (En r F2,n), we have that µ(En r Fn) ≤ µ(En r F1,n) + µ(En r F2,n)

for all n ∈ N. Since limn→∞ µ(En r F1,n) = 0 and limn→∞ µ(En r F2,n) = 0, it

follows that limn→∞ µ(En r Fn) = 0.

Let ε > 0. Let N1 and N2 be as above for the case ε
2
, and choose N =

max{N1, N2}. Let n ∈ N be such that n ≥ N and let x ∈ Fn. Then x ∈ F1,n∩F2,n.

Thus

µ(Fn) · |(sn + tn)(x)− (f + g)(x)| ≤ µ(Fn) ·
[
|sn(x)− f(x)|+ |tn(x)− g(x)|

]
= µ(Fn) · |sn(x)− f(x)|

+ µ(Fn) · |tn(x)− g(x)|

≤ µ(F1,n) · |sn(x)− f(x)|
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+ µ(F2,n) · |tn(x)− g(x)|

<
ε

2
+

ε

2

= ε.

Therefore {sn + tn} converges to f + g semiuniformly with respect to {En}.

Lemma 3.3.4. Let f be a function in F . There is a sequence {sn} in L1(µ) such

that sn
↗
↘ f semiuniformly with respect to {En}.

Proof. By Lemma 3.3.2, there is a sequence {sn} in L1(µ) such that sn
↗
↘ f+

semiuniformly with respect to {En} and a sequence {tn} in L1(µ) such that tn ↗
↘ f−

semiuniformly with respect to {En}. By the proof of Lemma 3.1.4, sn − tn ↗
↘ f

on
⋃∞

n=1 En. By Lemma 3.3.3, {sn− tn} converges to f+− f− = f semiuniformly

with respect to {En}.

Lemma 3.3.5. Let {fn} be a sequence in F and f ∈ F . If fn
↗
↘ f semiuniformly

with respect to {En}, then −fn
↗
↘ −f semiuniformly with respect to {En}.

Proof. Assume fn
↗
↘ f semiuniformly with respect to {En}. By Lemma 3.2.8,

−fn
↗
↘ −f on

⋃∞
n=1 En. We will show that {−fn} converges to −f semiuniformly

with respect to {En}.

Since {fn} converges to f semiuniformly with respect to {En}, there is an

increasing sequence {Fn} in M such that Fn ⊆ Enfor all n ∈ N,
⋃∞

n=1 Fn =⋃∞
n=1 En, and limn→∞ µ(En r Fn) = 0, with the property that for every ε > 0,

there is an N ∈ N such that for all n ∈ N with n ≥ N , the inequality µ(Fn) ·

|fn(x)− f(x)| < ε holds for all x ∈ Fn. Let ε > 0 and let N be as in the previous

sentence. Let n ∈ N be such that n ≥ N , and let x ∈ Fn. Then

µ(Fn) · | − fn(x)− (−f)(x)| = µ(Fn) · |fn(x)− f(x)| < ε.

Hence {−fn} converges to −f semiuniformly with respect to {En}.
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Lemma 3.3.6. Let A ∈ M , {fn} be a sequence in F , and f ∈ F . If {fn}

converges to f semiuniformly with respect to {En}, then {fn · χA} converges to

f · χA semiuniformly with respect to {En}.

Proof. Assume that {fn} converges to f semiuniformly with respect to {En}.

Then there exists an increasing sequence {Fn} in M such that Fn ⊆ En for all

n ∈ N,
⋃∞

n=1 Fn =
⋃∞

n=1 En, and limn→∞ µ(En r Fn) = 0, with the property that

for every ε > 0 there is an N ∈ N such that for all n ∈ N with n ≥ N , the

inequality µ(Fn) · |fn(x)− f(x)| < ε holds for all x ∈ Fn. Let ε > 0 and let N be

as in the previous sentence. Let n ∈ N be such that n ≥ N and let x ∈ Fn. If

x /∈ A, then

µ(Fn) · |fn · χA(x)− f · χA(x)| = µ(Fn) · 0 = 0 < ε,

while if x ∈ A, then

µ(Fn) · |fn · χA(x)− f · χA(x)| = µ(Fn) · |fn(x)− f(x)| < ε.

Hence {fn · χA} converges to f · χA semiuniformly with respect to {En}

Lemma 3.3.7. Let f, g ∈ F . If a sequence {sn} in L1(µ) expands to f + g

semiuniformly with respect to {En}, then there exist sequences {fn} and {gn} in

L1(µ) such that fn
↗
↘ f and gn

↗
↘ g semiuniformly with respect to {En}, and for

each n ∈ N we have fn + gn = sn on
⋃∞

n=1 En.

Proof. Let E =
⋃∞

n=1 En and define the following subsets of E:

A =
{
x ∈ E

∣∣ f(x) · g(x) ≥ 0
}
,

B =
{
x ∈ E

∣∣ f(x) · g(x) < 0
}
,

B◦ =
{
x ∈ B

∣∣ f(x) · (f + g)(x) = 0
}
,

B− =
{
x ∈ B

∣∣ f(x) · (f + g)(x) < 0
}
, and
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B+ =
{
x ∈ B

∣∣ f(x) · (f + g)(x) > 0
}
.

Let {pn} and {qn} be sequences in L1(µ) such that pn
↗
↘ f and qn

↗
↘ g semi-

uniformly with respect to {En}. For each x ∈ X, we define {fn} and {gn} as

follows:

Case 1. x ∈ X r E. Let fn(x) = 0 and gn(x) = 0 for all n ∈ N.

Case 2. x ∈ A. If (f +g)(x) = 0, then let fn(x) = 0 and gn(x) = 0 for all n ∈ N.

If (f + g)(x) 6= 0, then let fn(x) = f(x)
(f+g)(x)

· sn(x) and gn(x) = g(x)
(f+g)(x)

· sn(x) for

all n ∈ N.

Case 3. x ∈ B. If x ∈ B◦, then let fn(x) = pn(x) and gn(x) = −fn(x) for all

n ∈ N. If x ∈ B−, then let fn(x) = pn(x) and gn(x) = (sn − fn)(x) for all n ∈ N.

If x ∈ B+, then let gn(x) = qn(x) and fn(x) = (sn − gn)(x) for all n ∈ N.

Let us check that fn and gn are in L1(µ) for all n ∈ N. Let n ∈ N and consider∫
A
|fn| dµ. Let A◦ = {x ∈ A | (f + g)(x) = 0}. Then

∫
A◦
|fn| dµ = 0. We claim

that |fn(x)| ≤ |sn(x)| for all x ∈ A r A◦. Let x ∈ A r A◦. Note that since f(x)

and g(x) have the same sign, 0 ≤ f(x)
(f+g)(x)

≤ 1. Thus

|fn(x)| =
∣∣∣∣ g(x)

(f + g)(x)
· sn(x)

∣∣∣∣ =
g(x)

(f + g)(x)
· |sn(x)| ≤ |sn(x)|.

This shows that |fn(x)| ≤ |sn(x)| for all x ∈ A r A◦. Since sn ∈ L1(µ), we have∫
A

|fn| dµ =

∫
A◦

|fn| dµ +

∫
ArA◦

|fn| dµ =

∫
ArA◦

|sn| dµ < ∞.

Similarly,
∫

A
|gn| dµ < ∞. Now consider

∫
B
|fn| dµ and

∫
B
|gn| dµ. We have that∫

B

|fn| dµ =

∫
B◦∪B−

|fn| dµ +

∫
B+

|fn| dµ

=

∫
B◦∪B−

|pn| dµ +

∫
B+

|sn − gn| dµ
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≤
∫

B◦∪B−
|pn| dµ +

∫
B+

|sn| dµ +

∫
B+

|gn| dµ

≤
∫

B◦∪B−
|pn| dµ +

∫
B+

|sn| dµ +

∫
B+

|qn| dµ

< ∞

and ∫
B

|gn| dµ =

∫
B◦

|gn| dµ +

∫
B+

|gn| dµ +

∫
B−
|gn| dµ

=

∫
B◦

|fn| dµ +

∫
B+

|qn| dµ +

∫
B−
|sn − pn| dµ

≤
∫

B◦

|pn| dµ +

∫
B+

|qn| dµ +

∫
B−
|sn| dµ +

∫
B−
|pn| dµ

< ∞.

Combining these we obtain∫
X

|fn| dµ =

∫
XrE

|fn| dµ +

∫
E

|fn| dµ

= 0 +

∫
A

|fn| dµ +

∫
B

|fn| dµ

< ∞.

Similarly,
∫

X
|gn| dµ < ∞. Thus fn and gn are in L1(µ) for all n ∈ N.

The next step is to show that fn
↗
↘ f and gn

↗
↘ g on E. Let x ∈ E.

Case 1. x ∈ A. If (f + g)(x) = 0, then f(x) = 0 = g(x), and we have fn(x) =

0 = gn(x) for all n ∈ N. Thus for all n ∈ N, f+
n (x) = 0 ≤ f+

n+1(x), f−n (x) = 0 ≤

f−n+1(x), and {fn(x)} converges to f(x). The same argument shows that {gn(x)}

has the corresponding properties.

If (f + g)(x) 6= 0, then note as before that 0 ≤ f(x)
(f+g)(x)

≤ 1. We have two

subcases to consider.
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Subcase 1.1. f(x) ≥ 0 and g(x) ≥ 0. This implies that sn(x) ≥ 0 and hence

that fn(x) ≥ 0 as well, for all n ∈ N, so

f+
n (x) = fn(x) =

f(x)

(f + g)(x)
·sn(x) ≤ f(x)

(f + g)(x)
·sn+1(x) = fn+1(x) = f+

n+1(x)

and f−n (x) = 0 ≤ f−n+1(x) for all n ∈ N. A similar argument shows that

{gn(x)} has the corresponding properties.

Subcase 1.2. f(x) ≤ 0 and g(x) ≤ 0. Then sn(x) ≤ 0 for all n ∈ N. Thus

fn(x) = f(x)
(f+g)(x)

· sn(x) ≤ 0 for all n ∈ N. It follows that f+
n = 0 and

f−n (x) = −fn(x) =
f(x)

(f + g)(x)
· (−sn(x)) =

f(x)

(f + g)(x)
· s−n (x)

for all n ∈ N. We have that f+
n (x) = 0 ≤ f+

n+1(x) and

f−n (x) =
f(x)

(f + g)(x)
· s−n (x) ≤ f(x)

(f + g)(x)
· s−n+1(x) = f−n+1(x).

Similarly, {gn(x)} has the corresponding properties.

In addition, for each n ∈ N,

|fn(x)− f(x)| =
∣∣∣∣ f(x)

(f + g)(x)
· sn(x)− f(x)

∣∣∣∣
=

∣∣∣∣ f(x)

(f + g)(x)

∣∣∣∣ · |sn(x)− (f + g)(x)| .

Since {sn(x)} converges to (f + g)(x), this shows {fn(x)} converges to f(x).

Similarly, {gn(x)} converges to g(x).

Case 2. x ∈ B. It is easy to check that {fn(x)} and {gn(x)} converge to f(x)

and g(x), respectively.

If x ∈ B◦, then f+
n (x) ≤ f+

n (x) and f−n (x) ≤ f−n (x) for all n ∈ N, by the

definition of {fn} and Lemma 3.2.7. The corresponding properties hold for {gn(x)}

by the same argument.

If x ∈ B−, then two subcases must be considered.
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Subcase 2.1. f(x) > 0 and (f + g)(x) < 0. Then g(x) < 0, sn(x) ≤ 0, and

fn(x) = pn(x) ≥ 0 for all n ∈ N. It follows that (sn− fn)(x) ≤ 0 for all n ∈ N,

and hence we have that g+
n (x) = (sn − fn)+(x) = 0 ≤ g+

n+1(x) and

g−n (x) = (sn − fn)−(x) = −(sn − fn)(x) = −sn(x) + fn(x)

= s−n (x) + f+
n (x) ≤ s−n+1(x) + f+

n+1(x) = −sn+1(x) + fn+1(x)

= −(sn+1 − fn+1)(x) = (sn+1 − fn+1)
−(x) = g−n+1(x).

By the definition of fn(x), we have f+
n (x) ≤ f+

n+1(x) and f−n (x) ≤ f−n+1(x) for

all n ∈ N.

Subcase 2.2. f(x) < 0 and (f + g)(x) > 0. Then g(x) > 0, sn(x) ≥ 0, and

fn(x) ≤ 0 for all n ∈ N. It follows that (sn − fn)(x) ≥ 0 for all n ∈ N and

hence we have that, g−n (x) = (sn − fn)−(x) = 0 ≤ g−n+1(x) and

g+
n (x) = (sn − fn)+(x) = (sn − fn)(x) = sn(x)− fn(x)

= s+
n (x) + f−n (x) ≤ s+

n+1(x) + f−n+1(x) = sn+1(x)− fn+1(x)

= (sn+1 − fn+1)(x) = (sn+1 − fn+1)
+(x) = g+

n+1(x).

By the definition of fn(x), we have f+
n (x) ≤ f+

n+1(x) and f−n (x) ≤ f−n+1(x) for

all n ∈ N.

If x ∈ B+, then note that g(x) · (f + g)(x) < 0, so the proof in this case is the

same as the proof in the case x ∈ B−, with the roles of f and g interchanged.

We now show that {fn} converges to f semiuniformly with respect to {En},

by considering each of the sets A, B◦, B
+, B−. The proof that {gn} converges to

g semiuniformly with respect to {En} is similar, and is therefore omitted.

For the set A, let A◦ =
{
x ∈ A

∣∣ (f + g)(x) = 0
}
. Let a ∈ F be such that

a(x) = 0 for all x ∈ X and let an(x) = 0 for all x ∈ X and all n ∈ N. Then {an}
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converges to a semiuniformly with respect to {En}. By Lemma 3.3.6, {an · χA◦}

converges to a ·χA◦ semiuniformly with respect to {En}. Since an ·χA◦ = fn ·χA◦

for all n ∈ N and a · χA◦ = f · χA◦ , we have that {fn · χA◦} converges to f · χA◦

semiuniformly with respect to {En}.

Now consider ArA◦. We claim that {fn ·χArA◦} converges to f ·χA◦ semiuni-

formly with respect to {En}. Since {sn} converges to f + g semiuniformly with

respect to {En}, there is an increasing sequence {Fn} in M such that Fn ⊆ En

for all n ∈ N,
⋃∞

n=1 Fn =
⋃∞

n=1 En, and limn→∞ µ(En rFn) = 0, with the property

that for every ε > 0 there is an N ∈ N such that for all n ∈ N with n ≥ N , the

inequality µ(Fn) · |sn(x)− (f + g)(x)| < ε holds for all x ∈ Fn. Let ε > 0 and let

N be as in the previous sentence. Let n ∈ N be such that n ≥ N and let x ∈ Fn.

If x /∈ A r A◦, then

µ(Fn) · |fn · χArA◦(x)− f · χArA◦(x)| = µ(Fn) · 0 = 0 < ε.

If x ∈ A r A◦, then, since
∣∣∣ f(x)
(f+g)(x)

∣∣∣ ≤ 1, we have that

µ(Fn) · |fn · χArA◦(x)− f · χArA◦(x)| = µ(Fn) · |fn(x)− (f + g)(x)|

= µ(Fn) ·
∣∣∣∣ f(x)

(f + g)(x)
· sn(x)− (f + g)(x)

∣∣∣∣
= µ(Fn) ·

∣∣∣∣ f(x)

(f + g)(x)

∣∣∣∣
· |sn(x)− (f + g)(x)|

≤ µ(Fn) · |sn(x)− (f + g)(x)|

< ε.

Thus, we have the claim.

By Lemma 3.3.3, {fn · χA◦ + fn · χArA◦} converges to f · χA◦ + f · χArA◦

semiuniformly with respect to {En}. Since fn · χA = fn · χA◦ + fn · χArA◦ and

f ·χA = f ·χA◦+f ·χArA◦ for all n ∈ N, {fn ·χA} converges to f ·χA semiuniformly
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with respect to {En}.

For B◦∪B−, by Lemma 3.3.6 we have that {pn ·χB◦∪B−} converges to f ·χB◦∪B−

semiuniformly with respect to {En}. Since pn ·χB◦∪B− = fn ·χB◦∪B− for all n ∈ N,

this tells us that {fn ·χB◦∪B−} converges to f ·χB◦∪B− semiuniformly with respect

to {En}.

Now consider B+. Since {qn} converges to g semiuniformly with respect to

{En}, by Lemma 3.3.3, {sn−gn} converges to (f +g)−g = f semiuniformly with

respect to {En}. Because fn · χB+ = (sn − gn) · χB+ for all n ∈ N, we have that

{fn · χB+} converges to f · χB+ semiuniformly with respect to {En}. As in the

above paragraph, we may combine the cases B◦ ∪ B− and B+ to conclude that

{fn · χB} converges to f · χB semiuniformly with respect to {En}.

Putting all of the above cases together, we conclude that {fn ·χA∪B} converges

to f · χA∪B semiuniformly with respect to {En}. Since A ∪B = E, this tells that

{fn ·χE} converges to f ·χE semiuniformly with respect to {En}. By the definition

of semiuniform convergence, {fn} converges to f semiuniformly with respect to

{En}.

Finally, observe that fn + gn = sn on E for all n ∈ N, by the definitions of fn

and gn Therefore the lemma holds.

Lemma 3.3.8. Let f, g ∈ F be such that f ≤ g on
⋃∞

n=1 En, and {sn} and {tn}

be sequences in L1(µ) that expand to f and g semiuniformly with respect to {En},

respectively.

(a) If un = max{sn, tn} for all n ∈ N, then un
↗
↘ g semiuniformly with respect

to {En}.

(b) If un = min{sn, tn} for all n ∈ N, then un
↗
↘ f semiuniformly with respect

to {En}.



34

Proof. (a) Let un = max{sn, tn} for all n ∈ N. Then {un} is a sequence in L1(µ).

We will show that un
↗
↘ g on E =

⋃∞
n=1 En. Let x ∈ E.

Case 1. g(x) ≥ 0 and f(x) ≥ 0. Then {un(x)} converges to g(x) because

tn(x) ≤ un(x) ≤ g(x) for all n ∈ N and {tn(x)} converges to g(x). Since g(x) ≥ 0

and f(x) ≥ 0, we have that sn(x) ≥ 0 and tn(x) ≥ 0 for all n ∈ N. By the

definition of {un}, un(x) ≥ 0 for all n ∈ N. We have that u−n (x) = 0 ≤ u−n+1(x)

and u+
n (x) = un(x) for all n ∈ N. Let n ∈ N. If sn(x) ≥ tn(x), then un(x) = sn(x).

Thus

u+
n (x) = sn(x) = s+

n (x) ≤ s+
n+1(x) = sn+1(x) ≤ un+1(x) = u+

n+1(x).

If tn(x) ≥ sn(x), then un(x) = tn(x). Thus

u+
n (x) = tn(x) = t+n (x) ≤ t+n+1(x) = tn+1(x) ≤ un+1(x) = u+

n+1(x).

Case 2. g(x) ≥ 0 and f(x) ≤ 0. Then sn(x) ≤ 0 ≤ tn(x) for all n ∈ N, which

implies un(x) = tn(x) for all n ∈ N. This shows that u+
n (x) ≤ u+

n+1(x) and

u−n (x) ≤ u−n+1(x) for all n ∈ N, and limn→∞ un(x) = g(x).

Case 3. g(x) ≤ 0 and f(x) ≤ 0. Then sn(x) ≤ 0 and tn(x) ≤ 0 for all n ∈ N,

and hence u+
n (x) = 0 ≤ u+

n+1(x) and u−n (x) = −un(x) for all n ∈ N.

Subcase 3.1. sn(x) ≥ tn(x). Then un(x) = sn(x). If un+1(x) = sn+1(x),

then

u−n (x) = −sn(x) = s−n (x) ≤ s−n+1(x) = −sn+1(x) = −un+1(x) = u−n+1(x).

If un+1(x) = tn+1(x), then

u−n (x) = −sn(x) ≤ −tn(x) = t−n (x)

≤ t−n+1(x) = −tn+1(x) = −un+1(x) = u−n+1(x).
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Subcase 3.2. tn(x) > sn(x). Then un(x) = tn(x). If un+1(x) = sn+1(x),

then

u−n (x) = −tn(x) ≤ −sn(x) = s−n (x)

≤ s−n+1(x) = −sn+1(x) = −un+1(x) = u−n+1(x).

If un+1(x) = tn+1(x), then

u−n (x) = −tn(x) = t−n (x) ≤ t−n+1(x) = −tn+1(x) = −un+1(x) = u−n+1(x).

In both subcases we have that un(x) ≤ un+1(x).

Let us show that limn→∞ un(x) = g(x). If f(x) = g(x), then we have two

subcases as follows:

Subcase 3.1. For all N ∈ N there exists nN in N with nN ≥ N such that

unN
(x) = snN

(x). Then we can choose a subsequence {unN
} of {un} such that

unN
= snN

for all N ∈ N. Hence {unN
} converges to f(x). Since {un} is

decreasing and un(x) ≥ g(x) = f(x) for all n ∈ N, un(x) is convergent. Hence

limn→∞ un(x) = f(x) = g(x).

Subcase 3.2. There exists N ∈ N such that un(x) = tn(x) for all n ∈ N

with n ≥ N . Then clearly limn→∞ un(x) = g(x).

If f(x) 6= g(x), then f(x) < g(x), and hence g(x) − f(x) > 0. Since {sn(x)} is

decreasing and limn→∞ sn(x) = f(x), there is an N ∈ N such that sn(x)− f(x) <

g(x) − f(x) for all n ∈ N with n ≥ N . Then sn(x) < g(x) for all n ≥ N . Thus

un(x) = tn(x) for all n ≥ N . Hence limn→∞ un(x) = g(x).

To finish the proof we will show that {un} converges to g semiuniformly with

respect to {En}. Since {sn} converges to f semiuniformly with respect to {En},

there exists an increasing sequence {F1,n} in M such that F1,n ⊆ En for all
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n ∈ N,
⋃∞

n=1 F1,n =
⋃∞

n=1 En and limn→∞ µ(En r F1,n) = 0, with the property

that for every ε > 0, there is an N ∈ N such that for all n ∈ N with n ≥ N ,

the inequality µ(F1,n) · |sn(x) − f(x)| < ε holds for all x ∈ F1,n. Similarly, there

exists an increasing sequence {F2,n} in M such that F2,n ⊆ En for all n ∈ N,⋃∞
n=1 F2,n =

⋃∞
n=1 En and limn→∞ µ(En r F2,n) = 0, with the property that for

every ε > 0, there is an N ∈ N such that for all n ∈ N with n ≥ N , the equality

µ(F2,n)·|tn(x)−g(x)| < ε holds for all x ∈ F2,n. For each n ∈ N, let Fn = F1,n∩F2,n.

As in the proof of Lemma 3.3.3, we have that Fn ⊆ En for all n ∈ N,
⋃∞

n=1 Fn =⋃∞
n=1 En, and limn→∞ µ(En r Fn) = 0. Let ε > 0. There exist N1, N2 ∈ N such

that for all n ∈ N with n ≥ N1, the inequality µ(F1,n) · |sn(x)−f(x)| < ε holds for

all x ∈ F1,n; and for all n ∈ N with n ≥ N2, the inequality µ(F2,n)·|tn(x)−g(x)| < ε

holds for all x ∈ F2,n. Choose N = max{N1, N2}. Let n ∈ N be such that n ≥ N

and let x ∈ Fn. Then x ∈ F1,n ∩ F2,n.

If g(x) ≥ 0, then g(x) ≥ un(x) ≥ tn(x) ≥ 0. Thus

µ(Fn) · |g(x)− un(x)| ≤ µ(Fn) · |g(x)− tn(x)|

≤ µ(F2,n) · |g(x)− tn(x)|

< ε.

Now suppose that g(x) < 0, so that f(x) ≤ g(x) < 0. If sn(x) ≥ tn(x), then

un(x) = sn(x) and f(x) ≤ g(x) ≤ tn(x) ≤ sn(x). Thus

µ(Fn) · |g(x)− un(x)| = µ(Fn) · |g(x)− sn(x)|

≤ µ(Fn) · |f(x)− sn(x)|

≤ µ(F1,n) · |f(x)− sn(x)|

< ε.

If sn(x) < tn(x), then un(x) = tn(x), and thus

µ(Fn) · |g(x)− un(x)| = µ(Fn) · |g(x)− tn(x)|
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≤ µ(F2,n) · |g(x)− tn(x)|

< ε.

Therefore (a) holds.

(b) For each n ∈ N, let un = min{sn, tn}, and let vn = −un, for all n ∈ N.

Then vn = −min{sn, tn} = max{−sn,−tn} for all n ∈ N. Since −sn
↗
↘ −f and

−tn ↗
↘ −g semiuniformly with respect to {En} and −g ≤ −f , by part (a) vn

↗
↘ −f

semiuniformly with respect to {En}. By Lemma 3.3.5, −vn
↗
↘ f semiuniformly

with respect to {En}. Since −vn = un for all n ∈ N, this says that un
↗
↘ f

semiuniformly with respect to {En}.

3.4 A Nonabsolutely Convergent Abstract µ-integral

In this section we will show how the concepts of expanding sequences and semi-

uniform convergence can be combined to yield a family of abstract µ-integrals, at

least some of which are nonabsolutely convergent.

Throughout this section {En} will denote an increasing sequence in M such

that µ(En) < ∞ for all n ∈ N and
⋃∞

n=1 En = X.

Definition 3.4.1. A function f in F is said to be generalized Lebesgue inte-

grable with respect to {En} iff there exists an L ∈ R̄ with the property that

limn→∞
∫

En
sn dµ = L for every sequence {sn} in L1(µ) such that sn

↗
↘ f semiuni-

formly with respect to {En}, in which case the generalized Lebesgue integral of f

is L. We denote the generalized Lebesgue integral of a function f with respect to

{En} by {En}-
∫

X
f dµ.

Let I =
{
f ∈ F

∣∣ f is generalised Lebesgue integrable with respect to{En}
}

and I(f) = {En}-
∫

X
f dµ for every f ∈ I . We will show that (I , I) is an abstract

µ-integral and IL1 ⊆ I .
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Proposition 3.4.2. Let f ∈ F . If f is in IL1 , then f is generalized Lebesgue

integrable with respect to {En} and

{En}-
∫

X

f dµ =

∫
X

f dµ.

Proof. This follows directly from Proposition 3.2.11.

Corollary 3.4.3. Let f ∈ F . If f ≥ 0, then f is generalized Lebesgue integrable

with respect to {En} and

{En}-
∫

X

f dµ =

∫
X

f dµ.

Proposition 3.4.4. For all E in M , χE is generalized Lebesgue integrable with

respect to {En} and

{En}-
∫

X

χE dµ = µ(E).

Proof. Let E ∈ M . Since (χE)− = 0,
∫

X
(χE)− dµ = 0. This shows that f ∈ IL1 .

By Lemma 3.4.2, χE is generalized Lebesgue integrable with respect to {En} and

{En}-
∫

X
χE dµ =

∫
X

χE dµ = µ(E).

Proposition 3.4.5. For every f ∈ F and r ∈ R, if f is generalized Lebesgue

integrable with respect to {En}, then rf is generalized Lebesgue integrable with

respect to {En} and

{En}-
∫

X

rf dµ = r
(
{En}-

∫
X

f dµ
)
.

Proof. Let f ∈ F and r ∈ R. Assume that f is generalized Lebesgue integrable

with respect to {En}. There exists L ∈ [−∞,∞] such that limn→∞
∫

En
sn dµ = L

for all sequences {sn} in L1(µ) with the property that sn
↗
↘ f semiuniformly with

respect to {En}.

If r = 0, then rf = 0. Clearly, rf is generalized Lebesgue integrable with

respect to {En} and {En}-
∫

X
rf dµ = 0 = r

(
{En}-

∫
X

f dµ
)
.
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Assume that r 6= 0, and consider rL. Let {sn} be a sequence in L1(µ) such that

sn expands to rf semiuniformly with respect to {En}. Then { sn

r
} is a sequence

in L1(µ).

We will show that sn

r
↗
↘ f on

⋃∞
n=1 En = X. Since {sn(x)} converges to rf(x)

for all x ∈ X, { sn

r
(x)} converges to f(x) for all x ∈ X.

Case 1. r > 0. Then ( sn

r
)+ = (sn)+

r
and ( sn

r
)− = (sn)−

r
for all n ∈ N. Since

sn
↗
↘ rf on X, we have that ( sn

r
)+ = s+

n

r
≤ s+

n+1

r
= ( sn+1

r
)+ and ( sn

r
)− = s−n

r
≤

s−n+1

r
= ( sn+1

r
)− for all n ∈ N.

Case 2. r < 0. Then ( sn

r
)+ = − s−n

r
and ( sn

r
)− = − s+

n

r
for all n ∈ N. Since

sn
↗
↘ rf on X, we have that ( sn

r
)+ = − s−n

r
≤ − s−n+1

r
= ( sn+1

r
)+ and ( sn

r
)− = − s+

n

r
≤

− s+
n+1

r
= ( sn+1

r
)−.

Thus sn

r
↗
↘ f on X.

We will show that { sn

r
} converges to f semiuniformly with respect to {En}.

Since {sn} converges to rf semiuniformly with respect to {En}, there exists an

increasing sequence {Fn} in M such that Fn ⊆ En for all n ∈ N,
⋃∞

n=1 Fn =⋃∞
n=1 En, and limn→∞ µ(EnrFn) = 0, with the property that for every ε > 0 there

is an N ∈ N such that for all n ∈ N with n ≥ N , the inequality µ(Fn) · |sn(x) −

rf(x)| < ε holds for all x ∈ Fn. Let ε > 0. Then ε|r| > 0. There is an Nε|r| in N

such that for every n ∈ N with n ≥ Nε|r|, the inequality µ(Fn)·|sn(x)−rf(x)| < ε|r|

holds for all x ∈ Fn. Then for each n ∈ N such that n ≥ Nε|r| we have that

µ(Fn) ·
∣∣∣sn

r
(x)− f(x)

∣∣∣ = µ(Fn) ·
∣∣∣∣1r
∣∣∣∣ |sn(x)− rf(x)|

<
1

|r|
ε |r|

= ε.

We have that { sn

r
} is a sequence in L1(µ) such that sn

r
↗
↘ f semiuniformly with re-

spect to {En}. Thus limn→∞
∫

En

sn

r
dµ = L. This implies that limn→∞

∫
En

sn dµ =
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rL. Thus rf is generalized Lebesgue integrable with respect to {En} and

{En}-
∫

X

rf dµ = rL = r

(
{En}-

∫
X

f dµ

)
.

Proposition 3.4.6. Let f, g ∈ F be such that f and g are generalized Lebesgue

integrable with respect to {En},
∣∣{En}-

∫
X

f dµ
∣∣ < ∞ and

∣∣{En}-
∫

X
g dµ

∣∣ < ∞.

Then f + g is generalized Lebesgue integrable with respect to {En} and

{En}-
∫

X

(f + g) dµ = {En}-
∫

X

f dµ + {En}-
∫

X

g dµ.

Proof. Let L1 = {En}-
∫

X
f dµ and L2 = {En}-

∫
X

g dµ and let L = L1 + L2.

Let {sn} be a sequence in L1(µ) such that sn expands to f + g semiuniformly

with respect to {En}. By Lemma 3.3.7, there exist sequences {fn} and {gn}

in L1(µ) such that fn
↗
↘ f and gn

↗
↘ g semiuniformly with respect to {En} and

fn+gn = sn for each n ∈ N. Then limn→∞
∫

En
fn dµ = L1, limn→∞

∫
En

gn dµ = L2,

and
∫

En
fn dµ +

∫
En

gn dµ =
∫

En
sn dµ for all n ∈ N. For every n ∈ N, we have∣∣∣∣∫

En

sn dµ− L

∣∣∣∣ =

∣∣∣∣∫
En

fn dµ +

∫
En

gn dµ− (L1 + L2)

∣∣∣∣
≤
∣∣∣∣∫

En

fn dµ− L1

∣∣∣∣+ ∣∣∣∣∫
En

gn dµ− L2

∣∣∣∣ .
Thus limn→∞

∫
En

sn dµ = L, which proves that f + g is generalized Lebesgue

integrable with respect to {En} and

{En}-
∫

X

(f + g) dµ = {En}-
∫

X

f dµ + {En}-
∫

X

g dµ.

Lemma 3.4.7. Let f, g ∈ F be such that f and g are generalized Lebesgue

integrable with respect to {En} and f ≤ g.

(a) If {En}-
∫

X
f dµ = ∞ then {En}-

∫
X

g dµ = ∞.

(b) If {En}-
∫

X
g dµ = −∞ then {En}-

∫
X

f dµ = −∞.
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Proof. (a) Assume that {En}-
∫

X
f dµ = ∞. Let {tn} be a sequence in L1(µ)

such that tn ↗
↘ g semiuniformly with respect to {En}. We must show that

limn→∞
∫

En
tn dµ = ∞. Let {sn} be a sequence in L1(µ) such that sn

↗
↘ f semiuni-

formly with respect to {En}. Let un = min{sn, tn} for all n ∈ N. By Lemma 3.3.8,

un
↗
↘ f semiuniformly with respect to {En}. Thus limn→∞

∫
En

un dµ = ∞.

Since un ≤ tn for all n ∈ N,
∫

En
un dµ ≤

∫
En

tn dµ for all n ∈ N. Hence

limn→∞
∫

En
tn dµ = ∞. Therefore {En}-

∫
X

g dµ = ∞.

(b). Since f ≤ g, −f ≤ −g. Because f and g are generalized Lebesgue in-

tegrable with respect to {En}, −f and −g are generalized Lebesgue integrable

with respect to {En} and {En}-
∫

X
(−g) dµ = −{En}-

∫
X

g dµ = ∞. By part (a)

{En}-
∫

X
(−f) dµ = ∞, and hence by Proposition 3.4.5, we have

{En}-
∫

X

f dµ = −
(
{En}-

∫
X

(−f) dµ

)
= −∞.

Proposition 3.4.8. Let f, g ∈ F be such that f ≤ g. If f and g are generalized

Lebesgue integrable with respect to {En}, then {En}-
∫

X
f dµ ≤ {En}-

∫
X

g dµ.

Proof. Assume that f and g are generalized Lebesgue integrable with respect to

{En}. If {En}-
∫

X
g dµ = ∞, then we are finished. If {En}-

∫
X

g dµ = −∞, then by

Lemma 3.4.7, {En}-
∫

X
f dµ = −∞ and again we are finished.

Thus, assume that −∞ < {En}-
∫

X
g dµ < ∞. By Lemma 3.4.7, we have that

{En}-
∫

X
f dµ < ∞ also. If {En}-

∫
X

f dµ = −∞, then again we are finished, so

we may assume that −∞ < {En}-
∫

X
f dµ < ∞. By Corollary 3.4.3 and Proposi-

tion 3.4.6 and the fact that g − f ≥ 0, we have

{En}-
∫

X

g dµ− {En}-
∫

X

f dµ = {En}-
∫

X

(g − f) dµ ≥ 0.

Thus {En}-
∫

X
g dµ ≥ {En}-

∫
X

f dµ.

Theorem 3.4.9. If {fn} is a monotonically increasing sequence of generalized

Lebesgue integrable functions with respect to {En}, f1 ≤ f2 ≤ f3 ≤ . . ., such that
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supn∈N fn(x) < ∞ for all x ∈ X and there exists N ∈ N with {En}-
∫

X
fN dµ >

−∞, then supn∈N fn is generalized Lebesgue integrable with respect to {En} and

{En}-
∫

X

sup
n∈N

fn dµ = sup
n∈N

(
{En}-

∫
X

fn dµ

)
.

Proof. For each n ∈ N let Ln = {En}-
∫

X
fn dµ and let L = supn∈N Ln. By

hypothesis, we have that Ln > −∞ for all n ∈ N such that n ≥ N . By dropping

a finite number of terms at the beginning of the sequence {fn}, we may assume

N = 1. Let f = supn∈N fn. We must prove that f is generalized Lebesgue

integrable with respect to {En} and {En}-
∫

X
f dµ = L.

Case 1. L = ∞. Let {sn} be a sequence in L1(µ) such that sn
↗
↘ f semiuniformly

with respect to {En}. We must show that limn→∞
∫

En
sn dµ = ∞. It suffices

to show lim infn→∞
∫

En
sn dµ ≥ Lk for all k ∈ N. Fix k ∈ N, and let {tn}

be a sequence in L1(µ) such that tn ↗
↘ fk semiuniformly with respect to {En}.

Let un = min{sn, tn} for all n ∈ N. Since fk ≤ f , by Lemma 3.3.8 {un} is a

sequence in L1(µ) such that un
↗
↘ fk semiuniformly with respect to {En}. Thus

limn→∞
∫

En
un dµ = Lk. Since un ≤ sn for all n ∈ N, it follows that

lim inf
n→∞

∫
En

sn dµ ≥ lim inf
n→∞

∫
En

un dµ = Lk,

which is the inequality we need to finish this case.

Case 2. L < ∞. Let gn = fn − f1 for each n ∈ N. Then {gn} is an increas-

ing sequence of nonnegative functions, which by Corollary 3.4.3 are all general-

ized Lebesgue integrable with respect to {En}. Furthermore, {En}-
∫

X
gn dµ =

{En}-
∫

X
fn dµ − {En}-

∫
X

f1 dµ and {En}-
∫

X
gn dµ =

∫
X

gn dµ for all n ∈ N. Let

g = supn∈N gn and observe that

g = sup
n∈N

(fn − f1) =

(
sup
n∈N

fn

)
− f1 = f − f1.
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In particular, g is a nonnegative, measurable, real-valued function, and thus by

Corollary 3.4.3 again, g is generalized Lebesgue integrable with respect to {En}

and {En}-
∫

X
g dµ =

∫
X

g dµ. By the Monotone Convergence theorem,

{En}-
∫

X

g dµ =

∫
X

g dµ

=

∫
X

sup
n∈N

gn dµ

= sup
n∈N

∫
X

gn dµ

= sup
n∈N

[
{En}-

∫
X

fn dµ− {En}-
∫

X

f1 dµ

]
= sup

n∈N

[
{En}-

∫
X

fn dµ

]
− {En}-

∫
X

f1 dµ

= sup
n∈N

Ln − L1

= L− L1.

This tells us that {En}-
∫

X
g dµ is finite. Since {En}-

∫
X

f1 dµ = L1 is also finite,

by Proposition 3.4.6 f = g + f1 is generalized Lebesgue integrable with respect to

{En} and

{En}-
∫

X

f dµ = {En}-
∫

X

g dµ + {En}-
∫

X

f1 dµ = (L− L1) + L1 = L.

By Propositions 3.4.4, 3.4.5, and 3.4.6, and Theorem 3.4.9, we have that (I , I)

is an abstract µ-integral. Also, we have IL1 ⊆ I by Proposition 3.4.2.

The following is an example of a choice of measure space (X, M , µ) and se-

quence of sets {En} such that the corresponding generalized Lebesgue integral is

nonabsolutely convergent.

Example 3.4.10. Let (X, M , µ) be the standard Lebesgue measure space on R

and let En = [−n, n] for all n ∈ N. Then (X, M , µ) is a σ-finite measure space

and the corresponding generalized Lebesgue integral is an abstract µ-integral with
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IL1 ⊆ I . We will show that (I , I) is nonabsolutely convergent by exhibiting a

function f ∈ I with |I(f)| < ∞ but I
(
|f |
)

= ∞. Define f : R → R by

f(x) =


1 if x ≥ 0

−1 if x < 0

for all x ∈ X.

Since |f |(x) = 1 for all x ∈ X, we have |f | = χX , and thus I
(
|f |
)

= µ(X) = ∞.

Hence we will be finished if we can show that f is generalized Lebesgue integrable

with respect to {En} and {En}-
∫

X
f dµ = 0. Let {sn} be a sequence in L1(µ)

such that sn
↗
↘ f semiuniformly with respect to {En}. We must prove that

limn→∞
∫

En
sn dµ = 0.

By definition there exists an increasing sequence {Fn} in M such that Fn ⊆ En

for all n ∈ N ,
⋃∞

n=1 Fn =
⋃∞

n=1 En, and limn→∞ µ(EnrFn) = 0, with the property

that for every ε > 0 there is an N ∈ N such that for all n ∈ N with n ≥ N , the

inequality µ(Fn)·|sn(x)−f(x)| < ε holds for all x ∈ Fn. Since limn→∞ µ(EnrFn) =

0 and limn→∞ µ(En) = limn→∞ 2n = ∞, we have that there exists an N1 ∈ N such

that µ(Fn) 6= 0 for all n ≥ N1. Let ε > 0. There is an N2 ∈ N such that for

all n ∈ N with n ≥ N2, the inequality µ(Fn) · |sn(x) − f(x)| < ε
2

holds for all

x ∈ Fn. There exists an N3 ∈ N such that µ(En rFn) < ε
2

for all n ≥ N3. Choose

N = max{N1, N2, N3}. Let n ∈ N be such that n ≥ N . Then for each x ∈ Fn, we

have µ(Fn) · |sn(x)− f(x)| < ε
2
, i.e., |sn(x)− f(x)| < ε

2µ(Fn)
.

Consider
∫

Fn∩[0,n]
sn dµ. Since sn

↗
↘ f , we have sn(x) ≤ f(x) for all x ∈ [0, n].

Thus

1− ε

2µ(Fn)
= f(x)− ε

2µ(Fn)
< sn(x) ≤ f(x) = 1.

Hence ∫
Fn∩[0,n]

1− ε

2µ(Fn)
dµ <

∫
Fn∩[0,n]

sn dµ
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≤
∫

Fn∩[0,n]

1 dµ

= µ
(
Fn ∩ [0, n]

)
.

Next, consider
∫

Fn∩[−n,0]
sn dµ. Since sn

↗
↘ f , we have sn(x) ≥ f(x) for all

x ∈ [−n, 0]. Thus

−1 = f(x) ≤ sn(x) < f(x) +
ε

2µ(Fn)
= −1 +

ε

2µ(Fn)
.

Hence

(−1) · µ
(
Fn ∩ [−n, 0]

)
≤
∫

Fn∩[−n,0]

sn dµ

<

∫
Fn∩[−n,0]

−1 +
ε

2µ(Fn)
dµ.

Now, consider
∫

(EnrFn)∩[0,n]
sn dµ. Since sn

↗
↘ f , we have 0 ≤ sn(x) ≤ f(x) = 1 for

all x ∈ [0, n]. Thus

0 ≤
∫

(EnrFn)∩[0,n]

sn dµ ≤
∫

(EnrFn)∩[0,n]

f dµ = µ
(
(En r Fn) ∩ [0, n]

)
.

Finally, consider
∫

(EnrFn)∩[−n,0]
sn dµ. Since sn

↗
↘ f , we have 0 ≥ sn(x) ≥ f(x) =

−1 for all x ∈ [−n, 0]. Thus

(−1)µ
(
(En r Fn) ∩ [−n, 0]

)
=

∫
(EnrFn)∩[−n,0]

f dµ ≤
∫

(EnrFn)∩[−n,0]

sn dµ ≤ 0.

Combining all of these we obtain∫
En

sn dµ =

∫
Fn∩[0,n]

sn dµ +

∫
Fn∩[−n,0]

sn dµ +

∫
(EnrFn)∩[0,n]

sn dµ

+

∫
(EnrFn)∩[−n,0]

sn dµ

>

∫
Fn∩[0,n]

1− ε

2µ(Fn)
dµ + (−1) · µ

(
Fn ∩ [−n, 0]

)
+ 0

+ (−1) · µ
(
(En r Fn) ∩ [−n, 0]

)
=

(
1− ε

2µ(Fn)

)
µ
(
Fn ∩ [0, n]

)
− µ

(
Fn ∩ [−n, 0]

)
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− µ
(
(En r Fn) ∩ [−n, 0]

)
= µ

(
Fn ∩ [0, n]

)
−

εµ
(
Fn ∩ [0, n]

)
2µ(Fn)

− µ
(
Fn ∩ [−n, 0]

)
− µ

(
[−n, 0] r (Fn ∩ [−n, 0])

)
= µ

(
Fn ∩ [0, n]

)
−

εµ
(
Fn ∩ [0, n]

)
2µ(Fn)

− µ
(
Fn ∩ [−n, 0]

)
− µ

(
[−n, 0]

)
+ µ
(
Fn ∩ [−n, 0]

)
= −

[
µ([−n, 0])− µ(Fn ∩ [0, n])

]
−

εµ
(
Fn ∩ [0, n]

)
2µ(Fn)

= −
[
µ([0, n])− µ(Fn ∩ [0, n])

]
−

εµ
(
Fn ∩ [0, n]

)
2µ(Fn)

= −µ
(
[0, n] r (Fn ∩ [0, n])

)
−

εµ
(
Fn ∩ [0, n]

)
2µ(Fn)

= −µ
(
(En r Fn) ∩ [0, n]

)
−

εµ
(
Fn ∩ [0, n]

)
2µ(Fn)

≥ −µ(En r Fn)−
εµ
(
Fn ∩ [0, n]

)
2µ(Fn)

> − ε

2
− ε

2

= −ε

and∫
En

sn dµ =

∫
Fn∩[0,n]

sn dµ +

∫
Fn∩[−n,0]

sn dµ +

∫
(EnrFn)∩[0,n]

sn dµ

+

∫
(EnrFn)∩[−n,0]

sn dµ

< µ
(
Fn ∩ [0, n]

)
+

∫
Fn∩[−n,0]

−1 +
ε

2µ(Fn)
dµ + µ

(
(En r Fn) ∩ [0, n]

)
+ 0

= −µ
(
Fn ∩ [−n, 0]

)
+

εµ
(
Fn ∩ [−n, 0]

)
2µ(Fn)

+ µ
(
[0, n]

)
= −µ

(
Fn ∩ [−n, 0]

)
+

εµ
(
Fn ∩ [−n, 0]

)
2µ(Fn)

+ µ
(
[−n, 0]

)
= µ

(
[−n, 0] r (Fn ∩ [−n, 0])

)
+

εµ
(
Fn ∩ [−n, 0]

)
2µ(Fn)
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≤ µ(En r Fn) +
ε

2

<
ε

2
+

ε

2

= ε.

Together, the two strings of inequalities above tell us that
∣∣∫

En
sn dµ

∣∣ < ε. In

other words, given ε > 0 we can find an N ∈ N such that
∣∣∫

En
sn dµ

∣∣ < ε for all

n ≥ N.Thus, we have that limn→∞
∫

En
sn dµ = 0. Hence f is generalized Lebesgue

integrable with respect to {En} and {En}-
∫

X
f dµ = 0. This completes our proof

that (I , I) is a nonabsolutely convergent abstract µ-integral.



CHAPTER IV

CONCLUSIONS

In this thesis, we have defined the generalized Lebesgue integral on an arbitrary

σ-finite measure space by using the concepts of expanding sequences and semi-

uniform convergence. We have shown that the generalized Lebesgue integral is

always an abstract µ-integral, and given an example of a generalized Lebesgue

integral which is nonabsolutely convergent using the standard Lebesgue measure

space on R.

The definition of generalized Lebesgue integral we have given may not be

the best possible definition. It can be observed that it depends on a designated

sequence of measurable sets. Thus, a single function may have many different inte-

grals when we choose different sequences of measurable sets. It would be better if

the definition could be improved so that the integral of a given function is unique.

The key to an improved definition is probably a better concept of semiuniform

convergence, or perhaps even an alternate type of convergence. Also, the relation-

ship between the generalized Riemann integral on R and the generalized Lebesgue

integral using the standard Lebesgue measure on R should be considered.
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