Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/40203
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorอติวงศ์ สุชาโต-
dc.contributor.authorศิรินาถ ตั้งรวมทรัพย์-
dc.contributor.otherจุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์-
dc.date.accessioned2014-03-05T07:07:33Z-
dc.date.available2014-03-05T07:07:33Z-
dc.date.issued2550-
dc.identifier.urihttp://cuir.car.chula.ac.th/handle/123456789/40203-
dc.descriptionวิทยานิพนธ์ (วศ.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2550en_US
dc.description.abstractวิทยานิพนธ์นี้ได้เสนอแนวทางในการค้นหาลำดับของแนวคิดจากกราฟของเซกเมนต์ โดยการเพิ่มความรู้ของแนวคิดในขณะที่รู้จำคำจากกราฟของเซกเมนต์ ซึ่งจะใช้แบบจำลองแนวคิด และโครงข่ายจับคู่ระหว่างคำศัพท์และแนวคิดมาช่วยในการรู้จำ ทั้งนี้เพื่อให้สามารถใช้ความรู้ในส่วนของหน่วยเสียงมาช่วยในการค้นหาลำดับของแนวคิด ในขณะเดียวกันก็สามารถใช้ความรู้ของแนวคิดมาพิจารณาค้นหาลำดับของคำ โดยได้เปรียบเทียบกับวิธีการที่ค้นหาลำดับของแนวคิดจากผลการรู้จำคำที่ได้ ซึ่งเป็นวิธีการที่แยกความรู้ของหน่วยเสียง และแนวคิดออกจากกัน โดยในวิทยานิพนธ์นี้จะเปรียบเทียบประสิทธิภาพของทั้งสองวิธี โดยพิจารณาจากผลของการรู้จำคำศัพท์ การค้นหาแนวคิด และการค้นหาจุดมุ่งหมายของประโยคจากแนวคิดที่ได้ ภายใต้โดเมนของการติดต่อทางโทรศัพท์เพื่อสอบถามอัตราค่าบริการ และรหัสโทรศัพท์ทางไกลระหว่างประเทศ ผ่านทางระบบโทรศัพท์ จากผลการทดลองพบว่า เมื่อใช้ความรู้ของแนวคิดมาใช้พร้อมๆ กับการรู้จำคำนั้น จะเพิ่มค่ารีคอลในการรู้จำคำจาก 54.93% เป็น 70.59% โดยเมื่อเปรียบเทียบผลของการค้นหาลำดับของแนวคิด จะพบว่าวิธีการค้นหาแนวคิดจากกราฟของเซกเมนต์นั้นจะให้ค่ารีคอลและพรีซีชันมากที่สุด โดยจะมีค่าเป็น 81.73% และ 86.67% ตามลำดับ ในการระบุจุดมุ่งหมายนั้น ได้เปรียบเทียบวิธีการแบ่งประเภทโดยพิจารณาจากการปรากฎของแนวคิดที่รู้จำได้ และการใช้คะแนนของการรู้จำในการพิจารณา โดยวิธีการใช้กฎและโครงข่ายประสาทเทียม ผลการทดลองแสดงให้เห็นว่า การใช้กฎโดยพิจารณาจากคะแนนของการรู้จำ จะให้ความถูกต้องในการระบุจุดมุ่งหมายมากที่สุดเป็น 79.63%en_US
dc.description.abstractalternativeThis thesis proposes the methodology for extracting the sequence of concept from segment graph by adding concept knowledge into the word recognition process. For this propose, concept model and the graph mapping between word and concept are used so that the acoustic-phonetic knowledge can be use for searching concepts and the concept knowledge also used for finding the sequence of words. This thesis compares the performance of this method with the concept extraction approch which tags the concepts from the sequence of words derived from speech recognizer, in the other words the approach which separates the acoustic-phonetic knowledge and the concept knowledge. In order to evaluate the performance, the result of word recognition, concept extraction and goal classification are compared. The experiment set on the telephone rate and country code inquiry system. The result of experiment show that the process which integrated concept knowledge increase recall value from 54.93% to 70.59%. Comparing extracted concept output, extracting concept through segment graph provide the highest precision and recall value, 81.73% and 86.67%, respectively. To classify goal, the accuracy of goal identification methods considereing the presence of concepts and the score of each concept are compared. We proposed rule-based and artificial neural network classifying approach. The result show that using rule-based rely on recognized concept scores provide the highest accuracy which is 79.63%en_US
dc.language.isothen_US
dc.publisherจุฬาลงกรณ์มหาวิทยาลัยen_US
dc.relation.urihttp://doi.org/10.14457/CU.the.2007.978-
dc.rightsจุฬาลงกรณ์มหาวิทยาลัยen_US
dc.subjectปฏิสัมพันธ์มนุษย์-คอมพิวเตอร์en_US
dc.subjectการรับรู้เสียงพูดen_US
dc.subjectการรู้จำเสียงพูดen_US
dc.subjectการพูด -- การประมวลผลข้อมูลen_US
dc.subjectHuman-computer interactionen_US
dc.subjectSpeech perceptionen_US
dc.subjectSpeech recognitionen_US
dc.subjectSpeech -- Data processingen_US
dc.titleการสกัดแนวคิดจากเสียงสนทนาโดยใช้กราฟของเซกเมนต์en_US
dc.title.alternativeConcept extraction from conversational speech using segment graphen_US
dc.typeThesisen_US
dc.degree.nameวิศวกรรมศาสตรมหาบัณฑิตen_US
dc.degree.levelปริญญาโทen_US
dc.degree.disciplineวิศวกรรมคอมพิวเตอร์en_US
dc.degree.grantorจุฬาลงกรณ์มหาวิทยาลัยen_US
dc.email.advisoratiwong@cp.eng.chula.ac.th-
dc.identifier.DOI10.14457/CU.the.2007.978-
Appears in Collections:Eng - Theses

Files in This Item:
File Description SizeFormat 
Sirinart_Ta.pdf2.69 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.