Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/77852
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorYupaporn Kemprasit-
dc.contributor.authorPrakit Jampachon-
dc.contributor.otherChulalongkorn University. Graduate School-
dc.date.accessioned2021-11-23T06:22:50Z-
dc.date.available2021-11-23T06:22:50Z-
dc.date.issued1984-
dc.identifier.urihttp://cuir.car.chula.ac.th/handle/123456789/77852-
dc.description.abstractBy the local subsemigroups of a semigroup S we mean the subsemigroups of S in the form eSe where e is an idempotent of S. A semigroup S is said to be factorizable if there exists a subgroup G of S such that S = GE(S) where E(S) is the set of all idempotents of S. A semigroup in which each local subsemigroup is factorizable is called a locally factorizable semigroup. Let X be a set. For a partial transformation α of X, the shift of α is defined to be the set S(α) = { X Ɛ Δα l Xα ≠ X} where Δα is the domain of α. A partial transformation α of X is said to be almost identical if and only if it had a finite Shift. In this thesis, we characterize locally factorizable transformation semigroups as follcws : THEOREM. The partial transformation semigroup on a set X is locally factorizable if and only if X is finite. COROLLARY. Let X be a set and let S be the full transformation semigroup on X or the symmetric inverse semigroup on X (the 1-1 partial transformation semigroup on X). Then the transformation semigroup S is locally factorizable if and if X is finite. THEOREM. For any set X, the semigroup of all almost identical partial transformations of X is finite. COROLLARY. For any set X, the semigroup of all almost identical transformations of X and the semigroup of all almost identical 1-1 partial transformations of X are locally factorizable. THEOREM. For any positive integer n and for any field F, the multiplicative semigroup of all nxn matrices over F is locally factorizable.-
dc.description.abstractalternativeเซมิกรุปย่อยเฉพาะที่ของเซมิกรุป S หมายถึงเซมิกรุปย่อยของ S ซึ่งอยู่ในรูปแบบ eSe โดยที่ e เป็นไอเดมโพเทนต์ของ S เราเรียกเซมิกรุป S ว่าเป็นเซมิกรุปที่แยกแฟกเตอร์ได้ถ้ามีกรุปย่อย G ของ S ซึ่ง ทำให้ S = GE(S) โดยที่ E(S) เป็นเซดของไอเดมโพเทนต์ทั้งหมดของ S และเรียกเซมิกรุป S ว่าเป็นเซมิกรุปที่แยกแฟกเตอร์ได้อย่างเฉพาะที่ ถ้าแต่ละเวมิกรุปย่อยเฉพาะที่ S แยกแฟกเตอร์ได้ ให้ X เป็นเซตใด ๆ สำหรับการแปลงบางส่วน α ของ X ให้ S(α) = { X Ɛ Δα l Xα ≠ X} โดยที่ Δα เป็นโดเมนของ α เรากล่าวว่าการแปลงบางส่วน α ของ X เกือบเป็นเอกลักษณ์ถ้า S(α) เป็นเซตจำกัด ในวิทยานิพนธ์ฉบับนี้ เราให้ลักษณะของเซมิกรุปของการแปลงที่แยกแฟกเตอร์ได้อย่างเฉพาะที่ดังต่อไปนี้ ทฤษฎี เซมิกรุปของการแปลงบางส่วนบนเซต X เป็นเซมิกรุปที่แยกแฟกเตอร์ได้อย่างเฉพาะที่เมื่อและต่อเมื่อ X เป็นเซตจำกัด บทแทรก ให้ X เป็นเซตใด ๆ และให้ S เป็นเซมิกรุปของการแปลงเต็มบนเซต X หรือเป็นเซมิกรุปผกผัน สมมาตรบนเซต X (เซมิกรุปของการแปลงบางส่วนชนิด 1-1 บนเซต X) ได้ว่า S เป็นเซมิกรุปที่แยกแฟกเตอร์ได้อย่างเฉพาะที่ เมื่อและต่อเมื่อ X เป็นเซตจำกัด ทฤษฏี สำหรับเซต X ใด ๆ เซมิกรุปของการแปลงบางส่วนที่เกือบเป็นเอกลักษณ์ของเซต X ทั้งหมดเป็นเซมิกรุปที่แยกแฟกเตอร์ได้อย่างเฉพาะที่ บทแทรก สำหรับเซต X ใด ๆ เซริกรุปของการแปลงการแปลงที่เกือบเป็นอกลักษณะของเซต X ทั้งหมดและเซมิกรุปของการแปลงบางส่วนชนิด 1-1 ที่เกือบเป็นเอกลักษณ์ของเซต X ทั้งหมดเป็นเซมิกรุปที่แยกแฟกเตอร์ได้อย่างเฉพาะที่ ทฤษฎี สำหรับจำนวนเต็มบวก n และฟิลด์ F ใด ๆ เซมิกรุปของเมตริกซ์ขนาด nxn บน F ทั้งหมดภายใต้การคูณของเมตริกซ์เป็นเซมิกรุปที่แยกกแฟกเตอร์ได้อย่างเฉพาะที่-
dc.language.isoenen_US
dc.publisherจุฬาลงกรณ์มหาวิทยาลัยen_US
dc.relation.urihttp://doi.org/10.14457/CU.the.1984.35-
dc.rightsChulalongkorn Universityen_US
dc.subjectSemigroupsen_US
dc.subjectMathematical modelsen_US
dc.subjectเซมิกรุปen_US
dc.subjectแบบจำลองทางคณิตศาสตร์en_US
dc.titleLocally factorizable transformation semigroupsen_US
dc.title.alternativeเซมิกรุปของการแปลงที่แยกแฟกเตอร์ได้อย่างเฉพาะที่en_US
dc.typeThesisen_US
dc.degree.nameMaster of Scienceen_US
dc.degree.levelMaster's Degreeen_US
dc.degree.disciplineMathematicsen_US
dc.degree.grantorChulalongkorn Universityen_US
dc.identifier.DOI10.14457/CU.the.1984.35-
Appears in Collections:Grad - Theses

Files in This Item:
File Description SizeFormat 
Prakit_ja_front_p.pdfCover and abstract760.52 kBAdobe PDFView/Open
Prakit_ja_ch0_p.pdfChapter 1605.25 kBAdobe PDFView/Open
Prakit_ja_ch1_p.pdfChapter 2802.07 kBAdobe PDFView/Open
Prakit_ja_ch2_p.pdfChapter 3986.31 kBAdobe PDFView/Open
Prakit_ja_ch3_p.pdfChapter 41.21 MBAdobe PDFView/Open
Prakit_ja_ch4_p.pdfChapter 5784.65 kBAdobe PDFView/Open
Prakit_ja_back_p.pdfReference and appendix623.23 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.